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FOREWORD

The research reported herein was supported by NASA Contract NAS8-31149.

Dr. George H., Fichtl and Dr. William C. Cliff of the Aerospace Environ-

ment Division, Space Sciences Laboratory, Marshall Space Flight Center,

were the scientific monitors and support was provided by the NASA Office
of Applications, Earth Observation Programs and Meteorology.

The research reported in this document is concerned with the design of
geophysical fluid dynamics (GFD) experiments of major scientific
importance which require the unique "low-gravity" environment of Earth
orbit to be successfully performed, The experiments offer the opportunity
to study baroclinic fluid flows on rotating spherical surfaces with an
imposed radially directed body force to simulate a gravitational force
field. Comparable terrestrial baroclinic GFD experiments have been
restricted to cylindrical geometry, and thus to the study of B-plane
flow situations. Accordingly, Farth orbit offers the potential for a
ma jor step forward in GFD research which in turn may lead to new under-
standing of the planetary-scale dynamics of atmospheric flows.
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1. Introduction

Meteorologists and astrophysicists interested in large-scale pla-
netary and solar circulations have come to recognize the importance of
rotation and stratification in determining the character of these flows.
In particular, the effect of latitude-dependent Coriolis force on non-
linear convection is thought to play a crucial role in such phenomena
as differential rotation on the sun, cloud band orientation on Jupiter,
and the generation of magnetic fields in thermally driven dynamos. Most
theoretical and all experimental work on these problems has 1in the past
treated only local curvature effects--the mid-latitude or equatorial
B-planes of metearology being well-known examples. In fact, terrestrial
laboratory experiments have only been able to study g-plane flows in
situations where the stratification is extremely simple, usually two
layers of fluid of slightly different density (see Hart, 1972). Even
here only local curvature effects occurring near the poles can be
modelled. One cannot model equatorial regions where the rotation axis
is perpendicular to gravity because then the earth's gravity field
becomes an oscillatory force in the coordinates rotating with the body.
Other body forces proportional to density can be generated in the lab-
oratory. One simple example is the centrifugal buoyancy force which
is perpendicular to the rotation axis. Thus if a body is rotated rapidly
enough, this centrifugal force can dominate regular gravitational effects

and a dynamical approximation to the equatorial plane can be achieved.



This effect has been used by Busse, et. al., (1974) to study rotational
effects on equatorial convection. However, this analogy extends to non-
equatorial latitudes only when the body rotates so fast that rotational:
constraints are dominant everywhere (e.g., as the Taylor number Ta’ defined
below, becomes =). The values of Ta appropriate to the astrophysical

flows we wish to study are thought to be in the range 102 to 106 (Gilman,
1974). The latter is a strong (possibly but not dominant) rotational
1imit, while the former is a weak rotation case. Clearly we need to study
both limits in order to gain understanding of geophysically relevant flows.
The key to physical experimentation on this subject is the generation of
buoyancy forces which are radially rather than axially or uniformly di-
rected. This report describes the theoretical design of such an experi-

ment along with results of preliminary laboratory tests of a prototype.

2. Theoretical foundations

In trying to construct a physical laboratory analog to a geophysi-
cal flow it almost always proves impossible to maintain geometrical and
dynamical similarity in all respects with known materials and techniques.
The case of deep, convecting, rotating, planetary or solar atmospheres
is no exception. We take the point ¢f view that we will make a labora-
tory simulation of a system which is in many respects similar to the
natural ones we are interested in, but in which already some processes

are neglected. The fundamental system we take is that of Boussinesq



1iquid contained in a rotating spherical annulus with thermal forcing
(which may be latitude dependent) imposed at inner and outer spherical
surfaces. The configuration is shown in Figure I. The body rotates
at rate Q and contains a heated annulus of «, v, a-type fluid. The

following parameters describe the system and fluid.

Table I

Fluid parameters and geometry
r radial coordinate
2] longitude
¢ latitude
Q basic rotation rate
Kk thermal diffusivity
v kinematic viscosity
(] coefficient of volume expansion
Ri inner radius
R0 outer radius
P pressure
'} velocity vector
o background mean density

T temperature relative to ambient



fluid

Ti Ri
V= Vsinwt

TOa\If=O

Figure 1. Geometry of the rotating spherical shell experiment. The
outer shell at radius R0 is maintained at temperature To’ voltage ¥ = 0.
The inner shell at radius Ri is at temperature T1. voltage V sin wt. The
applied frequency is 60 hz. The temperature difference AT = T1. - T0
(> 0 for unstable convection). The whole apparatus is rotated about

its axis. The interior is fed via a supporting neck.



The dimensional equations in this Boussinesq fluid model are:

Y A 2 -*
s 4 U = - oT
&[ 3t 28124, 1 P+ gNXETY 4+ v vy (2.1)
dT _ 2
T =hv T (2.2)
v-d = 0O, (2.3)

Note that the buoyancy force acts in the radial direction with a given
gravitational acceleration g(r). We wish to construct a laboratory
analog of the flow situation described by these equations.

Let us first note the well known assumptions used in deriving
(2.1) - (2.3) from the full non-linear Navier-Stokes equations.

1. The Mach number is smali

2. The height scale for the motion is small compared with the

atmospheric scale height.

In addition to applying these incompressible equations to a deep compres-
sible gas we also assume that small scale turbulence can be represented
by uniform "eddy" viscosities and diffusivities. One might want to
add small scale turbulence (occurring at scales << d), magnetic fields,
radiative transfer, and compressibility, to make this mathematical model

more realistic. However the possibility of constructing a laboratory

* > - ’ - -

For conciseness we denote frictional terms as "vV2" recalling that in
different coordinates the divergence of the viscous stress tensor in-
cludes new terms.



analog with all these added physical elements is extremely remote.
Equations (2.1) - (2.3) apply to subsonic convective motions of

], the inverse

a shallow rotating atmosphere when o is replaced by e;
background potential temperature and T by ©. The equations stand as
written for all subsonic oceanic motions except where different dif-
fusivities of salt and heat are important. Thus a laboratory model
based on these equations will have a wide range of applicability to
many different geophysical situations.

Another reason for starting with egns. (2.1) - (2.3) is that
they serve as the governing equations for most theoretical studies of
planetary and solar circulations and contain much of the key physics
without added complexity of the other effects. While it is admittedly
risky to extrapolate results derived from these Boussinesq equations
to atmospheres, they do contain descriptions of many of the processes
believed to be of fundamental importance. Scale interactions via non-
linearity, convective driving, and the latitude dependent Coriolis
forces are all present. That we now have only a meagre understanding
of thermally driven flows described by (2.1) - (2.3) suggests that a
laboratory analog of these somewhat simplified equations should be
very useful in verifying existing theoretical results and in providing

useful scale information for generating further approximations in the

solutions of these equations.



It is not altogether obvious that a laboratory analog of (2.1) -
(2.3) can be made. The principal difffcu1ty arises in generating the
radial buoyancy force. We propose to do this in a system which takes
advantage of the temperature dependence of the dielectric constant of
certain liquids. Consider a dielectric liquid contained in the spherical

annulus of Fig. 1. The dielectric constant is

€= €, [1- ¥ (T-T.)] (2.4)

where € is the ambient dielectric permittivity, To the ambient temp-
erature (about 22°C in the 1ab) and y the thermal coefficient of the
permittivity. The equations governing this dielectric fluid flow in an

imposed electric field E(x) is, in the laboratory,

-

o35+ 2 vuy 7y )XY+ 2Q <y |-
Jt < .

VP4 gAp T2 - pQrQcr + VY

? (2.5)

_e3TEE  _eyT(yv)E" (2.6)
6. £ >
o ~p eo CP

(2.7)



where cp is the heat capacity of the dielectric liquid and z the direc-
tion of the earth's gravitational acceleration. ¢ represents viscous
heating which is neglected. Now note that if the dielectric heating

terms are small enough, and if we can construct a situation where
A 2
g Tz- EVE = T v
2

then the laboratory model will be an analog of the Boussinesqg equations
on a rotating sphere with radial gravity.

Table II Tlists properties of a typical silicone oil.

Table II

Properties of Dow Corning 200 fluid
v .01 cm?/sec 1076 mz/sec
K 6.4 x 1074 cmz/sec 6.4 x 10”8 m2/sec
o 1.17 x 1073 o™ 1.17 x 1073 o¢”]
o .873 grm/cm3 873 kg/m3
y 1.0 x 1073 o¢”! 1.0 x 1073 o¢”1
¢, .45 cal/grm °C 1.9 x 10% j/kg °C

This fluid has a Prandt]l number Pr = y/k = 15.

For various reasons we will be setting up an ac electric
field between the conducting boundaries of the spherical annulus.
The frequency ¢« of the field will be constant and much greater

than that of the thermally driven fluid motions whose time scale
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will be on the order of the rotation period or the advective time
scale, whichever is smaller. The motion frequency will be less than
1/sec. Over these time scales of 1 second or larger the first.thermoelectric

term in (2.6) has zero average and can be neglected. The second has

. PR
magnitude e, 3 TE J <U_ 1/ )
<= 7s
Ke Cp(T-To) d
relative to the conduction term. For an applied temperature difference

-4
of 2 C, a field of 100 V/m, and . a 1 cm gap, this ratio is |10 or less.

If the dielectric fluid is lossy an internal heat generation term

of form €, E;z c«w L /6 Cp should be added to the left hand
side of (2.6). For silicone 0il the loss factor L is so low that this
term is of order IC5-5 with respect to the conduction term. The fluid
resistivity is so high as well (1016 ohm/cm) that the Joule heating is
infinitesimal. Thus to an excellent approximation the thermodynamics in
this Taboratory situation ore essentially identical to that in the original
Bousinesq model where only diffusion, advection, and time changes of

temperature were considered.

Now let us look at the momentum equations. We have neg)ected
free charge forces ofg. If the driving field frequence w is much
greater than the relaxation frequency ~ (e « resistivity)'1 ~ 10" %sec
this force is negligible. This is why we must drive with an ac field
with frequency 2 60 hz. Consider the forcing terms we are retaining,
namely

£z -VP+ ge.XTvzZ+ 6 ETYVT /2

appearing on the right hand side of (2.5). In a divergence-free fluid
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w ith no-slip boundary conditions the dynamics are determined by vor-
ticity equations obtained by taking the curl of (2.5) and (2.1). The

vorticity equations will be identical except for differences in curl f;

We have
£ Y ve?
Curd' 1, = g, X VTAVZ + €4 VE X VT |
2 (2.8)
Thus if E2 = Ez(r) and the background gravitational acceleration is
small, the system of equations (2.5) is equivalent to (2.1) where the
original pog(r)aVr in (2.1) is replaced by £of VEz(r).
2
We can look at this another way. Since the boundary conditions

don't involve the pressure we can rewrite a new composite pressure

2 P~ EGEMIT/2

30

Now _ —_ 2
£=-VR + 9paTvz2- &¥T VE

e ——

2

= - V'FL, +~ T ( d& + Cbe ) ,
where ¢1 is the laboratory geopotential

Qép = 96 Xz
and g the equivalent electromagnetic geopotential,
_ €, Y E(T) /2
Thus the primitive equations are equivalent since on an astronomical

body ¢ = apoG(r).
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Experimentally we impose an alternating electric potential y
between inner and outer shells. We can ground the inner shell and

apply ¢ = V sinwt to the outer shell. The average potential ¢ in the

(2-)
/?f?

Using this we can compute the ratio of the terrestrial buoyancy

tiquid is then

Y=

force f, to the electrodynamica] buoyancy force f We have
> 6'féX( )V/goteo(th)%

This equation shows the need to make RO-Ri and Ri itself small.

o

(2.9)

h{.;n

t

We would Tike to make fm/ft very large so that the buoyancy force will

be effectively radial. For Ri =2 cm, R

2
:F_'.'.‘.. = .002 (Vkv) /ﬁ
+
using fluid data from Table II. Clearly large fields 0(50kv) are neces-

0 = 3 cm,

sary if fm/ft is to be large in the terrestrial laboratory where
g~10 m/secz. Unfortunately dielectric fluids tend to be electrically
unstable at these fields. However in an orbiting laboratory with
g ~.001 m/sec2 a 2.5 kv field gives a f /f, ratio of 12.

Further discussion isfacilitated if we nondimensionalize our equa-
tions using the scales x/d for velocity (d = Ro'Ri)’ dZ/K for time,

AT for temperature (AT might be the difference between inner and outer
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applied wall temperature) and Kz/d2 for pressure. These scales are sub-
stituted into (2.5) - (2.7) after the thermoelectric terms in (2.6) and
the centrifugal terms in (2.5) have been dropped. This latter action

is consistent for laboratory flows where
2
FE = §E§_}2: << 1
With g 21 m/sec2 (the electrodynamic "acce]erator“),R1‘~ .01 m, this
condition implies that Q << 10 rad/sec. We will be concerned with models
where @ ~ 1 so Fr will be small.

We define the characteristic dimensionless parameters of this

problem:

. goaATd3
Ra = Rayleigh number = — >0 (2.10)
Pr = Prandtl number = v/x (2.11)
T, = Taylor number = == (2.12)
v
B = Ry/d (2.13)

1/

If m is the electrodynamically modified dimensionless pressure, the

governing equations are:

8

U 2 2
°ou | 1Y + (TxY Jxd + RT- " (Zxu

—>

2l

= - VTV + R.(V_,

S
s ReRTE/2+ ) RRTF (2.14)
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2
dT - v T (2.15)
dt |
v-d = O, (2.16)

In the above equations 9% is the electrodynamic acceleration
- 242 3 3 Z y
9 = 2 €, ¥ V3B /o 0e A7 (1 +8) ~ 003 vk" (m/sec?)
ond

*
Xz 3/9
In the terrestrial laboratory y ~.02 at 8 kv, in orbiting laboratory
X ~ 20 at the same voltage. Thus we see the great advantage (or even

necessity) of doing these experiments in space. Suppose the boundary

conditions at r = B, B + 1 (inside and outside shells) are

T(B) = 8 + 1

T(B + 1) = B. (note AT = T(B + 1) - T(B) = -1)
Then T = 48(B + 1)/r, Us=o0, me RaPr/r'5 solve the basic equations when
X + ». This basic state of no motion and radial (unstable) temperature
gradient can be superimposed onto the field variables. In spherical
polar coordinates the equations with u, v, w being the east (©), north

(+¢) and radial velocities respectively are:

_2__‘:(4. . vuU + g___u:’__g_"j/-ﬂ”d:—__:——- iTT
97 - = fa rcosd 28 (2.17)

72 /

_ 2 ,
-RT, wcosd + R T, 75//7/—*2;720(

* Numerical values computed with Ri=2cm, d=1cm, and fluid data from Table II.
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+ 2 M asind v _ U
% cos ﬁ 2¢& r?cos?d oo r*os’@ ? ’
v v ? - 27T %
Sz tH4 VU EL L f’”’d ",.-53—/974— sind U
W o 2cosd QU
+ 14 v‘ l — -—— . = 2.18
R F* 28 " Fsind T Fisintg 26 } (2.18)

+ R P T cosd/x + &P@(%H)cos;ﬁ/r}é

/

W . v VW - Ut vt ATt b
S5£ T S F TF =0 3F ¢ BT, cosdu
+ R § Viw - 2« 2 dVcosé

_rzco$¢ af r $/h¢ 39 } (2.19)

+ ('_);g?) R AT + RP Sde/z’/ + R, P s:MH&H)/r?t

Q—T . VT = 1+ | 2

S o+ 4 B @)_L;zz + vV'T
(2.20)

{ 3\""4..(!' { 2 u

2 ov rcos¢ Y ) ¥ cos +rcos¢ 29 =0,
(2.21)

where

Vv = 2, ¥2 u_ 2
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3. Comments on the electrohydrodynamics

In the previous section we showed that for large values of y the
thermally driven motion of a dielectric fluid in a spherical capacitor is
described by the same equations as that of a thermally driven rotating
shallow atmosphere or reasonably deep ocean on a spherical planet, when
the small scale motions for the latter are modelled by constant eddy
viscosity. Several assumptions were made in the representation of the
electrohydrodynamical effects in the fluid which were important in ob-
taining the desired result that a radial gravity field could be simulated.
Although the subject of electrohydrodynamics is a relatively new field
there have been several previous studies which lend support to the assump-
tions used here,

As mentioned above, there are several surface instabilities related
to surface electrical stresses on a dielectric liquid with a free surface.
These are discussed in the review by Melcher and Taylor (1969). Suffice
it to say that they have no geophysical analogs and are undesirable in
our model experiment. They are eliminated by applying rigid electrically
conducting boundary conditions to the fluid. Since this is the natural
configuration for our spherical capacitor we will have no trouble with
the surface modes of instability.

Among the bulk fluid instabilities possible when the dielectric fluid
is subject to both thermal and electric fields are (a) the electrohydro-

dynamic Rayleigh-Taylor instability that we desire in our study of solar
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and planetary convection and (b) an instability related to free-charge
effects Turnbull1(1971a). We have assumed that instability (b) can be
eliminated by applying an ac field of high enough frequency. Turnbull
and Melcher (1969) and Turnbull (1970) have shown by comparing theoreti-
cal and experimental results that the Rayleigh-Taylor instability

in a plane layer of fluid between horizontal conducting surfaces be-
haves as described by the Boussinesq equations neglecting thermo-
electric and free-charge effects. In their experiments the gradients

of E are small and related to the weak temperature dependence of ¢

(e.g., v+ D =0 yields an E with gradients of order yAT). In our
experiments a strong E gradient is imposed geometrically so that free
charge effects will be relatively weaker in comparison with polariza-
tion force effects. Their experiments were done using a silicone fluid
quite similar to the one we propose to use and the good agreement they
achieve encourages us that we are properly representing the electrohydro-
dynamics. A similar study of the effect of a non-uniform alternating
electric field on a thermal boundary layer was reported by Turnbull (1971b)
and this too gives us confidence in the reduced equations (2.14) - (2.16);
Further supportive evidence comes from the study of Chandra and Smylie
(1972) who show that the convective instability of a differentially
heated dielectric fluid in an alternating axially symmetric field occurs
at the predicted critical Rayleigh number computed using equations like

(2.14) - (2.16) with x -~ » as a starting point.
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Based on these studies we have reasonable confidence that the elec-
trohydrodynamical behavior of the silicone fluid at moderate temperature
differences and large 60 hz fields is described by our model equations.
It remains to verify this for our particular geometry. This is largely
a question of how to get adequate data. We discuss this in following
sections. Note however that we have also assumed that E is a function
of r only. In a perfect spherical capacitor this is obvious, but in a
real experiment we need to have a feedthrough tube to maintain the inner
sphere at constant voltage and temperature. Near the "neck" then
E=E (r, ¢) and the term VE x VT will not be zero for the basic state
T (r) = -g(1+B)r as it should be. Thus we must conduct our experiment
far enough away from the neck so that E is primarily radial. This is
accomplished by performing experiments only in the upper hemisphere
opposite the feedthrough. The lower hemisphere is isolated by a radial
plastic disc at the equator. For small but reasonable neck sizes and
B 2 3 the field, as calculated by numerical solution of Laplace's equa-
tion, will be about 95% radial in the entire upper hemisphere. Note
that the Tower voltages required when the experiment is run in a low g

environment means that the neck can be substantially smaller than that

needed for insulation in the terrestrial laboratory. Thus it is probable

that in the zero g environment more than a hemisphere could be studied.
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4, Geophysically relevant parameter ranges

To discuss what values of Ra’ Ta’ B and Pr would be most interesting
to use in the experiments requires an appreciation of what astro-geo-
physical problems are important. A complete review of what is known
about convection in a rotating spherical shell and of what we would like
to know is beyond the scope of this report. Let us briefly look at the
conceptually simplest case of uniformly heated smooth surfaces to illus-
trate the kinds of questions we can hope to answer with this experiment.
Obviously,more complicated thermal boundary conditions and surface irregu-
larities could be included and studied experimentally. The types of prob-
lems are perhaps obvious to meteorologists and oceanographers. The ques-
tions arising in the study of non-linear mechanics are similar in a wide
manifold of problems so we will focus on the simplest forced problem--
one whichis by no means well understood.

The uniformly, unstably heated, rotating spherical shell of fluid
serves as a model problem for large scale planetary and solar convection.
The principle motivation for this model comes from observations of large
scale giant convective cells on the sun and (possibly convective) axi-
symmetric rings at low latitudes and cells at high latitude on Jupiter.
The study of this problem has by and large followed that of convection
in a plane non-rotating fluid layer. In particular we would like to
understand the mechanism for planform selection. In the plane layer the

preference for two-dimensional rolls o= three-dimensional hexagons is



related to calculable non-linear stability properties. 1In the spherical
rotating shell the calculations are by no means as simple partly because
with the latitude variation of Coriolis force the global linear problem
is non-separable in the horizontal coordinate. Under different external
constraints (rotation, viscosity, etc.) it is theoretically possible for
the linear convective instability to consist of banana cells (Busse, 1970)
extending from pole to pole, axisymmetric nes or belts (Willjams and
Robinson, 1973) or various forms in between (Gilman, 1972). In all these
theoretical studies, convection first occurs as weak motions, superim-
posed in the background state of unstable temperature gradient and no
motion when Ry exceeds some critical value Rac (Ta,s, Pr)' In plane
non-rotating convection with rigid conducting boundaries Rac = 1708.
Gilman (1972) has determined Rac for the equatorial annulus. The compu-
tations, which are quite time consuming, show that Ra increases monotoni-
cally with Ta from about 700 at Ta =0 to 104 at Ta = 106. Clearly,
since we want to study convection, our experimental values of Ra must
exceed these numbers.

The non-linear processes are of most interest since Ra is very much
greater than Rac for solar and planetary atmospheres. The appropriate
values of Ra for the astronomical cases are not easy to estimate because
of poor knowledge of the eddy viscosity v and the depth d. Clearly the

Ra appropriate for the large scale convection is very large. For the

10 13 2

sun R ~ 10%R__, using d = 10'%em, v = 3 x 10'°, « ~ v, and ¢*T/T_ = 102,
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This represents 1ittle more than a best guess. It is clear however
that the cases of most interest in astrophysical problems are thdse
for which Ra is many times critical. These values are easily attained
in the experiment.

As R, increases above Ryc several interesting questions emerge.
How long do the linear modes persist? Do the orientations of planforms
suggested by linear theory persist, or do they become unstable and get
replaced by a new planform? This is of particular importance in Willjams
and Robinson's (1973) model of Jupiter's cloud bands since they got axi-
symmetric bands by setting §§-= o in their equations! They did make
a numerical stability analysis of their axisymmetric solutions but due
to the enormous computation time required this aspect of the problem is
by no means solved. In our experiments we should be able to observe
the preferred cells'shapes and orientations as a function of Ra - Rac’
Ta’ Pr and B.

As the convective flow field becomes moderately non-linear (Ra - Rac)/
Rac 2 1, the "simple" modes of linear theory will interact with themselves
and other modes to produce a spectrum of disturbances and perhaps to
generate a mean axisymmetric flow. The question of what kind of mean
flow the convection cells can produce is of great importance in view of
the observed equatorial accelerations on the sun and the giant planets.
Numerical models (Gilman, 1973) for relatively small (Ra - Rac)/Rac
have shown the tendency to generate mean flows. Being three-dimensional

and time dependent such models are complicated and cannot handle too
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wide a spectrum of disturbance (hence they are confined to moderate
non-linearity). The laboratory experiment should be able to verify
these moderately non-linear results and provide information on wave-
wave interaction which will hopefully provide data for realistic theo-
retical approximation. In addition measurements should be made of

)

mean-flows generated at strongly non-linear conditions (large Ra - Rac
which will probably remain inaccessible to numerical experimentation
for some time.

In order to ahieve the above goals we must be able to obtain key
measurable quantities, a problem discussed below, and have access to
the proper parameter range. For a typical experimental set up in a
zero g environment we find that Ra can be set from 0 to 106 and Ta from
0 to about 4 x 105. Thus one can cover the weakly and strongly unstable
Timits for both the weak and strong rotation cases. Figure 2 shows a
parameter plot of the regions accessible by this experiment on a diagram
which also shows the numerically calculated neutral stability curve
for large scale convective instability of rotating stratified flow on a
sphere (from Gilman, 1972). The experiment can give data on flows which
are more strongly non-linear than can currently be handled on a computer
or by asymptotic methods. Note also that viscous effects will be con-

fined to lengths of order d/Ta]/4

or d/Ra]/4 so that in the large
(Ra’ Ta) regions viscosity will be apparent only in narrow boundary

layers.



-Zz-

Figure 2.

shell with uniformly heated surfaces.
stability curves.

Typical experimental range for direct electroconvection in a spherical
The solid curves show the theoretical linear
The hatched line encloses the parameter values accessible experimentally.
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This is only one example. In general we expect to be able to study
weak and strong rotational effects in both weakly and strongly non-linear
flows. The Prandtl number of the silicone fluids is around 10. Ideally
we would Tike to be able to vary this towards smaller values. This may
be possible with other types of fluids.

We view this electro-convection apparatus as a tool for the experimental
study of a large number of geophysical flows in which sphericity, stratifi-
cation, and rotation are all important. There are a wide range of possi-
bilities depending on the kinds of forcing imposed and on the detailed
geometry. For example, mechanical driving and the presence of meridional
barriers would naturally lead to flows of interest in dynamical oceano-
graphy when the stratification is basically stable. Although we have
focused on one particular problem, rotating convection, it is obvious
that an experimental module in which gravity is effectively radial should

have wide applicability.
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5. A simple demonstration of electroconvection

We performed a very simple experiment to demonstrate that po]ar-_
ization forces in a stably stratified fluid can overcome the terrestrial
gravity. The geometry for this experiment is shown in figure 3. Two
horizontal plates at z = 0 and z = a are maintained at a temperature
difference AT. Thus a stable stratification is set up in which there
is no motion. Thus any fluid motion or distortion of the stratification

away from the form

must come from the action of electrodynamic forces alone. This is in
contrast to the spherical shell experiments discussed in chapter 6 where
there 1is vorticity generation by buoyancy forces related to earth gravity.
Here

VT X Vo, = 0

A thin horizontal rod at z = z, is maintained at a 60 Hz RMS
voltage V= AV. The rod is thin enough so that it causes only a minor
distortion of the background temperature field. Visualization is achieved
by looking through the fluid layer (typically a = 1 cm, and the layer
is 15 cm wide and deep) at a Moiré fringe pattern oriented vertically.
Thermal gradients in the horizontal direction will cause refraction
to occur and will cause the apparent position of the fringes to move.
For large AT = 10°C this is a rather sensitive technique and has the
advantage that no particles need be placed in the fluid. Particles tend
to pick up space charge at large AV and dance around. They also tend
to settle out under g forces. Thus visualizing the thermal patterns in

this way is preferable to particle tracking.



V=0 ™ = AT > 0
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—— Gm e wme Twowe GhA) Thmn WED R G TEmER WEG SR VAW SR GEme W g

— ewn s o e s aam s dmam e

V=0 ™:=0

Figure 3. Geometry for the rod experiment. A statically stable thermal
stratification is set up by heating the top 1id. This is then destabilized
by applying a large voltage to a horizontal rod located parallel to the

y axis.

-gz-
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Figures 4-7 show the evolution of the fluid state as AV is increased.
For AV = 0 there is only a weak thermal perturbation near the rod. This
increases as AV is increased. At first the perturbation is primarily
thermal. There is a very weak circulation within the elliptical thermal
perturbation region of figures 5-6, because weak buoyancy layers are
needed near the rod to satisfy the temperature boundary condition there.
As AV is increased the flow breaks down into unstable plumes near the rod
(see Fig. 7). The vertical motions are vigorous and the plumes radiate
gravity waves into the stably stratified fluid at large distances from
the rod. The upward motion consists of cold fluid rising, and hence is
opposite to that generated by the g«=T term in the vertical equation of
motion. Electrohydrodynamic buoyancy forces have overcome the restoring
force of terrestrial gravity. 'g' has been reversed.

A formal analysis of this problem is non-trivial. We here indicate
a rough theory for the critical value of AV needed to generate convection.

The potential due to the rod is
| '
_ 2 + 2 + X
Sw 2o ( o )

AV  n ( sim %E;- (2, ~2 - Lx )

¢Y’m$ = In {S(;L il 20/5_ (4.1)
T/ 2a

The diameter of the rod is p << a. It can be seen that the refractive

patterns of Fig. 5 and 6 are strongest near the region of space where

$pms is biggest, as we would expect.
Now near the rod
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Figure 4. Photograph taken looking through the fluid layer at a series

of vertical lines painted on a translucent plastic end wall (at y = + A say,
A>>a). The lines 'bend' in response to index of refraction changes in

the fluid. Here AV = 0 and there is a slight bending near the rod because
it is a finite conductor and is not consistent with the static temperature
distribution T = 2L 2. Here a = 1 cm, z, = 1/2 cm and AT = 20° C. The

fluid is a low viscosity silicone oil.



Figure 5. Same as 4, except AV = 2 kv. Note how polarization forces have acted to
distort the thermal structure near the rod. There is a very weak recirculating motion
near the rod.
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P / 2a

where r is the radius measured from the rod center. p < r << a. Because
of the static stability the motions will be weak (prior to electrocon-
vective instability). If ¥ is the streamfunction for motion in the x-z
plane (w = - Tx’ u=+ WZ), the equations of steady motion can be com-

bined into the vorticity equation

T - ReTe t I (T,E?)=0 (4.2)

where T is the thermal departure (dimensionless) from a background tempera-

ture, Tambient’ and E2 = 1/r2.
AV Y €, AT |
g = 2 {~?+2h/a
TR ARV,
'Tr{O//JxL

and

qxATa

K Y

I8t

Ra

Ra is the normal Rayleigh number based on terrestrial gravity.

Now in this experiment both Ra and o are very large. Thus the

primary balance in (4.2) yields a requirement that there be no net torques
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on fluid elements.

Thus writing T = T(z) + T'(x,2)
R
T + 2z, Ez-o—az)=0

The solution is

which is less than 1 for r > p .and typical values. In principle this T'
could be compared with the refractive patterns in fig. 6, for example.
Since T' = I/rz it will not satisfy thermal equilibrium demanded

by Vz

T' = 0. Thus a weak circulation, constrained by the static stability
will be set up.

We imagine that the flow will be unstable when "gravity" is inverted,

'so that vertical excursions of cold fluid will be reinforced. This is

essentially an inviscid criterion (valid because Ra and o are large)
equivalent to the zero voltage condition that g%-< 0. Looking at the

coefficient of Tx' in eqn. (4.2) we see that instability will be possible

if
20 sind
FRat =3 <0
r
where 9 is the polar angle. When 6 = - w/2 instability is most Tikely,
It is possible when
2
2e AV I > 1
l'z S[n_’ﬂ":'-‘o/CL 3.3
fkf% n ' (0 U
,, Tp/da

Ey

i
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*
Let Pm = ra =r and setting Pm = 2p we find that for our little experiment
AV = 6 kv

This compares well with the observed transition value of about 7 kv.

Thus we have demonstrated that electrohydrodynamic forces do behave
qualitatively as predicted. But more importantly we have shown that flows
at large field strengths can be visualized easily and data concerning
fluctuation frequencies, wavelengths, and transition points may be obtained

from sequential photographs resembling fig. 7.



.
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6. Calculations and experiment on spherical electroconvection.

We have performed several ca]cu]atfons and experiments investigating
the thermally driven flow in a hemispherical cap. That is, the spherical
annulus of Figure 1 is divided into a hemisphere by a rigid insulating
boundary at the equator. Motion in the upper hemisphere is studied.

It is driven by cooling the inner surface relative to the outer. Thus
Ti < To. The fluid motion is now in response to both terrestrial gravity,
and to electrodynamic forces. When AV= 0 there still will be motion

because with this distribution of heating

VT x Voo # 0
In all runs Pr = 126, B = 2.36 and Ta = 0. We have focused on the meri-
dional circulation during axisymmetric (no variation with longitude)

steady flow, so that the velocity vector has only two components

radial velocity = w(r,¢)

-3
1l

and v = poleward velocity = v(r,¢)
where ¢ is the 'latitude', zero at the equator.

Our main purpose in doing these experiments was:
a) to see how electrodynamic effects modify the'Hadley' circulation driven
by the sideways heating when AV= 0;
b) to demonstrate that flow motions can be visualized by particle tracking
at modest fields.

The theoretical solutions of the governing non-linear Navier-

Stokes equations (2.17 - 2.21) were obtained numerically by P.A. Gilman,



using a modified computer model originally designed to study solar con-
vection (see Gilman, 1972). The results for fixed Pr’ Ta’ 8 depend only

on Ra and x. Al1 results of this section will be presented in terms of

R _ g AT d°

a kv

based on terrestrial gravity, the normal Rayleigh number, and AV, the

applied ac voltage.

The experimental apparatus has a brass inner spherical shell into
which is pumped cool fluid from a thermostated bath. Thermal contrasts AT
range from 1 to 10°C. The outer shell is glass coated on the inside
with a transparent conductive coating (Indium oxide, by Perkin Elmer).

The whole shell is immersed in an outer bath maintained at temperature To'
The working fluid is silicone 0il (Dow Corning) laced with a small amount
of merlescent pigment, a dielectric compound of small platelets that
align themselves with the shear or with the electric potential surfaces.
Time photographs are taken of particle streaks. From the photographs

both flow structure and velocity data can be recovered.

Figures 8 - 10 show the computed meridional circulation for AV = 0.
It is basically a Hadley circulation of one cell with cold fluid sinking
and hot fluid rising up the outer sphere in response to terrestrial
gravity acting on hot and cold fluid. As Ra increases velocities increase
and the flow becomes more of a boundary layer nature with a tendency
towards stagnation near r = 1/2, ¢ = 20°. At Ra = 11,000 the thermal
distribution is nearly conductive except near the equator where there
is radial outflow (fig. 11). At large Ra a stable stratification is

developing in the interior (fig. 12) with strong radial thermal gradients
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"'-hﬁgs‘

Figure 8. Meridional circulation in a hemispherical shell with Ta = 0, Pr = 126,
B = 2.36. These parameters are held fixed in all subsequent results. Here

AV = 0, Ra = 11,000.
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Figure 9. Meridional circulation for AV = 0, Ra = 45,000.
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Figure 12. Thermal distribution for Ra = 118,000, AV = 0.
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only near the walls.

Figs. 13-14 show streak photographs taken by shining a narrow
s1it of 1light in towards the vertical axis and positioning the camera at
90° to the slit. The computed and observed circulation patterns are
similar. The vacant 'hole' of figure 10 is not really stagnant; the
motion is just slower than the cutoff level required for an arrow.

Quantitative comparisons between theory and experiment are shown
in figures 15 and 16. The agreement is good. It is very hard to get
good data in the high shear regions near the walls because small errors
in obtaining the radial position of the particles lead to large errors
in the predicted velocities.

Since the agreement was so good for AV = 0 we then went on to
study electrodynamic effects. However, a problem immediately arose.
Fig. 17a and 17b show predicted meridional velocities for two cases.
The 15,000 volt case is predicted to be indistinguishable from the zero

voltage case. The gravitational Hadley circulation is dominant at these

voltages. This is in part a consequence of having weak meridional thermal

gradients (i.e. fig. 11). Since electrodynamic forces act via

vT x VEZ(r)

and since 1a1 is much less than %%-(recal] that VT x V¢, has a part

r 9¢
go. %%—cos¢) our original scale analysis of electrodynamic effects vs.
gravitational buoyancy effects was an overestimate, in this particular
geometric configuration. This problem did not arise in the rod experiment
where

VT X V¢2‘= 0



Figure 13. Experimental streak photograph. AV = 0, Ra = 11,000.
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Figure 15. Comparison of theoretical and experimental (dots) latitudinal velocity v(r,¢)
at ¢ = 20°. R = 45,000.
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Figure 16. Comparison of theoretical and experimental (dots) values of v at ¢ = 30°.

R, = 45,000.
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Fig. 17a. Contours of V (meridional velocity, dashed contours show
negative values, i.e. directed towards the equator), for Ra = 45,000,
AV = 0.



~A8-

FERY

Vrvraell

0.9

"‘,..--.32_0_:;::;.

R AR,

!




-49-

nor would it arise in the zero gravity laboratory.

Figs. 18 show that the corresponding experimental circulations
are nearly indistinguishable for AV= 0 to 16 kv. Note how nicely the
particles line up with the potential surfaces (e.g., compare figure 18b
to figure 18a where the particles are winking at the camera). At fields
of 8 kv or less particle tracking can be done. This is a major result.
However, if one looks closely at fig. 18c, one sees evidence of 'dancing'
particles near the inner sphere at the pole. The particles pick up
space charge and move in the field. This motion sets a voltage upper
1imit to the use of this technique.

We have shown that flow measurements are possible at the fields
needed in zero-g. We would also like a conclusive demonstration of the
electrohydrodynamic effects in this geometry (to complement our previous
demonstration and those of other workers mentioned in section 3). We
have used the numerical model to suggest what we should look for. Fig.
19-20 show that at large field strength the circulation becomes multi-
cellular. Near the pole cold fluid rises in response to the fact that

the "gravity" has been reversed near the inner sphere (recall that E
so electrodynamic forces are biggest at smaller r). There are also several
*plumes' (more obvious in fig. 20). These are thought to be electro-
convective plumes, again with cold fluid rising, coming out of the
boundary layer where "gravity" is inverted and being swept towards the
equator by the main Hadley circulation. The time dependence can be seen
by comparing figs. 2la and 2la. The 'plumes' are actually toroidal rolls
moving equatorward.

It is suggested that future work be aimed at measuring the critical

value of AV required for the first appearance of these electroconvective



Experimental streak photographs for Ra = 45,000, AV = 0.

Fig. 18a.
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L L

Fig. 19. Theoretical meridional circulation for Ra = 41,000. AV = 50,000 volts.
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Time step 15,000.

Same as 21a.
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instabilities. For these axisymmetric modes the critical voltage is
about 45 kv. This is beyond our capability at M.I.T. (We do have a 50 kv
transformer at Colorado University where this work will be continued.)
Hdwever, in the presence of the radial shear of the main Hadley cell the
most unstable modes should not be axisymmetric toroids but poloidal
banana rolls (e.g., w' = w'(r,8), 8 is longitude). Being more unstable
they should occur at lower AV. During the continuation of this work

at Colorado University we will compute the critical value of AV for
poloidal rolls, and compare with experiment. Obviously the voltage will
still be high; we anticipate something like 30 kv. Thus no particles

can be used. We will measure the refraction of a laser beam reflected
off the inner sphere as the apparatus turns slowly (Ta << 1). The rapid
fluctuation of the reflected beam will indicate the presence of non-
axisymmetric rolls. The critical value of AV and the observed wavelength
will be compared with theory, thus obtaining an accurate measure of
electroconvective effects in this geometry and checking out another

possible visualization scheme.
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7. Conclusions and recommendations for zero-gravity experimental design.
We have seen how terrestrial gravity effects swamp out electro-

convective effects,and 1imit the application of this geophysical flow

simulation method to low-g laboratories. Since the convective time

scales are large an orbitting laboratory is preferred. It is easily

seen that the apparatus cannot be too big because E-fields fail off as

]/rz. Thus the optimum size for the spherical annulus is a few centi-

meters for Ri and one or two cm for d. But as we saw in section 4,

the Taylor number Ta can still be large enough so that experiments can

be conducted in the rotationally dominated regions of parameter space.
Once the size (a few cm), temperature (S 30°C) and voltage (< 8 kv)

are set up, one might ask how big a feed-through neck is needed (see fig. 1).

Alternatively one might ask how far away from the neck could one conduct

experiments. The neck feeds high-voltage and coolent to the inner

sphere so it must be on the order of a few millimeters in radius. Near

2 is not a function only

the neck there will be fringing fields. If E
of r there will be 'spurious' electroconvective buoyancy forces which

are not radial, and hence that have no geophysical analogs. Thus we

can only operate geophysical fluid dynamics experiments in that region

of the spherical annulus where E2 is almost radial, or where the electric
potential ¢ is radial.

We have tried to estimate the neck influence region by solving
Laplace's equation for the geometry of fig. 22. An inner sphere is at
potential ¢ = 0, and an outer sphere with a hole in it at angle & from
the north pole, is at potential ¢ = V = 1. Let 6 be the angle measure

from the pole downwards to the hole. Clearly we will be best off if

8 =& -+m/2 ord~> 0. Figure 23 shows computed ¢ fields for several



Fig. 22.

Geometry for neck-effect calculations.
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1]

Fig. 23. Potential distributions. Horizontal axis is x = cos@. Neck is
at x = 1, the left hand margin. Vertical axis is r. In a) R,/R; = 1.25,
cosd = -1. Inb) R,/R; = 1.25, cos¢ = -.5. 1In c) Ry/R; = 1.25, cos? = 0.
In d) R /Ry = 2, cos® = -.75. In e) R/R, = 8, cos® = -.75. The right

hand axis is at the north pole . Midway across each plot is the equator,
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cases. It is obvious that -if we confine ourselves to experiments in a
hemisphere that there will be no problem (our typical experiment has
Ro/Ri = 1,3, cosd ~ -,83). Looking at fig. 23b, equatorial annulus
studies could conceivably be done to 45° S.

We have explored several visualization schemes for obtaining
data on simulated flows in the spherical annulus geometry with electric
fields applied. Some typical results are apparent from earlier photo-
graphs. They are:

a) particle tracks or streaks: useful for meridional flow structure
and velocity. Can be used for low velocities (.1 mm/sec or less as
observed here in fig. 14). Disadvantage: need to be injected if g # 0;
otherwise will settle onto and adhere to surfaces. Only good for AV = 8 kv
or less.

b) Moiré (refractive index) photos: useful for planforms, wave-
lengths, frequencies and critical vlaues. Difficult for quantitative data.
Good to breakdown point of the fluid. Best method for obtaining global
structure of flow in Tongitude and latitude. Disadvantage: none. (Note
other variants of this method may be better, e.g., shadow graph/Schlieren.
Needs further technical study.)

c) Remote anemometry (Laser doppler): useful for direct measurement
of flow velocity at single point. We have used this method with the
spherical annulus and found the method to be reasonably easy to set up and
align and gives accurate results if velocities 2 1 cm/sec are being measured.
Otherwise vibration and alignment problems lead to noise problems. Consider-
ing the care required and the complexity of such systems, it is not recom-
mended for space use, although it can be a useful tool for exploring the
fluid dynamics of flows in the terrestrial laboratory relevant to this

problem.
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Figures 24 and 25 summarize current thought on a suitable zero-g
experiment. It should be small and self-contained with the thermal
'‘bath' for the inner sphere and the high voltage power supply located
in the rotating housing. The cell with some rough dimensions is shown
in fig. 25. We very much prefer the visualization method of b) above.

It is simple, reliable, iﬁexpensive, and will serve to give in a direct
photographic record all the necessary data on fluctuation plan-form (wave
axis tilt, for example), wavelengths, wave slopes, etc. The outer surface
will be cooled or heated with an air jet. Different cells are suggested
for mountain barrier problems, problems with non-uniform heating on
spherical surfaces; our sketch shows the simplest configuration which
undoubtedly should be the first to fly in order to test out under

actual zero-g conditions the concepts we have outlined and studied in

this report.
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Figure 24.

Sketch of electroconvection apparatus.



«65-
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surface
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Figure 25. The electroconvecticn cell.
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