Gustave C. Fralick
Lewis Research Center
Cleveland, Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. - OCTOBER 1976

*For sale by the National Technical Information Service, Springfield. Virginia 22161

COMPUTER PROGRAM FOR CALCULATING PRESSURE-BROADENED
 RAMAN SPECTRA FOR MOLECULAR NITROGEN AND OXYGEN

by Gustave C. Fralick

Lewis Research Center

SUMMARY

A computer program is given for calculating the rotational Raman spectra for molecular nitrogen and oxygen. Provision is made for pressure broadening. Several sample results at various pressures and temperatures are shown. The relative heights of some of the lines are affected by pressure broadening, and in nitrogen the odd-j lines are most affected. For instance, the $j=5$ anti-Stokes line increases about 15 percent relative to the $j=6$ Stokes line for a change in pressure from 1 to 40 atmospheres, while the $j=6$ anti-Stokes line shows no change.

INTRODUCTION

In the development of gas turbine engines, there has been a continuing goal to further increase turbine inlet temperature and thereby increase engine performance. The measurement of gas temperatures in the region of the turbine inlet and combustor exit is required to see that the combustor generates the right temperature profile as well as temperature level. Traditionally, these temperature measurements have been made with thermocouples. Presently, however, no thermocouple is available which will withstand the high temperatures and pressures (up to 2400 K and 40 atm) predicted for future tur bine and combustor development.

Other methods, such as cooled immersion probes and gas analysis, have been considered as alternative solutions for making high gas temperature measurements, but as yet none have been used on a routine basis. Another method of current interest is a remote-sensing light-scattering technique utilizing Raman scattering. The Raman scattering technique is attractive in that it can be used to focus remotely on a small volume in a gas stream and extract information associated with local gas density, composition, and temperature.

Over the last few years several groups have been conducting development work on this technique (refs. 1 to 5), and, in at least one case, the technique has been applied to the measurement of jet engine exhaust temperatures up to 955 K (ref. 6).

Some of the problems associated with the use of Raman scattering in measuring temperature in jet engine exhaust gases are fluorescence, ambient light background, interference of various species of gas, and pressure broadening.

This investigation was conducted to extend the results found in reference 2 to produce a computer program for computing the Raman spectra which includes the effects of pressure broadening. This program can be used to predict the extent of pressure broadening associated with temper ature measurements at elevated pressures.

THEORY

The theory of rotational Raman scattering and line broadening is discussed in references 1 and 2, so that only a relatively brief outline is given in this section.

When a beam of light, from a laser, for example, is scattered from a molecular system, most of the light is scattered with no change in wave number (the wave number is the inverse of the wavelength). This is called Rayleigh scattering. Some of the scattering molecules, however, are induced into undergoing a change of energy level by the light beam, and the scattered light has a wave number different from that of the incident light. This is called Raman scattering. If the molecule undergoes a transition to an energy state lower than it originally had, the wave number of the scattered light is increased (anti-Stokes scattering); conversely, if the molecule undergoes a transition to a higher energy state, the wave number of the scattered light is decreased (Stokes scatter ing). Because the molecular energy levels are quantized (discrete), the wave number shifts are also discrete, and the spectrum of the scattered light consists of the unshifted Rayleigh line and a series of lines on either side of it, the Raman lines. The magnitude of the frequency shifts and the relative intensities of the various lines depend on what type of molecule is involved and on the temperature.

The scattered light is not observed as a series of perfectly sharp lines, but as lines which are spread out, or broadened. The broadening has a variety of causes, among which are the fact that neither the light source nor the detector is perfectly monochromatic and the fact that the molecules are in motion rather than being at rest. Since the broadening depends on both the temperature and pressure of the gas, it must be taken into account if Raman scattering is to be used as a tool for measuring the temperature of high-pressure gases.

If the Raman scattered light from a molecule has an intensity I_{j}, where j is the quantum number associated with a particular line, the broadening of that line is described by writing

$$
\begin{equation*}
I_{j}(\nu)=I_{j} S\left(\nu, \nu_{j}\right) \tag{1}
\end{equation*}
$$

That is, the intensity at wave number ν due to the line located at ν_{j} and having an intensity I_{j} is found by multiplying I_{j} by the factor $\mathrm{S}\left(\nu, \nu_{j}\right)$. This is shown in figure 1. The factor $\mathrm{S}\left(\nu_{s} \nu_{\mathrm{j}}\right)$ is called the normalized shape function (ref. 2). (Symbols are defined in appendix A.)

For a series of spectral lines, the intensity at ν is just the sum of the intensities due to each line

$$
\begin{equation*}
I(\nu)=\sum_{\mathbf{j}} \mathrm{I}_{\mathbf{j}}(\nu)=\sum_{\mathbf{j}} \mathrm{I}_{\mathrm{j}} \mathbf{S}\left(\nu, \nu_{\mathbf{j}}\right) \tag{2}
\end{equation*}
$$

The Raman spectrum is the intensity at each value of ν, so the problem of calculating the spectrum reduces to calculating the line intensities I_{j} and the normalized shape function $\mathrm{S}\left(\nu, \nu_{\mathrm{j}}\right)$. The shape function $\mathrm{S}\left(\nu, \nu_{\mathrm{j}}\right)$ is normalized to unit area in order to satisfy the requirement of conservation of energy. The total intensity of the broadened lines over all wave numbers is

$$
\int_{-\infty}^{\infty} \mathrm{I}(\nu) \mathrm{d} \nu=\sum_{\mathbf{j}} \mathrm{I}_{\mathbf{j}} \int_{-\infty}^{\infty} \mathrm{S}\left(\nu, \nu_{\mathbf{j}}\right) \mathrm{d} \nu=\sum_{\mathbf{j}} \mathrm{I}_{\mathrm{j}}
$$

which is the total intensity of all the unbroadened lines.
The Raman lines on the low-wave-number side of a Rayleigh line are called the Stokes lines, and for the rotational scattering from the diatomic nitrogen and oxygen molecules (N_{2} and O_{2}) considered in this report the line intensities are given by refer ences 2 and 7 as

$$
\begin{equation*}
I_{j}^{(S)}=C_{j} \frac{(j+1)(j+2)}{2 j+3} \frac{\theta}{T} \cdot\left(\nu_{0}-\Delta \nu_{j}\right)^{4} e^{-\theta j(j+1) / T} \quad j=0,1,2,3, \ldots \tag{3}
\end{equation*}
$$

The lines on the other side of the Rayleigh line are called the anti-Stokes lines, and their intensities are given by

$$
\begin{equation*}
I_{j}^{(A S)}=C_{j} \frac{(j+1)(j+2)}{2 j+3} \frac{\theta}{T}\left(\nu_{0}+\Delta \nu_{j}\right)^{4} e^{-\theta(j+2)(j+3) / T} \quad j=0,1,2,3 \ldots \tag{4}
\end{equation*}
$$

where C_{j} contains other factors, such as nuclear spin. The spin causes the intensity of every other N_{2} line to be reduced by 50 percent and causes every other O_{2} line to be absent. The wave number ν_{0} is the wave number of the laser, and

$$
\begin{equation*}
\Delta \nu_{\mathrm{j}}=\frac{4 \mathrm{k} \theta}{\mathrm{hc}}\left(\mathrm{j}+\frac{3}{2}\right) \tag{5}
\end{equation*}
$$

is the wave number shift. The lines are located at

$$
\begin{equation*}
\nu_{\mathrm{j}}=\nu_{0} \pm \Delta \nu_{\mathrm{j}} \tag{6}
\end{equation*}
$$

The constant θ is called the rotational characteristic temperature of the molecule.
Line broadening is due to the Doppler profile in the laser, combined natural and pressure broadening in the molecular gas, and instrument distortion (ref. 2). The profile of the laser line is given by a Gaussian function (refs. 8 and 9)

$$
\begin{equation*}
\mathrm{S}_{\mathrm{L}}\left(\nu, \nu_{0}\right)=\frac{2 \sqrt{\ln 2}}{\sqrt{\pi} \mathrm{R}_{\mathrm{L}}} \mathrm{e}^{-\left(4 \ln 2 / \mathrm{R}_{\mathrm{L}}^{2}\right)\left(\nu-\nu_{0}\right)^{2}} \tag{7}
\end{equation*}
$$

and the natural-pressure broadening by a Lorentz profile (ref. 10).

$$
\begin{equation*}
\mathrm{S}_{\mathbf{R}}\left(\nu, \nu^{\prime}\right)=\frac{\frac{\mathrm{R}_{\mathrm{R}}}{2}}{\pi\left[\left(\nu-\nu^{\prime}\right)^{2}+\left(\frac{\mathrm{R}_{\mathrm{R}}}{2}\right)^{2}\right]} \tag{8}
\end{equation*}
$$

The combined effect of the Doppler profile and natural-pressure broadening is given by the Voight broadening function, which is the convolution of S_{L} and S_{R} :
$\mathrm{S}_{\mathrm{V}}\left(\nu, \nu_{\mathrm{j}}\right)=\int_{-\infty}^{\infty} \mathrm{S}_{\mathrm{L}}\left(\nu^{\prime}, \nu_{\mathrm{j}}\right) \dot{\mathrm{S}}_{\mathrm{R}}\left(\nu^{\prime}, \nu\right) \mathrm{d} \nu^{\prime}=\frac{\sqrt{\ln 2} \mathrm{R}_{\mathrm{R}}}{\pi^{3 / 2} \mathrm{R}_{\mathrm{L}}} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-\left(4 \ln 2 / \mathrm{R}_{\mathrm{L}}^{2}\right)\left(\nu^{\prime}-\nu_{\mathrm{j}}\right)^{2}}}{\left(\nu^{\prime}-\nu\right)^{2}+\left(\frac{\mathrm{R}_{\mathrm{R}}}{2}\right)^{2}} \mathrm{~d} \nu^{\prime}$
Note that the two broadening functions S_{L} and S_{R} are normalized to unit area. For this reason, S_{V} is also normalized to unit area:

$$
\begin{aligned}
\int_{-\infty}^{\infty} \mathrm{S}_{\mathrm{V}}\left(\nu, \nu_{\mathrm{j}}\right) \mathrm{d} \nu & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{S}_{\mathrm{L}}\left(\nu^{\prime}, \nu_{\mathrm{j}}\right) \mathrm{S}_{\mathrm{R}}\left(\nu^{\prime}, \nu\right) \mathrm{d} \nu^{\prime} \mathrm{d} \nu \\
& =\int_{-\infty}^{\infty} \mathrm{S}_{\mathrm{L}}\left(\nu^{\prime}, \nu_{\mathrm{j}}\right) \int_{-\infty}^{\infty} \mathrm{S}_{\mathrm{R}}\left(\nu^{\prime}, \nu\right) \mathrm{d} \nu \mathrm{~d} \nu^{\prime} \\
& =\int_{-\infty}^{\infty} \mathrm{S}_{\mathrm{L}}\left(\nu^{\prime}, \nu_{\mathrm{j}}\right) \mathrm{d} \nu^{\prime}=1
\end{aligned}
$$

The two numbers R_{L} and R_{R} are called, respectively, the laser and Raman bandwidths and give the width of a profile when the height is reduced to one-half of the peak value, as shown in figures 2 and 3. The bandwidth R_{L} is constant, but the bandwidth R_{R} is not. It varies with temperature, pressure, and the quantum number j. The form of the variation, deduced from the data in references 11 and 12 , is

$$
\begin{equation*}
R_{R}=\sqrt{\frac{T_{0}}{T}}(j A+B) P \tag{10}
\end{equation*}
$$

where T_{0} is a reference temperature, T is the gas temperature, and P is the gas pressure. The constants A, B, and T_{0} are fitted to experimental data measured by using gases of known temperature and pressure.

The behavior of line broadening due to the detecting instrument is given by the slit function (ref. 13)

$$
\begin{equation*}
\mathrm{S}_{\mathrm{S}}\left(\nu, \nu_{\mathrm{S}}\right)=\frac{2 \sqrt{\ln 2}}{\sqrt{\pi} \mathrm{R}_{\mathrm{S}}} \mathrm{e}^{-\left(4 \ln 2 / \mathrm{R}_{\mathrm{S}}^{2}\right)\left(\nu-\nu_{\mathrm{S}}\right)^{2}} \tag{11}
\end{equation*}
$$

Finally, the combined effect of all the broadening is the convolution of the Voight and slit functions to yield the overall shape function
$\mathrm{S}\left(\nu, \nu_{\mathrm{j}}\right)=\int_{-\infty}^{\infty} \mathrm{S}_{\mathrm{S}}\left(\nu, \nu^{\prime}\right) \mathrm{S}_{\mathrm{V}}\left(\nu^{\prime}, \nu_{\mathrm{j}}\right) \mathrm{d} \nu^{\prime}=\frac{2 \sqrt{\ln 2}}{\sqrt{\pi} \mathrm{R}_{\mathrm{S}}} \int_{-\infty}^{\infty} \mathrm{e}^{-\left(4 \ln 2 / \mathrm{R}_{\mathrm{S}}^{2}\right)\left(\nu^{\prime}-\nu\right)^{2} \sqrt{\ln 2} \mathrm{R}_{\mathrm{R}}} \frac{\pi^{3 / 2} \mathrm{R}_{\mathrm{L}}}{\int_{-\infty}^{\infty}} \frac{\mathrm{e}^{-\left(4 \ln 2 / \mathrm{R}_{\mathrm{L}}^{2}\right)\left(\nu^{\prime \prime}-\nu_{\mathrm{j}}\right)^{2}} \mathrm{~d} \nu \nu^{\prime \prime} \mathrm{d} \nu^{\prime}}{\left(\nu^{\prime \prime}-\nu^{\prime}\right)^{2}+\left(\frac{\mathrm{R}_{\mathrm{R}}}{2}\right)^{2}}$

The shape function is also normalized to unit area, as explained previously.
In principle, the spectrum can now be calculated by substituting I_{j} from equation (3) or (4) and $\mathrm{S}\left(\nu, \nu_{\mathrm{j}}\right)$ from equation (12) into equation (2). Unfortunately, the integrals in equation (12) cannot be evaluated analytically, but must be evaluated numerically.

The inner integral in equation (12), the Voight integral, can be put into another form, for which numerical solutions now exist. Let

$$
\alpha=\frac{2 \sqrt{\ln 2}}{\mathrm{R}_{\mathrm{L}}} \quad \beta=\frac{\mathrm{R}_{\mathrm{R}}}{2}
$$

so that

$$
\begin{equation*}
\mathrm{S}_{\mathrm{V}}\left(\nu^{\prime}, \nu_{\mathrm{j}}\right)=\alpha \pi^{-3 / 2} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-\alpha^{2}\left(\nu^{\prime \prime}-\nu_{\mathrm{j}}\right)^{2}}}{\left(\nu^{\prime \prime}-\nu^{\prime}\right)^{2}+\beta^{2}} \mathrm{~d} \nu^{\prime \prime} \tag{13}
\end{equation*}
$$

With the change of variables

$$
\left.\begin{array}{l}
\mathrm{y}=\frac{\nu^{\prime \prime}-\nu^{\prime}}{\beta} \tag{14}\\
\mathrm{x}=\frac{\nu_{\mathrm{j}}-\nu^{\prime}}{\beta}
\end{array}\right\}
$$

The result is

$$
\begin{equation*}
\mathrm{S}_{\mathrm{V}}\left(\nu^{\prime}, \nu_{\mathrm{j}}\right)=\alpha \pi^{-3 / 2} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-\alpha^{2} \beta^{2}(\mathrm{y}-\mathrm{x})^{2}}}{1+\mathrm{y}^{2}} d y \tag{15}
\end{equation*}
$$

Now let

$$
\begin{equation*}
\Theta=2 \alpha \beta=2 \sqrt{\ln 2} \frac{\mathrm{R}_{\mathrm{R}}}{\mathrm{R}_{\mathrm{L}}} \tag{16}
\end{equation*}
$$

The Voight integral may be expressed in terms of the first Doppler broadening integral (ref. 14)

$$
\begin{equation*}
\mathrm{S}_{\mathrm{V}}\left(\nu^{\prime}, \nu_{\mathrm{j}}\right)=\alpha \beta \pi^{-3 / 2}\left[\frac{2 \sqrt{\pi}}{\Theta} \psi(\mathrm{x}, \Theta)\right]=\frac{2}{\pi \mathrm{R}_{\mathrm{R}}} \psi(\mathrm{x}, \Theta) \tag{17}
\end{equation*}
$$

and aside from a constant factor independent of j, the shape function becomes

$$
\begin{equation*}
\mathrm{S}\left(\nu, \nu_{\mathrm{j}}\right)=\frac{1}{\mathrm{R}_{\mathrm{R}}} \int_{-\infty}^{\infty} \mathrm{e}^{-\left(4 \ln 2 / \mathrm{R}_{\mathrm{S}}^{2}\right)\left(\nu^{\prime}-\nu\right)^{2}} \psi(\mathrm{x}, \Theta) \mathrm{d} \nu^{\prime} \tag{18}
\end{equation*}
$$

The j -independent part of the normalization constant is dropped because only the relative peak heights are of concern.

Since reference 14 supplies a computer program for numerically evaluating $\psi(x, \Theta)$ (listed in appendixes B and C as PSIPHI), the shape function can now be found numer ically as soon as realistic limits of integration are found to replace the infinite limits shown in equation (18). The details of finding these limits are given in appendix D .

DISCUSSION OF RESULTS

Eight sample results are included in figures 4 to 11. These are results for N_{2} and O_{2} at 1,20 , and 40 atmospheres and 300 K , for N_{2} at 1 atmosphere and 1100 K , and for N_{2} at 19.4 atmospheres and 300 K . The results are normalized so that the highest peak has the value of 10 . The laser line was taken as 5145×10^{-10} meter ($5145 \AA$) (Ar^{+} laser), and the spectra were calculated on a 30×10^{-10}-meter ($30-\AA$) interval on either side of the laser line $\left(60 \times 10^{-10} \mathrm{~m}(60 \AA)\right.$ for N_{2} at 1 atm and 1100 K$)$. Note that the calculated spectra do not include the Rayleigh line. The following values were used for the constants:

Molecular rotational characteristic temperature θ, K
For nitrogen
2.862

For oxygen . 2.065
Laser bandwidth, $\mathrm{R}_{\mathrm{L}}, \mathrm{cm}^{-1}$. 0.166

Pressure-broadening constant, A, $\mathrm{cm}^{-1} / \mathrm{atm}$. -0.0025
Pressure-broadening constant, B, $\mathrm{cm}^{-1} / \mathrm{atm}$. +0.091
Reference temperature for $\mathrm{R}_{\mathrm{R}}, \mathrm{T}_{0}, \mathrm{~K}$. 303

The values for A and B, the pressure-broadening constants, and T_{0}, the reference temperature, were obtained from the data given in references 11 and 12. The same values were used for both nitrogen and oxygen. A Raman spectrum for N_{2} at 19.4 atmospheres and 300 K measured in a high-pressure furnace at the Lewis Research Center is included in figure 11 for comparison. The agreement between it and the calculated spectrum shown in figure 11 is satisfactory, although better values for A and B have yet to be determined. The fact that the locations of the higher j lines are different in the two spectra indicates that there is also a small error in θ.

As can be seen, the effect of pressure broadening is considerable, at least on the odd-j lines. For instance, the $\mathrm{j}=5$ anti-Stokes line in N_{2} increases in relative height about 15 percent as the gas pressure is increased from 1 to 40 atmospheres. The $j=6$ anti-Stokes line does not increase at all. The odd-j lines are more affected by broadening because they are between two tall lines, and the even-j lines are between two short lines.

Increasing the temperature has the effect of increasing the height of all the lines and shifting the highest intensity line toward higher j values. At 300 K , the highest line is the $\mathrm{j}=6$ Stokes line, and at 1100 K the highest line is the $\mathrm{j}=12$ Stokes line.

CONCLUDING REMARKS

A computer program is presented which is capable of calculating the rotational Raman spectrum of either N_{2} or O_{2} and which includes the effect of pressure broadening. Although a general spectrum can be computed, the best method of using these calcula tions to determine the temperature of a high-pressure gas has not yet been determined. Nevertheless, the sample calculations (figs. 4 to 11) show that the effects of pressure broadening are not negligible for the pressures of interest in future combustor applications (up to 40 atm).

Lewis Research Center,
National Aeronautics and Space Administration, Cleveland, Ohio, May 11, 1976, 505-04.

APPENDIX A

SYMBOLS

A,B pressure-broadening constants, $\mathrm{cm}^{-1} / \mathrm{atm}$
$C_{j} \quad$ spin factor for unbroadened lines
c speed of light
h Plank constant
$\mathrm{I}(\nu) \quad$ intensity of broadened line at wave number ν
$I_{j} \quad$ intensity of unbroadened line, $\left(W / \mathrm{cm}^{2}\right) / \mathrm{cm}^{-1}$
I_{j} (AS) intensity of anti-Stokes line
$I_{j}^{(S)} \quad$ intensity of Stokes line
$I_{j}(\nu) \quad$ intensity associated with broadening of single line
j rotational quantum number
k Boltzmann constant
P pressure, atm
$\mathrm{R}_{\mathrm{L}} \quad$ laser bandwidth, cm^{-1}
$R_{R} \quad$ natural-pressure bandwidth
$\mathrm{R}_{\mathbf{S}} \quad$ slit bandwidth
$\mathbf{S}\left(\nu, \nu_{j}\right)$ normalized broadening function
$\mathrm{S}_{\mathrm{L}} \quad$ laser broadening function
$\mathrm{S}_{\mathrm{R}} \quad$ natural-pressure broadening function
$\mathrm{S}_{\mathrm{S}} \quad$ slit broadening function
$\mathrm{S}_{\mathrm{V}} \quad$ Voight function
T temperature, K
T_{0} reference temperature for R_{R}
x parameter in Doppler broadening integral
θ parameter in Doppler broadening integral
$\theta \quad$ molecular rotational characteristic temperature, K
$\lambda \quad$ wavelength, $0.1 \mathrm{~nm}(\AA)$
$\nu \quad$ wave number, cm^{-1}
$\nu_{\mathrm{j}} \quad$ wave number of unbroadened line
$\Delta \nu_{j} \quad$ wave number shift of $j^{\text {th }}$ line
$\nu_{0} \quad$ wave number of laser line
$\psi(\mathrm{x}, \Theta)$ first Doppler broadening integral

APPENDIX B

DESCRIPTION OF PROGRAM

The computer program is written in FORTRAN IV for use on the IBM 360.
The main program is called MAIN1. In this program, all the necessary constants are read in, and all the various parameters needed by the subprograms are calculated, as are the number and location of the rotational lines for either oxygen or nitrogen. The program uses wave numbers $\left(\mathrm{cm}^{-1}\right)$ in the calculations and determines the intensity $I(\nu)=\sum I_{j} S\left(\nu, \nu_{j}\right)$ at each value of ν. The value of I_{j} is calculated by the subroutine XNITRO.

Equation (A10) indicates that the bandwidth of $\mathrm{S}\left(\nu, \nu_{j}\right)$ is roughly $\sqrt{\mathrm{R}_{\mathrm{V}}^{2}+\mathrm{R}_{\mathrm{S}}^{2}}$, so com puting time is reduced by excluding any value of ν_{j} (the center of the $\mathrm{j}^{\text {th }}$ line) which is farther than $3: \sqrt{R_{V}^{2}+R_{S}^{2}}$ from ν from the above sum. For convenience in plotting, the output is in terms of $I(\lambda)$, where λ is the wavelength in tenths of a nanometer (angstroms).

The actual calculation of $\mathrm{S}\left(\nu, \nu_{\mathrm{j}}\right)$ takes place in the function subprogram called SHPFN. There the integration limits are calculated for each value of ν. SHPFN calls the function PROD, which in turn calls the function VOIGHT, which uses subroutine PSIPHI to produce $\psi(x, \Theta)$. PROD also uses ν the function SLTFN to produce $S_{S}\left(\nu^{\prime} \nu\right)$. The function PROD is the product of S_{S} and ψ. SHPFN uses the integration routine QUAD1 to integrate PROD between the limits $\nu_{C} \pm 3 \mathrm{~B}_{\mathrm{W}}$. The result is then SHPFN $=$ $\mathrm{S}\left(\nu, \nu_{\mathrm{j}}\right)$. The slit function was made a separate subprogram so that it could easily be changed if desired. For instance, a Lorentz distribution instead of a Gaussian function could be used.

APPENDIX C

PROGRAM LISTING

```
C:.. MAIN1, HAIN PROGRAM FOR CALCULATING ROTATIORAL RARAN SPECTRUM OF N2 OR O2
    COBMON/BASIC/CENTER
    COMAON/S PEC/BATIO,IHALP,LEEM, IHD
    COHMON/RAM/RR,RL,RS
    COHHON/VPARAB/TGHET
    COMMON/SLPRAM/CON
    COMBON/SPARAM/RVSQ, RSSQC, DENOM,THBEEB
    DINENSION RSBE(100), RSSYSQ(100),THRB(100),DENA(100), CTOPP(100). THT (100)
    DIMENSION DELND (100), DND (2)
    DIGENSION ANG(1000).TENS (1000), COUNT(1000)
    INDEX=1
    MEITE (6, 101)
```



```
        REAB (5,201) EL
        L-EH=IFIX(EL)
        URITE(6,102)
102 PORMAT(1HO'STEP 2-WHAT IS THE BOTAT IONAL CHARACTERISTIC TEMP. (DEG. K) ?')
        READ(5,201) THETA
        FOREAT(P10.2)
        FORBAT (P 10.2).
        \begin{array} { l } { C 1 = 2 . 7 8 0 8 * T H E } \\ { \text { WRITE(6,103)} } \end{array}
    3 MRITE(6,103)
        PORHAT(1HO'STEP 3-ENTER THE LASER AND SLIT BANDGIDTHS(INV. CM.)')
        READ (5,201) RL
        READ (5,201) RS
        RSSQ:=RS*&S
        COH=2.7725887/RSSC
        THंE=1.6651092/RL
        WRITE (6,104)
        FORNAT(1H0'STEP 4- HHAT IS THE HAVELENGTH OP THE LASER LINE(ANGSTROMS)?')
        READ(5,201). ALAMO
        WRITE (6;105)
105 FOREAT(1HO'STEP 5-OVER WHAT RAHGE (A MGSTROAS) ON EITHER SIDE OP TAE CEETER IS THE IATENSITY TO BE CALCULATED?')
        READ(5,201) ALHRNG
        ALHMIN =ALAMO-ALIRNG
        ALAMGOM
        ALHEAX=ALAMO+ALHRK
        YNUO='1. E +0B/ALABO
        XNUMAX=1.E+08/ALMAIH
        XNOEIN=1.E OB/ALHEAX
        XNUBNG=XNDMAX - XNUO
        CALCULATE THE NOHBER OP ROTATLONAL LI HES
        BJ=AINT (XNURNG/C1 - 1.)
        BJ=B.J +1.
        NTERB=IFIX(BJ)
        NTERB=IFIX(B
        HRITE(6,106)
        POBHAT (1HO'STER 6-AT HON MANY POINTS IN THS RANGE IS THE INTEGSITY TO BE CALCDLATED(500. MAX.) ?')
        READ(5,201) PTNO
        NETNO=IPIX(PTNO)
        DNU (1) =XNURHG/RTNO
        DNO(2) = (XNUO-XNOBIN)/PTNO
        WGITE (6, 107)
        PORHAT(1HO STEP 7-ENTER THE GAS TEMP. (DEG. K) AND THE GAS PGESSURE(ATM.)')
        READ(5,201) TGME
        READ (5.201) PRESS
        TPFAC=SQRT(303./TERP) *PRESS
        RATIO=THETA/TEHE
        #RITE(6,108)
        FORHAT (1HO'STEP 8-ENT ER THE PRESSURE BROADENING CONSTANTS;A & B')
```

```
READ(5,201) A
READ(5,201) B
C... CALCOLATE VARIAELES QHICH DEPEND ON I.IHE NUABRR
DO 1000 KL=1,NTERM
K=KL-1
AK=FLOAT (K)
C... CALCULATE PRESSURE BROADENED BAMAN BANDMIDTG
RR=TPFAC*(A*AK + B)
RSBR(KL)= RR
RRO2=RR/2.
C... CALCULATE voIGHT EANDHIDTH
RV=RRO2 + SQET(RRO2**2 * RL**2)
RVSO=RV***
RSBVSQ (KL)=RVSQ
THREEB=3./SQRT(1./RSSQ * 1./RVSQ)
THRB (KL)=THBEEB
DENOH=RSSQ: + RVSO
DENA (KL)=DEHOM
CTOFP(RL) =3.*SQRT (DENOM)
C... Calculate volght farameteg
THET=THE*RR
THT(KL)=THPT
DELNU(KL)=C 1* (AK + 1.5)
CENTEB=XNUO + DELNU(KL)
CENTER=XNUO & DEL
1000 CCETINUE
C... CALCULATE SPECTEUM. IHALP = I IS AHTI-STORES SIDE
DO 4000 IHAEF = 1,2
SIGN=1.
IF(IHALF .EQ. 2) SIGN=-1
DO 3000 M=1,NPTNO
XNUU=XNUO + SIGN*FLOAT (M) #DNU(IHALP)
L=NPTNO-M+1
IF(IHALF.EQ. 2) L=NPTNO * E
ANG(L)=1.E+08/XNOU
SU#=0.
DO 2000 I=1,NTERA
J=I -1
IN}\cdot\textrm{D}=
IF(2* (J/2) ,NE.J) IND=1
C... IND=1 IP J IS ODD,IND=2 IF JISEVEN
XJ=PLCAT (J)
RR=RSBR(I)
RVSQ=RSBVSQ (I)
THREEB=THRB (I)
DENOA=DENM (I)
CUTOPF=CTOFP(I)
THET=THT (I)
CENTER= XNUO + SIGN*DELNU(I)
RSSQC=RSSQ*CENTER
TST=ABS(XNUU - CENTER)
C... SKIP LINES WHICH ARE TOO PAR A&AY TO CONTRIBUTE E SKIP EVEN O2 LINES
IF( (TST.GB. COTOPF).OR. (LES.EQ. 2 .AND. IND.EQ. 2) ) GOTO 2000
CALL XNITRO (XJ,PK)
SUM = SUM + PK*SHFFN(XNUU)/RE
2000 CONTINUE
TENS(L) =SUM
3000 CCNTINUE
4000 CONTINDE
9 WRITE(7,110) INDEX
IF(INDEX .NE: 1) GO TO 11
IF(INDEX .NQ: 1) GO TO 11
INDEX=2 TELLS PICTTING ROUTINE NO MORE DATA IS TO POLLON
NORHALIZE E PEED INTO DATASET "DATAI'' POR PLOTTING,OSIMG URITE(7....)
NT:4*NPTNO
C...NT IS TOTAL NO. OF POIHTS,COUNTS & UAYEIENGTHS,PGOM EOTH SIDES OF THE SPECTROM
NTOT=2*NPTNO
C... FIND LARGEST VALUE
AMAX=TENS(1)
    AHAX=TENS(1)
    IF(TENS(IT) GT. AMAX) AGAX=TE&S(II)
5000 CONTINUE
C... SCALE SO tHAT LARGEST VALUE IS 10
XNCRM=: 1* AMAX
```

```
        MRITE(7,110) LE
        WBITE (7,110) NT
        porhat(I4)
        WRITE (7,111) TEMP
        WRITE(T,111) PRESS
111
        PORMAT (E13.6)
        DO 6000 K=1,NTOT
        COUNT (K)=TENS (K)/XNORM
C... data is fed in SERIAlly. the fikSt no. IS the height op the spectron at point k,codit(k),and the
C... SECCND IS THE LCCATION Of THE POINT IN ANGSTROBS,ANG(K).
    HRITE(7,111) COONT(R)
6000 ⿴囗ITE (7,111) ANG(K)
    HRITE (6,109)
109 FORMAT(1HO'TO WHICH STEP DO TOU WISH TO RETURN?-9 GETS YOU OUT')
    READ (5,202) ML
    FORMAT(I1)
    GC TO (1,2,3,4,5,6,7,8,10),ML
    INDEX=2
    GO TO 9
    STOP
    END
    SOBROUTINE XNITRO(AJ,PKHT)
C... CALCOLATES PEAK HEIGGT, PKHT, POR HITROGEN(LEA=1) E POR OXYGEN(LEM=2) FOR ODD VALDES OP J
COMHON/SPEC/RATIO,IHALP, LEK,IND
COMMON/BASIC/CENTER
C... overall constant omitted
C=RATIO*(AJ+1.)*(AJ*2.)*(CENTER**4)/(2.*AJ + 3.)
C=RATIO*(AJ+1.)*(AJ+2.1**
PKHT=C* EXP (-RATIO*AJ* (AJ+1.))
IF(LEM .EQ. 2) RETURN
GO TO 2
PKHT=C*EXP(-RATIO* (AJ+2.)*(AJ+3.))
TF(IER . EQ. 2) RETURN
C... OdD J lines are half intensity por mitroges
IF(IND.EQ. 1) PKHT=0.5*PKHT
RETU
END
FUNCTION SHPFA(XNU)
c... CAlCulates unNormalized shape function at have no. x mo
COMMCN/SPARAM/RVSG, RSSQC, DENOM,THREEB
COMMON/WVNO/GNU
EXTERNAL PROD
GNTI=XNU
C... calculate integbation limits
    CENT=(RVSQ*XNU + RSSQC)/DENOM
    XMIN=CENT - THREEB
    XMAX=CENT + THREEB
    SHPFN=QUAD1 (5,3, XMIN, XMAX, PROD)
    RETURN
    END
    PUNCTION PROD (XNP)
        PRODOCT PUNCTION NEEDED BY QUAD1
        CCMMON/FLAG/KF
        COMMON/WVNO/GNU
        XNN=GNO
        FAC1=SLTFN(XNP,XNN)
        IF (KF.EQ. 2) GC TO 1
        PROD=FAC 1*VOIGHT (XNP)
        GO TO 2
        PROD=0.
        bETORN
        END
        FUBCTICN VOIGHT (XN)
C... CAlCULATES vOIGHT FUNETION BY USING PIRST DOPPLER bROADENING INTEGRAL
```

```
    COMMCN/GAH/RR,BL, BS
    COMMON/BASIC/CENTER
    COMHON/VPARAS/THET
    C... OVERALL CONSTANT CMITTED
    X=2.*(CENTER-XN)/RR
    CAIL PSIPHI (X,THET,PSI,PHI)
    VOIGHT=PSI
    RETURN
    FN D
    EONCTION SLTPN(X,XS)
    GAUSSIAN SLIT PUNCTION CENTERED AT XS,BANDHIDIH RS
    COMRON/S LPEAM/CCN.
    COMMON/FLAG/KF
    ARG=CON* ( (X-XS)**2)
    IF(ARG .GE. 170.) GO TO 1
    SLTFN=EXP(-ARG)
    KP=1
    GC TO 2
    SLTPN=0.
    KF=2
    RETORN
    END
    SUBROUTINE PSIPHI (XX,TT,O,V)
    REF: B. CANRIGHT & T. SENEER, TM X-2559
    XX = 2.* (NU SUB J - NU)/RR
    TT = THETA = 2.*SORT(LN(2.) )*RR/RL
    U &.V AGE FIRST AND SECONU DOPPLER GROADENLNG INTEGRALS
    H=1.
    DIMENSION EMN(5), EN2(10)
    DATA PI22/12.566371/
    DATA RTPI/1.77245.39/,PIH/1.5707963/
    DATA PI,PI2,N/3.1415927,6.2431854,5/
    DATA FMN/0...11709966E0..58300489E-2..39282561E-4,-
    1.35821059E-7/
    DATA FN2/0.,.24789999..11709966..33549615E-1..S8300489E-2,-
    2.61448264E-3,.39282561E-4,.15231502E-5,. 35820159E-7,.51095996F-9/
    XD=ABS (XX)
    THETA=ABS (TT)
    Y=THETA/2.
    X=XD* Y
    ARE WE IN DANGER?
    XTEST=X-AINT (X)
    IF( (XTEST.LT. .01 .OR. XTEST .GT. .99) .AND. ABS(Y) .LT. .01) G0 T0 40
    IF(XD.GT. 75.*SORT(1.+1./(Y*Y)) ) GO TO 30
    IF(Y.LT. .COT) GC TO 40
    BEGIN SERIES SOMMATION
    Y2 = Y* Y
    SET N=0 TERM
    D=FI* (X* X + Y2)
    SU=Y/D
    SV=X/D
    DO 1O I=2,N
    AM=PLOAT (I-1)
    XNP=X-AM
    XNM=X+AM
    DP=XNP*XNP + Y2
    DM=XNH*XNH + Y2
    SO = SU + EMN(I)*Y*(1./DP + 1./DM)
    SV = SV + EMN(I)*(XNP/DP + XNH/DM)
    CONTINDE
    IP(Y.GT. PI) GC TC 20
    P=2.
    IF(Y . EQ. PI) P=1.
    BEGIN POLE CONTRIBOTION
    XP2=X*PI2
    ARG1= \*PI2
    IP(ARG1 . LE. -170.) GO TO 14
    EYP2=EXP(ARG 1)
```

```
        GO TO 15
    14 EYP 2=0%.
    15 CONTIHUE
    SXY2=SIN (XY2)
    SXY2=SIN (XY2)
    CXY2=COS (XY2)
    CXP2=COS (XP2)
    ARG 2=Y2 - X*X
    IP(ARG2 LE. -170.) GO TO 16
    EYX=EXP (ARG2)
    GO TO 17
    EY X=0.
    D = 1. - EYP2* (2.*CXP2 - EYP2)
    SU = SU + P*EYX*(CXI2 - EYPZ*(CXP2*CXY2 + SYP2*SXY2) )/0
    SV = SV - P*EYX*(SXY2 + EYP2*(SXP2*CXY2 - CXP2*SXY2) I/D
    0=SU*Y*RTPI
    Y=SV*THETA*RTPI
    IP(XX .LT. O.) V=-V
    GO TO 50
    F=RTPI* Y
    SO=1./( (1. * XD* XD)*P )
    SV=S0*XD
    GO TO 20
    IP(XD .LT. 4. .AND. THETA .LE. .009) 目ITE(6,101) XD,THETA
01 FORMAT (1HO*XD = 'E13.7.'THETA = E13.7."PROMPSIPRI')
C... THIS IS EXPANSION WITH H=0.5
    Y 2=Y* %
    D=PI* (X*X + Y2)
    SU=Y/D
    SV=X/D
    DO 45 I=2,10
    A A=0.5*PLOAT (I-1)
    XHP=X-AM
    XNB=X+AB
    DP=XNP#XNP + Y
    DH=XNM*XNM + Y2
    SU = SU + EN2(I)*P* (1./DP + 1./DH)
    SV = SV + EN2(I)*(XNP/DP + XNM/DA)
    CONTINUE
    SU=SU*0.5
    SV =SV*0.5
    IF(Y .GT. PI2) GO TO 20
    P=2.
    IP(Y . RQ. PI2) F=1.
    XP2=X*PI22
    ARG3=%*PI22
    IP(ARG3.LE. - 170.) GO TO 48
    EYP2=EXP(ARG3)
    GO TO }1
    E Y P2 =0.
    GO TO }1
    BETORN
    END
    FUNCTION QUAD1(NH,NS,XI, XO,POPX)
    #UHERICAL INT EGEATION OS ING THE BET HOD OF GADSSIAN QUADRATURE
    NN=NO. OP POINTS/DIVISION, NN=3,4;5,\ldots,.,16
    NS=*O. OF DIVISIONS INTO 鳃CH THE INTERVAL (XO - XI) IS DIVIDED
    XI=LOWER LIBIT CF INT EGRATION
    XO=OPPER LIMIT OF INTEGRATION
    XO=OPPER LIHIT OF INTEGRATION
    FOFX=USER SUPPLIED EXTERNAL POECTION SUBPROGRAN
    DIMENSIO& C(140),A(70),H(70),AA(56),BB(56),CC(28)
    REAL INTGRL
    EQUIVALENCE (AA(1),C(1)).(BB(1),C(57)),(CC(1),C(113))
    DATA AA/-
    7.74596669241483E-01,5.55555555555556g-01, -0.
    17.74596669241483E-01, 5.55555555555556E-01, -0., 8.61136311594053E-01, 3.47854845137454E-01, E
    18.888888888888898-01, 8.61136311594053E-01, 3.47854845137454E-01,=
```



```
    1-0. E-00, 5.68888888888889E-01, 9.32469514203152E-01.-
```

1.713244923791708-01, 6.612093864662658-01, 3.607615730481398-01, $12.38619186083197 \mathrm{E}-01,4.67913934572691 \mathrm{E}-01,9.49107912342759 \mathrm{E}-01,-$ $11.29484966168870 \mathrm{E}-01,7.41531185599394 \mathrm{E}-01,2.79705391489277 \mathrm{E}-01,-$ $14.05845151377397 \mathrm{E}-01,3.81830050505119 \mathrm{E}-01,-0$. E-00.$14.17959183673469 \mathrm{E}-01,9.60289856497536 \mathrm{E}-01,1.01228536290376 \mathrm{E}-01,-$ $17.96666477413627 \mathrm{E}-01,2.223810344533748-01,5.25532409916329 \mathrm{E}-01$,, $13.13706645877887 \mathrm{E}-01,1.83434642495650 \mathrm{E}-01,3.62683743378362 \mathrm{E}-01,-$ $19.68160239507626 \mathrm{E}-01$. $8.12743883615740 \mathrm{E}-02,8.36037107326636 \mathrm{E}-011_{0}=$ $11.80648160694857 \mathrm{E}-01$, $6.13371432700590 \mathrm{E}-01$, $2.60610696402935 \mathrm{E}-01$, 1 3. $24253423403809 \mathrm{E}-01$, $3.12347077040003 \mathrm{E}-01,=0$. E-00,-
 $\begin{array}{ll}13.30239355001260 \mathrm{E}-01, & 9.73906528517172 \mathrm{E}-01,6.66713443086880 \mathrm{E}-02,- \\ 18.65063366688985 \mathrm{E}-01, & 1.49451349150581 \mathrm{E}-01,6.79409568299024 \mathrm{E}-01,-\end{array}$ $\begin{array}{lll}18.65063366688985 \mathrm{E}-01, & 1.49451349150581 \mathrm{E}-01,6.79409568299024 \mathrm{E}-01,2 \\ 12.19086362515982 \mathrm{E}-01,4.33395394129247 \mathrm{E}-01, & 2.69266719309996 \mathrm{E}-01,-\end{array}$ $11.48874338981631 \mathrm{E}-01$. $2.95524224714753 \mathrm{E}-01 /$ DATA BB/ -
$19.78228658146057 \mathrm{E}-01$, $5.56685671161740 \mathrm{E}-02,8.87062599768095 \mathrm{E}-01,=$ $11.25580369464905 \mathrm{E}-01$, $7.30152005574049 \mathrm{E}-01$, $1.86290210927734 \mathrm{E}-01$,, $15.19096129206812 \mathrm{~B}-01,2.33193764591990 \mathrm{E}-01,2.69543155952345 \mathrm{E}-01,-$ $12.62804544510247 \mathrm{E}-01_{0}$ - 0 .

E-00, 2.729250867779018-01.$19.81560634246719 \mathrm{E}-01,4.71753363865120 \mathrm{E}-02, \mathrm{~g}, \mathrm{Q}, 04117256370475 \mathrm{E}-01,-$ 1 1.06939325995318E-01, $7.69902674194305 \mathrm{E}-01,1.60078328543346 \mathrm{E}-01 .,-$ $15.87317954286617 \mathrm{E}-01,2.03167426723066 \mathrm{E}-01,3.67831498998180 \mathrm{E}-01,-$ $12.33492536538355 \mathrm{E}-01,1.25233408511469 \mathrm{E}-01,2.49147045813403 \mathrm{E}-01,-$ $19.841830547185 \mathrm{EBE}=01$, $4.04840047653160 \mathrm{E}-02,9.17598399222978 \mathrm{E}-01 .=$ $19.21214998377280 \mathrm{E}=02,8.01578090733310 \mathrm{E}-01,1.388735102197878-01, \mathrm{~F}$ $16.42349339440340 \mathrm{E}-01,1.78145980761946 \mathrm{E}-01,4.48492751036447 \mathrm{E}-01$, , $=$

 1 3.51194603317520 E-02, 9. $28434883663574 \mathrm{E}-01,8.01580871597600 \mathrm{E}-02 .=$ $18.27201315069765 \mathrm{E}-01,1,21518570687903 \mathrm{E}-01,6.872929048116 \mathrm{~B} 5 \mathrm{E}-01$, C, $11.57203167158194 \mathrm{E}-01$, $5.15248636358154 \mathrm{E}-01,1.85538397477938 \mathrm{E}-01,{ }^{2}$, $13.19112368927890 \mathrm{E}-01,2.05198463721296 \mathrm{E}-01,1.08054948707344 \mathrm{E}-01,-$ $12.15263853463158 \mathrm{E}-01,9.87992518020485 \mathrm{E}-01$, $3.07532419961170 \mathrm{~B}-02$, $=$ 19.372733924007C6E-01, $7.03660474881080 \mathrm{E}-02$ / data CC/=
$18.48206583410427 \mathrm{E}-01$, $1.07159220467172 \mathrm{E}-01,7.24417731360170 \mathrm{E}-01,=$ 1 1.39570677926154E-01, $5.70972172608539 \mathrm{E}-01$. $1.66269205816994 \mathrm{E}-01$. $13.94151347077563 \mathrm{E}-01$, $1.86161000015562 \mathrm{E}-01,2.01194093997435 \mathrm{E}-01,-$
$11.98431485327112 \mathrm{E}-01,-0$.
E-00. 2.02578241925561E-01, $=$
 $16.22535239386480 \mathrm{E}-02,8.65631202387832 \mathrm{E}-01,9.51585116824930 \mathrm{E}-02$,,$~-$ $17.55404408355003 \mathrm{E}-01$, $1.24628971255534 \mathrm{E}-01,6.17876244402644 \mathrm{E}-01$, -
 $12.81603550779259 \mathrm{E}-01$, $1.82603415044924 \mathrm{E}=01$, $9.50125098376370 \mathrm{E}-02,-$ 1 1.894506104550688-01/
DO $50 \quad I=1,70$
$J \leq 2 * 1$
$J J=2 * I-1$
$A(I)=C(J J)$
$H(I)=C(J)$
CONTINOE
QUADI = 0 .
IF (XI . RQ. XO) RETURN IF
$\mathrm{N}=\mathrm{Ni}$
IF (H , GT. 16) $\mathrm{N}=16$
$I N D R T=\operatorname{HOD}(\mathrm{N}, 2)+1$
IHDRT $=1$. HIS EDEN
IRDRT $=2$. H IS ODD GO TO (204, 210), I HDKT
$H A X=(S *(N+2)) / 4-2$
GO TO 215
$210 \mathrm{HIN}=(\mathrm{N} * \mathrm{~N}-9) / 4+1$
MAX $=(N *(N+2)-11) / 4$
215 DELT=(XO-XI)/TLOAT(NS)
HDELX=.5*DELX
DO $260 \mathrm{~K}=1$, NS
$X A=P L O A T(K-1) * D E L X+X I$
DO $220 \quad I=1,2$
DO $220 \mathrm{~J}=\mathrm{BI} \mathrm{H}, \mathrm{BAK}$
$A(J)=-A(J)$
220 QOAD1 = QOAD1+日(J)*FGPR (XA+BDELX*(1.4A(J)))

IF(INDKT.EQ. 2) QOAD $1=$ QUAD $1+H($ MAX +1$) * F O F X(X A+H D E L X *(1 .+A($ MAX +1$)))$
260 CCNTINUE
QUAD $1=$ HDELX*QUAD 1
270 RETURN
END

APPENDIX D

CALCULATION OF LIMITS OF INTEGRATION FOR NUMERICAL

EVALUATION OF NORMALIZED SHAPE FUNCTION

The integration indicated in equation (18) is performed numerically by replacing the infinite limits of integration and integrating the product $\mathrm{S}_{\mathrm{S}}\left(\nu, \nu^{\prime}\right) \psi(\mathrm{x}, \Theta)$ over an interval where it is significant. Determination of practical limits involves finding an approximation for $\psi(x, \Theta)$ and for $S_{S}\left(\nu, \nu^{\prime}\right) \psi(x, \Theta)$. As these approximations involve products of Gaussian functions, it is necessary to find an expression for the product of two Gaussian functions.

Consider the two Gaussian functions $e^{-a\left(x-x_{1}\right)^{2}}$ and $e^{-b\left(x-x_{2}\right)^{2}}$ and their product

$$
\exp \left[-a\left(x-x_{1}\right)^{2}\right] \exp \left[-b\left(x-x_{2}\right)^{2}\right]=\exp \left\{-\left[a\left(x-x_{1}\right)^{2}+b\left(x-x_{2}\right)^{2}\right]\right\}
$$

Expanding the exponent results in

$$
\begin{aligned}
a\left(x-x_{1}\right)^{2}+b\left(x-x_{2}\right)^{2} & =a\left(x^{2}-2 x x_{1}+x_{1}^{2}\right)+b\left(x^{2}-2 x x_{2}+x_{2}^{2}\right) \\
& =x^{2}(a+b)-2 x\left(a x_{1}+b x_{2}\right)+a x_{1}^{2}+b x_{2}^{2}
\end{aligned}
$$

Completing the square in the first two terms gives

$$
\begin{aligned}
&(a+b)\left[x^{2}-2 x \frac{a x_{1}+b x_{2}}{a+b}+\frac{\left(a x_{1}+b x_{2}\right)^{2}}{(a+b)^{2}}\right]+a x_{1}^{2}+b x_{2}^{2}-\frac{\left(a x_{1}+b x_{2}\right)^{2}}{a+b} \\
&=(a+b)\left(x-\frac{a x_{1}+b x_{2}}{a+b}\right)^{2}+\frac{a b}{a+b}\left(x_{1}-x_{2}\right)^{2}
\end{aligned}
$$

and

$$
\begin{equation*}
\exp \left[-a\left(x-x_{1}\right)^{2}\right] \exp \left[-b\left(x-x_{2}\right)^{2}\right]=\exp \left[-\frac{a b}{a+b}\left(x_{1}-x_{2}\right)^{2}\right] \exp \left[-(a+b)\left(x-\frac{a x_{1}+b x_{2}}{a+b}\right)^{2}\right] \tag{D1}
\end{equation*}
$$

The right side of equation (D 1) is another Gaussian function, which has its maximum value $\exp \left\{-[a b /(a+b)]\left(x_{1}-x_{2}\right)^{2}\right\}$ at $x=\left(a x_{1}+b x_{2}\right) /(a+b)$ and has a bandwidth proportional to $(a+b)^{-1 / 2}$.

The approximation of $\psi(x, \Theta)$ involves replacing S_{R} of equation (8) with

$$
\begin{equation*}
\mathrm{S}_{\mathrm{R}}=\frac{\beta}{\pi\left(\nu^{\prime \prime}-\nu^{\prime}+\beta^{2}\right)} \simeq \exp \left[-\frac{4 \ln 2}{4 \beta^{2}}\left(\nu^{\prime \prime}-\nu^{\prime}\right)^{2}\right]=\exp \left[-\frac{4 \ln 2}{\mathrm{R}_{\mathrm{R}}^{2}}\left(\nu^{\prime \prime}-: \nu^{\prime}\right)^{2}\right] \tag{D2}
\end{equation*}
$$

The normalizing constants are discarded as only the functional behavior is now of concern.

The Lorenz-type Raman distribution is replaced by a Gaussian distribution having the same bandwidth. Then the Voight function (eq. (9)) is approximately

$$
\begin{equation*}
\because \mathrm{S}_{\mathrm{V}}\left(\nu^{\prime}, \nu_{\mathrm{j}}\right) \simeq \int_{-\infty}^{\infty} \exp \left[-\frac{4 \ln 2}{\mathrm{R}_{\mathrm{L}}^{2}}\left(\nu^{\prime \prime}-\nu_{\mathrm{j}}\right)^{2}\right] \exp \left[-\frac{4 \ln 2}{\mathrm{R}_{\mathrm{R}}^{2}}\left(\nu^{\prime \prime}-\nu^{\prime}\right)^{2}\right] \mathrm{d} \nu^{\prime \prime} \tag{D3}
\end{equation*}
$$

Using the results of equation (D1) gives

$$
\begin{align*}
& S_{\mathrm{V}}\left(\nu^{\prime}, \nu_{\mathrm{j}}\right) \simeq \exp \left[-\frac{4 \ln 2}{\mathrm{R}_{\mathrm{R}}^{2}+\mathrm{R}_{\mathrm{L}}^{2}}\left(\nu^{\prime}-\nu_{\mathrm{j}}\right)^{2}\right] \\
& \times \int_{-\infty}^{\infty} \exp \left[-4 \ln 2\left(\frac{1}{R_{\mathrm{R}}^{2}}+\frac{1}{\mathrm{R}_{\mathrm{L}}^{2}}\right)\left(\nu^{\prime \prime}-\frac{\mathrm{R}_{\mathrm{R}}^{2} \nu_{\mathrm{j}}+\mathrm{R}_{\mathrm{L}}^{2} \nu^{\prime}}{\mathrm{R}_{\mathrm{R}}^{2}+\mathrm{R}_{\mathrm{L}}^{2}}\right)\right] \mathrm{d} \nu^{\prime \prime} \tag{D4}
\end{align*}
$$

This integral can be evaluated analytically. The result is

$$
\begin{equation*}
\mathrm{S}_{\mathrm{V}}\left(\nu^{\prime}, \nu_{\mathrm{j}}\right) \propto \exp \left[-\frac{4 \ln 2}{\mathrm{R}_{\mathrm{R}}^{2}+\mathrm{R}_{\mathrm{L}}^{2}}\left(\nu^{\prime}-\nu_{\mathrm{j}}\right)^{2}\right] \tag{D5}
\end{equation*}
$$

Equation (D5) would indicate that the Voight bandwidth is given approximately by $\sqrt{R_{R}^{2}+R_{L}^{2}}$, but a better approximation is given in reference 15 . It is

$$
\begin{equation*}
R_{V}=\frac{R_{R}}{2}+\sqrt{\left(\frac{R_{R}}{2}\right)^{2}+R_{L}^{2}} \tag{D6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{S}_{\mathrm{V}}\left(\nu^{\prime}, \nu_{\mathrm{j}}\right) \propto \exp \left[-\frac{4 \ln 2}{R_{\mathrm{V}}^{2}}\left(\nu^{\prime}-\nu_{\mathrm{j}}\right)^{2}\right] \tag{D7}
\end{equation*}
$$

and when equations (15) and (16) are used,

$$
\begin{equation*}
\psi(x, \Theta) \simeq \exp \left[-\frac{4 \ln 2}{\mathrm{R}_{\mathrm{V}}^{2}}\left(\nu^{2}-\nu_{\mathrm{j}}\right)^{2}\right] \tag{D8}
\end{equation*}
$$

This approximation to the first Doppler broadening integral gives an approximation to the shape function. Substituting (D8) in equation (18) yields

$$
\begin{equation*}
\mathrm{S}\left(\nu, \nu_{\mathrm{j}}\right) \simeq \int_{-\infty}^{\infty} \exp \left[-\frac{4 \ln 2}{\mathrm{R}_{\mathrm{S}}^{2}}\left(\nu^{\prime}-\nu\right)^{2}\right] \exp \left[-\frac{4 \ln 2}{\mathrm{R}_{\mathrm{V}}^{2}}\left(\nu^{\prime}-\nu_{\mathrm{j}}\right)^{2}\right] \mathrm{d} \nu^{\prime} \tag{D9}
\end{equation*}
$$

Again using equation (D1) results in
$S\left(\nu, \nu_{j}\right) \simeq \exp \left[-\frac{4 \ln 2}{R_{S}^{2}+R_{V}^{2}}\left(\nu-\nu_{j}\right)^{2}\right]$

$$
\begin{equation*}
\times \int_{-\infty}^{\infty} \exp \left[-4 \ln 2\left(\frac{1}{R_{V}^{2}}+\frac{1}{R_{S}^{2}}\right)\left(\nu^{\prime}-\frac{\mathrm{R}_{V}^{2} \nu+\mathrm{R}_{\mathrm{S}}^{2} \nu_{\mathrm{j}}}{\mathrm{R}_{\mathrm{V}}^{2}+\mathrm{R}_{\mathrm{S}}^{2}}\right)^{2}\right] \mathrm{d} \nu^{\prime} \tag{D10}
\end{equation*}
$$

At this point, it is possible to choose reasonable integration limits and use equa tion (18) to evaluate $S\left(\nu, \nu_{j}\right)$ numerically. Equation (D10) indicates that the integrand of equation (18) behaves roughly like a Gaussian function centered at

$$
\begin{equation*}
\nu^{\prime}=\nu_{\mathrm{C}} \simeq \frac{\mathrm{R}_{\mathrm{V}}^{2} \nu+\mathrm{R}_{\mathrm{S}}^{2} \nu_{\mathrm{j}}}{\mathrm{R}_{\mathrm{V}}^{2}+\mathrm{R}_{\mathrm{S}}^{2}} \tag{D11}
\end{equation*}
$$

and with bandwidth

$$
\begin{equation*}
\mathrm{B}_{\mathrm{W}} \simeq\left(\frac{1}{R_{V}^{2}}+\frac{1}{R_{S}^{2}}\right)^{-1 / 2} \tag{D12}
\end{equation*}
$$

This information, together with the fact that

$$
\int_{\nu_{C}-3 B_{W}}^{\nu_{C}+3 B_{W}} \exp \left[-\frac{4 \ln 2}{\mathrm{~B}_{\mathrm{W}}^{2}}\left(\nu-\nu_{\mathrm{C}}\right)^{2}\right] \mathrm{d} \nu=0.999 \ldots \int_{-\infty}^{\infty} \exp \left[-\frac{4 \ln 2}{\mathrm{~B}_{\mathrm{W}}^{2}}\left(\nu-\nu_{\mathrm{C}}\right)^{2}\right]_{\mathrm{D}} \mathrm{~d} \nu
$$

allows equation (18) to be replaced by

$$
\begin{equation*}
\mathrm{S}\left(\nu, \nu_{\mathrm{j}}\right)=\frac{1}{\mathrm{R}_{\mathrm{R}}} \int_{\nu_{\mathrm{C}}-3 \mathrm{~B}_{\mathrm{W}}}^{\nu_{\mathrm{C}}+3 \mathrm{~B}_{\mathrm{W}}} \exp \left[-\frac{4 \ln 2}{\mathrm{R}_{\mathrm{S}}^{2}}\left(\nu^{\prime}-\nu\right)^{2}\right] \psi(\mathrm{x}, \Theta) \mathrm{d} \nu^{\prime} \tag{D14}
\end{equation*}
$$

Equation (D14) is now in suitable form for integration by some standard technique, such as Simpson's rule or Gaussian quadratures (ref. 16). The latter technique is chosen because it gives the same results as a Simpson's rule method that uses step size control, but is much faster.

REFERENCES

1. Salzman, Jack A.; Masica, William J.; and Coney, Thom A.: Determination of Gas Temperatures From Laser -Raman Scattering. NASA TN D-6336, 1971.
2. Coney, Thom A.; and Salzman, Jack A.: Determination of the Temperature of Gas Mixtures by Using Laser Raman Scattering. NASA TN D-7126, 1973.
3. Hickman, R. S.; and Liang, L. H.: Rotational Temperature Measurement in Nitrogen Using Raman Spectroscopy. Rev. Sci. Instr., vol. 43, no. 5, May 1972, pp. 796-799.
4. Bandy, Alan R. ; Hillard, M. E.; and Emory, L. E.: Evaluation of Raman Scattering as a Sensor of Temperature and Molecular Density. Appl. Spectro., vol. 27, no. 6, Nov. -Dec. 1973, pp. 421-424.
5. Lederman, Samuel; and Bornstein, J.: Temperature and Concentration Measurements on an Axisymmetric Jet and Flame. SQUID-TR-PIB-32-PU, Purdue Univ. (AD-776614), 1973.
6. Leonard, Donald A.: Field Tests of a Laser Raman Measurement System for Aircraft Engine Exhaust Emissions. Avco-Everett Research Lab. (A)-A003648; AFAPL-TR-74-100), 1974.
7. Hetzberg, Gerhard: Spectra of Diatomic Molecules. 2nd ed., D. Van Nostrand Co., Inc., 1950.
8. Dowley, M. W. : Coherent Radiation Technical Bulletin no. 106, Coherent Radiation Corp., 1971.
9. Lengyel, Bela A.: Introduction to Laser Physics. John Wiley \& Sons, 1966, p. 197.
10. Penner, S. S.: Quantitative Molecular Spectroscopy and Gas Emissivities. Addison-Wesley Publishing Co., 1959, p. 31.
11. Pinter, F.: Dependence of the Width of the Rotational Raman Lines of N_{2} and CO_{2} on the Quantum Number j. Opt. Spectr., vol. 17, no. 5, Nov. 1964, pp. 428-429.
12. Lazarev, Yu A.: Line Broadening in Rotational and Rotation-Vibrational Raman Spectra of Gases. Opt. Spectr., vol. 13, no. 5, Nov. 1962, pp. 373-376.
13. Broderson, Svend: Resolving Power and Noise on Infrared Spectroscopes. J. Opt. Soc. Amer., vol. 43, no. 10, Oct. 1953, pp. 877-881.
14. Canright, R. Bruce, Jr.; and Semler, Thor T.: Comparison of Numerical Techniques for the Evaluation of the Doppler Broadening Functions $\psi(\mathbf{x}, \theta)$ and $\mathbf{X}(\mathbf{x}, \Theta)$. NASA TM X-2559, 1972.
15. Whiting, E. E.: An Empirical Approximation to the Voight Profile. J. Quant. Spectr. Radiative Transfer, vol. 8, no. 6, June 1968, pp. 1379-1384.
16. Abramowitz, Milton; and Stegun, Irene A.: Handbook of Mathematical Functions. Natl. Bur. Stds. Ap. Math. Ser. 55, U. S. Natl. Bur. Std, 1964.

Figure 1. - Line broadening.

Figure 2 - Gaussian broadening function $S_{L}=\operatorname{dexp}\left[\left(-4 \ln _{2} / R_{L}^{2} /\left(v-v_{0}\right)^{2}\right]\right.$.

Figure 3. - Lorentz broadening function

$$
S_{R}=\left(\dot{R}_{R} / 2\right) / \pi\left[\left(v-v_{0}\right)^{2}+\left(R_{R} / 2\right)^{2}\right] .
$$

Figure 4. - Computed rotational Raman spectrum for N_{2} at 300 K and l atmosphere.

Figure 5. - Computed rotational Raman spectrum for N_{2} at 300 K and 20 atmospheres.

Figure 6. - Computed rotational Raman spectrum for N_{2} at 300 K and 40 atmospheres.

Figure 7. - Computed rotational Raman spectrum for O_{2} at 300 K and 1 atmosphere.

Figure 8. - Computed rotational Raman spectrum for O_{2} at 300 K and 20 atmospheres.

Figure 9. - Computed rotational Raman spectrum for O_{2} at 300 K and 40 atmospheres.

Figure 10. - Computed rotational Raman spectrum for N_{2} at 1100 K and 1 atmosphere.

Figure 11. - Computed and measured Raman spectra for N_{2} at 300 K and 19.4 atmospheres. For both curves, laser bandwidth 0.166 centimeter ${ }^{-1}$; slit bandwidth, 3.31 centimeter $^{-1}$; reciprocal of wave number of laser line, 5145×10^{-10} meter (5145. \AA).

Abstract

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration sball provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.
TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.
CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

 PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.Details on the availability of these publications may be obfained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

