General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

COMMONLY CAUSE PIIOT ERP.OR: TIME ESTIMMION

Final Technical Report covering the period 1 November 1974-31 October 1975 NASA-Ames University Consortium Interchange Agreement NCA2-0ה050-503

```
(NASA-TM-X-74153) SECONDARY TASK FOR FULL N76-33846
FLIGHT SIMUIATICN INCORPORATING TASKS THAT
COMMONLY CAUSE EILOT EFROE: TIME ESTIMATION
Final Technical Report, 1 Nov. 1974 - 34 Unclas
Oct. 1975 (California Univ.) 32 p HC $4.00 G3/54 07188
```

Principal Investigator: Dr. Fleanor Rosch Institute of Human Learning University of California Berkelay, California 94720

1 ASA Technical Officer: Mr. Thunas Werme Man-Machine Integration Branch NASA-Ames Research Center Moffett rjeld, California 94305

SECONDARY TASK FOR FULL FLIGHT SIMUIATION INCORPORATIMG TASKS THAT COMMONLY CAUSE PILOT EIROF: TIME IETIMATION

INTRODUCTION

The objective of this joint researen program was to provide numan factors investigators with an unobtrusive and minimally loading additional task that is sensitive to differences in flying conditions and flignt instrumentation associated with the main task of piloting an aircraft sinilator. The additional task under investigation was time estimation, an activity occasionally performed by pilots during actual flight. Previous research, supported by NASA-Ames Consortium Agreement NCAR-050-404, indicated that the duration and consistency of time estimates is associated with the cognitive, perceptual, and motor loads imposed by concurrent simple tasks. The present researcn was aimed at clarifying the relationship between th length and variability of time estimates and concurrent task variables under a more complex situation involving simulated flisht.

MEIHOD
Commercial airline pilots, nine in the first group and six in the second, generated $10-$ sec time estimates using the method of production. They began each estimate by tne activation of a switch, always in response to an automaticaliy presented cue, and they terminated the estimate by another switch activation when they judged that 10 sec had elapsed. Pilots in the first group produl. time estimates in the absence of a concurrent task (baseline) and then under four different conplexity levels of a compensatory tracking task. At'ter baseline estination, pilots in the second group produced estimates while flying a transport aircraft simulator under eight different crmbinations of wind velocity and flight instruments.

Tracking Task
The compensatory tracking +ask, outlined in Figure 1, combined two levels of dimension (one or two axis) With two levels of difficulty of the quasirandom forcing function ("easy" or "hard", corresponding to low pass filtering at a frequency of 0.5 or $1.5 \mathrm{rad} / \mathrm{sec}$ respectively). The first-order control task consisted of attempting to maintain eitner or both of the horizontal and vertical driven lines at the center of the display, superimposed upon a fixed reference cross. Pilots produced seven $10-\mathrm{sec}$ time estimates in the absence of concurrent activity (baseline) and tren again under each of the four tracking conditions. The signal to begin eacn time estimate was the appearance of the phrase " 10 SEC" across the top of the display. That signal appeared 10 sec after initiation of a tracking condition or termination of the preceeding estimate. Actual interestimate intervals typically varied between 10.7 and 13.0 sec depending upon exactly when the individual pilots actually began each estimate. The design of the tracking esperiment is illustrated in Figure 2. Flight Simulation

The flight simulation involved two levels of each of three controlled variables: (a) wind velocity of either 4 or 32 knots, (b) presence or $a b-$ sence of a flight path predictor, and (́) presence or absence of a graphic Wat vector. The eight possible experimental conditions were balanced in presenta ion across trials, pilots, and days, and all were given once on each of 4 different deys. The pilots completed participation in the study over a period of between 4 and 8 days. Daily sessions lasted about 1.5 hr , and individual runs required approximately 6 min to $f l y$. The design of the flight simulation experiment is illustrated in Figure 3.

The flignt patn preaictor and the wind vector, when present, were eacn graphic elements of a moving map display (Figure 4) used by tne pilots for lateral control and navigation of the simulator. The predictor originated from the symbolized aircroft position on the map. It dynamically reflected aircraft flight characteristics, pilot control inputs, and wind effects, providing a 30 sec projection of the route that the simulated aircraft would fly under existing conditions. The wind vector displayed the direction and velocity of the prevailing wind, and aircraft drift due to wind was dynamicaliy represented by the angle between vector arrownead and snaft. Pilots had the task of maintaining the simulated aircraft at $1,000 \mathrm{ft}$ assigned altitude and of following the route of flight (Figure 5) depicted in the map display as precisely as possible.

Pilots produced six $10-\mathrm{sec}$ time estimates in the absence of concurrent activity (baseline) and then again under each of the eignt experimental conditions during each of the four days they participated in the simulation. A $1,020 \mathrm{~Hz}$ to.e, and the appearance of the phrase "EST 10 SEC " just to the rignt of the light instruments, signalled the pilots to begin eacn estimate. The tone ceased once the estimate was begun, winile the phrase " 10 SEC" persisted as a reminder that an estimate was in progress. Termination of an estimate caus 1 the reminder phrase to disappear. The signal to begin a time estimate occurred when the simulated aircraft was at or abeam each of the six geographical locations along the assigned route of flight indicated in Figure 5. The cue to begin tue first estimate occurred approximately 20 sec after initiation of ilignt, while the interestimate interval, assuming tnat each estinate lasted approximately 10 sec , typically ranged between about 35 and 70
sec. The flight instruments remained static in tae baseline condition, but pilots produced time estimates as though the simulator were flying the assigned route.

RESULIS

Baseline estimates, produced in the absence of a concurrent task, were consistent within individual pilots, generally quite acrurate, and appeared to be normally distributed. With the addition of a concurrent task, individual pilot's estimates became more variable, less accurate, and were distributed with positive skewness.* Since skewness characterized the distributions of estimates produced with concurrent activity, the arithmetic mean misrepresented central tendency by giving undue weight to the few particularly deviant (long) estimates (Figure 6). For example, the mean was 1.0 sec longer than the median of estimates made during concurrent flying. However, the mean and median were approximately the same for baseline estimates, as one would expect from a normal distribution. The median of each pilot's estimates within a session was therefore chosen as the more representative measure of central tendency. It follow that the average (absolute) deviation of scores from the median was appropriate as a measure of dispersion.

* The following descriptive statistics are mentioned in the discussion of experime. al results:

Mean $=\sum X / n$
Median (Ma) point which divides the upper half of scores from the lower half: It is the centermost score for an odd number of scores and the mean of the two centermost scores for an even number.

Average Deviation (AD) $=\sum|X-M d| / n$
Skewness (Gamma 1) $=\frac{\sum(x-\bar{x})^{3} / n}{\left(\sum(x-\bar{X})^{2} /(n-1)\right)^{3 / 2}}$
Kurtosis $\left(\right.$ Gamma 2) $=\left(\frac{\sum(x-\bar{X})^{4} / n}{\left(\sum(x-\bar{X})^{2} /(n-1)\right)^{2}}\right)-3$

Tracking Task
Pilot performance under the four tracking conditions varied significantly as a function of the number of dimensions and the difficulty of the forcing function. Tracking error increased as the number of axes controlled was increased from one to two and as task difficulty was increased from the easier to the more difficult forcing function.

For the group of pilots who performed the tracking task, a slight increase in positive skewness charterized the distributions of estimates made with, as compared to those made without concurrent tracking. Overall, estimate length increased by 50% and the average deviation increased by 94% with the addition of compensatory tracking (Figure 7).

During concurrent tracking, positive skewness increased, median duration decreased, and average deviation incrased as the number of controlled axes was increased from one to two (Figure 8). As the difficulty of the task was increased from the easier to the more difficult forcing function, there was a substantial increase in positive skewness, average deviation, and median estimate length (Figure 9).

Flight Simulation
Piloting performance in control of the simulator was assessed by measures of error in lateral guidance, err in maintaining assigned al.titude, aileron control activity, and elevator control activity. Scores on all measures increased significantiy as wind velocity was increased from 4 to 32 knots. The flight path predictor was associated with a significant decrease in lateral error and in aileron and elevator control activity, but altitude error was not significantly affected. An interaction with
subjects obscured the difference between overall flying precision and control activity and the presence or absence of the graphic wind vector.

Although the centrul tendency and skewness of baseline estinates produced by the pilots who flew the simulator were virtually identical to those of the group of pilots who performed the tracking task, the average deviation of baseline estimates was greater for the latter group. With the added task of flying the simulator, positive skevness increased substantially and overell estimate lencth decreased by 10%. While the absolute change in average deviation with the addition of either concurrent task was numerically the same, it represented a 204% increase with respect to baseline for the pilots fly ing the simulator compared with a 94% increase for the other group.

During simulated flight, positive skewness increased, median estimate length decreased, and average deviation increased as the wind velocity was increased from 4 to 32 knots (Figure 11). Similarly, with the addition of the predictor to the map display, positive skewness again increased, median estimate length decreased, and average deviation increased (Figure 12). The addition of the wind vector to the rap display again produced the same, though smaller, changes in all three measures of time production distributions (Figure 13).

DISCUSSION

Theoretically, one may distinguish two ways in which an individual can pronere a time estimate: active and retrospective. Active estimation hypothetically involves a conscious attermpt to keep track of time on a sustained basis during an estimate. For example, this may be done by counting off seconds. The various techniques used for active estimation each require a
moderate amount of attention. Any soncurrent activity that also requires attention clearly competes with active estimation. When an additional task momentarily diverts attention from estimstion, clock time continues whereas subjective timekeeping may not. Thus, the amount of time that has passed may be underestimated, so that the rasulting production is too long.

The time estimation task may be forgotten for relatively long periods of time as a consequence of attention paid to other activities, resulting in very long productions that no longer represent subjective estimates of time and are limited in length only by the maximum duration allowed by the experimental desicn. If concurrent tasks exert heavy attention demands, active time estimation becomes impossible.

The retrospective mode of estimation hypothetically provides an alternative way to produce specified durations when concurrent task demands preclude active estimation. Using the retrospective mode, the amount of time that has elapsed since the beginning of an interval is estimated at one or more discrete points. The length of each such estimate is determined by one's memory of the events that occurred during the preceeding interval. The usual finding is that intervals filled with many events and complex mental processing seem to last longer than they in fact do, an overesti.. mation of elapsed time resulting in productions that are too short. The decision to terminate the producticn is thus based on a comparison between one's idea of how much time has passed since the beginning of the estimate and one's conception of the interval of time being estimated.
-8-
Fetrospective eatimation does not require sustained attention to the passage of time throughout the interval. Consequently, retrospctive estimates should not lengthen as a function of distraction, as would be expected of active estimates.

The time estimation task may be forgotten for relatively long periods of time during retrospective, as well as active, estimation. The frequency of the resulting overly lon productions should be greater as the demands of the concurrent task increase. The frequency of overly lone productions should also be greater during retrospective than active estimation, as a direct consequence of the fact that only intermittent attention is paid to timekeeping in the retrospective mode. The effects of concurrent activity on the central tendency of distributions of time productions are reiterated in Figure 14. That figure also indicates the hypothesized changes in variability and shape of estimate distributions, relative to baseline, under the two modes of time estimation.

We in erred that the retrospective node would dominate time estimates made during simulated flight, because the very uature of the task should militate against pilots paying continuous and active attention to timekeeping. Averaging across all pilots, the addition of display elements and other factors releva... to the control task all were associated with distributions of estimates characterized by a decrease in central tendency and an increase in variability and positive skewness (Figure 25). These are the results that one would espect with retrospective estimation. However, several pilots reported attemmts to actively estimate time by counting. Those pilots generated estimates which lengthened with increased concurrent activity, exactly as would be expected with active time estination.

The visual displays and cognitive processing recuiremonte vere lees complex and demanding for comensatory tracking than for the fleht $51 m$ ulation. We inferred that relatively more of the estimates were priuced actively in. the former situation. Thus, concurrent tracking should exert a distracting influence on estimation, thereby increasing median estimate length. Indeed, the estimates made during tracking averaged 5.0 sec longer than baseline estimates and were tore than 6.0 sec longer than those made during simulated flight. Variability and positive skewness also increased relative to baseline with the addition of a tracking task (Figure 15). However, the frequency of very lone productions and the increase in variability was considerably less with compensatory tracking than with simulated flight, indicating relatively less distraction.

Within tie tracking task, the median estimate length and variability increased with addition of either a second axis or the more difficult forcing function, as would be expected with actively producel estimates. When both axes $\% 3$ well as the more difficult forcing function were combined, median est? nate length decreased whereas variability increased fharply. We infor that the demands of this particular condition made active estimation more difficult, resulting in a larger proportion of shorter, retrospective estimates -th accorpanying increased variability. Such retrospective estimates would account for the apparent decrease in median estimate lencth reported for the addition of a second axis when estimates were averaged across forcing function difficulty.

CONCLNDIIG REMARK

Hypothetically, for time estimate productions made activaly, increasing task attention demands should proeressively increase the central tendency of estimates relative to baseline. However, active estimation will be rendered difficult, if not impossible, at higher levels of distraction, so that retrospective estimation remains the only mode available. The chance from the active to the retrospective mode should result in a discontinuity in the estimate length function, with associated decrease in the lensth if time production. Lutrospective estimate duration will then decrease further with still greater increases in the level of concurrent activity. The wrap-around effect with respect to baseline duration, a consequence of mode switching at intermediate levels of concurrent task distraction, chould contribute substantially to estimate variability and have a complex effect on the shape of the resulting distribution of estimates.

Figures 16, 17, 18, and 19 summarize four meacures of the estimate distributions for all of the experimental conditions. An example of the hypothetical wrap-around phenomenon can be seen in Figure 16 , where the addition of a tracking task resulted in a 50% increase in the leneth of produced durations relative to baseline while the addition of a simulated flight resulted in a 10% decrease in the lensth of produced durations. A.s predicted, estimate variability increased as a function of the complexity of concurrent activity. As can be seen in Figure 17, the average deviation increased by 94% with the additional task of tracking and by 204% with the additional task of simulated flight. The expected increase in positive skewness of the estimate distributions occurred for both groups of pilots
(Figure 18) with the addition of a coneurrent task. The distributions of estimates made durine simulated flight were particularly skewed as a consequence of the few, extremely long durations that were recorded when the concurrent task deranded so much attention that the time estimation task was forgotten for relatively lone periods of time. Kurtosis, which is a measure of the peakedness or flatness of a distribution, also differentiated estinates obtainec during sinulated flight from those obtained with no additional task or during compensatory tracking. Estimates presumably made actively, such as those in the baseline conditions and with concurrent tracking, formed platy. urtic or ilattened distributions, whereas estimates delieved to have been made retrospectively, such as those produced during simulated flight, formed leptokurtic or peaked distributions (Figure 19). Time estimation is an unobtrusive and minimally loading task. The central tendency, variability, and shape of the distributions of time productions provide indices of concurrent task processing requirements. Thus, time estimates nay prove useful to human factors researchers interested in c mparing different conbinations of displays and controls associated with complex piloting tasks.

PUBLICATIONS/PAPERS

Hart, S. G. The influence of distraction on the perception of titc. Paper presented at the 55 th annual meeting of the Western Psychological Association, Sacramento, California, Ny 1975.
Hart, S. G. Time estimation as a secondary task to measure workload. Proceedines of the 11 th anmual conforence on manal control. (IMASA TM $\overline{\mathrm{X}-62,464)}$ Nifett Field, Calilornia: Mint-Ames Researen Center, Nay 1975.

Hart, S. G. A cognitive model of time perception. In W. E. Wilsoncroft (Chair.), Tlme percention. Symposium presented at the 56th annual meeting of the Western Fsychological. Association, Ios Angeles, April 1976.

Hart, S. G. \& NePherson, D. Airline pilot time estimation durims concurrent activity including simulated flight. Preprints of 1976 amual scientific merting. Washincton, D.C.: Aerospace Medical Association, 1970.

Hot, S. G. \& Nopherson, D. Airline pilot time estimation during concurrent fivity including simulated flight. Paper presented at the 47 th annual meeting of the Aerospace Nedical Association, Bal Harbour, Floride, May 1976.
BLOCK DIAGRAM OF EXPERIMENTAL. TRACKING TASKS

FIGURE 1
NפISヨa 7 $\forall 1 N 3 W I C ヨ d X ヨ$

＂FORCING FUNCTIONS：
＂EASY＂$=0.5$ RAD／SEC BANDWID i H
＂HARD＂$=1.5$ RAD／SEC BANDWIDTH
9 PILOTS
7 ESTIMATES／CONDITION
1 REPLICATION
FIGURE 2
EXPERIMENTAL DESIGN
SIMULATED FLIGHT CONCURRENT TASK
A. BASELINE
MO CONCURRENT TASK
B. SIMULATED FLYING

	4 KNOT WIND	
	NO VECTOR	VECTON
NO PREDICTOR		
PREDICTOR		

figure 3
MOVING MAP HORIZONTAL SITUATION DISPLAY

FIGURE 4

ASSIGNED ROUTE OF FLIGHT AND SIX TIME

ESTIMATE LOCATIONS (E1 - E6)

FIGURE 5
STYLIZED DISTRIBUTIONS OF TIME ESTIMATES

BASELINE ESTIMATES COMPARED TO THOSE
PRODUCED DURING COMPENSATORY TRACKING

FIGURE 7
INFLUENCE OF NUMBER OF CONTROLLED AXES
ON TIME ESTIMATE DISTRIBUTIONS

FIGURE 8
INFLUENCE OF FORCING FUNCTION DIFFICULTY (BANDWIDTH) ON TIME ESTIMATE DISTRIBUTIONS

FIGURE 9
BASELINE ESTIMATES COMPARED TO THOSE
PRODUCED DURING SIMULATED FLIGHT

FIGURE 10
INFL'JENCE OF WIND VELOCITY ON DISTRIBUTIONS OF
TIME ESTIMATES PRODUCED DURING SIMULATED FLIGHT

FIGURE 11
INFLUENCE OF THE FLIGHT PATH PREDICTOR ON DISTR!BUTIONS
OF TIME ESTIMATES PRODUCED D'JRING SIMULATED FLIGHT

GRAPHIC FLIGHT PATH P~rnin , in
FIGURE 12
INFLUENCE OF THE WIND VECTOR ON DISTRIBUTIONS
OF TIME ESTIMATES PRODUCED DURING SIMULATED FLIGHT

GRAPHIC WIND VECTOR
FIGURE 13
THE INFLUENCE OF CONCURRENT ACTIVITY
ON DISTRIBUTION OF TIME PRODUCTIONS

		MODE OF ESTIMATION	
		ACTIVE	RETROSPECTIVE
DIRECTION OF CHANGE RELATIVE TO BASELINE	CENTRAL TENDENCY	LONGER	SHORTER
	VARIABILITY	INCREASED	INCREASED
	SHAPE OF DISTRIBUTION	POSITIVELY SKEWED	POSITIVELY SKEWED

FIGURE 14
THE INFLUENCE OF COMPENSATORY TRACKING AND SIMULATED FLIGHT

		EXPERIMENTAL CONDITION	
		COMPENSATORY TRACKING	SIMULATED FLIGHT
DIRECTION of Change ReLATIVE TO BASELINE	CENTRAL TENDENCY	LONGER	SHORTER
	VARIABILITY	INCREASED	INCREASED
	SHAPE OF DISTRIBUTION	1. SLIGHT POSITIVE SKEW 2. PLATYKURTIC	1. MODERATE POSITIVE SKEW 2. LEPTOKURTIC

FIGURE 15
CENTRAL TENDENCY OF PRODUCED DURATIONS

FIGURE 16
VMRIABILITY (AVERAGE DEVIATION) OF DISTRIBUTIONS OF PRODUCED DURATIONS

SKEWNESS (GAMMA 1) OF DISTRIBUTIONS OF PRODUCED DURATIONS

COMPENSATORY TRACKING CONCURRENT TASK

KURTOSIS (GAMMA 2) OF DISTRIBUTIONS OF PRODUCED DURATIONS COMPENSATORY TRACKING CONCURRENT TASK

ABSENT PRESENT

SIMULATED FLIGHT CCNCURRENT TASK
NONE SIMULATE
CONCURRENT TASK
WIND
NOTE: $\begin{aligned} & + \text { GAMMA } 2=\text { LEPTOKURTIC (PEAKED) } \\ & - \text { GAMMA } 2=\text { PLATYKURTIC (FLAT) }\end{aligned}$

