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B7.0 Thin S aells

Basic relationships governing the behavior of shells whose

thicknesses are small relative to their surface dimensions and to their

principal radii of curvature are summarized in this section. This

thinness admits various approximations to the three-dimensional stress

state. The de_ree of approximation best suited for a particular analysis

depends on the shell shape, the type of loading, and the material of

which the shell is made. Consequently, there exists a variety of

approximatethin- shell theories.

The various thin shell theories to be used in subsequent

analyses are discussed below. The purpose is to familiarize the

analyst with the foundations upon which commonly employed shell e-

quations are based.
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B7.0. 1 Thin Shell Theories

Theories of thin shells may be broadly classified according

to the fundamental theories which they approximate:

I The Theory of Linear {classical) Elasticity

II Nonlinear Elasticity

III Inelasticity

The most common shell theories are those based on linear

elasticity concepts. These theories adequately predict stresses and

deformations for shells exhibiting small elastic deflections; they are

also adaptable to some buckling problems.

The Nonlinear Theory of Elasticity forms the basis for finite

and large deflection theories of shells. These theories are often re-

quired when dealing with shallow shells, buckling problems, and highly

elastic membranes. The nonlinear shell equations are considerably

more difficult to solve and therefore are more limited in use.

Shells in the inelastic range will not be discussed in this

section.
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B7.0.2 Thin Shell Theories Based on Linear Elasticity

The classical three-dimensional equations of Linear Elasti-

city are based upon the following assumptions:

1. Displacement gradients are small; i.e. ,

ui << 1

xj

where u i = generalized displacement, i = 1, 2, 3

x = generalized coordinate, j = l, Z, 3
O

2. Products of displacement gradients are therefore

negligible compared to the gradients themselves. By this assumption,

strains and rotations are necessarily small and they become linear

functions of the displacement gradients, i.e.,

e 1 = _ ul e _' O u Z
; 2. = 0 u 2 ; 1Z = 0Ul +

8 x 1 8 x2 8 xz 8 x 1

etc.

3. It is further assumed that the Gc. neraIizcd Hooke's Law

holds, an assumption which is naturally compatible with the small

strain condition. Hooke's Law, in its general form, states that the

six components of stress at any point are linear functions of the six

components of strain at that point.

When dealing with thin plates or shells, the stresses in

planes parallel to the surface are of prime importance, the normal

stresses being of little practical significance. Hence, a complete

three-dimensional solution is generally not warranted. Sufficiently

accurate analyses of thin plates and shells can be performed using

simplified ve. rsions of the general Linear Elasticity equations.

The s(,lection of the proper form of these approximations

has be,.'n the. s,_bject of considerable controversy among the many

inw.-stigators in the field. As a result, there is in existence a large

number of general and specialized thin shell theories, developed with-

im the framework of linear elasticity. The most commonly encounter-
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ed theories will be discussed in the subsequent sections and classified
according to the assumptions upon which they are based.

The various linear shell theories will be classified into five
basic categories:

1. First-Order Approximation Shell Theory

2. Second-Order Approximation Shell Theory

3. Shear Deformation Shell Theory

4. Specialized Theories for Shells of Revolution

5. Membrane Shell Theory

In the case of thin shells, the simplified bending theories of

shells are (in general} based on Love's first-approximation and second-

approximation shell theories. Although some theories do not adhere

strictly to Love's two original approximations, they can be considered

as modifications thereof and will be categorized as either a first or

second approximation.

Although the Shear Deformation and Specialized Shell theories

presented are based on Love's first-approximation, they are classified

separately because of their particular physical significance.

Linear membrane theory is the limiting case corresponding

to a zero-order approximation, or momentless state.
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B7.0. 2. 1 First-Order Approximation Shell Theory

Love was the first investigator to present a successful

approximate shell theory based on linear elasticity. To simplify the

strain-displacement relationships and, consequently, the stress-strain

relations, Love introduced the following assumptions, known as first

approximations and commonly termed the Kirchhoff-Love hypothesis:

1. The shell thickness, t, is negligibly small in comparison

with the least radius of curvature, Rmin, of the middle surface; i. e. ,

t <4 1 (therefore, terms z <<l).
Rmin

2. Linear elements normal to" the unstrained middle sur-

face remain straight during deformation, and their extensions are

negligible.

3. Normals to the undeformed middle surface remain

normal to the deformed middle surface.

4. The component of stress normal to the middle surface is

small compared with other components of stress, and may be neglect-

ed in the stress-strain relationships.

5. Strains and displacements are small so that quantities

containing second-and higher-order terms are neglected in comparison

with first-order terms in the strain equations.

The last assumption is consistent with the f_rmulation ,,f

the classical theory of linear elasticity. The other ass_mlpti_ms ar_,

used to simplify the elasticity relations.

By the thickness condition, assumption (1) above, the

ratios z and z are negligible relative to unity. From this condi-

rl r 2

tion, the tc'n stress resultants that act on an infinitesimal element (N O ,

NO, Qd_, QO, Q0qb, Q00, MO, M0, MOO, andM0qb)reduces to eight,

since Q 'b 0 = Q 0dp and M 0 0 = M 0 _-

Assumption (2) of L_Jve's first approximation is analogous

t,_ Navicr's hypothesis in elen_cntary beam theory, i.e., plane sections

remain plane dllring bending.
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The strain equations are further simplified through assump-

tion (3), by which transverse shear deformations are neglected. As a

consequence, normals to the middle plane not only remain straight but

remain normal and have the same rotation as the middle surface. The

degree of error introduced by this assumption naturally depends on the

magnitude of transverse shearing forces; in Local areas around a shell

edge such shear deformations may be comparable to bending and axial

deformations, and cannot be ignored. In general, however, shells

loaded by continuously distributed surface forces, and having flexibly

supported edges, can be assumed to have negligible transverse shear
deformations.

By the fourth assumption, forces applied to the surface of

the shell are stated to be so distributed that directly imposed stresses

are small. Furthermore, direct normal stresses through the thickness,

fz, are taken to be insignificant due to the large radius-to-thickness
ratios of the shell.

Practically speaking, the solution of the simultaneous

differential equations of Love's first order approximation theory is

possible onLy in rare cases, or with additional approximations. In

the case of a loaded structure, the generaL solution of the nonhomo-

geneous differential equations consists of a particular solution of the

nonhomogeneous differential equations and the general solution of the

homogeneous differential equations. In the case of an unloaded struct-

ure the solution consists of onLy the general solution of the homogen-

eous differentia[ equations.

The nonhomogeneous solution of Love's equations,to a first

approximation, equals the solution of the corresponding extensional

(pure membrane) problem. The homogeneous solution is a self-equili-

brating system of stress resultants which satisfy compatibility c_mdi-

tions at the edges of the shelL (edge effect) and in other regions of dis-

continuity.

Thus, there are two extreme cases possible within the

first approximation: (1) the inextensional or pure bending case in

which middle plane strains are neglected compared with flexural

straills, and (2) the extensional or membrane case in which only middle

i,lar,,, strains are cc,nsidered. The general or mixed case lies between

t.llest, |w_ extremes.
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B7.0.2.2 Second-Order Approximation Shell Theory

In Love's second approximation, restrictions on the t/r

ratios are relaxed to such an extent that normal stresses induced by

flexure and corresponding normal displacements are no longer negli-

gible. By considering the second-order effects of such normal dis-

placements, the strain components parallel to the middle surface be-

come nonlinear functions of middle-plane curvature changes.

Assumptions (2) and (3) of the first-order theory are re-

tained in the second approximation. Thus, displacements are said to

vary linearly across the thickness of the shell, whereas, strains are

nonlinearly distributed.

It is characteristic of second approximation theories that
strains and constitutive relations contain second-order terms in the

thickness coordinate, z.

The theory is applicable for small deflections of highly

curved shells subjected to predominantly flexural strains.
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B7.0. Z. 3 Shear Deformation Shell Theories

In the development of the first-and second-order shell

theories the effects of transverse shear deformation were neglected.

This neglect resulted because of the geometrical assumptions that

normals remain normal. It is possible that for some loads or shell

configurations, the transverse shear strains can no longer be neglected

and, therefore, these effects must be included in the theory.

When the effects of shear deformation are included, the

shear strains no longer vanish and, as a result, the rotation expres-

sions are no longer determinate.

Since the she.ar forces are now related to deformations, they

can be eliminated from equilibrium equations. Thus, five boundary

conditions are necessary at each boundary (Reference 1).
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BT.0. 2.4 Specialized Theories for Shells of Revolution

The bending shell theories previously discussed can be

simplified considerably for specialized conditions of geometry and load-

ing. Some of the simplified shell theories resulting from consideration

of shells of revolution of specific geometry will be presented in this

section. These theories are based on first-order approximation; how-

ever, for purposes of illustration they are classified separately. In

this section, the simplified shell theories are presented for shells of

particular interest. Included are the Reissner-Meissner theories,

Geckeler's approximations, shallow-shell theory, Donnell's theory,

and others.

I. General Shells of Revolution Axisymmetrically Loaded

For the case of axisymmetrical deformation, the dis-

placement in the O direction (_) is zero, and all derivatives of displace-

ment components with respect to @ are also zero. From symmetry,

the resultant forces Qqb 0 ' Q0' and Mqb 0 vanish. Two second-

order ordinary differential equations in the two unknown displacement

components _ and _ can be obtained. Rather than obtain equations in

this manner, however, a transformation of dependent variables can be

performed leading to a more manageable pair of equations which, for

shells of constant meridional curvature and constant thickness, combine

into a single fourth-order equation solvable in terms of a hypergeometric

series. Historically, such a transformation of variables was first in-

troduced by H. Reissner (1913) for spherical shells and then generalized

to all shells of constant thickness and constant meridional curvature by

E. Meissner (1914). Meissner nc:xt showed (1915) that the equations for

a general shell of revolution are also transformable to Reissner-Meissner

type equations provided the thickness t and the radius r 1 both vary so as

to satisfy a certain relationship for all values of qb, (the "Meissner con-

dition").

Rcissner-Meissner type equations are the rn_Jst conven-

ient and widely employed forms of the first-approximation theory for

axisymmetrically loaded shells of revolution. It is seen that they

follow exactly from the relations of Love's first approximation when the

meridional curvature and thickness are constant, as they are for cy-

!indric,d, conical, spheric_l, and toroidat shells of uniform thickness.

i urth_rmore, they follow directly from Love's equations in the more

genera[ case provided special restraints on the variation of thickness

and geometry are satisfied.
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Using a more recent version of the Reissner-Meissner

equations (Reference Z), toroidal shells of constant thickness were in-

vestigated by Clark (Reference 3) and ellipsoidal shells of constant

thickness by Naghdi and DeSilva (Reference 4). In the latter case, the

Meissner type condition, which would require the radius r I to be con-

stant, is obviously not satisfied. It is shown, however, that assuming

the Meissner condition to be satisfied yields a justifiable approximation

for ellipsoidaI shells.

II. Spherical Shells

For axisymmetrically loaded spherical shells of con-

stant thickness, two simplified versions of the Reissner-Meissner

equations are of engineering interest, namely Geckeler's approxima-

tion for nonshallow spherical shells and the Esslinger approximation

for shallow shells.

For axisymmetrically loaded spherical shells of constant thickness,

the fourth-order differential equation is:

d4Q_0 + A d3Q+ dZQ_b dQ,

d¢4 3 --dq_4 + A2 d¢2 + A1 dq_ + A°Q_ + 4 k 4Q ° = 0

where

A = i-3 csc4_b - 2
o

A 1 = cot qb(2+3 csc2¢)

A 2 = 1-3 csc2O_

A = 2 cot cb
3

and

>4 = 3(1- .2) R 2

t 2
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MEMBRANE ANALYSIS OF THIN SHELLS OF REVOLUTION

In engineering applications, shells that have the form of surfaces of

revolution find extensive application in various kinds of containers, tanks, and

domes. Furthermore, this type of shell offers a convenient selection of coor-

dinates.

Thin shells, in general, display large stresses and deflections when

subjected to relatively small bending moments. Therefore, in the design of

thin shells, the condition of bending stresses is avoided or minimized. If, in

the equilibrium equations ofsuch shells, all moment expressions are neglected,

the resulting shell theory is called "membrane tkeory," and the stato of stress

is referred to as a "momentless" state of stress. There are two types of

shells that comply _ith this membrane theory: (1) shells sufficiently flexible

so that they are physically incapable of resisting bending, and (2) shells that

are flexurally stiff but loaded and supported in a manner that avoids the introduc-

tion of bending strains.

The momentless state of stress in practical shell problems is difficult

to achieve. However, with the comparison of the complete bending analysis and

membrane analysis for a thin shell of revolution built in along its edges and

having noncritical axisymmetric loading, the following conclusions can be made:

1. The stresses and deformations are ahnost identical for all locations

on the shell except for a narrow strip of the shell surface adjacent

to the boundary. This narrow strip is usually no wider than _/ Rt .

2. Except for the strip along the boundary, all bending moments,

twisting '_oments, and vertical shears are negligible; this causes

the entire bending solution to be practically identical to the mere-

brane solution.
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3. Boundary conditions along the supporting edgeare very significant;

however, local bending and shear decrease rapidly away from the

boundary and may become negligible outside the narrow strip.

For cases where bending stresses cannot be neglected or when a more complete

analysis is desired, see Section B7.3 for bending analysis.

Shells of revolution are frequently loaded internally or externally by

forces having the same symmetry as the shell itself. This loading condition is

referred to as axisymmetric loading and contributes significantly to the simplifi-

cation of tile analysis methods presented in this section.
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B7.1.1.0 GENERAL

Before investigating the stresses and deflections of a shell of revolution,

we must examine the geometry of such a surface. A surface of revolution is

generated by the rotation of a plane curve about an axis in its plane. This

generating curve is called a meridian. The intersections of the generated sur-

face with planes perpendicular to the axis of rotation are parallel circles and are

called parallels. For such surfaces, the lines of curvature are its meridians

and parallels.

A convenient selection of surface coordinates is the curvilinear coordi-

nate system _ and 0, where _ is the angle between the normal to the surface

and the axis of rotation and r) is the angle determining the position of a point on

the corresponding parallel, with reference to some datum meridian. (See

Figure B7.1.1 - 1.) If the surface of revolution is a sphere, these coordinates

are spherical coordinates used in geography; 0 is the longitude and 0 is the

complement to the latitude; hence, we have the nomenclature of meridians and

parallels.

Figure B7. 1.1 - 1 shows a meridian of a surface of revolution. Let R

be the distance of one of its points normal to the axis of rotation and R 1 its

radius of curvature. In future equations, we will also need the length R2, meas-

ured on a normal to the meridian between its intersection with the axis of

rotation and the shell surface. Noting that R R 2 sin_b, the surface of the shell

of revolution is completely described by R 1 and R 2 _hich are functions of only

one of the curvilinear coordinates, _ . R 0 will be the radius of curvature when



Section B7. 1
31May 1968
Page4

Datum Meridian

(Generating Curvep

Arbitrary Parallel

Arbitrary Point
on Surface

Arbitrary Meridian

Fig. B7.1.1 - 1. Geometry of Surfaces of Revolution
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The surface of revolution thus described will be that surface which bisects

the thickness of the shell and will henceforth be referred to as the "middle sur-

face" or "reference surface." By specifying the form of the middle surface and

the thickness "t" of the shell at any point, the shell is entirely defined geometri-

cally. Figure B7.1.1 - 2 shows an element of the middle surface of the shell.

f Axis of Revolution

Pair of Meridians

f=

Pair of Parallels

dO

Fig. B7.1.1 - 2. Shell Element, Middle Surface
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When the thickness of the shell is considered for analyzing the internal

stresses, it becomes apparent that the radius of curvature "R" cannot be a

principal radius of curvature; e.g., it is not normal to the shell surface (except

when R = R 2 in the special case of circular cylinders). Henceforth, R 2 will

be used as the principal radius of curvature of an element in the parallel direc-

tion. (See Figure B7.1.1 - 3.) The error introduced by this assumption w;ill

be negligible in all calculations. Note that R 1 is a princil)al radius of cur_,ature

in the meridional direction.

R

do

Fig. B7.1.1 - :_. l)rincipal Radii of Curvature
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Any element of a shell may have the usual internal stresses acting on the

faces of the element. These stresses are indicated in Figure B7. I. 1 - 4. For

the analytical work that will follow, it is convenient to convert these stresses

into the resulting forces and moments acting on the middle surface. In tile

section _) constant (Figure B7. l. 1 - 4), tile total force normal to this section

is by definition N ds
0

It is the resultant of _r stresses acting on this area.
c5 0

z ds t/2
<5

Middle Surface

dz

0 Constant

t/2

: Constant

T T

Fig. 137. 1.1 - 4. Shell Stresses

Because of tile cum'ature of the shell, its xxidth is m)t simply ds , but

ds 0 (R 1R1- z) , and the force tr',msmitted through it is ,_odso (1 - _z )dz .



The total normal force for the element ds

t
tO _ .

2

N ds
o

t
÷--

__ f2
t

2

_0ds_b(1- _ll)dz
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t
t is found by integrating from- -

2

When ds is dropped from both sides, we have the resulting normal force
¢

related to the normal stress. In a like manner, TO_ and _'0z must be integrated

to obtain N 0g) and Q0 " Altogether, we have

t
+ --

z)= a 1- dz
NO t 0 _11

2

t
+--

f2 ( z)= z 1- dz
N0(b t 0¢ -R1

2

t

= 1- 1- dz
t Oz _'l

-- I

2

Applying the same reasoning to the section _ - constant, we have

N

t
+ m

_f2
t

2

Zoo(,-
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z
0
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.)

Note the (lilfercnt 1"3(1[i ,)f curv:ttur(_ for sec'tit)llS 0 c'()nstant and c_J construct.

(Refer t_) Fi_ur(' 1_7. 1. 1 - 2. )

If the stresses n re not distributed unif()rmly across the thickness, l)cnding

and l_xisting moments may result. From 0 constant (Fiouvc' B7.1. I - 3), the

bcnd it_.,k mt)mcnt i:-_

t

Mt) [ _ *'r, I - >'(It
t

.)

and the txvis/ir,_ E,_,)mt:nt is

t

4 -- (j '_ ZM r i ....
• i_c', II 1

( 'P(¢) t

'L

i Z(IZ
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t t

1 - zdz and M 1 -
Me = t 0 00 t 00

2 2

zdz .

NO' N_b' N0_b' N_b0' Q0' Q0' M0' M0' MOO' and MOO describe the forces and

moments acting on the sides of a rectangular shell element. The fact that the

shell element is not necessarily rectangular will be considered when writing

the equations of equilibrium in Section B7.1. i. 4. Since these ten quantities are

all results of stresses, a common name for the group as a _hole is "stress

resultants." Figure B7.1.1 - 5 shows these stress resultants acting on the

middle surface of the shell element. According to membrane theory being con-

sidered in the chapter, resultant moments and resultant transverse shearing

forces cannot exist. Also, in th,e assumption of thin shell theory, the quantities

Z Z

R-'_ and _22 are very small compared to unity; thus, the only unknowns are the

three quantities N o , N0, and N0_ N00 Three equilibrium equations can

be written for these three unknowns; hence, the problem becomes statically

determinate if the forces acting on the shell are known.
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In the Geckeler approximation all terms except the first

and last in the equation above are neglected, leaving:

d4Q%b. + 4 k 4Q o = 0

Geckeler's equation is seen to be of the same form as the equation for

the beam on an elastic foundation.

This approximation is valid for large values of k and

high angles _); that is, for thin, non-shallow spherical shells. The

approximation is particularly good in the vicinity of _p= 90 ° , however,

it is considered to be sufficiently accurate for angles as small as ¢ =20 °.

For small angles _, the Reissner-Meissner equations

can be approximated by making the usual low angle assumption that sin

0 _) and cos <b =I, a simplification considered in detail by Esslinger.

The solution of these equations is in terms of derivatives of Schleicher

functions.

Another approximation for non-shaliow shells is based

on the transformation:

This involves a slightly more accurate approximation than Geckeler's,

and was introduced by O. Blumenthal. Complete solutions were given

by Het6nyi (Reference 5).

IfI. Circular Cylindrical Shells

For the case of circular cylindricaZ shells arbitrarily

loaded, two first approximate theories are of prime importance: Love's

first-approximation theory, and its simplified version due to Donnell.

Donnell simplified the strain displacement relations by

ignoring the influence of the original shell curvature on the deformations

due to bending and twisting moment. By this approximation the relations

between moments and change in curvature and twist become the same as

f_r flat plates.

Donnell's equations are specially applicable to shell

stability problems (Refers:nee 6 and section on shell stability), however,

in their homogeneous form they have been widely used for problems of

circular cylinders under line loads, concentrated loads, and arbitrary

cd!ze loads. A review of such solutions is presented in Reference 7.
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IV. Second-Order Approximation Theories for Shells of

Revolution

The second-order approximation theory of FKigge (Ref-

erence 8) and Byrne (Reference 9) retain the z/r terms with respect to

unity in the stress resultant equations and in the strain-displacement

relations. Fliigge - Byrne type equations for a general shell are dis-

cussed by Kempner (Reference I0) who obtains them as a special case

of a unified thin-shell theory. Applications of this second approxima-

tion theory have generally been restricted to circular cylindrical shapes,

for which case solutions are obtained in Reference_9 and ii. In the

latter reference the Fliigge - Byrne type equations are considered as

standards with which simplified first-approximation theories are

compared.

Second-approximation equations are derived by Vlasov

directly from the general three-dimensional Linear Elasticity equations

for a thick shell (Reference 12-). An excellent discussion of the assump-

tions made by Vlasov is given by Novozhilov (Reference 13).

V. Membrane Theory of Shells

The shell theories studied in the previous sections are

generally referred to as "bending" theories of shells because this

development includes the consideration of the flexura[ behavior of shells.

If, in the study of equilibrium of a sheI1 all moment expressions are

neglected, the resulting theory is the so-called "membrane" theory of

shells. Membrane analysis of shells is presented in Section B7. 1.
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0

4,

Qo (b

Q4, N 4,

Fig. B7.1.1 - 5. Stress Resultants
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Angle in vertical plane (measured from axis of

rotation) defining the location of a point on the

meridian

Angle in horizontal plane that controls the

location of a point on the shell

Radius of a point on the shell measured perpen-

dicular to axis of rotation

Radius of curvature of meridian at any point

Radial distance between point on the shell and the

axis of rotation

Radius of curvature when 6 0

Shell thickness

Coordinate in direction of surface normal

Internal normal stresses

Inplane shear stresses

Circumferential inplane force per unit length at

0 conskmt.

Shear per unit length acting at 0 constant

Transverse shear at () constant

Meridional inplane force per unit length at

constant

Shear per unit length acting at _ - constant

Transverse shear at 0 constant
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Bending moment per unit length at section

0 = constant

Twisting moment per unit leng_th at section

0 = constant

Bending moment per unit leng/h at section

qS:: constant

Twisting moment per unit length at section

_= constant

Loading components in radial, circumferential,

and meridional directions, respectively

Vertical load

Ccnstant of integration

Angle defining opening in shell of revolution

Displacement in the direction of the tangent to

the meridian

Displacement in the vertical direction

Displacement in the direction tangent to parallel

Displacement in the direction normal to surface

Displacement in the horizontal direction

Young's modulus

Poisson's ratio

Strain component in circumferential direction

Strain component in mcridional direction

Radius of sphere or major axis length of ellipsoid



P

h

b

n

x

Xo

s

Section B7.1

31 May 1968

Page 14

Specific weight of liquid

Height of liquid head

Minor axis length of ellipsoid

Constant defining the shape of a Cassini dome

Coordinate along length of cylinder or along

generatrix of cone surface

Distance from apex of cone to upper edgc of cone

measured along generatrix

Cone angle

Arc length
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B7. 0. 3 Nonlinear Shell Tt_eory

The small-deflection field theories discussed in the previous

sections were formulated from the classical linear theory of elasticity.

It is known that these operations, which are based on Hooke's Law and

the omission of nonlinear terms both in the equations for strain compo-

nents and the equilibrium equations, have a unique solution in every

case. In other words, linear shell theory determines a unique position

of equilibrium for every shell with prescribed load and constraints.

In reality, however, the solution of a physical shell problem

is not always unique, a shell under identical conditions of loading and

constraints may have several possible positions of equilibrium. The

incorrect inference to which linear shell theory leads can be explained

by the approximations introduced in the development of the shell equa-

tions. In this development, rotations were neglected in the expressions

for strains and equilibrium in order that the equations could be [ineariz-

ed. It is essential in the investigation of the multiple-equilibrium states

of a shell to include these rotation terms.

A theory of shells that is free of this hypothesis can be

thought of as being "geometrically nonlinear" and requires formulation

on the basis of the nonlinear elasticity theory. Additionally, the shell

may be "physically nonlinear" with respect to the stress-strain relations.

This latter type of nonlinearity forms the basis of inelastic shell theory

and will not be discussed here.

The development of nonlinear shell theory is based on a

general mathematical approach described by Novozhilov (Reference 14)

for problems of nonlinear elasticity. Starting with the general strain-

displacement relations, appro×imate nonlinear strain-displacement

relations and equilibrium equations are derived by the introduction of

appropriate simplifying assumptions. The equilibrium equations are

obtain(.'d upon application of the principle of stationary potential energy.

Theories based on nonlinear elasticity are required in analyz-

ing the so-called "large" d_formation of shells. "Large" or finite de-
flection shell theori,s form the basis for the investigation of the stability

oi shells. In the case of stability, the effects of deformation on equilibrium

cannot be ignored. The stability of shells will be considered in greater

d_,tail in Section C3. 0.
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B7. I. i.2 SIGN CONVENTIONS

Ingeneral, the sign conventions for stresses, displacements, loads,

coordinates, etc., are given in the various figures in Section BT.l. 1.0. The

following is a list of appropriate figures.

Coordinates

Stress Resultants

Stresses

Loads

Displacements

Figure B7.1. 1 - 1

Figure 137. 1.1 - 5

Figure 137. 1. 1 - 4

Figure B7. 1. 1.4 - 4

Figure B7.1. 1.4 - 4, Figure B7.1.1.4- 5
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LIMITATIONS OF ANALYSIS

The limitations and assumptions of Section B7.1 are as follows:

1. The analysis is limited to thin shells. A thin shell is usually

defined as a shell where the t/R relation can be neglected in

comparison to unity. However, this definition is artificial and

arbitrary unless those values which are negligible in comparison

to unity are defined. For example, if it is assumed that the usual

error of five percent is permissible, then the range of thin

monocoque shells will generally be dictated by the relation

t/R < 1/20. The great majority of shells commonly used are in the

1/1000 < t/R < 1/50 range. This means that they belong to the

thin-shell family. If an error of 20 to 30 percent is permissible,

the theory of thin shells can be used with caution even when

t/R -< 1/3.

2. Flexural strains are zero or negligible compared to direct

axial strain.

3. The deflections, rotations, and strains are small. (See Section

B7.0 for detailed definition. )

4. The shell is homogeneous, isotropic, and monocoque and is a

shell of revolution.

5. It is assumed that Hooke's Law holds (stress is a linear function

of strain) and the stresses are within the elastic range.

6. The boundaries of the shell must be free to rotate and to deflect

normal to the shell middle surface.
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7. Abrupt discontinuities must not be present in shell shape, thickness,

elastic constants, or load distribution.

8. Linear elements normal to the unstrained middle surface remain

straight during deformation, and their extensions are negligible.

9. Transverse shear strains are zero throughout the thickness.

i0. Surface stresses and body forces are negligible.

ii. Only nonshallow shells are considered (See Section B7.0. )
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B7.1.1.4 EQUATIONS

I GENERAL

The equations presented in this section are for the membrane or

primary solution of the shell. The effects of boundary conditions (secondary

solutions) not compatible with membrane theory will be treated in Section B7.3

on bending theory. Because the bending and membrane theories give practically

the same results except for a strip adjacent to the boundary, the effects of

moments and shears near boundaries can be calculated by using bending theory

and can be superimposed over the membrane solution. The results thus obtained

will be almost identical to those obtained by using the complete, exact bending

theory.

Boundary Conditions

Not Compatible with

Membrane Theory

Boundary Conditions

Compatible with Membrane Theory

Fig. B7. 1. 1. 4- 1. Boundary Conditions
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II EQUILIBRIUM EQUATIONS

The membrane solution is begun by considering the equilibrium of the

middle surface of the shell element, cut by two meridians and two parallels

(Figure B7. I. i.4 - 2a). The conditions of its equilibrium will furnish three

equations in three unknowns, adequate to determine the three unknown stress

resultants :

N =N
o_ _o

the meridional force N o , the hoop force N O , and the shear

Beginning with the forces parallel to a tangent to the meridian, the shear

transmitted by one edge of the element is N0_ Rid _ , and on the opposite edge

( _N0_ ) _N0_ Rid0d¢5 entersit is N0_b {" a 0 dO Rid _ Only their difference, _) 0 '

the equilibrium condition. In the same way, we have the difference in the two

meridional forces. Bearing in mind that both the force N and the length Rd0

a

vary with _, we have _3-'-; (RN)d0d0 . The hoop forces also contribute.

The two forces NoRld_b on either side of the element lie in the plane of a

parallel circle where they include an angle dO . They, therefore, have resultant

force NoRldSd0 situated in that plane and pointing towards the axis of the shell.

Resolving this force into normal and tangential components shows that

NoRid _d0 cos_b (Figure B7. I. I.4 - 2b) enters the condition of equilibrium.

Finally, considering the component of some external force,

equilibrium equation reads:

P RRld0d_b, the

_N

0 q5Rld0dq 5 O RRld0d_b =
O 0 -_(RNb)dqSd0 - NoRld_bd0 cos¢5 + P_b

0

._r



Noting that all terms contain d0dO gives:

aN

_--_---(RN b) + R,3-_00 - RIN 0 cos _ + P bRRI =
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0 (I)

0N 0

N o + _ dO

0

!

Noq _ No

II _ NCJ Rj coso dO dOP

I

v+d__¢
2

(a) (b)

Fig. B7. I. I.4 - 2. Equilibrium of Shell Element

By similar reasoning, we obtain an equation fox-the forces in thc direc-

tion of the tangent to a parallel circle.

+
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ON
0 0

(RNq)0) -- 0 RiN0 q) P0 RRIu_ + R10 + cos_+ = 0 (2)

The third equation is derived from forces perpendicular to the middle

surface of the shell.

N0R isin$ + N bR - Pz RR1 = 0

Dividing by RR 1 and using the geometric relation R : R 2 sin q), we arrive at

the third equation of equilibrium.

N N
_2+ o _ p
R 1 R 2 z

(3)

The problem of determining stresses under unsymmetrical loading

reduces to the solution of equations ( 1), (2), and (3) for given values of the

load P) , P0' and Pz

However, it was stated previously that only axisymmetric loading would

be considered in this section. For this type of loading, the stresses are inde-

pendent of 0 and NO = N O 0. Therefore, the equations of equilibrium

reduce to:

d

-_(RNq)) -R1N 0cos¢_ := -P(f)RR 1 (4)

• N N
0+ _p

R 1 R 2 z
(3)
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III STRESS RESULTANTS

By solving equation (3) for N o
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and substituting the results into equation

(4), we obtain a first order differential equation for N

integration.

N :.:

0

N
0

If R1R2( P
1

R 2 sinZ0 z

that may be solved by

can then be obtained by equation (3).

cos0 - P0 sin0) sin0d0 + C]

The constant of integration "C" represents the effect of loads apl)lied

above a parallel circle 6) : 0 0. 2uC is the resultant of these forces. If the

shell is closed, the loading will degenerate to the concentrated radial force

P at the vertex of the shell. (See Figure B7.1.1.4- 3a.)
z

If the shell has an opening, the angle ¢ 0 defines the opening and the

loading (lantern type loading, Figure B7.1.1.4 - 3b) results in the following:

P P

N -- 2_R2sinZ_b ' NO 2_ R1sin2_

These loads may be treated as additive loads because of the loaded opening at

the vertex of the shell. Bending stresses _villbe introduced at Cp0but xxilltend

to dissipate rapidly with increasing 0 •
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p P

Open Shell

(Lantern Loading)

Fig. B7.1.1.4 - 3. Loading above _ : 0 0
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B7. I. I. 4 EQUATIONS

IV STRESSj STRAIN I AND DISPLACEMENT

Once the stress resultants, N and N 0, are obtained, stresses, strains,

and displacements are readily obtained by the usual methods. For the symmet-

rically loaded membrane shell, the loading component and displacement in the

circumferential direction are zero (Figure B7.1.1.4 - 4).

N¢ N0 N_ N o

N o

4,
¢

Fig. B7.1.1.4 - 4. Loads and Displacements

P = Radial component of loading acting on differential clementz

P = Component of loading acting in X direction(_gential to meridian)

P0 = 0 = Component of loading acting in Y direction(_gcnaal to parallel)

w = Small displacement of a point in the Z direction (normal to surface)
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(e.g.,

stresses can be expressed simply as:

N N

a 0 - t ' aO= _ "

The strain components can be found either from a
¢
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u = Small displacement in X direction (_ugential!to meridian)

v = 0 = Displacement in Y direction(tangentiM_to parallel)

Because of assumptions of membrane theory and axisymmetric loading

t/R << 1, all moments _0, and all shearing forces _0) the normal

and cr0 or N O

1

eO - Et(No -PN 0)

1

e0 : -_ (N 0 -#No)

where E Young's modulus

t -- Thickness of shell

_t -- Poisson's ratio .

and N :
o

The displacement components are computed next, thereby completing

the solution of the shell problem. The general solution for u is

u = sin0 if sin0

where C is a constant of integTation to be determined from support conditions

and

_ 1 [RI(Nof(O) : Rle 0 R2eo - /_t - PNo)

Et 0 (R1 +pR2) - N0(R2 +pR1) "

The displacement w can then be found from the equation

w = ucot_ - R2e 0
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Because the interaction process of two or more shells is often required,

displacements are often calculated in terms of u and w, the vertical and hori-

zontal displacements. (See Figure B7.1.1.4 - 5. ) Note that when R 2 = R,

u=u and w =w . The displacement u can be found ina manner similar to the

solution for u. The general solution for u is

u : Re cot_ - /'f--_d_ +C
0 a sine

where f(¢) = R 1 e¢ - R2E 0 and C is again a constant of integration determined

from support conditions. The horizontal displacement is simply

w = Re 0 .

W

(u and w known) (u and w known)

w = wsin4_ + ucos_ w = wsinq5 - ucos_

fi =-wcos_ + usin4_ u = _cos_ + fisin_

Fig. B7. i. I.4 - 5. Displacements
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These formulas ( Figure B7.1.1.. 4 - 5) can be used to convert from one

form of displacement to the other, depending on the given solution and the

requirements of the user.
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B7.1.1.4 EQUATIONS

V SUMMARY

Application of the solutions presented in this section can be classified

conveniently for the two following cases: general shell of revolution with

general axisymmetric load distribution, and general shell of revolution subjected

to uniform pressure. Table B7.1.1.4 - 1 presents a summary of solutions for

these general cases.

The remainder of this section presents practical shell of revolution

problems with various types of axisymmetric loading. Based on the various

shell geometries, solutions for N and N0 are presented with the force-

displacement relationships. The stresses can be calculated directly using

the equations in Section B7.1.1.4 - IV.
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B7.1.2.0 DOME ANALYSIS

BT. 1.2.1 SPHERICAL DOMES

This subsection presents the solutions for nonshallow spherical shells

exposed to axisymmetric loading. Both closed and open shells will be considered.

The boundaries of the shell must be free to rotate and deflect normal to the shell

middle surface. No abrupt discontinuities in shell thickness shall be present.

Note that because of the geometry, R I = R 2 = a (radius of spherical

shell), and radial deflection w = A a. Therefore, w sin ¢ and u = w cos _) .

The following loading conditions will be considered: dead weight (Table

B7.1.2.1 - 1) ; uniform load over base area (Table B7.1.2.1 - 2) ; hydrostatic

pressure (Table BT. 1.2.1 - 3) ; uniform pressure (Table B7.1.2.1 - 4) ; and

lantern (Table B7.1.2.1 - 5). These tables begin on page 31.



Section B7.1

31 May 1968

Page 31

E
0

¢)
°,.4

o,.d

0

q)

/

0

_=

¢.

o

b_

_D

_9

c_
o

0

0

©

Ii

0

Z

÷

0

_z

©
o

i

0

I

h L

0

o

f-------'3

0

¢)

i

pl I1 I_ i_ li

b _

i +

Z_- I 00 _"

o
0 o

Q



v$

d

II rl PI

%

©

I

Section B7.1

31 May 1968

Page 32

O

I

D

"3

Z Z "9

©

I

_J

0

÷

C,

"0

0

I

e_

-o

_ o

-_ * ,

e_

! i

Z Z

o

I

0

v

+

Z_J ''_ 0

"0



Section B7.1

31 May 1968

Page 33

o

°_

¢'L

o _

O9

m

o

o

o o
o o

II I [I
-0- N

II II

%
o
0

I

II II II II

b

b



¢D

0
m_

;> o
0 *,,_

o

od
o

•.w, r_

C_l ¢D

,.Q

h_

Section B7.1

31 May 1968

Page 34

÷

I

o

|

li tl II II II IL

b_

Z Z

e'_
• --,_._.=

, o

II II II II II II

b_

b



E
0

L'I:I •,,,,d

0 P-,

,-,-I

I:..L_
CJ

P..I

i

u]

r._
<D

[.-,

N

N

t I
I I

Ill III -_ -
-2, 'O

fill' '",.="' ',",-_ I , ,

.,_ _ _ _

:- +

I / I I b

i l,ltlII ,.,,,. ._., ,.l,lill , _ N

II_.N Ill.l,I,', ,_:l'.;!'Li_
oil,

Illn a.n',_

Section B7.1

31 May 1968

Page 35

I----"--1

!

I

_i! # _

I

_ + _

-.2._--.2_ "_ _

ml__I_ _°I-ml_:
; I I i I

_D

o

g_ _° ,

}

_3

!

I

I

v

-_1_

_1_ + ='1- +

II II ¢I IE II II



Section B7.1

31 May 1968

Page 36

_=_
,==.l

m

b_ G}

O

@

°"_ O
4=m

'"_ G}

_9 c_
v_

_i¢

r:
m

iIII jl , Ili_

I Ill&

II!:I_I!B.

 ililiJN

!

I

.2.

2..

I

0

C

I

r-------n :

_i _

-_ ?_j S

5

5 S , ' -_ ' -

<.5= , _ "-" _L

ZI-

,£-.

b

-c
-2

"d.

"S-

T.

C
- ,/]

".q k,

I

m
..2, '

I i

-_ t.{ '
z r_ _

I I

"3

_ "



o @

cD

o

©

c9

I

4=a

_m

• I I

I

llllil,i.-,

ll,_ rl

b

Section B7.1

31 May 1968

Page 37



CD

0 o

_ o

_ o
_ .,.d4_

4_
i O

_ m

_m

,.Q

N

0

II _,i

O

L

I

II

2;

I

II

Z

Section B7.1

31 May 1968

Page 38

II

¢25

I

Z "_ , .=.

II II II

q_
b

b

nL

I

v

0

!

II

nL _-

! I

v

Z ** ._ .E

N
Zl *_ , , ,

II II I_ II

b

II _ I_. I_

b



/

_D 0

c_

_-_ .,-4

m

o

•_ m_

o

2 _

I m
m

• %

• r._

t'-- _

_N

II

o
o

o

m _
o

._,,i

\

!

I

Section B7.1

31 May 1968

Page 39

I

N _ +

_I_

II II II II

b Cl_

•,-_ 0

II II

c_

_._ _'_

" I
I +

I I _

II II II

b

b

! I

-_-_

I

+ _,1

I

I

, _

II II II



_D
_P

Section B7.1

31 May 1968

Page 40

ct _} I

II II

Z Z
b

+ +

I i

l_ l_l

0

*_ _ o°

'_ ._ _ _ + +

°_ _ _ _T__
il II II I, 11 il

Z _ _ _ _ ,_Z <>
b



I"" Section B7.1

31 May 1968

Page 41

B7.1.2.2 ELLIPTICAL DOMES

This subsection presents the solutions for elliptical shells exposed to

axisymmetric loadings. Only closed elliptical shells are considered. The

boundaries of the elliptical shell must be free to rotate and deflect normal to

the shell middle surface. Abrupt chan_2/es in the shell thickness must not be

present. The following loading conditions will be considered: uniform pressure

(Table B7. i.2.2 - i); stress resultant :tJi(ldislflacemcnt parameters (Figs.

B7. I.2.2 - i and -2) ;dcad weight (T:tbleB7. i.2.2 - 2) ;and uniform load

over base area (Table B7. 1.2.2 - 3}. These tables begin on page 42.
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It 'u f{ ':t

Figure B7.1.2.2 - 2. Displacement Parameters, Ellipsoidal Shells,
Uniform Pressure
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Table t37.1.2.2 - 2. Dead Weight Loading

Membrane Stress Resultants, Closed Ellipsoidal Dome

Dead Weight Loading

P = 0
0

P#_= psin_b

Pt = pcos¢

Let K

a_ tan_, ') + ;! _
N4; :: - _ a2sin(Sl,;md) b2 + a'_tan2¢

[ (b2 -f a2tan2' ''_2 ( KI--_ (i + K) 4b2 + a2tan2qb

Ln

NO :- P 2mn2(p_/-/+ tan_4) \ b(K + dl + tan2qb)

- b2 + a z tnn_ _Jlj2 + a 2 l.an_-(])

N N

(54) o t t

+ "_ Ln(1 4 K) J b 2 + a2tan 2_b,

b(K + _/1 + tan20; J

1

+G

For deflections, refer to Section B7.1.1.4.
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Table B7.1.2.2 - 3. Uniform Load over Base Area

Membrane Stress Resultants, Closed Ellipsoidal Dome

P

N

2

S b

N

a_b' _0 - t

P aZ_]l + tan2_

_]b 2 + a 2 tan2¢

_b L b2 - a2tan2_
db 2 + a2tan26 _] 1 + tan2_

N
0

' t

Uniform Loading over
Base Area

P = 0
0

P = psin_ cos_

= p cos2_bP
Z

For deflections, refer to Section B7.1.1.4.
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B7.1.2.3 CASSINI I_MES

This family of shells is useful as bulkheads.

Cassinian curve as a meridian (see Table B7.1.2.3 - 1) is

(r2+ z2) 2 + 2a2(r 2-z 2) = 3a 4

The useful property of this shell (zero curvature at

preserved by making the substitution

than 2.

The equation of the

z= 0, r =a) is

nz for z, where n > 1 but not much greater

(r2+ n2z2) 2 + 2a2(r 2- n2z 2) : 3a 4

R1 : 2[ r2(a 2+n2z 2) + n4z2(a 2- r2)] 3/2
:_,n_a_(a z - r z + n2z 2)

R2
2a[r2(a 2 + n2z 2) + n4z2(a 2 _ r2)] 1/2

a 2 + r 2 + n2z 2

This subsection presents solutions for the Cassini dome subjected to

uniform pressure loading. Only a closed dome will be considered. The bound-

aries of tile shell must be free to rotate and to deflect normal to the shell middle

surface. No abrupt discontinuities in the shell thickness shall be present.

Because of the limited usefulness of this shell, :Ldetailed solution is presented

for n 2. Nondimensional plots are presented for N and N according to the
0

following equations :

N

all 5(4K + 3) [5(16K 4 + 24K 3 - 7K 2 + 8K _ 3)] 1
A

N
r_ ,t(64K 5 + 144K 4 + 44K 3 - 85K 2 - 36K + 23)

ap (4K + 3)2]5(16K 4 + 24K 3 - 7K 2 -_ ,_K • 3) ] 1/2

where K - _

Nondimensional plots are also provided for w and u for t = constant and p = 0.3 .
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Table B7.1.2.3 - 1. Uniform Pressure Loading

Membrane Stresses and Deflections, Closed Cassini Dome

/

Special Case, n :2

b - a _
2

_! b

Uniform Pressure

Loading

P :P :0
o

p = p
Z

2

NO - 2 - R 1

N N
_ ___ __2_o

a_b' ¢YO- t ' t

w -- 2Et 2 - # - R1

_ _ Ri(N

u : wcot_ - j

w = wsin_ - ucos_

u = wcos¢ + usin$

- PNo) - R2(N 0 -#Ng)
Et sin_b dO + C

Equations for R t and R 2 are given in Section B7.1.2.3 .

See Figure B7.1.2.3 - 1 for nondimensional plots of N and N
_ 0

See Figure B7.1.2.3 - 2 for nondimensional plots of w and u .
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B7.1.2.4 CONICAL DOMES

This subsection presents the solutions for nonshallow conical shells

exposed to axisymmetric loading. Both closed and ()pen shells will be considered.

The boundaries of the shell must be free to rotate and deflect normal to the

shell middle surface. No abrupt discontinuities in the shell thickness shall be

present.

Note the special geometry of the conical shell:

cb = o_ constant, R1 = oo

R - xcos_b (Figure B7.1.2.4- 1)

For convenience, solutions are l)resented in terms of x instead of R. All other

notations are standard for shells of revolution as used in this chapter.

Meridian x/_Xx

Straight "\_ \
I,ine _/ \ _ _-r-

Fig. 137.1.2.4- 1. C(micnl Shell Geometry
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The following loading conditions will be considered: dead weight loading

(Table B7.1.2.4 - 1) ; uniform loading over base area (Table B7.1.2.4 - 2) ;

hydrostatic pressure loading (Table BT. 1.2.4 - 3); uniform pressure loading

(Table B7.1.2.4- 4) ; and lantern loading (Table B7.1.2.4- 5) . These tables

begin on page 53.
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B7.1.2.5 PARABOLIC DOMES

This subsection presents the solutions for nonshallow parabolic shells

exposed to axisymmetric loading. Only closed shells _villbe considered. The

boundaries of the shell must be free to rotate and deflect normal to the shell

middle surface. No abrupt discontinuities in the shell thickness shall be present.

Note that because of the geometry of the parabolic mcridian, the solutions

simplify by use of the radius of curvature at the vertex R 0 where ¢5 0 . For

the parabolic shell at c_ 0, R I R 2 R 0 twice the focal distance.

The following loading conditions will be considered: dead _vcight loading

(Table 137. i.2.5 - I); uniform loading over base area (Table BT. I.2.5 - 2);

hydrostatic pressure loading (Table B7. i. 2.5 - 3) ; and uniform pressure loa(ling

(Table BT. i.2.5 - 4). These tables bc_in on pa_e _;4.
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Table B7. I. 2.5 - 1. Dead Weight Loading
Membrane Stress Resultants for Closed Parabolic Domes

P

P0

R 0 = z ( Focal Distance)

= 0, P = pcos_, P = psin_
z

N

No

22_ [ 1-cos% )= - 3 \sinZ¢ cosZ(b

3 \ sin2_ /

N N O
= --_

t ' t

For Deflections, see Section B7.1.1.4 - IV .
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Table B7: 1. 2.5 - 2. Uniform Loading over Base Area

Membrane Stress Resultants for Closed Parabolic Domes

P

R o z (Focal DistanccI

P0 0 , P pcos2qb , P pcosq5 sin4_
z c_

N PRo
_._ 2 cos 4)

N ldl 0 cos
(J 2

N N

ac_ ' (f() t ' t

For I)cflc'ctions, see Section B7.1.1.4 -IV.
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Table B7.1.2.5 - 3. Hydrostatic Pressure Loading
Membrane Stress Resultants for Closed Parabolic Domes

=

P0:P0:°pz

p = Specific Weight

of Liquid

N_b - 2 cosq_

pRQcos_2 [h( 2tan2q5 + 1)N O --- _

N N

o a0 __3_ __£.0' t ' t

+ Rotan2_b (tan2¢

For Deflections, see Section B7.1.1.4 - IV .
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Table B7.1.2.5 - 4. Uniform Pressure Loading

Membrane Stress Resultants for Closed Parabolic Domes

=- z

P0 P 0 , P :Pz

N = -PRo
_b 2 cos_b

pR__ (1 + sin2_NO - 2 cos q_ ]

N N
__¢_ 0

<_b ' t ' t

For Deflections, see Section B7.1.1.4 - IV
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BT. 1.2.6 CYCLOIDAL DOMES

This subsection presents the solutions for nonshallow cycloidal shells

exposed to axisymmetric loading. Only closed shells will be considered. The

boundaries of the shell must be free to rotate and deflect normal to the shell

middle surface. No abrupt discontinuities in the shell thickness shall be present.

The following loading conditions will be considered: dead weight loading

(Table BT. t.2.6 - 1) and uniform loading over base area {Table 137.1.2.6 - 2).

These tables begin on page 69.
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Table B7.1.2.6 - 1. Dead Weight Loading

Membrane Stress Resultants for Cycloidal Domes

P

/
PO = O, P = psin_b, P = pcos¢z

1 3
sins + cos¢, - _cos

N(b -- 2pR 0

=__.0I}l_-cos_# _sin2ct>COS_b ) - 2_tan(b

N N

(_¢ _0 --9- 0' t t

For Deflections, see Section B7.1. 1.4 - IV.
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Table B7.1.2.6 - 2. Uniform Loading over Base Area
MembraneStress Resultants for Cycloidal Domes

P

P0= 0, P = psin@cos@, Pz = peos2_

N 0 = - 8 . sine5 /

NO = - 16 sin_ ] °s2_b -

N N

_ °0 = -_' t ' t

sin2_b

For Deflections, see Section B7. i.I.4 - IV.
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B7.1.2.7 TOROIDALDOMES

This subsection presents the solutions for toroidal shells exposed to

axisymmetric loading. Both closed and open shells will be considered. The

boundaries of the shell must be free to rotate and deflect normal to the shell

middle surface. No abrupt discontinuities in the shell thickness shall be present.

Note in Figure BT. I.2.7 - i that, because of the geometry of the toroidal

shell, the definition of the angle (b is changed (for this subsection only) to

increase the useful range of the solutions.

Useful Range 35°_-_: _) < 90 °

_b Definition (Section B7.7. I.2.7 - 1 only)

Fig. B7. I. 2. 7. -I. Toroidal Shell Geometry
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There is also a special type of toroidal shell where the axis of revolution

bisects the cross section. This type of shell is referred to as a pointed dome,

and the angle ¢ is defined in Figure B7.1.2.7 - 2.

Fig. B7.1.2.7 - 2. Pointed Dome

The following loading conditions will be considered for regular toroidal

shells and pointed domes.

Regular Toroidal Shells:

Dead Weight Loading (Table B7.1.2.7 - 1)

Hydrostatic Loading (Table B7.1.2.7 - 2)

Uniform Pressure Loading (Table B7.1.2.7 - 3)

Lantern Loading (Table B7.1.2.7 - 4)

Pointed Domes :

Dead Weight Loading (Table B7.1.2.7 - 5)

Uniform Loading Over Base Area (Table B7.1.2.7 - 6)

These tables begin on page 73.
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Table B7.1.2.7 - 1. Dead Weight Loading

Membrane Stresses, Regular Toroidal Shells

P_ = P0 = 0

Pz = P

F

N
c5

N
0

cr d , cr0

ab(_, - _0) + a2(cosq',0- cosg)

P (b + asim)) sin_5

P [(b+asinO)c°sq5- b(4_-00)- a(e°s<b0-cosO)Jsine5

N N

t ' t
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Table B7.1.2.7 - 1 (Concluded). Dead Weight Loading

Membrane Stresses, Regular Toroidal Shells

For Symmetrical Cross Section ( ¢0 = -¢1)

Loading Same as Above

N
¢

N
0

ba_ + a2(l-cos_)
P (b + asin¢) sine

_ _ _..E_
sine (b + asin¢) cos¢ - be - a(1 - cos¢)]

N N
= ___ __0

t ' t
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Table B7.1.2.7 - 2. Hydrostatic Pressure Loading
MembraneStresses, Regular Toroidal Shells

_____.. ___ p=SpecificWeight..--_ ... of Liquid

X'L _t a_--_--__-_--_ Pc= PO = 0

_, I b _l_ -_----_7--t7-- P = p(h - a cos_)

v

pa [-bh(sin_0 - since) +N :: - (b+ asin¢)sin_b
L

ba
+ _-(sing) 0 cos(b 0 - sing) cosg) - (b + _0)

N
0

ah (cos20-7 0- e°s2_)

:_ (cosa4 _0 - eos3g) )

- _ h-

ah
2 (c°s2_ 0

a 2

+ -5-(cos%

a cosg))(b + asin4) )sin(b+ bh(sinc5 0 - sing))

ba

- cos2_b) - -7(sin(b0cos(b0 - sin(pcosg) - q_ + qS0)
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Table B7. t. 2.7 - 2 {Concluded). Hydrostatic Pressure Loading

Membrane Stresses, Regular Toroidal Shells

For Symmetrical Cross Section ( _ 0 = _ t)

or Symmetrical Cross Section

_o = -¢,

Same Loading as Above

N

N
0

pa _b( b + asin o ) sinq5 h sin_

a2 1- _-( 1 - cos3_ )

ah 2 ba
+ -_-sin _ 2 (sin_cosO + _)

p ['ah . 2 ba

sinO L'_ sm O - -'z(sinqScos_

-a2( c°s_bsin2_b - 1 -c°s3_)]3

-_)
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Table B7.1.2.7 - 3. Uniform Pressure Loading

Membrane Stresses, Regular Toroidal Shells

f
f

/

r

P

P :P =0
q_ o
or P = p

z

N
_b

P [(b + a sin_b) 2 -
2(b + a sin_5) sinq5

(b+ a sin(_o) 2 ]

N
0 _ [2b sin_o + a(sin2_o + sin2O) I
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Table B7.1.2.7 - 3 (Concluded). Uniform Pressure Loading
MembraneStresses, Regular Toroidal Shells

For Symmetrical Cross Section (_0 : -_1)

SameLoading as Above

N

2

pa 2b+asin(_

b + a sin(b

paN
0 2
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Table B7.1.2.7 - 4. Lantern Loading
MembraneStresses, Regular Toroidal Shells

P

\ /

I | I

L b

f
= P --0

= P¢_ z

N

N
0

P(b + a sing))

(b t a sin(p)sin(fl

P {b + a sinq)Q_

a _ sin2g_ /

(7

o

N
__9_

t

N
0

' t
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Table B7.1.2.7 - 5. Dead Weight Loading

Membrane Stresses, Pointed Toroidal Dome

P

P= 0
0

P_b psinqb , Pz= pcos_b

N

N
0

a¢ , g0

f- -1

= -pal cOs_O- cos_b - (4) - q_0) sin_b0/

L (sin_b -sinO 0) sins 3

[ oj= - __ (4_ - 4_0)sin4_0 - (eos_0 - cos4_) + (sin4_- sin4_0)sin4_cos

N N
_____. o

t ' t
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Table B7. 1.2.7 - 6. Uniform Loading over Base Area

Membrane Stresses, Pointed Toroidal Dome

P

P == 0

0

PC p sinc_ cos4) Pz = p c°s2¢

N

N
0 2 os2<5 - 2sine5 sin_5 0

N N
___9_ _

t ' t

s i n 2e/Lq_)
J
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B7. I.3.0 CYLINDER ANALYSIS

Many types of cylinders can be analyzed using membrane theory. However,

only the circular cylinder falls into the category of shells of revolution being

discussed in this chapter.
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B7.1.3.1 CIRCULAR CYLINDERS

The circular cylinder is a special type of surface of revolution. If the

standard shell-of-revolution nomenclature is applied to the cylinder geometry_

(Figure B7.1.3.1 - 1) analysis is straightforward.

Axis o!

',,,/

/

'\

J

[)

u

P = p u=(]

I)

t l/:ltlill I)
l)lil"l,]:("l'l_ }NS

IA _,,\ 1),_
N = N

_,') X

l/adius <)t ('ylill,:l,,:r r

1¢ = I{ o - 1_,

SIIEf,L l(l.K_ll,]Nr

Fig. B7.1.3.1 - 1. Circular Cylinder Geometry

The following loading conditions will be considered for circular cylinders:

Linear Loading (Table B7. 1.3 - l)

Trigonometric Loading (Table B7.1.3 - 2)

Dead Weight Loading (Table B7.1.3 - 3)

Circumferential Loading (Table B7.1.3 - 4)

Axial Loading (Table B7.1.3 - 5) .

These tables begin on page 84.
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P h P
v p v

P = P (l+h -4)
z v p

X
where _ :

L

h
P

coefficient defining ratio of uniform load to maximum value of
linear load

N : P R(I+_, -_)
0 v p

N -- 0

N = 0

(Y
0

tl

V

W

N o

t

1f- Et _PvRL_(1 + )_p - _

= 0

1 rPvR2(l + _ - _)]
Et L P J
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L +

/

P0 sin a_ )_PP0

P : -Po(sin_ + _ cosfl_ )
z p

x
where _ -

L

P

N
0

N

N

u

V

W

= coefficients defining shape of sin and cos curves

= coefficients defining ratio of maximum amplitude of cos loading to

maximum amplitude of sin loading

= P¢l(sinot_ + _ cosfl 4)
P

0

: 0

(Cosc¢ _ sirg3 ( )P pcdl i, )t ,
_:t \ _ p l_

1 poR2(sinez _ + k cosfl_)
Ft p
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I-_ Wall Thickness

£ Distribution of P

p = P o(i - _)

N
0

N

N
_o
I

U

V

W

= 0

= 0

/

aL

Et

= 0
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Table B7.1.3 - 4. Circumferential Loading

p -: p

y 0

N

N

N

U

= 0

0

p L(1 - _)
0

V

W

o

1

Et

0
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N = 0
0

N = 0

_ N x
u = "-"-¢_+ C

Et

_ #aN
w -

Et

P

t

v = 0
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B7.2.0.0 LOCAL LOADS ON THIN SHELLS

The method contained in this section for determining stresses and dis-

placements in thin shells is based on analyses performed by P. P. Bijlaard. [I]

These analyses represent the local loads and radial displacement in the form

of a double Fourier series. The equations developed using these series and

the necessary equilibrium considerations are readily solved by numerical tech-

niques for stresses and displacements.

The stresses and displacements calculated by the methods of this section

can be superimposed upon the stresses caused by other loadings ifthe specified

limitations are observed.

The equations for determining stresses in spherical shells caused by

local loads have been evaluated within the parametric ranges of space vehicle

interest for radial load and overturning moment. The results of this evaluation

have been plotted and are contained in this section for use in determining the

stresses. A direct method is presented for determining the stresses in spheri-

cal shells caused by locally applied shear load or twisting moment. No method

is provided to calculate displacements of spherical shells caused by local loads.

The equations for determining stresses and displacements in cylindrical

shells caused by local loads have been programmed in Fortran IV for radial

load and overturning moment. A direct method is presented for determining

the stresses in cylindrical shells caused by a locally applied shear load or

twisting moment. No method is provided to calculate displacements of cylindri-

cal shells caused by locally applied shear loads or twisting moments.
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BT. 2.1.0 LOCAL LOADS ON SPHERICAL SHELI_

This section presents a method of obtaining spherical shell membrane

and bending stresses resulting from loads induced through rigid attachments at

the attachment-to-shell juncture. Shell and attachment parameters are used to

obtain nondimensional stress resultants from curves for the radial load and

overturning moment load condition. The values of the stress resultants are

then used to calculate stress components. Shear stresses caused by shearing

loads and twisting moment can be calculated directly.

Local load stresses reduce rapidly at points removed from the attach-

ment-to-shell juncture. The shaded areas in Figure B7.2.1.0-1 locate the

region where stresses caused by local loads are considered.

gid Attachment

"- 6 • 10 20 40 60 80 I00 200 400 600 1000 2000

R /T (in./in.)
m

Fig. B7.2.1.0-1 Local Loads Area of Influence

* This section is adapted from the Welding Research Council Bulletin. No. 107,

"Local Stresses in Spherical and Cylindrical Shells Due to External Loadings" [ 5].
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- fillet radius at attachment-to-shell juncture, in.

- half width of square attachment, in.

- distance defined by Figure B7.2.1.0-1

- modulus of elasticity, psi

- normal meridional stress, psi

- normal circumferential stress, psi

- shear stress, psi

- stress concentration parameters for normal stresses and

bending stresses, respectively

- Applied overturning moment, in.-lb.

- applied twisting moment, in.-lb.

- internal bending moment stress resultant per unit length of

shell, in. - lb/in.

- internal normal force stress resultant per unit lenglh of

shell, lb/in.

- applied concentrated radial load, lb.

- radius of the shell, in.

- radius of the attachment-to-shell, in.

- thickness of the shell, in.

thickness of hollow attachment-to-shell, in.

shell parameter, in./in.

- applied concentrated shear load, lb.

- hollow attachment-to-shell parameter, in./in.

- circumferential angular coordinate, tad.

- hollow attachment-to-shell parameter, in./in.

- meridional angular coordinate, rad.



GENERAL (Cont'd)

NOTATION (Cont'd)

Subscripts

a - applied (a= I ora= 2)

b - bending

i - inside

j - internal (j = x or j = y)

m - mean (average of outside and inside)

n - normal

o - outside

x - meridional coordinate

y - circumferential coordinate

z - radial coordinate

1 - applied load coordinate

2 - applied load coordinate

Section B7.2
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Page 4
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II SIGN CONVENTION

Local loads applied at an attachment-to-shell induce a biaxiat state of

stress on the inside and outside surfaces of the shell. The meridional stress

(fx), circumferential stress (f), shear stress (f ), the positive directionsy xy

of the applied loads (Ma, MT, Va, and P), and the stress resultants (M. and N.)
J J

are indicated in Figure B7. 2.1.1-1.

P

RIGID ATTACI_NT

(IIOLLOW ATTACI_NT SHOWN)

SPHERICAL SIIELL

• _-_'-_ _] Y xy _..¢_1.. I

_ Ma= M I

Va = V2

Fig. B7.2.1.1-1 Stresses, Stress Resultants, and Loads

The geometry of the shell and attachment, and the local coordinate sys-

tem (1-2-3) are indicated in Figure B7.2.1.1-2. It is possible to predict the

sign of the induced stresses, tensile (+)or compressive (-), by consider-

ing the deflection of the shell resulting from various modes of loading.
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I -" RIGID ATTACHMENT

_r _ (HOLLOW ATTACHMENT SHOWN)

a rad._ _ _j SQUARE ATTACHMENT

_P_-_o Jo__--L_ D_ _SPHERICAL SHELL

T

2 i

Fig. B7.2.1.1-2 Shell and Attachment Geometry

Mode I, Figure B7.2.1.1-3 shows a positive radial load (P) transmitted

to the shell by a rigid attachment. The load (P) causes compressive membrane

stresses and local bending stresses adjacent to the attachment. The compressive

membrane stresses are similar to the stresses induced by an external pressure.

The local bending stresses result in tensile bending stresses on the inside of the

shell and compressive bending stresses on the outside of the shell at points C

and A.

Mode II, Figure B7.2.1.1-3 shows a negative overturning moment (Ma)

transmitted to the shell by a rigid attachment. The overturning moment (M)
a

causes compressive and tensile membrane stresses and local bending stresses

adjacent to the attachment. Tensile membrane stresses induced in the shell at

C are similar to the stresses caused by an internal pressure. Compressive

membrane stresses induced in the shell at A are similar to the stresses caused

by an external pressure. The local bending stresses cause tensile bending

stresses in the shell at C on the outside and A on the inside,and cause com-

pressive bending stresses in the shell at A on the outside and at C on the inside.



' (

SPHERICAL SHELL

3 3

MODE I MODE II

Fig. B7.2.1.1-3 Loading Modes
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HI LIMITATIONS OF ANALYSIS

Four general areas must be considered for limitations: attachment

size and shell thickness, attachment location, shift in maximum stress

location, and stresses caused by shear loads.

A Size of Attachment with Respect to Shell Size

The analysis is applicable to small attachments relative to the shell

size and to thin shells. The limitations on these conditions are shown by the

shaded area of Figure B7. 2.1.1-4.

A

!

a /T (in.//in.)
m

4oo

Fig. B7.2.1.1-4
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B Location of Attachment with Respect to Boundary Conditions of Shell

The analysis is applicable when any part of the area of influence shown

in Figure B7.2.1.0-1 does not contain any stress perturbations. These pertur-

bations may be caused by discontinuity, thermal loading, liquid-level loading,

change in section and material change.

C Shift in Maximum Stress Location

Under certain conditions the stresses in the shell may be higher at

points removed from the attachment-to-shell juncture than at the juncture. The

following conditions should be carefully considered:

1. In some instances, stresses will be higher in the hollow attachment

wall than they are in the shell. This is most likely when the attach-

ment opening is not reinforced, when reinforcement is placed on the

shell and not on the attachment, and when very thin attachments are

used.

2. For some load conditions certain stress resultants peak at points

slightly removed from the attachment-to-shell juncture. The maxi-

mum value of these stress resultants is determined from the curves

in Section B7.2.1.5 and is indicated by dashed lines.

When conditions are encountered that deviate from the limitations of the

analysis, Appendix A of Reference 2 should be consulted.

D Stresses Caused by Shear Loads

An accurate stress distribution caused by a shear load (Va) applied

to a spherical shell is not available. The actual stress distribution consists of

varying shear and membrane stresses around the rigid attachment. The method

[2] presented here assumes that the shell resists the shear load by shear only.

If this assumption appears unreasonable, it can be assumed that the shear load

is resisted totally by membrane stresses or by some combination of membrane

and shear stresses.
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BT.2. l. 2 STRESSES +

I GENERAL

Stress resultants at attachment-to-shell junctures are obtained from the

nondimensional stress-resultant curves in section B7.2. l. 5. These curves are

plots of the shell parameter (U) versus a nondimensional form of the stress re-

sultants (M. and N.). Figures B7.2.1.5-1 and B7.2.1.5-2 are used for solid
J J

attachments and Figures BT. 2.1.5-3 through B7. 2.1. 5-22 are used for hollow

attachments. Additional attachment parameters (T and p) are required to use

Figures B7.2.1.5-3 through ]37.2.1.5-22.

The general equation for stresses in a shell at a rigid attachment juncture

in terms of the stress resultants is:

f. = K (N./W) _- K b (6M./T 2) .j n j j

The stress concentration parameters (K and IL) are functions of the
n O

ratio of fillet radius to shell thickness (a/T). The value of the stress concen-

tration parameters for R >> r is equal to unity except in the following cases:

(a) Attachment-to-shell juncture is brittle material;

(b) Fatigue analysis is necessary at attachment-to-shell juncture.

When stress concentration parameters are used they can be determined from

Figure B7.2. I. 2-i.

The value of the stress resultant at the juncture is indicated by a solid

line on the nondimensional stress resultant curves. When the maximum value

for a stress-resultant does not occur at the attachment-to-shell juncture, it is

indicated on the nondimensional stress-resultant curves by dashed lines. An

incorrect but conservative analysis would assume this maximum stress to be

at the juncture.
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Kn (Axial Load)

Kb (Overturning Moment)

Fig.

• 02 -04 .O& _ .I -2 .4 .4, .8 1,,

Fillet Radius To Shell Thickness Ratio (a/T)

B7.2.1.2-1 Stress Concentration Parameters for R>>r

The stress calculation sheets (Figs. B7.2.1.2-2 and B7.2. 1.2-3) can be

used to calculate inside and outside stresses at four points (A, B, C, D on

Figure BT. 2.1.1-2)around the attachment. The stress calculation sheets also

determine the proper sign of the stresses when the applied loads follow the sign

convention used in Figure B7.2.1.1-1. The stress calculation sheets provide a

place to record applied loads, geometry, parameters and all values calculated or

obtained from the step-by-step procedures in paragraphs III-VI below.
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STRESS CALCULATION SHEET FOR STRESSES IN SPHERICAL SHELLS CAUSED BY LOCAL LOADS

(HOLLOW ATTACHMENT)

APPLIEDLOADS SHELLGEOMETRY

p II T •

V 1 =__ t =

VZ =__ _'n =__

MT = __ r rn = --

M I = _________ ro =--

MI =_ •

; TRESS LOAD

II

M I

z

9
1:1

_ M z
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_ p
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,J MI

I--,
Z

ta
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_ "z
u

_ON_DIMENSIONAI

ST RF.._
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TO
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NyTq]_T= = Kn N_ •

MI T
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"_ Vl _'roT V 1
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a._ fx * fy- )i fxyl

_E
s_ s_

u_ m f•ymaX
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U m
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K b =

STRESSES*

i Co

• LI e LOAD 18 OPPOSITE TO THAT SHOWN IN FIGURE BT. 7 i I- | THEN REVEIUSE THE SIGN SHOWN.

** SEE SECTION A3. I. 0.

*_ CHANGE SIGN OF THE RADICAL tlr(f x + f ) iS NEGATIVE.

Fig. B7.2.1.2-2 Stress Calculation Sheet (Hollow Attachment)
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STRESS CALCULATION SHEET FOR STRESSES IN SPHERICAL SHELLS CAUSED BY LOCAL LOADS

(SOLID ATTACHMENT)

APPLIED LOADS SHELLGEOMETRY PARAMETERS

P T
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V2 r °

MT
a

Ml
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,,,,>>\\,<
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IO'IAL :ilII':AII %'IRESS Cfxy}
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l 44 _

,. m l , Iy ,=% /{t 1 )Z 1 I d :

2_ ,L' 4

,/ ,(I x I 12 I Z
_-_ ,,,, ..... : _ y

.1

' IF" LOAD IS ()I'P()SITF: TO THAT StlOWN iN E'i(;LIRE H7 Z. I 1 i T}II.:',_ RI..VI'I,USK F_IE Sir,N S}|l[)_'N.

• , SI':I-: SECTION AJ. 1.0.
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Fig. B7.2.1.2-3 Stress Calculation Sheet (Solid Attachment)
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The following applicable parameters must be evaluated:

A Geometric Parameters

1. Shell Parameters (U)

.

a. round attachment
1

U = r0/(RmT)2

b. square attachment
1

U = 1. 413c/(RmT ) _

Attachment Parameters (T and p)

a. hollow round attachment

T = rm/t

p = W/t

b. hollow square attachment

T = 1.143c/t

P = T/t

B Stress Concentration Parameters

1. Membrane stress-stress concentration parameter (K)*
n

K = 1 +(T/ 5.6a) o.65
n

2. Bending stress-stress concentration parameters (Kb)

Kb= 1 +(W/9.4a)°. 80

K and Kb values can be determined from Figure B7.2 1.2-t with a/T valuesrl • °
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A radial load will cause membrane and bending stress components in

both the meridional and circumferential directions.

A Meridional Stresses (fx }

Step 1. Calculate the applicable geometric parameters as defined

in paragraph II above.

Step 2. Using the geometric parameters calculated in step 1, obtain

the membrane nondimensional stress resultant (N T/P) for
x

a solid attachment from Figure B7.2.1.5-1 or for a hollow

attachment from Figures B7.2.1.1.5-3 through B7.2.1.5-12.

Step 3. Using P and T values and the membrane nondimensional

stress resultant (NxT/P), calculate the membrane stress

component N /T from:
X

N /T= (N T/P) - (p/T2).
X X

Step 4. Using the geometric parameters calculated in step 1 and

the same figures as step 2, obtain the bending nondimen-

sional stress resultant (M /P).
x

Step 5. Using P and T values and the bending nondimensional stress

resultant (M /P), calculate the bending stress component
X

6M /T 2 from:
x

6M /T 2 = (M /P)'(6P/ T2).
X X

Step 6. Using the criteria in paragraph I, obtain values for the

stress concentration parameters (Kn and Kb).

Step 7. Using the stress components calculated in steps 3 and 5 and the

the stress concentration parameters calculated in step 6,

determine the meridional stress (fx) from :

fx =Kn (Nx/T)- + % (6Mx / T2)"
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Proper consideration of the sign will give values for the

meridional stress on the inside and outside surfaces of

the shell.

B Circumferential Stresses (f)
m

The circumferential stress can be determined by following the seven

steps outlined above in paragraph A and by using the same curves to

obtain the nondimensional stress resultants (N T/P and M /P) and
Y Y

the following equations to calculate the stress components and circum-

ferential stress:

N /T= (N T/P). (P/T 2)
Y Y

6my/ T2 (M /P). (6P/2 _)Y

fy = Kn(Ny/T) + DK' (6 My/T2).
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IV STRESSES RESULTING FROM OVERTURNING MOMENT

An overturning moment will cause membrane and bending stress

components in both the meridional and circumferential directions.

A Meridional Stresses (fx)

Step 1. Calculate the applicable geometric parameters as defined

in paragraph II above.

Step 2. Using the geometric parameters calculated in step 1,

obtain the membrane nondimensional stress resultant
1

[ NxT(RmT) Z/Ma] for a solid attachment from Figure

B7.2.1.5-2, or for a hollow attachment from Figures

B7.2.1.5-13 through B7. 2.1. 5-22.

Step 3. Using M , R and T values and the membrane nondimen-
a m 1

sional stress resultant IN T(R T} _/5I ], calculate the
X m a

membrane stress component N /T from:
x

1 1

N /T= EN T(R T)Z/M ] [Ma/T2(R T)2].x x m a m

Step 4. Using the geometric parameters calculated in step 1 and

Step 5.

Step 6.

the same figures as step 2, obtain the bending nondimen-
1

sional stress resultant [ M x (RmT) _/M a].

Using Ma, R and T values and the bending nondimcnsionalm

stress resultant [Mx (RmT) _/Ma], calculate the bending

stress component 6Mx/T2 from:

l l

6Mx/T2 = EMx(RmW)_ /M a] [6Ma/T2(RmT)'_].

Using the criteria in paragraph I, obtain values for the

Step 7.

stress concentration parameters ( Kn and K b ).

Using the stress components calculated in steps 3 and 5

and the stress concentration parameters calculated in step

6, determine the meridional stress (fx) from:
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fx = Kn(Nx/W) + Kb(6Mx/T 2)

Proper consideration of the sign will give values for the

meridional stress on the inside and outside surfaces of

the shell.

B Circumferential Stress (fy)

The circumferential stress can be determined by following the

seven steps outlined above in paragraph A and by using the same
1

figures to obtain the nondimensioaal stress resultants [N T(R T)_Ma]y m
and the following equations to calculate the stress components and

circumferential stress:

Ny/T = [Ny T( MmW)½/Ma] [Ma/T2(RmT)½ ]

1 1

6My/W 2 = [M x(RmT) _/M a] [6Ma/W2(RmW) _ ]

f = Kn(Nx/W) + Kb(6Mx/2¢).y
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STRESSES

STRESSES RESULTING FROM SHEAR LOAD

A shear load (Va) will cause a membrane shear stress (f ) in thexy
shell at the attachment-to-shell juncture. The shear stress is determined

as follows :

A Round Attachment

B

V
a

fxy- roT sin O for Va= Vi

V
a

orf - cos O for V -- V2
xy r 0 T a

Square Attachment

fxy Va/4eT (at O = 90 ° and 270 _

f 0 (at O 0 ° and 180 ° )
xy

for V = V1
a

or

}fxy Va/4cT (at O = 0 ° and 180 ° )

fxy - 0 ( at O 90 ° and 270 ° )

for V = V2
a
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B7.2. i. 2 STRESSES

VI STRESSES RESULTING FROM TWISTING MOMENT

A Round Attachment

A twisting moment (M T) applied to a round attachment will cause

a shear stress (fxy) in the shell at the attachment-to-shell juncture.

The shear stress is pure shear and is constant around the juncture.

The shear stress is determined as follows:

f = MT/27r 1"20T.xy

B Square Attachment

A twisting moment applied to a square attachment will cause a

complex stress field in the shell. No acceptable methods for analyzing

this loading are available.
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BT. 2. I. 3 STRESSES RESULTING FROM ARBITRARY LOADING

I CALCULATION OF STRESSES

Most loadings that induce local loads on spherical shells are of an

arbitrary nature. Stresses are determined by the following procedure:

Step i. Resolve the applied arbitrary load (forces and/or moments

into axial forces, shear forces, overturning moments and

twisting moment components. (See paragraph B7.2. I. 6,

Example Problem.) The positive directions of the com-

ponents and the point of application of the force components

(intersection of centerline of attachment with attachment-

shell interface) are indicated in Figure B7.2. I. I-i.

Step 2. Evaluate inside and outside stresses at points A, B, C and

D for each component of the applied arbitrary load by the

methods in paragraph BT. 2.1.2.

Step 3. Obtain the stresses for the arbitrary loading by combining

the mcridional, circumferential and shear stresses eval-

uated by step 2 for each of the points A, B, Cand Donthe

inside and outside of the shell. Proper consideration of

signs is necessary.
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B7.2.1.3 STRESSES RESULTING FROM ARBITRARY LOADING

II LOCATION AND MAGNITUDE OF MAXIMUM STRESSES

The location and magnitude of the maximum stresses caused by an

arbitrary load require a consideration of the following:

A The determination of principal stresses (fmax' fmin and f = 0 orxy

fxy= max) for the calculated stresses (f, fy and fxy ) at a specific

point.

B The orientation of the coordinate system (1, 2, 3) in Figures

B7.2.1.1-1 and B7.2.1.1-2 with respect to an applied arbitrary

load may give different values for principal stresses. These dif-

ferent values are caused by a different set of components.

C Whether or not the value for a stress resultant is obtained from

the dashed lines or solid lines in Figures BT. 2.1.5-3 through

BT. 2.1.5-22.
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B7.2.1.4 ELLIPSOIDAL SHELLS

The analysis presented in this section (B7.2.1.0) can be applied to

ellipsoidal shells with attachment at the apex because the radii of curvature

are equal. For attachments not located at the apex (points of unequal radii),

the analysis is incorrect, and the error increases for attachments at greater

distances from the apex.
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Solid Attachments

1. Nondimensional Stress Resultants for Radial Load (P) B7.2. l..5-1

2. NondimenstonaI Stress Resultants for Overturning Moment

(Ma) BT. 2.1.5-2

Hollow Attachments

1. Nondimensional Stress Resultants for Radial Load (P)

T = 5 p= 0.25 B7.2.1.5-3

T = 5 p= 1.0 B7.2.1.5-4

T = 5 p= 2.0 B7.2. t.5-5

T = 5 p= 4.0 B7.2.1.5-6

T =15 p= 1.0 B7.2.1.5-7

T =15 p= 2.0 B7.2.1.5-8

T = 15 p.= 4.0 B7.2.1.5-9

T = 15 p = 10.0 B7.2.1.5-10

T = 50 p = 4.0 B7.2.1.5-11

T

,

= 50 p = 10.0 B7.2.1.5-12

Nondimensional Stress Resultants for Overturning Moment (Ma)

T = 5 p= 0.25 B7.2.1.5-13

T = 5 p= 1.0 B7.2.1.5-14

T = 5 p= 2.0 B7.2.1.5-15

T = 5 p= 4.0 B7.2.1.5-16

T =15 p= 1.0 B7.2.1.5-17

T = 15 p= 2.0 B7.2.1.5-18

T =15 p= 4.0 B7.2.1.5-19

T = 15 p= 10.0 B7.2.1.5-20

T = 50 p= 4.0 B7.2.1.5-21

T = 50 p = 10.0 B7.2.1.5-22
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B7.2. I.5 NONDIMENSIONAL STRESS RESULTANT CURVES

II CURVES

The following curves (Figs.B7.2. I.5-I -- BT. 2.I.5-22) are plots

of nondimensional stress resultants versus a shell parameter for the axial load

and overturning moment loadings and for various attachment parameters.
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Figure B7.2.1.5-1 Non-Dimensional Stress Resultants

for Radial Load (P) Solid Attachment
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Figure B7.2.1.5-2 Non-Dimensional Stress Resultants for

Overturning Moment (Ma) Solid Attachment
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Figure B7.2. I. 5-3 Non-Dimensional Stress Resultants for Radial Load (P)

Hollow Attachment T = 5 and p = 0.25
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Figure B7.2.1.5-4 Non-Dimensional Stress Resultants for Radial Load (P)

Hollow AttachmentT = 5andp= 1.0
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Figure B7.2.1.5-5 Non-Dimensional Stress Resultants for Radial Load (P)

Hollow Attachment T = 5 and p -_ 2.0
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Figure B7.2.1.5-6 Non-Dimensional Stress Resultants for Radial Load (P)

Hollow Attachment T = 5 and p = 4.0
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Figure B7.2.1.5-7 Non-Dimensional Stress Resultants for Radial Load (P)

Hollow Attachment T = 15 and p = 1.0
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Figure BT. 2. i. 5-8 Non-Dimensional Stress Resultants for Radial Load (P)

Hollow AttachmentT = 15 andp = 2.0



Section B7.2

31 December 1966

Page 34

!T = 15

p=4.0

"E

.N

m

E

Z

.0
i I I I I i l I I I I 1 l ! I

.5 1.0 1.5 2.0

C"

I I I I
2.5

Shell Parameter (U)

Figure B7.2.1.5-9 Non-Dimensional Stress Resultants for Radial Load (P)

Hollow Attachment T = 15 and p = 4.0
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Figure BT. 2.1.5-10 Non-Dimensional Stress Resultants for Radial Load (P)

Hollow Attachment T = 15 and p = 10.0
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Figure B7.2.1.5-11 Non-Dimensional Stress Resultants for Radial Load ( P )

Hollow Attachment T = 50 and p = 4.0
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Figure B7.2.1.5-12 Non-Dimensional Stress Resultants for Radial Load (P)

Hollow Attachment T = 50 and p = 10.0
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Figure B7.2. L. 5-13 Non-Dimensional Stress Resultants for Overturning Moment

(M) Hollow Attachment T = 5 and p = 0.25
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Figure B7.2.1.5-14 Non-Dimensional Stress Resultants for Overturning Moment

(Ma) Hollow AttachmentT = 5andp= 1.0
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Figure B7.2. I. 6-15 Non-Dimensional Stress Resultants for Overturning Moment

(Ma) Hollow Attachment T = 5 and p = 2.0
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Figure B7.2.1.5-16 Non-Dimensional Stress Resultants for Overturning Moment

(Ma) Hollow AttachmentT = 5andp = 4.0
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Figure B7.2.1.5-17 Non-Dimensional Stress Resultants for Overturning Moment

(M a) Hollow Attachment T = 15 and p = 1.0
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Figure B7.2.1.5-18 Non-Dimensional Stress Resultants for Overturning Moment

(Ma) Hollow Attachment T = 15 and p = 2.0
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Figure B7.2.1.5-19 Non-Dimensional Stress Resultants for Overturning Moment

(M a) Hollow Attachment T = 15 and p = 4.0
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Figure B7. 2.1. 5-20 Non-Dimensional Stress Resultants for Overtirning Moment

(Ma) Hollow Attachment T = 15 and p = 10.0
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Figure B7. 2.1. 5-21 Non-Dimensional Stress Resultants for Overturning Moment

(M a) Hollow Attachment T = 50 and p = 4.0
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Figure B7. 2.1. 5-22 Non-Dimensional Stress Resultants for Overturning Moment

(Ma) Hollow Attachment T = 50 and p = i0.0
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B7.2.1.6 EXAMPLE PROBLEM

A spherical bulkhead with a welded hollow attachment is subjected to

the force and moments shown in Figure B7.2.1.6-1. Shell and attachment geom-

etry are shown in Figures B7. 2.1.6-1 and B7. 2.1. 6-2.

__ i0.0 In.-Kips

f_ .566 Kips

//

Fig. B7.2.1.6-1 Spherical Bulkhead

-_--4.40"DIA. I
• 3. 60" .

ATTACtI_NT- SHELL

INTERFACE

•062 " Rad.

xx \ \\\\\\\\\\\\\\\_

M
I _ 0"

,,_ _ .10,.

Fig. B7.2.1.6-2 Welded Hollow Attachment (Detail A)
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1. Establish a local coordinate system (Figs. B7.2. 1.1-1 and

B7.2.1.6-3) on the center line of the attachment at the attachment-shell inter-

face, so that the loading in Figure B7.2.1.6-1 is in the 2-3 plane.

ATTACHMENT i

INTERFACE

Fig. B7.2.1.6-3 Local Coordinate System

2. Resolve the load system into components (Figs. B7.2. 1.1-1 and

B7.2. 1.6-4) and enter results on the appropriate stress calculation sheet

(Figs. B7.2.1.2-2 for hollow attachments and B7.2.1.2-3 for solid attachments).

Figure B7.2.1.6-5 shows the stress calculation sheet for the example problem.

3. Establish the appropriate shell geometric properties (Figure

B7.2.1.1-2) and enter results on the stress calculation sheet. All dimensions

are in inches.

R = 100.0
m

T =0.10

r 0 --- 2.20

r =2.00
m

t = 0.40

a = 0. 0625
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3 _ MT = i0.0 In.-Kips

POSITIVE LOAD DIRECTIONS !

/ ; _ " V 2 = .4 Kips

II

M 2 = 1.0 In.-Kips

Fig. B7.2.1.6-4 Arbitrary Load System Components

4. Determine the appropriate parameters according to paragraph

B7.2.1.2-II, and enter results on the stress calculation sheet.
! !

U= r0/(RmT)2 =2.20/ (100x0.1)2 =0.695

For hollow attachment:

T =r /t =2.00/0.40 = 5.0
m

p =T/t =0.10/0.40 =0.25

For a brittle material (weld) at the attachment-to-shell juncture:

K =l+(T/5.6a) °.65 =1+(0.1/5.6x.0625)°'66=1 44
n

Kb= 1 + (T/9.4 a)°- 8° =1+(0.1/9.4x.0625)°.8°=1.70

5. Determine the stresses according to paragraph B7.2.1.2-IH through

VI and enter results on the stress calculation sheet. The nondimensional stress

resultants are obtained from Figure BT. 2.1.5-3 (Hollow Attachment- T = 5 and

p = 0.25) for the radial load and from Figure B7.2.1.5-13 (Hollow Attachment -

T = 5 and p = 0.25) for the overturning moments.
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STRESS CALCULATION SHEET FOR STRESSES IN SPHERICAL SHELLS CAUSED BY LOCAL LOADS

(HOLLOW ATTACHMENT)

APPLIEDLOADS SHEll GEOMETRY PAR_S

e .-.4. K_pJ "r . .tO u ..¢,,_5

v: 0 " , ...40 "r .6,o
v_ .4 " _ .Ioo. p . .Z5

MT . JO.O _','_f_ ,_, . 2. oo _<, . |.4,4r

Ml |.I , "o .Z._O xb . 1.70

-z I.o ,, . ..oi, tS

|TRESS LOAD

P
A

x

,ON-DIME NSIONA1 ADJUSTING S T R F-.$S
ST RX.5,5

FACTOR COMPONENT
RESULTANT

..r _.ob( K_P -ST.@,___L

Mx _KbP -_o_ bKbM_
-f- _.o¢_ _ T2

MI :.06¥ TzTpT;_ : --'i---- :

_: -----7--- :.o_7_ " T °
M z

'_ M,,,/I_"I' 6K_z 31_.13 _,K M

TOTAL .IrRIDIONAL STRESSES (f x )

nyT _ -6L6,
_ p T :.o6"r TZ " T

,p- : .O,_q _ : Tz

14

:'. - z :.o_'t Tz_----'r : T "
'_ M z

U MZ

U

TOTAL CIRCUMFERENTIAL STRESS

_- v= 0

vz ._O

= T tO-O
<
_a

u_ TOTAL SHEAR STRESS (fxy)

_1 f ix . ly - . _(ix, [y)Z " lily Z

z _

Zl _ mLn vT

i_ il.,_...._,,. - , ,z . ,. z
t

STRESSES" , !
A t A o B t B o C t C O D| D O

-+11.1. -.Pdl,t -÷J.'ll. --PII.¢ -÷J.¢ -4,-11.11. :-,.P._.I -÷J.Z i

4-$:.o +,g.o ,,-g..o _.!,-$.o --5:o tS.o ,,-5".o _,,.-.._:oI

77.B, " yZ8 77. B +Z8 77.0 +7.8 i;; _*Z_

_4.o 4-0 x'. ,. _: :\,:5.\x\,: 4,.O ,4.,0

,_l_ -/_L.3 3_,$ II.O -/I.8 8.7 -7.7 -_g.(, 37,4-

,,,....

M T

ZX"Z'T"3,0'1' _:3. _. -&3 -3'._ "3._ 'a-_ -,_.a -_._ *3.:S .3._

-3.9 I-3.9 3.S s._ -2.7 -Z.7 J._ _._

"'" -_.Sle/.4 3Z.$ -3_o za;.2 -ZZ'.f-77.=_ 9/.(,

"'" -04.o 3_.o 10.5 -//.3 _._ -7.o -/6._1. 37.Z

ZT.Z Z4..Z IO.9 /0.9 z_ B.o Jo.5 Z7.£]

• IF LOAJD L_ OPPOSITE TO THAT SHOWN IN FIGURF- B7 Z 1 I - I THEN R_VI_:F(S_ THE SIGN SHOWN.

e* SEE SECTION A_. I 0.

eo* CHANGE SIGN ¢)t THE RADICAL IF(l_ * ly) LS NEGATIVE.

Figure B7.2.1.6-5 Stress Calculation Sheet (Example Problem)
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B7.2.2.0 LOCAL LOADS ON CYLINDRICAL SHELLS

This section presents a method to obtain cylindrical shell membrane and

bending stresses at an attachment-to-shell juncture resulting from arbitrary

loads induced through rigid attachments on pressurized or unpressurized shells.

Shell geometry and loading conditions are used to obtain normal and bending

stress resultants and deflections from a computer program for radial-type

loads (P and Ma}. Membrane shear stresses caused by shearing loads (V a)

and twisting moments (M T) can be calculated directly without the computer

program. Deflections are not calculated for shearing loads and twisting

moments.

Local load stresses reduce rapidly at points removed from the attachment-

to-shell juncture. Boundaries of that region of the shell influenced by the local

loads can be determined for those load cases calculated with the computer pro-

gram by investigation of the stresses and deflections at points removed from

the attachment.

The additional stiffness of the shell caused by internal pressure (pressure

coupling) is taken into account by the computer program for determination of

local load stress resultants and deflections. The stress resultants induced in

the shell by the internal pressure are not included in the computer program

results and must be superimposed upon the local load stress resultants calcu-

lated by the method contained in this section.
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B7.2.2.1 GENERAL

I NOTATION

The notations presented in this section are not applicable _) the com-

puter program. The computer pro_,q'am variables are defined in the Astronautics

Computer Utilization Handbook.

a

b

C

Cl

c 2

E

f

x

f
Y

f
xy

Kn , K b -

L

M a

M T

Mj

n

p

p

q

fillet radius at attachment-to-shell juncture or longitudinal

half diameter of elliptical load pad, in.

x-coordinate distance to center of attachment (b- L/2)

or circumferential half diameter of elliptical load pad, in.

half length of square attachment, in.

longitudinal half length of rectangular attachment, in.

circumferential half length of rectangular attachment, in.

mo_lulus of elasticity, psi

normal longitudinal stress, psi

normal circumferential stress, psi

shear stress, psi

stress concentration parameters for normal stresses

and bending stresses, respectively

length of cylinder

applied owerturning moment, in. -lb.

applied twisting moment, in. -lb.

inte.rnal bending moment stress resultant per unit length

of shell, in.-lb/in.

number of equally spaced attaehments in the circumferential
direetiml

internal normal force stress resultant per unit length of

shell, lb/in.

uniform load intz, nsity, psi

radial load or total distributed radial load, lb.

internal pressure, psi
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r - radius of circular attachment, in.

Section B7.2

15 April 1970

Page 54

R - radius of cylindrical shell, in.

s - circumferential arc length; in.

T - thickness of cylindrical shell, in.

u - longitudinal displacement, in.

v - circumferential displacement, in.

V a - applied concentrated shear load or total distributed shear
load, lb.

w - radial displacement, in.

x - longitudinal coordinate, in.

y - circumferential coordinate, in.

z - radial coordinate, in.

O - polar coordinate

v - Poisson's ratio

- circumferential cylindrical coordinate

Subscripts

a - applied (a= lora=2)

b - bending
i - inside

j - internal (j = x or j = y)

m - mean (average of outside and inside)
n - normal

o - outside

x - longitudinal

y - circumferential
z- radial

1 - longitudinally directed applied load vector or longitudinal
direction

2 - circumferentially directed applied load vector or circumferen-

tial direction
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B7.2.2.1 GENERAL

II SIGN CONVENTION

Local loads applied at an attachment-to-shell induce a biaxial state of

stress on the inside and outside surfaces of the shell. The longitudinal stress

(fx), circumferential stress (fy), shear stress (fxy), the positive directions

of the applied loads (Ma"", M T, P, q, and Va), the stress resultants (Mj and

Nj), and the positive directions of the displacements (u, v, and w) are indi-

cated in Fixture B7. 2. 2.1-1.

p V l

I

l M25 vV2 I

\
£x \

Fig. Stresses, Stress Hesultants, Loads, and Displacements

_:"The applied overturning moment M 1 (M 2) is represented by a longitudinally

(circumferentially) directed vector but is defined as an applied circumferential

(longitudinal) overturning moment since its effect is in the circumferential

(longitudinal) direction.
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The geometry of the shell and attachment, the local coordinate system

at the attachment, and the coordinate system of the shell are indicated in

Figure BT. 2.2.1-2.

b " L/2 c

C

x a Rad

/

I
I

i

\
\

N

Fig. B7.2.2. 1-2 Shell and Attachment Geometry

It is possible to predict the sign of the induced stress, tensile (+) or

compressive (-), by considering the deflections of the shell resulting from

various loading modes.

Mode I (radial load), Figure B7. 2. 2.1-3, shows a positive radial load

(P) transmitted to the shell by a rigid attachment. The load (P) causes com-

pressive membrane stresses and local bending stresses adjacent to the
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attachment. The compressive membrane stresses are similar to the stresses

induced by an external pressure. The local bending stresses result in tensile

bending stresses on the inside of the shell and compressive bending stresses on

the outside of the shell at points A, B, C and D.

Modes II (circumferential moment) and III (longitudinal moment) ,

Figure BT. 2.2. I-3, show negative overturning moments (M a) transmitted to

the shell by rigid attachments. The overturning moments (Ma) cause com-

pressive and tensile membrane stresses and local bending stresses adjacent

to the attachment. Tensile membrane stresses are induced in the shell at

B or C, similar to the stresses caused by an internal pressure. Compressive

membrane stresses are induced in the shell at D or A, similar to the stresses

caused by an external pressure. The local bending stresses cause tensile

bending stresses in the shell at B or C on the outside and at D or A on the

inside, and cause compressive bending stresses in the shell at B or C on the

inside and at D or A on the outside.

p

,_ _ MI*
M2*

MODE I MODE II MODE III

CIRCUMFERENTIAL MOMENT

Fig. B7.2.2. 1-3

RADIAL LOAD LONGITUDINAL MOMENT

Loading Modes

':-"The applied overturning moment M 1 (M2) is represented by a longitudinally

(circumferentially) directed vector but is defined as an applied circumferential

(longitudinal) overturning moment since its effect is in the circumferential

(longitudinal) direction.
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The signs of the stresses induced in the shell adjacent to the attachment

by positive applied loads for rigid attachments are shown in Figure B7.2.2.2-1

"Stress Calculation Sheet". The figure or parts thereof can be reproduced and

used as calculation sheets.
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B7.2.2. 1 GENERAL

III LIMITATIONS OF ANALYSIS

Considerable judgment mu_t be used in the interpretation of the results

of this section and in the establishment of the geometry and loadings used in

the analysis.

Six general areas must be considered for limitations: attachment and

shell size, attachment location, shift in maximum stress location, stresses

caused by shear loads, geometry and loading.

A Size of Attachment with Respect to Shell Size

The analysis is applicable to small attachments relative to the shell

size and to thin shells. The limitations on these conditions arc shown by the

shaded area of Figure B7.2.2. 1-4.

rm =

I

• | 10 20 40 6@ 80 100 200 400 600

N/T

Fig. B7.2.2.1-4
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B Location of Attachment with Respect to Boundary Conditions to Shell

The analysis is applicable when there are no stress perturbations

caused by other loadings in the area influenced by the local loads. These per-

turbations can be caused by discontinuity, thermal loading, liquid level loading,

change in section and material change. The area influenced by the local loading

can be determined by an investigation of the stresses and deflections at points

removed from the attachment.

C Shift in Maximum Stress Locations

Under certain conditions the stresses in the shell may be higher at

points removed from the attachment-to-shell juncture than at the juncture.

The following conditions should be carefully considered:

1. Stresses can be higher in the attachment than in the shell.

This is most likely when the attachment is not reinforced, when

reinforcement is placed on the shell and not on the attachment,

and when very thin attachments are used.

2. For some load conditions certain stress resultants peak at

points slightly removed from the attachment-to-shell juncture.

The load conditions that cause this peaking are in most cases the

same load cases that cause peaking for local loads on spherical

shells. The extent of the peaking can be evaluated by an investiga-

t-ion of the stresses and deflections at points slightly removed from

the attachment.

3. Comparison of analytical and experimental results [3] for

membrane stresses shows that membrane stress resultants can be

calculated at the point where stresses are desired. Comparison of

analytical and experimental results [2, 3] for bending stress re-

sultants at loaded attachments shows that the bending stress re-

sultants must be calculated at the center of the attachment and
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then shifted to the edgefor the determination of stresses at the

edgeof the attachment. The determination of bendingstresses at

other points requires that the bending stress resultants be calcu-

lated at a distance C_/2 or C2/2 closer to the attachment,

D Stresses Caused by Shear Loads

An accurate stress distribution caused by a shear load (V a)

applied to a cylindrical shell is not available. The actual stress distribution

consists of varying shear and membrane stresses around the rigid attachment.

The method [2] presented here assumes that the shell resists the shear load

by shear only. If this assumption appears unreasonable, it can be assumed

that the shear load is resisted totally by membrane stresses or by some

combination of membrane and shear stresses.

E Shell and Attachment Geometry

The analysis assumes that the cylindrical shell has simply supported

end conditions or is of sufficientlength that simply supported end conditions

can be assumed.

The computer program requires thatcircular and ellipticalattach-

ments be converted to equivalent square and rectangular attachments,

respectively. The equivalent attachment must have an area equal to the area

of the actual attachment for a radially applied force. The equivalent attach-

ment must have a moment of inertiaabout the bending axis equal to the moment

of inertiaabout the bending axis of the actual attachment for bending loads.

In both cases the aspect ratios (a/b and ci/c2) of the attachments (actual and

equivalent, respectively) mustbe equal. Ifthe attachment is welded, the

weld size must be added to the attachment when determining equivalent attach-

ments.
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L/R m is a secondary parameter and has little effect on the solution of

1.0 <- L/R m <--5.0. The attachment coordinate system, defined by Figure

B7. 2. 2.1-2, must be located at x = L/2.

F Shell Loading

The computer program accounts for pressure coupling (that is, the

increase in shell stiffness caused by internal pressure}. The internal pressure

(q} must be positive or a positive differential. The stresses caused by the

internal pressure must be calculated separately and superimposed upon the

local loads stresses calculated by the method presented here.

The shell deflections must be small, approximately equal to the

cylindrical shell thickness, for the analysis to be valid and to allow super-

position of stresses.

k_
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B7.2.2.2 STRESSES

I GENERAL

Stress resultants and displacements caused by radial load (P) and

overturning moment (M a) are obtained from the computer program given in

the Computer Handbook. Stresses caused by shear load (Va) and twisting

moment (M T) are calculated directly from attachment geometry and loading.

The stress resultants (Mj and Nj) and displacements (u, v, and w) de-

termined by the computer program are for a specific location. The location is

specified by x and 0 input values determined according to the coordinate system

(x, 0, z) defined in Figure B7. 2. 2.1-2.

The computer program will calculate stress resultants and displacements

for eonfigurations (see Computer Utilization Handbook):

Case 1 - One Uniformly Distributed Radial Load

Case 2 - "n" Equally Spaced Uniformly Distributed Radial Loads

Case 3 - One Concentrated Radial Load

Case 4 - "n" Equally Spaced Concentrated Radial Loads

Case 5 - Longitudinal Overturning Moment

Case 6 - Circumferential Overturning Moment

The general equation for stresses in a shell at a rigid attachment

juncture in terms of the stress resultants is of the form:

fj = K n (Nj/T) • Kb (6Mj/T 2)

The stress concentration parameters (K n and K b) are defined and can

be evaluated from Paragraph B7.2. I. 2, Sections I and IIB.

Figure B7.2.2.2-1 "Stress Calculation Sheet" can be used for the

calculation of all stresses caused by an arbitrary local loading. The sheet

automatically accounts for signs.
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STRESS CALCULATION SHEET FOR STRESSES IN CYLINDRICAL SHELLS CAUSED BY LOCAL LOADS

APPLIED LOAD_ SHELL GEOMETRY CO ORDINATI_,;

P • T •

• 9
P

Itm" 0 -
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V •
Z ¢ 1 • B •

MT "-' ¢ I • C
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M
| • •

o
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II I I
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* C_E 8/GN OF CALCULATED _T_ _E_ NEGATIVE SIGNS AR.E _DICATED.

_-rTTER. IN P_N_B D_IGNAT_ THE POINT (A. B. OR O) AT WHICH THE
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Fig. B7.2.2.2-1 Stress Calculation Sheet
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B7.2.2.2 STRESSES

II STRESSES RESULTING FROM A RADIAL LOAD

Radial load configuration Cases I and II (Computer Utilization Handbook)

cause membrane and bending stress components in both the longitudinal and

circumferential directions.

A Longitudinal Stress (fx)

Step 1. Determine the required load and geometric load input for

the computer program.

Step 2. Determine the bending stress resultant (M×) at point O

and the normal stress resultant (N x) at points A and B

with the computer program. See Figure B7.2.2.1-2 for

the location of points A, B and O.

Step 3. Using the criteria in Paragraph B7.2. 1.2, Section I,

obtain values for the stress concentration parameters

(K n and Kb).

Step 4. Using the bending stress resultant (M x) at point O and

the normal stress resultant (N×) at point A as determined

in Step 2, and the stress concentration parameters as

determined in Step 3, determine the longitudinal stresses

(fx) at point A using the following equation:

fx = Kn(Nx/T) ± Kb(6Mx/T2)

Proper consideration of the sign will give the values for the

longitudinal stress at the inside and outside surfaces of the

shell.

Step 5. Repeat Step 4, but use the normal stress resultant (N x)

as determined for point B and the bending stress resultant

(Mx) as determined for point O to determine the longi-

tudinal stresses (fx) at point B.
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B Circumferential Stresses (fy)

The circumferential stresses (fy) can be determined by following

the five steps outlined in Paragraph A, above, except for determining My and

Ny instead of Mx and N x in Step 2 and using the following stress equation in

Step 4.

fy = Kn(Ny/T) + Kb( 6My/T 2)

C Concentrated Load Stresses

Points A, B, C and D in Figure B7.2.2. I-2 do not exist for Load

Cases III and IV. Longitudinal and circumferential membrane and bending

stress caused by concentrated loads (Cases III and IV) is determined from

stress resultants calculated at point O. The stresses are calculated using

Paragraph A, above, after applying proper modifications to the equations.
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B7.2.2.2 STRESSES

III STRESSES RESULTING FROM AN OVERTURNING MOMENT

Overturning moment load configurations, Cases V and VI (Computer

Utilization Handbook}, will cause membrane and bending stress components

in both the longitudinal and circumferential directions.

A Longitudinal Stress (fx)

Step 1. Determine load and geometric input for the computer

program.

Step 2. Determine the bending stress resultant (M x) and normal

stress resultant (N x) at points A for Load Case V and B

for Load Case VI with the computer program.

Step 3. Using the criteria in Paragraph B7.2.1.2, Section I,

obtain the values for the stress concentration parameters

and K b)(K n

Step 4. Using the bending stress resultant (M x) and the normal

stress resultant (N x) at point A as determined in Step 2

and the stress concentration parameters as determined in

Step 3, determine the longitudinal stress (fx) at point iX

using the following equation:

f = K (N /T) • Kb(6M /T 2)x n x x

Proper consideration of the sign will give the values for

longitudinalstresses at the inside and outside surfaces of

the shell.

Step 5. Repeat Step 4, but use stress resultants as determined for

point B to determine the longitudinal stresses at point B.
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B Circumferential Stress (fy)

The circumferential stresses (f) can be determined by following

the five steps outlined in Paragraph A, above, except for determining My and

Ny instead of M x and N x in Step 2, and using the following stress equation in

Step 4:

f =K (Ny/T) + Kb(6M /T 2)y n y
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A shear load (V a) will cause a shear stress (fxy) in the shell at

the attachment-to-shell juncture. The shear stress is determined as follows:

A Round Attachment

V a

f - sin 0 for V = V 1
xy _r0T a

V a

f - cos 0 for Va = V 2xy _r0T

B Rectangular Attachment

V a

f - for V = V 1
xy 4clT a

V a

f - for V = V 2
xy 4c2T a
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B7.2.2.2 STRESSES

V STRESSES RESULTING FROM A TWISTING MOMENT

A Round Attachment

A twisting moment (M T) applied to a round attachment will cause

a shear stress (fxy) in the shell at the attachment-to-shell juncture. The shear

stress is pure shear and is constant around the juncture. The shear stress is

determined as follows:

fxy = MT/2_r°T

B Square Attachment

A twisting moment applied to a square attachment will cause a

complex stress field in the shell. No acceptable methods for analyzing the

loading are available.
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B7.2.2.3 STRESS RESULTING FROM ARBITRARY LOADING

I CALCULATION OF STRESSES

Most loadings that induce loads on cylindrical shells are of an

arbitrary nature. Stresses are determined by the following procedure:

Step 1. Resolve the arbitrary applied load (forces and/or moments)

into axial force, shear forces, overturning moments and

twisting moment components. See Paragraph B7.2.1.6

Example Problem. The positive directions of the com-

ponents and the point of application of the load components

(intersection of centerline of attachment with attachment-

shell interface) are indicated in Figure B7.2.2. 1-1.

Step 2. Evaluate inside and outside stresses at desired points

(such as A, B, C and D) around the attachment for each

component of the arbitrary applied loading by the methods

in Paragraph B7.2.2.2.

Step 3. Obtain the stresses for the arbitrary loading by combining

the longitudinal, circumferential and shear stresses

evalUated by Step 2 for each of the points selected on the

inside and outside of the shell. Prosper cot_sideration of

signs is necessary.
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B7.2.2.3 STRESSES RESULTING FROM ARBITRARY LOADING

II LOCATION AND MAGNITUDE OF MAXIMUM STRESS

The location and magnitude of the maximum stresses caused by an

arbitrary load require a consideration of the following:

A. The determination of principal stresses (fmax' fmin' fxy = 0,

= max) for the determined stresses (f'x f ' and xfy) at a specificY
or f

xy

point.

B., The proper selection of points for determining the stresses.
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B7.2.2.4 DISPLACEMENTS

Shell displacements caused by radial load configurations and overturning

moments are obtained from the computer program described in the Computer

Handbook. Shell displacements caused by twisting moment and shear

loads are not determined.

Comparison of experimental and theoretical deflections indicate that

deflections are sensitive to the detailed conditions of the attachment. In

general, however, the experimental and theoretical values are of the same

order of magnitude.
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B7.3.0 BENDING ANALYSIS OF THIN SHELLS

In this section some of the theories discussed in Section B7.0 will be

applied to solve shell problems. Section B7.0 defined the structural shell

and several shell theories, with their limitations and ramifications. It was

pointed out that the thickness-to-radius-of-curvature ratio, material behavior,

type of construction (e. g., honeycomb sandwich or ring-stiffened shells), types

of loading, and other factors all play a role in establishing which theory is

applicable. Furthermore, shallow versus nonshallow shells required different

approaches even though they fell into the same thin shell theory.

In this section, differential equations and their solutions will be tabulated

for simple and complex rotationally symmetric geometries subjected to arbi-

trary rotationally symmetric loads. There are certain restraining conditions,

called edge restraints, that the solution must satisfy. The edge restraints are

reduced to unit loads and, by making the solution of the differential equations
satisfy these unit edge restraints, the influence coefficients lor the geometry

are obtained. These influence coefficients, etc., are then used to solve prob-

lems that involve determining stresses, strains, and displacements in simple

and complex geometries.

The procedure for bending analysis of thin shells will be as follows: The

surface loads, inertia loads, and thermally induced loads are included in the

equilibrium equations and will be part of the "membrane solution" using Section

B7.1. The solution due to edge restraints alone is then found and the results

superimposed over the membrane solution. The results obtained will be

essentially identical to those obtained by using the complete, exact bending

theory.

B7.3.1 GENERAL

The geometry, coordinates, stresses, and stress resultants [or a shell

of revolution are the same as given in Paragraph B7.1.1.0. Also, the nota-

tions and sign conventions are generally the same as those given in Paragraph

B7.1.1.1 and Paragraph B7.1.1.2, respectively. The limitations of analysis

are the same as given in Paragr,_ph B7.1.1.3, except that in this section flexural

strains, stresses, and stress resultants are no longer zero. Boundaries of the

shell need not be free to rotate and deflect normal to the shell middle surface.
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B7.3.1.1 Equations

I Equilibrium Equations

A shell element with the stress resultants as given in Section B7. 1.1.0

will now be considered and the conditions for its equilibrium under the influence

of all external and internal loads will be determined. The equations arising

by virtue of the demands of equilibrium and the compatibility of deformations

will be derived by considering an individual differential element.

The external loads are comprised of body forces that act on the element

and surface forces (stresses) that act on the upper and lower boundaries of the

element, which are sections of the curved surfaces bounding the shell. The

internal force8 will be stress resultants acting on the faces of the shell element.

For the following equations, external forces are replaced by statically
equivalent stresses distributed at the middle surfaces. The middle surface is

thus loaded by forces as well as moments.

Now, instead of considering the equilibrium of an element of a shell one

may study the equilibrium of the corresponding element of the middle surface.

The stresses, in general, vary from point to point in the shell, and as a result

the mtress resultants will also vary.

Consider the stress resultants of concern applied to the middle surface

of the shell as shown in Figures B7.3.1-1 and B7.3.1-2.

The equilibrium of the shell, in the 0, _b, and z coordinate directions

respectively, is given by the following equations:

+ + NO - N_b + Q0 -- + a la2Pl= 0ao o_ _ a_ ao R_

aa2N0O°tlN_b + .... _ + N _ N _ +
a_ ao _,o oo o a_ Q(_ al_ + _lCV2P2 = 0R2

+ OLlo_2q = 0

(la)
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FIGURE B7.3.1-1 TYPICAL SHELL REFERENCE ELEMENT \_ITH AXIAL

AND IN-PLANE SHEAR FORCES

z

FIGURE B7.3.1-2 TYPICAL SHELL REFERENCE ELEMENT WITH

TRANSVERSE SHEAR, BENDING, AND TWISTING ELEMENTS
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where Pl, P2, and q are components of the effective external force per unit area

applied to the middle surface of the shell.

The equilibrium of moments about the O, gS, and z coordinates results

in the following moment equilibrium expressions:

Dc_1hi d)
+ __.___._ _ MO _i + M80 Mocp 8_b 0(> 6pO O0 - Q,,_(_ 1c_2 = 0

c3c_l 0cx2 M 0 _)cv2

Mc_ 0 + -M + M = 0 {ib)
0

M M

- - o
N0gb - N._0 + 11t 1t2

The force components of the last equilibrium expression are due to

warping of the faces, and result from in-plane shears and twistinffmoments.

Now, for shells of revolution the resultant forces + Na, 0, QO) and

moments (M_0) vanish and cz 1 = R1; a 2 = II 2 sin +/_. Thc,refore, the equilibrium

equations beeom(;:

d(NdR)
I

d_ - NO Ill cos _ + (_,t. I/1 + l_l) 0

d(Qqll)

d_ - Ncl)RI - NOIII ,-;inr) + II1llq
=0

- M OR 1 cos dp - R 1RQ_b
=0
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where the second, fourth, and sixth equations of (1) have been identically
satisfied.

In the equilibrium equations presented here, changes in the dimensions

and in the shape of the element of the middle surface arising from its deforma-

tion have been neglected. This simplification arises from the assumption of
small deformations.

II Strain Displacement

For the particular case of axisymmetric deformations, the displacement

IV) is zero, and all derivatives of displacement components with respect to

0 vanish. In this case the middle surface strain-displacement equations be-
come:

o o 1 du w

Q = e_,_, - R1 d+p + lIT

o o _ _ udR2 w__
_2 = c o - R1 + l_lR2d_/_ + R2 (3)

o O

Yl2 = Y epO = 0

and the curvature and twist expressions become

K1 = K¢ = -Ri dc/_ dch -

K2=KO --_1 R2 d,,jLd+I' -u

t(12 = K_p0 = 0

("U



:_l .Tamm _/ J989
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dR dR2

for general surface of revolution, the expressions -_ and d,_-'---_
for R =H 2 sin 0:

dR

dO R 1 cos 0

are as follows

dH__2 =
d_p (Ri - R2) cot _ (5)

inserting equation (5) into equation (3) yields

ucot_ +
E2 - i_2 l{2

cot __ [.dw ul

while remaining strain-displacement equations of {3) and {4) are unchanged.

Ill Stress-Strain Equations

For an isotropic shell, the following constitutive equations relate stress

resultants and couples to components of strain:

Nil I-_-E el +_

Et ( o o)N2- i-p2 _2 + Pel

Et o

NI2 = N21- 2(l+p) TI2

M 1 =DIK l+pK2]

M2 --Dlg2 + Pgl]

(l-p)

Ml2 = M21 - 2 D KI2

where

m _

Et 3

12( 1 - p_)

(7)
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O O_
and where (middle surface) strains (el, e2 ,3,12, are given in equation (3) and

change in curvature and twist terms (KI, K2, KI2) are given in equation (4).

IV Solution of Equations

By eliminating Q_ from the first and last equilibrium equations (2) and

determining the force resultants from equation (7), two second-order ordinary

differential equations in the two unknown displacement components u and w are

obtained. Rather than obtain equations in this manner, however, a transforma-

tion of dependent variables can be performed leading to a more manageable

pair of equations, which for shells of constant meridional curvature and constant

thickness, combine into a single fourth-order equation solvable in terms of a

hypergeometric series.

The transformation to the Reissner-Meissner equations is accomplished

by introducing, two new variables, the angular rotation

and the, quantity

This substitution of variables leads to two second-order differential

equations in U and V replacing the corresponding two equations in u and w.

details of this transformation are illustrated in Reference I.

The

For shells of constant thickness and constant meridional curvature or,

in fact, for any shell of revolution satisfying the Meissner condition, the trans-

formed pair of equations can be combined into a single fourth-order equation,

the solution of which is determined from the solution of a second-order complex

equation. For shells of the description above, the shell equations can be

represented in the simplified form:
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(_ ___u _) = EtL + R1

-_11 --D

where the operator

L( ) = R_ll d2( )+ 1 I-_ R(-_I) R---_2cot¢l d( ) Rlc°t2_bd(_2 _1 + R 1 d_p - R 2 R 1

From the system shown above of two simultaneous differential equations

of second order, an equation of fourth order is obtained for each unknown.

Following operations described in Reference 1 yield an equation of the form

LL(U) + r4U= 0

F4 - Et u 2

D - 1_

The solution of the fourth-order equation can be considered the solution

of two second-order complex equations of the form

L(U) _" i FZU=0 .

Reissner-Meissner type equations are the most convenient and most

widely employed forms of the first approximation theory for axisymmetrically

loaded shells of revolution. They follow exactly from the relations of Lovers

first approximation when the meridional curvature and thickness are constant,

as they are for cylindrical, conical, spherical, and toroidal shells of uniform

thickness. Furthermore, they follow directly from Lovels equations in the

more general case, provided that special restraints on the variation of thickness

and geometry are satisfied.
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B7.3. I.2 Unit Loading Method

Generally a shell is a statically indeterminate structure. The internal

forces of the shell are determined from six equations of equilibrium, which are

derived from the three-force and three-moment equilibrium conditions.

There are ten unknowns thatmake the problem internally statically

indeterminate because determination of the unknowns does not depend on the

supports. The situationis similar to one that occurs in a truss which, as used

in practice, is a highly staticallyindeterminate system. If reactions to the

applied loading can be found with the help of known equations of statical equilib-

rium, the system is externally determinate; however, a truss is a statically

indeterminate system internally because, instead of the assumed simplification

(which introduces hinges at the joints), all joints are welded or riveted to-

gether. This introduces the moment into the members. However, this addi-

tional influence is usually negligible. To find the statically indeterminate

values, deformations must be considered.

The main objective of the following sections is to bypass the elaborate

calculations by replacing the classical methods of elasticity theory with the

simplified but accurate procedure called the unit loading method. This is

accomplished by enforcing the conditions of equilibrium, compatibility in

displacement, and rotations at the junctions.

I Comparison of Membrane and Bending Theories for Nonshallow Shells

As discussed in Sections B7.0 and B7.1, the bending theory is more

general than the membrane theory because it permits use of all possible

boundary conditions. To compare the two theories, assume a nonshallow

spherical shell with some axisymmetrical loading built in along the edges.
the results are compared, the following conclusions can be made:

When

1. The stresses and deformations are almost identical for all locations

of the shell with the exception of a narrow strip on the shell surface which is

adjacent to the boundary. This narrow strip is generally no wider than

where R is the radius and t is the thickness of the spherical shell.
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2. Except for the strip along the boundarT, all bending moments,

twisting moments, and vertical shears are negligible; this causes the entire

solution to be practically identical to the membrane solution.

3. Disturbances along the supporting edge are very significant; how-

ever, the local bending and shear decrease rapidly along the meridian, and

may become negligible outside of the narrow strip, as described in item 1.

Since the bending and membrane theories give practically the same

results, except for a strip adjacent to the boundary, the simple membrane

theory can be used; then, at the edges, the influence of moment and shear can

be applied to bring the displaced edge of the shell into the position prescribed

by boundary conditton_. The bending theory is used for this operation. Con-

sequently, once the solutions are obtained, they can be used later without any

special derivation. The results obtained from application of both theories c.')n

be superimposed, which will lead to the final results being almost identical to

those obtained by using the exact bending theory.

H Unit-Loading Method Applied to the Combined Theory

The solution of a shell of revolution under axisymmetrical loading can

be conducted in a simplified way, known as the unit-loading method.

i. Assume that the shell under consideration is a free membrane.

Obtain a solution for the overall stresses and distortions of the edges by using

Section B7.1. This is the primary solution.

2. Apply the following edge loadings:

a. Moment in inch-pounds per inch along the edge

b. Horizontal shear in pounds per inch along the edge

c. Vertical shear in pounds per inch along the edge
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These loadings should be of such magnitude as to be able to return the
distorted edge of the membrane into a position prescribed by the nature of

supports (edge condition). The third edge loading in the majority of cases is

not necessary. The amount of applied corrective loadings depends on the

magnitude of edge deformations due to the primary solution. The exact

magnitude will be determined by the interaction procedure to be explained in

Section B7.3.2. However, to start the interaction process, formulas will be

necessary for deformations due to the following:

a. Unit-edge moment: M = I pound per inch

b. Unit-edge horizontal shear: Q = 1 pound per inch

c. Unit-edge vertical shear: V = 1 pound per inch.

These solutions will be referred to as unit-edge influences, or as

secondary solutions.

3. Having the primary and unit-edge solutions, one can enter these

into the interaction process. This process will determine the correct amount

of corrective loadings (M, Q, and V); all stresses and distortions due to these

loadings can consequently be determined.

4. Superposition of stresses and distortions obtained by primary

solution and corrective loadings lead to the final solution.

B7.3.2 INTERACTION ANALYSIS

Missiles, space vehicles, and pressure vessels are examples of

structural configurations usually consisting of various combinations of shell

elements. For analysis, such complex shell configurations generally can be

broken down into simple elements. However, at the intersection of these

elements a discontinuity (point of abrupt change in geometry or loading) usually

exists; that is, unknown shears and moments are introduced. The common

shapes that a complex shell may be broken down to include spherical, elliptical,

conical, toroidal; these shapes also occur in compound bulkheads. Figure
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B7.3.2-1, for example, illustrates a compound bulkhead which consists of the

spherical transition between the conical and cylindrical sections. For analysis

of such a shell, the analyst must choose between two methods, dependiJ_g on the

accuracy required: (l) he can consider such a system as an irregular one :,nd

use some approximation, or (2) he can calculate it as a compound shell, usiL_g
the method of interaction.

In this section, the interaction method is presented which is applicable

not only to monocoque shells but also to sandwich and orthotropic shells. The

interacting elements are often constructed from different materials. The load-

ing can also vary considerably. The most frequently used loadings are i_ter_ml

or external pressure, axial tension or compression load, thermally induced

loads, and the thrust loads.

N,)h_': Shell "l')w't_l'y I)_FI

Not Apply Ilore.

_ '|'l_roidal

Cylimh'i(:;l]

FIGURE B7.3.2-1 COMPOUND BULKHEAD
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B7.3.2. t Interaction Between Two Shell Elements

For simplicity, the interaction between two structural elements will be

described first. The more general case of interaction of several elements, as

is usually the case when the combined bulkhead is under consideration, will be

described second. For the purpose of presentation, a system consisting of a

bulkhead and cylinder, pressurized internally, is selected. The bulkhead can

be considered as a unit element of some defined shape and will not be sub-

divided into separate portions in the great majority of cases. For example,

assume the pressurized container to be theoretically separated into two main

parts, the cylindrical shell and dome, as shown in Figure B7.3.2-2. Stresses

and deformations introduced by internal pressure (or another external loading)

can be determined for each part separately.

FIGURE B7.3.2-2 CYLINDRICAL SHELL AND DOME
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Assume that the membrane analysis {primary solution) supplied the

radial displacement (Ar _- 6 ) and rotation (_e) for the cylinder along thec

discontinuity line and &r = 5d and fld for the dome. Since the structure is

separated into two elements,

6c ¢ 6d

fie ¢ fld

Consequently, there exists the discontinuity as follows:

(a) in displacement 6c - 6d

(b} in slope tic - fld

To close this gap, unknown forces (Q and M) will be introduced around

the juncture to hold the two pieces together.

Displacements and rotation of the cylinder due to unit values of Q and

M are defined as follows:

Q6 Qfl and M6 M fi
C' C C' ('

The corresponding values for the dome for the same unit loadings will be:

6, M 5 flQd Qfldand d' Md

These unit deformations and unit loadings a.t the junctions are presented in

Figure B7.3. 2-3.
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M j

fl

_d( Around

M=!

.lun(:ti_m)

:'N

M
{.

M
1'

FIGURE B7.3.2-3 UNIT DEFORMATIONS AND UNIT LOADINGS

To close the gap, the following equations can be written:

Q +Qd, Q+ M +M M=Se-5 d

Thus, with the two equations, the two unknowns (Q and M) can be determined.

It is noted that one cut through the shell leads to two algebraic equations

with two unknowns.

The following sign convention is adopted:

1. Horizontal deflection, 5, is positive outward

2. Shears are positive if they cause deflection outward

3. Moments are positive if they cause tension on the inside fibers of

the shell
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4. Rotations are positive if they correspond to a positive moment.

In general, this sign convention is arbitrary. Any rule of signs may be

adopted if it does not conflict with logic and is used consistently.

Observe that in addition to M and Q, there is an axial force distribution

around the junction between the cylinder and dome (reaction of bulkhead), but

the effect of this force on the displacement due to M and Q is negligible.

B7.3. 2.2 Interaction Between Three or More Shell Elements

In practice, most cases are similar to the two-member interaction

described in the previous paragraph. However, at times it may be convenient

to consider interaction of more than two elements. This can be performed in

two ways:

1. Interact first the two elements; then, when this combination is

solved, interact it with the third element, etc.

2. Simultaneously interact all elements.

The first method is self-explanatory. The second method requires

further explanation. If the shape of the bulkhead is such that its meridian can-

not be approximated with one definite analytical curve, such a bulkhead is called

a compound bulkhead and can be approximated with many curves as shown in

Figure B7.3.2-1.

In this case, two or more imaginary cuts through the shell will be

required to separate the compound bulkhead into component shells of basic shape.

This is shown in Figure B7.3.2-4, where the compound shell has two imaginary

cuts separating the three elementary shells (spherical, toroidal, and cylindrical}.

Figure B7.3.2-4 also illustrates the loading and discontinuity influences that

belong to each cut. The discontinuity influences will restore the continuity of the

compound shell.
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Qi M! p ( 1itl,r l; P" ,,',' +, IZin.21

.!y indric:il Sh_ql

FIGURE B7.3.2-4 DISCONTINUITY LOADS

The symbols used for the two successive cuts m and n are also shown in

Figure B7.3.2-4.

M _
nn' Qnn = rotation at point n due to a unit moment M or unit

horizontal shear Q at point n

n 5M ' Qnn = horizontal displacement due to the same loading in
application points as above
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B
M =nlrl _

M 5 Q5
am' nm =

rotation at point n due to a unit moment M or unit

horizontal shear Q acting at point m

horizontal displacement due to the same loading in

application points as above.

Designating n = 1 and m = 2, the nomenclature above can be considered

proper indices for the toroidal portion (T) and Q as shown in Figure B7.3.2-4.

Figure
Additional nomenclature needed to cover the spherical shell portion of
B7.3.2-4 is as follows:

M 5 5
s' Qs =

rotations at point (_) on the spherical shell due to a unit

moment or unit shear at the same point

horizontal displacements due to the same conditions as stated
above.

Similarly, displacements and rotations of point (_) on the cylindrical

shell are defined by using subscript c (cylinder) instead of subscript s (sphere).

Due to the primary loading (internal pressure), the rotations and dis-

placements will be indicated with fl and Ar = A. As before, the subscripts c and

s refer to the cylinder and sphere. The subscripts It and 2t will be used to

denote the toroidal shell at the edges (_) and _ .

Now the equations for the total rotation and displacement can be formed.

Spherical Shell:

5 = M_M2+Q_Q2+A pS , S
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Toroidal Shell:

(52t= M_ M 2 + Q282Q2 + M261Mi + Qz61Q1 + A2tP

fl2t=Mfl2M2+Q_22Qz_MflM1+_IQi+fl2tp

Cylindrical Shell:

5c =MS cMI+QSQ1 +c AcP

tic =M_Ml+<Ql+flcpc

The following compatibility equations must be satisfied:

5s = 52t fls = fl2t

5 = ticc 5It = tilt

Following considerations of the relations above and some mathematical

rearrangements, a system of four linear equations with four unknowns will finally
be obtained. In matrix form they are:

M1

M2 Alt - _c
+

B2t -/_s

tilt - tic

p=O
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It is notedthat two imaginary cuts lead to four equationswith four
unknowns: M1, M2, Q1, andQ2.

Previously, when considering only one imaginary cut, only two equations
with two unknownswere obtained. Consequently, if n imaginary cuts are intro-
duced simultaneously, 2n linear equations with 2n unknownscanbe obtained.

It canbe concludedthat the problem of interaction is reduced to the
problem of finding rotation (fl) and displacements (Ar = 5) of interacting
structural elements due to the primary loadings and the secondary loadings

(M = Q = 1) (around the junction). The rotations and displacements then will be

introduced into a set of linear equations and statically indeterminate values (M

and Q) will be found.

B7.3.3 EDGE INFLUENCE COEFFICIENTS

The shells considered in this section are homogeneous isotropic

monocoque shells of revolution. Thin shells are considered and all loadings

are axisymmetrical. Par'_graph B7.3.4 will present necessary modifications

of derived formulas for nonhomogeneous material and nonmonocoque shells.

B7.3.3. i General Discussion

Unit loadings (defined in Paragraph B7.3.1.2) are the loadings acting

on upper or lower edge of shell:

M = I lb-in./in.

Q = 1 lb/in.

Unit influences are deformations and forces in a shell of revolution due

to unit loadings. Influences of this nature are of load character and do not

progress very far into the shell from the disturbed edge. Various differently

shaped shells are covered at this location. Of special interest is a shell that
=represents a bulkhead, which is characterized with qSma x 90 ° such bulkheads

+
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are very common in aerospace vehicles and pressure vessels. The bulkhead

shells are tangent to the cylindrical body of the vehicle.

When th_ values of deformations due to the unit loadings are available,

the deformations, along with the primary deformations, can be used to deter-

mine discontinuity stresses (Paragraph B7.3.2).

The bending theory is used to obtain the influence coefficients due to

unit loadings. The fundamentals of this procedure were explained previously.

It has been mentioned that deflections and internal loads due to unit

loadings are of local importance. It can be concluded that disturbances due

to edge-unit loadings will disappear completely for _ _: 20 ° and will become

negligible for a > 10 °, as shown in T_,ble B7.3.3-1, for a spherical shell.

TABLE B7. 3.3-1 UNIT-EDGE LOADING SOLUTIONS

A
? :,

N N M

q

M Q & r s
0

i q

D q,...
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Table B7.3.3-1 illustrates a very important conclusion: due to the unit-

edge loadings, practically all parts of the shell satisfying the condition _ _> 20 °

will remain unstressed and undisturbed. These parts will not be needed for

satisfying equilibrium. They do not affect the stresses and deformations in the

disturbed zone 0 < _ < 20 ° in any way. The material above _ = 20 ° can be

deleted because this material does not contribute to the stresses or strains,

which are computed for the zone defined by 0 < (_ < 20 °. No values of stresses

or deformations will be changed in the zone 0 < c_ < 20 ° if we replace the

removed material with any shape of shell (Figure B7.3.3-1) which illustrates

imaginary operations. Consequently, cases (A), (B), and (C) of Figure

B7.3.3-1 are statically equivalent. This discussion leads to the following
conclusions:

1. The spherical shell of revolution, loaded with the unit loadings

( M = Q = 1), acts as a lower segment would act under the same loading ( seg-

ment defined with _ = 20 °) . Consequently, it does not matter what shape the

rest of the shell has ( Figure B7.3.3-2).

2. If any shell at the lower portion (which is adjusted to the load edge)

can be approximated with the spherical shell to a satisfactory degree, the

solution obtained for the spherical shell which is loaded with M = Q = 1 all

around the edges (Figures B7.3.3-2 and B7.3.3-3) can be used for the actual
shell.

I Unhmde, d, Unstressed, and

Und(ffornmd Part !

(A) (j_) (c)

FIGURE B7.3.3-I STATICALLY ANALOGICAL SHELLS
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I

FIGURE B7.3.3-2 DIFFERENT

VARIANTS FOR UNSTRESSED

PORTION

FIGURE B7.3.3-3 APPROXIMATION

WITH THE SPHERE

3. When accuracy requirements are relaxed, a = 10 ° may be used in
place of a = 20 ° .

Another approximation, known as Geckeler's assumption, may be useful;

i. e. , if the thickness of the shell (t) is small in comparison with equatorial

radius (r 1 = a) and limited by the relation (a/t > 50}, the bending stresses at

the edge may be determined by cylindrical shell theory. Meissner even recom-

mends a/t > 30. This means that the bulkhead shell can be approximated with a

cylinder for finding unit influences. Many solutions can be presented for various

shaped shells due to the unit loading action. This is done in the following para-
graphs.

B7.3.3.2 Definition of F-Factors

The general solution of the homogeneous differential equation

w'"' + 4Klw = 0

can be represented with the following combination of trigonometric and
hyperbolic functions:
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coshkL_ cos kL_ sinh kL_ cos kL_

cosh kL_ sin kL_ sinh kL_ sin kL_

where kL is a dimensionless parameter and _ is a dimensionless ordinate.

In the sections which follow, F-factors will be used that simplify the
analysis. Definitions of the F-factors in Table B7.3.3-2 are taken from
Reference 2. As a special parameter for determining the F-factors, _?is
considered as follows:

F = F(_7)

For a cylindrical shell

i. e., F 1 = sinh2_7 + sin2_

_?=kLor 7?=kL_ andk=
_Rt

For a conical shell

_?=kLor 7?=kLandk=

_] 3( i _#2)

_/tx cotcy0
m

For a spherical shell

77= k for F.; 7? = k(_ for F.(a) and k = _]3(1-p 2) (R/t) 2
1 1

Graphs of the functions are presented in Reference 2.
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TABLE B7.3.3-2 F.(_) AND F. FACTORS
1 1

!

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2o

Fl{ 0

sinh 2 kL_ + sin 2 kL_

sinh kL_ cosh kL_ + sin kL_ cos kL_

shah kL_ cosh kL_ - sin kL_ cos kL_

sin 2 kL_

sinh 2 kL_

cosh kL_ cos kL_

sinh kL_ sin kL_

cosh kL_ sin kL_ - sinh kL_ cos kL_

F i

sinh ] kL - sia I kL

stab 2 kL + sia z kL

siah kL cosh kL + sin kL cos kL

slnh kL cosh kL - sin kL co8 kL

sin 2 kL

sinh 2 kL

cosh kL cos kL

siah kL sin kL

cosh kL sin kL - ainh kl. cos kl,

cosh kL_ sin kL¢ + siah kLt cos kL_ cosh kL sin kL + sinh kl, cos kl.

sin kL_ cos kL_ sin kL cos kl,

sitffl kL( cosh kL¢

cosh kL_ cos kI.,¢ - sinh kL_ sin kL¢

sinh kl, cosh kl,

cosh ki, cos kl, - sixth kL sin kl,

cosh kL¢ cos kL_ + siah kL¢ sin kL¢ cosh kl, cos kL + sinh kl, sin kl,

cosh kI,_ sin kLt cosh kI, sin kL

sinh kL¢ cos kL¢ ainh kL cos kl,

exp (-kL_ cos kL_) exp(-kL cos kI.)

expt-kLt sin kL 0 exp(-kl, sin klJ

exp[-kL_(cos kLt + sin kLO| exp[-kL(cos kL + sin klJ ]

exp[-kL¢(cos kL_ - sin kLO] exp[-kL(cos kL - sin kL)]
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B7.3. 3.3 Spherical Shells

The boundaries of the shells considered herein must be free to rotate

and deflect vertically and horizontally because of the action of unit loadings.

Abrupt discontinuities in the shell thickness must not be present. Thickness of

the shell must be uniform in the range in which the stresses exist.

I Nonshallow Spherical Shells

Formulas will be tabulated for closed and open spherical shells. Open

shells are shells that have an axisymmetrical circular opening at the apex.

Unit-edge loadings may act at the lower or upper edge of the open shell. Linear

bending theory was employed for derivation of the formulas presented.

The following designations will be used:

k= _(R/t) 2 3(l-/a 2) ; _ = _1- _) •

Tables B7.3.3-3, B7.3.3-4, B7.3.3-5, and B7.3.3-6 are presented.

II Shallow Spherical Shells

This section presents, for shallow spherical shells, the solutions which

satisfy the relation

i
cot _ - --

which is characteristic for the category of shallow spherical shells. Physically,

this means that for shallow shells the disturbances resulting from unit-edge

loadings will not decay before reaching the apex. Consequently, from diametri-

cally opposite edge loadings, disturbances will be superimposed in some area

around the apex.

Tables B7.3. 3-7 and B7.3.3-8 are presented.
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CLOSED SPHERICAL SHELL

_° (_ _)-x/2Q sin 91 e cos s +
2Mk -ka

+ _ e sin kaQ¢ a

N O - Q0 cot 0 - QO cot _b

-ks Mk2 -ks (k 4)N O 2Qk sin mle cos ks 2_-2 _ e cos c_ +

e_° (. )M0 RQ sin ¢1 sin ks ,_Me-kS ,Tk sin c_ +

RQ sin Ol(cot 4)) e -ks

k 2,_

sin(kc_ + 4) +.M(_

M -k(_
cot 96 e cos kc_ + pM_

k (p

M

_° (_ _) _ -_oE_ -2 _2Qk 2 sin _le sin c_ + - _ e cos k(_
R

]::t(Ar) RQ sin 01 e-kS [2k sin 4) cos ks-'_p R sin (b(N 0 -pN(b )

oos__o_(_o+_)]
For _ = 0, 0 = <bl

EtZ -2Qk 2 sin 01
4k3M

R

Et(Ar) QR sin 01(2k sin O1 - #cos 01) 2Mk 2 sin 01

For 01:: 90*, c_ = 0

Et_ -2k2Q - 4k---'_3M
R

Et(Ar) 2 RkQ 2 k2M
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TABLE B7.3.3-4 OPEN SPHERICAL SHELL

Boundary Conditions

ot :: 0(0 =-'"1): M = 0
('2

tlik : Qik sin '"1 + Nik cos 4) 1

|tllx.'rna[ Fol'ces and I),'lo]'nl;itiol]._

N+5 I11_.: Sill ,.', ('()t ,) "-((1), - }"t l:l_]t(L) + ]"1 l"_((_)

N j -Ilik k sin (5 t -l.'u((,,) -- --' ' l._._l, ' 1 1'1 ((') + _ ll' ]' _, r _

(_),,_ Ilik sin ,3 I ";((_'J - ---i:1 |"ll((_J _ _ ['i_(_)

M(j

I { [ 1",1 1:2 )]-Ilik 2_ sin ,31 -l.'l_l{_) + 2 --1.1 I"_L_) - --i.,1 I":_L(_

_in '."1 -| I:_.,) - _F'1,j_. + cot ,:,

I"2 ICk c5["1

I{ k " '

-llik _ sia _,)sin 01 _-F9(_) -2 _ l",,,(_) + _ 1"_o(_7

-Iiik_ sin 01 Fe((_, ) _ F_ Fg((g) + F_?,. FT(_)
F1 F1
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TABLE B7.3.3-4 OPEN SPHERICAL SHELL (Continued)

® I

Boundary Conditions

_=0

Ot =_ 0

Me = -Mik

Q¢,= o

M_b=0

Internal Forces and Deformations

N_

N o

M_

Mik cot (b _- _1 F15(°t) + Fie (o_) - FS(O_FI F1

-Mik 2K---_21F-_I:I4((_)+FSFI3(c_)RF I F I - F3FI F1°(c_']

r

Mik " LF1 F1 FI6 (c_) - FI
°

1

- F I k FIS((_) -/_Fi4(_)I_

F1 i

M0 -Mik FI-F-'IFI3(_) - _Fi FI4((_)+ F--ALFg(a)]Ft

2k2 'Fs _ Fia(ot) F__ Fi0((_}
Ar -Mik -_ sin (b£ FI4(_) + Fi - FI

4k3 _ FI6(oQ _ .__ Fls(Ot) _ F$
/3 -Mik _ - Fi Fi _i FT(a)
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TABLE B7.3.3-4 OPEN SPHERICAL SHELL (Continued)

NQki / (_ IIki

l_ounda ry Conditions

(_O = 0

(_ = ao(O --- 0,) M ,, : 0

llki = -Qki sin o., - Nki cos 0 2

Internal Forces and l)cform:ltion.s

N O llki cot O sin 02 I:_ l.lot(_) -2 1_ 1:_,)]

N 2k [- _FI . + ]_1,,1 _]llki sm 02 I"- t _) FI0_ (_

IF, 2F8 ]Qo ttki sin o2 f_ r,0 t., - _.q- l"_t_

3I
o

M o

_r

Hki _- sin ¢:'2 FI I"sLe_) - F! F.qto')

Rk ri% F8

-Hki sin 02 _ 2 sin 0L--_l FT(_ - 71 I"10(o 'l

j3 Hki sin 02 _- F9(_) + FI
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TABLE B7.3.3-4 OPENSPttERICAL SHELL (Concluded)

l_()tlll(f;Iry ('()nllilioll._;

oe = oe0((') = 02) : hl ,\I
,/) k i

(..)¢, : 0

Int(,rn:ll Fol'(,es :)rl(l [)('f()r)nati_))]s

2k "I"A I"1o

N O Mki _-- -2 _ l.'T((t.) + ---- [,'lr,{(_ )].' 1

r -I
2kl_ t.'u ],_ J'_ ,,:

Q¢) -Mki T[]71 I"1o(" + lCl

M_ Mki 2 _FI 1,8(_ ) -_FI° 0-- _7, ]2{:1 ((tr

M0 M "[F--a --_)t-L9-- _ 2_ Foot- kiIF t k F_t(,,) - pXl.'a((_ + I"1 k

2k2 1"8 1"10

Ar Mki-V-_-- sin 4, -2--FI l.'.,.(,_) + 177- 1.',o((_) J

4k3 IF8 l.'.q((vj + !:'lt_ i,,¢,1_Mki _ V t I. 1 ,
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OPEN (OR CLOSED) SPHERICAL SHELL EXPOSED TO

UNIT DISTORTIONS AT LOWER EDGE

Rotalhm [J ik

,

Boundary Conditions

a=0(_b=01) : Ar=0:fl=/Jik

a =cr0(q) = qb2) : Ar = 0:fl= 0 I
Internal Forces and Deformations

1Et "F 2 F_(_) + F__ Fg(Ol) _ Fs(oZ)
N flik cot _ ,2k----2 .F 1 FI

Et _ F 2 Fg(_ )+ 2 Fa F8(_ ) _ Flo{_
NO -fiik 2-k - F 1 F 1 ]

Q_

Me

Et F2 FT(a ) + F4
flik 2k2 F 1 _ F_(_) - FS(_}

REt F2 Fi0(o_) + 2 F-A F?(_) + Fg(c_ 1
-flik --_ FI F1 J

REt
M 0 /3ik 4k 3

Ar R F2 Fg(o_) + 2 Fa Fs((P) - FI0((_)
-flik 2-k sin 0 - F1 Fl

F2 Fs(a ) + F4 "!-_ik - F 1 _I FI°(_} - FT( )i
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TABLE BT. 3.3-6 OPEN (OR CLOS]_D) SPHERICAL SHELL EXPOSED TO

UNIT DISTORTIONS AT LOWER EDGE (Continued)

Boundary Condition8

o ,.(_ = _bi) : _= 0. AV= AVik

a=ao(Cp=cp2): _=0, AV=0

Internal Forces and Deformations

AVik Fitcot gb

N_ R[( 1÷_} sin g)l F3 + k cos _1FI]
[- F3FT(a) - FsFIs(_) + FsFI6(_) ]

- AVik Et k

N_ R[(I+_) sin 4)1F3+kcos _)IFI] [F3Fs(c_) - FsFt4(_) + F_FIs((_)]

Qc_

AVik Et

]_[(l+p) sin g)i F3'+k cos g)IF1] [- F3Fz(c_) - FsF15(c_) + F'6FI6(c_)]

-/'aVik Et

M4) 2k[(l+p) sin _1 F_ + kcos 011"I] [F3F1°(_) - FsF13(c_) - F6F14(c_)]

M 0 2k[(l+p) sinOtF3+kcoscPlI,'t] F3 Fs(c_) -pFl0(c_ -F 5

Ar

2k 2 AVik

R[_I+/_) sin _biF 3 +kcos _btF'i] [F,F,(.) - FsF,s(a) - F, FB(- _
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TABLE B7.3.3-6 OPEN (OR CLOSED) SPHERICAL SHELL EXPOSED TO

UNIT DISTORTIONS AT LOWER EDGE (Concluded)

Displacement A rik

I "_ ®

& rik

Boundary Conditions

a =0(0 =01): Ar= Arik , fl=0

=0(0 =02): Ar=0, B =0

No

N
0

QO

M 0

M o

-_r

Internal Forces and Deformations

1Et F3 FT(a ) + F5 Fls(a) F__ Fls(a)
Arik cot 0 Rk sin 0 F1 - F1

_F
Et l _. Fg(_ ) ___ Ft._(_ ) + _ F13(_)

Arik R sin 01 F1 - FI FI

Et "F__! FT(c_) F 5 Fis(+) F s F16(c_ )
Arik Rk sin 0t FI Ft - Fl

Et "F3 F10(o_ ) F 5 Ft3(_) F 6 F14(a)
Arik 2k 2 sin 0t'Ft - F 1 - F t

EI { F3 -cot_ F,(_) _#Ft0(c_) + F_ [COk._ F16 (&rik 2k 2 sin 0 - F t k F 1

+ F6 _Fls(O_) - pF14(u)-
F 1 k

1Arik _ "F 3 F9(¢_) _ F_ Ft4(_) + F_ Ft3(o_ )
sin 01 FI Fi FI

"l

_ ) -- _F13(ot) !

2k "F 3 FS(_ ) __FI¢(_} __ FIS(_)"
Arik R sin 01 FI - FI - F1
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TABLE B7.3.3-7 EDGE-LOADED SHALLOW

SPHERICAL SHELLS

Complete (or "Long")

Spherical Cap,

Shallow,

Constant t,

Edge Moment M

_soi8

Differential

Equation and

Boundary

Conditions

Solution

Forces

Edge Influence

Coefficients

rl - r z - a [

!

l

/--o°-.t /
Esslingerts Approximation

d4Q_ 2 d3Q_ 3 d2Q_ 3 dQ_ 3

de 4 + _b d_3 ¢2 d_bZ + ¢_ d_ - _"_ Q_

az
where k 4 = 3(1-_z)

Q¢) =0 M = M

CIM Be r,( k._/_qb ) C2M M
Q0 - k - ---_---Bei'(k_'.,_)

M

NO = (nl CIM + n2 C2M) t

M

NO -: (ql CIM + _72 C2M) t

M( = (m i CIM + m 2 C2M) M

M 0 : pM(_ + (k I CIM + k2 C2M) M

X b X a

CVM =- Et_O CwM = Etqb---_

+ 4kaQ0 = 0

Notes: Approximate useful range: _0 < 20°.

For Ber'(k'4-2¢} , Bet' (k _/'2¢) see Reference 3.

For CIM, C2M, Xa, and % as functions of _2"@0 see Table BT. 3.3-8.

For n i, n_.... etc. as function of k _42"@see Table B7.3. 3-8
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TABLE B7.3.3-7 EDGE-LOADED SHALLOW

SPHERICAL SHELLS (Continued)

t_'olllplult' ( oI" " 1,ollt_")

Spherical Cap.

5ha I 1o,,_,,

('CIIIS| :1ZI( t,

tkl_e I"_rCC II

I)it_crt,_tia[

l-:q ua tionl :13lt]

|:_ouT]da rv

C_miitions

r I r 2 .'1

f

\°< / "

I'i ,_,'.,1i II I._t I" ?_ A p|_l'a_.\ h11:ltiol|

a 2

I_ ('211 1

N ° :: tn 1 Cll I + n 2 (.'21t) tl

Edge Influence

Coefficients

Notes: Approximate useful

N9 = (_1 CIH + _/2 C21I) II

M b= (m I CIH + m 2 C2H) tit

M 0 = pM + (k 1 C1H + k 2 C2H) lit

X Y¢
a a

CVH = Et_---'-O CwH =- E_b-"_

range: _b o < 20".

For Ber'(k ',]_b) , Bei_(k n/2"@) see Reference 3.

For CIH, C2H , W a, and X a as functions of k _r2_b o see Table B7.3.3-8.

For hi, a 8 .... etc., as functions of k _/2"_b $_ Table .BT. 3.3-8.
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TABLE B7.3.3-7 EDGE-LOADED SHALLOW

SPHERICAL SHELLS (Continued}

Complete (or "Long,)

Spherical Shell,

Shallow Opening,

Constant t,

Edge Moment M

r I = r 2 ==a

M I M

Basic Esslinger's Approximation

Dillt'rential Equ:Jtion

:rod Dound:l ry

Conditions

_¢dtllil>l]

d++, +p d_+ _++ de: 7,3 dl+

where k £ 3( 1 -#z) t:-;--

I - 0 M,], MQ¢ 4'= I'o I' +1'_

3

. +

(" M
(_, 7 i-'7-- L-7-

I':dge Influvtlce

Coelflcients

,M
Nq, :IH3 C3M t- n 4 C4M j _--

M
N = (r_:_ C:+M + _l+!CtMJ _-

IX|_ _ Ira:+ C:I M + m4 C4M j M

M phl]j + I,k 3 C M , k I C4M _ ,",1

Xd X
= c

CVM i.:t2¢,o CwM = Eta0

Notes: Approximate useful range: _o • 20".

For Ker I (k ',/2"_), KeU (k _J2¢J see Reference 3.

For C3M, C4M, Xc, and X d as funetio-a of k'4r'2_l see Table B7.3. 3-8.

For %, n4 .... etc. am functions of k',/2_b see Table B7.3.3-8.
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TABLE B7.3.3-7 EDGE-LOADED SHALLOW

SPHERICAL SHELLS (Concluded)

Complete (or "Long")

Spherical Shell,

Shallow Opening,

Constant t,

Edge Force H

r I _ r2 _ a

I

Basis Esslinger's Approximation

Differential

Equation and

Bounda_,
Conditb,ns

_ nere k4

_'11 'f '/' rl

de 3 ,_" de 2 _b3 d,/_

:t 2

- II ,/L> ,xt,j, ,,
/

2 C411

["I_ r c'(,,'-,

l':d ge hffl ut.,nc,c
C_efficicnts

N/_ Izlt C31 ! * n 4 ('411 _ tl

X : (n: I C311 - _4 C4111 tl

Mq_ {m 3 C311 + m 4 C41t J lit

hl #Mb _- (k 3 C311 + k4 C411J lit

X W
c e

CVH = Etq_----_" C_'ll E'_b--_

Noles: Approximate useful range: _O < 20.

For Ker' [k ,4'_), Kel'(k ',J'2_) see Reference 3

For C3H, C4H , W, and X as functions of k _/'2_b$ see Table B7.3.3-8.e

For n_, n4 .... etc. as functions of k ',_ see Table B7.3.3-8.
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SHALLOW SPHERICAL SHELL COEFFICIENTS

Equations for the EMllnger Coefficients for Table B7.3.3-7

= K'_ [k.q_$o_2-(l-kt)_'t' ]ClH

C2H =- 2

ClM= - K,,

a L

K,2 = _z _ 0,'* .... _1'_"" _-':J

,,j ,J_" ___

k'_q,

!
-

1

•t/ 1_

C2M - K,. 71' "]_ l-P _J

+ h2_ _ 2(k 45_e 2 _ _'_ - _' _._ _ _l-,-_k _,,_ _;-_ + _-';_1
J

k\'_'l'

k.]_-',f' k",_,I,J

k, 1 • _:
" _ III

_1, _, _, _' are Seh|eieher functions and their derivatives fur the argument k x,"2,,_ :lnrl _.'e

related to Bcssel-Kelvtn functions by _tl = ber, _ - -bei, ¢1 = ber_, and _ = -bei',

(Reference 1, pages 491-494, and 6-17, 6-20, and 6-32)
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SHALLOW SPHERICAL SHELL COEFFICIENTS (Concluded)

Equations for the Essllnger Coefficients for Table BT. 3.3-7

Kit [t.J"20o_4-(l-#)_s' ]C3H = __

C4H = __

C3M = -K34_; _i-.2)

W = K3t [(k ',,f2"_ o) 3
c _f_'( 1 - V})

Xc = -K"[ (k_J_*°)2(_q_'+_'_,]

[ ]t-g

k#-24,o

., =4-_" _,'
kJ_¢

L

k4 : - 4"_"- n$

@_, _4, _t _, are 8chleicher fuactloas and their derivatives for the argument k _]2"0 a_d are

(Referenoe 1, pal_es 491-494, sad 6-t7, 6-S0, aml 6-32)
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B7.3.3.4 Cylindrical Shells

This paragraph presents the solutions for long and short cylinders,

loaded along the boundary with the unit-edge loadings (moments, shear, forced

horizontal displacement, and forced rotation at the boundary). All disturbances

in the cylindrical wall caused by edge loading will become, for practical pur-

poses, negligible at distance x = _/'R't. If the height of the cylinder is less than

x, the analyst is dealing with a circular ring instead of a shell. Further, to be

conservative, the following precautions should be taken.

a. If kL -< 5, the more exact theory is used, and such cylinders are

designated as short cylinders.

b. If kL _ 5, the simplified formula is used; this is a special case of

the more general case a.

The constant k is defined as follows:

k4= 3(I -p2)/R 2t2

The primary solutions (membrane theory) will not be affected by the

length of the cylinder. The boundaries must be free to rotate and deflect be-

cause of the action of the unit-edge loadings. The shell thickness must be

uniform in the range where the stresses are present.

I Long Cylinders

The formulas for the disturbances caused by unit-edge loadings are

presented in Table B7.3.3-9. In this table,

Et3
D-

12( 1 -
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TABLE B7.3.3-9 LONG CYLINDRICAL SHELLS, UNIT-EDGE
LOADING SOLUTIONS

N
X

N_

Mx

M 0

Q

&r

Q=I

l
t ,
4

N NO M M0 Q A rX X

t

Oak -k_

L

L -k_,
e sink_

_M
x

e sin _ +
_.k:D

'7

L

M=I

I
I

_.__R Nx NO Mx M0 Q Ar

¢

z_ • l,k2 -k_ (c cos k]} +
|-

uM
X

2k ok/3
-_ e sin k_

L -k,_
- _ _ co_ k_

= - _ e COS _ +

- E't 0 - PNx x/_Dk2

For the Case _ = 0

L _

L 3

-L

Dk

_L 2
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12 Short Cylinders

The following constants are used for Tables B7.3.3-10 and B7.3.3-11:

k 4 = 3( 1 - p2)/R2 t2

p = sinh 2 flL - sin 2 flL

K 1 = (sinh flL cosh flL - sin fiL cos flL)/p

K 2 = (sin flL cosh flL - cos flL sinh ilL)/p

K s = (sinh 2 flL + sin 2 flL)/p

K 4 = 2 sinh flL sin flL/p

K 5 = 2( sin flL cos flL + sinh flL cosh flL)/p

K_ 2( sin flL cosh flL + cos flL siah ilL)/p

The formulas for unit-edge loading disturbances are presented in

Tables B7.3.3-10 and B7.3.3-11. To use these formulas the relation flL -< 5
must be satisfied.

A summary of edge distortions resulting from edge loadings is given in
Table B7.3.3-12.

B7.3.3.5 Conical Shells

This paragraph presents the solutions for nonshallow open or closed

conical shells in which _0 is not small. There is no exact information about

limiting angle _0 • It is recommended that consideration be limited to the range

of (_0 >-- 45°- If _0 = 90°, the cone degenerates into a cylinder.
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Another limitation must be applied to the height of the cone. As in the

case of the sphere, the disturbances due to unit-edge loadings will decay at a

short distance from the disturbed edge (for practical purposes, approximately

at _f_00t). Consequently, a '_igh" cone is characterized by an undisturbed edge

(or apex) as a result of unit-loading influences on the respective opposite edge.

The boundaries must be free to rotate and deflect vertically and hori-

zontally as a result of the action of the unit-edge loadings. Abrupt discontin-
uities in the shell thickness must not be present. The thickness of the shell

must be uniform in the range in which the stresses exist.

The formulas are assembled for closed and open conical shells. Open

conical shells are characterized by removal of tile upper part above some

circumference in the plane parallel to the base.

Linear bending theory was used to derive the following formulas. If

the height of the segment is less than _{-Rt, the analyst is practically dealing

with a circular ring instead of a shell. The following constants are important:

k- h _]'3(1-p2) , R 0= MAX R

, _Rot sin _b

Et 3
D-

12( 1- p2)

Additional designations are indicated in Fil,mre B7.3.3-4.

R is variable and is perpendicular to the meridian. Angle (qS)is con-

stant. Table B7.3.3-13 presents the formulas for a closed conical shell.

I Open Conical Shell, Unit Loading at Lower Edge

Since unit influences are not progressing very far from the e(li4e into tim

cone, the formulas presented in Table B7.3.3-13 can be used [or the c,_,Lc wiLh

opentng at vertex ( Figure B7.3.3-5).
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X m _.

FIGURE B7.3.3-4 CONE NOMENCLATURE

( )l_!njng

I

/"i x

I

FIGURE B7.3.3-5 OPEN CONICAL SHELL LOADING

AT LOWER EDGE
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TABLE B7.3.3-13 CONICAL SHEIcL, UNIT-EDGE LOADING SOLUTIONS

llorizontai Unit

£

r

Unit M,)m('nt lJoading_

N

N

.M

Q

-,]:-.','os ¢ e cos _ +

'21{:k sin': o -k_
t' cos k_t

-kcr
2kcos _ e sin kc_

h

h: _ z-kn sin (k(v + z
,4r_2Hk: sin 0 ' "4 ) ¢" vM4'

[I

L< t' _in k. _,f:_-2 c -l_,,v r

h ('(,t 0 c cos k(,

2xf_2Rk 2 sin 2 (5 -k_

h2 e cos k(_ +

uM,/,Ilk ninny

- ( :)-\'2 sia 0 • e cos ko + -_

:-'I<'<in (,', -k_

h

]}i l()l'llI;lli¢)tl>

.-.%1" -I<(_ I

h? e h

_I)I< ? sin l' vo_ k. - ,_nk

T

h2 -k,,.i,,( .-4)
"_:l)k" sin _)

21)_ _Ul 0

h :'l_ ,') _Jll k(¥ 1

* ; I] k_ln 2 _', j

-k()
h (' ('()_ k¢i

I)k _in ,.)

[,or (_ II

,.._ I"
2Dk 3 sin _ 1 - 2Hk .uin ,_

112

- ½'])k:sino

112

2l)k ° .'-;in ,.')

Dk sitl ,,')
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II Open Conical Shell_ Unit Loading at Upper Edge

If it is imagined that the shell, loaded as shown in Figure B7.3.3-6(A),

is replaced with shell as shown in Figure B7.3.3-6(B), the result is a conical

shell loaded with unit loading at the lower edge. The same formulas are used

for determining edge influence, but it is noted that _ > 90*.

An additional set of formulas for open conical shells (that can be also

used for closed cone) is presented in Table B7.3.3-14. These formulas are

expressed with the functions F. and F.( 4), which are tabulated in Paragraphl
B7.3.3.2. The following constant is used for k:

_3( 1 _/_2)
k-

_] tXm cot o_0

/\
/ \

/ \

'
(A)

¢

I
I

M M
(!_)

FIGURE BT. 3.3-6 OPEN CONICAL SHELL LOADING

AT UPPER EDGE
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In connection with some problems, it may be of interest to know the

stresses and displacements'in the conical shell (closed or open), if unit dis-

placements at the edges are acting instead of M and Q:

At lower boundary i

At upper boundary k

i Arik = unit displacement in horizontal

direction

_Bik = unit rotation.

i Arik =

flik =

unit displacement in horizontal
direction

unit rotation.

Table B7. 3. 3-15( a) supplies the answer to this problem. Table B7. 3. 3-15( b)

presents a summary of edge distortions resulting from secondary loading of a

conical segment with free edges.

B7.3.3.6 Circular Plates

A collection of solutions for circular plates with different axisymmetrical

loading conditions is presented in this section. Circular plates with and without

a central circular hole are considered. These solutions can be used individually

or in the process of interaction with more complicated structures. The following
nomenclature will be used:

w = deflection

= rotation

E = Youngts modulus

= Poisson_s ratio

t = thickness of plate

Et 3

D - 12(I_ 2)
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M = radial moment
r

M t = tangential moment

Qr = radial shear.

Other designations are indicated in tables presented in this section.

The formulas presented were derived by using the linear bending theory.

The "primary" solution is presented first; then "secondary" solutions are

presented in the same way as for the shells. Finally, special cases (fixed

boundary conditions) will be given.

I Primary Solutions

Primary solutions are assembled in Tables B7.3.3-16 and B7.3.3-17.

II Secondary Solutions

The only unit-edge loading of importance is a unit moment loading along

the edgel (Figure BT. 3.3-7). Table B7.3.3-18 presents solutions for this

loading for different cases of circular plate with and without the circular opening

at the center. Table B7.3.3-19 presents the stresses in circular plates resulting

from edge elongation.

III Special Cases

Special cases and solutions for circular plates that occur commonly in

practice are presented in this paragraph. The geometry, boundary conditions,

and loadings for special circular plates (with and without a central hole) are

shown in Tables B7.3.3-20, B7.3. 3-21, and B7.3.3-22.
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TABLE B7.3.3-16 SIMPLY SUPPORTED CIRCULAR PLATES

Loading Constant

p :- const.; p = pa_w

A= P P--£-
2a-"_ ; Qr : 2aw

fP

II Illlllll|lllllllllllJlJll Illln

N

Vlr

_It

_r

Parabolic Distribution

p Po(l _p2); p Poa2._

v pp( 2 - p2)
A :: 2a"_ ; Qr = 2wa

Po P

W

M r

M t

Pa2(1 -p) (5+_
64DTr 1 + #

(3+:_e
16DTr \1 + p - p2 ]

288DTr 1 + p 1 +/_

Pap(13+ 5p- 6p2+p4 )48D_r i + #

P
]-_ (3 + _)(1-pb

T_ + p" - ( 1 +, 3#)p 2

+ 5p.- 6(3+#)p2 + (5+p)p4]

+ 5#- 6(1+ 3#)p 2 + (1 + 5p) p4J
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TABLE B7.3. 3-16 SIMPLY SUPPORTED CIRCULAR PLATES (Continued)

Conical Distribution

W

p = po ( l - p) ; P _ Po a2 .-_

P Pp(:_ - 2p t
h = 2.--_w; Qr = 2aw

v _ v

• I i

W

M
I"

M t

Qr

ll(:verse Parabo] it'

w

P l),)(l -p) 2; p I)oa .:_

p l)p((; - x/> ) :I I,
2w:---{; Qr - 2:,w

M t

_t_ r

W

M
r

M
r

Pa 2 "3( 183 + 43tD. i0(71 + 29t0

4800D1r i + p I + p

-O 2 + 225p 4- 6405

Pap (71+29#240D_ i + p 45p 2 + 16p 3)

P

240D_
71+29p- 45p2(3+P)

°

+ 16p3(4+_)

P L71+29# - 45p2(i+3#)240DTr

+ 16p3( i+ 4it}1

pa 2

2400D_

323+83/_ _ 5(89+41p)

l+p l+p

+ 225p 4- 128p 5 + 25p 6

p2

Pap (89+41_ _ 90p2 + G4p3 _ 15p4)
240D_ \ 1+#

P 189 + 41it - 90p2(3+p)2 40D_

+ 64p3(4+t_)- 15p4(5+_) 1

!
89 + 41p - 90 p2( i + 3p) +

240DTr

+ 64p3(1+4#) - 15p4(l+5p)
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TABLE B7.3.3-16 SIMPLY SUPPORTED CIRCULAR PLATES (Concluded)
i

Concentrated Loading

P

A : 2wa ;
For p ->- X

For p = 0

_t

P
Q

r 2awp

P Qr :0

_ Mr

W V316DTr L l+p (1 - p2) + 2p2 In

P
M Forp>X, - -- (1+_) lnp

r - 47r

--_-P [lr -(1+ p) ln X 1For p = 0, 4_ L

M t For p -> X, ---P47r11-p-(I+/_)lnpl

P [1 -(1 +/_)ln ×]For p = 0, 4-'_
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TABLE B7.3.3-17 SIMPLY SUPPORTEDCIRCULAR
PLATES WITH CENTRAL HOLE

Equally Distributed Loading ( lb/in. 2 )

2 ; A= (1 -X2); X < 1;

A= Pa(x''i)'2 , X> l;k,=x'[3+_4 4(1+#)1 +_X ,n][]

I
b=: ax__ r=ap

a :1' a :
rU_

V

I I IIIIIII

k ,

, .:: :aP_l

t

xtllr

IIL_

W Pa4 { 2 C(3+p)64---E (1-2X 2) +k2] (l-p2) - (l_p 4) _
1-p

r16D (3+#- 4x2+k2)p-p3+ k2 1 + 4)_2plnp
1-p p

r 16 - p--_" +4(l+p)× 2 In

M t
pa2 -/_) ( - + (1÷3p) (l-p2) +k2 +_ + 4(l+p) X2 in
16
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TABLE B7.3. 3-17 SIMPLY SUPPORTED CIRCULAR

PLATES WITH CENTRAL HOLE (Concluded)

Concentrated Edge Loading (lb/in.)

Qr = Px/P; A = Px for X< I ; A == -Px for X > 1

2

k4=l+ P l+-"_X lax

g

4-

|) a k

,,It,-

Ir' J:,,,il
:4. j_;TL

W
"3 + # - 2ka

8D I +# (l-p2) +41k__p lnp+2p2 lnp]

P "t-t_ p- • - - plnp
8D t +p p

M
r

M t

o

Pax2 t-v-M. +t -(l+v) lnpj
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TABLE B7.3.3-20 CIRCULAR PLATE WITH CENTRAL HOLE

Equally Distributed Loading over the Surface Area

k|= X2 ' _#)X2+(l+/_) (1+4_ _ la x )
' l-_+ (I+_)X 2

P p

- 1

i

b=ax!r._ap

-_ .-r-_ --

Mt

_-- J Qr -

!

W _

I

W
64D +2(1-k 1- 2X 2) (1- p2) +p4_ 4k 1 lnp- 8X 2 p2 lnp]

,.,. ,

a_
16D (l - k 1) p-pS+kt. 1 + 4×2plnp]P

, ]+/_) (1-k 1) +4X:-(3+/_)pZ-(i-_)k 1._'+4X _ (1 +p) lnp

Qr pa Cp _ ×2 1-_ _)
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TABLE B7.3.3-20 CIRCULAR PLATE WITH CENTRAL HOLE (Continued)

Equally Distributed Loading over the Edge Circumference

,,S 1 + (i+/_)In)_
I-_ + {I+/_)X2 p Ib_Sin.k: A

W

u

I
i
i

P

W

Mr _4_ 1I Y
Mt i

[c_-_> _-_ +._. _,+ _,__]8D

M
r

M t

Qr

2D

-!

(')xs p- _ -plnp_

2 - I + (I+_) ks + (l-_)ks -_- -(l+p) In

w •

m

-p+(l+p)ks-(l-p) p: -
2 .

1
-P'X "
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TABLE B7.3. 3-20 CIRCULAR PLATE WITH CENTRAL HOLE (Concluded)

Equally Distributed Edge Moment

lbs-tn.
M M-- in. M

Mr

-- _ Mt

k5
X2

l-p+ (i +U)× 2

w
Ma 2

= 2-'-D"kS(- I + p2 _ 2 • inp)

fl - D -P

M =r -MksII+U+(I-U}_- 1

M t =-Mks[l

Qr = 0
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TABLE B7.3.3-21 CIRCULAR PLATES WITH

CLAMPED EDGES (Contin,md)
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TABLE B7.3.3-21 CIRCULAR PLATES WITH

CLAMPED EDGES (Continued)

Concentrated Loading
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TABLE B7.3.3-21 CIRCULAR PLATES WITH

CLAMPED EDGES (Continued)

Circumferential Loading (I,inear)
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TABLE B7.3.3-21 CIRCULAR PLATES WITH

CLAMPED EDGES (Concluded)
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FIGURE B7.3.3-7 FORMULAS OF INFLUENCES FOR A SIMPLY

SUPPORTED CIRCULAR PLATE LOADED WITH EQUALLY

DISTRIBUTED END MOMENT

B7.3. 3.7 Circular Rings

Circular rings are important structural elements which often interact

with shells. The theory of shells would not be complete without information

about circular rings. In this section, such information is summarized and

presented for symmetrical loading with respect to the center of the ring.

Nomenclature employed is as follows:

A = area of the cross section

II, I2 -- moment of inertia for the centroidal axis in the plane or

normal to the plane of the ring

J = torsional rigidity factor of the section.

Table B7.3. 3-22 presents the solutions for different loads on rings.
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B7.3.4 STIFFENED SHELLS

Up to this point, only homogeneous, isotropic, monocoque shells have
been considered.

It is known that certain rearrangements of the material in the section

increase the rigidity; consequently, less material is needed, and this affects

the efficiency of design. Therefore, to obtain a more efficient and economical

structure, the material in the section should be arranged to make the section

most resistant to certain predominant stresses. Based on this premise,

stiffened structures were developed.

B7.3.4. 1 General

Stiffened shells are commonly used in the aerospace and civil engineering

fields. The shell functions more efficiently if the meridional system, circum-

ferential system, or a combination of both systems of stiffeners is used. The

meridional stiffeners usually have all the characteristics of beams and are

designed to take compressional and bending influences more effectively than the

monocoque section. The circumferential stiffeners provided most of the lateral

support for the meridional stiffeners, tIowever, circumferential stiffeners are

capable of withstanding moments, shears, and axial stresses.

If the stiffeners are located relatively close together, it appears logical

to replace the stiffened section with an equivalent monocoque section having the

corresponding ideal modulus of elasticity. Then the shell under discussion can

be analyzed as a monocoque shell. More details on this approach will be given

in later sections. The geometry included is for cylindrical, spherical, and
conical shells.

I Cylindrical Shell

This shell may have longitudinal stiffening, circumferential stiffening,

or both. Stiffening may be placed on the internal or external side of the surface,

or it may be located on both sides. If cut-outs are needed, they will usually
be located between the stiffeners.
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II Spherical Shell

This shell, if stiffened, will usually be stiffened in both meridional and

circumferential directions. The problem may be slightly more complicated in

the meridional direction because, obviously, the section that corresponds to

this direction will decrease in size toward the apex. This leads to the non-
uniform ideal thickness.

III Conical Shell

This configuration structurally lies between cases I and II.

IV Approach for Analysis

The approach for analysis is similar for all shells. If only circum-
ferential stiffening exists, the structure can be cut into simple elements con-

sisting of cylindrical, conical, or spherical elements and rings as shown in

Figure B7.3.4-1 and, considering the primary loading, the interaction will be

performed as given in Paragraph B7.3.2. If only longitudinal stiffeners are

present, interaction of cylindrical panels with longitudinal beams (stiffeners)

will be performed, as shown in Figure B7.3.4-2.

If both circumferential and longitudinal stiffeners are present, the
panel will be supported on all four sides. The ratio of circumferential to

longitudinal distances between the stiffeners is very important. These panels

loaded with pressure (external or internal) will transmit the reactions to the

circumferential and longitudinal stiffeners.

There are no fixed formulas in existence for stiffened shells in general.

If the stiffeners are close together, the structure can be analyzed as a shell.

Then the stiffened section, for the purpose of analysis, should be replaced with

the equivalent monocoque section, which is characterized with the equivalent

modulus of elasticity. This replacement has to be done for both meridional and

circumferential directions. Both sections will possess ideal monocoque properties,

the same thickness, but different ideal moduli of elasticity. This leads to the

idea of orthotropic material. The concept of orthotropy will be studied in detail

in a later section, and a proper analysis procedure will be suggested.
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! J

Stiffener

(Circum-

f_.re nt ial)

FIGURE B7.3. 4-1 CIRCUMFERENTIALLY STIFFENED SHELL

FIGURE B7.3.4-2 LONGITUDINALLY STIFFENED SItELL

V Method of Transformed Section

This approximate method covers all variations of stiffened (and sand-

wich) construction, regardless of the kind of elements that make up the scction.

This method shows how the combined section can be substituted with an

equivalent monocoque "section of the same stiffness. This idealized section

should be determined for the circumferential and meridional directions of the
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shell. Then the analyst deals with an orthotropic, monocoque shell. The

analysis of orthotropic shells is similar to the analysis of monocoque shells
discussed previously, if certain corrections are entered into the formulas cited

at that time. The analysis for shells where the shear distortions cannot be

neglected is more complicated and will be explained in detail in the following
sections.

Assume a composite section (stiffened, sandwich, etc. ) which consists

of different layers of material, as shown in Figure B7.3.4-3. Each layer (i) is

characterized by a modulus of elasticity (E i) and a cross-sectional area (Ai).

First select one convenient modulus of elasticity (E".') as a basis for the equiva-

lent monocoque section which is to be established. Accordingly, all layers will
be modified and reduced to one equivalent material which is characterized with

E':'. In this manner, the ideal transformed section (Figure B7.3.4-4) is deter-

mined. It should be noted that, for the convenience of design, the thickness

(t.) of individual layers was not changed, but areas A. become A.*. The same
1 1 1

modulus of elasticity (E':') now corresponds to every A_', thus making the entire
section homogeneous.

,\.X'QN\\\\\il,./"

I
!

tt

tt

t_

f

FIGURE B7.3.4-3 ORIGINAL COMPOSITE SECTION
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FIGURE B7.3.4-4 TRANSFORMED SECTION

The necessary computations are presented in Table B7.3.4-1. Designa-

tions are given on the sketch included in the table.

The computations lead to the determination of the moment of inertia of an

equivalent section. The ideal monocoque rectangular section can be determined

as having the same bending resistance as the original section. For example, if

the section is symmetrical about the neutral axis, the thickness (t) can be found

for the new monocoque rectangular section of the same resistance as follows:

bt 3
- I* 3[. _----

I - i2 ; t = 2.29 _/ b

where b is the selected width of the new section.

B7.3.4. 2 Sandwich Shells

The basic philosophy which the analyst applies to a sandwich structure

is precisely the same as he would apply to any structural element. This

procedure consists of determining a set of design allowables with which the set

of applied loads is compared.
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TABLE B7.3.4-1 TRANSFORMEDSECTIONMETHOD
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Generally, two types of "allowables" data exist. The first type is

determined by simple material tests and is associated with material more than

with geometry, and the second type is dependent upon the geometry of the ele-

ment. If, in a sandwich construction, the materials of construction are con-

sidered to be the core, facings, and bonding media, the basic material properties

would be associated with the properties of these three independent elements.

The second class of allowables data is distinguished by being dependent

upon configuration as well as upon the basic properties of tile facings, core, and

bond media. This class of failure modes may be further subdivided into modes

of failure that include the entire configuration, and those modes that are localized

to a portion of the structure but still limit the overall load-carrying capacity.

The most important local modes of failure are dimpling, wrinkling, and

crimping. These modes of failure are dependent upon the local geometry and

upon the basic properties of the materials of the sandwich. The general modes

of failure generally are associated with the buckling strength of sandwich

structural elements. This will be discussed in Section B7.4.

In this paragraph, the general design of sandwich shells under pure

static conditions will be presented. Two fund,_mental cases will be recognized:

t. Shear deformations can be neglected.

2. Shear deformations are extensive; however, shear can be taken by

the core. No new basic theories are required, only the application of established

theory. Once the shear deformation is properly included in the analysis, the

analysis is complete.

The first logical approximation would be to replace actual sandwich with

orthotropic material. The concepts of orthotropy actually may cover not only

the large family of sandwiches, but also other materials such as corrugated

shells, etc.

To give a systematical description of orthotropic analysis, attention will

again be directed to the mathematical structure of the analytical formulas for

the monocoque shells presented earlier in this section. This will make clear

what kind of modifications can be made to apply the same formulas (that were

derived for monocoque material) to the orthotropic shells.
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B7.3. 4.3 Orthotropic Shells

A material is orthotropic if the characteristics of the materials are not
the same in two mutually orthogonaldirections (two-dimensional space). Such
material has different values for E, G, and # for each direction. Poisson's

ratio, #, also may be different in the case of bending and axial stresses. In the

majority of cases this difference is negligible, but to distinguish one from the

other, # will be designated for Poisson's ratio which corresponds to bending

stresses, and p' for axial stresses. The behavior of the shell under loading is

a function of certain constants that depend upon the previously mentioned material

constants and geometry. The special case of orthotropy is isotropy (the material

characteristics in both directions of two-dimensional space are the same). To

see the dependence of stresses and deformations in shells upon previously

mentioned constants, a short review of isotropic concepts of shells is provided.

These constants are designated with extensional and bending rigidities.

I Extensional and Bending Rigidities

In the past, only isotropic monocoque shells were considered, and

numerous formulas were presented. The definitions for isotropic shells are
as follows:

Extensional rigidity

Et
B-

Bending rigidity

D

E÷
12(1 - p2)

B and D have appeared in many previous formulas.

The following characteristic stress formulas apply for rotationally
symmetric thin shells:



N_ = B @+/_O

N O - B 0+_

The bending loads are
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M e D fl cos _ +

The final stresses can be obtained as follows:

0._- 1 _'_2 + D

%-1 --if"

(J)

For a moaocoque section of rectangular shape

- t t_._.3 z

12

Ne M e

0"0 : t t 3

12

The physical meaning of D and B is obvious if equations (1) and (2) are

compared.

(2)
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where

The componentalstresses due to membrane forces are

lag- (j.__2)B - _--pz " N Et - lx t = A

EN0 E 1 - p2 NO N O

lcr0 = (1-p2)B = 1---'_" N0 Et = lxt =-'A-

A=lxt

unity.

where

It is convenient to choose the width of the section strip that is equal to

The componental stresses due to bending:

E E 12(I -_.2) = _12M@z =

1- g2" = M z (i - p2) Et3 i x t3 I

M0z E E 12(1 - #2) 12M0z

2cr0 = ---if- " 1 -p2 - M0z (1 - p2) Et 3 - 1 × t 3 I

i× t3
1-

12

Evidently, if stiffened or sandwich shell is being used, a modified B and D shall

be used in the equations, then all previously derived equations for monocoque

shells may be used for stiffened and sandwich shells. If the values from the

"transformed section" are used, then

A'E* I'E*

B- 1-p2 ; D- 1-_2
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In the preceding formulas p' _/_ is assumed.

II Orthotropic Characteristics

Now the orthotropy is defined if, for two mutually orthogonal main

directions, 1 and 2, the following constants are known or determined:

!

D1, B1, Pl, /_t and shear rigidity DQ1

D2, B2, P2, P_ and shear rigidity DQ2

To use the previously given formulas (for the isotropic case) for the

analysis of the orthotropic structures, the formulas must be modified. For

this purpose, a systematical modification of the primary and secondary solutions

will be provided in the following paragraph to make possible the use of the unit-

edge loading method for the orthotropic case. In the analysis of monocoque

shells, the shear distortions usually are neglected. With sandwich, in most

cases, such neglect is justified. The previously collected formulas for the

isotropic case do not include the shear distortion. Consequently, orthotropic

analyses which neglect the shear distortions will be examined first. Later,

an additional study will be presented which considers the distortions due to the
shear.

IH Orthotropic Analysis, If Shear Distortions Are Neglected

A. Prin]ary Solutions

It was previously stated that in most cases, the primary solutions

are membrane solutions. For the purpose of interaction, the following set of

values is needed (considering axisymmetrically loaded shells of revolution).

N e - membrane load in circumferential direction

N¢ - membrane load in meridional direction
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u - displacement in the direction of tangent to the meridian

w - displacement in the direction of the normal-to-the-middle surface.

Actually, having u and w, any componental displacements can be obtained from

the pure geometric relations if only the axisymmetrical cases are considered.

Consequently, for this purpose, it will be adequate to investigate u and w.

To determine N and N , all formulas that were presented for the0
isotropic case can be used, because the membrane is a statically determinate

system and independent of the material properties.

When N o and N_ are obtained, u and w can be obtained in the following
manner.

First determine the strains components (_ and cO). For the isotropic
case, the correspondent formulas are

1 !

c_b - Et (Ngb - pNO)

1

_0- Et (N0 -#'N )

For the orthotropic case the same formulas may be written

1 !

c_ - B_)(i__O ) (N -#oN O)

e0 = i

t2
Note: D=B 12
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Displacement can nowbe obtainedfrom the following differential
equation:

du

¢Pd--7 - ucot _) =RI_ _- R 2c 0=f((_)

The solution of the equation above is

where C is the constant of integration to be determined from the condition at

the support. Then, the displacement (w) is obtained from the following equation:

U W

E0= cot

Consequently, for every symmetrically loaded shell of revolution the stresses

and deformations are determined for the orthotropic case.

B. Secondary Solutions

To obtain the secondary solutions, the formulas that were derived

for the isotropic case can be used and then, using the substitution of proper

constants, they can be transformed into formulas for the orthotropic case.

Generally, due to any edge disturbance (unit loading) the formulas give direct
solutions for

NS, NO, MS, M0, Q, fl, and Ar

in the form of:

Solution = (edge disturbance) x (function of significant constant)

x (function of geometry).
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_Cylindrical Shell - All formulas given in Tables B7.3.3-9 and

B7.3. 3-10 can be modified if the following replacement is made:

k=_L _f3(l_p2) __. L J BY_-PxPO_
2--fi D-

X

Ets E t3x

D= 12(1 p2) --* D =- x 12(1- PIP2)

E t
Et y

B-- l_--_p -- B =y i tp,
-#x y.

t 2
D=B--

12

E = the modulus of elasticity in longitudinal direction.
X

E = the modulus of elasticity in circumferential direction.
Y

IV Orthotropic Analysisj If Shear Distortions Are Included

For this more complicated case, the solution may be found in Reference

4, which was considered as the basis for Paragraphs IV and V. Cylinders and

spheres only are are considered herein.

A. Cylindrical Shell

In the case of a cylinder constructed from a sandwich with relatively

low traverse shear rigidity, the shear distortion may not be negligible; there-

fore, an analysis is presented which includes shear distortion for a symmet-

rically loaded orthotropic sandwich cylinder.

The following nomenclature is used:

Dx, D Y
= Flexural stiffnesses of the shell wall per inch of width

of orthotropic shell in axial and circumferential directions,

respectively ( in. -lb).

DQ x
= Shear stiffness in x-z plane per inch of width (lb/in.)
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Bx, B = Extensional stiffnesses of orthotropic shell wall in axial and
Y circumferential directions, respectively (lb/in.).

M
X

Qx

= Moment acting in x direction (in. -lb/in. ).

= Transverse shear force acting in x-z plane (lb/in.).

= PoissonVs ratio associated with bending in x and y directions,

respectively.

! !

_x'_y
= PoissonVs ratio associated with extension in x and y directions,

respectively.

The derived solutions are presented in Tables B7.3.4-2 and B7.3.4-3.

B. Half Spheres

Based on Geckler's assumption for the half sphere, all formulas

derived for cylinders can be adapted for the spherical shell as well.

V Influence of Axial Forces on Bending in Cylinder

Usually it is assumed that the contribution of the axial force (N 0) to the

bending deflection is negligible; however, for a cylinder with a relatively large

radius, the axial force may significantly contribute to the bending deflection.

Therefore, the preceding analysis was extended by the same author (Reference 4)

to include the effect of the axial force on the deflections. This leads to modifi-

cation of the formulas (Tables B7.3.4-2 and BT. 3.4-3) in the manner shown

in Table B7.3.4-4. The constants are slightly modified as follows:

R2 x Y/

L DQx +
O_2 _-

4 ÷ --ff--
Qx
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TABLE B7.3. 4-4 MODIFICATION OF TABLES B7.3.4-2 AND -3 TO

INCLUDE THE EFFECTS OF AXIAL FORCES ON BENDING

Quantities:

Formula Formulas in Tables B7.3.4-2 and -31 Substitute

4

6

7

9

lO

11

12

15

19

2{)

21

22

Whole Formula

2(_ 2 M0.\

\_ hole F_rmula

V

V

XVhoh: FormuLil

Whole Formuh_

Whole l,'m'rn u|;l

Whole F'oz'nlula

V

V

VChole Formula

Whole Formula

emXM0 [(4T2 3m21+(m2 4321mx]": _m---_TF_

m2hl0

M0e -sx [( $2 + S ]w --2VD ]2) c,_s l}x + _ t7 2 + I¢) _in Px

w _-M_ 2VI)I _2_" +_i _ - 2_')
x 0

dw = I hld_,:/ _,'I)l ( _,: + i::') t

"" [ ,]W : 1),i111- _I'_" Zlll- {Ill _ - '|)_)
- )

2VI} 1} sin l}x - S cos Px

(-QJ2VD} (c_ 2 + fl2}l/Z

=0 2VD



/3_ = .. By (l - _'x _'y/_

4DRZII+ N°lx D_x

72 = x y/

4DQ R2
X

V = 4T4- 4_2 _2 +f14
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s =

D = D
X

B7.3.5 UNSYMMETRICALLY LOADED SHELLS

Until now, the axisymmetrical cases have been treated with respect to

the geometry, material, and loading. The "unit-load method" was exclusively
used for the solution. It was shown that the most complex solutions are applied

to the shells without symmetry, loaded unsymmetrically. The first level of

simplification of the complex procedures would be the usage of axisymmetric

shell loaded unsymmetrically.

The scope of this manual does not permit presentation of the actual

derivations, but solutions for the most commonly appearing cases in engineering

will be presented in the remaining tables.

The shells are assumed to be thin enough to use the membrane theory.

These tables of solutions also provide the necessary information about the

loading and geometry.

B7.3.5. I Shells of Revolution

The first level of simplification of the complex procedures would be

axlsymmetric shells loaded unsymmetrically. Similarly, symmetrical shells

may have unsymmetrical boundaries, which will cause the symmetrical loading

to be no longer symmetrical.
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Table B7.3.5-1 presents some solutions for certain loadings for

spherical, conical, and cylindrical shells loaded unsymmetrically.

B7.3.5.2 Barrel Vaults

This paragraph presents the collection of different solutions for curved

panels of simple beam system. The geometry of curved panels is circular,

elliptical, cycloidal, parabolic, catenary, and special shape. The solutions

for different loadings are given in Tables BT. 3. 5-2, B7.3.5-3, and BT. 3.5-4.

The shells under consideration arc thin, and linear theory was the basis for
the derived formulas.
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B8.0. 0 TORSION

Sections under B8 deal with the torsional analysis of straight

strLlctural elements that have longitudinal dimensions much greater than

their cross-sectional dimensions. Such an element is called a bar.

The first division, Section B8. 1, provides a common ground

for the analytical divisions which follow: the solid cross section, treated

in Section B8.2; the thin-walled closed cross section treated in Section

]38. 3; and the thin-walled open cross section, treated in Section B8.4.

In each of the divisions, the cross section under consideration

will be defined, described, and pictorially represented. Particular con-

ditions which are pertinent to the approach, such as restraints, will be

stated; the basic theory, and limitations, if any, will be given.
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B8. I. 0 GENERAL

Section B8. 1 presents the notation and sign convention for local co-

ordinate systems, applied twisting moments, internal resisting moments,

stresses, deformations, and derivations of angle of twist. These conven-

tions will be followed in Sections B8. Z, B8.3, and B8.4.

Restrained torsion and unrestrained torsion are considered for

the thin-walled open and thin-walled closed cross sections, and unrestrained

torsion is considered for the solid cross section. Restrained torsion requires

that no relative longitudinal displacement shall occur between two similar

points on any two similar cross sections. Warping is restrained.

Restrained torsion of solid cross sections is not considered because

it is a localized stress condition and attenuates rapidly. The stresses and

deformations determined by the methods contained in this section can be

superimposed upon stresses and deformations caused by other types of load-

ing if the deformations are small and the maximum ccJmbincd str(.ss d,Jes

not exceed the yield stress of the material.
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terms are defined in

a

A

NO TA TIO N

All general terms used in this section are defined herein.

the text as they occur.

Width of rectangular section, in.

b

b'

C

d

D

E

G

h

I

J

K

L

L
X

m t

M.
1

M t

M
ix)

P

bc'ctit,,_ _8. 1

28 dune 196b

Page 2

Special

Enclosed area of mean periphery of thin-walled closed

section, in. 2

Length of element, width of flm_ge, in.

Width of flange minus thickness of web, m.

Length of wall centerline (circumference), in.

Total section depth, in.

Diameter of circular bar, in.

Young's modulus, lb/in. 2

Shear modulus of elasticity, Ib/in. 2

Distance between flange eenterlines, in.

Moment of inertia, in.4

Polar moment of inertia, in.4

Torsional constant, in.4

Length of bar, in.

Arbitrary distance along x-axis from origin, m.

Applied uniform twisting moment or _]laximum ValUe ol

varying applied twisting moment, in.-ib/in.

Internal twisting moment, in.-lb.

Applied concentrated twisting moment, in.-lb.

Internal twisting moment at point x along bar, written

as function of x

Pressure, lb/in. 2

j

J



P

q

r

R

s

St

Sw(s)

t

t
w

T

u

v

W

Wn(s)

V

ot
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P
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Arbitrary point on cross section

Shear flow, lb/in.

Radius of circular cross section, in.

Radius of circular fillet, in.
t

Distance measured along thin-walled section from origin,
in.

Torsional modulus, in. 3

Warping statical moment, in. 4

Thickness of element, in.

Thickness of web, in.

Tensile force per unit length, lb/in. 2

Displacement in the x direction, in.

Displacement in the y direction, in.

Displacement in the z direction, in.

Normalized warping function, in. 2

Volume, in. 3

Defined in Section B8.4. i-IV

Defined in Section B8.4.1-IV

Warping constant, in.8

Sllear strain

Unit twist, rad/in. (e = d_/dx = ¢')

Poisson_s ratio

Radial distance from the centroid of the cross section to

arbitrary point P, in.

Radial distance to tangent line of arbitrary point P from

shear center, in.
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T
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Subscripts:

i

1

n

o

s

t

W

X

)_lf!
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Longitudinal normal stress, lb/in. 2

Tot'a/ shear stress, lb/ia, z

Torsional shear stress, lb/in, z

Longitudinal shear stress, lb/in. 2

Warping shear stress, lb/in. 2

Angle of twist, rad (_b = fLx 0dx)
O

First, second, and Lhird derivatives of angle (ff twist

with respect to x, respectively

Saint-Venant stress function

inside

longitudin,_l

ll()rllla ].

outside

point s

torsional or transvcrsc

warping

longitudinal dircction
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TABLE B8.2.2-1

b/d 1.0 1.5 2.0 2.5

0.208 0. 256 0. 269

0. 141

0.238

0. 195 0. 229 0. 249

3.0

0.278

0.263

4.0 6.0 10.0

0.290 0.303 0.314

0.281 0.298 0.312

100 oo

0.331 0.333

0.331 0.333

The stress distributions on different radial lines are shown in Figure

B8.2.2-2A, and the resulting warping deformation at an arbitrary cross section

located at distance L from the origin is shown in Figure B8.2.2-2B.x

IV Elliptical Section

The maximum torsional shear stress occurs at point A (Fig. B8.2.2-3)

and is determined by

where

Tt(max) = Mt/S t

bd _-

St = 16 "

The torsional shear stress at point B is determined by

Tt(B) = vt(max) (-_) .

The total angle of twist is determined by the following equation:

MtL
_b(max) =

KG
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X

FIGURE B8.2.2-3 ELLIPTICAL CROSS SECTION

L

FIGURE BS. 2.2-4 EQUILATERAL TRIANGULAR CROSS SECTION
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where

K ._.

s ds
16 (b2 + d2)

V ..EquilateralTriangular Section

The maximum torsional shear stress occurs at points A,. B, and C

(Figure B8.2.2-4) and is determined by

where

St = b3/20.

The total angle of twist is determined by

MtL
_) max =

KG

where

K

8O

VI Regular Hexagonal Section

The approximate maximum torsional shear stress is determined by

where

rt(max) = Mt/S t

S t = 0.217Ad
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and is located at the midpoints of the _sides ( Fig. B8.2.2--'5). A is the cross-

sectional area and d is the diameter of the inscribed circle.

where

VII

where

The approximate total angle of twist is determined by

(max) ffi

K = 0. 133Ad _ .

MtL

KG

Regular Octagonal Section

The approximate maximum torsional shear stress is determined by

_t(max) = Mt/S t

St = 0. 223Ad

and is located at the midpoints of the sides ( Fig. B8.2.2-6).

sectional area and d is the diameter of the inscribed circle.

The approximate total angle of twist is determined by

MtL

(max) = K"--_

where

A is the cross-

K = 0. 130Ad 2 .
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t

¥

FIGURE B8.2.2-5 REGULAR HEXAGONAL CROSS SECTION

FIGURE B8.2.2-6 REGULAR OCTAGONAL CROSS SECTION
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VIH Isosceles Trapezoidal Section

The approximate maximum torsional shear stress and total angle of

twist can be determined for an isosceles trapezoid when the trapezoid is re-

placed by an equivalent rectangle. The equivalent rectangle is obtained by

drawing perpendiculars to the sides of the trapezoid (CB and CD) from the

centroid C and then forming rectangle EFGH using points B and D ( Fig.

BS. 2.2-7).

¥

FIGURE B8.2.2-7 ISOSCELES TRAPEZOIDAL SECTION
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B8.2.3 EXAMPLE PROBLEMS FOR TORSION OF SOLID SECTIONS

I Example Problem 1

Find the maximum torsional shear stress and the totalangle of twist

for the solid rectangular cross section shown in Figure B8.2.3-I.

Solution: From Table B8.2.2-I, (_=- 0.256 and/3 =0.229for b/d =

2.0. The maximum stress will occur at point A in Figure B8.2.3-I.

The torsion section modulus (St) is

St = c_bd2

= 0.256 (5)(2.5) 2

= 8.00 in 3

The torsional shear stress (T t)

vt = M/S t
J

= loo, 000/8.00

T t = 12,500 psi.

The torsional constant (K) is

K= _bd 2

= 0.229 (5)(2.5)2

= 7.156 in' .

The total angle of twist (_) is

_b = MtL/GK

at point A is

100,000 ( 32)/4,000,000 (7.156)

0. 1118 rad.
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II Example Problem 2

Find the maximum torsional shear stress (Tt) and the angle of twist (¢)

at point B for the tapered bar shown in Figure BS. 2.3-2 with a constant dis-

tributed torque.

Solution:

The radius (r) of the tapered bar as a function of the x-coordinate is:

r = 2.5- 0.005x

The internal twisting moment M(x) as a function of the x-coordinate is:

M(x) -- mtx= 200x.

The torsional section modulus (S t) of the bar as a function of the

x-coordinate is

St(x) = 0.5 7rr 3

= 1.5708 [2.5- 0.005x] 3

The maximum torsional shear stress (T t) at point B is

= M(x)
1"t St(x )

200x

1.5708 (2.50 - 0.005x) 3

Forx = L = 300,
x

T t = 38,197 psi .

Since both the internal twisting moment and the torsional stiffness vary

with the x-coordinate, the angle of twist is obtained from
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I !

SECTION A-A

M t = I00,000 in. lb.

G = 4,000,000 psi.

L = 3Z"

FIGURE B8.2.3-1

L " 400"

L : 300"_
x _

d 1 = 1"

d2 = 5"
m t = 200 in. lb. /in.
G = 4,000,000 psi.

FIGURE B8.2.3-2
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is

The torsional stiffness (K) of the bar as a function of the x-coordinate

K= 0.5 _r 4

= 1.5708(2.5 - 0.005x) 4 .

The angle of twist (qb) in radians between the origin and point B can be

obtained by evaluating the following integral.

300
1 f 200x

4x10 s J0 (2.5- 0.005x) dx .

III Example Problem 3

Find the total angle of twist (¢) at points A, B, C, and D for the bar

loaded as shown in Figure B8.2.3-3.

Solution:

The internal moments at points A, B, C, and D are:

M(D) = 0

5O

M (c)= f (6,670- x )7500 dx = 15.0 inrKips
35

35

M (B) = 15,000+ f 1000(ix= 3O. 0 inrKips
2O

2O

f xM (A) = 30,000 + 3000 _-_ (ix = 60.0 in:-Kips
0

The equation for angle of twist is
L M

,= fx t dx 'GK
O
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which is also the area under the Mt/GK diagram ( Fig. BS. 2.3-4).

Using the moment-area analogy from beam theory, the following state-

ment can be made.

"The total angle of twist between any two cross sections of a bar which

is loaded with an arbitrary torsional load is equal to the area under the Mt/GK

diagram between the two cross sections. "

Using the moment-area principle above, the angles of twist are

_b (A) = 0 fixed end.

_b (B) = 30,000(20) + 2/3(30,000)(20) = 1,000,000 = 0.100 rad
GK

(C) = 1,000,000+ 15,000(15) + I/2 (15,000)(15) = 1,337_500
GK

= 0. 13375 rad

1,412,500 = 0.14125rad.
(D) = 1,337,500+ 1/3 (15,000)(15) = GK
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B8.3.0 TORSION OF THIN-WALLED CLOSED SECTIONS

A closed section is any section where the center line of the wall forms

a closed curve.

The torsional analyses of thin-walled closed sections for unrestrained

and restrained torsion are included. Torsional shear stress, angle of twist,

and warping stresses are determined for restrained torsion. Torsional shear

stress, angle of twist, and warping deformations are considered for unrestrained

torsion.

Analysis of multicell closed sections is beyond the scope of this analysis.

The analysis of multicell closed sections can be found in References 11 and 13.

B8.3.1 GENERAL

I. Basic Theory

The torsional analysis of thin-walled closed sections requires that

stresses and deformations be determined. The torsional shear stress (r t) , plus

warping normal stress (_w) for restrained torsion, should be determined at

any point (P) on a thin-walled closed section at an arbitrary distance ( L ) from
x

the origin. The angle of twist (_) should be determined between an arbitrary

cross section and the origin plus the warping deformation (w) at any point (P)

on an arbitrary cross section for unrestrained torsion.

As was the case for solid sections ( see Section BS. 2. l-I), two unique

coefficients exist that characterize the geometry of each cross section. These

coefficients are called the torsional constant (K) and the torsional section

modulus (S t) and are functions of the dimensions of the cross section.

The torsional shear stress distribution varies along any radial line

emanating from the geometric centroid of the thin-walled closed section. Since
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the thickness of the thin-walled section is small compared with the radius, the

mtress varies very little through the thickness of the cross section and is assumed

to be constant through the thickness at that point.

Figure B8.3. I-IA shows a typical thin-walled cross section and Figure

BS. 3.1-1B |bows a typical element of this cross section. Equilibrium of forces

in the x direction (longitudinal) will give the following equation:

_L tlAX = r t2AX
X1 LX2 *

or, since shear stresses are equal in the longitudinal and circumferential

directions,

_tl tl = _t2 ts "

This equation indicates that the product of the torsional shear stress and

the tkicknsss at any point around the cross section is constant. This constant

is called the "shear flow" (q). Therefore:

q= _t t •

The internal forces are related to the applied twisting moment by the

following equation:

Mt M t

rt = 2A'-'_ = S-_-

where

St = 2At

and A is the enclosed area of the mean periphery of the thin-walled closed

section.
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B. Stresses

FIGURE B8.3.1-1

on Element A

TYPICAL THIN-WALLED CLOSED CROSS SECTION
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Written in terms of shear flow, this equation becomes:

Mt

2A "

II. Limitations

The torsional anslysis of thin-walled closed cross sections is subject

to the following limitations:

A. The material is homogeneous and isotropic.

B. The cross section must be thin-walled, but not necessarily of constant

thickness.

C. Variations in thickness must not be abrupt except at reentrant

corners ( see Section B8.3.3-llI).

D. No buckling occurs.

E. The stresses calculated at points of constraint and at abrupt changes

of applied twisting moment are not exact.

F. The applied twisting moment cannot be an impact load.

G. The bar cannot have abrupt changes in cross section.

H. The shear stress does not exceed the shearing proportional limit

and is proportional to the shear strain (elastic analysis).

HI. Membrane Analogy

The same use can be made of the stress function represented by the sur-

face ABDE ( Fig. B8.3.1-2) in solving the problem of the torsional resistance of

a thin-walled tube as was made of the function in Section BS. 2.1-III for the solid bar.

These uses are as follows:

A. The twisting moment ( Mt) to which the thin-walled tube is subjected

is equal to twice the volume underneath the surface ABDE and is,

therefore, given approximately by the equation

Mt = 2AH
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FIGURE B8.3.1-2 MEMBRANE ANALOGY FOR TORSION OF THIN-WALLED

CLOSED CROSS SECTION

BQ

where A is defined as in Section B8.3.1-I and H is the height of the

plane BD above the cross section.

The slope of the surface at any point is equal to the stress in the bar

in a direction perpendicular to the direction in which the slope is

taken. Hence, the slope at any point along the arcs AB or DE may

be taken as H/t. The maximum shearing stress in a hollow bar at

any point is, therefore,

r t = H/t

It can be seen that H is the same quantity as "shear flow," defined in

Section B8.3.1-I.
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IV. Basic Torsion Equations For Thln-Walled Closed Sections

A. Torsional Shear Stress

The basic equation for determining the torsional shear stress at an

arbitrary cross section is:

M(x_ _ M(x) q(x)

_t = St(x,s) 2A(x)t(x,s) - t(x,s)

where

St(x,s) = 2A(x) t (x,s)

Q(x) = M(x)
2A (x)

and A is defined as in Section B8.3.1-I.

M(x) or q(x) is evaluated for x = L at the arbitrary cross section wherex

the torsional shear stress is to be determined, and t(x, s) is evaluated at the

arbitrary cross section at the point (s) on the circumference of the arbitrary

cross section.

If a constant torque is applied to the end of the bar and the cross section

is constant along the length of the bar, the equations reduce to:

M t M
__.t_ = q

rt = S_ = 2At(s) t(s)

where

Mt

q= 2A

In the equations for torsional shear stress in Sections B8.3.2 and

B8.3.3, which follow, M(x) is equal to M t and A(x) is constant and equal to

A. The equations in these sections determine the shear stress at any point

(s) around the cross section.
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B. Angle of Twist

The basic equation for determining the angle of twist between the origin

and any cross section located at a distance L from the origin is:
X

L L
I x M(x) dx= 1 xf s) 4-5 fK(X,0 0

A2(x)
(x) dx

where C is equal to the length of the wall center line (circumference) and

K(X,S)

C

/Io d== 4A2(x) t(s)

When M(x) is a constant torsional moment applied at the end of the bar, A is a

constant, and t is not a function of x, the equation reduces to:

M i
t

- GK(s)

where
C

K(s) = 4A2/f d_st(s)

When t is a constant, the equation reduces to"

Mtl

_b- GK

where
4A2t

K-
C

The total twist of the bar is:

M1
t

(max) -
GK

where

4A2t
K-

C
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C. Warping Deformation

The basic equation for determining the warping deformation (w) at any

point (P) on an arbitrary cross section located at a distance x = L from the

C

M t s t( s---_
w(s)-Wo= 2A-"G f 1 - r(s) 2A ds

0

origin Is:

where w(s) is the warping deformation at point (s) measured from the x-y

plane through the origin of the s coordinate system; w is the distance from the
o

x-y plane through the origin of the mean displacement plane; and r(s) is the

normal distance to a line parallel to the increment of arc length ds (see

Example Problem 2, Section BS. 3.4-II).

The mean displacement plane, which is located at the same z coordinate

as the undeformed cross section, will pass through those points on the cross

section that lie on axes of symmetry ( see Example Problem 2, Section BS. 3.4-I1).

For unsymmetrical sections, the point (s), measured from an assumed arc

length origin through which the mean displacement plane passes, is determined

by evaluating the following integral for s.

C

/" 1 0 t(s)
J
0 2A

ds = 0

D. Warping Stresses

Warping stress calculations are very complicated and cannot be put into

a generalized form. Techniques for evaluating these stresses can be found in

Reference 1.

Warping stresses for a rectangular section are included in section

B8.3.3-II.
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B8.3.2 CIRCULAR SECTIONS

I. Constant-Thickness Circular Sections

A constant-thickness, circular, thin-walled closed section experiences

no warping for unrestrained torsion and develops no warping normal stresses

for restrained torsion.

The torsional shear stress is determined by the following equation:

M t

Tt - S
t

where

St = 2At .

The torsional shear stress defined in terms of shear flow is determined

by the following equation:

where

where

_'t = q/t

M
t

q 2A

The total angle of twist is determined by the following equation:

ML
t

_b (m._x)
GK

4A2t
K _ ----

C

II. Va_g Thickness Circular Sections

A circular thin-wa|led closed section with varying thickness will warp

for unrestrained torsion, and warping normal stresses are developed for re-

strained torsion. The warping normal stresses and warping deformations are

negligible and can be neglected when the change in thickness is small and

gradual.
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The torsion shear stress is calculated in the same manner as for constant-

thickness circular sections, except that t is now a function of s.

The total angle of twist for a circular thin-waUed closed section with

varying thickness is determined by the following equation:

MtL

(max) = G--"K-

where

4A 2
K=

C

f d..s_s

o t(s)

B8.3.3 NONCIRCULAR SECTIONS

I. Unrestrained Torsion

Noncircular sections experience warping for unrestrained torsion,

except for the case noted below, and develop no warping normal stresses.

Note that no warping occurs in a cross section that has a constant value

for the product rt around the circumference of the cross section.

Longitudinal warping deformations are usually not of concern and are

not evaluated. The use of the basic equation for determining warping defor-

mationa for closed sections ( see Section BS. 3.1-IVC) is used in Example

Problem II (see Section B8.3.4-III).

A. Elliptical Section

The torsional shear stress for constant thickness is determined by the

following equation:

where

and

St = 2At

[a t t__22 }A = Ir b- _- (a+ b)+ 4
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The values of a, b, and t are defined in Figure BS. 3.3. -1.

The torsional shear stress defined in terms of shear flow is determined

by the following equation:

q
"rt t

where M
t

q- 2A

and A is defined as above.

.m

FIGURE B8 3.3-1 ELLIPTICAL SECTION

The torsional shear stress for varying thickness is calculated in the

same manner as constant thickness, except that it is now a function of s, t(s).

The total ,angle of twist for constant thickness is determined by the

following equ:_tion:

ML
t

GK

where

K z

,tA2t

C
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A is defined above, and the equation for C is, approximately,

C = ,r(a+b-t) J-1÷ 0.27 Ca - b)_']
L (a+ b)2J

The total angle of twist for varying thickness is determined by the

following equation:

MtL

¢ (max) = G'-"K

where
4A z

C

f d...__
0 tls)

and the area is as defined in Section B8.3.1-I.

B. Rectangular Section (Constant Thickness)

The torsional shear stress for constant thickness is determined at

points A and B ( Fig. BS. 3.3-2) by the following equation:

Mt

ft = _
where

and

St = 2At

A = ab - t(a+b) +t 2 .

The values of a, b, and t are defined in Figure BS. 3.3-2.
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FIGURE BS. 3.3-2 RECTANGULAR SECTION (CONSTANT THICKNESS)

The torsional shear stress defined in terms of shear flow is determined

by the following equation:

rt= qt

where

M
t

q 2A

and A is defined as above.

The stresses at the inner corners (points C on Fig. B8.3.3-2) will be

higher than the stresses calculated at points A and B unless the ratio of the radius

of the fillet to thickness is greater than 1.5. For small radius rectangular

section stresses see Section B8.3.3-III.

The total angle of twist for constant thickness is determined by the

following equation:

ML
t

(max)
GK

where

4A2t
K-

C
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A is defined above, and C = 2( a + b - 2t).

C. Rectangular Sections (Different Thickness)

The torsional shear stress for different but nonvarying thickness is

determined at points A and B ( Fig. BS. 3.3-3) by the following equation:

where

M
= ....t_

Tt St

St = 2At 1

for point A,

St = 2At z

for point B, and

A = (a-t2) (b-t i)

a

.@

FIGURE B8.3.3-3 RECTANGULAR SECTION (DIFFERENT THICKNESSES)
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The torsional shear stress defined in terms of shear flow is determined

by the following equation:

r t = q
tl

for point A,

Tt = q
t2

for point B, and

M
t

q- 2A

where A is defined as above.

The stress at the inner corners (points C) will be higher than the stresses

calculated at points A and B unless the ratio of the radius of the fillet to the

thickness is greater than 1.5. For small radius rectangular section stresses

see Section B8.3. :3-III.

The total angle of twist for different but nonvarying thickness is determined

by the following equation:

ML
t

0 (max) =
GK

where

K : +-2ttt2(:') - t2) z (h - tO 2
_t_ + bt? - t, 2 - t 2

D. Arbitrary Section (Constant Thickness I
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The torsional shear stress for an arbitrary section with constant thickness

( Fig. B8.3.3-4) is determined by the following equation:

Mt

7t= _t

where

St = 2At

and A is defined in Section BS. 3.1-I.

s.0

FIGURE B8.3.3-4 ARBITRARY SECTION (CONSTANT THICKNESS)

The torsional shear stress defined in terms of shear flow is determined

by the following equation:

where

Mt

q- 2A

and A is defined asabove.

The total angle of twist is determined by the following equation:

where
(max) -

MtL

GK

4AZt
K - °

C
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A is defined as above, and C, the circumference, is defined as follows:

C

C = f ds
0

E. Arbitrary Section (Varying Thickness)

The torsional shear stress for an arbitrary section with varying thick-

ness ( Fig. B8.3.3-5) is determined by the following equation:

Mt
1"t -

S t

where

St = 2At

and A is defined in Section B8.3.1-I.

following equation:,

t t

The shear flow is determined by the

t(s)

FIGURE B8.:3.3-5 AI_BITRARY SECTION (VARYING THICKNESS)

where

t
q 2A

and A is defined :_._ :1bore.
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ness.

where

Note that the maximum shear stress occurs at the point of least thick-

The total angle of twist is determined by the following equation:

L

(max) = M t

C
ds

and A is defined as above.

II. Restrained Torsion

Restrained torsion of noncircular closed sections occurs at fixed ends and

at points of abrupt change in torque.

The warping normal stresses associated with the restrained torsion

attenuate rapidly, and their analytical determination is extremely difficult.

Torsional shear stresses associated with these restraints are calculated

as in Section ]38.3.3-I. The warping normal stress for the rectangular section

shown in Figure BS. 3.3-2 is determined by the following equation:

where

o (max) = __m
w K

K tG (a+ b) 2 (_) ( 2 )½
4M t E 1 -

and m is obtained from Figure B8.3.3-6.

m. Stress Concentration Factors

The curve in Figure BS. 3.3-7 gives the ratio of the stress at the re-

entrant corners to the stress along the straight sections at points A and B shown

in Figure B8.3.3-2.



Section B8.3.0

31 December 1967

Page 19

m

4.0

3.0

2.0

1.0

\

d _ c_ o o

a _ b

FIGURE BS. 3.3-6 VALUE OF m FOR RECTANGULAR SECTION

3.0

2.5

N

1.5

1.0

0

L

\
\

o. 5 1.0 1.5

r/t

FIGURE B8.3.3-7 STRESS CONCENTRATION FACTORS AT

ITEENTRANT CORNERS
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EXAMPLE PROBLEMS FOR TORSION OF THIN-WALLED CLOSED

SE C TIONS

I. Example Problem 1

For the problem shown in Figure B8.3.4-1, it is required to find the

following:

A. Shear stresses at points A, B, and C on the cross section and maxi-

mum angle of twist caused by the torsional load.

B. Local normal stresses caused by restraint at the fixed end.

Solution:

A. From Section B8.3.3-IB, the shear stress at points A and B is

Mt

T t = 2A--'t

where A = ab-t(a+b) +t 2.

Therefore, A= 6(3) -0.2 (6+ 3) + (0.2) 2

A = 16.24in.2

lOOmO00
_t = 2(16.24) (0.2)

and

_t 15,394 psi .

For the maximum shear stress at point C, refer to Figure B8.3.3-7 for the

ratio of the stress at point C to the stress at points A and B.

rt(max)

Tt(A)
= 1.7

• t (max) = 1.7 (t5,394)

_t(max) = 26,170 psi

The maximum angle of twist is determined by the following equation from

Section BS. 3.3-IB:



where

_(max) =

4A2t
K-

C

MtL

GK
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and C = 2(a+ b- 2t)

Therefore, C = 2(6+ 3- 2 (0.2))

C = 17.2

K

M t

K = 12.27

_(max) = 100,000(60)
4x 106 (12.27)

¢(max

I?Al" / /
_[ / / t = 0.2 in..

_/-__J_ _"_ _ - o 33
%. b = 3 in. E - 10.3 x 10 6

M = 1 x 10 5 [n.-ib.
t

FIGURE B8.3.4-1
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B. To find the normal stress at the fixed end, use the equations in

Section BS. 3.3-II.

From Figure B8.3.3-6,

m=0.3

K= tG (a+b)2 (i_) ( _ )_

4M t E 1 -/_

K  1oo)4x 105 - 0.33 \10.3x l0s

K = 24. 217 x I0-s

0.33

o = 24.217x I0-s = 13,620 psi

II. Example Problem 2

For the cross section shown in Figure BS. 3.4-2, it is required to find

the warping deformations of the points shown.

(dimensions are in inches)

0.048

N

E B

0

O. 048

Determine the distribution of warpin8

sin a - 0.2425 .'. ON ffi0.97

M t = I x 10 5 in.-Ib.

G = 4.0 x 10 6

FIGURE B8.3-4-2
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C

I (M s 1 f0

w(s) -Wo = t2AG f0 t(s) -r(s) 2 ds

C

G__G_[w(s) ] = _ fs 1 - r(s) 0 t(s) ds

M t o 2A 2A

A = enclosed area of section = 6.0 in.2

C d_______sI KD + DC + CF

_0 t(s) =2 i 0.048 0.064 0.048

= 296.8 .

= 2 ! 2' 06------22+ 4 + 2. 062

0.048 0. 064 0.048

Choose point D as the origin and measure s from point D.

r = 0.5 t = 0.064

For sector DC:

[ wo]2AG

Wc - / 0.064
Mt 0

= 3.26(4)

I 13.04

For sector CF: r = 0.97 t = 0.048

"1

0.5( 296.8)|
I

2(6) J
ds

2. 062

IO 1•048

O. 97(296.8)

2(6)

= - (3.16)(2.062)

= - 6.52 .
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For sector FB: ra0.97 t=0.048 (Same as sector CF)

Mt2A"-'GGIWB_ WFl = _6.52

For sector BA: (same as sector DC)

wol

For sector AK: (same as sector CF)

2AG

Mt w K- wA =- 6.52

For sector KD: (same as sector CF)

2A----_G [w - w ] =-6.52M t D K

Hence, the summation of warping deflections around the section from D back to

D equals zero.

Now it is desired to find the mean displacement plane (see Fig. B8.3.4-3).

From symmetry, points El, F1, H1, and K1 will lie on the mean displacement

plane.and will not deform from their original positions. Therefore the distance
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from point D to the mean displacement plane is

2 ol lw_-w0 =_____

Therefore the warping deformations are

W = W = W = W
D C B A

6.52 Mt

2AG

6.52( 1 x 1057

2(6)(4x 106)
= 0.0136 inch

_m

Mean Displacement Plane

D II C

FI

FIGURE B8.3.4-3
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me Example Problem 3

For the problem shown in Figure B8.3.4-4, it is required to find the

following:

A.

L =L.
X

iS

Maximum torsional shear stress at L
X

L
L x --=0, = 2,and

B. Maximum angle of twist.

Solution:

A. The formula for shear stress as obtained by Section B8.3.1-IVA

M(x)
_t = 2A(x) t(x,s)

Therefore, at L = O, since M(x) = O, _t = 0 at L - L M(x) = --M°x X 2 ' 2

i )2
A(x) = _ro 2(1+-_"

= _ro2 _99
4 "

The shear stress will be maximum at thickness of to.

(max) = 4M°
2(2)1r ro2 9 t o

M A

9 _ ro 2to

100, 000

- 9 7r(5) 2 0.1

Therefore

1,414 psi

Where L
x

=L

M(x) = M0

A(x) = 4 7rr02

T (max) M o

2(4) 7fro 2t o -
I,591 psi
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A Xo

_--C-- I _ _o_o.1_.
ro ] I F/_I ro = 5.0 in"

__ i __..__ ...... 7 .... _ ---M° " i X 105 in.-lb.

_ I _ t(S) = to(l ¢ sin _)

= x A I r(x) _ ro (I + x/L)

: L -_ A(x) -- _rr 2 (x)

SECTION A-A

FIGURE B8.3.4-4
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B. Tim formula for angle of twist Is obtained from Section B8.3.1-IVB.

C ds (x) = 4 to(l+ stnO)

to tan

JO

to

Therefore, for maximum angle of twist

4 SL M°(-_)r°(l÷(-_-)
'_=_0 _o' (_ _)'

dx

M S L x dx

L

•_o_'- (,÷__) ,.(,÷
0

ML_=_ (_)

MnL 1 x 10 s x 30

= 8_2r_to G - "8_2(5)s(0.1)4x 101

(max) = 0. 76 x 10 -8 radians .
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B8.4.0 TORSION OF THIN-WALLED OPEN SECTIONS

An open section is a section in which the centerline of the wall does

not form a closed curve. Channels, angles, I-beams, and wide-flange

sections are among many common structural shapes characterized by com-

binations of thin-walled rectangular elements; a variety of thin-walled curved

sections is used in aircraft and missile structures. The basic characteristic

of these sections is that the thickness of the component element is small in

comparison with the other dimensions.

The torsional analysis of thin-walled open sections for both unrestrained

and restrained torsion is included in this section. Torsional shear stress,

angle of twist, and warping deformations are determined for unrestrained

torsion. Torsional shear stress, warping shear stress, warping normal

stress, angle of twist, and the first, second, and third dcr_vatives of angle

of twist are determined for restrained torsion.
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The stresses and deformations determined by the equations in this

section can be superimposed with bending and axial load stress and deformations

if the limitations of Section BS. 4.1-II are not exceeded and proper consideration

of stress and deformation sign convention is taken into account.
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If a member of open cross section is twisted by couples applied at the

ends in the plane perpendicular to the axis of the bar and the ends are free to

warp, we have the case of unrestrained torsion (Fig. BS. 4.1-1}.

A. Rotated Section B. Warped Section

Figure B8.4.1-1. Warping

However, if cross sections are not free to warp or if the torque varies

along the length of the bar, warping varies along the bar and torsion is

accompanied by tension or compression of longitudinal fibers. Also, the rate

of change of the angle of twist along the bar's longitudinal axis varies. This

case is called restrained torsion.

These two types of torsion will be discussed separately in the following

sections.

A. Unrestrained Torsion

The twisting moment on thin-walled open sections is resisted only by

the torsional shear stress for unrestrained torsion. However, the manner in
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which a thin-walled open section carries a torsional moment differs from the

manner in which the thin-walled closed section carries a torsional moment. This

difference can be seen by comparison of Figures B8.2. I-IA, B8.2.2-2A,

and B8.3. t-IA to Figure 8.4.1-2. The thin-walled closed section carries the

load by a shear flow that goes around the section, while the open section carries

the load by a shear flow which goes around the perimeter of the section. From

Figure B8.4.1-2, it can be seen that the shear stress distribution across the

thickness of the section is linear and that the maximum stress on one edge is

equal to the negative of the maximum stress on the other edge. (Ref. 1).

t1

_f

t2

_w

I: .I_ _1

I W1-I- bl-I

_tf

b2 -._ ...- t2 b

I_ bl

Figure B8.4.1-2. Pure Torsion Shear Stress Distribution

The torsional analysis of thin-walled open sections for unrestrained

torsion will require that the torsional shear stress (r t) be determined at any

point (P) on the section. Because of the definition of unrestrained torsion,

the torsional shear stress at any point on the section will remain constant

throughout the length of the member.
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should also be determined,

on the cross section.

As was the case for solid sections and thin-walled closed sections, two

unique coefficients exist that characterize the geometry of each cross section.

These coefficients are called the torsional constant (K) and the torsional

modulus (S t) and are functions of the dimensions of the cross section. These

coefficients are discussed in detail below (Section B8.4.1-IV).

B. Restrained Torsion

When a member with a thin-wailed open cross section is restrained

against warping a complex distribution of longitudinal stresses is developed

that cannot be evaluated using elementary theories. The assumption that

plane sections remain plane during deformation is no longer valid, and

applications of Saint-VenantTs principle may lead to serious errors. In thin-

walled open sections, stresses produced by restrained warping diminish very

slowly from their points of application and may constitute the primary stress

system developed in the member.

Obviously, if one section is restrained in such a way that it cannot

warp, a system of normal stresses must be developed to eliminate this

warping. In general, these normal stresses vary from point to point along

the member and, hence, they are accompanied by a nonuniform shearing stress

distribution. This, in turn, alters the Lwist of the section. As a result, the

twisting moment developed on each section is no longer proportional to the

rate of twist, and final shearing stresses cannot be obtained by those that were

produced by unrestrained torsion.
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Therefore, three types of stresses must be evaluated for the case of

restrained torsion. These are: (I) pure torsionalshear stress, (2) warping

shear stress, and (3) warping normal stress. These stress distributions

are shown for several common sections in Figures BS. 4.1-3, B8.4.1-4, and

B8.4. i-5. Itwill be required to evaluate these stresses at any point (P)

on the cross section and at any arbitrary distance (L) from the origin. Also,
x

the angle of twist (¢) should be determined between an arbitrary cross section

and the origin along with the warping deformation (w) at any point (P) on an

arbitrary cross section. (Ref. 2).

Itwas shown previously thattwo coefficientswere necessary to

characterize the geometry of the cross section for unrestrained torsion. These

were the torsional constant (K) and the torsional section modulus (St). For

restrained torsion, three additionalcoefficientsare required to characterize

fully the geometry of the cross section and the point where the stresses are to

be determined. These coefficients are called the warping constant (r) --

a function of the dimensions of the cross section, the normalized warping

function (Wn) , and warping statical moment (S w) . The latter two are

functions of both the dimensions of the cross section and a specific point on

the cross section. These coefficients are discussed in detail in Section

B8.4.1-IV.
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Figure B8.4.1-3. Restrained Warping Stress in I-Section
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U
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Figure B8.4. l-4. Restrained Warping Stresses in Channel Section

T_

• Leceolenel SkNr C_,_

Figure B8.4.1-5. Restrained Warping Stresses in Z-Section
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The torsional analysis of thin-waUed open sections is subject to the

following limitations:

A. Homogeneous and isotropic material

B. Thin-walled cross section not necessarily of constant thickness

C, No abrupt variations in thickness except at reentrant corners

D. No buckling

E. Inexact calculations of stresses at points of constraint and at abrupt

changes of applied twisting moment

F. Applied twist}ng moment cannot be impact load

G. No abrupt changes can occur in cross section

H. Shear stress is within shearing proportional limit and proportional

to the shear strain (elastic analysis).

I. Points of constraint are fully fixed, and no partial fixity is allowed.
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In the case of a narrow rectangular cross section, the membrane

analogy gives a very simple solution to the torsional problem. Neglecting the

effect of the short sides of the rectangle and assuming that the surface of the

slightly deflected membrane is cylindrical ( Figure B8.4.1-6), the deflection

is

8T

and the maximum slope is pt
2T"

membrane and the xy plane is

The volume bounded by the deflected

(Ref. 3}:

H

A

_]
=X T. 'TI

z

A-A

X
f4

Figure B8.4.1-6. Membrane Analogy for Torsion of Thin Rectangular Section
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Now using membrane analogy and substituting 2C_ for p/T in the previous

equations, the twisting moment (Mt) is given by

I
M t = -_- bt 3 C_

or

M
t

0 =M(1/3bt3G-sGt
t

and the maximum shearing stress is

M M
t t

T = tG0 - -
max __1 bt 2 S t

3

where

St = 1/3bt 2 .

The equations for M t and Tmax, obtained for a thin rectangle can also be

used for cross sections, such as those shown in Figure BS. 4.1-2, by simply

adding the expression 1/3bt 3 for each element of the section (neglecting a

small error at corners or points of intersection of the elements). In the

general case of a section with N elements:

n

K-- b.tS..
11

i=1



f-.

The maximum shearing stress on any element i is given by

(Tmax} . S
1 t

Mt (ti) max

The maximum stress on the entire section is given by

M t
t max

T =

max S t

Section B8.4
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In the development of the formulas for the torsional analysis of open

cross sections, it is convenient to designate certain terms as torsional

coefficients for the cross section. The terms K and F are properties of the

entire cross section, while the terms St, Sw, and Wn apply to specific points

on the cross section.

A. Torsional Constant (K)

The torsional coefficient (K) is called the torsional constant, and

its value depends upon the geometry of the cross section.

Torsional constants for thin-walled open sections are based on formulas

for the thin rectangle.

Section B8.2.2-III contains an expression for the torsional constant

for a general rectangular section. Since we are concerned with a thin-walled

section, it can be seen that when the length-to-thickness ratio is approximately

ten, the value of the torsion constant is

K ~ 1/3bt a

This value is also verified by the membrane analogy in Section B8.4.1-HI.

The torsional constant for curved elements is the same as that for a rectangle

with b denoting the length of the curved element, as shown in Figure BS. 4.1-2.

Therefore, for a section composed of many thin rectangular, or thin

curved elements, the torsional constant can be evaluated by the following

expression:



F

n

K = 1/3 b t
11

i
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If a section has any element with a length-to-thickness ratio less than ten, the

value of K for that element should be determined by the equations in Section

B8.2.2-IU.

More accurate torsional constant expressions are determined for some

standard sections by considering the junctions of the rectangles and rounded

fillets at the junctions.

Some K values for frequently used sections are (Ref, 2):

1. For I sections with uniform flanges ( Fig. B8.4.1-7A) :

K=2/3bt_+ 1/3(d-2tf)t _ + 2c_ I:fl- 0.42016t_W

where

R
= 0.094+ 0.07--

tf

(tf +R)2+tw +
D=

2R + tf

2. For I sections with sloping flanges (Fig. B8.4.1-7B) :

K __

b-t
W

(tf+ a)(t_+ a 2) + 2/3 t a3+ 1/3(d- 2a) taW W

+2c_ D4-Et_



where

D

(F+c)2+t w R+

F+R+c
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and for 5-percent flange slope

t

(_ = 0. 066 + 0. 021_ + 0.072 _
a a

E = 0. 44104

(_ t )R 9.0250s-- 2--5

and for 2-percent flange slope

t
l:3

=0.084+ 0.007_ + 0.071 _
a a

E = 0.42828

( t)R 49.01 -
F=5-- _

3. For channels with sloping flanges ( Fig. B8.4. i-7C) :

b' t_)K = 1/3 tawd +-_- (a + tf) (a2+



F
/

4. For Tee section (Fig. B8.4.1-7D) :

bt_ ht 3
K=_+----_W +(_ D 4

3 3

Section B8.4

28 June 1968
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where

= 0. 094 + 0.07 R/tf

D =

(t)(t+ R)2+ t R+
W

2R + tf

5. Angle section (Fig. B8.4.1-7E) :

K = 1/3bt_ + 1/3 dt32 + c_ D 4

where

_ = t-2-/0"07+0"076-_)tl tl>t2

D_

(tl+ R)2+ t_ (R+_)

2R+ t 1

6. Zee section and channel section with uniform flanges (Fig.

B8.4.1-7F).

K values for these sections can be calculated by summing the K's of

the constituent angle sections computed in case 5.
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_-" f W

C. Channel with Sloping

Flanges

B. Sloping Flanges

b1

D k

fw

D. Tee Section

E. Angle F. Zee and Uniform Channel

Figure B8.4.1-7. Frequently Used Sections
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It shouldbe notedthat the K formulas for these frequently used

sections are basedonmembraneanalogyand on reasonably close approxima-

tions giving results that are rarely as much as 10percent in error.

B. Torsional Modulus (St)

The torsional coefficient (St) is called the torsional modulus. Its
value for anypoint on the section dependsuponabegeometryof the cross

section.

The basic equationfor determining the torsional modulusat an

arbitrary point (s) on a cross section is:

K ,

St(s) - t(s)

where K is as defined in Section B8.4.1-IVA and t(s) is the thickness of the

section at point (s).

Because the torsional modulus is necessary for the calculation of the

torsional shear stress in the equation

M (x)t - --
St(x , s)

it is often required to find the minimum value of St(s) in order to make r t

a maximum.

Therefore:

K
St(min) - t

max

where t is the maximum thickness in the cross section.
max
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C. Normalized Warping Function (Wn)

The torsional coefficient (Wn) is called the normalized warping

function. Its value depends upon the geometry of the cross section and upon

specific points on the cross section.

For the generalized section shown in Figure B8.4.1-8, the following

equation is used for calculating Wn(S) at any point (s) on the section:

1 b
Wn(S) =-_- / W tds- wOS OS

o

where

b
A = _ tds

0

S

0

Some W values for frequently used sections include:n

1. For symmetrical wide flange and I-shapes (Fig. B8.4. I-9A) :

bh

no 4

2. For channel sections (Fig. ]38.4.1-9B) :

ah
W -

no 2

Eh
O

Wn2 - 2



where

p Perpendicular distance to tangent line from centroid

Po Perpendicular distance to tangent line from shear center
cg Centroid of cross section
sc Shear center of cross section

z,y Coordinates referred to the principal centroidal axes
Angle of twist

Section B8.4
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['All directions ore shown positive, p andPo are positive if they
are on the left side of an observer at P (z,y) facing the posi.

tire direction of s.'] t,_qm_nM

P (_,r)

- /// ,\

b (re,y) St

• (l,V)

Figure B8.4.1-8. General Thin-Walled Open Cross Section

(b')2 t
E

o 2b't + h tw/3

and

u=b'-E
o

3. For zee sections (Fig. B8.4.1-9C) :

uh
W -
no 2

u'h

Wn2 - 2



W
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Swl

$wo _ Swo

A. Symmetrical H-and I-Sections

Wno_"_,,

Wn2

w._

Wn2

Wne

Swl

$wo

Sw3 t

Swo_

Sw2

$w2

B. Channel Sections

Swl

C. ZeeSec_ons

Sw2

A
s,.2 L.Lj s,.

Sw2

Figure B8.4.1-9. Distribution of W and S for Standard Sections
n w



where
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u = b' - u'

u' - (b')2 t
h + 2b't
tw

In the foregoing expressions:

h = distance between centerlines of flanges, in.

b = flange width, in.

b' = distance between toe of flange and centerline of web, in.

t = average thickness of flange, in.

t = thickness of web, in.
w

D. Warping Statical Moments (S)
w

The torsional coefficient (Sw) is called the warping statical moment.

Its value depends upon the geometry of the cross section and upon specific

points on the cross section.

For the generalized section shown in Figure B8.4.1-8, the following

equation is used for calculating Sw(S) at any point (s) on the section:

S

s (s) = f Wn(s) tds.W
0

The value of Wn(s) is determined from the previous subsection (B8.4.1-WC).

Some S values for frequently used sections include:
w



,
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For. symmetrical wide flange and I-shapes (Figure BS. 4. I-9A) :

hbRt

Swl - 16

2. For channel sections (Figure BS. 4.1-9B) :

u2ht

Swl - 4

Sw2 = 4

(b'- 2E )hbWt
o

(b' - 2E )hb't E h2t
o O W

Sw3 = , _4 8

3. For zee sections (Fig.

(ht + b't) 2 h(b')2t
W

Swl - 4(ht + 2b_t) 2
a

Sw2 -

h2tw(b') _t

4(ht + 2b't)
W

where u, h, t, b, b t, E and t
O' W

B8.4.1-9C) :

are defined in the previous section.

E. Warping Constant (r)

The torsional coefficient (r) is called the warping constant. Its

value depends only on the geometry of the cross section. For the generalized

section shown in Figure B8.4.1-8, the following equation is used for cal-

culating F:



b
F = f Wn(s) t2ds .

O

The value of Wn(S) is determined from Section B8.4.1-IVC.

frequently used sections are:

1. For symmetrical wide flange and I-shapes (Fig.

F __

h2b3 t I h 2
Y__

24 4
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Some values for

B8.4.1-9A) :

2. For channel sections (Fig. B8.4.1-9B) :

r = 1/6 (b'3Eo)h2(b') t+ F 2 I
O X

3. For zee sections:

(b,) 3th2 b't+ 2ht w

12 nt + 2b_t
W

where h, b, t, tw, b', and E are defined in Section B8.4.1-IVC, I = theO x

moment of inertia of the entire section about the xx axis, and I = the moment
Y

of inertia of the entire section about the yy axis.
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B8.4.2 UNRESTRAINED TORSION

The formulas given in this section apply only to members of open

cross section twisted by couples applied at the ends in the plane perpendicular

to the longitudinal axis of the bar, and the ends are free to warp as shown in

Figure BS. 4.1-1.



SectionB8.4
28June 1968
Page25

B8.4.2 UNRESTRAINED TORSION

I. ANGLE OF TWIST

For the case of unrestrained torsion, the torsional moment resisted

by the cross section is

M I = GK _'

where

M 1 = resisting moment of unrestrained cross section, in.-lb

= M t

G = shear modulus of elasticity, psi

K = torsional constant for the cross section, in. 4

_)' = _ = angle of twist per unit of length.
dX

This is the first derivative of the angle of rotation _ with respect to

X, the distance measured along the length of the member from the left

(Fig. B8.4.2-1).

Therefore, the basic equation for determining the angle of twist

between the origin and an arbitrary cross section at a distance L from the
X

origin is:

1 M(x)¢(x) =--_- S(x) dx
o

where K(x) is the torsion constant at L . If the cross section does not vary
x

and M(x) is taken as M t applied at the end of the member, the angle of twist

is determined from the equation:



MtL x

_(x) = GK
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The total twist of the bar is:

Ay

l DIRECTION OF VIEWING

o • __--1
z x _

"_ MT / - IS

APPLIED TORQUE

Ay

POSITIVE ANGLE OF ROTATION

Figure B8.4.2-1. General Orientation
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BS.4.2 UNRESTRAINED TORSION

II. STRESSES

The twisting moment CM t) on thin-walled open sections is resisted

only by the torsional shear stress for unrestrained torsion. The torsional

shear stress at the edge of an element is determined by the formula:

r t = Gt _' .

M(X) the basic equation for determining the torsional shear stress
Because _b= GK

at an arbitrary point (s) on an arbitrary cross section is:

where

M(x)

rt - St(x,s)

K(x k
St(x's) -t(x,s)

K(x) is evaluated at x = L where the torsional shear stress is to be
x

determined, and t(x, s) is evaluated at the arbitrary cross section and at the

point(s) on the arbitrary cross section.

If the member has uniform cross section and M(x) is taken as Mt,

applied to the end of the bar, the equation reduces to:

M t

_'t =
st(s)



where
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K

St(s) = t( s---_

The maximum stress r t will occur on the thickest elementl t(s) is maximum.
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B8.4.2 UNRESTRAINED TORSION

III. WARPING DEFORMATION

The basic equation for determining the warping deformation w(s) at

any point on an arbitrary cross section at a distance x = L from the origin is
X

S

w(s) - w =_)' f rdsO
O

where w(s) is the warping deformation at point (s) on the middle line of the

cross section in the x direction; w is the displacement in the x-direction ofo

the point from which s is measured; r(s) is the distance of the tangent of arc

length ds from point o, taken positive if a vector along the tangent and point-

ing inihe direction of increasing s gives a positive moment with respect to

the axis of rotation ( Fig. BS. 4.2-2) ; _' is determined from Section B8.4.2-I.

Figure B8.4.2-2. General Section
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For the case of unrestrained torsion, the point 0 can be located

arbitrarily.

The warping of the cross section with respect to the plane of average

w has been found to be

w(s) = _, Wn(S )

where Wn(S) is the normalized warping function found in Section B8.4.1-IVC.
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B8.4.2 UNRESTRAINED TORSION

IV. STRESS CONCENTRATION FACTORS

Stress concentrations occur in composite cross sections at any

reentrant corner; that is, at the intersection of the web and either of the

flanges in the Iosection or at the interior angle joining the two legs of the

angle section. Exact analysis of stress concentrations at these points is

very difficult and must be carried out experimentally, usually by membrane

analogy.

For many common sections, the maximum stress at the concave or

reentrant point is

_" =K 3 G¢'max

where (Ref. 4)

oK 3- _r2D4 1+ .118 In 1 + +0.238 tanh
7_

1+_

D = diameter of largest inscribed circle ( Section B8.4.1-IVA)

A = cross-sectional area

p = radius of concave boundary at the point (positive)

O = angle through which a tangent to the boundary rotates in rolling

around the concave portion, tad.

For angles with legs of equal thickness, the percentage increase of

stress in fillets is shown on Figure B8.4.2-3.
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0

0 0.4 0.8 1.2 1.6 2.0

RATIO _-

Figure BS. 4.2-3. Stress Increase Ln Fillets of Angles
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B8.4.4 EXAMPLE PROBLEMS

I. UNRESTRAINED TORSION

A member with an unsymmetrical section shown in Figure B8.4.4-1 is

loaded by an end moment and is free to warp. If Mt= 100in.-lbs and L=41 in.,

determine the maximum angle of twist, torsional shear stress, and warping

deformations.

1.380

.124

S.C.
+

L 0.940 _J

I t I
I

¢ t D
t

,_.--- t

t

B

3.380

t = 0.12 in.

A = 0,6912 In. 2

G = 3 X 106 psi

s

Figure B8.4.4-i.

= fsEvaluate Wos Pods:
O

Cross Section for Example Problem I

W = 0.124s
OS

for s < 3. 380

W = 0.419+ 0.541s
OS

for 4.760 > s > 3.380

W = 1.166- 1.504s
OS

for s > 4.760
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Evaluate Wn(S):

i b
Wn(S)=T f w m,,- w

OS OS
0

1 fb WostdS_ 0"12 {of3"38T o 0- 69i'2

+ f0.94
O

O. 124sds + l.
0

38
(0.419 + 0.541s) ds

(1.166 - 1.504s)ds = 0.388.

Then:

Wn(S) = 0.388 - 0.. 124s for s < 3.380

Wn(S) = - 0.031 - 0.541s

Wn(S) = - 0.778 + 1. 504s

for 4.760 > s > 3.380

for s>4.76 .

Therefore, at points on the cross section:

w (A) = 0.388
n

w (B) =-0.031
n

Wn(C) =- 0.778

Wn(D) = 0.636.
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Wn (C)

Wn (B)

D

C

Wn (O)

B

Figure B8.4.4-2, Distribution of W (s)

Wn (A)

n

Warping Deformations (measured from mean displacement plane) :

W(s) ¢' s)= Wn(

M
W(s) - GK Wn(S)

(Section B8.4.2-III)

W(A) -
100 (0. 388)

3 x 106x 3. 285x 10 -3

W(A) = 0.0039 in.

W(B) =- 0.0003 in.

W(C) = - 0. 0079 in.

W(D) = 0. 0065 in.
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K = 1/3 bt 3

K=1/3(3.38+ 1.38+ 0.94) (0.12) 3

K=3.285x 10 -3 in.4

Maximum angle of twist:

MtL

¢ (max) = G---K (Section B8.4.2-I)

¢ (max) -
I00 x 41

3x106x3.285xlO -_J

¢ (max) = O.416 radian .

Torsional Shear Stress:

where

M t

l"t =S_
( Section B8.4.2-II)

K
St(s) =

100 x 0.12

_t =3.285x10 "s =3655psi
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It was shown that for unrestrained torsion, the torsional moment

resisted by the section is M1 = GK ¢' (Section BS. 4.2-I).

Longitudinal bending occurs when a section is restrained from free

warping. This bending is accompanied by shear stresses in the plane of the

cross section, and these stresses resist the external applied torsional moment

according to the following relationship:

M 2 = - E F¢"'

where

M2 = resisting moment caused by restrained warping of the cross

section, in.-lb

E = modulus of elasticity, psi

F = warping constant for the cross section (Section B8.4.1-IVB), in. 6

4"' = third derivative of the angle of rotation with respect to x.

Therefore, the total torsional moment resisted by the section is the

sum of M_ and M 2. The first of these is always present; the second depends

on the resistance to warping. Denoting the total torsional resisting moment

by M, the following expression is obtained.

M= M I+ M2=GK_b' - EFt"'

or

1 M
a-_- ¢' - ¢'" - Er



where
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EF
a 2 _

GK

The solution of this equation depends upon the distribution of

applied torque (M) and the boundary or end restraints of the member.

Numerical evaluation of this equation for _, _', _", and 9_''' is

obtained from a computer program in the Astronautics Computer

Utilization Handbook for many loading and end conditions.

It is necessary to evaluate the foregoing expressions for the

angle of twist and its derivatives before a complete picture of stress

distribution and warping can be defined.
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RESTRAINED TORSION

STRESSES

A. Pure Torsional Shear Stress

The equation for torsional shear stress is the same as given

in Section B8.4.2-II; however, now the angle of twist varies along the

member and must be determined from the previous section.

Neglecting stress concentrations at reentrant corners, the

pure torsional shear stress equation is

T t = Gt P'.

This stress will be largest in the thickest element of the cross section.

For distribution of this stress for common sections, see Figures B8.4. 1-3,

B8.4. 1-4, and B8.4. 1-5. This stress can be calculated by a computer

program from the Astronautics Computer Utilization Handbook for many

loading and end conditions.

B. Warping Shear Stress

When the cross section is restrained from warping freely

along the entire length of the member, warping shear stresses are

induced. These stresses are essentially uniform over the thickness

(t), but the magnitude varies at different locations of the cross section

(Figs. B8.4. 1-3, B8.4. 1-4, and B8.4. 1-5). These stresses are

determined from the equation:

TW S

ES
-- WS (/) t t l

t
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where

rws = warping shear stress at point s,

E = modulus of elasticity, psi

psi

Sws = warping statical moment at point s (Section B8.4. I-IVD), in. 4

t = thickness of the element, in.

9_''' = third derivative of the angle of twist with respect to x,

distance measured along the length of the member.

This stress can be calculated by a computer program from the

Astronautic Computer Utilization Handbook for many loading and end

conditions.

C. Warping Normal Stress

Warping normal stresses are caused when the cross section is

restrained from warping freely along the entire length of the member.

These stresses act perpendicular to the surface of the cross section

and are constant across the thickness of an element but vary in mag-

nitude along the length of the element. The magnitude of these stresses

is determined by the equation:

aws = EWns _b"

whe re

aws = warping normal stress at point s, psi

E = modulus of elasticity, psi

Wns = normalized warping function at point s (Sec.B8.4. I-IVC), in.2

_' = record derivative of the angle of twist with respect to x,

distance measured along the length of the member.

This stress can be calculated by a computer program from the

Astronautic Computer Utilization Handbook for many loading and end

conditions.



Section B8.4

15 April 1970

Page 37

B8.4. 3 RESTRAINED TORSION

Ill. WARPING DEFORMATIONS

Warping deformations can be calculated by using the same

equation that was given in Section B8.4.2-111, except that now 95' will

vary along the length of the member. The expression for 95' can be

obtained from Section B8.4. 3-I or values can be obtained from a

program given in the Astronautic Computer Utilization Handbook. It

should be noted that the warping normal stresses are proportional to

corresponding warping displacements; hence, by knowing the warping

displacements, a picture of distribution of the warping stresses is

evident.
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B9 PLATES

B9.1 INTRODUCTION

Plate analysis is important in aerospace applications for both lateral

applied loads and also for sheetbuckling problems. The plate canbe considered

as a two-dimensional counterpart of the beam except that the plate bendsin all

planes normal to the plate, whereas the beam bendsin one plane only.

Becauseof the varied behavior of plates, they have been classified into

four types, as follows-

Thick Plates -- Thick plate theory considers the stress analysis of

plates as a three-dimensional elasticity problem. The analysis becomes, con-

sequently, quite involved and the problem is completely solved only for a few

particular cases. In thick plates, shearing stresses become important, similar

to short, deep beams.

Medium-Thick Plates m In medium-thick plates, the lateral load is

supported entirely by bending stresses. Also, the deflections, w, of the plate

are small compared to its thickness, t, (w < t/3J. Theory is developed by

making the following assumptions:

i. There is no in-plane deformation in the middle plane of the plate.

2. Points of the plate lying initially on a normal-to-the-middle plane

of the plate remain on the normal-to-the-middle surface of the

plate after bending.

3. The normal stresses in the direction transverse to the plate can be

disregarded.
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Thin Plates -- The thin plate supports the applied load by both bending

and direct tension accompanying the stretching of the middle plane. The deflec-

tions of the plate are not small compared to the thickness (1/3t < w < 10t) and

bending of the plate is accompanied by strain in the middle surface. These

supplementary tensile stresses act in opposition to the given lateral load and the

given load is now transmitted partly by the flexural rigidity and partly by a

membrane action of the plate. Thus, nonlinear equations can be obtained and

the solution of the problem becomes much more complicated. In the case of

large deflections, one must distinguish between immovable edges and edges

free to move in the plane of the plate, which may have a considerable bearing

upon the magnitude of deflections and stresses in the plate.

Membranes -- For membranes, the resistance to lateral load depends

exclusively on the stretching of the middle plane and, hence, bending action is

not present. Very large deflections would occur in a membrane (w > 10t).

In the literature on plates, the greatest amount of information is avail-

able on medium-thick plates. Many solutions have been obtained for plates of

various shapes with different loading and boundary conditions [1, 2]. However,

in the aerospace industry, thin plates are the type most frequently encountered.

Some approximate methods of analysis are available for thin plates for common

shapes and loads.

This section includes some of the solutions for both medium-thick plates

and thin plates. Plates subjected to thermal loadings are covered in Section

D3.0.7. Plates constructed from composite materials are covered in Section F.
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PLATE THEORY

This section contains the theoretical solutions for medium-thick plates

(small deflection), membranes, and thin plates (large deflection). Solutions

for thick plates will not be given here as this type plate is seldom used in the

industry.

B9.2.1 Small Deflection Theory

Technical literature on the small deflection analysis of plates contains

many excellent dcrivations of the plate bending equations (References 1 and 2,

for instance). Therefore, only key equations will be presented here.

Figure B9-1 shows the differential element of an initially flat plate acted

upon by bending moments (per unit length) M and M about axes parallel to the
x y

y and x directions, respectively. Sets of twisting couples Mxy(= -Myx) also

act on the element.

S

r r r r
j My w

Myx

TWISTING MOMENTS

SHOWN BY RIGHT HAND

VECTOR RULE

P X

FIGURE B9-1. DIFFERENTIAL PLATE ELEMENT
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As in the case of a beam, the curvature in the x, z plane, _y , is pro-

1
portional to the moment M applied. The constant of proportionality is _, thex

ts
reciprocal of the bending stiffness. For a unit width of beam, I -- --. In the

12

case of a plate, due to the Poisson effect, the moment M also produces a
Y

(negative) curvature in the x, z plane. Thus, with both moments acting, one

has

02W 12

8x 2 - Et 3 (M x-_My)

where # is Poisson's ratio. Likewise, the curvature in the y, z plane is

8Zw 12

_y2 - Et3 (My-_Mx)

Rearranging these two equations in terms of curvature yields

(i)

D/82w 82w
My= _0y2 + , 0--;r/ (2)

where

Et 3
D - •

12(1 - ,2)

The twist of the element, 82w/SxOy (=O2w/0ySx) is the change in x-direction

slope per unit distance in the y-direction (and vice versa). It is proportional to

the twisting couple M
xy

relation as

A careful analysis (see References 1 and 2) gives the

82w
Mxy = D(1 - #,_-_ (3)
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Equations (1), (2), and (3) relate the applied bending and twisting

couples to the distortion of the plate in much the same way as does

M = EId2y/dx 2 for a beam.

Figure B9-2 shows the same plate elements as the one in Fig. B9-1,

but with the addition of internal shear forces Q and Q (corresponding to the
x y

"v" of beam theory) and a distributed transverse pressure load q(psi). With

the presence of these shears, the bending and twisting moments now vary along

the plate as indicated in Fig. B9-2a.

z .4 y d Myx + dMyx

\M v

I_,yx
(a)

(b)

+ dMxy

FIGURE B9-2. DIFFERENTIAL PLATE ELEMENT WITH LATERAL LOAD
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By summing moments of the two loading sets of Figs. B9-2a and B9-2b

about the y axis, one obtains

MxdY + (Myx + dMyx)dX + -(Qx + dQx)dxdy = (Mx + dMx)dY + MyxdX

Dividing by dxdy and discarding the term of higher order yields

aM aM

x _ _yx (4)
Qx - (_x 8y '

or,

OM aM

Q _ x • xy . (4a)
x 8x ay

In a similar manner, a moment summation about the x-axis yields

aM aM

= _....2. + _ (5)
Qy ay 8x

[Equations (4) and (5) correspond to V -- dM/dx in beam theory. ]

One final equation is obtained by summing forces in the z-direction on

the element:

aQ aQ
x ...._2

q - +
by by

Equations (4), (5), and (6) provide three additional equations in the

, , and q. The plate problem is, thus, corn-three additional quantities Qx Qy

pletely defined. A summary of the quantities and equations obtained above are

presented in Table B9-1. For comparison, the corresponding items from the

engineering theory of beams are also listed.
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Table B9-1. Tabulation of Plate Equations

Class Item

Geometry

Coordinates

Deflections

a2w

Plate Theory Beam Theory

Xx y

W

ahv a2w

Y

Structural

Characteristic

Distortions

Loadings

H o oke ' s

Law

Bending
Stiffness

Equilibrium

Couples

Shears

Lateral

Moment

Distortion

Relation

Moments

Forces

3x 2 ' 3y 2 ' 3xay

Et ._
D==

12(i -

M ,M ,M
x y xy

Qx' Qy

q

x 37 +/_

D [azw aa--_)M = +_
Y \3Y 2

a_w
M = D(1-_)--

xy ax ay

aM aM
x + xyCb

"_x ax ay

3M aM

Qy _ + .......__ay ax

aQ 0Q
x _..y.

q = -- +
Ox 3y

dx 2

EI

M

V

qorw

dV
E

q dx

dM
V = m

dx

M EI d2y
dx 2
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Finally, one very important equation is obtained by eliminating all inter-

hal forces (Mx, My, Mxy , Qx' %) between the six equations above. The result

is a relation between the lateral loading q and the deflections w (for a beam,

q/EI = d4y/dx 4):

04w _:w

0x--7 + 2 Ox_Oy 2
34w q (7)

+ -5

The plate bending problem is thus reduced to an integration of equation

(7). For a given lateral loading q(x,y), a deflection function w(x,y) is sought

which s:,tisfies both equation (7) and the specified boundary conditions. Once

found, w(x,y) can be used in equations (1) through (5) to determine the inter-

nal forces and stresses. Often, various approximate methods are used to solve

equation (7). One of the most powerful is the finite difference technique, pre-

sented in Reference 1.

It must be emphasized that in deriving the plate-bending equations it was

assumed that no stresses acted in the middle (neutral) plane of the plate (no

membrane stresses). Thus, in summing forces to derive equation (6), no

membrane stresses were present to help support the lateral load. In the solu-

tions to the great majority of all plate-bending problems, the deflection surface

found is a nondevelopable surface, i.e., a surface which cannot be formed from

a flat sheet without some stretching of the sheet's middle surface. But, if

appreciable middle surface strains must occur, then large middle surface

stresses will result, invalidating the assumption from which equation (6) was

derived.
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Thus, practically all loaded plates deform into surfaces which induce

some middle surface stresses. It is the necessity for holding down the magni-

tude of these very powerful middle surface stretching forces that results in the

more severe rule-of-thumb restriction that plate bending formulae apply accu-

rately only to problems in which deflections are a few tenths of the plate' s

thickness.

B9.2.1.1 Orthotropic Plates

In the previous discussion it was assumed that the elastic properties of

the material of the plate were the same in all directions. It will now be assumed

that the material of the plate has three planes of symmetry with respect to the

elastic properties. Such plates are generally called orthotropic plates. The

bending of plates with more general elastic properties (anisotropic plates) is

considered in Section F.

For orthotropic plates the relationship between stress and strain com-

ponents for the case of plane stress in the x, y plane is presented by the fol-

lowing equations:

cr = E'( + E"£
x xx y

= E'e + E"e
y yy x

T xy GTxy ( 8 )

Following procedures outlined in Reference 1, the expression for bend-

ing and twisting moments are
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M = D +

x x&-_

Section B9

15 September 1971

Page 10

(9)

okv
M = D +

y yO-7
(10)

M = 2D
xy xy Ox_)y

(11)

in which

E' t3 E' t3

D x ._.Z._ E''t3 Gt3
x = i-'-_' D = , D t - , D -y 12 12 xy 12

The relationship between the lateral loading q and the deflections w becomes:

04w (13 ) 04w OCwDx_ + 2 i + 2Dxy Ox_3y2 + DyW = q . (12)

Equation (12) can be used in the investigation of plate bending for many

various types of orthotropic construction which have different flexural rigidities

in two mutually perpendicular directions. Specific solutions will be given in

Subsection B9.5, Orthotropic Plates.

B9.2.2 Membrane Theory

Before large deflection theory of plates is discussed, one should con-

sider the limiting case of the flat membrane which cannot support any of the

lateral load by bending stresses and, hence, has to deflect and stretch to

develop both the necessary curvatures and membrane stresses.

The two-dimensional membrane problem is a nonlinear one whose solu-

tion has proven to be very difficult [3]. However, we can study a simplified

version whose solution retains the desired general features. The one-dimensional
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analysis of a narrow strip cut from an originally flat membrane whose length in

the y-direction is very large (Fig. B9-3).

Y z

(a)

q
I

st q st

t. t- ., '1
x x+dx

(b) (el

FIGURE B9-3. ONE-DIMENSIONAL MEMBRANE

Figure B9-3 shows the desired one-dimensional problem which now

resembles a loaded cable. The differential equation of equilibrium is obtained

by summing vertical forces on the element of Fig. B9-3c.

st-- x x+dx x

or

d_v q (13)
dx 2 - - st
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Equation (13) is the differential equa-

(a-x)W = 2st (14)

The unknown stress in equation (14) can be found by computing the change in

length of the strip as it deflects. From Reference 3, this stretch 5 is

Substitutil_g through the use of equation (14) and integrating yields

and consideration of the stress-strain relationship yields

5
S = -- E

a

By equating and solving for s one finds

s 0
If equation (15) is substituted into equation (14), the maximum deflection at

x =, a/2 is

Wma x = 0.360 a 3 . (16)

Solutions of the complete two-dimensional nonlinear membrane problem

have been obtained in Reference 4, the results being expressed in forms identi-

cal to those obtained above for the one-dimensional problem, v
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w = nla (qa_+
max \Et] (17)

'oo'° •
Here a is the length of the long side of the rectangular membrane, and

n 1 and n 2 are given in Table B9-2 as functions of the panel aspect ratio a/b.

Table B9-2. Membrane Stress and Deflection Coefficients

a/b 1.0 1.5 2.0 2.5 3.0 4.0 5.0

nl

n2

O.318

O.356

0.228

0.37

0.16

0. 336

O. 125

O.304

O. 10

0.272

O.068

0.23

O. 052

O. 205

The maximum membrane stress (Smax) occurs at the middle of the long

side of the panel.

Experimental results reported in Reference 4 show good agreement with

the theory for square panels in the elastic range.

B9.2.3 Large Deflection Theory

The theory has been outlined for the analysis of the two extreme cases

of sheet panels under lateral loads. At one extreme, sheets whose bending

stiffness is great relative to the loads applied (and which therefore deflect only

slightly) may be analyzed satisfactorily by the plate bending solutions. At the

other extreme, very thin sheets, under lateral loads great enough to cause

large deflections, may be treated as membranes whose bending stiffness is

ignored.
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As it happens, the most efficient, plate designs generally fall between

these two extremes. On the onehand, if the designer is to take advantageof

the presence of the interior stiffening (rings, bulkheads, stringers, etc. ),

which is usually present for other reasons anyway, then it is not necessary to

make the skin so heavy that it behaveslike a '_)ure" plate. On the other hand,

if the skin is made so thin that it requires supporting of all pressure loads by

stretching and developing membrane stresses, then permanent deformation

results, producing "quilting" or "washboarding.,t

The exact analysis of the two-dimensional plate which undergoeslarge

deflections and thereby supports the lateral loading partly by its bendingresis-

tance and partly by membrane action is very involved. As shownin Reference 1,

the investigation of large deflections of plates reduces to the solution of two non-

linear differential equations. The solution of these equations in the general case

is unknown, but some approximate solutions of the problem are knownand are

discussed in Reference 1.

An approximate solution of the large deflection plate problem canbe

obtained by adding the small deflection membrane solutions in the following way:

The expression relating deflection anduniform lateral load for small

deflection of a plate can be found to be

w = (19)
max Et 3

where (_ is a coefficient dependent upon the geometry and boundary conditions of

the plate.

r
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The similar expression for membrane plates is equation (17)

"a_ .I,w = n i a 3
max \-E-}'-] "

Solving equations (19) and (20) for q' and q" and adding the results yields

q = q'+ q"

1 Et3 1 Et 3

W + W

q - a max nl3 a4
a4 max

(20)

(21)

Obviously, equation (21) is based upon summing the individual stiffnesses

of the two extreme behavior mechanisms by which a flat sheet ean support a

lateral load. No interaction between stress systems is assumed and, since the

system is nonlinear, the result can be an approximation only.

Equation (21) is best rewritten as

qa4=Et4 al Wmax a 4 + nl3 . (22)

Figure B9-4 shows equation (22) plotted for a square plate using values

of a =0. 0443, and n 1 = 0. 318. Also plotted are the results of an exact analysis

[ 1]. As may be seen, equation (22) is somewhat conservative inasmuch as it

gives a deflection which is too large for a given pressure.

The approximate large-deflection method outlined above has serious

shortcomings insofar as the prediction of stresses is concerned. For simply

supported edges, the maximum combined stresses are known to occur at the

panel midpoint. Figure B9-5 shows plots of these stresses for a square panel
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a.:; .redieted by the approximate method (substituting q' and q" into appropriate

strcs'_ equations).

350

300

250

20O

U.J

','r 150
8-

10o

50

0
0 0.5

/
/

N_E_RIPL_AXE...---.

1.0 1.5 2.0

w/t

FIGURE B9-4. DEFLECTIONS AT TIIE MIDPOINT OF A SIMPLY SUPPORTED

SQUARE PANE L BY TWO LA RG E-DEF L EC ]'ION THEORIES

04

Y=

30

2O

10

I

EXACT ---,,'-----

APPROX. _ ----

f

50 100 150 200

qa4/ Et4

_50

FIGURE B9-5. LARGE DEFLECTION TItEORIES v MIDPANEL STRESSES;

SIMPLY SUPI)OI_TED PANEL
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B9.3 MEDIUM-THICK PLATES (SMALL DEFLECTION THEORY)

This section includes solutions for stress and deflections for plates of

various shapes for different loading and boundary conditions. All solutions in

this section are based on small deflection theory as described in Paragraph

B9.2.1.

B9.3. 1 Circular Plates

For a circular plate it is naturally convenient to express the governing

differential equations in polar coordinate form. The deflection surface of a

laterally loaded plate in polar coordinate form is

( 02 1 0 1 02_[0_ 1 _ 1 02w_ __+ - -- + ; (23)r Or r 2 a_]\a-'_" + r Or + "_ _f] D "

If the load is symmetrically distributed with respect to the center of the plate,

w is independent of 0 and the equation becomes

1d{d[ d(rd r)J}:r dr r_rr _rr D (24)

The bending and twisting moments are

Mr = D[or_ + " _ + r 2 _-_ (25)

M t = \r + + " (26)Or r 2 002 a--_- /

Mrt= (1-p)Dtl _'_'_-a2w _-_ _-_) (27)

B9. 3.1.1 Solid, Uniform-Thickness Plates

Solutions for solid circular plates have been tabulated for many loadings

--- and boundary conditions. The results are presented in Table B9-3.
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Table B9-3. Solutions for Circular Solid Plates

Case Formulas For Deflection And Moments

Supported Edges,

Uniform Load

q

Clamped Edges,

Uniform Load

q

41ill1 f

Supported Edges, Uniform

Load Over Concentric

Circular Area of Radius, c

q

V-V-I

P - 7r ¢2q

w = 16i)(1+_) max 64(1+_) D

Mr = 1_6 (3÷g)(:'2-r2) 3+_ qa 2
(Mr) max = (Mt)max = 16

M t = 1_61a_(3+_) - r2(1+3_)1

At Edge

|Jit
0 -

w = c-Al-- (a2- r2)
64D " " Wmax

M r = 1"_-_[aZ(l +U) r2(3+U)l

(Mr)ma x" at r'=a = -_a

= --q- [a2 (1 +U) r_(l+3g)lM t 16

.L2

(Mr)r= 0 = _6"(1+g)

= a_L
64D

(
P

_'q-L_(a2 r 2_ + 2r 2 log r
- (l+p ' - 1 -- +w li;_r D a 2(l+p)

° --_-P[_+-:_a2 c2 c 7+___c, ]
Wr=0 16_DLX+. + loga - 4(1+_) J

At Center

I)
log _ 1M - 1 +/_) + -

max 47r 4a 2 J

At Edge

Pa
0 -

4zr (l+p)
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Case

Simply Supported,

Uniform Load On Concentric

Circular Ring Of Radius, b

P= 2_bq

q

I I

Fixed Edges, Uniform

Load On Concentric

Circular Ring Of Radius, b

Formulas For Deflection And Moments

p- _rbq
q

H

Simply Supported,

Concentrated Load

At Center

P

Fixed Edges,

Concentrated Load At

Center

Clamped Edges,

Uniform Load Over

p / ( 1 1-. a_-h_(W)r=b - 8_D (a2-b_) 1 + 2 l+u a _ ] +

P b'log_ + (a'b_)_]
max(W)r=0 - 8rD 2(I+u) J

(i+_)i,log_b
(l+tt) P(a2-b 2) a

Mr=b = 8va 2 - 4_

2b 2 log b
a

_. P (a4-b4 log b)(W)r=b - 8rD\2a 2 ÷ 2b2

max(w) r=0- = )2 log -a +

p aZ-b 2
M

r--'a 4ff a 2

- •w 167rD Ll+gi'" r )

w = _ 1_a----_22
max 16r(l+g) l)

= 4n[-_'_(l+/J) log '±M r r

M t = l+g) log + 1 - g

w = P 2 2
Pr2 log r + 16_D(a-r)8n D a

3 I)a _
w =_

max 487 D

"[ : ]M = -- l÷bt) h)g - 1
r 4%

"( )Wmax (r=0) = 64_1) la2 4c2l°gae :lc2

Concentric Circular

Area Of Radius, e

q

VT3

p = 1)"c2q

At r=a

M
r

At r=0

M
r

= _-_(1 2_2) Mt = tiM r

I)(1+_) og-- +
" Mt = 47r c
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Case Formulas For l_,f]t, etion And Moments

Supported By Uniform

Pressure Over Entire

I_wer Surlace, Uniform

Load Over Concentric

Circular Area Of Radius, c

P = n ¢2Q

q

I t _]-] t t

No Sulq_ort,

"Lnilorm Fdgc Moment

M M

(- )

Edges Supported,

Central Couph,

(Trunnion Loading)

x [.j z
m

Edgc"_ ('lampe<t.

Centv':d Coul_ h.'

(Trunnion l,oading)

U f
m

Edges Supported.

Uniform 1,end Over Small

Eccentric Circul3v Area

Of Radius, r
0

"_"- 2_"0

" i °

LOAD AT !

fq " rl

lU - °1

M M
r t

At r=O

W
e 2 4

_4+ (t,_) 4(t-_, c2

If c_O

|)a 2 _
w =

64rid (i+.)

Ma 2

w = 21)(L*O} Wr=0 2D(I+U)

(l+ta) log Ka J

Edge Rotation

M:t
0

D(1+p)

z(,)..:5 a-_) ]
(l*p) log 0.45 ka J

At ['=c

9.__m.mI1 +M _ 2nc

where

0.49 .u_

K ((: _), 7a)2

AI r=c

I"

[ 1 +

9m
M = 2no"

wh(, re

0.1 a_
k

(c+,). 2_ .)_

1 * (I+u) log a_zp_r
o

K_(r_-h_ar2÷eCa 3) + K,(r4-hlarJ+eta:Jr} cos 0

÷ K2(r4-b2ar3+c_a2r 2) cos ¢

2(1 +_) P( p'l-bt,al)'/+ e,)a :_) K = Et_
9(5 +V) Kna; 12 (l-u:)

2(3 +_) l)(p4-1)laP_+t:,a:li) } 3(2 +p)
3(9 _u) K "as b° = 2(1+/_)

(4 +,u) ':I'(p4-khap:l+c,aZo_ )
(9+p)(5*/a)Kra _ ' bl = 2(3+#)

At Point of I,oad:

M M
r t

At Point q:

W =

where

K,) -

K 1 -:

K 2 =

})2 _ CO = ¢I C_
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Case Formulas For Deflection and Moments

Edges Fixed, Uniform

Load Over Small Eccentric

Circular Area of Radius, r 0

Supported At Several

Points Along The Boundary

Edge Supported, Linearly

Di strihut¢<] Load

Symmetrical About

Diameter

tl

v

At Point of Load:. "l

M P a-p (1 +g)r - 47r (1+#) log + =
r0

W = 31+'(l-l'£2){a2-p+)2
4_Et3a _

At Point q:

[lCe 
w = 2_E, ta L2\ a'

At Edge:

M = 1 - = max M when r 0 > 0.6(a-p)

Supported At Two Points: (Yt = 0, Y2 = _)

Load P at Center:

pa z
w = 0. 116 --

r_O ,_ D

pa 2
w = O. 118 --

r=a, O= _/2 D

Uniformly Loaded Plate:

Wr= 0 = 0. 269 qa---_4D

w = 0.371 qa----_4
r = a, 0 = _'/2 D

Supported At Three Points 120 Deg Apart:

Load P at Center

pa t
w = O. 0670 --

r_ 0 D

Uniformly Loaded

w = 0. It:;7 _
r=0 D

max M = _ at r = 0.577 a
r 72xf_-

qa 2 (5 +_) (1+3 U)
ma.xM =

t 72(J+,)
at r = 0.675a

1

max edge reaction per linear inch = _ qa

maxw = 0.042 qa4 at r -- 0.503a (g 0.3)
Et:+ =

max M when r0<0.6(a-p)
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f29. _. 1.2 Anr ular, Uniform-Thickness Plates

Solutions for ap.nular circular plates with a central hole are tabulated in

TaMe B9-4.

B3.3.1.3 Solid, Nonuniform-Thickness Plates

For the plates t_eated here, the thickness is a function of the radial dis-

tance, mid the ncting load is symmetrical with respect to the center of the plate.

I. Linearly Varying Thiclmess:

The plate of this type is shown in l.'ig. B9-6.

+8J
__ -F,"_ , _////.(/_////z/_

- j • -]_

I- b a -16.

(a)

P

(b)

FIGURE B9-6. CIRCULAR PLATE WITlt LINEARLY VARYING TItlCKNESS

Tables B9-5 and B9-6 give the deflection w and values of bending
max

moments of the plate in two cases of loading. To calculate the bending moment

at the center in the ease of a eentral load P, one may assume a uniform distri-

bution of that load over a small circular area of a radius e. The moment

M = M at r = Ocan be expressed in the form
r t

(,. c÷)M = P(1 + _) og- + + TiP
max 47r e

(28)
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Solutions For Annular, Uniform-Thickness Plates

Case Formulas For I_,flection And Moments

Outer Edge Sul)ported,

Uniform Load Over

Entire Actual Surface

p = q_t(i2.b2l

ffrN
r_ A

Outer Edge Clamped.

Uniform Load Ovor

Entire Actual Surface

p - q_rla2.b 2)

Outer I.'dge Supported,

Unilorm I,oad Along

Inn('r Edg('

P

At Inner Edge:

: q r.o( a]maxM = M t _L' :l 4- p) + b4(l_p) _ 4a2b 2 _ 4(l+p)aZl?log _)

When b Is Ver)' Small

= qa 2 (
maxM = M t -_-- 3+g)

_I) _(I+.) - z(t+.) 2(I-u) ),
'i

2a_b_(1 +#) / I "_

(a _- ')_')(1 -_)(l°g b) ,

At OuO.'r }:dg(':

a

I)4( I - _) - 41)4( ] + _) lt)_ E + a2b2( I + u)
max M = (J a 2 - 2b _ + ,

r 8 a2(1 -t') + I?(I+/_)

u_ a
max w _ _ a 4 ._ 51)4 _ 6a2))1_ .¢ _))4 log V)

a

,_,:(l..) _ .i,,,,,,(:,,.) _ ,.,,.,(I+.)),og_,. i,)u,,.,(,+.)(,og_,)"
,,'(I -u) + )?(I..)

< zh' ( l ).'tabu' - za't?(_ v)o ' ' ; :V)
' a_(i-v) _ u.(l +u)

At Inner E{Ig(':

max M = M t ,'i¥ L i,)g _ (I -p)

l, [{_,'-'-,,-')(:,4v) , ,,aqt(I,,,) A _,)']IIlUX W _ ,;.,--'; _,,.) i'i _0)¢; _ ..)v"g o.
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r

Case Formulas For Deflection And Moments

At Outer Edge:Outer Edge Clamped,

Uniform load Along

Inner Edge

P

Supported Along

Concentric Circle

Near Outer Edge,

Uniform Load Along

Concentric Circle

Near Inner Edge

Inner Edge Supported,

Uniform Load Over

Entire Actual Surface

p = cra.ia2.b 2)

Outer Edge Fixed

And Supported,

Inner Edge Fixed,

Uniform Load Over

Entire Actual Surface

p = q,_a2.b 2)

maxM _ _b'- 2b'(,_., log_ I
r = 4-_ 1 - a2(1_p ) + bZ(l+#) i = maxMwhen b < 2.4

At Inner Edge:

i-

_" a2(l -P, - bz(1 +p) - 2(1 -pZJaZ log amaxM t = P/* 1 + .a*(].-p) + b_(l+p) b

a

= max Mwhen _ >2.4

a2b_(a 2- b2) - 8a2b 2log _ +
P a _ _ b 2 ,.

maxw = _ * a;r(_l-.) '+ b'(i+_')

At Inner Edge:

e c'-d'l
maxM = M t = _L a'-b' log _ 4 (1-/*)_j

At Inner Edge:

maxM = M t at(1-_/*) log _ + 4a2b _ + b_(1-/*) - al(l+3#)

At Outer Edge:

eL 4a2bz(3 +/*)(1 +/*) log amax W = -R--64D 4(7 + 3/*) + b4(5 + /*) - a2b2(12 + 4/a) - (1 - #)

16a4b2(1 +/,)2/. 2l

+ '°g5)J
At Outer Edge:

max M r _ a _ - 3b :_) + a-I=z_[log

At Inner Edge:

[ ,a',',.M r = 8_ (a 2+b 2) - (a__)_Iog

maxw = _64D 4 + 3b 4 - 4a2b 2 - 4a_h2 log _ * a--T-_Iog
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Case I-'ormulas For I)efh'ction And Mo_ndhts

Outer Edge Fixed And

Supported, Inner Edge

Fixed. Uniform Load

Along Inner Edge

Inner Edge Fixed And

Supllur ted, Uniform

Load Over I':ntire

Actual Su rlacc

At Outer Edge:

I'[ 2b2 / a)]
M = -- 1

r ,In - a-'-'_-_" ( h'g

At Inner EdgE:

max M r -: 1 - a_-T--'_(log

max w = _ a 2 h2 4a21)2 /_ _ __ Uog

p - _a2.h21

Inner Edge l,'ixcd And

Supp(wtcd, ('nilorm

Ltmd Along O_ter }:dge

Out(,r I':dgr l,hxrd,

Uni ftn'nl Mon.,nt

Along lnnH" l':dg('

M M
N f E
) k r

lnnrr I':dg_' I"ixod,

('tfi fornx Momont

Along (hdt, r I':(Ige

M M

At Inner Edgt':

a

.ta*(l+_) log _ - a1(1, ;_) a bt(l-p) -_ 4a2b_-p

r HI. a'_('__)+ ,;([_p)

At Outer Edge:

f

maxw _ :J(l ._,) _ b2(I-_)

(

At Inner Fdgc:

a 16a4b'_( 1 ÷ ,_)(Iog4a;'h:!la2(5 - p) + I,'_( I + _)1 log _ +

;(J+.)+ l,_(l-.)

n a:!(I -_) I):_( I -IQ

max M --
r ,ur :,':(1 "_ p) , 17(1 -P)

At ()tltt'r I':dg_,:

a

p a'(3+U) - h'(l-p) - 2a_"h_(l+_) - Ha2b21og

max w : 16ni) a_( I _ /a) * h,Z( 1 - p)

.,a".,:'(I • .)(..g _)_

- a2(l+p) -_ I):(]-u)

At Inner I"dge:

M ra_l;- h' - 2:,'l,;'l,,g[_
m;l.xw ": La°(,-.) ,,=(,..)

At Outt,r Edge:

max M = M [ 2h2 1,. (l+.)._ + (I-_):,:

AI Ildl(,r I':dg(':

nl{L'_ M r _ [ 2a2 1r (l ' u)a: + (1 -v)h z

AI ()uter Edge.*

F 'M a t - a2h 2 - 2:,_I/log
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Case

Outer Edge Supported,

Unequal Uniform

Moments Along Edges

M a M b M b M a

Outer Edge SupporO_d,

Inner Edge Fixed,

Uniform I,oad Over

Entl re Actual Su rftLce

Formulas For Deflection and Moments

Both Edges Fixed,

Balanced Loading

(Piston)

p - q,n.(a2.b 2 )

Outer Edge Supported,

Inner Edge Free,

Uniform Load On

Concentric Circular

Ring of Radius, r 0

I r0 I- r0 -I

M = 1 F aZb2 1
r _ 'a2M " b2Mb - -_r (Ma - Mb), a !

i a - b_Mb a

w= _ _,7_ }+ lOgr (1-.)

At Inner Edge:

max M = q 4a2b2(l+_) log _ - b 2

r s L a:(/+u) + ff_(1-u) .[

maxw = 6_ a4 - 31/ + 2a_b 2 - 8a_b 2 log ab

a a

16(l+p)a2b _ log 2 _ + [4('/+'l#)a_b 4 - 4(5 + 3,_)1 log _

_(1+_,) ÷ b_(1-.)

4(4 +,)a4b 2 - 2(3 +p)a G - 2(5 +p)a2.b. ' (

- aZ(1+/_) ÷ b;_(l_p)

At Inner Edge:

= q/ 4a 4 a b2)max Mr 8_ka 2- b 2 log _- - 3a 2 +

a 16a4b2 [ b) 2maxw = q 3a 4 - 4a2b 2 + b 4 + 4a2b 2 log _ - a-T-__(log64D
.i

At Inner Edge:

P [_- r2'
max M t = _ (l-p) + (l+p) log a - (1-p):2a-'_r a

ro . - (a z _ b z)

P (a'-b')(:_+.)
max w = --

8_D 2(I+.)

c " b 2

where

a r_(a z-b2)(l ,#)

- (b 2+ r02) log _ - 2aZ(l+p)

2a2b _ a

(."_- b2)(1 -u) log

l-U) + 2(l+#)log ar0 - (1-p)_-]
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Case Formulas For Deflection and Moments

Outer Edge Fixed,

Inner Edge Free,

Uniform Load Of

Concentric Circular

Ring Of Radius, r 0

P

_t I tf

Central Couple

Balanct,d By I,inearly

Dist ribut('d t) r('_surc

q = 4M / Tra3

Concc*ntratcd I,oad

Applied At Outer Edge

P

At Inner Edge:

,,=Mt _. (_+ a ep/1 - h_(l+.)]
r o

At Outer Edge:

Mr = _7 - + (, _,_(I-.) + b_(l+.)

_' (_ + d)(a_ - t,_) (_ + d) "'_ _ _;L t,_(, _.) + a_(_-.)' JnllLX W = _ ,:,a2

where

( " /]c : _" 1+_) 2log :1 + _ - 1
I'll :1

At Inner Edge:

max M M
r = fll'_a

where'

L-I 1.25
I)

fl O. 1625

1.5o 2 3 .l 5

0.456 I. 105 2.25

(_ :: ,. :_)

:L :|85 4. ,170

At Inner Edge:

P
m:_x M = [_ wht'r('

b

[_ 3.7

1.51) '2 :| 4 5

,I. 25 5.2 6.7 7. !l 8.8

for # = O, :1
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Table B9-5. Deflections and Bending Moments of Clamped Circular

Plates Loaded Uniformly (Fig. B9-6a) (p = 0.25)

b

a

0.2

0.4

0.6

0.8

1.0

M = fl qa 2 M =/3 lqa 2
r t

qa _

W --0_ 0max

0. 008

0. 042

0.094

0. 148

0.176

r=0

0. 0122

0. 0332

0. 0543

0. 0709

0. 0781

r=b

0. 0040

0. 0007

-0. 0188

-0. 0591

-0. 125

-0. 161

-0. 156

-0. 149

-0. 140

-0. 125

r=O

O.0122

O.0332

O.0543

O. 0709

O.0781

r=b

0. 0078

0. 0157

0. 0149

0. 0009

-0. 031

r_a

-0.040

-0.039

-0.037

-0.035

-0. 031

Table B9-6. Deflections and Bending Moments of Clamped Circular

Plates Under a Central Load (Fig. B9-6b)(p = 0.25)

b

a

o.21

0.4 i

0.6

0.8

1.0

pa 2

max

0. 031

0. 093

0. 155

0. 203

0. 224

M =M
r t

r=0

-0. 114

-0.051

-0. 021

-0. 005

0

r=b

-0.034

-0.040

-0.050

-0.063

-0. 080

-0. 129

-0. 112

-0. 096

-0. 084

-0. 080

r=b

-0.028

-0.034

-0.044

-0.057

-0.020

r=a

-0. 032

-0. 028

-0. 024

-0. 021

-0. 020

M = tiP
r
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The last term is due to the nonuniformity of the thickness of the plate and the

coefficient Yl is given in Table B9-6.

Symmetrical deformation of plates such as those shown in Fig. B9-7 have

been investigated and some results are given in Tables B9-7, B9-8, and B9-9.

q

l illilll ]ll lilll±
-vhl

lal

P

,U////////////2 7.,
(bl

P

--F 1

P //ra 2

I" a "1

(c)

FIGURE B9-7. TAPERED CIRCULAR PLATE

,For bending moments under central load l) (Fig. B9-7b) the following equation

is true (Y2 is given in Table B9-8) :

M - (1 + p)log- + 1 + y2P • (29)
max 4n c
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Table B9-7. Deflections and Bending Moments of Simply Supported

Plates Under Uniform Load (Fig. B9-7a)(tz = 0.25)

hi

1.00

1.50

2.33

qa 4

w = o_ E-_h0max

0.738

1.26

2.04

M = _qa 2 M = _lqa 2
r t

r=0

0.203

0.257

0.304

a
r _-

2

O. 152

O. 176

O. 195

r=O

0.203

0.257

0. 304

a
r _--

2

O. 176

0. 173

0.167

0. 094

0.054

0.029

Table B9-8. Deflections and Bending Moments of Simply Supported

Circular Plates Under Central Load (Fig. B9-7b)(tz = 0.25)

h0
ht

1.00

1.50

2.33

pa 2

w --old0max

0.582

0.93

1.39

M =M
r t

0

0. 029

0.059

M = tiP
r

a
r -_

2

0.069

0.088

0.102

M t = fliP

a

r _- m

2

0.129

0. 123

0.116

0.060

0.033

0.016

Table B9-9. Bending Moments of a Circular Plate With Central Load

And Uniformly Distributed Reacting Pressure (Fig. B9-7e) (/_= 0.25)

ho
ht

1.00

1.50

2.33

M _= M
r t

r=0

Y2

-0. 065

-0. 053

-0.038

M = tip
r

a
r _

2

O. 021

O. 032

0. 040

• Mt _tp

a

2

0.073

0. 068

0. 063

r=a

0.03O

0.016

0.007
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Of practical interest is a combination of loadings shownin Figs. B9-7a

For this case the _2to beused in equation (29) is given in Table B9-9.

II. Nonlinear Varying Thickness:

In many cases the variation of the plate thickness can be represented

with sufficient accuracy by the equation

y = e"fl x2/6

in which fl is a constant that must be chosen in each particular case so that it

approximates as closely as possible the actual proportions of the plate. The

variation of thickness along a diameter of a plate corresponding to various

values of the constant fl is shown in Fig. B9-8.

(30)

I I

0 0.5 1.0

X

FIGURE B9-8. VARIATION OF PLATE THICKNESS FOR CIRCULAR PLATES
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Solutions for this type of variation for uniformly loadedplates with both

clamped edgesand simply supported edgesare given in Reference 1, pages

301-302.

B9.3.1.4 Annular Plates with Linearly Varying Thickness

Consider the caseof a circular plate with a concentric hole and a thick-

ness varying as shownin Fig. B9-9.

P

1

A_

I
FIGURE B9-9. ANNULAR PLATE WITH LINEARLY VARYING THICKNESS

The plate carries a uniformly distributed surface load q and a line load

p = P/2rb uniformly distributed along the edge of the hole.

Table B9-10 gives values of coefficients k and kt, to be used in the fol-

lowing expressions for the numerically largest stress and the largest deflection

of the plate:

qa 2 p

((rr) max = k _ or (err) max = k h-_

q a4 pa 2

w = klE--_l or w = kt_l 3max max
(31)
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Values of Coefficients in Equations (31) for Various Values

a (rig. B9-9)( 1of the Ratio g -)3"

Casc

Coef- Boundary

ficiezlt 1.25 1.5 2 :l 4 5 Conditions

k O. 249 O. 638 :|. 9fi 13.64 26.0 4 o. I; P = 7rq (a s _ Ij _)q

Ob = o

t
k I 1).00:_72 0.045:_ I).4o| 2. 12 4.25 6.2_ M = 0

a

q

t t

k O. 149 O. 991 2.2:; 5.57 7.7_ .9. lq; 17 _ 0

01) _ [)

k_ 0.0O551 1_.o564 (_.112 I.ti73 2.79 :|.57 _._ _ 0

k o. 1275 0.515 2. o5 7. !)7 17.:_5 30.0 I ) = rq(a 2 - I) _)
q

g'l) = [)

t
k t 0.1)1)105 0.0115 ().o_J'.;I 0.5'A7 1.2(il 2. It; ,,_ = 1)

t t

k o. 159 (). 39(; I. o91 :'. :| I [i. 55 lO. 78 (1 : _)

kl o. O0174 o. 01 ! 2 o, olitN; o. 21i l o. 546 o. _71; q_a = 0

k 0. :15:_ o. 9:1:| 2. _;:_ 6.8_ t 1.47 lB. 51 q = 0

_bb = 11

k i 0.00_16 o. 05_:1 11.:115 l.:|5s 2.:19 :L27 M _ 0

k o. 07s5 o. 2_t8 o. 52 I. 27 1.94 2.52 P = 0

#b =O

k i I1.001192 o. (_l_x o. _1195 (I. 1.9:; 0. "346 0.4_2 _b a = 0
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B9.3. 1.5 Sector of a Circular Plate

The general solution developed for circular plates can also be adapted

for a plate in the form of a sector (Fig. B9-10), the straight edges of which are

simply supported. For a uniformly loaded plate simply supported along the

straight and circular edges the expressions for the deflections and bending

moments at a given point can be represented in each particular case by the fol-

lowing formulas:

w = (l,_, Mr = fl qa2 ' Mt = fllq a2 , (32)

in which _, _, and f_l are numerical factors. Several values of these factors for

points taken on the axis nf symmetry of a sector are given in Table B9-11.

0

B

FIGURE B9-10. SECTOR OF A

CIRCULAR PLATE

point of the unsupported circular edge.

case when n/k = 7/2

w = 0.0633 qa4
max D

The bending moment at the same point is

M = 0.1331qa 2
t

The coefficients for the case of a

sector clamped along the circular boun-

dary and simply supported along the

straight edges are given in Table B9-12.

It can be seen that in this case the maxi-

mum bending stress occurs at the mid-

The following equation is used for the
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7T

Table B9-11. Values of the Factors _, fl, and B 1 for Various Angles

of a Sector Simply Supported at the Boundary (p = 0.3)

r 1 r 1 r 3 r

a 4 a 2 a 4 a

I

v. o. 00006 -0. 0015 o. 0093 o. 00033 o. 0069 o. 0183 o. 00049 (). 01(;1 0. 0169 0 0 o. ()025
4

0. 00019 -0. 0025 0. 0177 0. 000_0 0. 0149 0. 0255 0. 00092 0. 0243 0. 0213 0 0 0. 0044
3

m 0. 00092 0. 00:16 0. 0319 0. 00225 0. 035:| 0. 0:_52 0. l)020:| 0. 0381 0. 02H6 0 0 0. 008H
2

Tr o. 00589 0. 0692 0. 0357 0. 00811 0. 0868 0. 0515 0.0()5(;0 0.0617 0.0,t(;,_ 0 0 0. 0221

ff

Table B9-12. Values of the Coefficients (_ and fl for Various Angles

of a Scctor Clamped Along the Circular Boundary and Simply

Supported Along the Straight Edges (g = 0.3)

7r

?T

4

7_

ff

ff

r 1

a 4

r 1

a 2

r 3

a 4

0.00005

0.00017

-0.0008

-0. 0006

0. 0068

0. 0472

0. 00063

0.00026

0.00057

O. 00132

O. 0():;37

0.0087

0.0143

0.0272

O. 0446

O. OOO28

0.00047

0.00082

O. 001530.00293

0. 0107

O.0123

O. 0113

O.0016

O/

0

r

a

-0.025

-0.034

-0.0488

-0.0756
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In the general case of a plate having the form of a circular sector with radial

edges clamped or free, one must apply approximate methods. Another problem

which allows an exact solution is that of bending of a plate clamped along two cir-

cular arcs. D_ta regarding the clamped semicircular plnte are given in Table

Bg- 13.

Table B9-13. Values of the Factors a, fl, and fll for a
Semi.Arcular Plate Clamped Along the Boundary (_ = 0.3 )

Load

Distribution

Uniform Load q

Hydrostatic Load q

r
--= 0
a

-0. 0731

Y -0. O276
a

r
-- = 0. 483
a

/3 max

0.0355

r
-- = 0.486
a

(£
max

0. 00202

r
- = 0.525
a

/3 lmax

0. 0194

r
--- l
a

-0. 0584

-0. 0355

I. Annular Sectored Plate:

For a semicircular annular

sectored plate with outer edge sup-

oorted and the other edges free, with

SIMPLY SUPPORTED

FREE

uniform load over the entire actual
FIGURE B9-11. ANNULAR

SECTORED PLATE

surface as shown in Fig. B9-11, the equations for maximum moment and deflec-

tion are:

At A

M t = c (1



whe re

At B

W 24cIc2b2 i _ + e2 cosh T2 _ +Et 3 - 'Icosh 2
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1 1

cl L 2 _1
- T12 )t - I) cosh Yl o -- - Y2 k - 1

T / J 4b 2 TJ J 4b__

ff

cosh T22

"/1 _ ],,2 + X - T2 _ tanh Yl

:kl = 400"625t_G (l+b)22e ]_

U-C

K is a function of bee and has the following values:

b-c

b+c 0.05 0.10 0.2 0.3 0.,t 0.5 0.6 0.7 0.8 0.9 1.0

K= 2.33 2.20 1.95 1.75 1.58 1.44 1.32 1.22 1. 13 1.06 1.0

B9.3.2 Rectan_gular Plates

Solutions for many rectangular plate problems with various loadings and

boundary conditions are given in Tables B9-14 through 18. For loads and

boundary conditions not covered here, solutions can be found by applying the

various theoretical, approximate, or complete solutimm discussed in
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Table 09-14. Solutions for Rectangular Plates

! ba
P is load

All Edges Supported,

Unif,>r[,l Load Over

l"nti re Sur face

q

[lllll I

All Edges Support¢_l,

Uniform I,oad Over Small

('llnct.llt rie CI rc'ular

Area Of Radius, r 0

m/:l

b#2

All Edges Supl)orted,

Uni[orm Load Over

Central H(.etangul:lr

Area Shown Sl_tdcd

b

At Center:

.M _ (0.0377) + 0. Oii37a _ . O.(lS:13¢ll)qlJ l
a

Mb ' (1 +l.ili_7) : maiM

O. 1.122 qh i

A( ('_'ntvr:

M b _ ] _ Ix) h,g 2r--i

wh (.'r(,

0,914

I). 2fl:lPb 1

rnlL_ W 171i( I + ll.467¢_ t}

})

AtCt'uter: nlaxa = ¢11 = fti -T wherel'l ta foundinthe following (ti = (I.:1}:

0

0.2

0.4

0.6

0. II

I. II

0

[1.2

O. 4

0._

O. H

I. o

a - b

0 O. 2 O. 4 O. 6 O. 8 I. 0

1. H2 {. :it4 I. 12

1.8_ 1. _H 1. OH o. _.}0

I. :19 1.07 II. H4 o. 77

l. 17 I). 9it O. 72 o. iili

(I..q2 0.76 (I.69 0.51

0.71; If. t;3 0.52 0.42

a : 1.4b

fL 93 II. 76

II. 76 O. 6:1

II. fi2 II. 52

O.52 0.43

0.42 0.36

O. 35 O. 30

li 11.2 0.4 ll._l 1.2 1.4

Z, O i. 55 I, 12 O. _14 O, 75

1.714 1.43 1.23 0.95 0.74 0.54

I. 39 I. 1:1 ]. (l(t o. HIi O. 62 0.55

l. lO 0.91 O. H2 i).68 0.53 IL47

0,90 0,76 O, IIH 0.57 0.45 0.40
0.75 II. it2 [). [,7 IL47 0.38 O.

ti = 2ti

0.14 I.Z L6 2.0

1.20 O..97 O. 78 O. 64

l, _:I O. B4 O. 88 O. 57

o. HH O. 74 O. 60 O. 50

O, 7fi (l.(14 0.54 {i,44

O.G:I 0.54 0.44 O.:IH i

0.53 0.45 0.:IN 0.30 I

blfll \ II tl.4

o I. G4

0.2 1.73 ' 1.:11

0.4 1.32 I. OH

{I,rl 1.04 (). Ill)

O. 8 O. 87 O. Ill

I.(i I).7[ II. tl I
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All Edges Supported,

Distributed Load Var,.ing

Linearly Along Ix'ngth

a

i' ' ,I

All Edges Supported,

Distributed Load Varying

Ltnearl,, Along Breadth

i I

All Edges Fixed.

Uniform l,¢)ad ()vt, r

Entire Sur f:tce

q

4111ILL

One Long Edge Fixed,

Other Free, Short Edges

Supported, Uniform Load

Over Entire ,'-;urface

FREE I, l

One Long Edge [:lamped,

Other Three Edges

Supported, Uniform l,o;ul

Over Entire Surface

//////////////////./

SS SS

[ ss

(11)_

a

b 1 1, 5 2. (I

max w = 6 _1>_ where /:: anti _ are found in the following:

2.5 3.0 3.5 4.0

0.3H 0.43 0,47 0.49fl O. 16 O. 26 O. 34

(I. 022 O. 043 O. (160 0. 070 0.07_ O. 086 0.09 1

qh 2 ql) 4

max n = fl t-- T- max w = 6 ._ where [_ and 5 art, found as folh)ws:

b 1 1.5 2.0

(_ O. 16 (J. 26 O. 32

8 (}, (}22 O. I).l 2 0. (156

At Centers of I,ong Edges:

: q bz

Mb 12( 1 + O. (i23¢v c')

At Centers nf Short Edges:

qb 2
M :: --

a 2.1

At Center

: ______qK_
Mb X(:I + ,tt_ 1)

max w _:

2.5 3.0 3.5 4.0

0.35 O. 37 0.38 O. 38

o, I)fi3 0. 067 (I. 069 o. 070

-: max M

b l.O 1.5 2.0 2.5

It 0.50 O. 67 O. 73 0.74

,_ O. 03 (I. 046 I). {}5l O. ()Stl

(. = ".:0

3.0 3.5 4.0

(I. 74 0.75 o. 75

(I. 057 (I. 05x I). 058

tv(ll) 4

m:tx w :,

oh2

M:tx Stress 0" = fl -_

where /l and _v may [K: found Irom Ihe Iol]owing:

At Center of Fixed Edge:

m_tx M : MI) 2(1+:1,2¢v_)

At Center of Free l,:dge:

M = Hqa2 l. :17ql) 4

a (l+ 0.2H5_ ...... w :" l':t:'(l+ lib'W),-77-,.

(_ = o.:0

M = (I. O0(,kll)_( I + 2tv z - tv 4)
a

0. 02H4
Jormula.'-: for M p = (I. 3; others p = 0

( 1 4 I. DS(;_ r') I:l b'
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O_.,: Short Edge Clamped,

(Aner Thre_' /cktges

Sul:;>oeted, Uniform Load

Over Entire Surlace

S$

$$

One Short E-ge Feee,

Other Tbr,_e Edges

Supportod, Unflorm [_)',._d

Ovc'r Entire Surface

r + ]=RE=: ,_

1 -

()ue Short Edge Free,

Other Three Edges

Supported, Dlstrihutofl

l_md Varying Liuearl_'

Along I,ength

FREE _ q

One Long Edge Free.

Other Three bklges

Supported, Uniform Load

Over Entire Surface

q

FRIEEI 1 | 1 l 1 1

EDGE

One Long Edge Free,

Other Throe Edges

Supported, Distrihuted

Load Varying Lintrarly

Along Lengih

FREE _q

b

rib2

Max Stressa = fl t-T" , maxw = _Et +

where /3 and a may be lound from the following:

a

b 1.0

/3 0.50

L.5 2.0 2.5 3.0 3.5 4.0

0.67 0.73 0,74 0.75 0.75 0.75

0.071 0.101 0.122 0.132 0.137 0.139ct 0.03

(_ = o. 3)

fl t]b_
mlL_ o" = _ , max w = Et J

where i: and tv art, found from the following:

4.0

0.80

O. 167

b 1.0 1.5 2.0

fl 0.67 0.77 O. 79

I_ 0, 14 0. 16 0. ]65

dqb z <vqb _

3.5

0.37

0.069

where It and ¢_ are found from the following:

3, 0

0.36

O. 067

b I.O 1,5 2.0 2.5

/3 o. 2 O. 28 0.32 0.35

c_ 0.04 0.05 0. 058 0. (h54

(U _ 0.:l)

flqb 2 crqb 4

maxa = -7-- , maxw =

where _ and a are found from the following:

Lo L5 2.0

O. 67 0. ,I 5 0, 30

o, 0. 14 0. 1 IX; 0. 080

(u = o._)

/3 qh _ ctql_

._+ = --iv- , _._w_

4.0

O. ;17

_0. o71)

where fl and ,_ are found from the following:

a

1, o 1.5 2.o

fl O. 2 O, 16 O. 11

a O. 04 O. 033 0. 026

(/a _ 0.3)
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All Edges Fixed, Uniform

Load Over Small

Concentric Circular

Area Of Radius, r 0

b q
b

Long Edges Fixed, Short

Edges Supported,

Uniform Load Over

Entire Surface

q

) b I

Short Edges Fixed,

Lortg Edges Supported,

Uniform Load Over

Entire Surface

q

] • "l

All Edges Supported,

Distributed Load in Form

of Triangular Prism

q

[, • i]

At Center:

,M b = _- l+/a) log- + 5(1-(_ =
2r 0

where fl has values as follows:

4 2 1

0. 072 0. 0816 0. 0624

At Centers of Long Edges:

max M _ M qb2

b 12(1 + 0.2a _)

At Center:

qb 2

Mb = 24(1 + ()._i(r t)

max M

At Centers of Short Edges:

max M = M = • qb2

a H(I+ (). _)

M = qb2( 1 + O.:le_ 2)

a 80

M = 0.015qb2(l + 3c_2)
a (z + _')

At Center:

qb _

Mb 8(1 +O, Herz+ flo 4)

_ c_qb 4
max W -

D
max M = flqb 2

[J and _r found from the following:

(u = o.:))

1.0 1.5 2.0 3.0

0.03,1 0. 0548 0. 0707 0. 0922 O. 1250

O. 00263 0. 00308 0. 006:46 0.0086M 0. 01302
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O _
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0 0 0 0 0 0 0
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B8.1.2 SIGN CONVENTION

The local coordinate system for a bar subjected to an applied twisting

moment and the sign conventions for applied twisting moments, internal

resisting moments, stresses, displacements, and derivatives of displacements

are defined so that there is continuity throughout the equations presented in

this section.
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B8. 1.2 SIGN CONVENTION

I. LOCAL COORDINATE SYSTEM

The local coordinate system is applied to either end of a bar u,_lcss

specific limitations are stated. The x axis is placed along the length of O_,:

bar. The y and z axes are the axes of maximum inertia when the cro-:.'=

section is ttnsymmetrical, as may be seen in the solid cross secti,,_ '__h,,_', ,_

Figure BS. 1.2-1. The coordinate system and si._n convention _h(,wl_ :_}i_I:,'

to thin-walled opc_l and thin-walled closed cross sections also.
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MI x

A. Local Coordinate System.and

Positive Applied Twisting Moments

/-SEGMENT OF BAR

Lx _ / SHOWN ABOVE

_Jrz __BITRARY POINT P

'
B. Positive Internal Resisting

Moment and Shear Stresses

y L

C. Positive Angle of Twist

Figure B8. i.2-I. Local Coordinate System

and Positive Sign Convention



B8. I. 2 SIGN CONVENTION

U. APPLIED TWISTING MOMENTS

The applied twisting moments (mt

Section B5.1

2b Jtme 1968

Page b

or M t) are twisting moments about

the x axis. The applied twisting monmnts are positive if they are clockwise

when viewed from the origin or are in the positive x direction when represented

vectorially. (See Fig. B8.1.2-1A. )
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B8. 1.2 SIGN CONVENTION

III. INTERNAL RESISTING MOMENTS

The internal resisting moments (M i)

Section BS. 1

28 June 1968

Page 9

are about the × axis and have the

same sign convention as the applied twisting moment when they are evaluated

oa the y-z plane of a bar segment that is farthest from the origin. (See Fig.

BS. 1.2-lB. )



S,_cti,m BS. l
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SIGN CONVENTION

STRESSES

Tensile normal stresses (ax) are positive, and compressive nvrmal

stresses are negative. Shear stresses (r) are positive when they am

equivalent to positive internal leslsting"" " moments. (See Fig. Bb. 1.2-1 ]3 )
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B8.1.2 SIGN CONVENTION

V. DEFORMATIONS

An applied twisting moment induces a rotation or angle of twist (_b)

about the x axis. The rotation is positive if it is clockwise when viewed from

the origin. (See Fig. B8.1.2-IC. ) An applied twisting moment also induces

a longitudinal displacement (u) in the x direction for unrestrained torsion.

See Fig. BS. 2.2-2B. ) The longitudinal displacement is positive when in the

direction of the positive x axis.
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B8.1.2 SIGN CONVENTION

VI. DERIVATIVES OF ANGLE OF TWIST

The first (¢'}, second (¢"), and third (¢t,,) derivatives of the

angle of twist with respect to the positive x coordinate are positive, positive,

and negative, respectively, when the rotation is positive and a concentrated

applied twisting moment (Mr) is applied at the ends of the bar.

r
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B8.2.0 TORSION OF SOLID SECTIONS

The torsional analysis of solid sections is restricted to un_'estrained

torsion and does not consider warping deformations.

B8.2. I General

I Basic Theory.

The torsional analysis of solid sections requires that stresses and de-

formations be determined. The torsional shear stress (Tt) is determined at

any point (P) on a cross section at an arbitrary distance (L) from the origin.

The resulting angle of twist (_) is determined between an arbitrary cross

section and the origin. These shear stresses and the resulting angles of twist

can be determined when the material properties of the bar, geometry of the

bar, and the applied twisting moment are known.

Two unique coefficients characterize the geometry of each cross section,

the torsional constant (K) and the torsional section modulus (St). These co-

efficients are functions of the dimensions of the cross section. These constants

are used for calculating deformations and stresses, respectively. For a circular

section, the torsional constant reduces to the polar moment of inertia (J), and

the torsional section modulus reduces to J/p; but for all other cross sections

they are more complex functions.

The torsional shear stress distribution on any cross section of a circular

bar will vary linearly along any radial line emanating from the geometric centroid,

and will have the same distribution on all radial lines ( Fig. B8.2. I-IA). The

longitudinal shear stress (Vx) , which is equal to the torsional shear stress (Tt) ,

produces no warping of the cross section when the stress distribution is the same

on adjacent radial lines ( Figs. B8.2. I-IB and B8.2.1-IC). For non circular

sections, the torsional shear stress distribution is nonlinear (except



Y
A
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"__i"_;':o':"_ _

A. Circular Bar Shear Stress Distribution

Y

_Lx

x

C. Differential Element

FIGURE B8.2.1-1 SHEAR STRESS DISTRIBUTION
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along lines of symmetry where the cross section contour is normal to the radial

line) and will be different on adjacent radial lines ( Fig. B8.2.2-2A). When the

torsional and longitudinal shear stress is different on adjacent radial lines,

warping of the cross section will occur ( Fig. B8.2.2-2B).

When the warping deformation induced by longitudinal shear stresses is

restrained, normal stresses (a) are induced to maintain equilibrium. These

normal stresses are neglected in the torsional analysis of solid sections since

they are small, attenuate rapidly, and have little effect on the angle of twist.

Restraints to the warping deformation occur at fixed ends and at points

where there is an abrupt change in the applied twisting moment.

II Limitations

The torsional analysis of solid cross sections is subject to the following

limitations.

A.

B.

The material is homogeneous and isotropic

The shear stress does not exceed the shearing proportional

limit and is proportional to the shear strain (elastic analysis).

C. The stresses calculated at points of constraint and at abrupt

changes of applied twisting moment are not exact.

D. The applied twisting moment cannot be an impact load.

E. The bar cannot have an abrupt change in cross section.*

III Membrane Analogy

The torsional analysis of solid bars with irregularly shaped cross

sections is usually complex, and for some cases unsolvable. The membrane

analogy can be used to visualize the solution for these cross sections.

The basic differential equation for a torsional analysis, written in

terms of the St. Venant's stress function, is:

Stress concentration factors must be used at abrupt changes in the cross

section.



a2 _ 0_

_}y2 + a z2
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- - 2G0.

This equation is similar to the basic differential equation used for the

analysis of a deflected membrane, which is:

a y2 _ z 2 -

The following analogies exist between the solutions of these two analyses

when the membrane has the same boundaries as the cross section of a twisted

bar.

A. The volume under the deflected membrane for any pressure (p)

is equal to one-half the applied twisting moment (M t), when

2G0 = p/T numerically.

B. The tangent to a contour line of deflected membrane at any point

is in the same direction as the maximum torsional shear stress

at the same point on the cross section.

C. The slope at any point in the deflected membrane normal to the

contour at thatpoint is proportional to the magnitude of the

torsional shear stress at that point on the cross section.

IV Basic Torsion Equations for Solid Sections

A. Torsional Shear Stress

The basic equation for determining the torsional shear stress at an

arbitrary point (P) on an arbitrary cross section is:

Tt= M(x)
St



Section B8.2

31 December 1967

Page 5

where M(x) is evaluated at x = L for the arbitrary cross section where the
x

torsional shear stress is to be determined.

to:

If a constant torque is applied to the end of the bar, the equation reduces

M t

T t = _ •
t

St will vary along the length of the bar for a varying cross' section and,

in this case, the equation is:

Tt = M(x)
St(x) "

For the case of varying moment and varying cross section, both M(x) and

St(x) must be evaluated at the cross section where the torsional shear stress

is to be determined.

In the equations for torsional shear stress determinations in sections

B8.2.2-III through B8.2.2-VIII, M(x) is equal to Mt and the stress is determined

at the point of maximum torsional shear stress. The resulting equations deter-

mine maximum shear stress only.

B. Angle of Twist

The basic equation for determining the angle of twist between the origin

and any cross section located at a distance L from the origin is:

L
1 x

(_ - GK f i(x) dx.
0

When M(x) is a constant torsional moment applied at the end of the bar,

the equation reduces to:



1 L MtL X
_b = GK f x Mtdx = GK

0

and the total twist of the bar is:

MtL
(max) =

GK
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When the cross section varies along the length of the bar, the torsional

constant becomes a function of x and must be included within the integral as

follows:
L

[ x M(x) (ix
G J Ktx) "0

The moment-area technique (numerical integration) is very useful in

calculating angle of twist between any two sections when a M(x)/GK(x) -

Diagram is uaed. See Section B8.2.3, example problem 3.
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B8.2.2 TORSIONAL SHEAR STRESS AND ANGLE OF TWIST FOR SOLID

SECTIONS

The equations presented in this section for torsional shear stress are

for points of maximum torsional shear stress. For some cross sections,

torsional shear stress equations are presented for more than one location.

The equations presented for angle of twist are for the total angle of

twist developed over the full length of the bar.

The applied load in all cases is a concentrated twisting moment (Mt)

applied at the end of the bar.

I Circular Section

The maximum torsional shear stress occurs at the outside surface of

the circular cross section ( Fig. B8.2.1-1A) and is determined by

M t

rt(max) -
St

where

Since the torsional shear stress varies linearly from the centroid of

the section, the stress at any point (P) on the cross section is determined by

MtP

Tt(P ) = _j •

The total angle of twist is determined by

MtL
(max) =

GK



where

2
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The angle of twist between the origin and an arbitrary cross section

located at a distance L from the origin is determined by
x

MtL x

- GK "

H Hollow Circular Section

The torsional shear stress and angle of twist for a thick-walled hollow

cylinder can be determined from the equations in Section B8.2.2. -I when the

torsional constant and the torsional section modulus are determined by the

following equations.

where r
0

K= _-

St -_- r - r

and r. are defined by Figure B8.2.2-1.
1

FIGURE BS. 2.2-1 HOLLOW CIRCULAR CROSS SECTION
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The maximum torsional shear stress occurs at point A (Fig. B8.2.2-2A)

and is determined by the following equation.

where

r t (max) = Mt/S t

St = _ b d 2 .

Some typical values of a are shown in Table B8.2.2-1.

where

The equation for _ in terms of (b/d) is

O/
1

=[3 ,=]1.8

.0+ )

The torsional shear stress at point (B) is determined by

Tt(B) = ,t(max)(b).

The total angle of twist is determined by

MtL
¢ (max) -

GK

K = flbd a .

Some typical values of fl are shown in Table BS. 2.2-1.
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¥

b

A. Stress Distribution on Rectangular Cross Section

B. Warping Deformation of a Rectangular Cross Section

FIGURE BS. 2.2-2 RECTANGULAR CROSS SECTION
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B9.3.3 Elliptical Plates

For plates whose boundary is the shape of an ellipse, solutions have

been found for some common loadings. Table B9-19 presents the available

solutions for elliptical plates. For additional information as to method of solu-

tion to the plate differential equations see Reference 1.

B9.3.4 Triangular Plates

Solutions for several loadings on triangular shaped plates are presented

in Table B9-20.

B9.3.5 Skew Plates

Solutions have been obtained for skew plates in References 1 and 5. The

significant results from these references are presented in Table B9-21.
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Solutions For Elliptical, Solid Plates

v

b/a" a

Edge Supported,

Uniform Load Over

Entire Surface

Edge Supported,

Uniform Load Over

Small Concentric

Circular Area

of Radius, r 0

Edge Fixed, Uniform

Load Over Entire

Surface

Edge Fixed, Uniform

Load Over Small

Concentric Circular

Area of Radius, r 0

At Center:

-0. 3125(2 - cQc_b _
max stress = a b = t2

maxw = (0.146 Et3-0.1ot)qb 4 (for_ =_)1

At Center:

max M : M b =

pb 2 .

max w ,_ E----Tt(0. 19 - 0. 045G)

At Edge:

qb2c_2
M =
a 4 (3 + 2a z + 3a _)

At Center:

M = qb2 (0'2 + #)
a 80+2a z+3a')

qb 4

max w ffi 64D(6 + 4a z + 6ct 4)

At Center:

M b log-
47r r o

maxw =

b ]_-_ 1 + .)log _r0 + 6.57/_ - 2.57ap

1

= _-)

= qb _

Mb 4(3 + 2_' + 3a 4)

. qb'(l+
Mb 8(3+ 2_ z+ 3_ _)

\
- 0.3170t - 0.378/

.Pb'(0. 0815 - O. 026a)(p = 0.25)
Et _
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Solutions For Triangular Plates

2/3 a

i

a/3

X

.¥

Equilateral Triangle,

Edges Supported,

Distributed Load Over

l_:nti r( , SU rfri(!c'

Edges Supported, I,oad I *

Concentrated At ()

On Small Circular Area

Ol Radius, rl,

[tight-Angle Isosc¢'les

Triangle, Edges Supl)ort(.d,

Dislributed Load ()vcr

]':nti re Su riat't!

Equilateral Triangle

With "]',a.o Or Three Etl_es

Clamped, Uniform Or

Hydrostatic Load

max o" _ 0. 14_8 q;)'_
x 7- at v _ {h x=-0.062a

qa 2
max _" - 0. 155t at _r :-- (), X =- 0. 129a

V t'_

max w = _ at poin{ I)
:1421}

r

3(1 _ p)PL o.:lT_la

max er =- _ Ll(ig x/ I.Ih_ , t 2 - {).(;75t

I':, :_ (I - p_)

I_'I_iXW r 0. ()I;M,_)2 _ ;it i)oinl 0

(1:12 ([;t _
max _ • (). 131 re;ix (r : O. I (25x 7 _' ?-

max w = 0. 0095 _ (p : I).:l)

]%1 = /'J(I al (ir M ,: /tlihla 2 whcr('

E(ll4c v ,- 0 Supl'iortcd

l JIJLIII

DieltrJliution M M M

x I v) ili

(lnl[orm /I IL I)12f; (I. {_|47 -0. 021_5

Ilylli'ost;itic fli (I, 005:1 II. (10:>,5 -0. I)I00

(p , _l. z)

I';dtr(' V i) (+la rnpl,d
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All Edges Supported.

Distributed Load Over

Entire Surface

Edges b Supported, Edgen

a Fret', Uniform

Distributed Load Over

Entire Surface

FREE ? _-

FREE _/A b

All Edges Clamped,

Uniform Distrllmted

Load Over Enttrc Surface

I* I

f_qb_ where _ is
m,'_ 0' = °'b := t-_

t01 ,,de,I 'ooegI 'Sdo 

(._ o.2)

60 deg ]

0.40 I

max _ = Grb : _ where IJ is

fl [ 0.762 [ 0.615 [ 0.437 [ 0.250 ]

At Center: M ffi flqa } w =
i)

where _ and /31 are

75 deg ]0.16

a
Ske_ _ = 1

Angle 0

15 0.024 0.00112:1

30 0.020 0.00077

45 0.015 0.00038
60 0.0085 _ O. 00011

75 0.0025 0.000009

-_ 1.25
b

ft. 019 O. 00065

0.016 0.0(}045

0.01 ] 0. 00022
0.0O62 O. 00006

o. 0027 0. 000005

a
-_1.5
b

o. 015 0,00_8

0.0125 0.00026

O. 014 O. 00012
O. 0048 O. 00003

0.00125 0.000002

&
-=2.0
b

0.0097 0.00014

0.0075 0.00009

0.005 0.0OO04
0.0025 0. OO001

0.00125

Along Flx_l Edge:

The coefficient _ for maximum bending moment along the
edge at a distance [a from the acute corner is

a ])
(M _ f/_qa 2 for _ :

Skew Angle

(deg) f_ [

15 -0. 0475 O. 6

30 -0.0400 O. 69

45 -0. 0299 0.80
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B9.4 ISOTROPIC THIN PLATES -- LARGE DEFLECTION ANALYSIS

Large deflection theory of plates was discussed in Paragraph B9.2.3.

It was determined that the region covered by the classification of large deflec-

' 1

tion analysis was approximately _ t < w/t > 10t . In this region, the load

resistance of plates is a combination of bending and direct tensile stress.

Solutions for available plate geometries and loads will be given in this sub-

section. Figure B9-7 gave a guide as to the regimes of membrane plates,

medium-thick plates, and thin plates. Curves are given in Fig. B9-12 for

membrane plates and for medium-thick plates. Between these two regimes is

the regime of thin plates, which generally includes most of the plate dimensions

and pressures encountered in aerospace design.

B9.4.1 Circular Plates -- Uniformly Distributed Load

A circular plate whose edge is clamped so that rotation and radial dis-

placement are prevented at the edge is shown in Fig. B9-13. The plate, loaded

by a uniformly distributed load, has a maximum deflection which is large rela-

tive to the thickness of the plate as shown in Fig. B9-13c. In Fig. B9-13d a

diametral strip of one unit width cut from the plate shows the bending moments

per unit of width and the direct tensile forces which act in this strip at the edge

and at thc center of the plate. The direct tensile forces arise from two sources.

First, the fixed support at the edge prevents the edge at opposite ends of a dia-

metral strip from moving radially, thereby causing the strip to stretch as it

deflects. Second, if the plate is not clampcd at its edge but is simply supported
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(el

(fl

q

(g)

Wmlx

(h)

FIGURE B9-13. BEHAVIOR OF THIN CIRCULAR PLATE

as shown in Figs. B9-13e and f, radial stresses arise out of the tendency for

outer concentric rings of the plate (such as shown in Fig. B9-13h) to retain

their original diameter as the plate deflects. In Fig. B9-13h the concentric

ring at the outer edge is shown cut from the plate. This ring tends to retain

the original outside diameter of the unloaded plate; the radial tensile stresses

acting on the inside of the ring, as shown in Fig. B9-13h, cause the ring diam-

eter to decrease, and in doing so they introduce compressive stresses on every



Section B9
15September1971
Page 54

diametral sectiol_such as xx. These compressive stresses in the circum-

ferential dircction sometimes cause the plate to wrinkle or buckle near the

edge, particularly if the plate is simply supported. The radial stresses are

usually larger in the central portion of the plate than they are near the edge.

Stresses have beendetermined for a thin circular plate with clamped

edgesand the rem_lts are plotted in Fig. B9-14, where abe and abc are the bending

50

ot c

°t e

Obc

0 ! | v |

0 1 2 3 4 5

MAX DEFLECTION
--- Wmax /t

PLATE THICKNESS

FIGURE B9-14. STRESSES IN THIN PLATES HAVING LARGE

DEFLECTIONS, CIRCULAR PLATE WITH CLAMPED EDGES
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stresses in a radial plane at the edge and center of the plate, and ate and

atc are corresponding direct tensile stresses. It is noted that the bending

stress abe at the fixed edge is the largest of these four stresses. The direct

tensile stresses become relatively larger as the deflection increases.

Figure B9-15 presents a set of curves which show the relationship

between load, deflection, and stress for a thin circular plate with clamped

edges. For example, if the dimensions and the modulus of elasticity of the

plate and the load q are given, the quantity qr4/Et 4 can be computed. The

value of w /t corresponding to this value of qr4/Et _ is found from the
max

curve on the left. By projecting across to stress curves, corresponding stress

parameters a r2/Et 2 are read at the center and at the edge of the plate.
max

Figure B9-16 presents curves similar to those of Fig. B9-15 for a

plate whose edges are simply supported.

Also, Table B9-22 presents data for the calculation of approximate values

of deflections and stresses in uniformly loaded circular plates, both clamped and

simply supported. The deflection at the center w 0 is given by the equation,

(t)w0 + A n q (33)t

Also, the stresses in the middle plane are given by

ar = CVr E , a t = t_l. E , (34)
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Table B9-22. Data for Calculation of Approximate Values of Deflections w 0

and Stresses in Uniformly Loaded Plates (_ = 0.3)

I Center
Boundary Conditions A B

Otr=_ t _r=/_t

0.171 0. 976 2.86

Plate

Clamped

Plate

Simply

Supported

Edge 0.471
Immovable

Edge Frce
0. 146 0. 171 0.500 2.86

To Move

Edge 1. 852 0. 696 0. 905 1. 778
Immovable

Edge Free
0.262 0.696 0.295 1. 778

To Move

Ol
r

0.476

Edge

_J

at /] r Bt

0.143 -4.40 -1.32

-0.333 -4.40 -1.32

0.610 0.183 0 0.755

0 -0.427 0 0.755

and the extreme fiber bending stresses are given by

Wot Wot
' =fl Ear r "_ ' at = f3t E-_ . (35)

B9.4.2 Circular Plates - Loaded at the Center

An approximate solution of the problem of a circular plate loaded at the

center with either clamped or simply supported edges has been obtained in

Reference 1. Table B9-23 contains the coefficients necessary for solution of

the center deflection w 0 from equations (33), (34), and (35).

B9.4.3 Rectangular Plates -- U_formly Loaded

For the case of a plate with clamped edges, an approximate solution has

been obtained [ 1]. Numerical values of all the parameters have been computed

for various intensities of the load q and for three different shapes of the plate

b/a= 1, b/a= 2/3, and b/a= 1/2 for _= 0.3. The maximum deflections at

the center of the plate are graphically represented in Fig. B9-17, in which
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Data for Calculation of Approximate Values of Deflections

and Stresses in Centrally Loaded Plates (p = 0.3)

! 976

W o

Boundary Conditions

Plate

Clamped

Plate

Simply

Supported

Edge

Immovable

Edge Free

To Move

Edge

Immovable

Edge Free

To Move

A

0.443

0. 200

1. 430

0.272

Center

r=Oet

0. 217 1.232

0. 217 0. 875

0.552 0. 895

0. 552 0.407

c_
r

0. 357

0.488

Edge

_t fir fit

0. 107 -2. 198 -0. 659

-0. 250 -2. 198 -0. 659

O. 147 0 0. 606

-0. 341 0 0. 606

_, //'/'/ / \_,.=,

!/I/ /
I_I / / :Lf..L

/

I I I I | I I I • _ • •

100 200

qb4/Dt 4

FIGUIIE B9-17. MAXIMUM DEFLECTIONS AT CENTER FOR

RECTANGULAR t)LATE WITlt CLAMPED EDGES
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w /t is plotted against qb4/Dt 4. For comparison, the figure also includes
max

the use of the theory of small deflections. Also included is the curve for

b/a = 0, which represents deflections of an infinitely long plate. It can be seen

that the deflections of finite plates with b/a < 2/3 are very close to those

obtained for an infinitely long plate. The maximum values of the combined

membrane and bending stress are at the middle of the long sides of the plate.

They are given in graphical form in Fig. B9-18.

For the case of a rectangular plate, uniformly loaded with immovable,

simply supported edges, a solution has been obtained [ 1]. Values for mem-

brane stresses and extreme fiber bending stresses are given in Figs. B9-19

and B9-20, respectively. An approximate equation for maximum deflection,

w 0 , at the center of the plate in terms of the load q is given by:

w0 t[q - a4 1.37+ 1.94 . (36)
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1976

16,

6-

0

/
. f.---bl=- z/_ /

• .,/
,.,,, // ,"--, ///-/
,(;'I/

. n // /
"

,:,J/,'/
"11,'/ --- ,-" o,,',<,.-,,,<'.,
_llll'l _.o, o.<,<.,-+.,o._
#l/l]

,Jl,,i;
Bm

qb4/Dt 4

FIGURE B9-18. MAXIMUM STRESS AT CENTER OF LONG EDGE

FOR RECTANGULAI_ PLATE WITIt CLAMPED EDGES
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12

_- • , /(o,)c. I°v. A1 __/o ,.

| A ,,$ A

(ox) - (or)

//" _/- TENSION

o _ _ , Io,(),- (°Y)A,

O 100 200 300

w4/Et 4

FIGURE B9-19. MEMBRANE STRESSES IN SQUARE PLATE,

UNIFORMLY LOADED
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EXTREME-FIBER BENDING STRESSES
IMMOVABLE EDGES/4- 0.316

i '
F (O')B = (°')C

0
0 100 200

qa4 / Et 4

3O0

FIGURE B9-20. BENDING STRESSES IN SQUARE PLATE,

UNIFORMLY LOADED
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B9.5.1 Rectangular Plate

The deflection and the bending moments at the center of an orthotropic

rectangular plate can be calculated from the following equations obtained from

Reference 1.

q0 b4
w-- , (37)

D
Y

M x = fll+fl2"yT'T ,qDylEx
(38)

where a, ill, and_2 are numerical coefficients given in Table B9-24 and

e - b_ D
X

(40)

The four constants E' E' E" and G in equations (37), (38), and
x' y' '

(39) are needed to charactcrize the elastic properties of a material in the case

of plane stress. These four constants are defined by equations (8) of

Section B9.2.1.1. Equations (41) through (44) are expressions for rigidities

and are subject to modifications according to the nature of the material and the

geometry of the stiffening.

EVxh3

Dx - 12 (41)

E ' h :_

- (42)
Dy - 12



D 1
El, h3

12

Gh 3

Dx'y - 12
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(43)

(44)

Table B9-24. Constants a, /3 l, and f12 for A Simply Supported
Rectangular Orthotropic Plate with H = _/D D

xy

e a 91 P2

1.0

I.i

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.5

3.0

4.0

5.0

0. 004 07

0. 004'38

0.00565

0. 00639

0. 00709

0.00772

0. OO831

0.0O884

0.00932

0.00974

0. 01013

O.01150

O.01223

O.01282

O. 01297

O. 01302

0. 0368

0. O35 9

0. 0344

0. 0324

0. 0303

0. 0280

0. 0257

0. 0235

0.0214

0. 0191

0. 0174

0. 0099

0. 0055

0. 0015

0. 0004

0.0

O.0368

O.0447

O.0524

O.0597

O.0665

O.0728

O.0785

O.0837

O.0884

O.0929

O.0964

O.1100

O.1172

O.1230

O.1245

O.125 0

All values of rigidities based on purely theoretical considerations should

be regarded as a first approximation and tests are recommended to obtain more

reliable values. Usual values of the rigidities for three cases of practical

interest are given below.
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1. Plate Reinforced By Equidistant Stiffeners In One Direction: Con-

sider a plate reinforced symmetrically with respect to its middle plane as shown

in Fig. B9-21. The elastic constants of the material of the plating are E and

v , E' the Young's modulus, and I the moment of inertia of a stiffener, taken

with respect to the middle axis of the cross section of the plate. The rigidity

values are stated by equations (45) and (46):

Eh 3
D - = tt (45) "
x 12(1-

Eh 3 E' I
- , (46)

Dy 12(1 - _2) + al

0

I

I

I

!

FIGURE B9-21. OIITHOTIIOPIC PLATE WITII EQUIDISTANT STIFFENERS

2. Plate Cross-Stiffened By Two Sets Of Equidistant Stiffeners: Ass/_me

the reinforcement to remain s.vmm(.'trieal about the plating. The moment of



inertia of one stiffener is I I , and b I
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is the spacing of the stiffeners in the

x-direction. The corresponding values for stiffeners in the y-direction are 12

and a 1 . The rigidity values for this case are stated by equations (47), (48),

and (49)-

D - Eh3 E'It. (47)
x 12(1 - p2) + bl ,

D - Eha E__ (48)
y 12(Y--- v2) + a 1 '

H

Eh a

12(1- vz) " (49)

3. Plate Reinforced By A Set Of Equidistant Ribs: Refer to Fig. B9-22

and let E be the modulus of the material, I the moment of inertia of a T-section

of width a t , and (_ = h/H. Then, the rigidities are expressed by equations

(50), (51), and (52):

D = Eath3
x 12(a 1 - t + _3t) ' (50)

D "- E I , (51)
y a!

D I = 0 • (52)

The effect of the transverse contraction is neglected in the foregoing equations.

The torsional rigidity may be calculated by means of equation (53):

c (53)D = D' +-- ,
xy xy 2a t

in which D' is the torsional rigidity of the plate without the ribs and C the
xy

torsional rigidity of one rib. -_
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FIGURE B9-22. ORTttOTROPIC PLATE WITH STIFFENERS ON ONE SIDE

Formulas for the elastic constants of plates with integral waffle-like

stiffening can be found in Reference 6.
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STRUCTURALSANDWICttPLATES

Small Deflection Theory

The information presented for the small deflection theory was obtained

from Reference 7.

Structural sandwich is a layered composite formed by bonding two thin

facings to a thick core. The main difference in design procedures for sandwich

structural elements and those of homogeneous material is the inclusion of the

effects of core shear properties on deflection, buckling, and stress for the

sandwich. The basic designprinciph's for a sandwich can be summarized in-

to four conditions as follows:

1. Sandwich facings shall be at least thick enough to withstand chosen

design stresses under design ultimate loads.

2. The core shall be thick enough and have sufficient shear rigidity and

strength so that overall sandwich bucMing, excessive deflection,

and shear failure will not occur tmtl('r design ultimate loads.

3. The core shall have high enough moduli of elasticity and the sand-

wieh shall hav(.' great enough flatwise tensile and compressive

strelNth so that wrinkling of either facing will not occur under

design ultimate loads.

4. If the core is made of cellular or corrugated material and dimpling

of the facings is not permissible, the cell size or corrugation spacing

shall be small enough so that dimpling of either facing into the core

spaces will not occur under design ultimate loads.
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B9.6.1.1 Basic Principles for Design of Flat Sandwich Panels under

Uniformly Distributed Normal Load

Assuming that a design begins with chosen design stresses and deflections

and a given load to transmit, a flat rectangular or circular panel of sandwich

construction under uniformly distributed normal load shall be designed to comply

with the four basic design principles.

Detailed procedures giving theoretical formulas and graphs for deter-

mining dimensions of the facings and core, as well as necessary core proper-

ties, for simply supported panels are given in the following paragraphs. Double

formulas are given, one formula for sandwich with isotropic facings of different

materials and thicknesses and another formula for sandwich with each isotropic

facing of the same material and thickness. Facing moduli of elasticity, El,2,

and stress values, F1, 2, shall be compression or tension values at the condi-

tion of use; that is, if application is at elevated temperature, then facing prop-

erties at elevated temperature shall be used in design. For many combinations

of facing materials it will be advantageous to choose thicknesses such that

Elt 1 = E2t 2 . The following procedures are restricted to linear elastic behavior.

B9.6.1.2 Determining Facing Thickness, Core Thickness , and Core Shear

Modulus for Simply Supported Flat Rectangular Panels

This section gives procedures for determining sandwich facing and core

thicknesses and core shear modulus so that chosen design facing stresses and

allowable panel deflections will not be exceeded. The facing stresses, produced

by bending moment, are maximum at the center of a simply supported panel
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under uniformly distributed normal load. If restraint exists at panel edges,

a redistribution of stresses may cause higher stresses near panel edges. The

procedures given apply only to panels with simply supportededges. Because

facing stresses are causedby bending moment, they dependnot only uponfacing

thickness but also uponthe distance the facings are spaced, hencecore thick-

ness. Panel stiffness, hencedeflection, is also dependent upon facing and

core thickness.

If the panel is designed so that facing stresses are at chosen design

levels, the panel deflection may be larger than allow_qble, in which case the

core or facings must be thickened and the design facing stress lowered to meet

deflection requirements. A solution is presented in the form of charts with

which, by iterative process, the facing and core thicknesses and core shear

modulus can be determined.

The average facing stress, F(st_'ess at facingcentroid) , is given by

the theoretical formulas:

and

= K p_b! (for unequal f:,cings) , (54)
FI, 2 2 ht 1,

_b2 (for equal facings) , (55)
F = K 2 ht



where p is the intensity of the distributed load; b

the distance between facing centroids; t

subscripts denoting facings 1 and 2; and
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is the panel width; h is

is facing thickness; 1 and 2 are

K 2 is a theoretical coefficient

dependent on panel aspect ratio and sandwich bending and shear rigidities.

If the core is isotropic (shear moduli alike in the two principal directions),

K 2 values depend only upon panel aspect ratio. The values of K 2 for sand-

wich with orthotropic core are dependent not only on panel aspect ratio but

also upon sandwich bending and shear rigidities as incorporated in the param-

v2D

eter V - b2 U which can be written as:

_2t EltlE2t 2
C

V = hb2Gc(Eltl+ E2t2 ) (56)

v2t Et
C

V - 2),b2G (for equal facings) , (57)
c

where U is sandwich shear stiffness; E is modulus of elasticity of facing;

X = 1 -/_2 ; # is Poissonts ratio of facings [in formula (56) it is assumed that

# = #2 = #2]; and G is the core shear modulus associated with axes parallelc

to panel side of length a and perpendicular to the plane of the panel.

shear modulus associated with axes parallel to panel side of width b

pendicular to the plane of the panel is denoted by (RGc) .

Solving equations (54) and (55) for h/b gives

The core

and per-

h _ (55)
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h
b - 4-E2

Z
(for equal facings) (59)

A chart for solving formulas (58) and (59) graphically is given in

Fig. B9-23. The formulas _'md charts include the ratio t/h , which is usually

unknown, but by iteration satisfactory ratios of t/h and h/b can be found.

The deflection, 6 , of the panel center is given by the theoretical

formul a:

KI XFI,2 _l E,,2t,,2_b 2
(6O

5
K1 XF b 2

K 2 E h
(for equal facings) (61)

where K 1 is a coefficient dependent upon panel aspect ratio and the value

of V.

Solving equations (60) and (61) for

h

/-_1 _-ITl'2Jl+El'2tl'2
_] _22_1 F-_i,2 E,,,t2,1

b

h/b gives

(for equal facings)

(62)

(63)



P/F1,2

/P x

I r'/_ q<,_o:_I.--

Section B9

15 September 1971

Page 76

0.6 0.8 1.0
b/=

0.02

0.04

O.OI

0.10

FIGURE B9-23. CtL_RT FOR DETERMINING h/b RATIO FOR FLAT

RECTANGULAR SANDWICH PANEL, WITLI ISOTROPIC FACINGS, UNDER

UNIFORMLY DISTRIBUTED NORMAL LOAD SO THAT

FACING STRESS WILL BE Fls 2
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Charts for solving formulas (62) and (63) are given in Figs. B9-24,

B9-25, and B9-26. Use of the equations and charts beyond 5/h = 0.5 is

not recommended.

B9.6.1.3 Use of Design Charts

The sandwich must be designed by iterative procedures; these charts

enable rapid determination of the various quantities sought. The charts were

derived for a Poisson's ratio of the facings of 0.3 and can be used with small

error for facings having other values of Poisson's ratio.

As a first approximation, itwill be assumed that V = 0 . Ifthe design

is controlled by facing stress criteria, as may be determined, this assumption

will lead to an exact value of h ifthe core is isotropic, to a minimum value

of h ifthe core is orthotropic with a greater core shear modulus across the

panel width than across the length, and to too large a value of h ifthe core

is orthotropic with a smaller core shear modulus across the panel width than

across the length. Ifthe design is controlled by deflection requirements, tL,e

assumption that V = 0 will produce a minimum value of h . The value of h

is rrnnimum because V = 0 ifthe core shear modulus is infinite. For any

actu'flcore, the shear modulus is not infinite;hence a thicker core must be

used.

P/F1,2, using the curve for

The following procedure is suggested:

1. Enter Fig. B9-23 with desired values for the parameters b/a and

V = 0 . Assume a value for t_,2/h and determine
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FIGURE B9-24. CIIAWI' POll I)I':'I'I,:ILMINING h/b RATIO FOR FLAT

RECTANGULAR SANDWICII 1)ANI.:I,, WITII ISOTROPIC FACINGS AND

ISOTROPIC CORE, UN1)EF_ IJNIF()II_II,Y DISTIiI13UTED NORMAL LOAD

PRODUCING I)EFI,I':CTI()N IiA'HO 5/h
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FIGURE B9-25. CIIAllT I"OR I/I']TEIIMINING h/b RATIO FOR FLAT

RECTANGU 1JAR SANDWICI[ PANI':IJ, WITII ISOTROPIC FACINGS AND

ORTHOTI_OPIC (SI'F SKI,'TCII) C()RI,:, UNDER UNIFORMLY DISTRIBUTED

NOI{MAI, I,OAD PI{OI)UCING I)I,'I,'Id2C'IION RATIO 6/h
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FIGURE B9-26. CttART FOR DETERMINING h/b RATIO FOR FLAT

RECTANGULAR SANDWICtt PANEL, WITH ISOTROPIC FACINGS AND

ORTHOTROPIC (SEE SKETCH) CORE, U NDER UNIFORMLY DISTRIBUTED

NORMAL LOAD PRODUCING DEI.'LECTION RATIO 5/h
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2. Enter Fig. B9-24 with desired values for the parameters

Section B9

15 September 1971

Page 81
if necessary and determine

b/a ,

E2tz/Elt 1 , and kF_/E 2 , using the curve for

and determine h/b. Compute h and 5 .

determine more suitable values for h and

V: 0. Assume a value of 5/h

Modify ratio 6/h if necessary and

6.

3. Repeat steps 1 and 2 using lower chosen design facing stresses until

h determined by step 2 is equal to, or a bit less than, h determined by step 1.

4. Compute the core thickzmss, t , using the following formulas:
e

t 1 + t 2

t = h (64)c 2

t : h - t (for equal facings) (65)c

This first approximation was basc_l on a core with an infinite shear mod-

ulus. Since actual core shear modulus values are not very large, a value of t
c

somewhat larger must be used. Successive approximations can be made by

entering Figs. B9-23 and B9-24, B9-25, or B9-26 with vMues of V as com-

puted by equations (56) and (57). Figure B9-23 includes curves for sandwich

with isotropic and certain orthotropic cores, l.'i,_ure B9-24 applies to sandwich

with isotropic core (R = 1) , Figure B9-25 applies to sandwich with orthotropic

cores for which the shear modulus associated with the panel width is 0.4 of the

shear modulus associated with the panel length (R = 0.4) . Figure B9-26 applies

to mndwich with orthotropic cores for which the shear modulus associated with
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the panel _idth is 2.5 times tile shear modulus associated with the panel length

(n : 2. .

NOTE: For honeycomb cores with core ribbon parallel to panel length

a , Gc = GTI, and the shear modulus parallel to panel width b is GTW . For

honeycomb cores wilh core ribbons parallel to panel width b, Ge = GTW and

the shear modulus parallel t() p:mel length a is GTL .

In using Figs. B9-23 through B9-26 for V ¢ 0, it is necessary to

iter:)te because V is directly prOlx)rti()lml to the core thickness t As an
e

aid 10 tinally (tt_termine ', and G , Fig. B9-27 presents a number of lines
(: c

representing V for variou,_ values of G with V rmlging from 0.01 to 2 and
c

G ranging from 1000 Io 1 000 000 psi. The folh)wing procedure is suggested:
C

1. Determine a core thicMless using a value of 0.01 for V .

2. Compute the constant relating V to G :
e

7r2tcE1tlE2t'- l
kb2(Eltl + l'i2t,:)

or _ 7r_tcI':t) ( for equal facings) = VG
\ ,,_b2 c

.

4.

With this constant, enter Fig. B9-27 and determine necessary G
C

If the shear modulus is outside the range of values for materials

available, follow the appropriate line of Fig. B9-27 and pick a new value of

V , for reasomLble value of core shear modulus.

5. Reenter Figs. B9-23 through B9--26 with the new value of V and

repeat all previous steps.
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B9.6.1.4 Determining Core Shear Stress

This section gives the procedure for determining the maximum core

shear stress of a fiat rectangular sandwich panel under uniformly distributed

normal load. The core shear stress is maximum at the panel edges, at mid-

length of each edge. The maximum shear stress, F , is given by the
cs

formula:

b (66)
F = K._p _cs

where K_ is a theoretical coefficient dependent upon panel aspect ratio and

the parameter V . If the core is isotropic, values of V do not affect the core

shear stress.

The chart of Fig. B9-28 presents a graphical solution of formula (66).

The chart should be entered with values of thicknesses and other parameters

previously determined.

B9.6.1.5 Checking Procedure

The design shall bc checked by using the graphs of Figs. B9-29, B9-30,

and B9-31 to determine theoretical coefficients K 2 , K_ , and K 3 to compute

facing stresses, deflection, and core shear stresses.

B9.6.1.6 Determining Facing Thickness, Core Thickness, and Core Shear

Modulus for Simply Supported Fiat Circular Panels

This section gives procedures for determining sandwich facing and core

thicknesses and core shear modulus so that chosen design facing stresses and

allowable panel deflections will not be exceeded. The facing stresses, produced
r
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FIGURE B9-29. K 2 FOR DETERMINING FACING STRESS_ F, OF FLAT

RECTANGULAR SANDWICH PANELS WITH ISOTROPIC FACINGS AND

ISOTROPIC OR ORTHOTROPIC CORE (SEE SKETCH) UNDER
UNIFORMLY DISTRIBUTED NORMAL LOAD
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FIGURE B9-31. K 3 FOR DETERMINING MAXIMUM CORE SHEAR STRESS,

Fsc, FOR FLAT RECTANGULAR SANDWICH PANELS WITH ISOTROPIC
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UNDER UNIFORMLY DISTRIBUTED NORMAL LOAD
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by bending moment, are maximum at the center of a simply supported circular

panel under uniformly distributed normal load. If restraint exists at panel

edges, a redistribution of stresses may cause higher stresses near panel edges.

The procedures given apply only to panels with simply supported edges, is otro-

pic facings, and isotropic cores. A solution is presented in the form of charts

with which, by iterative process, the facing and core thicknesses and core shear

modulus can be determined.

The average facing stress, F (stress at facing centroid), is given by the

theoretical formula:

3 + __ pr2 (67)
FI'2 - 1G tl,2h

F = 3+_ pr 2 (for cqual facings) (68)
16 th

where p is Poisson's ratio of facings [in formula (67), it is assunmd that

P = Pl = _2] ; r is the radius of the circular panel; and other quantitics are as

previously defined (see Section B9.6.1.2).

h
Solving equations (67) and (68) for -- gives

r

h

r

(69)

h

r
(for equal facings) (7o)
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A chart for solving formulas (69) and (70) graphically is given in Fig. B9-32.

The formulas and chart include the ratio t/h, which is usually unknown, but by

iteration satisfactory ratios of t/h and h/r can be found.

¢_. ¢_. ¢_. ¢_. _. ¢_.
0.00280 i
0.00260
0.0o240
0.00220 i
0.00200 ¢b'_'_¢>

0.OO180

0.00160 0 "_

0.00140

0.00120 (b'_

O.OO1OO

O.OO090 O_e,0.00080 •

0.00070

0.0O060

0.00050

O.OO040 0 .00_"

0.00030

0.0oo2o a

0.00010

0.00005

0.00001

0.04 0.08 0.12 0.16 0.20
h/r

FIGURE B9-32. CHART FOR DETERMINING h/r RATIO FOR FLAT

CIRCULAR SANDWICH PANEL, WITH ISOTROPIC FACINGS AND

CORE, UNDER UNIFORMLY DISTRIBUTED NORMAL LOAD SO

THAT FACING STRESS WILL BE Fl, 2;/_ = 0.3
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The deflection, 5, of the panel center is given by the theoretical formula:

l1 E1'2tl'2 _XFI' 2r25= K4 + m--
E2,it2, t / El,2h

(71)

kF r 2

5 = 2K 4 E h (for equal facings) , (72)

where K 4 depends on the sandwich bending and shear rigidities as incorporated

_2D
in the parameter V = _ which can be written as

_/,rJ-u

7r2t EltlE2t 2
c

V = 4Xr2Gc(Elt I + E2t2 )
(73)

7r2t Et
C

V - 8Xr-_G (for equal facings) , (74)
C

where r is panel radius and all other terms are as previously defined in Section

B9.6.1.2

h
Solving equations (71) and (72) for--, gives

r

f XFI'2 J El'2ti'2
h E2' It2'I
- =

Jh

J hFh -g"
-- = (for equal facings) . (76)

A chart for solving formulas (75) and (76) is given in Fig. B9-33. Use of the

equations and charts beyond 5/h = 0.5 is not recommended.
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FIGURE B9-33. CHART FOR DETERMINING h/r RATIO FOR FLAT

CIRCULAR SANDWICH I WITH ISOTROPIC FACINGS AND CORE,

UNDER UNIFORMLY DISTRIBUTED NORMAL LOAD

PRODUCING CENTI:,R DEFLECTION RATIO 5/h
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B9.6.1.7 Use of Design Charts

The sandwich must be designed by iterative procedures and the charts

enable rapid determination of the various quantities sought. The charts were

derived for Poisson' s ratio of the facings of 0.3 and can be used with small

error for facings having other values of Poisson's ratio.

As a first approximation, it will be assumed that V = 0. If the design

is controlled by facing stress criteria, as may be determined, this assumption

will lead to an exact value of h. If the design is controlled by deflection require-

ments, the assumption that V = 0 will produce a minimum value of h. The value

of h is minimum because V = 0 if the core shear modulus is infinite. For any

actual core, the shear modulus is not infinite; hence a thicker core must be

used.

The following procedure is suggested:

.

P
Enter Fig. B9-28 with the desired value for the parameter

F1,2

Assume a value for tl'2 and determine h/r. Compute h and t I 2.
h

tl,2

Modify ratio _ if necessary and determine more suitable values

.

for h and tl, 2-

Enter Fig. B9-33 with desire(] values of the parameters

XF 2

E2t2

and

and assume V = 0. Assume a value for 5/h and determine h/r.
E2

Compute h and 5. Modify ratio 6/h if necessary and determine

more suitable values for h and 5.
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Repeat steps 1 and 2, using lower chosen design facing stresses,

until h determined by step 2 is equal to, or a bit less than, h deter-

mined by step 1.

1

Compute the core thickness tc, using the following formulas:

h+ t2t = h -
c 2

t = h - t
C

(for equal facings)

This first approximation was based on a core with an infinite shear

modulus. Since actual core shear modulus values are not very large, a value

of t somewhat larger must be used. Successive approximations can be made
C

by entering Fig. B9-33 with values of V as computed by equations (73) and (74).

In using Fig. B9-33 for V ¢ 0 it is necessary to iterate because V is

directly proportional to the core thickness t . As an aid to finally determine
e

t and Gc, Fig. B9-27 can again be used. The constant relating V to G mayC C

be computed from the formula

j

/ _r2tcEltlE2t2 ] (_2tcEt /VCc= t 4)'r2(--'_lt/ + E2t2) or \_/ (for equal facings)

With this constant, Fig. B9-27 may be entered. Use of the figure is as

described in Section B9.6.1.3.

B9.6.1.8 Determining Core Shear Stress

This section gives the procedure for determining the maximum core

shear stress of a flat circular sandwich panel under uniformly distributed
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The core shear stress is maximum at the panel edge. The maxi-

mum shear stress, F is given by the formula
as'

F = pr (77)
cs 2-_

B9.6.1.9 Checking Procedure

The design shall be checked by computing the facing stresses using

equation (67) and the deflection using equation (71). The value of K 4 to be used

in equation (71) is given by

16 [ (5 + .)_2 ]K4- n2(3 + _) [64(1 + .) + V , (78)

which reducesK 4= 0.309+ 0.491Vwhen_= 0.3. Values of V may becom-

puted using equation (73).

An alternate method for computing the deflection at the panel center is

given by the formula

6 = Ks(1 + El'2tl'2) _E2, lt2, 1
(79)

xpr4 (80)
8 = 2K 5

where

(5 + _)_2 + V
K5 = 64(1 + _)

which reduces toK 5 = 0.629 + V when _ = 0.3.

The core selected for the panel should be checked to be sure that it has

a core shear modulus value, G , at least as high as that assumed in computing
c
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the deflection in equation (71) and that the core shear strength is sufficient to

witlmtand the maximum core shear stress calculated from equation (77).

B9.6.2 Large Deflection Theory

Most of the literature classifies large deflection theory as having a

deflection-to-plate thickness ratio greater than 0.50. In Figs. B9-34, B9-35,

B9-36, and B9-37, a small difference is noted between the linear and nonlinear

theory for deflection-to-plate ratios less than 0.50.

B9.6.2.1 Rectangular Sandwich Plate with Fixed Edge Conditions

The curves of Fig. B9-34 were obtained from Reference 8 with the fol-

lowing corresponding nomenclature for a rectangular sandwich plate with fixed

edge conditions (shear deformations are not included):

W
O

h

a,b

E

P

t

Q

Center deflection of plate

Thickness of the core layer

Half length of panel in x and y directions

a/b

Elastic constant of the face layers

PoissonVs ratio of the core layer

External load per unit area

Thickness of the face layer

12a3(1 - v2) p/th2E
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B9.6.2.2 Circular Sandwich Plate with Simply Supported Movable, Clamped

Movable, and Clamped Immovable Boundary Conditions

The curves of Figs. B9-35, B9-36, and B9-37 were obtained from

Reference 9 for a circular sandwich plate for the following states of loading

and boundary conditions:

1. Moments uniformly distributed around a simply supported,

radially movable boundary,

2. Uniformly loaded plate with a clamped, radially movable

boundary, and

3. Uniformly loaded plate with a clamped, radially immovable

boundary.

The equations are nondimensionalizcd for each state of loading. The effect of

shear deformation is characterized by the nondimensional parameter H. If

H = 0, then shear deformation is neglected; a nonzero value of H signifies

shear distortion in the core. Nomenclature of the symbols is as follows:



W
o

t
C

H

M
O

R

C

D

q

vf

B

G
C

Ef

tf

Normal deflection at the plate center

Thickness of the core

Measure of effect of core shear deformation =

Applied edge moment

Radius of a circular plate

In-plane rigidity = 2Eftf2

Bending rigidity = Eftftc/2(I - v/)

Applied, transverse load

PoissonVs ratio of face sheet

Transverse shear rigidity = G t
cc

Shear modulus of the core

Modulus of elasticity of the face sheet

Thickness of the face sheet
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BI0 HOLES AND CUTOUTS IN PLATES

The magnitude of stress concentrations around holes in plates used as

components of structures has long been an important design consideration.

The localized stress around a hole is usually obtained by multiplying the

nominal stress by a factor called a stress concentration factor. For example,

the localized stress or stress concentration cT at the edge of a relatively
max

small hole, at the center of a wide plate that resists an axial tensile load

P is

or

arnax K P= _ = Kao ' {1)

O !
max

K - , (2)
(/

O

P
in which K is the stress concentration factor and a = -- is tile (nominal)

o A

stress that would occur at the same point if the bar did not contain the hole ;

that is, in this illustration tile cross section area is the gross area including

the area which is removed at the hole. If the diameter of the hole is rela-

tively large, the net area of cross section is frequently used in calculating

the nominal stress c_ , hence the value of the stress concentration factor
O

for a given discontinuity will depend on the method of calculating tile nominal

stress.
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in a member is the theoretical value of the localized stress,

as found from the mathematical theory of elasticity, or the photoelasticity

method, etc., K is given the subscript t, and Kt is called the theoretical

stress concentration factor. If, on the other hand, the value of

from tests of the actual matei:ial under the conditions of use, K

the subscript e, and

tration factor.

K is found

is given

K6 is called the effective or significant stress concen-
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10.1 SMALL HOLES

Solutions in this subsectionwill be limited to small holes in plates,

that is, holes which are relatively small in comparison to the plate size

such that boundary conditions donot affect the results. An exception to this

is the casewhen holes are near a free edgeof a plate.

10.1.1 Unreinforced Holes

This paragraph contains information on holes of various shapes in

plates with no reinforcement around the hole, such as increased thickness,

rings, or doublers.

10.1.1.1 Circular Holes

The case of a circular hole in an infinite plate in tension has been

solved by many investigators. The stress concentration factor, based on

O"
max

gross area, is K - - 3.
t (_

Strictly speaking, K t = 3

thin relative to th(, hole diameter.

applies only for a plate which is very

When these dimensions are of the same

order,

less than 3 at the surface of the plate [ i].

to hole diameter of three-fourths, Kt = 3.1

K t is somewhat greater than 3 at the midplane of the plate and is

For a ratio of plate thickness

at the midplane and 2.8 at

the surface.
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For the case of a finite-width plate with a transverse hole, a solution

has been obtained [ 2] and the corresponding K t values are given in Fig.

B10-1. These values are in good agreement with photoelastic results.

The case of a hole near the edge of a semi-infinite plate in tension

has been solved and results are shown in Fig. B10-2. The load carried by

the section between the hole and the edge of the plate has been shown to be

p = crch 1- , (3)

where

C

r -_-

stress applied to semi-infinite plate.

distance from center of hole to edge of plate.

radius of hole.

h = thickness of plate.

B

In Fig. B10-2, the upper curve gives values of --a ' where aB is

the maximum stress at the edge of the hole nearest the edge of the plate.

Although the factor aB may be used directly in design, it was thought

{7

desirable to compute also a "stress concentration factor" on the basis of

the load carried by the minimum net section. This Kt factor will then be

comparable with the stress concentration factors for other cases; this is
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important in analysis of experimental data.
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Based on the actual load carried by

the minimum section, the average stress on the net section A-B

. j c_l
anetA-B (c - r) h I - r

c

is:

(4)

o= o°(,-I)
Kt = = J (_'anet A-B _ 1 -

(5)

The case of a tension plate of finite width having an eccentrically

located hole is shown in Fig. B10-3. When the hole is centrally located

(_- = i in Fig. B10-3), the load carried by section A-B is ach. As ec

#, (r)_is increased to infinity, the load carried by Section A-B is ach

Assuming a linear relation between the foregoing end conditions results in the

following expression for the load carried by section A-B :

= _ . (6)]
The stress on the net section A-B is

ff
net A-B

h (c - r)
, (7)
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(8)

It is seen in the lower part of Fig. BI0-3 that this relation brings all

the K t curves rather closely together, so that for all practical purposes the

curve for the centrallylocatedhole (e = 1)is, under these circumstances,

a reasonable approximation for all eccentricities.

I. Biaxial Tension:

For the case of a hole in an infinite plate stressed biaxially results

are given in Fig. B10-4. For a circular hole,

cr = 3 o"1 - o"2 . (9)
max

For _2 equal in magnitude to _1, K t = 2, when both are of the same sign.

When o 1 and _2 are equal but of opposite sign, Kt = 4.

II. Bending:

For bending of a plate the following results have been obtained. For

a infinitely wide plate with a hole, mathematical results have been obtained

a

in terms of _ (Fig. B10-5). Values for finite widths and various valves

a

of _- are shown in Fig. B10-6.
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10.1.1.2 Elliptical Holes

I. Axial Loading:

The stress distribution associated with an elliptical hole in an infinitely

wide plate subjected to uniformly distributed axial load has been obtained, and

the stress concentration factor as a function of the ratio of the major width

(b) to the minor width (a) is _iven in Fig. B10-7.

2b

K t = 1 + _ (10)a

A photoelastic solution of the distribution of stresses around a centrally

located elliptical hole in a plate of finite width and subjected to uniform axial

loading has been obtained in Rcf. 3, and the stress concentration factors arc pre-

sented in Fig. B10-8.

For the case of a biaxially stressed plate with an elliptical hole

(b = 2), the results are given in ].'i_. B10-4.

max a a2 (11)

II. Bending :

Stress concentration values for an elliptical hole in an infinitely wide

plate are given in Fig. B10-9.

10.1.1.3 I{eetan,,mlar Iloles with l_oundc(I Cm'ners

Stress concentration [actors for ;tn unk'einlbrced l/Otlllde(I rectangular

hole in an infinite sheet in tension have, been cvaluate(I in llef. 4. Variation
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of the stress concentration factor for various values of side length to corner

radius is shown in Fig. B10-10.

10.1.1.4 Oblique Holes

An oblique or skew hole may be defined as one having its axis at an

angle with respect to the normal to a surface. At the intersection with a plane

surface a skew cylindrical hole gives rise to an elliptical trace and produces

an acute-angled edge which, for large angles of obliquity with respect to the

normal, may be very sharp.

Stress concentration factors have been determined for oblique holes

in fiat plates by a photoelasticity method in Ref. 5. Results of their analysis

are presented in Fig. Bl0-1i along with theoretical curves for elliptical holes

in infinite and finite widths.

The stress-concentration factor based on net area is relatively insensi-

tive to the radius of the acute-angled tip. However, in a relatively narrow

plate, the maximum stress may actually be increased by the addition of a

radius because of the loss of load-carrying area.

It should be noted that the results of Ref. 5 apply only to plates with a

ratio of hole diameter d to plate width w of 0. I. Additional information on

oblique holes in plates can also be found in Ref. 6.
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Stress concentration factors for two holes of the same diameter in an

infinite plate has been documented in Ref. 2. For the case of uniaxial tension

perpendicular to the line of holes, Fig. B10-12 gives the factors; and for the

case of biaxial tension, the results are given in Fig. B10-I3.

The solution for stress concentration factors of two holes of different

diameters in an infinite plate loaded by an equal biaxial stress has been

obtained by Ilef. 7 and the results are given ill Fig. B10-14.

Reference 8 contains the solution for a plate containing a circular

hole with a circular notch, as shown in Fig. B10-15. Figure BI0-16 shows the

stress concentration factor at the bottom of notch (point A) when the tension

load is in the y direction. The smaller or (lecl)er the notch is, the greater

are the values of maximum stress.

II, Single Row of tIolcs:

For a sihgl, :,_w of holes in an infinite l)late, Figures B10-17 and

B10-18 give stress concentration factors for tension perpendicul,'tr to the line

of holes and for biaxially stressed holes respectively.

III. Double Row of ttoles:

For a double row of staggered holes, the stress concentration factor is

given in Fig. B10-19. For the staggered holes, a problem arises in basing
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b
on net section, since for a given -- the relation of net sections A-A and

a

B-B depends on 0 . For 0 < 60 deg, A-A is the minimum section and the

following formula is used:

° [ ]Kt A _ maXa 1 - 2 cos0 , (12)

for O > 60 deg, B-B is the minimum section and the formula is based on the

net section in the row:

max a

KtB = _ i -
(13)

IV. Arran's of Holes:

Stress concentration factors in a plate containing a large number of

uniformly spaced perforations in regular triangular or square arrays under

biaxial loading was investigated by photoelastic methods in Ref. 9. Four

configurations of perforation were considered as shown in Fig. B10-20.

Stress concentration factors for several combinations of configuration

and loading are plotted against p in Figs. BI0-21 through B10-26.
P

In these figures, the stress concentration factor is defined as the

ratio of the peak value of a_ at point A , A' , B' on the hole boundary to al

namely K =

o
0

max

(rI
is the algebraically larger one of the principal
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stresses that would be produced in the plate by the combination of the biaxial

loads applied if there were no holes. The stress concentrations factors at

angular positions on the boundary are shown by subscripts to K .

On these figures, the primary tendency is the rise of K with p
P

Among the four types of hole configuration, the diagonal-square type is ahvays

of disadvantage for it produces the highest stress concentration factor [o1"

every type of biaxial loading throughout the range of /3 , while the parallel-
P

square type gives the lowest factor, and the perpendicular and parallel-

triangular types lie in between. Fox" example, a list of K for a comparatively

large value of p - 0.92 for each hole configuration and biaxial-load is
P

given in Table B10-1.

Where strength is the main consideration, the above results show that

the parallel-square type of hole configm'ation is most desirable, esl)ecially

when P is large. The triangular hole configuration, both perpendicular and
P

parallel, wh ich is u._ually used is un[avorable contrary to expectation.

10.1.2 Reinforced Holes

This paragraph contains information on holes which lmve an increased

thickness around the hole in order to reduce the stress concentration factors.

Information wilt be divided into two categories: when the reinforcement is of

constant cross section and when the reinforcement cross section varies

around the hole.
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Stress concentration at a hole can be reduced by providing a region

of increased thickness around the hole, sometimes calleJ a "boss" or "beaJ."

Values of stress concentration factor for beads of various cross-sectional

areas for a plate having a hole diameter one-fifth the plate width
a
-- =0.2
W

are obtained in Ref. 2. Also, the stress concentration factors were obtained

on the basis of the radial dimension

hole diameter.

ab - a

2
being small compared to the

To account for other values of

obtained:

a

w
, an approximate method has been

where

KtB (14)

KtB stress concentration factor for plate with hole and bead, for

the particular value of a desired,
W

B

K t

= Bead factor =
KtB - 1

1.51 (Fig. B10-27).

= stress concentration factor for plate with hole and without

bead (Fig. B10-1) for the particular value of a desired.
W
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It is pointed out in l=tef, l0 that the maximum cross-sectional area

a b - a ah

of a bead, 2 hb , should be about _ . Above this value the theory

from which the stress concentration values were obtained no longer holds.

Studies by Dhir on stresses around two equal reinforced circular

openings in a thin plate [ii] have shown that the most effective amount of

reinforcement appears to be near 40 percent area replacement (percent of

area replaced to area removed by hole). Any additional amount of reinfoccc-

ment did not produce a proportionate reduction of the stresses. The inter-

action between the two holes was not significant ifthe distance bet_,,,(m the

inner edges of the two holes was one diameter or greater. Fo, , nsion

load perpendicular to the line of the two holes, a 40 percent ,,ca replaccnacnt

lowered the stress concentration factor from 3.0, fo' :m unreinforced hole,

to i. 75.

Additional _ork in the area of reinforced holes has been done in

Hcfs. 12 and 13; hovvver, these references do not give design data in usable

form, as a solution must be obtained from a computerized analysis.

I. Asymmetricall. y Reinforced :

The previous discussion has only concerned holes with symmetrical

reinforcement, that is, with reinforcement on both sides of the plate.

In practice, however, these are frequent cases where one surface of

the plate must be kept smooth and the reinforcement can bc attached to the
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other surface only. This problem is treated in Refs. 13 and 14; however,

because of the interaction between bending and stretching, the problem is

highly nonlinear and has only been solved for certain limiting cases. It is

found that the asymmetry of the reinforcement introduces bending stresses in

the plate and reinforcement because of the eccentricity of the reinforcement.

Careful consideration of the parameters must be employed, as in some cases

the addition of reinforcement causes a stress concentration factor greater than

what would have been present if no reinforcement were added. The work of

Ref. t5 shows that for a given loading condition a size of reinforcement can

be chosen to minimize the stress concentration factor.

10.1.2.2 Variable Reinforcement

In some cases the design of the reinforcement around a hole may be

important when the weight of the structure must be as low as possible. Rein-

forcement may then be of variable cross section around the hole. Hicks

[ 16, 17] has considered the problem of variably reinforced circular holes

and arrived at expressions for stresses for different loading systems. He

has shown that when the reinforcement has a given weight, the effect of varying

its cross section is to reduce the stress concentration in the plate. One

disadvantage of the variable reinforcement is that it may be undesirable from

a manufacturing point of view.
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i0.2 LARGE IIOLES AND CUTOUTS

Some designs may occur in which it is necessary or desirable to have

relatively large holes or cutouts in a plate, such as lightening holes in the

web of a beam or cutouts in a plate structure. A limited amount of data is

available for problems of this type; however, available solutions will be

discussed in this section.

10.2. i Bending of Plates with Circular Holes

Solutions have been obtained in Ref. 18 for a uniformly loaded square

plate either simply supported or clamped along the outer boundary with a

central circular hole as shown in Fig. BI0-28. Results for deflections and

bending moments for each boundary condition are given in Tables BI0-2 and -3.

10.2.2 Holes in Beam Webs

Holes are frequently cut in the webs of beams to provide for passage

of pipes and ducts, for access to the inside of a box beam, or for weight

saving. Little information is available on the stress distribution around holes

in beam webs.

An anal_¢ical method for calculating stresses around holes in the web

of wide flange beams shown in Fig. BI0-29 is presented in Ref. 19. The

applicability of the analysis depends on the size of the hole and on the mal,mi-

tude of the moment-shear ratio at the hole. The analysis is primarily

applicable to circular holes; as for elliptic holes, limits of applicability of the

analysis technique were not established.
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An empirical technique for the analysis of webs with round lightening

holes having formed 45 deg flanges is presented in Ref. 20,
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Table B10-2. Maximum Deflections and Moments in Simply

Supported Square Plate With a Circular Hole Subjected to
Uniform Load

R/b

0
1/6

i/3

1/2

2/3

5/6

1

W
max

D

0.649

0.0719

0.0697

0.0530

0.0303

0.0119

0.00268

Max M 0

qb 2

0.192

0.344

0.276

0.207

0.143

0.085

0.036

Table BI0-3. Maximum Deflections and Moments in a Clamped Square

Plate With a Circular Hole Subjected to Uniform Load

R/b

0

1/6

1/3
1/2

2/3

5/6

t

W
max

D

0.02025

0.02148

0.01648

O.OO858

O.00307

0.00081

0.00025

Max M 0 along

the hole

qb2

Max M alongn

the edge

qb2

0.0916

0.i45i

0.0907

0.0522

0.0310

0.0176

0.0067

-0.2055

-0.2032

-0.1837

-0. i374

-0.0780

-0.04i0

-0.0215
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2.9

2.8

2.7

2.6

2.5

2.4

2.3

2.2

2.1

*- Kt

2.0,

L

1.9

1.8

1.7

1.6

BASED ON NET SECTION I

P

• h
t w _ ._.-*- v

1.4

1.3,

1.2

1.1

1.0
0

W

I I I I I I [

0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIGURE B10-1. STRESS CONCENTRATION FACTOR, Kt , FOR AXIAL

LOADING CASE OF A FINITE-WIDTH PLATE WITH A TRANSVERSE HOLE.
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K t

2.0

1.5

1.0
0

BASED ON NET SECTION A-B

2,4

oo

| i ] l

0.1 0.2 0.3 0.4 0.5

¢

FIGURE B10-3. STRESS CONCENTRATION FACTOR, K t , FOR

TENSION CikSE OF A FLAT BAR WITH A CIRCULAR
HOLE DISPLACED FROM CENTER LINE.
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1.7

1.6

1.5

1.4

1.3

Kt

\
\

Kt = °ma'_xo

WHERE a = APPLIED

" STRESS DUE

BENDING

TO M

I

J M /)M

1.2

1.1

1.0
0

a

IT
I J I I I I I

1 2 3 4 5 6

FIGURE B10-5. STRESS CONCENTRATION FACTOR, K t ,

FOR BENDING CASE OF AN INFINITELY WIDE

PLATE WITH A TRANSVERSE HOLE.
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FIGURE B10-6. STRESS CONCENTRATION FACTOR,

FOR BENDING CASE OF FINITE-WIDTH PLATE

WITH A TRANSVERSE HOLE.
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2
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'- I
- 0.25
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21p

I | I I I
0 0.2 0.4 0.6 0.8 1.0

X - 2_

FIGURE B10-8. STRESS CONCENTRATION FACTOR FOR POINTS UNDER

MAXIMUM TENSION IN A FINITE PLATE WITH AN ELLIPTICAL HOLE.
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I"IGUI[E B10-14. STI[I']SS C()NCI';N'I'ILk'I'I()N l,'_X.CT()j)_g FOR TWO

UNE_UAL-S[ZED lt()l,l,;_; IN BIAXIA 1, FIELD OI,' STRESS.
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FIGURE B10-15. HOLE WITH CIRCULAR NOTCH.
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FIGURE B10-16. STRESS CONCENTRATION FACTOR AT POINT A

UNDER TENSION IN Y-DIRECTION.
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C I.I.0 Introduction

In general, column failure may be classed under two headings:

(I) Primary failure (general instability)

(2) Secondary failure (local instability)

Primary or general instability failure is any type of column failure,

whether elastic or inelastic, in which the cross-sections are trans-

lated and/or rotated but not distorted in their own planes. Secondary

or local instability failure of a column is defined as any type of

failure in which cross-sections are distorted in their own planes but

not translated or rotated. However, the distinction between primary

and secondary failure is largely theoretical because most column fail-

ures are a combination of the two types.

Fig. C I.I.0-i illustrates the curves for several types of

column failure.

O

Fcc

,-4

m
o

-,4

-,4

_D

m r

_Tangent _ Euler

s

L--M°difled abola

Johnson Par

!
!
!

!

0 a b

Slenderness Ratio, L'/p

Fig. C i.I.0-I

L' represents _he effective length of the column and is dependent

upon the manner in which the column is constrained, and _ is the mini-

mum radius of gyration of the cross-sectional area of the column.

For a value of L'/p in the range "a" to "b", the column buckles

in the classical Euler manner. If the slenderness ratio, L'/P , is in



Section C I

25 May 1961

Page 2

C I.I.0 Introduction _Cont'd)

the range of"O"to "a", a column may fail in one of the three following

ways :

(i) Inelastic bendin_ failure. This is a primary failure

described by the Tangent Modulus equation, curve nm. This

type of failure depends only on the mechanical properties

of the material.

(2) Combined inelastic bendin_ and local Instability. The

elements of a column section may buckle, but the column

can continue to carry load until complete failure occurs.

This failure is predicted by a modified Johnson Parabola,

"pq", a curve defined by the crippling strength of the

section. At low values of L'/D the tendency to cripple

predominates; while at L'/ P approaching the point "q",

the failure is primarily inelastic bending. Geometry of

the section, as well as material properties, influences

this combined type of failure.

(3) Torsional instability. This failure is characterized by

twisting of the column and depends on both material and

section properties. The curve "rs" is superimposed on

Fig. C i.I.0-I for illustration. Torsional instability is

presented in Section C 1.5.0.

These curves are discussed in detail in _ections C 1.3.0, CI.3.2, and

C 1.5.0. For a given value of L'/D between (0) and (a), the critical

column stress is the minimum stress predicted by these three failure

curves.

Each of the Tangent Modulus curves has a cutoff stress at low

L'/D values (point "_'). This cutoff stress has been chosen as

FO. 2 for ductile material, and is the stress for which Et/E = 0.2.

Et is the Tangent Modulus and E is the Modulus of Elasticity.
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C 1.2.0 Lon$ Columns (elastic buckling)

A column with a slenderness ratio (L'/ P) greater than the

critical slenderness ratio (point "a" Fig. C I.I.0-i) is called a

long column. This type of column fails through lack of stiffness

instead of a lack of strength.

The critical column load, Pc,aS given by the Euler formula for a

pin ended column (L' = L) of constant cross section, is

_2EI

2 ....................................... (i)
c (L)

where

E = Young's Modulus

i = least moment of inertia

L = Length of the column

End conditions - The strength of a column is in part dependent on the

end conditions; in other words,the degree of end-fixity or constraint.

A column supported at the ends so that there can be neither lateral

displacement nor change of slope at either end is called fixed-ended.

A column, one end of which is fixed and the other end neither laterally

supported nor otherwise constrained, is called free-ended. A column,

both end-surfaces of which are flat and normal to the axis, and bear

evenly against rigid loading surfaces, is called flat-ended. A column,

the ends of which bear against transverse pins, is called pin-ended.

The critical load for long columns with various end conditions as

shown in Fig. C 1.2.0-1 are:

_2EI
(a) P = -- (2)

c 4L12 ....................................

2.05_2EI
(b) e = (3)

C 2 .....o..o. .... °......°°°.°.°o.°

L 2

4_2EI
(c) P =- (4)

C 2 ,,.,.°,°,°.°°°°,° .,.,..°,.°°,o°,

L 3
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4

3 L3

P

(a) I (b) (c)

Fig. C 1.2.0-1

The effective column lengths L' for Fig. C 1.2.0-1 are2Ll, 0.7 L2,

and 0.5 L 3 respectively. For the general case, L' = L/Ve_, where c
is a constant dependent on end restraints.

Fixity coefficients (c) for several types of elastically restrained

columns are given in Figs. C 1.2.0-2 through C 1.2.0-4.

Limitations of the Euler Formulas. The elastic modulus (E) was used

in the derivation of the Euler formulas. Therefore, all the reasoning

is applicable while the material behaves elastically. To bring out

this significant limitation, Eq. I will be written in a different form.
By definition, I = AO 2 , where A is the cross-sectional area and @

is its radius of gyration. Substitution of this relation into Eq. i

gives

2El _ 2 EAP
Pc = -- =

(e') _ (e')2

............................ (5)

P _2
Fc _ c _ E ................................. (6)

The critical stress (Fc) for a column is defined as an average stress

over the cross-sectional area of a column at the critical load (Pc)"
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Fig. CI.2.0-2 Fixity Coefficient for a Column with End Supports

Having a Known Bending Restraint
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3.2

NOTE:

A Center Support Behaves

Rigidly If q _ 16 _2

._ ×,'/
/971/,q" 14o
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Fig. CI.2.0-3 Fixity Coefficient for a Column with Simply Supported

Ends and an Intermediate Support of Spring Constant,
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q = 8El

Where (_) = Spring

Constant Which Is Equal

To The Number of Pounds

Necessary To Deflect

The Spring One Inch

Extrapolated to Zero

Deflection.

7 "i

0 .i .2 .3 .4 .5 .6 .7 .8 .9 1.0

b

Fig. CI.2.0-4 Fixity of a Column with Two Elastic, Symmetrically

Placed Supports Having Spring Constants, p
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Most columns fall into the range generally described as the short

column range. With reference to Fig. C I.i.0-i of Section C I.I.0,

this may be described by 0 < L'/p < a. This distinction is made on

the basis that column behavior departs from that described by the

classical Euler equation, Eq. (6). The average stress on the cross-

section at buckling exceeds the stress defined by the proportional

limit of the material. The slenderness ratio corresponding to the

stress at the proportional limit defines the transition.

In the short column range a torsionally stable column may fall

by crippling or inelastic bending, or a combination of both, as

described in Sections C 1.3.1 and C 1.3.2.
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When the corners of a thin-walled section in compression are

restrained against any lateral movement, the corner material can con-

tinue to be loaded even after buckling has occurred in the section.

When the stress in the corners exceeds its critical stress, the sec-

tion loses its ability to support any additional load and fails. The

average stress on the section at the failure load is called the

crippling stress Fcc. Fig. C 1.3.1-1a shows the cross-sectional dis-

tortion occurring over one wave length in a typical thin-walled sec-

tion. Fig. C 1.3.1-1b shows the stress distribution over the cross-

section just before crippling.

/ Fcrit
vl P

I n j ' i

l Ib-" J

__I (b)

p_ i j 1.3.1-1

Fig. C

Ca)

The empirical method for predicting the crippling stress of

extruded and sheet metal elements is presented in this section.

1

This

crippllng stress, Fcc , applies to extremely short column lengths and

indicates the beginning of short column failure. It constitutes the

column cut-off stress for sections composed of thin elements.

The crippling load of a member is equal to the product of the

crippling stress and the actual area of the member; however, in

calculating the crippling stress, the summation of the element areas

is not equal to the actual area of the member.

A common structural component is composed of an angle, tee, zee,

etc. attached to a thin skin. The buckling stress of the skin panel

is less than the crippling stress of the stiffener. Taking a thin
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panel plus angle stiffeners at spacing, b, as shown on Fig. C 1.3.1-2,

apply a compressive load. Up to the critical buckling load for the

skin, the direct compressive stress is uniformly distributed. After

the skin buckles, the central portion of the plate can carry little

or no additional load; however, the edges of the plate, being restrained

by the stiffeners, can and do carry an increasing amount of load. The

stress distribution is shown in Fig. C 1.3.1-2.

!
!

 e-- Wer

._" I I _'crl
I I
I 1

_ b _

J
OL stiffeners

Fcc

Fig. C 1.3.1-2

For the purpose of analysis, the true stress distribution shown

by the solid llne in Fig. C 1.3.1-2 is replaced by a uniform distribu-

tion as shown by the dotted lines. Essentially, an averaging process

is used to determine the effective width, We, in which the stress, Fcc ,
is held constant.

Notat ton

F¢c = the crippling stress of a section.

fccn = the crippling stress of an element.

bn = effective width of an element.

bfn = flat portion of effective width of an element.

tn = thickness of an element.

R = bend radius of formed stiffeners measured to the centerllne.

Rb = extruded bulb radius.

W e = effective width of skin.

E = Modulus of Elasticity.
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Use of the crippling curves

I. The crippling stress, Fcc , at a stiffener is computed by

the followin_ expression

Xbntnfccn
F = . ................................. (t)

cc 2; bnt n

II. The method for dividing formed sheet and extruded stiffeners;

into elements is shown in Fig. C 1.3.1-3.

bfl

Formed Extruded

Fig. C 1.3.1-3

III. Angle stiffeners have low crippling stresses as each leg is

in the one-edge-free condition and offers little support to the other

leg. The method of dividing such stiffeners into effective elements is

shown in Fig. C 1.3.1-4.

__ b I = bfl + 1.57 Rb 2 = bf2 + 1.57 R

b I

L

Formed Extruded

Fig. C 1.3.1-4



C 1.3.1 Crippling Stress _Cont'd)

Section CI

July 9, 1964

Page 12

IV. Certain types of formed stiffeners, as shown in Figurel

C 1.3.1-5, C 1.3.1-6, and C 1.3.1-7, whose radii are equal and whose

centers are on the same side of the sheet, require special considera-

tion. Table C 1.3.1-1 explains the handling of these cases.

Fig. C 1.3.i-5 Fig. C 1.3.1-6 Fig. C 1.3.1-7

when
b f2

=0

<R

>R

<R

>R
D

>0

And As shown

bfl in Fig. Use

=0

=0

=0

<R

<R

>R

CI.3.1-5

CI.3.1-6

CI.3.1-6

CI.3.1-7

CI.3.1-7

CI.3.1-7

bI = 2.10R (one edge free)

b2 = 2.10R (one edge free)

b2 = bf2 + 1.07R (Avg. one & no edge free)

b2 = 2.10R (one edge free, neglect bl)

b2 _ bf2 + 1.07R (Avg. one& no edge free,

neglect bl)

b I = bfl + 1.07R (one edge free)

b2 = bf2 + 1.07R (no edge free)

Table C 1.3.1-i

Vt

Special conditions for extrusions _'k_Y\\\\\'_

T
bl "_

bl

(a) I

Fig. C 1.3.1-8
Rb

(b)

The crippling stress of an outstanding leg with bulb is 0.7 of the

value for the no-edge-free condition if Rb is greater than or equal

to the thickness of the adjacent leg (t I Fig. C 1.3.1-8). When

Rb < tI, the outstanding leg shall be considered as having one edge
free.
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_,-b 2 -D-
__ t2

for b I > t 2 and <_ Bt 2

neglect bl; and Fcc 2 =

Avg. of no edge free and

one edge free.

for b I > 3t 2

Regular method.

Fig. C 1.3.1-9

VI. The effective width of sheet, in a sheet-stiffener combination

under compression, is determined from the plot of 2We/t versus fstiff

(Fig. C 1.3.1-12).

Note the following special cases

One-Edge-Free Sheet

Fig. C 1.3.1-I0

one edge free

m _

t chart (no edge

free)

no edge free

= chart

J
I

J

l

4-- 2WeJ

Effective Sheet with Large

Hat Stiffener

Fig. C 1.3.1-11

(a) If effective widths overlap,

reduce accordingly.

(b) Calculate as one or no edge

free as necessary.
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Effective width of stiffened sheet.

The effective width, (We) , is the width of skin on either or both

sides of the stiffener acting at the stiffener stress level. This

stress level for the skin is obtainable only if there is no inter spot-

weld, or inter rivet buckling.

For calculating the effective width of sheet acting with the

stiffener the following equation is graphed on Fig. C 1.3.1-12

2W e K (E s) skin 1 ..................... (2)

--{--= V(-E_s)stiff stiff

Where

W e = effective width of skin (ins

t = thickness of skin (ins

E s = secant modulus at stress level of stiffener (ksi)

f = stress (KSI)

K = 1.7 for simply supported case (no edge free)

K = 1.3 for one edge free.

For a sheet-stiffener combination of the same material, Eq. 2

becomes

2We I Es '

-_-- = K _ -- . ................................. (3)fstiff

The procedure for determining the crippling stress for a sheet-

stiffener compression panel is

(i) Determine approximate stress level of stiffener.

Load P

fstiff = Area Astif f

(2) Determine (We) by using fstiff and Fig. C 1.3.1-12. This

procedure is not applicable if the sheet is subjected to

inter spot-weld or inter rivet buckling.

(3) The crippling stress for the composite section is then

calculated by Eq. I.
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0

m

0 0
0 0

Fig. C 1.3.1-12b

O0 0 0 0 0 0 0 0
0 _ o_ _ _0 _ -_ _ ¢'_

Effective Width of Stiffened Sheet

0
,-4
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Fig. C 1.3.1-13 Nondimensional Crippling Curves
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C 1.3.2 Column Curve for Torsionally Stable Sections

The column curves in Fig. C 1.3.2-3 are presented for the determi-

nation of the critical column stress for torsionally stable sections.

The modes of failure are discussed in sections C 1.2.0 and C 1.3.0.

These curves are Euler's long column curve and Johnson's modified

2.0 parabolas. They are to be used to determine the critical stress,

Fc, for columns at both room and elevated temperatures. It is noted

that the modulus of elasticity, E, corresponds to the temperature at
which the critical stress is deslred.

The following sample problem is used to illustrate the use of

Fig. C 1.3.2-3 to determine the critical stress, Fc.

Illustrative problem P

Fig. C 1.3.2-i

6061-T6 Square tubing 3.00 x .065

L = 60 inches (pin ended)

Temperature, T = 500 ° F (exposed _ hr)

E = 7.9 x 106 psi @ 500 o F

Fcy = 26.6 ksi @ 500 ° F
O = i. 730 in.

Determine the critical stress for the

column.

Solution

Determine the crippling stress of the section by the method
outlined in Section C 1.3.1.

. 065

Fig. C 1.3.2-2

From Fig. C 1.3.1-13

fccn
-- = .64
fcy

b = 3 - .065 = 2.935 (Center line values used

here)

t = .065

= \.O--_-J 7.9 x 106
= 2.62
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C 1.3.2 Colum Curve for Torsionally Stable Sections (Cont'd)

Use Eq. I Section C 1.3.1

Fee E fccnbntn

Fcy Fcy Z bnt n

= 4(.64) (2.935) (.065) = .64

4(2.935) (.065)

Fee - .64(26.6) - 17,030 psi

The critical stress for the column is obtained from Fig. C 1.3.2-3.

Fee 17_030, = 2.16 x 10 -3
-_-= 7.9 x ]0 6

For pin-ended column

L m L' = 60 in.

L__i'= 60 = 34.7
D 1.73

Then from Fig. C 1.3.2-3

F c
-- = Z. OZ x 10 -3
E

Giving a critical stress of

Fc " Z.0Z x 10 -3 (7.9 x 106 ) = 15,960 psi
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Column Curves for Torsionally Stable Columns _Cont'd)

CI O_
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Fig. C 1.3.2-3 Critical Stress for Torsionally Stable Columns .._4
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Flat panel

Sheet-stiffener combinations of flat compressi,_n panels may be

analyzed as columns. Each stiffener of the panel plus an effective

width of sheet acting at the stiffener stress constitutes an individual

column that is free to bend about an axis parallel to the panel sheet.

The sheet between stiffeners is continuous and offers considerable

restraint against stiffener failure about an axis perpendicular to the

sheet even though the sheet itself has buckled between stiffeners.

The stress distribution over the panel section after the sheet

has buckled is shown by the solid curve in Fig. C 1.3.3-I. The dotted

curve is the assumed stress distribution using the concept of effective

widths. The effective widths (We) for torsionally stable and unstable

sections are given in Section C 1.3.1.

i'
r--

!

i

I I

,-L

-7 r--"

I I

J i

Fig. C 1.3.3-I

y fstiff

I

The procedure for determination of the crltical stress and load

on a sheet-stiffener compression panel is

(I) Determine the slenderness ratio L'/ 0 of the stiffener alone

where p is the radius of gyration of the stiffener cross-

section about a centroldal axis parallel to the sheet.

(2) From the crippling curve (Fig. C 1.3.1-13) determine Fcc of

the stiffener cross-section. The value Fcc/E is given by

Fc/E at L'/p = 0 in Fig. C 1.3.2-3.



C 1.3.3

(3)

Section C l

July 9, 1964

Page 22

Sheet Stiffener Combinations _Cont'd_

Using the column curves (Fig. 1.3.2-3), with L'/P and Fcc

determined in steps (i) and (2), record the value of Fc.

(Interpolate between curves as required)

(4)

(s)

Determine the effective widths of sheet by using

Fig. C 1.3.1-12 where fstiff = Fc"

Use Fig. C 1.3.3-3 to compute P of the stiffener plus
effective sheet.

(6)

(7)

Re-enter the column curve (Fig. C 1.3.2-3) with new

L'/p and record the value of Fc.

Repeat steps (4), (5), and (6) until satisfactory convergence

to a final stress, Fc, is obtained. Convergence generally

occurs after two trials. Fc is the critical stress of the
stiffened sheet.

(8) The critical load, Pc' is

[ JPc = Fe Ast + ts Z We ........................ (i)

Where Ast is the cross-sectional area of the stiffener.

Curved panels

Analysis of curved stiffened panels requires but a slight exten-

sion in procedure beyond that described for flat panels. Fig. C 1.3.3-2

shows a curved panel with the effective widths of sheet that act with

the stiffeners.

W We ' b'2We We

Fig. C 1.3.3-2

The load-carrying capacity of such a panel is equal to that of a

flat panel plus an additional load attributable to the effect of the
curvature of the sheet between the stiffeners. The critical load is

Pc = Pflat + Pcurved
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Pc = (Fc) column (Ast
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+ 4tsWe) + (For) curved (b - 2W,_) t s

panel

The critical stress (Fcr)Of the curw-d panel is calculated by the

equations of section C 3.0.0. Note that in computina this stress the

entire width "b" of the curved panel is used. (_nly the reduced width,

b - 2We, is used in calculating the load that is contributed by the

curved panel.
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Fig. C 1.3.3-3 Variation of Radius of Gyration for Sheet
Stiffener Combinations
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CI.4.0 Columns with Variable Cross Sections

The modified Euler equation (tangent modulus) used to determine

the critical load of a prismatic, torsionally stable column not

subjected to crippling failure is

c_2E I

p = t . ..................................... (i)

c (L,)2

This section gives appropriate column buckling coefficients (m)

and formulas for com_uting the Euler loads for varying cross-section

columns. Where m = ± in Eq. I.
c

The following example is typical for calculating the critical

load of a stepped column.

Example

E 1 = i0 x 1_ 6 psi (aluminum)

I I .30 in

E 2 = 30 x 106 psi (steel)

12 = .50 in 4

A I = 1.94 in 2

Given:

Determine critical buckling load, Pc

Solution:

P
III IIII

IIIZll ll

l --12
P

Fig. C 1.4.0-1

a 12 ElI1
.... .33
L 36 E212

10 x 106 (.30) = .20

30 x 106 (.50)

From Fig. C 1.4.0-2, m = .545

2(Etl)l (3.14) 2 06(I,0) 1 (.30)

Pc = mL 2 = .545 (36)2
: 41.,800 lb

Stress level of aluminum section (max. of column)

Pc 41800

fl = AI = I. 9------4= 21,600 psi

If fl is below the proportional limit of the material in question,

then Pc is the critical load of the column. However, if fl is above

the stress at the proportional limit, the tangent modulus (Et) at the

stress level must be used. This leads to a trial process to determine

the critical load of the column.
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P

a/L = 0

1.0

07
0 .I .2

jO.8

I I

a/L = 0.9, 1.0

J i
.3 .4 .5

(Etl)l

(EtI) 2

Fig. CI.4.0-2

.6 .7 .8 .9 1.0

Buckling Coefficient
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The critical torsional stress or load for a column is to be deter-

mined by use of the following references until this section of the

Manual is completed.

I. Argyrls, John H., Flexure-Torsion Failure of Panels,

Aircraft Engineering, June, 1954.

2. Kappus, Robert, Twisting Failure of Centrally Loaded Open-

Section Columns in the Elastic Range, T.M.851, N.A.C.A. 1938.

. Niles, Alfred S. and J. S. Newell, Airplane Structures,

Vol. II Third Edition, John Wiley & Sons, Inc., New York,

1943.

. Sechler, Ernest E. and L. G. Dunn, Airplane Structural

Analysis and Deslgn, John Wiley & Sons, Inc., New York,
1942.
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CI.5.0 TORSIONAL INSTABII,ITY ()F COI,UMNS

In the previous sections, it was assmned that the column was torsionally

stable; i. e., the column would either fail by bending in a plane ,_t symnletry

of the cross section, by crippling, or by aeon_bination of crippling and bending.

However, there are cases in which a colmnn will buckle either by twisting or

by a combination of bending and twisting. Such torsional buckling failures

occur if the torsional rigidity of the section is very low, as for a bar of thin-

walled open cross section. Since the difference in behavior of an open cross

section is that the torsional rigidity varies roughly as the cube of its wall

thickness, thin-walled open sections can buckle by twisting at loads well below

the Euler load. Another factor that makes torsional buckling important in thin-

walled open sections is the frequent lack of double symmetry. In such sections,

centroid and shear center do not coincide and, therefore, torsion and flexure

interact.

In this section, it will be assumed that the plane cross sections of the

column warp, but their geometric shape does not change during buckling; i.e. ,

the theories consider primary failure of columns as opposed to secondary

failure, characterized by distortion of the cross sections.

Separate investigation of primary and local buckling can necessarily

give only approximate results t)ecause, in gen('rnl, the're will i)e coupling ()f

primary and secondary buckling. For torsionally stable sections, approximate

equations have been developed which include this coupling (,I()hnson-Euler

curves, Section C1.3.2). However, n(_ attempt has been made to formulate

a theory which would include coupling of torsion and flexure and local buckling,

therefore, an analysis would be extremely complicated.
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CI.5. i CENTRALLY LOADEI) COLUMNS

Centrally loaded columns can buckle in one of three possible modes:

(1) They can bend in the plane of one of the principal axes; (2) they can

twist about the shear center axis; or (3) they can bend and twist simul-

taneously. For any given member, depending on its length and the geometry of

its cross section, one of these three modes will be critical. Mode (1) has

been discussed in the previous sections. Modes (2) and (3) -will be dis-
cussed below.

I Two Axes of Symmetry

When the cross section has two axes of symmetry or is point symmetric,

the shear center and centroid will coincide. In this case, the purely torsional

buckling load about the shear center axis is given by Reference 8.

l,:l" 7r2 1P0 : lr _- GJ + _f2
O

where:

r : polar radius of gyration of the section about its shear centero

G = shear modulus of elasticity

J : torsion constant I See Section B8.4.1-IV A )

E = Young's modulus of elasticity

F -- warping constant of the section (See Section B8.4. 1-IV E}

: effective length of member

Thus, for a cross section with two axes of symmetry there are three

critical values of the axial load. They are the flexural buckling loads about

the principal axes, P and P , and the purely torsional buckling load, P
x y _"

Depending on the shape of cross section and length of member, one of these

loads will have the lowest value and will determine the mode of buckling.

In this case there is no interaction, and the column fails either in pure

bending or in pure twisting. Shapes in this category include I-sections,
Z-sections, and cruciform sections.
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II General Cross Section

In the general case of a column of thin-walled open cross section,

buckling occurs I)y a combination of torsion an(I I)emlin_. I)urely fh'xurcql or

purely torsional bucMing cannot occur. To investigate this type of buckling,

consider the unsymmetrical ct',Jss section shown in Vi_urc CI. 5-1. The

x and y axes are the principal centroidal axes of the cross section and

Xo and Yo are the coordinates of the shear center. During buckling, the

cross section will undergo translation and rotation. The translation is defined

by the deflections u and v in the x and y directions, respectively, of

the shear center o. Thus, during translation of tim cross section, point o

moves to o' and point c to c'. The rotation of the cross section about the

shear center is denoted by the angle d_, and the final position of the centroid

is c". Equilibrium of a longitudinal element of a column deformed in this

manner leads to three simultaneous differential equations (l{eference 8).

The solution of these equations yields the following cubic equation for cal-

culating the critical value of I)uekling load:

ro2(Pcr-Py ) (Pcr-Px) (Pcz,-P4))

_ p 2x 2(p -P ) : 0
ero er y

where

7r2EI _r2El
x y

P : P 2
x _ ' y _ ,

- P 2Yo2 P°ri p- )• CI" X

and

G ErTr2 _
O

Solution of the cubic equation then gives three values of the critical load,

P of which the smallest will be used in practical applications. The
or'

lowest value of P can always be shown to be less than the lowest of the
er

three parameters, Px' Py' and P4)" This is to be expected, noting that

it represents an interaction of the three individual modes. By use of the

effective length, _, various end conditions can be incorporated in the

solution above.
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III One Axis of Symmetry

K tile x-axis is an axis of symn_etry, then Yo
for a general section reduces to

Section C I.,;. 1

15 7xla3 19t;!)
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0 and the equation

(Pcr-Py) Iroa(Pcr-Px)(Per-P0-Pcr_Xo:_l= 0 . (1)

There are again three solutions, one of which is P = P and
er y

represents purely flexural buclding about the y-axis. Tile other two are the

roots of the quadratic term inside the square brackets equated to zero, and

give two torsional-flexural buckling loads. The lowest torsional-flexural load

will always be below P and P . It may, however, be above or below Py.x

Therefore, a singly syn_metrieal section (such as an angle, channel, or hat)

can I)ucMe in either of two modes, by bendhlg, or in torsional-flexural lmcMing.

Which of these two actually occurs depends (m th,, _limcnsions and shape ()f the,

given section.

The evaluation of the bucMing load from equation (1) is often lengthy

and tedious. Chajes and Winter (Reference 7) have devised a simple and

efficient procedure for evaluating the torsional-flexural bucMing load from

equation (1) for singly symmetrical sections shown in Vi_ure C1.5-2. In

their approach, the essential parameters and their effect on tile critical

load are clearly evident. Since most shapes used for compression members

are singly symmetric, their method is quite useful as described below.

A. Critical Mode of Failure

Failure of singly symmetrical sections can occur either in pure bending

or in simultaneous bending and twisting. Because the evaluation of the

torsional-flexural buckling load, r(,gar_llcss ol the .mcttl(_(l used, c_n ncv('r

be made as simple as the determination of the Euler load, it would be convenient

to know if there are certain combinations of dimensions for which torsional-

flexural buetding need not be considered at all. To obtain this information,

a method of delineating the regions governed by each of the two possible

modes of failure has been developed. The method is applicable to any set of

boundary conditions. For the purpose of this investigation, however, it will

be limited to members with compatible end conditions; i. e., supports that

offer equal restraint to bending about the principal axes and to warping.
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FIGURE C1.5-2 SINGLY SYMMETRICAL SECTIONS

For sections symmetrical about the x axis, the critical buckling load

is given by equation (1). According to this equation, the load at which the

member actually buckles is either P or the smaller root of the quadratic
equation, whichever is smaller. Y

The buckling domain can be visualized as being composed of three regions.

These are shown schematically in Figure C1.5-3 for a section whose shape is

defined by the width ratio, b/a. Region 1 contains all sections for which I > I
y x"
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hi this re_ion, only torsion:lt-flcxurnl I_uckling can nccut'. Sections for \_hich

1 I fall into Hegions ') or 3. In h(.glon _), the mode of l)ucklin_ depends <m
x 3

the parameter l_/a 2. The (L(:/L!) lllill CUI'VC l'epL'osen[N the I)()untl;IF 3 I)c|\\ccn

tile two possible modes of failure. II ix a plot ()ltlle value o1 tf,:l e at _vhicl_

the buckling mode chnn._es from purely flexural to torsional-flcxural. The

1ooundary between Regions 2 and 3 is located at the intersection of the

(tI/a 2) curve with the b/a axis. Sections in Hegion 3 \viii ahva_,s fail
m in

in the flexural mode regardless of the value of ff/a 2.

Figure C1..5-,t d('fin(,s th(,s(, cu)'v('s for angles, ('h:lnn('ls, ;m<l hat

sections. In this figure, men, hers that plot below and to the right of the curve

fail in the torsional-flexural mode, whereas those to the left and abo\e fail

in the pure t,cnding rood(,. Th(, curves in l"iKur(' (71.7, t als,, ai\(' the l()_':_ti_)n

of the boundaries between the various 1)uckling (Iomains. Each of the curves

approaches a vertical asymptote, indicated as a dashed line in the figure. The

as_mlptote, which is the I)oundary bet_veen l{egions 1 and z, is located at I)/n

correslxmding to sections for which I - I . Sections with h/a larger
x y

than the transition value at the asymptote will ahvays fail in torsional-flexural

buckling, regardless of their other dilnensions. K b/a is smaller than the

wllue for the as3ml}t()Ic , then thc sccti(m falls i)) I{egi(m 2 ;inti l"lilurc can b(,

either by pure flexurnl hueklingor in thetorsional-flexural mode. in this

region, the par,'uneter, t_/a 2, will determine which of the tsvo possil/le modes

of failure is critical. In the case of the plain and lipped channel section, there

is a lower boundary Region 2. This transition occurs where the (t_/a 2)
lhll

curve intersects the b/a axis. Sections for which l)/a is less than the value

at this intersection are located in Region 3. These sections will nhvays fail

in theflexural mode, regardless of the value el t_/a 2. For tile lipped antic

and hat sections the (ff/a2jlim curw, (l,)('s n_)t int(.rs(,c,.t the b/a axis.
Region 3, where only flexural buelding occurs, does not exist for these.

sections.

B. Interaction Equation

The critical buclding load for singly symmetrical sections (x-axis is

the axis of symmetry) that bucMe in the torsional-flexurnl mode is given by
the lowest root of

r ca(Per -Px) (Per -Pc) - Per 2x2 =0o (2)
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FIGUI{E CI.5-4 BUCKLING MOI)E OF SINGI_Y SYMM/<TI_ICAL SECTIONS

Dividing this equation by PxPoro 2, and rcarranzing results in the following;

interaction equation:

P P K =

< + -'P- - Pxx

t (a)



m which

K

St'clion _'1.._. ]

P;I ,_t' !)

is a shape factor that depends on geometrical properties of the cross section.

FignJre C1.5-5 is a plot of equation (?,). This I)l_t pr_)vidcs n sil_ll)l(,

method for checking the safety of a column against failure by torsional-

flexural buckling.

To determine if a given nmml)er can safely carry a certain load, P, it

is only necessary to compute P and P for the section in question and then,
X (b

knowing K, use the correct curve to check whether tile point determined by

tileargtmlents P/P and P/P falls below (safe} or above (unsafe) the
x 0

pertinent curve. If it is desired to determine tilecritical load of a member

instead of ascertaining whether itcan safely carry a given load, use

=-- + P - P + - 4 (5)
er 2K x d) ,

which is another form of equation (3).

The interaction equation (eq. 3) indicates that P depends on three
CF

factors: the loads, P and P and the shape factor, K. P and P are
x O' x ¢

the two factors which interact, while K detern_ines the extent to which they

interact. The reason bendin_ and twistin_ interact is tn;tt the ,shear center

and tile eentroid do not coincide. A decrease in x , the (list_mee between these
• * 0

points, therefore causes a decrease in the mteractmn.

To evaluate the torsional-flexural bucMing load by means of the inter-

action equation, it is necessary to know P and K. A convenient method

for determining these two parameters is therefore an essential part of the pro-

cedure,

C. Evaluation of K

For any given section, K is a function of certain parameters that define

the shape of the section. Starting with equation (4) and substituting for
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x and r , K can be reduced to an expression in terms ol' one or more of
o o

these parameters. If the thickness of the member is unilt)rm, the parameters

will be of the form b/a, in which a anti b are the widths of two of the flat

components of the section. In the case of a tee section, for example, equation
(4) can be reduced to

4

K -- t - [1 _- b/a] L'r'b/a)a +"1 _J (¢_)



f in which b/a

_('('tton C1. 5. 1

I3 .kla5 l'.)_;t)

I):_gc I1

is the ratio o[ tilt' fl:mgc t,) the le R"width t Fig. C1.5-").

In general, the number of elements of which a section is composed and

the number of width ratios required to define its shape will determine the

complexity of the relation for K. Because all equal-legged angles without

lips have the same shape, K is a constant for this section. For channels

and lipped angles, K is a function of a single varial)le, b/a, while lipped

channels and hat sections require two parameters, b/a and c/a, to define

K (Fig. C1.5-2).

Curves for determination of K have been obtained for angles, channels,

and hat sections. These curves are shown in l"i_tr(.'s C1.5-_; and C1.5-7.

A single curve covers all equal-legged lipped angle sections. The value of

K for all plain equal-legged angles, K = 0. 625, is given by the point

b/a =-0 on this curve ( Fig. C1.5-(;). For hats an(I channels ( Figure C 1.5-7) ,

a series of curves is gdven.

D. Evaluation of P
d)

The evaluation of P follows the same scheme as that used to determine

K. Starting with the equation for I) _iv('n in l)arabWal)h (:1.5. 1-1, and sub-

stituting for ro, J, and F yields

Pd) : EA[C_(t/a) 2 + eclair)el (7)

a general relation for Pr_' in which, E = Young's modulus, A : cross-

sectional area; t = the thickness of the section; £ : effective length of the

member; a = the width of one of the elements of the section; and

C 1 and C2 = functions of b/a and c/a, in which b and c are the widths

of the remaining elements.

Equation (4) indicates the important parameters in torsional bucMing

and their effect on the buckling load. Similar to Euler bueMing, P varies

directly with E and A. The term inside the bracket consists of two parts,

the St. Venant torsional resistance and the warping resistance. In the first

of these, the parameter, t/a, indicates the decrease in torsional resistance

with decreasing relative wall thickness; whereas, in the second the parameter

a/l shows the decrease in warping resistance with increasing slenderness.
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The coefficients, C I nnd C2, ill tilL' St. Velmnt :lad warping terms are

ftmctions of lga and e/a, respectiw'ly. 'l'hcsc tel'IllS (hcrel'ort, indicate the

effect that tile shqpe of the section has on P
@"

Sections COlllposed ()|" thin rt'(:t:lll.t2,]u:ll" elcl_lcnts \vh()s(, iilid_tlc lines

intersect at a common point have negligible warping stiffness- i. c., 1" - 0.

Because C a is proportional to F, tile torsional bucMing load of these sections
reduces to

P_ : EACl(t/a) 2 . (s_

For the plain equal-legged angle, which falls into this category,

further reduced to

P can be

P = AG(t/a) 2 (9_
¢

in which G is the shear modulus of elasticity, and a is the length of one of

the legs.

in general, however, C l and C, must he evaluated. Curves [or these

values are given in Figures C1.5-8, C1.5-9, and el. 5-10 for angles, hats,
and channels.

For other cross sections values of the warping constant, 1", and location

of shear center are given in Table I.

0.1

(a)
o

o 0.2 0.4 0.6 0.8,0 0.4 0.6

Ratio b_
o

0
0.8

• , t'1 , r, (_, AND Ca,FIGURE C1.5--8 TOIISIONAL BUCKLING LOADCOEFIICIENIS, I

FOIl EQUA L--LEGGED ANGLES
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FIGURE C1.5-9 TOItSIONAL I;IICKLINt; LO\I) COI"I;'I"[CII+:NTS, C i ANI) C2,
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FOR VAIlI()Us CIIOSS SI,R' l'l()NS

• i

I" t
!

t
tf

tf

, f

I.t

! --

t-

b "1

s = shear center

tfh2b3 c = centroid

24 I' = war_ina constant

I

|

t
t

tf

1-- h

._---t w
0

htf
t

I- b2

e:h bl3

o

w

b
"I

t

tf

•.- t w tf
t
t

3b2tf
e -

6btf + ht w

tfb3h 2 3btf + 2ht w
I-' =

12 6btf + ht w

o

b3h2 I12 (2b + h)2
2tf(b 2+bh +h 2) +3twbh
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Sill a - a COS cJ
• : 20

a - Sin a COS •

!-"
2ta$ l_ 6 (s'n a - o cos "P-I

cl - sin a cos a..J

/

! c t

O is located at tl_e intersection of the two legs

A3
I' "_ A : cross-sectional areo of the engJe

144

o is Iocoted o! the intersection of the two legs

t

t 1

[-
b

o is located at t_e interlect_on of flange ond web

O

f
e = b(bl)2(3b'2bl),

[2o-i . ,132
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C1.5.2 SPECIAL CASES

I Continuous Elastic Supports

Consider the stability of a centrally compressed bar which is supported

elastically throughout its length and defined by coordinates h and h
x y

( Fig. CI. 5-11).

v x

YO

FIGURE C1.5-11 SECTION WlTII CON'I'INIJ()US I':I,ASTIC SUl_polfrs

For this case, three simultaneous differential equations can be obtained

(Reference 8). They are:

El d4u + l"_dz-_ + Yo + kxy dz"-r" ,17/ + (Yo - hy),
= 0

EI + ky ox _ + V_dz--_ - Xo_rz ] - - = 0

d4_b ( Io d2_ (x d2v d2u_EFdz-_- - GJ - _-- P]dT--_, - p odz--_ - Yodz-_.]

+ kx[u + (Yo- by) 4)l (Yo- hy)- ky[V- (x ° - hx)_X °

+ koO = 0
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I1" the ends of the bar art, simply supported, that is, free to \_arp nnd tc_

rotate about the x and y ,axes but with 11o rotation about the z axis, we can

take the solution of the equations above in the form

u = A/sin nrrz v : A 2 sin nTrz nTr.____zc5 = A a sin

Substitution of these expressions into the differential equations leads to the

evaluation of a determinant and hene{, to a cubic equation for the critical loa_ls,

in the same manner as described in Paragraph C 1.5. :',-I. The cubic _'qu:_ti_m
is

AaP a + A2t¢ + AlP + A 0 = 0

where

Aa = - A

Ix + I) 2A 2 = E A y

7

+ IyYo2 + I x 2 + I'J(nrr_ _x o \_-/ +

A I -

+ k h 2 + k@ + (kx + k)( Ix +
yx y A

(n_ _
GJk_ /

I)l (n_r_4',7-/

1.22

III

xY° + (IA x

- E Iykx(Y ° - hy)2 _ I kY Y(X ° -

+x.e +i_ +(I_A xx A

I( I_o_(_+k)(_)'- %

+_0(_x+_y)I(V-)'
d

hx_2] _- I k h2 + I k h 2xx y xy x

_)_0+(i +;)'t (v-)':

+I )}r + h2 + h2yA x
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Ao x y x ) xlykx\Yo y

+,++,+o-+,++o+:i++ial,l   

(_ /x5 o y?+ KlxGJ + ky + E - h _2

+ kkGJ + kkk
xy xy_

It can be seen that the values of the coefficients to the cubic equation depend

on n. The value of n which minimizes the lowest positive root of the cubic

equation must be found. The comph_xity of this solution may necessitate the

use of a computer.

II Prescribed Axis of Rotation

Using the same differential equations given in the previous paragraph,

we can investigate buckling of a bar for which the axis is prescribed about

which the cross sections rotate during buckling. To obtain a rigid axis of ro-

tation, we have only to assume that k : k = _. Then the n axis
x y

(Fig, C1.5-11) will remain straight during buckling and the _'voss s(,(-tions will

rotate with respect to this axis. The resulting differentialequation m:

I d'°EF + EIyCy ° -hy)Z + EIx(X ° - h x :

[ Ip (x ) ( Y)IGJ o 02 p hx 2 + h 2 d2_A + p + Yo2- -_ - _ +k0_ =0

Taking the solution of this equation in the form _ = A 3 sin nTrx

P
cr

2 nTr z
- h 2 - hx _- + GJ + k n___F + EI Yo ) + EIx o .....

= Y Y
I

o_'- - x + Yo y
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we can calculate the critical buckling load in each particular case.

If the bar has two planes of symmetry, the solution is:

EF + EI h 2 + EIx h2xj _ + GJ + k 0
P = Y Y

cr

h2 + h 2 +(Io)-
x y \--_/

In each particular case, the value of n which makes t ) a minimum
must be found, cr

If the fixed axis of rotation is the shear-center axis, the solution becomes

fn2_'2_ / _\

P =
cr I

O

A

This expression is valid for all cross-sectional shapes.

III Prescribed Plane of Deflection

In practical design of eolunms, the situation arises in which certain fibers

of the bar deflect in a known direction during buclding. For example, if a bar

is welded to a thin sheet, as in Figure C1.5-12, the fib¢'rs of the bar in contact

with the sheet cannot deflect in the plane of the sheet. Instead, the fibers along

the contact plane nn must deflect only in the direction perpendicular to the

sheet. In problems of this type, it is advantageous to take the centroidal axes,

x and y, parallel and perpendicular to the sheet. Usually this means that the

axes are no longer principal axes of the cross section.

1

C
1(

] fl

FIGURE C1.5-12 SECTION WITH PItESCRIBEI) PLANE ()I" Di,:I,'I_I':CTI()N
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For this case, two simultaneous differential equations can be obtained

(Reference 8).

They are

d4v _d2v / _d4d) d2cb

EI + - EI \_/v° - - Pxx _ Pdz--_ xy hy) dz--_- o
= 0

F + E - hy A P + PYo -o -v- j_o 2

:= 0y - h ) d4v d2vElxy o Y _zz4 Px- odz--_

These equations can be used to find the critical buckling loads for a given case.

As before, taking simple supports and a solution in the form

ffZ 7TZ

v - A 2 sin-_- _}- A:_sin (,

The following determinant can be obtained:

_ rr2 _ 1_ol

-Elxy(Y O - hy)_- + PX O EI'_- + EIy(y O - hy)Z}-,y

+ G,J - o p + pyo2 Ph _
Y

= 0

From this determinant a quadratic equation for P is obtained from

which the critical load can be calculated in each particular case.

A2_ + AlP + A 0 = 0



where

A2

I
o 2 2 2

- Yo -x ehA o y

I

Op + py2 ph 2
A1 = - A- x x o - x y

+ 2XoPxy(Y ° - hy)

I
0

--p
A l)y (Yo

I

Py(Yo -hy) 2 P2xy(Yo hy) 2
0 p + p

A0 = _--zP_ x x - -

7r2
P = EI

x x-_

7r2
P : EI

y y_-_

rr2

Pxy EIxy -_

P$ =i-- J + Er_
O

I = I +I + A(Xo2 + yo 2)o x y
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- hy) 2

If the bar is symmetrical with respect to the y axis, as in the case of a

channel, the x axis and the y axis become the principal axes. Then, with

the substitution of I = 0 and x = 0, the two equations become
xy o

independent. The first of these equations gives the Euler load for buckling in

the plane of symmetry. The second equation gives

P
y_

+ EI (Yo - h l)_-_Z]Y

(:o)- Yo y

+ GJ

which represents the torsional buckling load for this case.
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I General Cross Section

In the previous sections we have considered the buckling of columns

subjected to centrally applied compressive loads only. The case when the

force, P, is applied eccentrically (Fig. C1.5-13) will not be considered.

i
Ip

Y

I/
P

FIGURE C1.5-13 ECCENTRICALLY APPLIED LOAD

In investigating the stability of the deflected form of equilibrium, and

considering the case of simply supported ends, the following determinant for

calculation of the critical loads is obtained ( Reference 8).



P - Py)

0
P - Px)
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P(Yo - ey) P(ex _ Xo) Pey[31 + Pc;,/_2

I I
O o

The solution of this determinant gives the following cubic equation for calcu-

lating P :
cr

AaP a + A21_ + AlP + A o --- 0

where

Aa --T +°/,- ° -(°x
0 Y

A2 A [ ey y(X ° ex)2 (Px=T£ px(Yo- )z + p _ _ exB 2 .; py)

-ey[Jl(Px + Py)]- ('}x " py _ P(b)

AI - I y x x y Y y y c/) x (
0

A o = _p P P
xy q)

P = E1 rr2
x x_2
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- J _ Ere--, *
o

I : I + I + A(x 2 + yo 2)o x y o

fll = Ix - 2y°

/32 : _- xadA + ( xyZdA - 2x
y A o

In the general case, buckling of the bar occurs by combined bending and

torsion. In each particular case, the three roots of the cubic equation can be

evaluated nmnerically for the lowest value of the critical load.

The solution becomes very simple ifthe thrust, P, acts along the shear-

center axis. We then have

e : X , e : y
x o y o

and the buckling loads become independent of each other. In this case, lateral

buckling in the two principal planes and torsional buckling may occur independ-

ently. Thus, the critical load will be the lowest of the two Euler loads, P ,
x

P , and the load corresponding to purely torsional buckling, which is:
Y

I

___Op
A p

P I "

e fll + exfl2 + o
Y _-

II One Axis of Symmetry

Another special case occurs when the bar has one plane of symmetry

(which is true for many common sections). Assuming that the yz plane is

tile plant: of symmetry (Fig. C1.5-13) , the x 1_2 0. The solution for
(,

the critical buckling loads is _)btain,'d in the san,c manner as in Paragraph 1.
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A case of common interest occurs when the load, P, acts in the plane

()f symmetry; then e O. When this happ(,ns, buckling in the plane of s_m-
x

metry takes place independently and the corresponding critical load is th(' same

as the Euler load. However, lateral buckling in the xz plane and torsional

buckling are coupled, and tile corresponding critical loads are obtained from

the following quadratic equation:

/Py - P/ P_- P(e/ _ p2 ly °
= 0

III Two Axes of Symmetry

If the cross section of the bar has two axes of symmetry, the shear

center and the centroid coincide. Then Yo : Xo = fil - f12 : 0 , which

simplifies the solutions of Paragraphs I and II somewhat.
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EXAMPLE PROBLEMS FOR TORSION.\L-FI.EXUR.\ L INST;\BILIT_"

OF COI_UMNS

I Example Problem 1

6
S

L Xo _-
i-

[_

I-

t: 14"

|

4 "1

c - centroid

s - shear center

Given:

/ = 60 in.

A = 3.5 in.2

Ix : 22.S in. 4

ly : 6.05 in. 4

E = 10.5 x 106 psi

G: 4.0x 106pli

J = .073 in. 4

Find critical load applied at centroid, c. and the mode of buckling. Use

general method and also use n_t,thod of S('cti()n C1.5.1-IIi.

A. Method 1

From Section CI. 5. l-Ill,equation (5),

[( "x)J(.,,P _ 1-- P<!>cr 2K

\ro/

From Table I,

3b2tf 3(4) 2(,)
e -=

6btf + ht fi(4)('l) + 6(11W

1.6 in.

and

F ._

tfb3h 2 3btf + 2ht w

12 6btf + hi w



l_ +
('_) (4)3(6) 2

12 3(4)([) + 2(6)(',)]6_4)(]) . 6(I)
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F = 38.4 in._

I = I + I + AX 2
x y o

I = 22.5 + 6.05 + 3.5(2.74) 2
O

I = 54.75 in. 4
O

I
2 o 54.75

o A 3.5
- 15.(;5 in. 2

Tr2EIx _ 7r210.5 x i0c' x 22.5
D .¢

x _ _ ((;0) 2

_-ZEj

p = ______ = 7r210.5 x 106 x 6.05
y _ z (60) 2

P_ -: r--,z J +
0

Pcb - 15.65 4 x 106 (. 073)

10.5
+

647,691 lbs

174,000 lbs

x 10G(38.4}_ 2]
(60) z

Pq5 = 89,200 Ibs

K := I

\ro/

(2.74)2

= 1 - 15.65 : 0.55

P
cr

' E,2(0.55) 89,200 + 647, 691) -

q (89,200 + 647,691) 2 - 4(0.55)(89,200)(647,691)]

/



P - 82 727 lbs
cr
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therefore, critical load is _2,727 l_mnds and the mode is torsional-flexural

buckling.

B. Method 2

Check Figure C1.5-4(b) for critical mode of buckling with

t_
b/a = 4/6 = 0.66 , c/a = 0 , a-,Z = 0.416

Since the point plots are below the curve for

buckling will be torsional-flexural buckling.

From Figure C1.5-7(a1, K - 0.53

From Figure C1.5-10, C 1 -: 0.31 and

From Section C 1.5.1-III, equation ( 7),

c/a : 0, the critical mode of

C2 - 0.20

: EA[c, -,-

[ (0.25]' ({i _21Pd) 10.5 x 10s(3.5) 0.31x-_ / + 0.2\601 j

P_b = 93,500 lbs

IrZEI
X

P v--
x f

= 647,691 lbs

F1
p - /

cr 2( 0. 53) k

-V(93,500

(93,500 _- 647,(;91)

+ 647,6917 - 4(0.53)(93,500)(647,691)1
J
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cr
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II Example Problem 2

1.56

1,89

t
3.o "Ij_

I_

' "" '-0.2

s o.3

"

' I '0.3

y

x

Given:

J = ,053 in, 4

E = 10.5 x 106 psi

G= 4,0 x 106 psi

c = centroid

s = shear center

Q = paint of load application

A= 2.1 in2

Ix = 4.43 in4

ly = .88 in, 4

L= 50in.

Find: Critical load applied at point Q.

To locate shear center and evaluate the warping constant, refer to Table I.

• hbl 3 3.3(3.0) 3

= bl 3 4 b23 = (3.0)3 + (2.0)3
-- -2.54¢;

Yo = -2. 546 + 1.89 -0._;5:;

F

F

t h z
f b13b23

12 bl _ + b2_

0.3(3.3) 2 (3)3(2) 3

12 (3) _ _- (2) _

F = 1.68 in. 6

To calculate I , /?1, f12 refer to P_ragraph C1.5.3-I:
o

I :: I + I A(Yo)_o x y



I
O

I
O

4.43 + 0.88 + (2.1)(-0.656) 2

= 6.21 in.4

fil _-- . • - 2Yo
X

1 [(3.0)(0.3)(_1.41)3 + 3.0(0.2)(0.24) 3/)I - 4.43

Section C i.5.4
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+ 2. 0( 0. 3) (1. 89} _]

-2( -0.656)

fll - 1.66 in.

fi2 : 0

_2EI x 7r210.5 x 106(4.43) 183,633 Ibs
p = _ = (50)2
X

v2EI

_2Y

¢p I
O

36,477 lbs

EFIr 2] 2.1 [i x+ _'-FrJ - _.21
10.5 X 106(1. 68)7r 2]10(;(0. 053} + (50)2

p 95,239 |bs
¢o

Now calculate the coefficients to th(: cubic equation in Parai_raph C 1.5.3-I:

A3

A3

A° Iexfi 2 eye, (ey yo) 2 iex - Yo) 2]
Io

2.1 _0.2)(0) + (0.89)(1.66)- (0.89 +0.655) 26.21

- (0.2-0) 2] + !

A3 = 0. 6789



A2 AEr° o y × \ x

Section C 1.5. ,4
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l)ag .,.,

2. 1 [183,633(-0. (;55-0.89) 2 + 36, 477( 0-0. 2) 2
A2 : 6.2--"1

-0.2(0) ( 183,633 + 36,477) - (0.89) (1.66) (183,633 + 36,477)]

A 2 -- -276,596

A, - A [PxPyexfl2+P P e fl _'i x y y (P Px y +P Py _ +PxP_ o)
o

h i - 6.21 83,633(36,477)(0.2)(0) + 183,633(3(i,477)(0.89)(1.66}

+ [183,633(36,4771 _-36,477(95,394) + _183,633)(95,3._4)J

A 1 - 31. 042 x 10 'q

A o -- - pp P
xy¢

A 0 = - (183, 633) (36, 477) ( .95, 394)

A o = - 638.985 x 1012

A3I_ + A2p 2 + AlP + A o . 0

Dividing by A 3 l_ + A2 P + A1 P + A-A-
, A a Aa Aa

0



A2let k =
A3

A_a - ho
q - r =_

A3 A3

k = -4. 0742 x l0 s

q = 4.5725 x 10 l°

r : -9.4123 x 1014

Section C 1.3.4
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For solution of cubic, let P X - k/3 , then the cubic reduces to

X3 + aX + b : 0

where

a = i/3(3q - k2)

l_
b = --:-(2k 3 -

27
9kq + 27r)

a : -0.9605 x I0i°

b : 0.259 x 1015

b 2 a3

4 27
-0.01605 x 1030

Since Q < 0, we have three real, unequal roots given by

X k - 2 cos _ + 120K , K 0, 1, 2

where

¢b = arc co .'-- -
d) : 45"39'



X : -109,200
o

X_ : 80,324

.%t,ctionC1.5.4
15Muy 1969
Page35

£-
X 2 :: 28,876

F
:/

Substitute these roots into P : x - k/3 for critical load values.

Pl = X1 - 1/3

Pl = -109,200 -
{-4. 0742 x 10 '_)

3

Pl = 26,606 Ibs

P2 = 80,324 + 135,806

P2 = 216,130 Ibs

P3 : 28,876 + 135,806

P3 : 1{14,682 lbs

Therefore, the critical load is Pl - 2{;,606 pounds.



Sccti_n C1.5. t
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III Example Problem 3

c - centroid

G = 4 x 106 psi

J = 073

L = 60 in.

s - shear center

I "= 38,4 in 6

A = 2.1 in, 2

I = 6 05 in. 4
XX

ly = 22.5 ino4

E = 10 5 x 106 psi

Find the critical load applied nt point c (centr()id)

normal to plane n-n (refer to Section (',1.5.2-1II).

the x axis the critical load is

with prescribed deflection

l:,,r ]':ulcr I,uckling :_bout

?r2EI
x 7r210.5 x 10c'(6.05)

P - 174,157 lbs
x _ 2 ( 60)2

The torsional buckling load is

_r2 (,
\ f -/ y

Py_ = I
o 2

--A - Yo
e h 2

Y

+ GJ

P
y_b 54.75 _ (2.74) 2 , (1.2) 2

2.1

10.5x10G(38.4) _1 0. 5xl 0_;(22.5) ( '2. 7,1- J. Z) _ 60 _ lx 101;( 0. 073)

P = 146,672 lbs
yo

Therefore, the critical load is P ( 146, (;72 II)s) and tiw m()de of failure is
y(1)

torsional buckling, assuming no local failures.
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2. 1 BUCKLING OF FLAT PLATES.

This section contains design information for predicting the buckling

of flat plates. Various geometrical shapes under several types of loading

common to aerospace structures are considered. In most cases the methods

presented may be used in either the elastic or plastic stress range. For

plates subjected to thermal gradients which may cause buckling, reference

should be made to Section D4. 0.2, "Thermal Buckling of Plates. "

2. 1. 1 UNSTIFFENED PLATES.

With few exceptions, plate critical stress equations take the

following form:

F = _?_ kTr2E 2
cr 12 (1 - _ 2) (1)

e

where the terms are defined as follows:

F
cr

buckling stress which includes the effects of plasticity

and cladding (psi)

plasticity reduction factor

cladding reduction factor

k buckling coefficient

E Young's Modulus (elasticity) (psi)

e
elastic Poissonts ratio
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t plate thickness (in.)

b dimension of plate (usually short dimension, in. )

The buckling constant, k, depends only on the plate dimensions,

excluding its thickness, and upon the condition of support at the edges. For

the material, temperature, and stress level used, the proper values of E,

v e, _7, and _ must be substituted into the equation above.

Buckling curves are used to find values of the buckling coefficient,

k, for numerous loading conditions and various boundary conditions. By

knowing only the plate aspect ratio, a/b, values of k can be read directly.

The wavelength of the buckled surface is an important factor in

establishing the critical buckling stress. A plate will buckle into a "natural"

wavelength corresponding to a minimum load. This principle has been

applied to advantage in structures to increase the efficiency of the flat sheet.

That is, if by any structural means the natural wavelength of buckling can be

prevented, the plate will carry more load.

I. Plasticity Reduction Factor

A tremendous amount of theoretical and experimental work has been

done relative to the value of the so-called plasticity correction factor. Pos-

sibly the first values used by design engineers were 7? = Et/E or q = E /E.sec

Whatever the expressi.on for r/, it must involve a measure of the stiffness of

the material in the inelastic stress range; and, since the stress-strain rela-

tion in the plastic range is nonlinear, a resort must be made to the



stress-strain curve to obtain a plasticity correction factor.
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This complica-

tion is greatly simplified by using the Ramberg and Osgood equations for the

stress-strain curve which involves three simple parameters:

where n = 1 + 10ge(17/7)/log e (F0.?/F0.85), and the terms are defined as

secant yield stress taken as the intersection of the curve

and a slope 0.7E drawn from origin

n a parameter which describes the shape of the stress-strain

curve on the yield region

F0. 85 stress at the intersection of the curve by a line of slope of

0. 85E through the origin

Reference 1 gives values for F0. 7 , F0.85, and many flight vehicle

materials; some of these are given in Table C2-1.

There is usally a maximum, or "cutoff" stress, above which it i_

considered unsafe to stress the material. The value of this cutoff stress

differs with the type of loading, and may vary according to the design criteria

established for each design. Suggested values of the cutoff stress are pre-

sented in Table C2-2. A check should be made to ensure that the buckling

stress is equal to, or less than, the cutoffstress.

With the use of the Ramberg-Osgood parameters, plasticityreduc-

tion factors will be given for various types of loading in the paragraphs

which follows.

n

F0.7 F0.?

follows:

F0.7



Section C2

1 May 1971

Page 4

II. Cladding Reduction Factors

Aluminum alloy sheets are available with a thin covering of practi-

cally pure aluminum and is widely used in aircraft structures. Such material

is referred to as alclad or clad aluminum alloy. The mechanical strength

properties of this clad material is considerably lower than the core material.

Since the clad is located at the extreme fibers of the alclad sheet, it is

located where the strains attain their value when buckling takes place.

Figure C2-I shows the makeup of an alclad sheet and Fig. C2-2 shows the

stress-strain curves for cladding, core, and combinations. Thus, a further

correction must be made for alelad sheets because of the lower strength

clad covering material. Reference I gives simplified cladding reduction

factors as summarized in Table C2-3.

2. 1.1.1 Rectangular Plates.

Rectangular plates subjected to loads which cause instability con-

stitute one of the major elements encountered in the structural design of

space vehicles. Rectangular plate simulation occurs in such areas as beam

webs, panels, and flanges.

I. Compressive Buckling

Figure C2-3 shows the change in buckled shape of rectangular plates

as the boundary conditions are changed on the unloaded edges from free to

restrained. In Fig. C2-3(a) the sides are free; thus, the plate acts as a
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column. In Fig. C2-3(b) oneside is restrained and the other side is free;

sucha restrained plate is referred to as a flange. In Fig. C2-3(c) both

sides are restrained; this restrained element is referred to as a plate.

Critical compressive stress for buckling of plate columns (free at

two unloadededges) canbe obtainedfrom Fig. C2-4. As canbe seenfrom

this figure, a transition occurs with changing b/L_ values as evidencedby

the varying value of ¢ betweenthe limits (1 - Ve2) < _ < 1. The increased

load-carrying capacity of a wide plate column, ¢ = 1, is due to antielastic

bending effects in the plate at buckling. For narrow columns, ¢ = 1 - v 2,
e

the equation reduces to the Euler equation.

Figure C2-5 gives curves for finding the buckling coefficient, k,

to use in equation (1) for various boundary, or edge, conditions and a/b

ratio of the plate. The letter C on an edge means clamped or fixed against

rotation. The letter F means a free edge and SS means simply supported

or hinged. From these curves it can be seen that for long plates, (a/b) > 4,

the effect of the loaded edge support condition is negligible.

The buckling of a rectangular plate compressed by two equal and

opposite forces located at the midpoint of its long side (Fig. C2-6) is given

in Reference 2. For simply supported sides, the following equation is true:

P - (3)
cr 2b ___fl

7rfl 2

tanh _ - c°sh 2 -7-Trfl
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4_D
P = (4)

cr b "

If the long sides of the plate are clamped, the solution reduces to

8_TD
P = (5)

cr b

Figure C2-7 shows curves for k for various degrees of
C

restraint (#) along the sides of the sheet panel, where # is the ratio of

rotational rigidity of the plate. Figure C2-8 shows curves for k for a
C

flange that has one edge free and the other with various degrees of edge

re straint.

Figure C2-9 gives the k factor for a long sheet panel with two
c

extremes of edge stiffener, namely a zee-stiffener which is a torsionally

weak stiffener and a hat section which is a closed section and, therefore,

a relatively strong stiffener torsionally.

To account for buckling in the inelastic range, one must obtain

the plasticity reduction factor. By using the Ramberg-Osgood parameters of

Paragraph 2. 1. 1 along with Figs. C2-i0 and C2-i i, one can find the

compression buckling stress for flat plates with various boundary conditions.

Cladding reduction factors should be obtained from Paragraph 2. 1.1.
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The critical elastic shear buckling stress for flat plates with

various boundary conditions is given by the following equation:

where

_2k E

s \ol ((_)
cr 12(l-v 2)

e

shear.

plate aspect ratio

b is always the shorter dimension of the plate, as all edges carry

The shear buckling coefficient, k s, is plotted as a function of the

a/b in Fig. C2-12 for simply supported edges and

clamped edges.

It is interesting to note that a long rectangular plate subjected to

pure shear produces internal compressive stresses on planes at 45 degrees

with the plate edges. Thus, these compressive stresses cause the long panel

to buckle in patterns at an angle to the plate edges as illustrated in Fig. C2-13;

the buckle patterns have a half-wave length of 1.25 b.

Shear buckling of rectangular plates with mixed boundary condi-

tions has been investigated by Cook and Rockey [ 3]. The results are

tabulated in Table C2-4.

If buckling occurs at a stress above the proportional limit stress,

a plasticity correction factor should be included in equation (6). This

factor can be taken as _?s = Gs/G where G is the shear modulus and G s

the shear secant modulus as obtained from a shear stress-strain diagram
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for the material. Also, Fig. C2-14 canbe used for panels with edgerota-

tional restraint if the values of (70.7 and n are known.

III. Bending Buckling

The critical elastic bending buckling stress for flat plates is

Fb - 12(1-u 2} (7)
cr e

When a plate buckles in bending, it involves relatively short wavelength

buckles equal to (2/3)b for tong plates with simply supported edges

(Fig. C2-15). Thus, the smaller buckle patterns cause the buckling coeffi-

cient k b to be larger than kc or k.s

Figure C2-16 gives the critical stress coefficients for a plate in

bending in the plane of the plate with all edges simply supported. Figure

C2-17 gives the coefficients for the case when the plate tension side is simply

supported and the compression side is fixed. Figure C2-18 gives the

coefficients as a function of a/b for various degrees of edge rotational

restraint.

The plasticity reduction factor can be obtained from Fig. C2-10

using simply supported edges.

IV. Buckling Under Combined Loads

Practical design of plates usually involves a combined load system.

The buckling strength of plates under combined loads will be determined by

use of interaction equations.
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The interaction equation that is accepted for combined bending

and longitudinal compression is

Rbl. 75 + R = 1.0 (8)C

This equation is plotted in Fig. C2-19. Also shown are curves

for various margin-of-safety (M. S. ) values.

B. Combined Bending and Shear

The interaction equation for combined bending and shear is

Rb2 + Rs2 : 1.0 , (9)

and the expression for margin of safety is

1
M.S. = - 1 (10)

J ltb2 + R 2S

Figure C2-20 is a plot of equation (9). Curves showing various

M.S. values are also shown. R is the stress ratio due to torsional shear
s

stress and R is the stress ratio for transverse or flexural shear stress.
S

C. Combined Shear and Longitudinal Direct Stress (Tension or

Compression)

The interaction equation for this combination of loads is

RL + R2 = 1.0
S

(11)

and the expression for margin of safety is

2
M.S. =

(RL + JRL 2+4R 2)s

-1 . (12)
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Figure C2-21 is a plot of equation (11). If the direct stress is

tension, it is included on the figure as negative compression using the com-

pression allowable.

D. Combined Compression, Bending, and Shear

The conditions for buckling under combined compression,

bending, and shear are represented by the interaction curves of Fig. C2-22.

This figure tells whether or not the plate will buckle but will not give the

margin of safety. Given the ratios Rc,

R curve defined by the given value of
C

Rs, and Rb: If the value of the

Rb and R is greater numericallyS

than the given value of R c, then the panel will buckle.

The margin of safety of elastically buckled flat plates may be

determined from Fig. C2-23. The dashed lines indicate a typical application

where Rc = 0. 161, Rs. "= 0.23, and Rb = 0. 38. Point 1 is the first determined

for the specific value of Rs and R b. The dashed diagonal line from the

origin 0 through point 1, intersecting the related Rc/Rs curve at point 2,

yields the allowable shear and bending stresses for the desired margin of

safety calculations, iNote: When R is less than R use the right half
C S

of the figure; in other cases use the left half. )

E. Combined Longitudinal Bending, Longitudinal Compression,

and Transverse Compression

A theoretical investigation by Noel [4] has been performed on

the buckling of simply supported fiat rectangular plates under critical
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combinations of longitudinal bending, longitudinal compression, and lateral

compression. Interaction curves for these loadings are presented in Fig. C2-24

for various plate aspect ratios. These curves can be used for the limiting

case of two loading conditions by setting one stress ratio equal to zero. The

results of the studies leading up to (and verified by) these curves indicate

that the reduction in the allowable bending stress due to the additon of lateral

compression is greatly magnified by the further addition of only a small

longitudinal compressive load.

F. Combined Bending, Shear, and Transverse Compression

Interaction surfaces for combined bending, shear, and trans-

verse compression have been established by Johnston and Buckert [ 5] for

infinitely long plates. The two types of support considered were simple

support along both long edges, and simple support along the tension (due to

bending) edge with clamping along the compression (due to bending) edge.

The resulting curves are shown in Fig. C2-25 and C2-26.

In the case of transverse compression and shear acting alone,

Batdort and Houbolt [ 6] examined longplates with edges elastically restrained.

It was found that an appreciable fraction of the critical'stress in pure shear

may be applied to the plate without any reduction in the transverse compres-

sive stress necessary to produce buckling. Batdorf and Stein [7] examined

simply supported plates of finite aspect ratio and found that the curve for

infinitely long plates required modification for finite aspect ratios. This

condition is shown in Fig. C2-27.
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Combined Longitudinal Compression, Transverse Compression,
and Shear

Johnson [ 8] has examined critical combinations of longitudinal

compression, transverse compression, and shear for simply supported flat

rectangular plates. The calculated data are presented graphically in

Figs. C2-28 through C2-32. To make use of these curves, the following

procedure must be observed:

1. Calculate the ratios x-k/ks = Nx/N s and ky/ks = Ny/Ns"

2. On the curve corresponding to the plate a/b, lay off a

straight line from the origin of k/k s .

3. At the intersection of this line and the curve corresponding

to theyk/k s ratio of step 1, read k and/or k .y s

4. Determine required plate thickness from

k _2E
x t3

N = {f ) (t) =

x x appl. 12(1 - v 2) b 2
e

or

where

(N) B (N) B (N) B

x appl. Y appl. s apph
t3 = _- =
req'd, k k k

x y s

B

12(1 - v 2) b 2
e

_.2E

If desired, the value of k may be determined from k and k /k .
y s y s
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Assuming that the loads

increase at the same rate and are therefore in the same proportion to each

other at all load levels, the margin of safety based on load is given by

M, S, (N) (t )3= cr -1 = -1

Nappl. treq'd.

where t d is the design thickness. Margin of safety based on stress is

given by

M.S. ttd)21\fappl1 tr ,d
EXAMPLE :

Consider a simply supported plate with a = 10 in., b = 5 in. ,

t = 0.051in., E_ = 0.30, E = l0 Tlb/in.2, N = 1001b/in., N = 321b/in.,
e x y

and N = 80 lb/in. Determine the margin of safety.
S

Calculate the stress ratios and load ratios:

ky/k s = Ny/N s = 32/80= 0.4

kx/k s = Nx/N s = i00/80 = 1.25

On Fig. C2-33, the interaction curves for a/b = 2, lay off a line

from the origin of slope k /k = 1.25. The intersection of this line with the
x S

curve k/k s = 0.4 determines the critical buckling coefficients for three

loads. From Fig. C2-33, the following values are obtained:

kx = 2.5 , ks = 2.0 , and ky/k s = 0.4 ;

therefore, k = 0. 8.
_- y
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To determine the plate thickness required to sustain these loads,

any one of the three buckling coefficients determined may be used. Using kx,

the following value is obtained:

1/3

X Ve 2)

treq'd. = k 7r2E
X

= 0.048 in.

Since the actual design thickness is 0. 051 in., the margin of safety

based on stress is

M, Si t°l (- 1 = 0. 051_2

tr_q,d. 0. 048 /

The margin of safety based on load is

M.S. = ( td _3 _ I = +0.1995
treq'd. ]

- 1 = +0. 1289.

H, Combined Shear and Nonuniform Longitudinal Compression

Bieich [ 9] presents a solution for buckling of a plate subjected

to combined shear and nonuniform longitudinal compression as shown in

Fig. C2-33. The critical buckling coefficient is for

where

4)o_>- 1: k = 3.855'2fl - 1.0+ 1+ (13)

4
. 5.34+

_?= 7.7 ;

-j



where

j ( J1-<o_-< 1: k = 3.85T2fl fl2+3 -1+ 1+--
2 \ 72fl 2
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(14)

5.34
4-

_2

T =
7.7+33 (i-_) 3

V. Special Cases

A. EfficientlyTapered Plate

When a tapered plate has attained the state of unstable equili-

brium, instabilityis characterized by deflections out of the plane of the plate

in one region only.. The other portions of the plate remain essentially free

of such deflections. This condition of instability constitutes an inefficient

design, since the same loading distribution presumably could be sustained

by a lighter plate tapered in such a manner that instability under the specified

loading will be characterized by deflections throughout the entire plate. For

this reason Pines and Gerard [ 10] have examined an exponentially tapered

simply supported plate subjected to compressive loads as shown in

Fig. C2-34. The load variation along the plate was assumed to be produced

by shear stresses small enough to have negligible influence upon the buckling

characteristics of the plate. The resulting buckling coefficient versus the

plate aspect ratio is plotted in Fig. C2-34 for various amounts of plate taper.
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B. Compressed Plate with Variable Loading

The problem of determining the buckling stress of an axially

compressed fiat rectangular plate was investigated by Libove, Ferdman, and

Reusch [ 11 ] for a simply supported plate with constant thickness and a linear

axial load gradient. The curves appearing in Fig. C2-35 depict their results.

(Long plates will buckle at the end where the maximum load is applied. )

C. Elastic Foundation

Seide [ 12] has obtained a solution for the problem of the com-

pressive buckling of infintely long, flat, simply supported plates resting on an

elastic foundation. It is shown that the effect of nonattachment of the plate

and foundation reduces drastically the buckling load of the plate as compared

to a plate with attached foundation.

2. 1.1.2 Parallelogram Plates.

Parallelogram plates may exist in beam webs or in an oblique panel

pattern. The technology of analysis with respect to such plates is not very

well developed. However, several solutions are available which present

buckling coefficients for some basic loading conditions and boundary conditions.

I. Compression

Wittrick [ 13] has examined the buckling stress of a parallelogram

plate with clamped edges for the case of uniform compression in one direction.

Results in the form of buckling curves are shown in Fig. C2-36. Comparison

of these curves with those for rectangular plates shows that for compressive
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loads, parallelogram plates are move efficient than equivalent area rectangular

plates of the same length. References 14and 15contain solutions for simply

supportedparallelogram plates subjected to longitudinal compression.

A stability analysis of a continuous flat sheetdivided by nondeflect-

ing supports into parallelogram-shaped areas (Fig. C2-37} under compressive

loads has beenperformed by Anderson [ 16]. The results show that, over a

wide range of panel aspect ratios, suchpanels are decidedly more stable

than equivalent rectangular panels of the samearea. Buckling coefficients

are plotted in Fig. C2-37 for both transverse compression and longitudinal

compression. An interaction curve for equal-sided skewpanels is shownin

Fig. C2-38.

Listed in Table C2-5 is a completion of critical plate buckling

parameters obtained by Durvasula [17].

II. Shear

The buckling stress of a parallelogram with clamped edgessubjected

to shear loads has also been investigated by Wittrick [ 18]. It is worth noting

that the shear loads are applied in sucha manner that every infinitesimal

rectangular element is in a state of pure shear. For such a condition to exist,

the plate must be loaded as shownin Fig. C2-39. To signify this condition,

the shear stresses are drawn along the y-axis in Fig. C2-40. As might

be expected, unlike a rectangular plate it was found that a reversal of the
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direction of the shear load causes a change in its criticalvalue. The lower

shear stress value occurs when the shear is tending to increase the obliquity

of the plate.

The smaller criticalshear stress values are plotted in Fig. C2-40.

Table C2-5 presents criticalshear stress parameters for both directions of

shear for several plate geometries.

2. i.I.3 TrianBular Plates.

Several investigationshave been performed on triangular plates.

Cox and Klein [19] analyzed buckling for normal stress alone in isosceles

triangles of any vertex angle. The results are shown in Fig. C2-41. The

buckling of a right-angled isosceles triangular plate subjected to shear along

the two perpendicular edges together with uniform compression in all direc-

tions has been considered by Wittrick [20-23]. Four combinations of

boundary conditions were considered, and the buckle is assumed to be

symmetrical about the bisector for the right angle. Figure C2-42 depicts the

interaction curve in terms of shear and compressive stresses. In the limit-

ing cases, these results agree with those of Cox and Klein. In Wittrick's

study itwas shown that for a plate subjected to shear only, the criticalstress

Is changed considerably upon reversal of the shear. Because of this, the

interaction curve is unsymmetrical 'andthe criticalcompressive stress can

be appreciably increased by the application of a suitable amount of shear.
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2. 1. 1.4 Trapezoidal Plates.

Klein [24] has determined the elastic buckling loads of simply sup-

ported flat plates of isosceles trapezoidal planform loaded in compression

along the parallel edges. Shear loads are assumed to act along the sloping

edges so that any ratio of axial loads may act along the parallel edges of the

given plate. A collocation method was used to obtain his results. The deflec-

tion function assumed does not satisfy the boundary condition for moment

along the sloping edges. However, the results are accurate enough for

practical purposes. {His results appear to be more incorrect for long plates

where the sides comprise a large percent of the plate edges.) Buckling curves

obtained are shown in Fig. C2-43 and C2-44.

Pope [25] has analyzed the buckling of a plate of constant thickness

tapered symmetrically in plaaform and subjected to uniform compressive

loading on the parallel ends. Two cases are considered:

1. Different uniform stresses applied normal to the ends, equili-

brium being maintained by shear flows along the sides {Figs. C2-45 through

C2-56).

2. Equal uniform stresses applied to the ends, with displacement

of the sides prevented normal to the direction of taper {Figs. C2-57 through

C2-60).

Boundary conditions are such that opposite pairs of edges are either simply

supported or clamped. Pope has used a more rigorous analysis than Klein;
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and for comparable plates, Pope's results (which represent an upper bound)

are more correct and will give buckling values lower than Klein's. However,

the range of applicabilityof Pope's curves is limited to taper angles, 0, of

less than 15 degrees.

2.i.I.5 Circular Plates.

The buckling values of circular plates subjected to radial com-

pressive loads (Fig. C2-61) have been investigated [2].

Ithas been shown thatthe criticalbuckling stress for a circular

plate with clamped edges as shown in Fig. C2-61 is

14. 68 D
f - (15)
r a2t

cr

Similarly, for the case of a plate with a simply supported edge, the

critical stress is

4.20D
f - (16)
r a2t

cr

The case of a circular plate subjected to unidirectional compression

with clamped edges has been investigated [ 26] and found to be

32 D
N = (17)

O a 2

Circular plates with a cutout center hole of radius, b, subjected

to radial compressive forces have also been investigated. The critical buck-

ling stress for these plates is



kD
f -

r
cr a2t

where the values of k

2.1.2
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(18)

are given in Fig. C2-62.

STIFFENED PLATES.

Critical values of load for plate buckling are dependent upon the

flexural rigidity of the plate. The stability of the plate can be increased by

increasing its thickness, but such a design will not be economical with respect

to the weight of material used. A more economical solution is obtained by

keeping the thickness of the plate as small as possible and increasing the

stability by introducing reinforcing ribs. For rectangular plates with longi-

tudinal stiffeners, the stiffeners not only carry a portion of the compressive

load but subdivide the plate into smaller panels, thus considerably increasing

the critical stress at which the plate will buckle.

Stability analysis of flat, stiffened plates should account for both

general and local modes of instability. The general mode of instability is

characterized by deflection of the stiffeners while, for local instability,

buckling occurs with nodes along (or nearly along) the stiffener-skin

juncture. Some coupling between these, two modes exists, but this effect is

usually small, and, therefore, neglected. The local instability of convention-

ally stiffened plates and integrally stiffened plates is presented in Section C4,

"Local Buckling of Stiffen.ed Plates. "
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This section is concerned with the critical buckling load of the

plate. It should be emphasized, however, that the problem of finding the

ultimate load is distinctly different from that of finding the buckling load, and

the two must not be confused. Ultimate loads of sheet-stringer combinations

should be calculated using Section C1.

2. 1.2. 1 Conventionally Stiffened Plates in Compression.

Buckling resulting from genera[ instability of a conventionally

stiffened plate may be determined from the general equation

k 7r2E 2

cF
cr 12(1 -u 2) (19)

In this case, k is a function of several of the parameters of the stiffened

plate and t is the thickness of the skin. Design tables and charts will be

presented for the evaluation of k for both the case where the stiffeners are

parallel to the load and the case where the stiffeners are perpendicular to

Stiffehers Parallel to Load

A. Simply Supported Plate with One Stiffener or Centerline

Consider a rectangular plate of length a, width b, and thick-

ness t, which is reinforced by a longitudinal stiffener on the centerline

(Fig. C2-63). The area of the cross section of the stiffener is A, and its

moment of inertia is I, taken with respect to the axis coinciding with the



outer surface of the flange.
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The torsional rigidity of the stiffener is regarded

as small and will be neglected. Also, the following notation is used:

EI 12(1 - v 2) I

Db b t3
(2O)

A
5 - -- (21)

bt

The coefficient 7 is the ratio of the flexural rigidity of the stiffener to that

of the plate of width b, and 6 is the ratio of the cross-sectional area of the

stiffener to the area bt of the plate.

If the stiffener remains straight the buckling mode is antisymmetric

as shown in Fig. C2-63(c). This antisymmetric displacement form will occur

when the rigidity ratio 7 is larger than a certain value 7o. For values of 5'

below 7 o, the symmetric displacement form in which the stiffener deflects

with the plate will occur.

possible.

At the ratio T° both configurations are equally

Bleich [ 9] has derived the following formula for

To 11.4_ + (1.25+165)_2 5.4_a-

where a = a/b

"YO:

(22)

and 0 -< 6 < 0.20. Using this, the required moment of

inertia, I , to keep the stiffener straight is
O

I = 0.092bt 3 7 °O
(23)
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Timoshenko [ 2] gives values of k to be used in equation (19) for

various parameters, c_, 5, and % These results are given in Table C2-6.

The values of k above the horizontal lines in Table C2-6 indicate those

proportions of the stiffener and plate for which the stiffener remains straight

when the plate buckles.

B. Simply Supported Plates Having One Stiffener Eccentrically
Located

Bleich [ 9] obtains solutions for a rectangular plate stiffened with

one eccentrically located stiffener as shown in Fig. C2-64. For the particular

case of bi/b = 1/3, he determines a value for the moment of inertia of the

stiffener required to remain undeflected during buckling. It is

I = 1.85bt 3+0.4At 2 (c_ -< 1) . (24)

Also, with this (or greater) value of I, the critical buckling coefficient, k,

is equal to 10. 42.

C. Simply Supported Plates Having Two Equidistant Stiffeners

For the case of two stiffeners subdividing the plate into three

equal panels, Timoshenko has obtained values for the coefficient k; these are

given in Table C2-7 for various values of the parameters, _, 5, and %

Bleich has obtained formulas for values of stiffener rigidity necessary for

the stiffener to remain undeflected during buckling. They are

_o = 96 + 6105 + 97552 (25)
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I = 0. 092 bt 3 To , (26)
o

with the critical stress for the plate given by

2

Fcr = 32.5 E /b ) (27}

D. Plates Having More Than Two Stiffeners

When the number of stiffeners is equal to or greater than three,

the stiffened plate can be treated as an orthotropic plate. This results in the

following equation for the compression buckling coefficient:

2

k =

Ii N-I

+ N

Az

I

s 1+ 0.88A
-- -bD- bt

i/2

+ 1

(28)

where the terms are defined as follows:

N

A

I
S

z

D

b

number of bays

area of stiffener cross section

bending moment of inertia of stiffener cross section taken

about the stiffener centroidal axis

distance from midsurface of skin to stiffener centroidal axis

flexural rigidity of skin per inch of width, E t3/12( 1 - v z)

spacing of stiffeners
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II. Stiffeners Transverse to Load

Timoshenko [ 2] has studied plates with stiffeners transverse to the

applied load. He has obtained several limiting values of T at which the

stiffener remains straight during buckling of the plate. These values are

given in Table C2-8 for various values of a for one, two, and three trans-

verse stiffeners.

For the case of a large number of equal and equidistant stiffeners,

the plate is considered to have two different flexural rigidities in the two

perpendicular directions. The critical stress is given as

F
er

where

D 1 =

D 2 --

D 3 =

2(GI)

2.1.2.2

2 7r2

b2 t ( _]D1D 2 + D 3 ) (29)

(EI) /(1 - v p ), flexural rigidity in longitudinal direction;
x x y

(EI)y/(1 - Px py )' flexural rigidity in transverse direction;

1/2(v D 2+ p D1) + 2(GI} ; andx y xy

is the average torsional rigidity.
xy

Conventionally Stiffened Plates in Shear.

The simple cases of simply supported rectangular plates with one

and two stiffeners have been investigated by Timoshenko. Tables C2-9 and

C2-10 give the limiting values of the ratio T in the case of one stiffener

and two stiffeners, respectively.
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Additional analysis of stiffened plates in shear is given in Section

C4. 4. 0 and in Section B4. 8. 1.

2. 1.2. 3 Conventionally Stiffened Plates in Bending.

The case of a rectangular plate reinforced with a longitudinal

stiffener under bending load is common in the design of webs for shear beams.

For this case, reference should be made to Section B4. 8. 1.1.

2. 1.2.4 Plates Stiffened With Corrugations in Compression.

A method is presented below for the analysis of corrugated plates

subjected to a compressive load applied parallel to the corrugations. Both

general and local instability modes of failure are treated. General instability

results in complete failure of a corrugated plate, since the corrugations are

unable to develop post-buckling strength. In the case of local instability,

however, the corrugations can usually develop some post-buckling strength.

However, it is recommended that the lower compression buckling stress

calculated for these two modes of failure be considered ultimate. It is

assumed that the corrugated edges are supported in such a manner that the

load is uniformly applied along these edges. All edges are assumed to be

simply supported.

The compression buckling stress for the general instability mode

of failure may be found by orthotropic plate analysis to be

k 7r2E 2

o c It)F = 77 (30)cr 12 ( 1 - _2) a



wherek ,1 12I= -- + 2v+2 +
o t3L

other terms are defined as follows:

E
C

modulus of elasticity in compression
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(b)21 } and

a length of the loaded edge of the plate

b plate dimension in the direction parallel to the load

d centerline to centerline spacing of corrugations

L developed length per width d

I moment of inertia of width d about neutral axis

When the plate aspect ratio a/b is greater than approximately

1/3, the computations above may be simplified since the corrugated plate

behaves approximately as a wide column. For these cases, the following

equation applies:

_2 E I
C

Fc = _? Lt b2 (31)

The compression buckling stress for the local instability mode of

failure may be found from the following equation when the corrugation is

composed of flat elements:

k _r2E

o cF = V (32)
e 12 ( 1 - u2)

cr
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where k represents simply supported edge conditions and is taken fromc

Fig. C2-5, t is the thickness of the plate, and b is the width of the widest

flat plate element of the corrugation form. The latter dimension may best

be described by presenting some typical examples such as those shown in

Fig. C2-65.

In the case of Fig. C2-65(d), the compression buckling stress for

local instability should be based on the buckling of an axially load cylinder

of radius R (see Section C3. 1).

2. 1. 2.5 Plates Stiffened With Corrugations in Shear.

Plates stiffened with corrugations may provide a structural weight

advantage for light shear loading conditions. Both local and general instability

modes of failure are treated in the following methods of analysis. It is

assumed in these methods that support for the corrugated edges of the plate

is such that the unbuckled form of the corrugation cannot be distorted. This

conditidn means that in the unbuckled state an externally applied shearing

force will produce only shearing stresses in the corrugated plate (i. e., no

bending or torsion). In practice, this condition may be met by welding or

brazing, or by rigorous mechanical joining of the corrugated plate to, for

instance, a spar cap on the inner surface of a wing skin.

General instability results in the complete failure of the corrugated

plate because the corrugations are unable to redistribute stresses in this

mode for the development of post-buckling stress. In contrast, local
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instablility of the corrugations does not necessily mean failure, since some

post-buckling strength can be developed for that case. It is recommended,

however, that the lower shear buckling stress calculated here for these two

modes of failure be considered ultimate.

The shear buckling stress for the general instability mode of

failure is from Reference 1:

4

F s = T/ 4.._k _/Dl(D2) 3 when H> 1 (33)
cr b2t

4k _r D2 D3 when H < 1 (34)F = _/--
s b2t

er

where D 1 and D 2 are the flexural stiffnesses of the plate in the x and y

directions, respectively; D3 is a function of the torsional rigidity of the plate,

and H is equal to _]-D1D2/Da. The values for k are taken from Fig. C2-66

or C2-67.

For general instability analysis, the optimum orientation of the

corrugations for a reversible shear flow is parallel to the short side of the

plate. For this orientation, the plate flexural stiffnesses may be expressed

as follows:

E t3d
C

D1 = 12L (35)

E I
-- C

D2 d (36)
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E t3L
C

D3 = uDl+ 12d (37)

The shear buckling stress for the local instability mode of failure

may be found from the following equation when the corrugation form is com-

posed of flat elements:

k ?r2E 2

s c (b)F = _ (38)
s 12 (1 p2)cr

Here k represents simply supported edge conditions and is taken
s

from Fig. C2-5. The latterdimension may best be described by referring

to some typical examples such as those presented in Fig. C2-65. In the case

of Fig. C2-G5 (d}, the shear buckling stress for local instability should be

based on the torsional buckling of a cylinder of radius R (see Section C3. 1).

2. 1.2.6 Sandwich Plates.

Procedures for the design and analysis of sandwich plates can be

found in Reference 27 which contains the latest information in structural

sandwich technology. It contains many formulas and charts necessary to

select and check designs and its use is quite widespread in the aerospace

industry.

2.1.2.7 Plates of Composite Material.

The buckling of plates constructed of composite materials is pre-

sented in Section F and in Reference 28.
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2. 2 CURVED PLATES. •

Design information is presented in this section for the prediction

of buckling in plates of single curvature which are both stiffened and unstiffened.

2. 2. 1 UNSTIFFENED CURVED PLATES.

2.2. 1.1 Compression Buckling.

The bermvior of curved plates uniformly compressed along their

curved edges is similar in many respects to that of a circular cylinder under

axial compression (e. g., both buckle at stresses considerably below the

predictions of small deflection theory, and it is necessary to resort to

semi-empirical methods to show agreement with the available test results).

It is recommended that the methods for predicting buckling of

axially compressed monocoque cylinders (Section C3. 1.1) be used to predict

buckling of curved plates.

2. 2. 1.2 Shear Buckling.

Critical shear buckling stresses for curved plates are calculated

by the following formula:

k rl 7r2E
S

F -
s 12(1 v 2)cr

e

where k is determined from Fig. C2-68, and T/=
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Information is presented in the following paragraphs for stiffened

plates of single curvature in compression where the stiffening members are

either axial or circumferential. In these considerations, both the local and

general modes of instability must be considered.

2. 2. 2. 1 Curved Plates With Axial Stiffeners.

A method for predicting buckling of simply supported curved plates

with a single central axial stiffener has been developed in Reference 29. This

method is similar to that presented in Paragraph 2. 1.2. 1 for stiffened flat

plates in compression, in that the same basic equation is used in conjunction

with specified buckling coefficients. However, in the present case, the

buckling coefficients for the local and the general modes of instability are

shown on the same chart. Figures C2-69a through C2-69d present these

coefficients, which may be used with the following equation to predict buckling

when Zb -_ O. 25:

k 7r2E 2

: c (40)
c 12(1 - v 2)

cr e

This equation may also be written as

k 7r2E

F = c (41)

c jcr 12 l-u 2
e



where Zb is the plate curvature parameter,

radius of curvature; and b

plate.
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R-'_- 1 - v 2 . R is the platee '

is the half-width of the loaded (curved) edge of

Figures C2-69a through C2-69d yield buckling coefficients as a

function of Zb, A/bt, and ELs/bD for values of the ratio a/b equal to

4/3, 2, 3, and 4, respectively, where terms are defined as follows:

• I bending moment of inertia of the stiffener cross section taken
s

about the stiffener centroidal axis

D flexural stiffness of the plate per inch of width, Et3/12( 1- v 2)
e

a length of plate

The sloping portions of the curves to the left in each of the charts

of Figs. C2-69a through C2-69d represent designs wherein the general mode

of instability is critical. Local instability is represented by the horizontal

lines to the right in each chart. The intersection of these curves represents

efficient design, since less moment-of-inertia in the stiffener induces general

instability and a lowering of the buckling stress, while more moment-of-

inertia in the stiffener has no effect on the buckling stress of the stiffened

plate.

Although not specifically shown in Fig. C2-69a through C2-69d,

the increase in the curved-plate buckling stress, due to the addition of a

central axial stiffener, is negligible when Zb > 2.5. Thus, plates with a
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large degree of curvature are not benefited by stiffening with a central axial

member. In this case, buckling stress should be determined by the techniques

in Section C3. 1.1.

Also, the methods cited above should not be applied with two or more

axial stiffeners, since the stiffener geometrical requirements needed to

satisfy the general mode of instability are sensitive to the number of stiffeners

when the number is small. With multiple stiffeners, the methods described

for orthotropic cylinders in Section C3. 1.2 should be used.

2.2. 2.2 Curved Plates With Circumferential Stiffeners.

Curved plates stiffened with a single central circumferential

stiffener have been considered by Batdorf and Schildcrout [ 30]. They deter-

mined analytically that the addition of a single central circumferential stiffener

increases the buckling stress of a curved plate but only within a rather restricted

range of plate geometries. This range is a function of both the ratio a/b

(where a is the half-length of the plate,

edge) and the geometric parameter Z b.

b is the width of the curved, loaded

For the buckling stress of the

curved plate to increase with the addition of a single central circumferential

stiffener, a/b must be 0.6 or less. The parameter Zb imposes further

restrictions as a function of a/b which are shown in Fig. C2-70. For a

given value of a/b, Zb for the design must be equal to or smaller than that

value read from the chart. If Z b for the design is larger than the value read

from the chart, no gain in the buckling stress results from the addition of the

stiffener to the curved plate.
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Small deflection theory was used in Reference 30 to predict the

buckling stress of curved plates with circumferential stiffeners. Consequently,

the results are presented in terms of a gain factor which indicates the gain

in buckling stress for a stiffened curved plate over an unstiffened curved plate,

where the gain is based on theoretical predictions of the buckling stress for

both configurations. The information presented here, therefore, may be

applied by multiplying the gain factor by the buckling stress for an unstiffened

curved plate of the same overall dimensions by methods given in Paragraph

2.2.1.1.

Maximum gain factors are presented as a function of a/b and Zb

in Fig. C2-71. The term "maximum" implies that the stiffener has sufficient

bending rigidity to enforce a buckle node at the stiffener line.

The required stiffener bending rigidity needed to enforce a buckle

node at the stiffener line is defined in Fig. C2-72 when the figure is entered

with a maximum gain factor obtained from Fig. C2-71.

Figure C2-72 may also be used to determine gain factors when an

existing stiffener has either more or less bending rigidity than that required

to enforce a node along the stiffener line. In this case, the same geometrical

limitations stipulated in Fig. C2-70 apply and must be observed. (Note that

the gain factors obtained here may not be maximum; therefore, the ordinate

of Fig. C2-72 is labeled to take this possibility into account. )
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After first referring to Fig. C2-70 to ascertain whether or not a

gain is indeed possible, find the gain factor (from Fig. C2-72) basedon the

properties of the existing stiffener. Now plot this gain factor on Fig. C2-71.

If the point is below and to the left of the a/b curve to which it relates, then

the gain factor is less than the maximum permissible and the bendingrigidity

of the stiffener is less than the minimum required. In this case, general

instability of the curved plate represents the critical mode, andbuckling

may be predicted using the gain factor obtainedfrom Fig. C2-70. Whenthe

point is aboveandto the right of the a/b curve in Fig. C2-71 to which it

relates, the contrary is true, and local instability of the curved plate repre-

sents the critical mode. In this case, buckling may be predicted using the

maximum gain factor obtained from the a/b, Zb intersection in Fig. C2-71.

The methodsof this section should not be applied to curved plates

with two or more circumferential stiffeners. The general instability stresses

predicted by the design charts are sensitive to the number of stiffeners when

their total number is small.

Section C3. 1.2.

2.2.3

In this case, recourse shouldbe had to

STIFFENED CURVEDPLATES IN SHEAR.

Methodsare presented in the following paragraphs for predicting

the buckling stress of plates of single curvature in shear having a single

stiffener in either the axial or circumferential direction. The methods

account for both the local and general modes of instability, and charts are
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given that present the buckling coefficient k versus EI/bD, where at lows

values of EI/bD the general mode of instability is critical. As EI/bD

increases, the local mode of instability becomes critical and is signified by

a constant value of k . Thus, to enforce a node at the stiffener the design
S

must have an EI/bD which falls on the horizontal portion of the design curve.

Note that the EI/bD value representing the extreme left point of the horizontal

line yields the most efficient design; local and general instability are both

critical here.

2. 2. 3. 1 Curved Plates With Axial Stiffeners.

The buckling stress for curved plates with a single, central

stiffener may be determined from the equation:

k _2E

c 12(1 , 2) \_ (42)
cr

e

where k is taken from Fig. C2-73, b is the overall dimension of the
S

curved plate, and t is the thickness of the curved plate. Figure C2-73(a)

applies when axial length is greater than circumferential width, and

Fig. C2-73(b) applies when axial length is less than circumferential width.

Note that in both cases, b is denoted the short overall dimension of the plate.

Curves are presented as a function of the aspect ratio of the plate, a/b,

as well as of the plate curvature parameter, Z b. Note also that the data of

Fig. C2-73 are based on small deflection theory and agree satisfactorily
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with experimental results except in the case of cylinders for which a 16percent

reduction is recommended.

The preceding method should not be extended to apply to curved

plates with multiple axial stiffeners. The bending rigidity required of each

stiffener to support general instability is sensitive to the total number of

stiffeners whenthis number is small.

2.2. 3.2 Curved Plates With Circumferential Stiffeners.

The buckling stress for curved plates stiffened circumferentially

with a single central stiffener may be determined from equation (42) with the

buckling coefficients, k , taken from Fig. C2-74. As in Fig. C2-73 for a
s

cylinder, a 16 percent reduction of the horizontal portions of the curves (the

portion signifying local instability) is recommended.

The data above should not be applied to curved plates with multiple

circumferential stiffeners for the reasons noted previously in

Paragraph 2. 2.3. 1.

2.2. 4 CURVED PLATES UNDER COMBINED LOADING.

Interaction relations for longitudinal compression combined with

normal pressure, shear combined with normal pressure, and longitudinal

compression combined with shear are presented in the following paragraphs

for unstiffened, curved plates. Interaction relations for stiffened, curved

plates are presently unavailable; however, techniques discussed in

Section C3. 1.2 may be used. The normal pressure in the first two cases is
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applied to the concaveface of the curved plate. The interaction relations

apply only to elastic stress conditions, since verification of their application

to plastic stress conditions is lacking at present.

2.2. 4. 1 Longitudinal Compression Plus Normal Pressure.

The interaction equation for longitudinal compression plus normal

pressure applied to the concave face of an unstiffened curved plate is

R 2 _ R = 1 (43)
c p

where R = Fc/F c and R = P/Pcr' where the following definitions apply:c p
cr

F
C

F
C
cr

Pcr

applied longitudinal compression stress

buckling stress of the curved plate where subjected to simple

axial compression, determined by the methods of Section 2. 2. 1. 1

absolute value of the applied normal pressure

absolute value of the external pressure which would buckle

the cylinder of which the plate is a section, determined by the

methods of Section C3. 1.1.5

Note that absolute values of the quantities p and Pcr are sub-

stituted into the interaction equation since their difference in sign is already

accounted for in the equation. It can be seen that normal pressure applied to

the concave face of the unstiffened, curved plate increases the axial compres-

sion load which may be carried by the plate prior to buckling.
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2. 2.4. 2 Shear Plus Normal Pressure.

When an unstiffened curved plate is subjected to shear combined

with normal pressure acting on the concave face of the plate, the following

interaction equation applies:

R 2-R = i (44)
s p

where R = Fs/F (F is applied shear stress and FS S S
cr cr

is buckling stress

of the curved plate when subjected to simple in-plane shear, determined by

the methods of Section 2. 2. 1.2), and R is as previously defined.
P

2.2. 4.3 Longitudinal Compression Plus Shear.

The interaction equation for an unstiffened curved plate subjected

to longitudinal compression and shear is

R + R 2 = 1 (45}
C S

where R and R are as defined in previous paragraphs. This relationship
C S

represents approximately an average curve through the available experimental

results while the lower bound of the test results may be represented by a

linear relation between R and R .
e s
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Cutoff Stresses for Buckling of Flat Unstiffened Plates

Cutoff Stress

Material

2024-T

2014-T

6061-T

Compression Buckling

Fcy )Fcy 1 + 200 000

Bending Buckling

Fcy )Fcy 1 + 200 000

Shear Buckling
F

cy

0.61

0.61

0.61

7075-T 1.075 F 1.075 F 0.61
cy cy

0.835 F
cy

0. 875 F
cy

18-8(1/2 H) a

(3/4 H)

(FH)

All Other

Materials

0.835 F
cy

0.875 F
cy

0.866 F
cy

F
cy

0.866 F
cy

F
cy

0.51

0.53

0.53

0.61

a. Cold-rolled, with grain, based on MIL-HDBK-5 properties.

Table C2-3. Summary of Simplified Cladding Reduction Factors

Loading

Short Plate Columns

Long Plate Columns

Compression and
Shear Panels

acl <_ <_cr pl

l+3f

l+3f

l+3flf
l+3f

cr pl

l+3f

l+3f

l+3f
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Shear Buckling Coefficients for Rectangular Plates

with Mixed Boundary Conditions

f

I_ a

fcr /r 2E /t\ 2

_---- ks --
12 (1 - Ve2)

NOTE: blSSMALLER DIMENSION ALWAYS

Edge

Conditions

Aspect Ratio

b/a

0

0.2

0. 333

0.5

0.667

0.80

0.90

1.00

Two Short Edges

Clamped, Two

Long Edges

Simply Supported

k
s

5.35

5.58

6.13

6.72

7.83

9.34

10.83

12. 60

One Short Edge

Clamped, Three

Edges Simply

Supported

k
s

5.35

5. 58

6.72

7.59

8.57

9.66

10.98

One Long Edge

Clamped, Three

Edges Simply

Supported

k
s

7.07

7.96

8.43

9.31

9.85

10.38

10.98
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Critical Plate Buckling Parameters for Parallelogram

Plates, all Edges Clamped

fya x

k k k
a/b _b x y s

0.5

0.6

0.75

1o0

1.25

1.50

2.0

0

15

30

45

60

0

15

30

45

60

0

15

30

45

6O

0

15

30

45

60

0

15

30

45

60

o

15

30

45

60

0

15

30

45

60

19.35

21.63

30.38

55.26

13o. 5

14.92

16.49

22.55

39.73

90. 50

11.70

12. 76

16,71

27, 06

60.59

10. 08

10. 87

13. 58

20.44

42. 14

9.25

9.92

12. 32

18.50

38.01

8.33

8.91

11.16

17.10

36.84

8.033

8.70

10.53

15.74

39.35

32.13

34.09

39.72

53,22

86.20

10.0_

10.43

11.76

15. 26

25.78

5.

6.

7.

10.

18.

4.

5.

6.

8.

17.

- 42.28

- 34.58

- 31.58

- 40.54

- 85.0

- 14.83

- 14. 39

- 16.66

- 24.08

- 46.58

78 - 11.56

151 - 12.01

271 - 14.05

10 - 20.21

54 - 40.24

838 - 10.57

132 - 10.84

208 - 13,34

938 - 19.24

08 - 39.38

+ 42. 28

+ 55.36

+ 76. 90

+ 128.3

531.5

14.83

17.24

23.64

32.56

69.86

11.56

12.73

15.19

22.37

45.83

t0.57

ll. lO

J3.73

20.35

44.40
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Table C2-8. Limiting Values of _/ For One, Two, and

Three Transverse Stiffeners

0.5 0.6 0.7 0.8

One Rib 12. 8 7.25 4. 42 2. 82

Two Ribs 65. 5 37.8 23. 7 15.8

Three Ribs 177 102 64. 4 43. 1
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i May 1971

Page 49

0.9 1.0 1.2

1.84

11.0

30. 2

1.19

7.94

21.9

0.435

4.43

12.6

0

2. 53

7.44

Table C2-9. Limiting Values of the Ratio T For Plate With One

Stiffener Under Shearing Stress

a/b 1 1.25

T = EI/Da 15 6.3

1.5 2

2.9 0.83

Table C2-10. Limiting Values of the Ratio _/ For Plate With

Two Stiffeners Under Shearing Stress

a/b 1.2

7 = EI/Da 22.6

1.5 2

10.7 3.53

2.5 3

1. 37 0.64
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(;core

°'cl CLADDING

FIGURE C2-2. STRESS-STRAIN CURVES FOR CLADDING, CORE,

AND "ALCAD" COMBINATIONS
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COLUMN

BUCKLED FORM

ORIGINAL FLAT STRIP(a) COLUMN

Y

(b) FLANGE

(c) PLATE

FIGURE C2-3. TRANSITION FROM COLUMN TO PLATE AS SUPPORTS ARE

ADDED ALONG UNLOADED EDGES (Note changes in

buckle configurations. )
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SHEAR-BUCKLING-STRESS COEFFICIENT OF PLATES
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FIGURE C2-60. BUCKLING STRESS DIAGRAM (Sides and ends clamped. No

displacement of the sides normal to the direction of taper.)
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Symbol

A ,A
s r

A,B

a

DEFINITION OF SYMBOLS

Definition

Stiffenerarea, and ring area, respectively

Lengths of semiaxes of ellipsoidalshells

Radius of curvature of circular toroidal-sheIl cross

section

B!

b

b
e

C,o

ij

c

D

D
q

Extensional stiffness of isotropic sandwich wall

Stiffener spacing; also, distance from center of

circular cross section of circular toroidal shell cross

section to axis of revolution

Effective width of skin between stiffeners

Coefficients of constitutive equations

Coupling constants for orthotropic cylinders

Coefficient of fixity in Euler column formula

3
Wall flexural stiffness per unit width, 12(1 - p2)

Transverse shear-stiffness parameter for isotropic

sandwich wall,

G
xz

5 2

1
h- _ (11 + t2)

m

D , D
x y

Bending stiffness per unit width of wall in x- and

y-directions, respectively; D = D = D for isotropic
x y

cylinder

C3-viii



d

D

Symbol

xy

m_

d

E

g R

E S , Ef

E
C

E , E
r

F,s , E 0

E
sec

E tan

E , E
x y

E
Z

DEFINITION OF SYMBOLS (Continued)

Definition

Modified twisting stiffness of wall;

isotropic cylinder

w

D = 2D for
xy

E th 2
S

Flexural stiffness of isotropic sandwich wail,

Ring spacing

Young's modulus

Reduced modulus

Young's moduli: face sheet; sandwich, respectively

Young's modulus of elastic core

Young's moduli: rings; stiffeners, respectively

Young's moduli of orthotropic material in the s- and

0-directions, respectively

Secant modulus for uniaxial stress-strain curve

Tangent modulus for uniaxial stress-strain curve

Young's modulus of orthotropic material in x- and

y-directions, respectively

Young's modulus of sandwich core in direction perpen-

dicular to face sheet of sandwich

2(1 - _2)

Et , E2 Young's moduli of the face sheets for isotropie sand-

wich shell
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Symbol

E

Ex' Ey' Exy

e
r

f

G

G ,G
s r

G
Sz

G
xy

G ,G
xz yz

w

G

G
xy

DEFINITIONOFSYMBOLS{Continued)

Definition

Equivalent Young's modulus for isotropic sandwich

shell

Equivalent Young's moduli of orthotropic material in

the s- and 0-directions, respectively

Extensional stiffnessof wall in x- and y-directions,

Et -- Et
respectively; Ex=Ey-1_- _ , Exy= 1_-_ for

isotropie cylinder

Distance of the centroid of the ring-shell combination

from the middle surface

Ratio of minimum to maximum principal compressive

stress in face sheets

Shear modulus

Shear moduli: stiffeners; rings, respectively

Shear modulus of core of sandwich wall in s-z plane

Inplane shear modulus of orthotropic material

Shear moduli of core of sandwich wall in x-z and y-z

planes, respectively

Equivalent shear modulus

Shear stiffness of orthotropic or sandwich wall in x-y

plane; G = Gt for lsotropic cylinder
xy
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h

I
r

J
r

,I
S

,J
S

k
P

k
pc

k
x

k

xy

k
Y

L

L
0

Symbol

DEFINITION OF SYMBOLS (Continued)

Definition

Depth of sandwich wall measured between centroids of

two face sheets

Moment of inertia per unit width of corrugated cylinder

Moments of inertia of rings and stiffeners, respectively,

about their centroid

Beam torsion constants of rings and stiffeners, respec-

tively

Buckling coefficient of cylinder subject to hydrostatic

pressure, pr f2/Tr21)

l_uckling coefficient of cylinder with an elastic core

subject to lateral pressure, pr3/D

Buckling coefficient of cylinder subject to axial compres-

sion, N f2/Tr2D or N f2/_l) I
x x

]_uckling coefficient of cylinder subjected to torsion,

N _2/Tr2D or N _2/Tr2D t
xy xy

Buckling coefficient of cylinder subject to lateral pres-

sure, N/2/Tr2I) or Nyf2/Tr2Dl

Slant length of cone

Ring spacing me:Isurcd along cone generator

l_ength of cylinder, axial length of cone, or length of

toroidal-shcll scl.m_ en t
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Symbol

M

M
cr

M
press

Mp=0

M t

Mi , M2 , Mi2

m

N

N
O

N
x

N
xy

N
Y

N1 , N2 , N12

DEFINITIONOFSYMBOLS(Continued)

Definition

Bending moment on cylinder or cone

Critical bending moment on cone or cylinder

Bending moment at collapse of a pressurized cylinder

or cone

Bending moment at collapse of a nonpressurized

cylinder

Twisting moment on cylinder

Moment resultants per unit of middle surface length

Number of buckle half-waves in the axial direction

Axial tension force per unit circumference applied to

a toroidal segment

Axial load per unitwidth of circumference for cylinder

subjected to axial compression

Shear load per unitwidth of circumference for cylinder

subjected to torsion

Circumferential load per unitwidth of circumference

for cylinder subjected to lateralpressure

Force resuL_nts per unit of middle surface length

Number of buckle waves in the circumferential direc-

tion

C3-xii ___,
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Symbol

P

P
cr

P
p=0

P
press

P

Pc_

Per

R

R A

R b

R
C

DEFINITION OF SYMBOLS (Continued)

Definition

Axial load on cylinder or cone; concentrated load at

apex of spherical cap

Critical axial load on cone; critical concentrated load

at apex of spherical cap

Axial load on nonpressurized cylinder at buckling

Axial load on pressurized cylinder at buckling

Applied uniform internal or external hydrostatic I)res-

sure

Classical uniform buckling pressure for a complete

spherical shell

Critical hydrostatic (uniform) pressure

7r2D

Shear flexibility coefficient, _2 D
q

I3
Effective radius of a thin-walled oblate spheroid, _-

Ratio of bending moment on cylinder or c(me subjected

to more than one type of loading to the allowable bend-

ing moment for the cylinder or cone when subjected

only to bending

Ratio of axial load in cylinder or cone subjected to more

than one type of loading to the allowable axial load for

the cylinder or cone when subjected only to axial com-

pression

C3-xiii
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R
P

R
s

R t

Rtr

r

r 1

r2

S

Sl

T

Symbol

DEFINITION OF SYMBOLS (Continued)

Definition

Maximum radius of torispherical shell

Ratio of external pressure on cylinder or cone subjected

to more than one type of loading to the allowable exter-

nal pressure for the cylinder or cone when subjected

only to external pressure

Radius of spherical shell

Ratio of torsional moment on cylinder or cone subjected

to more than one type of loading to the allowable torsion-

al moment for the cylinder or cone when subjected only

to torsion

Toroidal radius of torispherical shell

Radius of cylinder, equivalent cylindrical shell or

equator of toroidal shell segment

Radius of small end of the cone

Radius of large end of the cone

Cell size of honeycomb core

Distance along cone generator measured from vertex of

cone

Distance along cone generator measured from vertex of

cone to small end of cone

Torsional moment on cone

C3-xiv _-_
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x, y, z
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z
k
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Symbol

DEFINITION OF SYMBOLS (Continued)

Definition

Critical torsional moment on cone

Skin thickness of isotropic cylinder or cone: thickness

of corrugated cylinder

Effective thickness of corrugated cylinder; area per unit

width of circumference;-effective skin thickness of iso-

tropic sandwich cone

Face thickness of sandwich cylinder having faces of

equal thickness

Skin thickness of k th layer of layered cylinder

Facing-sheet thicknesses for sandwich construction

having faces of unequal thickness

Coordinates in tile axial, circumferential, and radial

directions, respectively

_2 _2
Curwtture parameter: _-_ ",/-1 -- for isotropic cylin-

P _!{-:__2 [oriso-
der and tor,_idal-shell segTnent: 27- _

tropic sandwich cylinder

Distance of center of k th layer of layeredcylin(fer

from reference surface (positive outward)

l)istance ofcentroid of stiffeners and rings, respectively,

from reference surface (positive when stiffeners or rings

are on _utside)
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A

AT

5
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El j E2,

_o

0
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Symbol

El2

DEFINITION OF SYMBOLS (Continued)

Definition

Semivertex angle of cone

n_
Buckle aspect ratio (_-_m)

Correlation factor to account for difference between

classical theory and predicted instability loads

Distance of reference surface from inner surface of

layered wall

Increase in buckling correlation factor resulting from

internal pressure

Ratio of core density of honeycomb sandwich plate to

density of face sheet of sandwich plate

Distance of centroid of k th layer of layered cylinder

from inner surface

Reference-surface strains

Plasticity reduction factor

Ring-geometry parameter

Coordinate in the circumferential direction

Spherical-cap geometry parameter

Poisson's ratio

Poisson's ratio of core material

Poisson's ratios associated with stretching of an ortho-

tropic material in the s- and 0-directions, respectively

C3-xvi ____-



Symbol

P

Pl

02

_N

(7
max

fr
P

(7
S

O"
X

cr

(y
Y

T
cr

T

XYer

4)

DEFINITION OF SYMBOLS (Continued)

Definition

Poisson's ratios associated with stretching of an ortho-

tropic material in x- and y-directions, respectively

Equivalent Poisson's ratios in the s- and 0-directions,

respectively

r 1 + r 2
Average radius of curvature of cone, 2 cos a,

Radius of curvature at small end of cone,

r__D__
Radius of curvature at large end of cone,

cos O/

Normal stress

Mmximum membrane compressive stress

Critical ,axial stress for a cylinder with an elastic core

Local failure stress

Axial stress, critical

Circumferential stress

Shear stress

Torsional bucMing stress of an unfilled cylinder;

critical shear stress

Shear stress in the x-y plane, critical

Ilalf the included angle of spherical cap

C3-xvii
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Symbol

DEFINITION OF SYMBOLS (Concluded)

Definition

Half the included angle of spherical cap portion of

torispherical closure

Reference-surface curvature changes

[See eq. (17). ]
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C3.0 STABILITY OF SHELLS.

The buckling load of a shell structure is defined as the applied

load at which an infinitesimal increase in that load results in a large change

in the equilibrium configuration of the shell. The change in equilibrium

configuration is usually a large increase in the deflections of the shell,

which may or may not be accompanied by a change in the basic shape of the

shell from the prebuckled shape. For most types of shells and loading

conditions, the buckling load is quite pronounced and easily identified.

The load-carrying capability of the shell may or may not

decrease after buckling depending on the type of loading, the geometry of

the shell, the stress levels of the buctded shell, etc. Only the buckling load

will be discussed in this section because the information available on

collapse load is very limited. In gener_d, the buckling load and collapse

load are nearly the same, but if they are different tile deformations before

the collapse are often very large.

The magnitude of the critical static load of a structure gener:dly

depends on its geometric proportions, the manner in which it is stiffened

and supported, the bending and extensional stiffnesses of its wtrious

components, or other reasonably well-defined characteristics. For thin-

wailed shell structures less certain characteristics, such as small devi:_tions

of the structure from its nominal unloaded shape, may also have quite

imporkmt _3ffects Qn the load at which buckling will occur. Other factors

that affect buckling, such as nonuniform stiffnesses, and variation of loading

with time are not considered here.

For columns and flat plates, the classical small deflection

theory predicts the buckling lo:ld quite well; in _enernl, the theoretical

buckling load is used as the dcsi_m allow-tble buckling; load. ltowever, this

method of analysis cannot be used generally for shell structures. The
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buckling load for some types of shells and loadings may be much less than

the load predicted by classical small deflection theory and, in addition, the

scatter of the test data may be quite large. Explanations for these

discrepancies are discussed in References i through 5. When sufficient

data exist, a statistical reduction of the test data may be useful in

determining a design allowable buckling load. This method has been used

to determine most of the design curves presented in this section.

One of the primary shortcomings of this method of obtaining

design curves is that the test specimens and boundary conditions used to

obtain the design curves may not be typical of the particular structure

which the design curves are being used to analyze. However, until

additional information on shell stability is obtained, a statistical analysis

has been used whenever possible to obtain design curves.

Whenever sufficient data do not exist to obtain a statistical

design allowable buckling load, design recommendations are made on

available information. Usually this involves recommending correction

factors or "knockdown" factors to reduce the theoretical buckling loads.

Such a recommendation may be too conservative in some cases; nevertheless,

further theoretical and experimental investigations are necessary to justify

raising the design curves.

Most analysis procedures presented in this section are for

shells with simply supported edges. For most applications simply

supported edges should be assumed unless test results are obtained which

indicate the effects of the actual boundary condition of the design.

An attempt has been made to simplify the analysis procedures

so that the design allowable buckling loads may be obtained from hand

computations and graphs. The analyses which have been presented are

sometimes quite long (orthotropic cylinders, for instance) but, in general,
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results can be obtained quickly with a few simple computations. In many

cases, computer programs are available for a more sophisticated analysis.

The applicable programs are described, and their limitations and availability

are noted. They can generally be obtained from COSMIC or from the

Computer Utilization Manual.

As more information on shell stability becomes available,

revisions to this section will be made. However, the analyst should attempt

to keep abreast of the changes in current technology because of recent

theoretical and experimental investigations.
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3.1 CYLINDERS.

A better understanding of the theory of buckling of circular

cylindrical shells has been made possible by use of electronic digital

computers. This understanding has been aided both by more rigorous

formulations of the theory and by reliance on experimental investigation.

Most of the available information on buckling of circular

cylindrical shells is restricted to unstiffened shells of uniform thickness

or to stiffened shells with uniform stiffness and properties, subjected to

axisymmetric loading states which have certain simple longitudinal

distributions, generally uniform. Problems involving surface loadings

and thickness or stiffness variations that are axisymmetric but nonuniform

longitudinally have been solved, but detailed investigations of the effects of

various parameters have not been made. Also, available information is

inadequate for the analysis of loadings that are nonuniform circumferentially.

Problems of this type can be treated by digital computer programs and will

be discussed in Subsection 3.4.

The application of theory to the design of actual cylindrical

shells has been complicated by apparent discrepancies between theory and

experiment. For shells in which longitudinal compression of the cylinder

wall predominates, the discrepancies can be quite large. For shells in

which shear or circumferential compression predominates, the discrcp:,ncics

are generally less severe but still large enough to require experimental

programs to establish design data. The causes of such discrepancies are

generally understood.

The primary source of error is the dependence of the i)uclding

load of cylindrical shells on small deviations from the nominal circular

cylindrical shape of the structure. Because the unloaded shape of a test

specimen usually has not been stringently controlled, most test results for
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nominally identical specimens have larger scatter and fall below the

theoretical values.

Another source of discrepancy is the dependence of buckling

loads of cylindrical shells on edge values of longitudinal and circumferential

displacements or forces. Also, because tangential edge conditions have not

usually been precisely controlled in buckling tests, some of the scatter of

test results can be attributed to this source. Current methods of establishing

design data tend to treat both initial imperfections and edge conditions as

random effects. Results from all available tests are considered together

without regard to specimen construction or methods of testing and are

analyzed to yield lower bound or statistical correction factors to be applied

to simplified versions of the theoretical results. This technique has proved

satisfactory to date for design purposes.

Within the limitations imposed by the state of the art, acceptable

procedures for the estimation of critical loads on circular cylindrical

shells are described in this section.

3.1.1 ISOTROPIC UNSTIFFENED CYLINDERS.

Unstiffened isotropic circular cylinders subjected to various

conditions of loading are considered below.

3.1.1.1 Axial Compression -- Unpressurized.

The design allowable buckling stress for a circular cylinder

subjected to axial compression is given by

O K

cr yE t/r

71 _ 3 (1-p 2)
(1)

0
K

cr Et
- 0.6_/ -- (for _ =0.3)

r



where the factor 3/ shouldbe taken as
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q/ = i.0 - 0. 901 (1-e -0) (2)

where

- r1 for (t < 1500)

Equation (2) is shown graphically in Figure 3. 1-1 and provides a good lower

bound for most test data [6]. The information in Figure 3.1-1 should be

used with caution for cylinders with length-radius ratios greater than about

five since the correlation has not been verified by experiment in this range.

Very long cylinders should be checked for Euler-column buckling.
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FIGURE 3.1-1. CORRELATION FACTORS FOR ISOTROPlC CII1CUI.,A//

CYLINDEItS SUBJI_3CTED TO AXIAL COMPI/IgSSION
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When geometric and material properties are such that the

ff
X

cr
computed buckling stress is in the plastic range, the actual buckling

stress a should be calculated by applying the plasticity coefficient, _ .
X

cr

This calculation is facilitated by the use of the curves of Paragraph 3.1.6.

For moderately long cylinders the critical stress _ should be determined
X

cr

by using curve E 1 in Paragraph 3.1.6. For extremely short cylinders

(Z -_0) curve G should be used.

For a cylinder having a length between those lengths for which

curves E1 and G apply, a plasticity factor is not available. Presumably,

a linear interpolation should provide satisfactory results. Such a factor

would be a function of cylinder geometry as well as of the usual material

stress-strain curve.

3.1.1.2 Axial Compression -- Pressurized

Buckling and collapse coincide for internally pressurized

circular cylinders in axial compression, just as in the case of the

unpressurized cylinder. Pressurization increases the buckling load in

the following ways:

1. The total compressive load must be greater than the tensile

pressurization load p _ r2 before buckling can occur.

2. The destabilizing effect of initial imperfections is reduced.

The circumferential tensile stress induced by the pressurization inhibits

the diamond buckling pattern, and, at sufficiently high pressurization, the

cylinder buckles in the classical axisymmetric mode at approximately the

classical buckling stress.
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It is recommended that the total load for buckling, unless sub-

stantiated by testing, be obtained by the addition of the pressurization load

p _ r2 , the buckling load for the unpressurized cylinder [equation (i)],

and an increase in the buckling load caused by pressurization; that is:

3 (1-_ 2)

where A7 is obtained from Figure 3.1-2.

For p=0.3 ,

P = 2 7r Et 2 (0.67 +AT) +P_r 2 (4)
press

,_ 10 1

10 .2

1
8

6

B

6 j

f

10-2

7
_v

f

f

2 4 6 8 2 4 6 B 2

10 "1 1

6 8

10

FIGURE 3.1-2. INCREASE IN AXIAL-COMPRESSIVE

BUCKLING-STRESS COEFFICIENT OF CYLINDERS

RESULTING FROM INTERNAL PRESSURE
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3.1.1.3 Bending -- Unpressurized.

Buckling and collapse coincide for Isotropic, unpressurized

circular cylinders in bending. The procedure given for isotropic cylinders

in axial compression may be used also to obtain the criticalmaximum

stress for isotropic cylinders in bending, except that a correlation factor

based on bending tests should be used in place of the factor given by

equation (2) for cylinders in axial compression. The correlation factor

for the cylinder in bending is taken as

"y = 1.0 - O. 731 (1-e -_b) (5)

where

Equation (5) is presented graphically in Figure 3.1-3. This

equation should be used with caution for r/t > 1500 because experimental

data are not available in this range [7]. Although the theoretical critical

stress for axial compression and that for bending are the same, the

correlation factor for bending is greater than that for compression. This

is primarily because the buckling of a cylinder in compression can be

triggered by any imperfection on the shell surface, whereas in bending,

buckling is generally initiated in the region of the greatest compressive

stress.

For inelastic buckling the critical stress may be found by

using curves E 1 in Paragraph 3.1.6. If the stresses are elastic the

allowable moment is

M =rr2_ t
cr x

or

(6)
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FIGURE 3.1-3. CORRELATION FACTORS FOR ISOTROPIC

CIRCULAR CYLINDER SUBJECTED TO BENDING

3.1.1.4 Bending -- Pressurized.

For thin-walled cylinders subjected to bending and internal

pressure, it is recommended that the buckling moment be obtained by

adding the moment-carrying capability of a pressurized membrane cylinder

the buckling moment for the unpressurized cylinder [equations (1) and (5)],

and an increase in the critical moment caused by pressurization. Then

Mpress = 7frEt2 (*J 3 _/(l_p 2) + AT) + 0.5prr 3 , (7)

where Ay is obtained from Figure 3.1-2.
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1976

Mpres s = lrr Et 2 (0.6T +AT) +0.5 pTr r3 (8)

3.1.1.5 External Pressure.

The term "lateral pressure" designates an external pressure

which acts only on the curved walls of the cylinder and not on the ends. The

load in the cylinder wall is given by

N = o t = pr (9)
Y Y

The term "hydrostatic pressure" designates an external pressure which acts

on both the curved walls and the ends of the cylinder. The cylinder wall

loads are given by

N =at =pr
Y Y

N =at= pr
x x 2 (10)

Except for unusually short cylinders, the critical pressures for the two types

of loads are not significantly different.

An approximate buckling equation for supported cylinders loaded

by lateral pressure is given as

_D

Nycr = ky _ . (II)

The buckling equation for cylinders loaded by hydrostatic pressure is

obtained by replacing ky by kp in the formula above.
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As sho_q3in Figure 3.1-4, except for unusually short cylinders, the

critical pressures for the two types of loads are not sigmificantly different. For

short cylinders equations suitable for design solutions to the hydrostatic (Z <

30) andlateral (Z < 70) cases respectively are:

1976

k = 1.853 + .141714 Z "83666 (12a)
Y

and

k = 3.98o + .02150 Z 1"125 (12b)
Y

The solutions for intermediate length cylinders (100 _/ Z--- 4000) con-

verge to an equation given by

k = .78o (13a)
Y

or the critical prcsstu'e is given by

. O4125 E
p - ( i:_lD

The family of curves for long cylinders (Z > 3000) is dependent upon the

radius-thickness ratio of the cylinder an(I corresponds to buckling of the cylinder

into an oval shape, as given by

2.7(} Z
k (14a)

y _ r J1 - p2
t

or

P - 4(1 -it 2) (lqt,)

rx/1 _ =
and applies for 20 < _- p < 100.

_l;t U.S GOVERNMENT PRINTING OFFICE 1976-641-255/391 REGION NO 4
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For inelastic stresses the plasticity correction factor should be

obtained from Paragraph 3.1.6. For short cylinders (TZ < 5) the C

curves should be used. For moderate length cylinders (5 < TZ < 4000)

the E l curve should be used. For long cylinders (TZ > 4000) the E

curve should be used.

3.1.1.6 Shear or Torsion -- Unpressurized.

The theoretical buckling coefficient for cylinders in torsion can

be obtained from Figure 3.1-5. The straight-line portion of the curve is

given by the equation

N fz

kxy - _xL'--D -- 0.85 (yZ) 3/4 (15)

and applies for 50 < yZ < 78 (t)2 (l-gZ). Equation (15) can be written as

45]

0. 747 T°/4 E
T (16)

For TZ > 78 (t)z_ (l-p 2) , the cylinder buckles with two

circumferential waves. The buckling coefficient is then given by

2 q-YTzk -

xy r 1/2
1/4

(17)
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yi,: _3/2: 3/4 (t__
XYcr 3 _ (l-p2) r-

(is)

To approximate the lower limit of most data, the value

T3/4 _ 0. (;7 (19)

is recommended for moderately long cylinders.

Plasticity' should bc accounted for by using curves A

Paragraph 3. I.6.

in
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3.1.1.7 Shear or Torsion -- Pressurized.

The increase in buckling stress caused by internal pressure may

be calculated by using the curves in Reference 1.

3.1.1.8 Combined Loading.

The criterion for structural failure of a member under combined

loading is frequently expressed in terms of a stress-ratio equation,

R1 x + R2 y + Ra z = 1 . The subscripts denote the stress caused by a particular

kind of loading (compression, shear, etc. ), and the exponents (usually

empirical) express the general relationship of the quantities for failure of

the member. Simply stated, the term "stress-ratio" is used to denote the

ratio of applied to allowable stress.

I. Axial Compression and Bending.

The recommended interaction equation for combined compressive

load and bending is

Rc + Rb = 1 (20)

The quantities Rc and R b are, respectively, the compressive

and bending load or stress ratios. The denominators of the ratios are the

allowable loads or stresses given by equations (1) and (2) for cylinders

in axial compression and by equations (1) and (5) for cylinders in bending.

Equation (20) is also recommended for internally pressurized

circular cylinders in combined axial compression and bending by using

equations (3) or (4) and (7) or (8).
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The recommendedinteraction equationfor combinedcompressive

load andhydrostatic or lateral pressure is

R + R = 1 (21)
c P

The quantities R and R are, respectively, the compressive andhydro-
c p

static or lateral pressure load or stress ratios. The denominators of the

ratios are the allowable stresses given by equations (1) and (2) for

cylinders in axial compression andby equations (11) or (12) for cylinders

subjected to external pressure.

III. Axial Compression andTorsion.

For cylindrical shells under torsion and axial compression, the

anaiytical interaction curve is a function of Z andvaries from a parabolic

shapeat low-Z values to a straight line at high-Z values. The scatter of

experimental datasuggests the useof a straight-line interaction formula.

Therefore, the recommendedinteraction equation is

Rc +Rt =1 (22)

The quantities
C

load or stress ratios. The denominators of the ratios are the allowable

stresses given by equations (1) and (2) for cylinders in axial compression

and by equations (16) or (18) for cylinders in torsion.

IV. Bending and Torsion.

A conservative estimate of the interaction for cylinders under

combined bending and torsion is

+ Rt2 = iR b

R and R t are, respectively, the compressive and torsion

(23)
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The quantities R b and R t are, respectively, the bending and

torsion load or stress ratios. The denominators of the ratios are the

allowable stresses given by equations (1) and (5) for cylinders in bending

and by equations (16) or (18) for cylinders in torsion.

3.1.2 ORTHOTROPIC CYLINDERS.

The term "orthotropic cylinders" covers a wide variety of

cylinders. In its strictest sense, it denotes cylinders made of a single

orthotropic material or of orthotropic layers. It'also denotes types of

stiffened cylinders for which the stiffener spacing is small enough for the

cylinder to be approximated by a fictitious sheet whose orthotropic bending

and extensional properties include those of the individual stiffening elements

averaged out over representative widths or areas. Generally, the directions

of the axes of orthotropy are taken to coincide with the longitudinal and

circumferential directions of the cylinder.

The behavior of the various types of orthotropic cylinders may be

described by a single th¢ory, the elements of which are equations of

equilibrium for the buckled structure, relationships between force and

moment resultants, and extensional and bending strains. For cylinders of

a single orthotropic material, it is generally permissible to neglect the

coupling between force resultants and bending strains and between moment

resultants and extensional strains. The theory is then similar to that for

isotropic cylinders.' For stiffened cylinders or for cylinders having

orthotropic layers, however, neglect of the coupling terms can lead to

serious errors. For example, the inclusion of coupling terms yields a

significant difference in theoretical results for stiffened cylinder configurations

having stiffeners on the inner surface or the outer surface. The difference

vanishes when coupling is omitted.
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Theoretical and experimental results for stiffened shells are

generally in better agreement than those for unstiffened shells. The

possibility of local buckling of the cylinder between stiffening elements

should be checked.

In general, the complexity of the analysis for orthotropic

cylinders necessitates the use of a computer solution. Applicable computer

solutions are discussed in Subsection 3.4.

3. I.2. i Axial Compression.

A buckling equation for stiffened orthotropic cylinders in

compression [8] is given by:

A11

A21

A12

A22

A._.

A21

A13

A23

A._._

Ai2

A22

for (n -> 4) , (24)

in which

- -A11 = E x _ + Gxy
(25)

(26)
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+_(n),

+r_+-_(r +--_r-- (275

( +%)AI2 = A21 = Ly m_ rn

m

E
xy

A31 = A13 - r

(28)

(29)

m_ + _- _m_"_ s -- ., x,7_+(%+_Kx,)_-(_)'
(30)

Values of stiffeners to be used for various types of construction

are given in Paragraph 3.1.2.6. Prebuclding deformations are not taken

into account in the derivation of the equation. The cylinder edges are

assumed to be supported by rings that are rigid in their own plane but offer

no resistance to rotation or bending out of their plane. The equation can be

specialized for various types of cylinders which have been treated separately

in the literature; for example, unstfffened or stiffened orthotropic cylinders

with eccentricity effects neglected and stiffened or stiffened orthotropic

cylinders with eccentricity effects taken into account. For ring-stiffened

corrugated cylinders, a similar but not identical theory is given in References

9 and J0. For given cylinder and stiffener dimensions, the values of m

and n to be used are those which minimize N .
X
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The unusually large number of parameters in equation (24)

does not permit any definitive numerical results to be shown. The computer

programs discussed in Subsection 3.4 should be used for solution of the

critical axial compressive load for a given design. It has been shown that

for combinations of parameters representative of stiffened shells, calculations

indicate that external stiffening, whether stringers or rings or both, can

be more effective than internal stiffening for axial compression. Generally,

calculations neglecting stiffener eccentricity yield unconservative values

of the buckling load for internally stiffened cylinders and conservative

values of the buckling load for externally stiffened cylinders. An extensive

investigation of the variation of the buckling load with various stiffener

parameters is reported in Reference 11. The limited experimental data

[9-17] for stiffened shells are in reasonably good agreement with the

theoretical results for the range of parameters investigated.

On the basis of available data, it in recommended that the

buckling loads [calculated from equation (24)] of cylinders having closely

spaced, moderately large stiffeners be multiplied by a factor of 0.75. The

correlation coefficients covering the transition from unstiffened cylinders to

stiffened cylinders with closely spaced stiffeners have not been fully investi-

gated. Although theory and experiment [ 16] indicate that restraint against

edge rotation and longitudinalmovement sigmificantlyincreases the buckling

load, not enough is known about the edge restraint of actual cylinders to

warrant taking advantage of these effectsunless such effects are substantiated

by tests.

For layered or unstiffened orthotropic cylindrical shells, the

available test data are quite meager [18, 19]. For configurations where

the coupling coefficients _ ,C , C-xy ' and Kxy can be neglected,x y
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it is recommended that the buckling load be calculated from the equation

X

m m u

72 14 E E - E 2x y xy

_m2"_ r_ ('_'_ _g2 xy) fl2+'_X Y
Gxy

(31)

The correlation factor T is taken to be of the same form as the

correlation factor for isotropic cylinders [equation (2)] with the thickness

replaced by the geometric mean of the radii of gyration for the axial and

circumferential directions. Thus

T = 1.0 - O. 901 (1-e -_b) (32)

where

,/2

(33)

3.1.2.2 Bending.

Theoretical and experimental results [10, 20-23], indicate that

the critical maximum load per unit circumference of a stiffened cylinder
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in bending can exceed the critical unit load in axial compression. In the

absence of an extensive investigation, it is recommended that the critical

maximum load per unit circumference of a cylinder with closely spaced

stiffeners be taken as equal to the critical load in axial compression, which

is calculated from equation (24) multiplied by a factor of 0.75.

For layered or unstiffened orthotropic cylinders with negligible

coupling coefficients, it is recommended that the maximum unit load be

calculated by equation (31) with 5/ replaced by

5/ = 1.0- 0.731 (1-e -(p) (34)

where

1

2.). 8

r

E x l,:y

1/2

(35)

3. 1.2.3 External Pressure.

The counterpart of equation (24) for stiffened orthotropic

cylinders under later:ll pressure is _iven by

r

- n 2

All A12 A13 ]

IA21 A22 A23

A._ 1 A,_2 A_._

I All AI2
A2! A22
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shown in equation (36) is replaced

( )2n _ + 1/2 m _ r
l

In the case of lateral pressure, m is equal to unity, whereas

n must be varied to yield a minimum value of the critical pressure but

not less than 2. In the case of hydrostatic pressure, the value of m should

be varied as well as n . For long cylinders, equation (36) is replaced by

3 _y-E --Y-
Y

p = r3 (37)

If the coupling coefficients Cx' _ Cxy' and KLy can bey'

neglected, the critical buckling pressure can be approximated by [24]:

5. 513 y

P'_ _ Ey

(38)

for

x y j.._2>

_Dx/ 12E y x / r

500 (39)
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Equation (36) has been investigated primarily for isotropic

cylinders with ring stiffeners [25-27]. For closely spaced ring stiffening,

References 25 and 26 show that the effectiveness of inside or outside rings

depends on the shell and ring geometries. Generally, for shells with values

of Z less than 100, outside rings are more effective than inside rings,

whereas for values of Z greater than 500, the reverse is true. As the

ring geometry varies, the effectiveness of outside stiffening tends to increase

as the stiffness of the rings relative to the shell increases. Somewhat lower

buckling pressures are given by the extremely complex but more accurate

theory of Reference 28, but the differences are not so significant as to

warrant its use.

The experimental results for ring-stiffened cylinders described

in Reference 29 are in reasonably good agreement with the theoretical

results of equation {36). However, for cylinders of all types, it is

recommended that the buckling pressure calculated from equation (36) be

multiplied by a factor of 0.75 for use in dcsigm, as has been recommended

for unstiffened isotropic cylinders of moderate length.

3.1.2.4 Torsion.

The problem of torsional buckling of orthotropic cylinders has

been treated in References 24 and 30, which do not take into account

coupling between }_nding and extension, and in Reference 31, which does.

If coupling effects are negligible, the critical torque of moderately long

cylinders can be estimated from the relationship [24]:

_E2 13/8
M t 21.75D 5/8 x y xy r5/4

Y l,_y _I/'T (40)
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x - _2

r 500 . (41)

12EyD /

Reference 31, however, shows that coupling effects are quite

important for cylinders stiffened by closely spaced rings. For long shells

internal rings are generally more effective thdn outside rings; for short

shells the reverse is true. In the absence of general formulas or graphs

to cover the entire range of parameters that should be considered, the

equations of Reference 31 should be solved for each specific case considered.

The test data of Reference 32 are in good agreement with

theoretical predictions but are insufficient to provide an adequate test of

the theory. It is therefore recommended that theoretical critical torques

be multiplied by a factor of 0.67 for moderately long cylinders.

3.1.2.5 Combined Bending and Axial Compression.

On the basis of theory [10, 20, 21] and limited experimental

data [9-10], a straight-line interaction curve is recommended for

orthotropic cylinders subjected to combined bending and axial compression.

The critical combinations of loading are thus given by

Rc + Rb = 1 (42)

3.1.2.6 Elastic Constants.

The values of the various elastic constants used in the theory of

buckling of orthotropie cylinders are different for different types of

construction.
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I. Stiffened Multilayered Orthotropic Cylinders.

Somewidely usedexpressions for this type of cylinder are:

-- S S

_' x tk +
E = _ 1 - #x_y bx k=l k

(43)

-- = y tk+ r r
Ey }_ 1 - PxPy d

k=l k

(44)

-- = _ 1 tk
Exy k=l \ - #xPY] k k=l

i pyEx / tk
1 - PxPy k

(45)

N

k:=l

(4_;)

+_ x 1 3 + tk

x k:l - PxPY k

E I
S S

b
+ z 2

s

EA
s S

b

(47)

-- \, y

Dy = kLJl 1 -PxPy
/k

1 3 4_tkz_ / +(-i-2 tk "

EI
r r

b

E A
r r

d

(48)
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+ _ +
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_yEx ) 11-.x.y ek + tkz 
k

GJ GJ
ss rr

+
b d

(49)

N ( E x / EAx 1 S

k=l #xPY k
b

(50)

N(E) EAC- : _ Y tkzk + z r r- r d
Y k=l 1 PxPy k

(51)

xy k=l - _x_Y] k k--1 x y k

(52)

N

-- = _ (Gxy) tk_ kKxy , (53)
k=l k

where the subscript k refers to the material and geometry of the k th layer

of an N-layered shell (Fig. 3.1-6). A proper choice of the reference surface

can make at least one of the coupling coefficients vanish. For example, ff

A is taken as



N(_yEx_
k=l - Px/_Y/k

tk6 k

E
xy
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(54)

the coefficient C vanishes, and ff
xy

z

N
V

k_l (Gxy) k tkSk

G
xy

(55)

the coefficient K vanishes.
xy

1

Z

k th

LAYER

FIGURE 3.1-6. MULTILAYEREI) OIi'FttO'FROPIC

CYLINDRICA L SHF LL GEOMETRY
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II. Isotropic Cylinders with Stiffeners and Rings.

For a cylinder consisting of a stiffened single isotropic layer and

for a reference surface at the center of the Layer, equations (43) to (53)

reduce to

EA
_ Et + s s (56)

x 1 - p_ b

EA
--_ Et r r
E

y - 1 -p2 + d (57)

Exy (58)

-- Et

Gxy - 2(1 +p) (59)

D - Et 2 + EI + T EASS S S

x 12(1 - t_2) b 2 (6O)s b

D - Et_ EI EA-- rr + _'2 r r
y _2(1 -p2) + d r d (61)

_ Et3 GJ GJ

Dxy 6(1 +p) + s s r r- b + d (62)

EA
C = z S S
x s b (63)
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(6,t)

C =K =0
xy xy

((i5)

III. Ring-Stiffened Corrugated Cylinders.

The following formulas are commonly used to calculate the

required stiffnesses of ring-stiffened corrugated cylinders, with the choice

of formula depending on the different assumptions which may be made:

E A

E = ET, E r r
x y d

(66)

Gxy = Gt
(67)

I)
x

E1 ((;_)

EI EA

D - rr + z2 r r
y d r d

(69)

GJ
D r_____r

xy d
(70)

E A
-- _ r r
C = z
y r d

(Tt)
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(72)

Slightly different stiffnesses are given in Reference 22.

IV. Waffle-Stiffened Cylinders.

Stiffnesses for cylinders with waffle-like walls are described in

References 33 to 35.

V. Special Considerations.

In some designs of stiffened cylinders, the skin may buckle before

failure of the cylinder. Buckled sheet is less stiff than unbuckled sheet.

The decreased stiffness can be calculated by methods similar to those pre-

sented in References 13, 23, and 36.

3.1.3 ISOTROPIC SANDWICH CYLINDERS.

The term "isotropic sandwich" designates a layered construction

formed by bonding two thin facings to a thick core. Generally, the thin

facings provide nearly all the bending rigidity of the construction. The core

separates the facings and transmits shear so that the facings bend about a

neutral axis. The core provides the shear rigidity of the sandwich construc-

tion.

Sandwich construction should be checked for two possible modes

of instability failure: (1) general instability failure where the shell fails with

core and facings acting together, and (2) local instability taking the form of

dimpling of the faces or wrinkling of the faces (Fig. 3.1-7).

If the isotropic sandwich shell has thin facings and the core has

relatively little bending stiffness, then for unequal thickness facings the

bending stiffness is given by



f FACING

COR!

FACING 7

I J
tttt

GENERAL BUCKLING

_ HONEYCOMB

f CORE
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I,,, 1111

_,ISEPARATION

FROMCORE _%.,NG

tttt tttt
WRINKLING OF FACINGS

FIGURE 3.1-7. TYPES OF FAILURE OF SANDWICH SHELl,S

Etl t2 h2 (73)
D 1 -

(1 -p2) (h +t2)

and for equal thiclmess facings,

Etf h2
(74)

D1 - 2(1 - /32 )

The extensional stiffness for unequal thickness facings is given by

E (h + t2) (75)
]31 - (j _ /_2)

and for equal thickness,

2 Etf

B1 ( 1 -/_2)
(76)
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The transverse shear stiffness for an isotropic core is given by

h 2

D = G (77)
q xz h _+h

2

and for equal thickness,

5 2
D =G

q xz h-tf
(78)

The stiffness of other types of sandwich construction is given in References

37, 38, and 39.

3.1.3.1 Axial Compression.

Investigations of the buckling behavior of isotropic sandwich

circular cylinders in axial compression are reported in References 40 and 41.

Design information from these references is given in Figures 3.1-8 and 3.1-9.

Figure 3.1-9 is the more convenient of the two figures to use and

is applicable to all but unusually short cylinders [_/Z < _/(1 + R) ]. Figures

3.1-8 and 3.1-9 are based on the small-deflection buckling theory and should

be used in conjunction with the correlation factor of Figure 3. 1-10 to pre-

dict buckling loads. Figure 3.1-10 is based on equation (32), given for

orthotropic cylinders. For the present application the parameter _ becomes

_b - 29.8 (79)

This procedure is consistent with the procedures given earlier for other types

of construction when shearing of the core does not contribute significantly

to the buckling deformations, that is, when No/D q of Figure 3.1-9 is small.
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FIGURE 3.1-10. CORRELATION FACTORS FOR ISOTROPIC SANDWICH

CIRCULAR CYLINDERS SUBJECTED TO AXIAL

COMPRESSION

As shearing deformations become more pronounced, the correction resulting

from application of the factor _/ , as prescribed above, decreases and

becomes zero in the limiting condition of buckling from a weak core

[(No/Dq) > 2].

A weight-strength study based on Figure 3.1-9 and published

values for the shear stiffness of honeycomb cores [42] indicate that unusually

lightweight cores are more desirable than heavier cores. Until adequate

test data are obtained to substantiate this indication, however, designs should

be limited to sandwiches with rather heavy cores (5 >-- 0.03). Also, it has

been found that sandwich plates with light honeycomb cores are susceptible to

additional modes of deformation, and failure may result from intracell
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buckling, face wrinkling, or an interaction of one or both of these modes with

a cylinder-buckling mode. In addition, small buckle-like deformations have

occurred in actual structures long before the theoretical buckling load was

reached (see, for example, Ref. 43, p. 217). This behavior requires that

the structure be capable of resisting internal moments and shears in addition

to the directly applied loads. In the case of sandwich cylinders, the moments

and shears may cause core buckling or shear failure of the core.

The only known method of preventing these core failures is to use

relatively heavy cores which have considerable strength in crushing and shear.

Honeycomb cores with a density ratio 6 : 0.03 should be adequate to prevent

these core failures. Large margins against failure in intracell buckling- and

wrinkling can be obtained with rather heavy cores with little or no weight

penalty. Moreover, when heavy cores are used approximate equations are

adequate for predicting failures in the intracell buclding and face-wrinlding

modes. The following equations may be used for this purpose. For intracell

buc kl ing:

"x _ 2.51_ R• (t/s) 2 (do)

where S is the core cell size expressed as the diameter of the largest

inscribed circle and

4 E Etan
(8i)

where E and l':tn n are the elastic and tangent moduli of the face-sheet

materi:/l. If initial dimpling is to be checked, the equation



Ox = 2.2 E R (t/S) z
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(82)

should be used. The sandwich will still carry load if initial dimpling occurs.

Critical wrinkling stresses are predicted by

ax = 0.50 (Esec Ez Gxz )1/3 (83)

where E is the modulus of the core in a direction perpendicular to the core,z

and G is the shear modulus of the core in the x-z plane. If biaxial
xz

compressive stresses are applied to the sandwich, then the coefficients of

the equations must be reduced by the factor (1 + f_)-t/s where

f _ minimum principal compressive stress in facings
maximum principal compressive stress in facings

(84)

Wrinkling and intracell-buckling equations which consider strength of bond,

strength of foundation, and initial waviness of the facings are given in

References 39, 44, and 45.

The plasticity correction factor given for isotropic cylinders in

axial compression also may be applied to isotropic sandwich cylinders. The

factor is applicable to sandwich cylinders with stiff cores and becomes some-

what conservative as the shear stiffness of the core is decreased [46].

3.1.3.2 Bending.

The buckling equations given in Paragraph 3.1.3.1 for circular

cylinders in axial compression may be used for cylinders in bending, provided

that the correlation factor _/ is taken from Figure 3.1-11 instead of from

Figure 3.1-10. Figure 3.1-11 is based on equation (34), given earlier for

orthotropic cylinders in bending.
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FIGURE 3.1-11. CORRELATION FACTORS FOIl ISO'I'I{OPIC
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3. I.3.3 Lateral Pressure.

A plotof k against TZ , constructed from the dat't()fllclerence
Y

47, is given in Figure 3. 1-12. The straight-line portion of tilecurve ()[

Figure 3. 1-12 for a sandwich cylinder with a rigid core (6=0) is given by

the equation

N _2

k --_ - 0.56 _v yZ
y 7ri)t

(ss)

There are no experimental data to substantiate l"il4_re 3.1-12. From experi-

ence with isotropic cylinders, however, it is suggested that a l'aet()r 3, equal

to 0.56 be use.d with this figure.
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Here, as with sandwich cylinders in axial compression or bending,

designs should be limited to sandwich cylinders for which the density ratio

is 0.03 or greater, unless the design is substantiated by adequate tests.

For inelastic stresses the plasticity correction factor should be

obtained from Paragraph 3.1.6. For short cylinders (_Z < 5) the C curves

should be used. For moderate-length cylinders 5 < _Z < 4000 the E 1 curve

should be used. For long cylinders _/Z > 4000 , the E curve should be used.

3.1.3.4 Torsion.

Isotropic sandwich cylinders in torsion have not received the same

attention as cylinders in compression, although both rigid- and weak-core

criteria are reasonably well defined. Whereas the transition region between



r

Section C3.0

December 15, 1970

Page 41

rigid and weak cores is not as well defined, the methods presented are prob-

ably sufficient for design purposes. Information on the transition region is

given in References 37 and 47; the latter was used to construct the plot of

Figure 3. 1-13, which applies to sandwich cylinders with cores exhibiting

isotropic shear behavior Gxz/Gy z = t . The curves of this figure are dis-

continuous at the value of 7Z where the buckling coefficient k becomes
xy

equal to 1/R , indicating a change of mode of buckling at that point.

x
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Reference 37 does not support this behavior, but it does not cover

a sufficiently wide range of geometric proportions to be used in the construc-

tion of the figure. In addition, Reference 37 indicates that there was some

scatter in the calculated results used to construct the charts of that reference.

In the ranges where comparisons between the data of References 37 and 47

could be made, only rather small discrepancies were noted. The straight-line

portion (_/Z > 170) of the curve of Figure 3.1-13 for a rigid core (R=0) is

given by the equation

N 12

= xy - 0.34 (vZ) 3/4 (86)
kxy _ D1

Experimental data are not available to substantiate Figure 3.1-13

for most sandwich cylinders. From experience with isotropic cylinders, it

is indicated that 0. 586 is the factor _ to be used with the figure. Here, as

with sandwich cylinders for which the density ratio of 5 is 0.03 or greater,

the same factor should be used unless the design is substantiated by adequate

tests. Plasticity may be taken into account by using the A curves of Para-

graph 3.1.6.

3.1.4 CYLINDERS WITH AN ELASTIC CORE.

The term "cylinder with an elastic core" defines a thin cylindrical

shell enclosing an elastic material that can be either solid or have a hole in

its center. This type of shell closely approximates a propellant-filled missile

structure. The propellant is generally of a viscoelastic material and there-

fore is strain-rate sensitive. The core modulus should be obtained from

tension or compression tests of the core material simulating its expected

strain rate.
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Although there are some analytical dam for orthotropic shells [48],

design curves are given only for isotropic shells and cores. The inverse prob-

lem of a core or cushion on the outside of the cylindrical shell is analyzed in

Reference 49. Not enough data are available, however, to recommend design

curves for this problem.

3.1.4.1 Axial Compression.

The buckling behavior of cylindrical shells with a solid elastic core

in axial comprc:_sion is given in Iteference 50. Analytical results oblained from

this reference are shown graphically in Figure 3. 1-14. For small values of

_j

\ (_7)
p x

CF

"/11(1 _r iS t}](. c!I'iti_ : ';i _:illl(' {_I :lxi::l c'(_:'_l_;:s:-i_*_ f:_l" aw J:_,_tra,pi¢' ('ir(,lll:ll"
2_
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FIGURE 3.1-14. VARIATION OF COMPRESSIVE BUCKLING STRESS

WITH CORE STIFFNESS PARAMETER

3.1.4.2 External Pressure.

Analytical curves for the lateral pressure core are presented in

_r r _ 100, 200, 500 or 1000
Reference 50. A plot of kpc against -_- for t

is shown graphically in Figure 3.1-15. The parameter k is expressed by
pc

k = pr_ (90)
pc D

These curves are to be used for finite cylinders loaded by lateral pressures.
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Some cylinders are long enough for the critical pressure to be

independent of length; the single curve shown in Figure 3.1-16 can then be used.

The straight-line portion of the curve can be approximated by the equation

k

E r
C1+

Et (1 - #c )_

- 3 (¢2)s/_ (91)

where

¢2 - s (1__2)
C

E 3

E (92)

M

I=u
MS

÷

P
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The few experimental data points available indicate good agreement

between analysis and experiment, but one test point fails 4 percent below theory.

Hence, a correlation factor of 0.90 is recommended for use in conjunction with

the curves in Figures 3. 1-15 and 3.1-16. A reinvestigation of the factor may be

warranted as more data become available. Plasticity should bc accounted for

by using curves A in Paragraph 3.1-6.

3.1.4.3 Torsion.

The buckling behavior of cylindrical shells with an elastic core is

analytically ch_scribed in Reference 51 and is shown g_raphically in Figure

3. 1-17.

I

102

10

10 "1

lq -2

in -3

2 4 6 _ 2 4 6 R 2 4 tK R 2 4 68

10-?. _.¢_-1 1 10 102

_3 = E¢ _ (r_ 2
F r

I'IGUI{I'; :;. 1-17. 'I'()I{,<]_)N.\I, I',ITCI,[].IN(; C()I,:J,'IqCJJ:NTN I,'(_,{

('YI.IN!)!'II',,_ V,I Ftl AN HI...'_S'I'IC COI{_,_
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the analytical results can be

\

T

T

XYcr

- 1 +0.16 _)s (93)

i

where

E C

(94)

and r is the torsional bucking stress given by equation (16), with 7
XYcr

equal to unity. When @3 is greater than 10, the analytical results follow the

curve

T

T

XYcr

- I + 0.25 (_b3)3/4 (95)

Experimental data are not available for this loading condition.

The experimental points obtained from cylinders with an elastic core for axial

compression and external pressure, however, show better correlation with

theory than the corresponding experimental results for the unfilled cylinder.

Hence, conservative-design curves can be obtained by calculating r in
XYcr

equations (93) and (95)with the correlation factor given by equation (19) and

the plasticity factor given by curves A in Paragraph 3.1-6.

3.1.4.4 Combined Axial Compression and Lateral Pressure.

Interaction curves for cylinders with an elastic core subjected to

combined axial compression and lateral pressure are shown in Figure 3.1-18.
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FIGUIlt,, 3.1-18. INTERACTION CURVES FOIt CYLINI)I,:IIS

(r/t _ 3o0) WITH AN ELASTIC COIIE

These curves were obtained analytically in Ilefcrence 50 and indicate that for a

sufficienlly stiff core, the critical axial compressive stress is insensitive to

h/feral pressure, :m(l similarly, the critical lateral pressure is insensitiw_' to

axial compression. Until more experimental data become aw_iiable, the use

of a straiaht-linc inLeraction curve is rec,,mmended for conservative design.

3. I. 5 DESIGN ()1,' I{INGS.

l.ittle information is available on which to base the design of rings

for cylinders to exclude lzeneral instability failures. The criterion of llcference

.52 is frequently cited as applicable to cylinders subjected to bending or com-

pression. Unforlu_mt_'ly, this criteri_m Js empirical and based on data from
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test cylinders with proportions of little interest in contemporary design. A

few checks made on cylinders in use have indicated that the criterion usually

is conservative, but this may not be so in certain cases [10, 53].

A less direct procedure for designing rings may be used. It con-

sists simply of calculating the failing load of the cylinder in the so-called

general-instability mode, which involves failure of the rings, as well as cal-

culation of the failing load of the cylinder for wall failure between rings. Both

calculations are made for several ring weights. If such calculations are plotted

against ring weight, the weight necessary to force failure in the desired mode

can be ascertained. In addition, the amount of error in weight from uncertain-

ties in the calculations can be judged. Presumably, there may be some inter-

action between failing modes; thus, somewhat heavier rings than those indicated

by the calculations should be used.

This method of designing rings is, of course, applicable to all types

of loading and all types of wall construction. It also has the advantage of giving

the designer some feeling for the influence of the various factors which deter-

mine ring weight.

A study of References 53 and 54, which present general linear

analyses of ring-stiffened isotropic cylinders in torsion and of orthotropic

cylinders in compression, indicates that the recommended procedure gives

the same result as general theory for all cylinders except those with a single

ring dividing the cylinder into two equal bays.

3.1.6 PLASTICITY CORRECTION FACTOR.

The effect of plasticity on the buckling of shells can be accounted

for by the use of the plasticity coefficient, 77 . This coefficient is defined by

the ratio

v

¢Y
cr

-

e
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a = the actual buckling stress.
cr

(7
e

= the elastic buckling stress (the stress at which buckling

would occur if the material remained elastic at any stress

level).

The elasticbuckling stress, therefore, is given by the equation

(I

cr
O" -

e q

The definition of _? depends on °cr/(re ' which is a function of

the loading, the type of shell, the boundary conditions, and the type of con-

struction. For example, the _ recommended for homog(mc,)us isotropic

cylindrical shells with simply supported edges subjected to mxial compression

is

r

JEt's L'.oE 1 - it 2

,/2

where E t , E and p are the tangent modulus, secant modulus and Poisson's
S

ratio, resoeetively, at the actual buckling stress, and Pc is the elastic

Poisson's ratio.

For a given material, temperature, and _ , a chart may be pre-

pared for o /7 versus (_ By first calculating the elastic buckling stress,
cr er

(_cr/__ , the actual buckling stress (_cr c'm bc read from the chart of ,,cr/71_

versus (_ This method eliminates an iterative procedure which would
cr

otherwise be necessary.
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Figures 3.1-19 through 3.1-25 present curves of acr/_? versus

a for some materials and temperatures commonly encountered in the aero-cr

space industry. In many cases, the curves are so close together that they are

drawn as one curve.

The _/ used to determine each curve is defined as follows:

Curve

A

B

C

D

E

F

G

E1

Es/E

E s

0.330 + 0.670 J =t]
S

1/2 + 1/2 J p2 + (1__2) F
S

352 + 0.648 J

E t

p2 + (1__2)
S

p2 Es/E + (l_p2) Et/E

0.046 Es/E + 0.954 Et/E (U = 0.33)

Et/E

112
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Although the value of _ is a function of the stresses for stresses

in excess of the proportional limit, the plasticity curves were obtained assum-

ing the conservative value of /_ = I/3 . The difference between using the value

of _ =I/3 and # =1/2 is small except for curves E and F .

It is "worth noting that for curve A , 77 =E /E ; for curve G,
s

77 = Et/E and, on the remaining curves, 77 is a function of both E t and E s

It can be seen that curves A and G bound the range of T/ . Curve G is the

most conservative, whereas curve A results in the smallest possible reduc-

tion in the buckling load due to plasticity.

r
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3.2 CONICAL SHELLS.

This section recommends practices for predicting buckling of uni-

form stiffened and unstiffened circular conical shells under various types of

static loading and suggests procedures that yield estimates of static buckling

loads which are considered to be conservative.

Many studies have been conducted of the buckling of conical shells

under various loading conditions. Knowledge of the elastic stability of conical

shells, however, is not as extensive as that of cylindrical shells. Whereas

the behavior of the two types of shells appears to be similar, significant

differences in experimental results remain unexplained. Frequently, there

are insufficicnt _tata to cover the wide range of conical-shell geometric param-

eters. In addition, some important loading cases and the effects of edge con-

ditinns remain to In studio, d. Some of these problems ean be treated by digit_a[

compu_rs. One such pro_ram is given in References ! ,and 2.

3.2.1 ISOTROPIC CONICA L SHELLS.

The following are the recommended design procedures for isotropic

conical shells under axial compression, l_nding, unifnrm hydrost:_tic pressure,

and torsion, along with those for combined loads.

3.2.1. I Axial Compression.

For conical shells under axial compression, there is considerable

disagreement between experimental loads and the loads predicted by theory.

These discrepancies have tx, en attributed to the effects of imperfections of the

structure and of edge-support conditions different from those assumed in the

analysis, as well as to shortcomings of the small-deflection theory used.

A theoretical analysis [3] indicates that the critical nxial load for

long conical shells can be expressed as
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2_ Et 2 cos 2
P =T (1)
cr _] 3(l_p2)

with the theoretical value of 3/ equal to unity. Experiments [4, 5] indicate

that within the range of the geometries of the tested specimens, there is no

apparent effect of conical-shell geometry on the correlation factor. There-

fore, 7 can be taken as a constant. At present, it is recommended that 7

be taken as the constant value.

7 = 0.33 (10deg < _ < 75deg) , (2)

which gives a lower bound to the experimental data. Buckling-load coefficients

for cone semivertex angles greater than 75 deg must be verified by experiment

because data are not available in this range. For a < 10 deg the buckling load

coefficient can be taken as that of a cylindrical shell having the same wall thick-

ness as the cone and a length and radius equal to the slant height and average

radius of curvature of the cone, respectively.

No studies have been published on the compressive buckling of

conical shells in the yield region. Because the nominal stress level in a conical

shell varies along its length, the effects of plasticity in conical shells are likely

to differ from those in cylindrical shells. A conservative estimate of plasticity

effects in conical shells could be obtained, however, if the reduction factors

for cylindrical shells are used (Paragraph 3.1.1.1). The secant and tangent

moduli should correspond to the maximum membrane compressive stress

P (3)

max 2_r Plt cos z



Section C3.0

December 15, 1970

Page 63

Figure 3.2-t is an alignment chart devised to determine the critical

axialfi)rce (P ) from equation (1) where the shell thickness (t) and the
cr

semivertex an_le (cz) are known. This nomograph is applicable in the elastic

range for aluminum alloy.

From eauations (1) and (3) the maximum membrane compressive

stress is

t
= 2/ I,: -- cos _ (4)

c r r 1

Figure 3.2-2a is a n()mograph of equation (.1) to determine the critie:,l ,'Lxial

stress wh,_n lhc _hvll thickness, small radius, a_(! ._(,mivurtex an_tv are km)wn.

The f()ll,:win:4 cx:lpap](_ shrews the use of the nomo:_,r:lph. A conical shell hz_s a

thiel_m,ss (t) of 0.0[; in., a small radius (r 1) of 40 in., and a semiverlox

anglo of 6flde_4. [kq(:rmin(; the criliea] compre:_,ive slrc. _'_ ru, sultiniz from an

axial force. ()n the nomograph of I:i?ur(_ 3.2-'2 join .lfl (m the r 1 scale with

0.06 on the t scale and extend the line until itmcels line QR . l'r[,v_ this

point draw a line to (;0 (leg_n the scale. This line inl_,rs(.ets th(, ,J sc:,leec

at 2600 psi, which is the critical t)uckliJ,;Z stress.

Figxlre 3.2-21) is u<.cful if th(, :_tress lalls inl,_ the t,lasti(: r:un_z(' I',)r

the three materials shown.

3.2.1.2 Ben(ling.

For conical shells in bending, bucklin ,,"(_ccur_; when tim m:_>dm:lm

compressive stress at the small end of the cone is eaual t() the critica! c,)m-

pressive stress of a cylinder having the same wall thickness an(l the same l,)cal

radius of curvature. The buckling mom,,nt is given I)y

M : T 7r Et 2 r 1 cos 2 f_'
cr [ 3 (1_1_2) ]1/2 (5)



Section C3.0

December 15, 1970

Page 64

t (In.)

.03 --

,10

.2O

,30

_0-

Per (IW|

1000

100O0

-- _,,,,

qm

100 000

10ooo00

70

--eO

• SO

40

3O

2O

--10

FIGURE 3.2-1. CRITICAL AXIAL LOAD FOR LONG CONICAL SHELL

(ALUMINUM ALLOY MATERIAL), E = 10.4 x 106 psi

with the theoretical value of -y equal to unity. Based on experimental data [6 ]

it is recommended that the coefficient _/ be taken as the constant value,

_/ = 0.41 (10 deg < _ < 60 deg) (6)
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FIGURE 3.2-2b. BUCKLING OF ISOTROPIC CONICAL SHELL

UNDER AXIAL COMPRESSION
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Buckling load coefficients for cone semivertex angles greater than

60 deg must be verified by test. Buckling coefficients for equivalent cylindrical

shells in bending can be used with semivertex angles less than 10 deg. For

conical shells subjected to plastic stresses, the correction suggested for conical

shells in axial compression may be used.

The buckling moment M may be obtained from the nomograph ofcr

Figure 3.2-3, when the shell thickness t , the small radius r I , and the

semivertex angle (_ are known. The lines 1 and 2 on Figure 3.2-3 show the

proper sequence of parameter alignment. This illustration can also be used for

design purposes when a moment is given and a required thickness is needed.

3.2.1.3 Uniform Hydrostatic Pressure.

The theoretical buckling pressure of a conical shell which buckles

into several eircumferentialwaves (n> 2) can be expressed [7] in the approxi-

mate form

Pcr
0.92 E T (7)

Experiments [8, 9] show a relatively wide scatter band for the value

of _, but indicate that the constant value

3/ : 0.75 (8)

should provide a lower bound for the available data.

solution to equation (7) for values of p/t and L/p .

cable in the elastic range only.

Figure 3.2-4 gives the

The curves are appli-
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For conical shells which buckle in the plastic range, the plasticity

correction for moderate-length cylindrical shells may be used for the range of

the conical shell geometries considered. The procedure is to use the E 1

curves in Paragraph 3.1.6. The moduli should correspond to the maximum

circumferential compressive stress at the large end of the conical shell:

= (_/t) (9)max Pcr

3.2.1.4

[10] is

To rs ion.

An approximate equation for the critical torque of a conical shell

(t)1/3 ( r)S/,Tcr = 52.8_/D -_ _- (10)

where

r = r_ cos r__ - 1/2_1 + rl r21 + 1/2(1 rl ) 1/3 -t/2

(11)

The variation of r/r 2 cos _ with rl/r 2 is shown in Figure 3.2-5. For design

purposes it is recommended that the torsional-moment coefficient in equation

(10) be taken as tim constant value

_/ = 0.67 (12)

Figure 3.2-6 is a nomograph devised to determine the buckling

torque of a conical shell (equation 10) when t, t/_, and r/t are known.
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FIGURE 3.2-5. VARIATION ()F r/r 2 cos c_ WITH rj/r 2

No data are available for the plastic buckling of conical shtqls in

torsion. The plasticity factor used for cylindrical shells in torsi<m ._h(,uld,

however, give conservative results. The secant modulus should corresp,md to

the maximum shear stress at the small end of the cone, given by

T
cr

_'cr - 2r rt 2 t
(13)
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FIGURE 3.2-6. ALLOWABLE TORQUE FOR CONICAL SHELL

(E = I0.4× 108)

3.2.1.5 Combined Loads.

I. Pressurized Conical Shells in Axial Compression.

The theory for predicting buckling of internallypressurized conical

shells under axial compression [II] differsfrom thatfor cylindricalshells in

two respects. First, the axial load-carrying capacity is a function of internal
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pressure and exceeds the sum of the load-carrying capacity of the unpressurized

shell and the pressure load at the small end of the cone. Second, results of

analyses for conical shells indicate that edge conditions at the small end have a

significant effect on the axial load-carrying capacity. The results are indepen-

dent of edge conditions at the large end for long cones.

There are insufficient data to warrant design use of the entire in-

crease in load-carrying capacity of internally pressurized conical shells. It

is therefore recommended that the critical axial compressive load for a pres-

surized conical shell be determined by adding the pressurization load Tr rl 2 p

at the small end of the cone to the compressive buckling load at the conical

shell. Then

::[ Y + Ay]Pcr d 3 (l-p2)
(2_ Et 2 cos 2 (_) +Tr rl 2 p (14)

The unprcssurized compressive-buckling coefficient y is equal to 0.33, and

the increase in the buckling cocfficient A_/ for the equivalent cylindrical sholl

is given in Figure 3.2-7. The critical axial load may be increased above the

value given by equation (14), however, if the increase is justified by test.

II. Pressurized Conical Shells in Bending.

As in the case of unpressurized conical shells subjcct('(l t(, pure

bending, no theory has yet been developed for pressurized conical shells under

bending. For conservative design, therefore, the desi_,m moment ()f the pres-

surized conical shell is written us

Mpress _1'3 1-_ 2 2

(_5)



Section C3.0

December 15, 1970

Page 74

1.0 III III
III III

7 111 111
111 Ill

s III J[[
I!1 II1
I1[ JlJ
Ill 111

2 IlJ __

Ill ill
0.10 ] [_'_ ] i l

J_rl Ill
7 ]_lll ' ' Ill

._ I11 I IT
5 / IIJ I]]

/ 1[I ill

• 111 I[[
2 / IIJ Itl

111o.o, Ill IlJ
2 3 5 7 2 3 5 7

0.01 0,10 1.0

r I 2

3 5 7

I0

FIGURE 3.2-7. INCREASE IN AXIAL COMPRESSIVE BUCKLING-

STRESS COEFFICIENTS OF CONICAL SHELLS RESULTING

FROM INTERNAL PRESSURE

The unpressurized compressive-buckling coefficient y is equal to 0.41, and

the increase in buckling coefficient Ay for the equivalent cylindricalshell

can be obtained from Figure 3.2-7.

III. Combined Axial Compression and Bending for Unpressurized and
Pressurized Conical Shells.

Some experimental interaction curves have been obtained for un-

pressurized and pressurized conioal shells under combined axial compression

and bending [6]. These investigations indicate that the following straight-line
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interaction curve for conical shells is adequate for design purposes:

1970

Rc +Rb=l (16)

where

P
R __

c P
CF

(17)

and

M

Rb M
cr

For equations (17) and (!_),

P

P
cr

M

M
cr

np!)liod e()mpressive hind.

critic31 compressive load for cone not sut)je('ted Io b('n,lin_,

oblain(,(l from equntions (1) and (2) for unpressurized

shells, :ln(l groin cqu:/tion (14) for pressurizl,(l sh_Hls.

applied bendin_ mon_('nt.

critical moment for cone m.,t subjected to a.xi;ll compr(,_-

sion, as obtained from eqtmtions (5) and (C,) for unpres-

surized,shells, and from equation (15) for pressurized

shells.

If actual test values of P and M are used, the straight-line int(,r_ction
cr cr

curve may no longer be conservative, and the entire interaction curve must be

substantiated by test.
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Combined External Pressure and Axial Compression.

For a conical shell subjected to combined external pressure and

axial compression, the relationship

1970

R + R = i (19)
c p

is recommended for design purposes. Where

P
R - (20)
p P

cr

P is given by equation (7) and (8), and R is given by equation (17).
cr c

V. Combined Torsion and External Pressure or Axial Compression.

For conical shells under combined torsion and external hydrostatic

pressure the following interactionformula is recommended for design purpose:

R t + R = i (2i)P

with

T
Rt- T (22)

cr

where T is given by equations (10), (11), and (12), and R is given by
cr p

equation (20).

For conical shells under combined torsion and axial compression,

the following interaction formula is recommended for design purposes:

where

R t + Rc = i (23)

R t is given by equation (22) and R by equation (17).
c
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3.2.2 ORTHOTROPIC CONICAL SHELLS.

The theory of buclding of orthotropic conical shells is valuable in

determining adequate buckling criteria for shells which are geometrically

orthotropic because of closely spaced meridional or circumferential stiffening,

as well as for shells constructed of a material whose properties differ in the

two directions. An extension of the Donnell-type isotropic conical shell theory

to conical shells with material orthotropy is given in Reference 12, whereas

buckling of conical shells with geometric orthotropy is considered in Reference

13. Numerical results are limited to only a few values of the many parameters,

but these provklc the basis for tentative generalizations. Few cxpcrimcnls

have been conducted. Following arc the design reeommen(lations Rased on tim

limited data available. 'File computer programs discussed in Subsection 3.,1

are also recommended.

3.2.2. 1 Uniform II_'drostatic Pressure.

I. Constant-Thickness Orthotropic Material.

A limited investigation [14] indicates that the rc!uti, m_;hip lxctwccn

the theoretical bucMing pressures of an orthotropic conical shell ami of the so-

called equivalent orthotropic cylinder is similar to that between the buckling

pressures of an isotropic conical shell and of the equivalent isotropic cylinder.

In both eases the equivalent cylinder is defined as one having a length ,'qual to

the slant length, L, of the conical shell; a radius equal to the avcragu radius

of curvature, _ , of the conical shell, and the same thickness. Thus, the

theoretical hydrostatic buckling pressures for supported moderate-lengl.h

orthotropic conical shells [15, 16] can be expressed as

Per _ _0"86T ,/, a/4 (I_,)(t) 5/2
_,[1 PsPO _]_'/a ES E0 , (24)
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which reduces to the corresponding expression for the isotropic cone when

E =E =E
8 e

l_s = _ 0 = I_

(25)

Only limited experimental data exist for conical shells constructed

for an orthotropic material [17]. In the absence of a more extensive range of

test results, it is recommended that the value of the correlation coefficient 7

be taken as 0.75 for both orthotropic and isotropic cones.

II. Stiffened Conical Shells.

The stability of conical shells stiffened by rings under uniform

hydrostatic pressure has also been investigated [ 13, 18]. In these investiga-

tions, all rings were assumed to have the same cross-sectional shape and area

but could have variable spacing. The approximate buckling formulas given in

these references are not recommended for use in design until a larger amount

of substantiating test data becomes available.

3.2.2.2 Torsion.

I. Constant-Thickness Orthotropic Material.

The investigation reported in Reference 19 indicates that the

theoretical buckling torque of an orthotropic conical shell is approximated by

that of an equivalent orthotropic cylinder having a length equal to the height, I,

of the conical shell and having the same thickness and radius given in equation

(11). Refer to Figure 3.2-5 for the variation of r with r-t
rz cos o_ rz
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The critical torque of a moderate-leng-tb orthotropic conical shell

may then be approximated by the expression

E 5/a E a/a r2t 5/4 1/2

A reduction factor of "/ - 0. _;7 (the value given for isotr,,pi_' conical

shells) is recommended. The few data points available for fib_.'r_lass-reirfforced

epoxy conical shells [17] yielda larger value of "/ but fallwitl,in the s_:att-r

band for the isotropic sh_.'ll of constant thickness.

II. Ring-Stiffened (7onic'd Shells.

Although no accurate theoretic'_i calculations have b(,.(,n : _,_._ie fo_-

ring-stiffened c_)nical shells in torsi,)n, n few t(:sts [17] indicate that wh,m ih(_

rings are equally spaced and have the same cross-secti(m:,l shnt)(, nnd :_rc.a, a

procedure similar to that for the mqt(_rially orthotropic c'(mical sh(_ll vii' 3 i.,,ld

adequate results. The critical torque ()1' such a rinb_-stiffon(.'d c'_)nicaI sbeql may

thus be approximated by the critical torque of a ring-stiffcm,,! cvlind(,r h,qvin!:

the radius, leng{h, and thickness described above. The criticql t()rrl_.e o1:_

ring-stiffened cone with uniformly spaced rings is then giv(m by

T : 4.57y 5/_ 1 +rl0
cr (l,-PspO)

where (Fig. 3.2-8)

I_:[r ITor_ Ar (Zr- er) 21 (__)277o = 12(1-P2) -E-- + I_ t t + 12
o

(28)

and the factor T is recommended to be taken equal to 0.67. The few available

test results also indicate a larger value of T , but these again fall within the

scatter band for the isotropic conical shell of constant thickness.
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FIGURE 3.2-8. NOTATION FOR RING-STIFFENED CONICAL SHELLS

3.2.3 SANDWICH CONICAL SHELLS.

If the sandwich core is resistant to transverse shear so that its

shear stiffnesscan be assumed to be infinite,the previous results for isotropic

and orthotropic conical shells may readily be adapted to the analysis of sand-

wich conical shells by the following method.

3.2.3. I Isotropic Face Sheets.

If the core is assumed to have infinite transverse shear stiffness

and no load-carrying capacity in the meridional or circumferential directions,

the analysis for isotropic conical shells of constant thickness may be used for

isotropic sandwich conical shells of constant thickness. An equivalent modulus

and thickness must be defined for the sandwich shell. The face sheets may be
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of different thicknesses and of different materials, subject to the restriction

that the Poisson's ratios of the two materials be identical. If the stretching

and bending stiffnesses of such an isotropic sandwich shell are equated to the

stretching and bending stiffnesses of an equivalent constant-thickness isotropic

shell having the same neutral surface dimensions, then

F t = E1h + E2_ {29a)

Q

E(_) = h 2
12 !

Elh E_t2

Then the modulus and the thickness ¢.f '._c equivalent conatant-thmkncss is_tro-

pic shell are

E2h

E = E_.____+__+E_.__

L

The bucl:lia_ load:_ of the i_tr._9ic sandwich sh_,]l may now l,_: 'a_.e _

as the buckling loads of the equiv _ler, t isotrop_c _;he[l of constant thick::e_ a_

listed be.low.

L_:3 .rl

Axial Comnression

Bending

Uniform hydrostatic pressure

P:, ra_-a__b P,eferer_t.e

3.2.1.1

3.2.1.2

3." 1 3



Load

Torsion

Pressurized conical shells in axial compression

Pressurized conical shells in bending

Combined axial,compression and bending for

unpressurized and pressurized conical shells

Combined external pressure and axial compression

Combined torsion and external pressure or axial

compression
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Paragraph Reference

3.2.1.4

3.2.1.5-I

3.2.1.5-II

3.2.1.5-V

In the absence of experimental data, the reduction or correlation

factors for isotropic shells of constant thickness are recommended for isotro-

pic sandwich shells.

3.2.3.2 Orthotropic Face Sheets.

If the core is assumed to have infinite transverse shear stiffness

and no load-carrying capacity in the meridional or circumferential directions,

the available results for conical shells of constant-thickness orthotropic mate-

rial may be used for sandwich conical shells having orthotropic faces. The

face sheets may be of different thicknesses but of the same orthotropic material

as long as their principal axes are oriented in the same direction. The same

procedure as for sandwich shells having isotropic face sheets leads to the

following thickness and material properties of the equivalent materially ortho-

tropic conical shells of constant thickness:

j_- + j-_-tl (31a)
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(31b)

is _o
- - 1 (31c)

#s #0

The buckling load of the orthotropic sandwich conical shell is then

the buckling load of the equivalent conical shell of orthotropic material having

constant thickness. The reduction or correlation factors for isotropic shells

of constant thickness are recommended for use for sandwich shells with ortho-

tropic face sheets.

3.2.3.3 Local Failure.

Thus far, only overall buckling has been considered as a criterion

of failure. Other modes of failure are possible, however. For honeycomb-

core sandwich shells, failure may occur because of core crushing, intracell

buckling, and face wrinkling. The use of relatively heavy cores (6 > 0.03)

will usually prevent core crushing. Lighter cores may prove to be justified as

data become available. No studies have been conducted that predict localized

buckling failures under stress states that are a function of position. If we

assume, however, that the stress state varies only slightly over the buckled

region, the following approxlmate equations developed for cylindrical shells

can be used to predict failure from intracell buckling and face wrinkling of

heavy honeycomb-core sandwich conical shells with equal-thickness face sheets

under uniaxial loading. For intracell buckling

(32)
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is the core cell size expressed as the diameter of the largest in-

scribed circle and

4 Ef Eta n

E R = (33)
_f'Ef + _-'_tan 2

where Ef and Eta n are the elastic and tangent moduli of the face-sheet

material. If initial dimpling is to be checked, the equation

(_s = 2"2ER (_) 2 (34)

should be used. The sandwich will still carry Loads if initial dimpling occurs.

For wrinkling

Os = 0.50 (Esec Ez Gsz )l/_ (35)

where E is the modulus of the core in a direction perpendicular to thez

plane of the core, and G is the transverse shear modulus of the core. If
sz

biaxial compressive stresses are applied to the sandwich, the coefficients of

equations must be reduced by the factor (1 + i¢)-1/3 , where f is the ratio

of minimum to maximum principal compressive stress in the face sheets.

Wrinkling and intracell-buckling equations which consider strength

of bond, strength of foundation, and initial waviness of the face sheets are

given in References 20, 21, and 22.

The plasticity correction factor given for isotropic conical shells

in axial compression may be applied also to isotropic sandwich conical shells.

The factor is applicable to sandwich cones with stiff cores and becomes some-

what conservative as the shear stiffness of the core is decreased [23].
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3.3 DOUBLY CURVED SHELLS.

Doubly curved shells are frequently used in space vehicles as

external closures of fuel tanks or entry vehicles or an internal common bulk-

heads. When doubly curved shells develop compressive membrane forces in

reaction to externally applied loads, their load-carrying capacity is often

limited by structural instability, or buckling.

The buckling strength of a doubly curved shell depends upon its

curvature, its geometric proportions (including the stiffening, when present),

the elastic properties of its materials, the manner in which its edges are

supported, and the nature of the applied loading. Initial, although small,

geometric deviations of the shell from its ideal shape can have a significant

adverse effect on the buckling strength of doubly curved shells and can cause

large scatter of experimental results.

This paragraph recommends practices for design of compressively

loaded doubly curved shells. Included arc practices recommended for the

design of complete spheres, ellipsoids, and toroids, as well as bulkheads.

Most of the data are for shells subjected to uniform pressure loads, although

data are also given for point loads on spheres.

The reduction of critical buckling loads caused by imperfections,

small dynamic oscillations, boundary conditions, and the like is usually

accounted for by multiplying the theoretical buckling loads by a correlation

factor to obtain a lower-bound conservative estimate. However, when insuf-

ficient data are available to obtain correlation factors, testing is recommended

to verify the design. Experimental verification is also recommended for

shells of arbitrary shape and for shells of revolution having cutouts, joints,

plasticity effects, and nonuniform shell stiffness. The effect of small oscil-

lations in applied loading is considered to be accounted for by the correlation

factor.
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For doubly curved shells, considerable capabilityfor theoretical

analysis is available although experimental investigationsof the stabilityof

doubly curved shells lag far behind analytical capabilities;the shallow spherical

cap under external pressure is the only problem which has been investigated

extensively.

The growing use of digitalcomputers for analysis of shell structures

has greatly improved the available analyses which can be performed. For

example, a comprehensive computer program, BOSOR 3, [I] performs a

stabilityanalysis of segmented, ring-stiffened shells of revolution. The pro-

gram is quite general with respect to types of loading, geometry, boundary

conditions, and wall stiffnessvariation. All the programs for doubly curved

shells, including both finite-differenceand finite-element, treat only those cases

in which the shell does not become plastic before buckling.

Although the capabilityfor stabilityanalysis has increased, param-

etric optimization studies for problems of interest are lacking. This may well

be because of the relative newness of most computer programs. To date, most

computer programs have been used for spot checks of approximate solutions and

for comparisons with experimental data.

The designer is advised to be alert to new developments in shell-

stabilityanalysis.

3.3.1 ISOTROPIC DOUBLY CURVED SHELLS.

Unstiffened isotropic doubly curved shells subjected to various con-

ditions of loadings are considered in this paragraph. Solutions are limited to

spherical, ellipsoidal, and toroidal shells.

3.3. I.1 Spherical Caps Under Uniform External Pressure.

The buckling of a spherical cap under uniform external pressure

(Fig. 3.3-1) has been treated extensively. The theoretical results are pre-

sented in References 2 and 3 for axisymmetric snap-through of shallow spherical
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shells with edges that are restrained

against translation but are either free to

rotate or are clamped. Results for asym-

metric buckling are given in References

4 and 5 for the same boundary conditions.

The results reported in these references

are presented as the ratio of the buckling

pressure Pcr for the spherical cap and

the classical buckling pressure Pc/ for

a complete spherical shell as a function

of a geometry parameter X :

Pcr
- f(_)

Pc_

(1)

with

2Pci = [3(1 - _2)]1/2 E , (2)

k = [12(1 -p2)]I14 (R/t)t/2 2 sin -_
2

(3)

where _ is half the included angle of the spherical cap (Fig. 3.3-1). The

function f(k) depends on the boundary conditions imposed on the shell.

Most of the available test data apply to spherical shells, and the

values are lower than the theoretically predicted buckling pressures. The

discrepancy between theory and experiment can be attributed largely to initial

deviations from the ideal spherical shape [3, 6, 7] and to differences between

the actual and assumed edge conditions [8, 9]. Most of the available data are
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summarized in Reference i0; some other test results are given in References

6 and 11. A lower bound to the data for clamped shells is given by

Per

Pc/
-0.14 +._2 (k > 2) . (4)

This curve is plotted in Fi._are 3.3-2. Whereas the k parameter is used in

shallow-shell analysis, Figure 3.3-2 may be applied to deep shells as well as

to shallow shells.
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]FIGURE 3.3-2. RECOMMENDED _E$iGN PUCKLI,_:G

PREF_SUR,T, C_" SPXERICAL CAPS

3.3.1.2 Spherical Caps Under Conc:ntrated Lo,_'] at the Apex.

Snherical caps under concentrated load at the apex (Fig. 3.3-3)

will buckle under certain conditions. The theoretical results for edges that

are free to rotate and to expand in the direction 'normal to the axis of revolution,
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and for clamped edges, are given in

Reference 12 for axisymmetric snap-

through and in References 13 and 14 for

asymmetric buckling. Experimental

results for loads which approximate con-

centrated loading are described in

References 15 to 19.

For shells with unrestrained

edges, buckling will not occur if )_ is

less than about 3.8. In this range of

shell geometry, deformation will in-

crease with increasing load until col-

lapse resulting from plasticity effects

occurs. For shells with values of

FIGURE 3.3-3. GEOMETRY OF

SPHERICAL CAP UNDER

CONCENTRATED LOAD AT THE

APEX greater than 3.8, theorctical and experi-

mental results are in good agreement for axisymmetric snap-through but dis-

agree when theory indicates that asymmetric buckling should occur first. In

this case, buckling and collapse are apparently not synonymous, and only

collapse loads have been measured. A lower-bound relationship between the

collapse-load parameter and the geometry parameter for the dnta of References

13, 15, and 16 for shells with unrestrained edges is given by

P r
cr 1

E t3 24
x2 (4 =-__. _ is) (5)

For spherical caps with clamped edges, theory indicates that

buckling will not occur if )_ is less than about 8. For values of )_ between

8 and 9, axisymmetric snap-through will occur, with the shell continuing to

carry an increasing load. For larger values of )_ , asymmetrical buckling
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will occur first,but the shell will continue to carry load. Although imperfec-

tions influence the initiationof symmetric or asymmetric buckling, few mea-

surements have been made of the load at which symmetric or asymmetric

deformations firstoccur. Experimental results indicate that the collapse loads

of clamped spherical caps loaded over a small area are conservatively esti-

mated by the loads calculated in Reference 13 and shown in Figure 3.3-4.

When the area of loading becomes large, large buckling may occur at a lower

level.

18

\
10

4 6 8 10 12 14 16 18 20

a_
v

A

25

FIGURE 3.3-4. THEORETICAL BUCKLING LOADS FOR

CLAMPED SPHERICAL CAP UNDER

CONCENTRATED LOAD

3.3.1.3 Spherical Caps Under Uniform External Pressure and Concentrated

Load at the Apex.

Clamped spherical caps subjected to combinations of uniform exter-

nal pressure and concentrated load at the apex are discussed in Reference 20.

The experimental and theoretical data given there are insufficient, however,

r
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A straight-line interaction curve is recommended:

P
+-2--= I

P
cr Per

(6)

where P is the applied concentrated load, p is the applied uniform pressure,

Per the critical concentrated load given in Paragraph 3.3. i.2, and Pcr the

critical uniform external pressure given in Paragraph 3.3. I. I.

3.3. I.4 Complete Ellipsoidal Shells Under Uniform External Pressure.

Ellipsoidal shells of revolution subjected to uniform external pres-

sure, as shown in Figure 3.3-5, are treated in Reference 21. Calculated theo-

retical results for prolate spheroids are shown in Figures 3.3-6a and 3.3-6b.

Experimental results given in Reference 22 for prolate spherical shells with

4 > A/B > 1.5 are in reasonably close agreement with the theoretical results

of Reference 21. For A/B- 1.5, the theoretical pressure should be multi-

plied by tilefactor 0.75 to provide a lower bound to the data. The results given

in Reference 23 for half ()fa prolate spheroidal shell (A/B = 3) closed by an

end plate are in good agreement with those for the complete shell.

AXIS OF

REVOLUTION

J

/
a. Prolate spheroid A>B

FIGUHI': 3.3-5.

l AXIS OF
REVOLUTION

B

b. Oblate spheroid B>A

GEOMETRY OF ELIAPSOIDAL SHELI,S
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FIGURE 3.3-6a. THEORETICAL EXTERNAL BUCKLING

PRESSURES OF PROLATE SPHEROIDS (# = 0.3)
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FIGURE 3.3-6b. THEORETICAL EXTERNAL BUCKLING PRESSURES

OF PROLATE SPHEROIDS (p =:0.3) FOR A/B RATIO OF 1:6
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The analysis of Reference 21 indicates that theoretical results for

thin, oblate spheroidal shells are similar to those for a sphere of radius

B _

RA- A " (7)

The data of Reference 24 show that the experimental results are

similar as well. Thus, the external buckling pressure for a thin, oblate

spheroid may be approximated by the relationship

_J3 (1 -_t 2) P = 0.14 (8)
2 E '

which is the limit of equation (4) as h becomes large.

3.3.1.5 Complete Oblate Spheroidal Shells Under Uniform Internal
Pressure.

When the ratio A/B of an oblate spheroid is less than _f2"/2 ,

internal pressure produces compressive stresses in the shell, and hence

allows instability to occur. The theoretical values of the critical internal

pressures given by the analysis of Reference 21 are showri in Figure 3.3-7.

No experimental results are available, but the study of the imperfection sensi-

tivity of Reference 21 indicates that there should be good agreement between

theory and experiment for shells with 0.5 < A/B < 0.7.

3.3.1.6 E!lipsoidal and Torispherical Bulkheads Under Internal Pressure.

Clamped oblate spheroidal (ellipsoidal) bulkheads (Fig. 3.3-8)

may have the ratio of length of minor and major axes (A/B) less than _-2/2

without buckling under internal pressure, provided that the thickness exceeds

a certain critical value. This problem is investigated in Reference 25.
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FIGURE 3.3-7. THEORETICAL BUCKLING PRESSURES OF OBLATE

SPHEROIDS UNDER INTERNAL PI:_ESSURE (p -- 0.3)
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FIGURE 3.3-S. CLAMPED

ELLIPSOIDAL BULKIIEAD UNDER

INTERNAL PRESSURE

A nonlinear bending theory is used to

determine the prebuekling stress distri-

bution. The regions of stability are

shown in Figure 3.3-9; the calculated

variation of buckling pressure with

thickness is shown in Figure 3.3-10.

The theory has not been verified by

experimental results, h_wev(;r, :tnd

sb(_uld be used cautiously.
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FIGURE 3.3-9. REGION OF STABILITY FOR ELLIPSOIDAL

CLOSURES SUBJECTED TO INTERNAL PRESSURE (# = 0.3)

Torispherical end closures (Fig. 3.3-11) are also investigated in

Reference 25. Calculations are made for the prebuckling stress distribution

in these bulkheads for ends restrained by cylindrical shells and for buckling

pressures for torispherical bulkheads with clamped edge conditions after

buckling. The results are shown in Figure 3.3-12. The experimental results

of Reference 26 indicate that the theoretically predicted buckling pressures

should be multiplied by a correlation factor T equal to 0.7.

3.3.1.7 Complete Circular Toroidal Shells Under Uniform External
Pressure,

The complete circular toroidal shell under uniform external pres-

sure {Fig. 3.3-13) has been investigated and is described in Reference 27;

the theoretical results obtained are shown in Figure 3.3-14.
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FIGURE 3.3-11. GEOMETRY OF TORISPHERICAL CLOSURE

The experimental results are given in Reference 27 for values of

b/a of 6.3 and 8 and indicate good agreement with theory. For values of b/a

equal to or greater than 6.3, the theoretical buckling pressure should be

multiplied by a factor of 0.9 to yield design values. This correction factor has

been recommended in Reference 28 for long cylindrical shells which correspond

to a value of b/a of _. For values of b/a less than 6.3, the buckling pressure

should be verified bytest.

3.3.1.8 Shallow Bowed-Out Toroidal Segments Under Axial Loading.

A bowed-out equatorial toroidal segment under axial tension

(Fig, 3.3-15) will undergo compressive circumferential stress and will thus

be susceptible to buckling. An analysis for simply supported shallow segments

is given in Reference 29 and yields the relationship
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FIGURE 3.3-14. THEORETICAL BUCKLING COEFFICIENTS FOR

TOROIDAL SHELLS UNDER UNIFORM EXTERNAL PRESSURE
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N£ 2 1

:_3D - ,)
[ 2 2a(t +f12) + 12 _4 1 +/3 2 (9)

where the correlation coefficient 7 has been inserted to account for discrep-

ancies between theory and experiment. The values obtained by minimizing

equation (9) with respect to /3 are shown in Figure 3.3-15. The straight-line

portion of the curves is represented by the relationship

N_ 2 4_f-3

n2D - _2 vz (_o)
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A similar analytical investigation described in Reference 30 for clamped

truncated hemispheres in axial tension yields results in close agreement with

those for the curve of Figure 3.3-15 for r/a = I .

The experimental results for the truncated hemisphere given in

Reference 30 indicate that the correlation coefficient for the curve for r/a

equals 1 is

= o.35 (11)

The same value of the correlation coefficient may be used for other values of

r/a.

Some results for bowed-out equatorial toroidal segments under

axial compression are given in Reference 31; the equatorial spherical shell

segment loaded by its own weight is treated in Reference 32.

3.3.1.9 Shallow Toroidal Segments Under External Pressure.

The term "lateral pressure" designates an external pressure

which acts only on the curved walls of the shell and not on the ends; "hydro-

static pressure" designates an external pressure that acts on both the curved

walls and the ends of the shell. Expressions for simply supported shallow

equatorial toroidal segments subjected to uniform external lateral or hydro-

static pressure (Figs. 3.3-16 and 3.3-17) are given in Reference 33 as

P ri 2
cr 1

_D - #2
rfl2)

1+--

2 12 _/2Z 2 . a
(1 +#2) +-_ 1+#5 (12)

for lateral pressure, and as

P r_ 2or i

_2D -
#2(1_ 1/2r)+ 1/2

(13)
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for hydrostatic pressure. In equations (12) and (13), the upper sigm refers

to segments of type (a) of Figure 3.3-18, whereas tile lower sign refers to

segqnents of type (b) of Figure 3.3-18. The correlation coefficient ,/ has

been introduced to account for discrep'meies between theory and experin_ent.

The results of minimizing the buckling pressure with respect to the circum-

ferential wavelenigth parameter [_ are shown in Figures 3.3-16 and 3.3-17.

The straight-line portions of the curve for the shells of type (a) of l.'igure

3.3-18 arc represented by the relationships

p r/cr 4 x]'-3 r
- 3' Z (lateral pressure) (14a)

_I) 2 a

Per ri 2 8 ,_" r

v2D r a
2-- --

a

3/Z (hydrostatic pressure) (14b)
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No experimental data are available except for the cylindrical shell,

for which a correlation factor of

2/ -- 0.56 (15)

was recommended in Reference 28. The same correlation factor can be used

for shells with r/a near zero but should be used with caution for shells of

type (b) with values of r/a near unity. For shells of type (a) with values of

r/a near unity, the shell can be conservatively treated as a sphere, or the

buckling pressure should be verified by test.

--.._j
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3.3.2 ORTHOTROPIC DOUBLY CURVED SHELLS.

The term "orthotropic doubly curved shells" covers a wide variety

of shells. In its strictest sense, it denotes single- or multiple-layered shells

made of orthotropic materials. In this section, the directions of the axes of

orthotropy for shells of revolution are assumed to coincide with the meridional

and circumferential directions of the shell. The term also denotes types of

stiffened shells in which the stiffener spacing is small enough for the shell to

be approximated by a fictitious sheet whose orthotropic bending and extensional

properties include those of the individual stiffening elements averaged out over

representative widths or areas.

The behavior of the various types of orthotropic shells may be

described by a single theory, the governing equations of which are equations

of equilibrium for the buckled structure, and relationships between force and
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moment resultants and extensional and bending strains. The matrix equation

relating the inplane forces and bending moments to the inplane strains and

curvatures for shells of revolution with axes of orthotropy in the meridional

and circumferential directions can be written in the following form:

C1_ Ci2 0 Ci4 Cls 0

Ct2 C22 0 C24 C2s 0

0 0 Ca3 O- 0 0

Ct4 C24 0 C44 C45 0

C15 C25 0 C45 C55 0

0 0 0 0 0 C66 J

(16)

Zero entries in the preceding matrix generally refer to coupling

terms for layers whose individualprincipal axes of stiffnessesare not aligned

in meridional and circumferential directions. The values-of the various elastic

constants used in determining buckling loads of orthotropic shells are different

for differenttypes of construction. Some widely used expressions are given

in References I and 34.

The theory for single-layered shells of orthotropic material is

similar to thatfor ihotropic shells since the coupling terms C14 , Ct5 , C24 ,

and C25 may be set equal to zero. For stiffeneddoubly curved shells or for

shells having multiple orthotropic layers, this is not generally possible, and

it is shown in References 35 and 36 that the neglect of coupling terms can

lead to serious errors. For example, the inclusion of coupling terms yields

a significant difference in theoretical results for stiffened shallow spherical-

dome configurations having stiffeners on the inner surface or on the outer sur-

face. The difference vanishes when coupling is neglected.
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Very littletheoretical or experimental data are available for ortho-

tropic and stiffened doubly curved shells. The general instability loads of

pressurized shallow spherical domes with meridional stiffeners are determined

in Reference 37, and a semiempirical design formula is given in I_eference 38

for stiffened spherical caps. This formula closely approximates the test data

given in Reference 38. Buckling loads are given for grid-stiffened spherical

domes in Reference 39. References 37 and 39 do not include the effect of

stiffener eccentricity.

Stiffener-eccentricity effects are investigated in Reference 35 for

grid-stiffened spherical domes. Eccentrically stiffened shallow equatorial

toroidal shells under axial load and uniform pressure are investigated in

Reference 40. The development of a buckling computer program that includes

coupling as well as nonlinear prebuekling bending effects for orthotropie shells

of revolution is discussed in References i and 34. A further description of

this program is given in Subsection 3.4. (The cards and a computer listing for

this program are available from COSMIC, University of Georgia, Athens, Ga. )

Numerical results obtained from this program [34] were in good agreement

with selected experimental results. The computer program can be used to

determine the buckling load of the following orthotropic shells:

1. Shells with ring and stringer stiffening.

2. Shells with skew stiffeners.

3. Fiber-reinforced (layered) shells.

4. Layered shells (isotropic or orthotropic).

5. Corrugated ring-stiffened shells.

6. Shells with one corrugated and one smooth skin (with rings).
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Boundary conditions may be closed at one or both ends or may be

free, fixed, or elastically restrained. Edge rings are permitted on the bound-

ary or as discrete rings in the shell.

This computer program can be used in conjunction with experi-

mentally determined correlation factors to obtain buckling loads for orthotropic

shells of revolution. The limitations of the program are given in References 1

and 34 and are also discussed in Subsection 3.4.

The design recommendations that follow are limited to spherical

domes; the recommendations should also be verified by test, where feasible.

The possibility of local buckling of the shell between stiffening elements should

be checked.

The investigation of Reference 39 gives the theoretical buckling

pressure of a grid-stiffened spherical dome under uniform external pressure.

This analysis assumes that the spherical dome is "deep" and that it contains

many buckle wavelengths. In thiscase, the boundary conditions have little

effect on the buckling load. Eccentricity effects are neglected. Experimental

results given in Reference 24 tend to support the assumptions of the analysis.

If the analysis of Reference 39 is extended to the materially or

geometrically orthotropic shell, the hydrostatic buckling pressure can be

expressed as

1 +2 CL_ +Cs_ + C__ 1/2
Pr_ I/2 = 4_ C_A CaA

C44 _1 1 + C-22 + 2 C--2z ) (17)

where

¢_ = C2_r2 ( 1- C222 ) , (18a)C44 C11 C22
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2 Ca._

_2 = C22 C12 C_._ " ( 18b)
I- -2 ""

CIt C22 C11 C22

The constants Cll , Ct2 , C22 , C33 , C44 , C45 , C55 , and C66 are

defined in Reference 34 for the various materially and geometrically orthotropic

materials. Equation (17) does not include the effect of stiffener eccentricity

since the coupling terms Cf4 , Cls , C24 , and C25 in equation (16) have been

neglected. Only limited experimental data exist for geometrically or materially

orthotropic spherical domes subjected to hydrostatic pressure [24, 381. In

the absence of more extensive test results, it is recommended that the isotropic

spherical cap reduction factor shown in equation (4) also be used for the ortho-

tropic spherical shell. The correlation factor is given by

3.2

y = 0.14 + k2 (19)

Refer to Figure 3.3-2 for the plot of this equation. The effective shell thickness

to be used in obtaining ;_ is recommended as

4

x/ Ctj C22
(20)

3.3.3 ISOTROPIC SANI)WICIt DOUBLY CURVED SHELI.S.

The term "isotropic sandwich" desi_,mates a layered construction

formed by bonding two thin isotropic facings to a thick core. Generally, the

thin isotropic facings provide nearly all the bending rigidity of the conslruction.

The core separates the facings and transmits shear so that the facings bend

about a common neutral axis.
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Sandwich construction should be checked for two possible modes of

instability failure: (1) general instability failure where the shell fails with

core and facings acting together, and (2) local instability failure taking the

form of dimpling of the faces or wrinkling of the faces (Fig. 3.1-7).

3.3.3.1 General Failure.

If the sandwich core is resistant to transverse shear so that its

shear stiffness can be assumed to be infinite, the sandwich shell can be treated

as an equivalent isotropic shell. For unequal thickness facings, the equivalent

isotropic material thickness and modulus of elasticity are then given by

= _f_h , (21a)

E_t_h +
E 2 t2 E 1 t_

= Et t_ + E_ t_ (21b)

and for equal-thickness facings with the same modulus of elasticity, by

= _,f3"h , (22a)

_ 2Etf
E = ----r---- (22b)

4- h

These equivalent properties can be used in conjunction with the

recommended practices in Paragraph 3.3.1 and with the computer program of

Reference 34 to analyze isotropic sandwich doubly curved shells.
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Only one theoretical investigation which includes shear flexibility

is available. In Reference 41 the bucMing of a sandwich sphere comprised of

a core layer of low-modulus material and two equal face layers of high-modulus

material is discussed. Because there are insufficient theoretical and experi-

mental data, no design recommendations can be given for this case.

3.3.3.2 Local Failure.

Modes of failure other than overall buckling are possible. For

honeycomb-core sandwich shells, failure may occur because of core crushing,

intracell buckling, and face wrinkling. The use of relatively heavy cores

(5 > 0.03) will usually prevent core crushing. Lighter cores may prove to be

justified as data become available. Procedures for the determination of intra-

cell buckling and face-wrinkling loads are given in Reference 42.
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COMPUTER PROGRAMS IN SHELL STABILITY ANA LYSIS.

1970

The names of various digital computer programs are listed in

Table 3.4-1, which indicates their scope for a shell stability analysis. Three

classes of problems are specified: cylindrical shells, shells of revolution,

and general shells.

Table 3.4-1. Computer Programs for Shell

Stability Analysis

Types of Shells

Cylindrical
Shells

Symmetric System

Nonsymmetric Displacements

a
CORCY L

Shells of

R evolution

General Shell

DBS TA B a

SCAR

MARK IV

a
BOSOR

BOSO It 3

SABOR3-F

Nonsymmetric System

INTACT

STAGS

BERK3

NASTRAN

I/EXBA T

a. Programs available for use at Marshall Space Flight Center.

Often the stability analysis of cylindrical shells can be solved in

closed form. Those concerning shells of revolution can frequently be simpli-

fied by separation of variables. Variations in the circumferential direction

are assumed to be periodic, and the method of superposition is used for the

linear analysis of shells of revolution subjected to nonsymmetric loads. The

meridional variation is determined by series expansion, the method of finite
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differences, numerical integration, or the method of finite elements. For the

analysis of general shells, however, a two-dimensional numerical analysis is

required, since the variables cannot be separated. The core storage required

and the computer time per case increase very rapidly as the number of mesh

points or terms in a double series expansion increases.

Tables 3.4-2, 3.4-3, and 3.4-4 list the programs by name, cite

References 1 through 12 in which they are documented, specify the method of

numerical analysis used, and briefly describe the major features of the

analysis.

In general, CORCYL, DBSTAB, SCAR, MARK IV, INTACT,

BOSOR, BOSOR3, and SABOR3-F might be expected to have a higher "con/i-

dence index" than the other programs. This is not because of defects in the

programs but because of the relative ease of proving that convergence has been

obtained. In STAGS, BERK3, NASTRAN, AND REXBAT, core storage is often

too small to ascertain conclusively that the stresses obtained are accurate to

within a percent or so. In addition, convergence checks are generally very

expensive in terms of computer time. Most of the computer programs requiring

a two-dimensional numerical analysis are harder to use than those requiring a

one-dimensional numerical analysis since more input data must be specified.

A simplified input and output explanation (along with example prob-

lems) is given in an MSFC internal document 1 for the programs CORCYL,

DBSTAB, BOSOR, and NASTRAN.

1. Structural Analysis Computer Utilization Manual, Astronautics Laboratory,

NASA/MSFC (to be published).
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Computer Programs for Stability Analysis

of Cylindrical Shells

1970

Program

Name

CORCYL

DBS TA B

SCAR

MARK IV

Reference

No.

4

Method

of

a
Analysis Comments

Linear small-deflection theory.

R ing-stiffened corrugated cylinder

under axial compression. Rings

are distributed along the cylinder.

Eccentricity of rings with respect

to corrugation centerline is con-

sidered.

Small-deflection theory. Ortho-

gonally stiffened cylindrical shell

under axial compression and lateral

pressure. Restricted to moderately

or heavily stiffened cylinders.

Rings and stringers are considered

eccentric with respect to the skin's
middle surface. Local buckling of

the skin between adjacent stringers

before general instability is allowed,

and the resulting reduction in skin

stiffness is determined.

Membrane prebuckled theory and

simply supported edges. Various

types of wall construction permitted,

as well as combined pressure and

axial compression. Ring stiffeners

and longitudinal stringers permitted.

SCAR-type analysis for optimiza-

tion of integrally stiffened cylinders

with respect to weight.
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Program
Name

INTAC T

STA GS

Reference

No.

Method

of

a
Analysis

2

Comments

Buckling of cylinders under bend-

ing, axial compression, and pres-

sure. Interaction curves calculated.

Otherwise, same as SCAR.

Nonlinear analysis. Large deflec-

tions and elastic-plastic behavior

permitted. Discrete rings and

stringers included. Maximum num-
ber of unknowns is 4300.

a. Method of Analysis:

1 = Closed form

2 = Series expansion

3 = Numerical integration
4 = Finite difference

5 = Finite element
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Computer Programs for StabilityAnalysis

of Shells of Revolution

Program
Name

BOSOR

BOSO R 3

SABOR3-F

Reference

Method

of

Analysis

7 4

No.

8 4

a

9 5

Comments

Nonlinear prebuckling effects.

General with respect to geometry of

meridian, shell wall design, edge

conditions, and loading. Axisym-

metric loading.

Rings can be treated as discrete

elastic structures. Option of non-

linear prebuckling effects or linear

bending theory for prebuckling

analysis. Scgqnented shells can be

analyzed with each segment inde-

pendent of other segments. Other-

wise, same as I_OSOR.

Calculation of vibration frequencies

of stacked and branched shells.

a. Also, W. A. Loden: SABOR3-F/EIGSYS Instructions, unpublished

report, Lockheed Missiles and Space Company, August 1967.
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Computer Programs for Stability Analysis

of General Shells

Program
Name

BERK3

NASTRAN

REXBAT

Beference

No.

10

ll

12

Method

of

Analysis Comments

Flat triangular elements with exten-

sional and bending stiffness are used
for the calculation of stresses and

vibration frequencies of general
shells or shells of revolution with

cutouts. Up to 6000 unknowns can
be handled. Discrete stiffeners

permitted.

General-purpose program for elas-

tic structural analysis. Not re-

stricted to shells. Contains library

of elements including rods, beams,

shear panels, plates, and shells.

General-purpose program for linear

structural analysis with respect to
static stresses and vibration fre-

quencies. Up to 6000 unknowns can
be handled.
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C4.0.0 LOCAL INSTABILITY

C4.1.0 Introduction

This section deals with local instabilities and failures of flat and

curved panels. The term "panel" refers to a composite structure consisting of

plates and stiffeners. The term "plate" refers to sheet or skin bounded by

longitudinal and tranverse members {e. g., stiffeners and frames). Panels in

compression are of primary importance in this section. Although panels in

shear are discussed, information concerning them is not as extensive as that

for panels in compression.

Stability analyses of panels should account for both general and local

modes of instability. The general mode of instability for a compression-loaded

panel is characterized by deflection of the stiffeners; whereas, for localinstability,

buckling occurs with modes along (or nearly along) the stiffener-plate

juncture (Fig. C4.1.0-1). Some coupling between these modes exists, but

this effect is usually small and is generally neglected.

General Instability Local Instability

FIGURE C4.1.0-1. TYPICAL BUCKLE MODES IN LONGITUDINALIJY

STIFFENED PLATES UNDER LONGITUDINAL LOAD.
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Definition of Symbols

Definition

long-side dimension of a plate, in.

short-side dimension of a plate, in.

short-side dimension of a rectangular tube, in.

width of stiffener flange, in.

geometric fastener offset, in.

stiffener spacing, in.

width of hat top for hat-section stiffeners, in.

depth of stiffener web, in.

fastener diameter, in.

frame spacing, in.

end-fixity coefficient

Young's modulus of elasticity, psi

secant and tangent moduli, psi

actual stress, psi; also effective fastener offset, in.

allowable or buckling stress, psi

stress at secant modulus, 0.7 E or 0.85 E of skin material'

flexural stiffness of skin per inch of width, Ets3/12(1-v2 )

spacing between staggered columns of fasteners, in.

J

_J



Symbol

G

!

h

I
P

k

k
C

kh, kt, kw

k
S

k
wr

k
SC

M° S°

N
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Definition of Symbols (Continued)

Definition

elastic shear modulus, psi

long-side dimension of rectangular tube, in.

spacing between staggered rows of fasteners, in.

bending moment of inertia of stiffenercross section taken

about the stiffener centroidal axis, in.4

polar moment of inertia of section about center of rotation,

torsion constant of the stiffener, in. 4

(GJ = torque/twist per unit length)

rotational spring constant

compressed skin local buckling coefficient

compressed stiffener local buckling coefficients.

shear buckling coefficient

compressed panel wrinkling coefficient

compressive-local-buckling coefficient for panels with

integral stiffeners.

margin of safety

number of stiffeners

in. 4

n

r

8

shape par,'Lmeter

radius, In.

fastener pitch, in.



Symbol

t

11

v

F

Subscript

C

e

f

t

S

W

av

clr

co

CRI

CS

csr

Definition of Symbols (Continued)

Definition

thickness, in.

plasticity reduction factor

cladding reduction factor

Poisson's ratio in elastic range

torsional-bending constant, in.6
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com press ion

effective

flange

tension or top web of hat-section stiffeners

skin, shear

web

ave rage

local compressive inter-fastener buckling

cutoff

local compressive integral stiffener panel buckling

compressive skin buckling

shear skin buckling

+
J

..



Subscripts

csk

cst

ct

cw

cy

tr

pl

Definition of Symbols (Concluded)

Definition

compressive local skin buckling

compressive local stiffener buckling

compressive panel torsional buckling

compressive panel wrinkling

compressive yield

tensile fastener stress

proportional limit
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C4.2.0 Conventionally Stiffened Flat Panels in Compression

Buckling resulting from local compression instability in a panel

conventionally stiffened (Fig. C4.2.0-1) in the direction of the load may occur

in either the stiffener elements or the plate.

"S" "" J "/ "/ ""

.....
FIGURE C4.2.0-1. TYPICAL CONVENTIONALLY

STIFFENED PANEL.

The forms of local instabilitiesand failures which will be discussed

in this section are:

I. Local skin buckling

2. Local stiffenerbuckling

3. Inter-fastener buckling

4. Panel wrinkling {Forced crippling)

5. Torsional instability

Although these are distinctii_stabilitymodes, ultimate buckling failure is

usually a combination of two or more modes.



f
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Other local modes of failure classified as column post-buckling

phenomena are described in the following three paragraphs but are not

discussed further in this section of the manual.

1. Stiffener crippling is a local collapse of a composite stiffener

section. Crippling is covered in Section C1.3.1 of this manual.

2. Lateral instability consists of a twisting of the stiffener section,

accompanied by a distortion of the cross section. The analytical technique

presented in "Shell Analysis Manual" [1] is recommended to the reader since

this mode is not discussed in this manual at the present time.

3. Monolithic panel failure, an extension of stiffener crippling, is

a failure of skin and stiffener so fastened together that they act as a monolithic

unit when subjected to crippling stress levels. Analytical methods presented

in the documents cited in References 2 and 3 are recommended to the reader

since this mode is not discussed in this manual at the present time.

Three of the cited local instability modes are a direct function of the fastener

spacing (Fig. C4.2.0-2).

C4.2. 1 I_ocal SkinBucklin/_

A lo(:a[ c_Jmpression instability m_)de that is often observed is local

skin buckling. This mode can occur in skins between or under stiffen_.rs of a

stiffened p_nel. Although this mode carl be a failure in itself, it usu:tlly

precipitates failure in another mode if the load is appreciably increased.

The normal analytical procedure for this type instability is to treat

the skin as a simply support(_d flat pl_te of infinite length. The following

general equation for skin buckling stress is written in nondimensional form:

_ 77_ c (1)
F0.7 12(1-v 2) F0.7
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FORCED CRIPPLING

• IVET SPAC/NO

FIGURE C4.2.0-2. FAILURE MODES OF SHORT

RIVETED PANELS.

This equation can be solved by the following procedure:

1. Determine F0. 7 from appropriate stress-strain curve.

2. Determine k from Table C2.1.5.5.
c

3. Determine n from Table C2.1.5.6. If n is not given in the

table, it may be obtained from data given in Section C4.2.3.

4. Calculate
12 (1-v 2) Fo. 7

5. Enter Figure C2.1.5-4 at value calculated in step four to obtain

Fcs"/F°'a T, using appropriate n curve.

J
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6. Calculate Fcs k

Fcs k should include plasticity and cladding reduction factors, as given in

Tables C2.1.5. l and C2.1.5.2 respectively, if applicable.

The margin of safety, M.S., can be calculated as follows:

Fcs k

M.S. - f 1 , (2)
C

where f is the compressive stress in the skin.
C

C4.2.2 Local Stiffener BucklinK

Local instability or local buckling of a section is to be distinguished

from crippling of a section. Crippling is an ultimate type of failure (discussed

in Section C I.3. il, while local buckling is an elastic condition which may

occur at much lower stresses. Generally, this type of instability will not

constitute failure in itself but will usually precipitate failure in another mode.

In stiffeners with flat sides, local instability is defined as that mode

of distortion in which the meets of adjoining sides remain stationary. Thus,

each side buckles as a plate whose edges parallel to the load rotate through

the same angles as those of the adjoining sides and the half-wavelength is of

the order of the cross-section dimensions (Fig. C4.2.2-I).

Two of the simplest flange-web shapes are angles and zees. These

can be considered as compound plate elements and can be broken up as shown

in Figure C4.2.2-2. Information found in Section C2 can be used to determine

buckling stresses of the shapes described above.

However, a more direct method for predicting the local buckling

stress, taking into account the interaction of the sides, in the elastic range is

to use the following equation:



Fcet = _ 12 (i-v z)
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, (3)
v

where {k i) is an experimentally determined local buckling coefficient.

Figures C4.2.2. -3 through C4.2.2-6 show (k l) values for various channels,

Z-sections, H-sections, rectangular-tube-sections, and hat-sections often

used for stiffened-plate construction.

F ¢st

!-I 2-2 3-3 4-4

s

FIGURE C4.2.2-I. TYPICAL STIFFENER LOCAL BUCKLING

SHOWING ONLY TWO HALF-WAVES.

A discussion of cladding and pLasticity-reductlon factors can be

found in Section C2. i.I. Figure C4.2.2-7 gives experimentally determined

plastlcity-reduction factors for stiffenershapes presented in Figures C4.2.2-3

through C4.2.2-6.

The reader should also observe dimensioning differences for formed

and extruded stiffeners, as shown in Figure C4.2.2-8, prior to calculating

parameters when using the buckling coefficient curves cited above.

---J .
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_t

I I _ _
$$

• $
$$

i

FIGURE C4.2.2-2. BREAKDOWN OF ANGLE AND Z-STIFFENERS

INTO COMPONENT PLATE ELEMENTS.
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Fcs t = rl_ 12 (l-v 2)

FIGURE C4.2.2-3. COMPRESSION LOCAL BUCKLING

COEFFICIENTS FOR CHANNEL AND Z-SECTION STIFFENERS.
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k.

7 WEB BUCKLES FtRST"_
I

5

4

J

2

0 1111

0 .g 4

�fLANGe" 8_ICLLr5 F'N_T__

1 1 I
,6 B 10

%

Fcst = _ _ 12 (1-u z)

FIGURE C4.2.2-4. COMPRESSION LOCAL BUCKLING

COEFFICIENT FOR H-SECTION STIFFENERS.
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2
\

I

Fcs t = r/_ 12 (1-v 2) \h'/

FIGURE C4.2.2-5. COMPRESSION LOCAL BUCKLING

COEFFICIENT FOR RECTANGULAR-TUBE-SECTION STIFFENERS.

J
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,.

,r,j _ •

2 • £ .8 /D /_ /4

kt _2 E / _

Fcst = _ _ 12 (1-zJ 2)

FIGURE C4.2.2-6. COMPRESSION LOCAL BUCKLING

COEFFICIENT FOR HAT-SECTION STIFFENERS, t = tf = tw = t t



Fig.

C4.2.2-3

C4.2.2-4

C4.2.2-5
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Section

i

Buckling

coefficient

k
W

k
W

k t

P iasticity-reduc tion

factor

(Es/E) ( l-VeZ)/(1-v 2)

is about 5 percent

conservative

None reported

None reported

None reported

0
J

FIGURE C4.2.2-7. EXPERIMENTALLY DETERMINED

PLASTICITY-REDUCTION FACTORS FOR

COMPOSITE SHAPES IN FIGURES

C4.2.2-3 THROUGH C4.2.2-6.
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b

(a) Formed Section

i__. bf

(b) Extruded Section

T
b

W

FIGUI_E C4.2.2-8. TYPICAL DIMENSION FOR FORMED AND

EXTRUDED STIFFENERS.

C4.2.3 Inter-Fastener Bucklin K (Interrivet Buckling)

This mode of local instability, as shown in Figure C4.2.3-1, occurs

between fasteners in the skin of longitudinally stiffened panels irl compression,

causing a separation between the skin and an essentially undistorted stiffener.

The action approximates that of a wide column with a width equal to or leqs

than the fastener spacing. Inter-fastener buckling is usually found in

stiffened-panel designs where the skin gage is less than the stiffener ga_e.

Any increase in load above the inter-fastener buckling load cannot be supported

by the skin; therefore, redistribution of load to the stiffeners and excessive

skin deformation occurs.

A criterion for fastener spacing is determined from test data which

result from failure in the inter-fastener buckling mode rather from panel



Section C4

1 December 1969

Page 18

t

b q

i I

FIGURE C4.2.3-1. TYPICAL

INTER-FASTENER BUCKLING.

determined effective rivet offset (f) .

wrinkling (Section C4.2.4 ):

1/1
S/bs >- 1.27/(kwr) (4)

where the wrinkling coefficient (k )
wr

is given in Section C4.2.4. This coef-

ficient is a function of the experimentally

Dimensioning rules given in Figure

C4.2.2-8 for formed and extruded stiffener sections should be observed.

When inter-fastener buckling is analyzed as a Wide column, the

following equation applies:

e_Ec /_- /Fcir : T}_ 12 (l-v 2) (5)

Figure C4.2.3-2 presents a graphical nondimensional form of the

equation above. The values needed to enter this chart are: F0. To, F0. I ,

E c , v , t s , s , e, and n.

Values of F0. To and F0. s5 may be obtained from a stress-strain

curve as indicated in Figure C4.2.3-3 (a). Values for E and v can be
C

obtained from MIL-HDBK-5A or other well-qualified sources.

If cladding is used on the sheet, the sheet thickness, t , will not
s

include the cladding material. The fastener spacing to be used will depend on

the pattern of the fasteners. For a single row or double rows the fastener

spacing will be the actual distance between fasteners, as shown in Figures

C4.2.3-4 (a) and C4.2.3-4 (b). For staggered rows, an effective fastener

spacing must be used. This effective spacing, s, may be calculated:

.J

.j

i
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1.3

1.2

I.I

I.II

r,- o7

U.

:" .6
*J

L

.$

.4

J

.2

.!

.2 .3 .4 .5.6 .8 I 2 3 4 5 6 0 10

4 FO. 7• (lEe-v 2) siT/2

FIGURE C4.2.3-2. CHART OF NONDIMENSIONAL

INTERRIVET BUCKLING STRESS.

20 30 40 5060 80100

g + h (0 <- g<- 2s)
2

where g and h are shown in Figure C4. 2. 3-4 (c). If g

use 2h as the value of s.

(6)

is greater than 2h,
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O

O

O O

O O-

O O-

O O

(a) Single row (b) Double rows (c) Staggered rows

FIGURE C4.2.3-4. FASTENER SPACINGS FOR TYPICAL

FASTENER PATTERNS.

The value of e is dependent on

the type of fastener. Values of e to

be used are listedin Table C4.2.3. i

Table C4.2.3. i. Values of End-

Fixity Coefficient "e" for Several

Types of Fasteners

for several types of fasteners.

Values of the shape parameter

n for several materials are given in

Table C2.1.5.6. For materials not

given, the shape parameter may be

obtained from Fi_,mre C4.2.3-3 (b).

If n is out of the range of the curve

in that figure, it may be calculated

Type of Fastener

Flathead rivet

Spotweld

Brazierhead rivet

Machine csk. rivet

Dimpled rivet

e

4

3.5

3

1

from the following equation:

n = 1 * log e (17/7)/1og e (F0. 70/F0. 85) (7)
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For temperatures other than room temperature, the analysis may be

performed using the values of F , F0.70, F0. u and n for this temperature.
cy

These values can be obtained from the appropriate stress-strain curve.

It should be noted that a cutoff stress is used in the interrivet buckling

calculations. The values of the cutoff stress recommended for use here are

shown in Table C4.2.3.2.

Table C4.2.3.2. Recommended Values for Cutoff Stress

Material Cutoff Stress (Fco)

2024-T

2014-T

6061-T

7075-T

18-8 (i/2 H)*

(3/4 H )

(FH)

All other materials

Fcy ]Fcy 1 + 200,_00

1. 075 F
cy

0. 835 F
cy

0.875 F
cy

0. 866 F
cy

F
cy

* Cold-rolled, with grain, based on MIL-HDBK-5A properties.

A general procedure for calculating inter-fastener buckling stress and

margin of safety is listed below:

1. Determine F0. 70 and F0. 8s from appropriate stress-strain curve.

2. Determine n from Table C2.1.5.6. If n is not given in the table,

.w,
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it may be obtained from Figure C4.2.3-3 (b) or equation (7).

3. Obtain e from Table C4.2.3.1 .

4. Calculate

.

Fcir/Fo. 7

6.

.

8.

4Fn7,1 2 eEc
Enter Figure C4.2.3-2 at value calculated in step four to obtain

using the appropriate n curve.

Calculate F . as
elr

F . : (Fo. 7) (Value determined in step five)
CIF

Obtain the cutoff stress, F from ]'able C4.2.3.2.
CO'

Calculate the M.S. as

F
cr

M.S. - f - 1
C

where F is the lower of the two values F . and F , and f is the
cr clr co c

compressive sheet stress between fasteners.

C.4.2.4 Panel Wrinkling (Forced Crippling)

A mode of local instability failure sometimes encountered when

designing stiffened panels is panel wrinkling. This generally occurs in designs

where the skin gage is equal to or greater than the stiffener gage.

This mode of failure, shown in Fiffure C4.2.4-1, results from the

existence of a flexible attachment between the skin and stiffener. The skin

acts as a column supported at the fastener attachment points on an elastic

foundation. The elastic foundation is provided by the stiffener attachment

flange to a degree dependent on its geometry: the offset distance of the
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(a) General Appearance of a

Wrinkling Failure

!

(b) A Cross Section at

Wrinkle Showing Distortions
of Stiffener and Skin

FIGURE C4.2.4-1. TYPICAL PANEL WRINKLING FAILURE.

fastener from the stiffener web, the fastener spacing, diameter, and strength.

In the wrinkling mode, the attachment flange of the stiffener follows the skin

contour and causes other plate elements of the stiffener to distort, thereby

precipitating failure of the panel as a whole.

The most commonly used analytical method for determining wrinkling-

buckling stresses is sere[empirical in nature. The general equation for

wrinkling is

k _E I___Ss1 2
F =V_ wr c

cw 12 (1-u 2) ' (8)

where k the wrinkling coefficient is given in Figure C4.2.4-2. This
wr _

coefficient is a function of the experimentally determined effective rivet offset

(f) which is obtained from Figure C4.2.4-3. Dimensioning rules given in

Figure C4.2.2-8 for formed and extruded stiffener sections should be observed.

Cladding (_) and plasticity (_) correction factors should be determined in

agreement with Section C2.1.1 and should be used accordingly.

J

J
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IO

0

$

0 .2 A .8 • I.O I.Z s,$ ".6 l* gO ,_ g ?.4 g$

#w / ?_

ba / t.

FIGURE C4.2.4-2. EXPERIMENTAI,I,Y DETERMINED BUCKLING

COEFFICIENT FOIl FAILURE IN THE WRINKLING MODE.

._..----410

9 jj_ • - _ 9 -'

2 $ 4 $ 6 7 $ 9 /0 l / 12 t$ 14 _"

7

FIGURE C4.2.4-3. EXPERIMENTALLY DETERMINED VALUES

OF EFFECTIVE RIVET OFFSET.
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A criterion for fastener spacing is determined from test data which

result from a wrinkling mode failure:

S/bs < l'27/(kwr)_/2 (9)

Wrinkling imposes a high tensile load on the fasteners which are

required to make the stiffener attachment flange conform to the wrinkled sheet.

An approximate expression for the tensile strength of the fastener is

0.7 b

ftr > s s ( )Est d d Fcw " (10)

The tensile strength of the fastener (Ftr) is defined in terms of the

shank area, and it may be associated with either shank failure or pulling of

the countersunk head of the fastener through the sheet.

When the fasteners that are being analyzed are rivets of materials

other than 2117-T4 aluminum alloy, the following experimentally proven

expressions should be used.

For 2117-T4 rivets whose tensile strength is F t = 57 ksi, the

criteria are:

J

F t =57ksi , (11)

ff de/tav _-< 1.67 ;

or

190 160

F t - de/tav (de/tav)2 , (12)
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if d /t > 1.67 ;
e av

where t (in inches) is the average of sheet and stiffener thickness. The
av

effective diameter d is the diameter for a rivet made from 2117-T4 material.
e

The effective diameter of a rivet of another material is,

1

d /d ,e = (Ftr/Ft)2

where Ftr is the tensile strength of a rivet, defined as maximum tensile

load divided by shank area in ksi units.

The following procedure is recommended when analyzing a panel for

wrinkling:

1. Calculate s/d.

2. Enter Figure C4.2.4-3 at value calculated in step 1 to obtain

f/tw, using the appropriate b /t curve.e w

3. Calculate 1.

4. Calculate

b /t
W W

b /t
S S

.

using the approprinte f/b curve.
W

6. Solve equation (9).

a.

b.

return to Section C4.2. :3.

7. Calculate F
CW

Enter Figaare C4.2.4-2 at value calculated in step 4 to obtain k
wr

If equation is satisfied, continue to step 7.

If equation is not satisfied, wrinkling is not the critical mode;

using equation (8).
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8. Checkfastener tensile stresses using equation (10), and equations

(11), (12), and (13) if necessary.

9. Calculate the panelM.S. as

where f
e

F
CW

M.S. - - 1
f

e

is the compressive stress in the skin, and the fastener M.S. is

Ftr
M.S. = 1

ftr

where Ftr is the tensile allowable of the fastener.

C4.2.5 Torsional Instability

Torsional instability of a stiffened panel between frames occurs when

the cross section of the stiffener rotates but does not distort or translate in

its own plane. Typical antisymmetric and symmetric torsional modes of

instability are shown in Figure C4.2.5-1.

The analysis methods of torsional instability of stiffeners attached to

sheets, as suggested in Reference 4, will be described. For the case of flat

plates or cylinders with typical frame spacing,

1

df > 7r (E_GI/k)_ , (14)

the allowable torsional instability stress, Fct , for the mode shown in

Figure C4.2.5-1 is

Fct = G_A . + 2 _ E_?Gk (15)
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(al Antisymmetric

(b) Symmetric

where
J

I
P

H(;URE C4.2.5-1. MODES OF TORSIONAL

] NSTA BI I,ITY.

,J F
and values for Z an(I J type stiffeners may be obtained

I
P

from Figures C4.2.5-2 :mdC4.2.5-3, respectively.

The plasticity correction factors _A and rl G may be c_,leulated by

an iteratiw_ procedure uMng stress-strain curves (which can be fl)und in

MIL tlDBb:-SA for most materi;ds) for the given malerial :rod by the following

expressions:

_A = Es/g (I(;)

_,IG = 1,2,1,/Iq ( 17 )

Curves for 71A m_,l 7?G for several mnterial_ at various temperature levels
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FIGURE C4.2.5-2. TORSIONAl. SECTION PROPERTIES

FOR LIPPED Z-STIFFENER--SHEET PANELS.
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may be found in References 1 and 5. Similar curves will be provided in

Section C2.1.0 of this manual at a later date.

The rotational spring constant (k) may be found using the following

expression:

1 1 1 .+
- +

k keb kshee t
(18)

where

keb

Et 3
W

4bw + 6bf
(19)

ksheet - b
S

k = 1 for the symmetric mode

I <FctFcrs1k - 3 1+0.6 ----
Fcrs

(20)

(21)

(22)

for the antisymmetric mode.

If Fct < 4.33 F the antisymmetric mode is critical. Ifcrs '

Fct > 4.33 F the symmetric mode of failure is critical. Sincecrs '

_A ' and _G depend on Fct, the solution for Fct is, in general, a trial°

and-error procedure. Starting with the assumption that _, = 1, r_A = _G = 1,

calculate Fct and correct for plasticity if required. Correct _ if required
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Then check to

( E_Gr' )If df < _ k the torsional instability stress is

where

Fct = G_ A + _p f

ktdf/x) 2

I
P

(23)

(I-_p ) Z 2 (24)F = Ip •

The formulas which have been presented may be used for stiffeners

with sections other than those shown in Figures C4.2.5-2 and C4.2.5-3 if the

values of Ip, J and F are known.
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C4.3.0 Integrally Stiffened Flat Panels in Compression

The allowable buclding stress for local compression instability of

certain integrally stiffened plates loaded parallel to the integral stiffeners

may be found by determining the buckling coefficient k from Figures
$

C4.3.0-1 through C4.3.0-5 and solving the equation:

k z_E (_) S

S C

FCRI = _ 12 (1-v 2) • (25)

The integral shapes presented include webs, zees, and tees for various

tw/t f values.

Also, these charts may be used to determine the allowable buckling

stress for local compression instability of conventionalty stiffened plates

which have been idealized into geometries similar to those shown in Figures

C4.3.0-1 through C4.3.0-5. When this is done, care should be exercised

that the dimensioning rules pertaining to formed and extruded shapes, as

shown in Figure C4.2.2-8, are observed.

_J
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FIGURE C4.3.0=1. COMPRESSIVE-LOCAL-BUCKLING COEFFICIENTS

FOR INFINITELY WIDE FLAT PLATES HAVING WEB-

TYPE INTEGRAL STIFFENERS.
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FIGURE C4.3.0-2. COMPRESSIVE-LOCAL-BUCKLING COEFFICIENTS

FOR INFINITELY WIDE FLAT PLATES HAVING Z-

SECTION INTEGRAL STIFFENERS.
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FIGURE C4.3.0-3. COMPRESSIVE-LOCAL-BUCKLING COEFFICIENT

FOR INFINITELY WIDE FLAT PLATES HAVING Z-

SECTION INTEGRAL STIFFENERS.
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tw/t f = 1.0; bf/tf > 10; bw/b s > 0.25

FIGURE C4.3.0-4. COMPRESSIVE-LOCAL-BUCKLING COEFFICIENT

FOR INFINITELY WIDE FLAT PLATES HAVING T-

SECTION INTEGRAL STIFFENERS.
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FIGURE C4.3.0-5. COMPRESSION-LOCAL-BUCKLING COEFFICIENT

FOR INFINITELY WIDE FLAT PLATES HAVING T-

SECTION INTEGRAL STIFFENERS.



Section C4

1 December 1969

Page 40

C4.4.0 Stiffened FLat Panels in Shear

Local shear instability methods of analysis for stiffened panels in

shear are presented for panels stiffened either longitudinally or transversely.

For shear buckling calculations, these two types of stiffened panels may be

distinguished by considering panels with stiffeners parallel to the Long side of

•the panel as longitudinallY stiffened, and panels with stiffeners parallel to the

short side of the panel as transversely stiffened. In instances where stiffened

square panels are encountered, use of the analysis for transversely stiffened

panels is recommended, to take advantage of the more extensive test data

available.

The analysis that follows accounts for the local (no deflection of

stiffeners) instability mode of failure only. The parameter EI/b D is
S

necessary for determining the criticality of the panel instability mode. At

low values of EI/bsD the general (stiffeners deflect) mode is critical. As

EI/b D increases, the local mode becomes critical and yields a constant
s

value of the shear buckling coefficient k regardless of further increases ofs

EI/b D. Thus, in determining the fie×ural stiffness required in the stiffeners,
s

it is this transition area of EI/b D which is important since additional
s

stiffener moment of inertia does nothing to increase allowable local plate

buckling stress and less inertia induces general instability.

It is noted at this point that for similar bay geometries for the two

different stiffening arrangements, equal local instability stresses will result.

Local instability is a function of only the local geometry; whereas, general

instability depends upon the orientation of the stiffeners with respect to the

panel's long dimension.

J

j

J



Section C4

1 December 1969

Page 41

The equation for local instability of the skin of a stiffened panel in

shear is

Fsc r = 7) _ 12 (1-v 2)
(26)

where k , the shear buckling coefficient, can be found by referring to
S

Figure C2.1.5-14.

For longitudinally stiffened panels, using k determined above,
S

enter Figure C4.4.0-1 and solve for a stiffener I required to prevent local

skin buckling. The ratio between local buckling and general instability is

as follows:

k /Keneral)
S

ks (local) = IN +1)2 , (27)

where N is the number of stiffeners. A stiffener I required to prevent

general instability can be calculated in a similar manner using the ratio

cited.

For transversely stiffened panels, a similar procedure to that given

above can be used to calculate an I for the stiffeners required to resist local

buckling; this is done by entering Figure C4.4.0-2 with a known k . The
S

relationship between local buckling and general instability is

k (local) k (general)
S S

b 2 = a 2
s

{28)

Using this relationship and the same figure, a required stiffener I can be

calculated to prevent general instability.
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FIGURE C4.4.0-2. SHEAR BUCKLING COEFFICIENTS FOH

LONG SIMPLY SUPPORTED FLAT PLATES WITH
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The preceding relationships associate local and general modes of

instability. It is then quite simple to discern which mode is critical to the

structural integrity of the stiffened panel.

When Fsc r is calculated, including plutlclty and cladding correction

factors if necessary, it should not exveed

that is,

F
CO

given in Table C4.4.0. i,

F _ F (29)scr co

J

Table C4.4.0.1. Recommended Values for Shear Cutoff Stress

Material Cutoff Stress ( Fco )

2024-T

2014-T

6061-T

7075-T

18-8 (1/2 H)*

(3/4 H )

(FH)

All other materials

0.61 F
cy

0.51 F
cy

0.53 F
cy

0.53 F
cy

0.61 F
cy

* Cold-rolled, with grain, based on MIL-HDBK-5A properties.

C4.5.0 Flat Panel Stiffened with Corrugations t

C4.6.0 Stiffened Curved Panels tt

t to be supplied

tt to be supplied
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