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Preface to Third Yearly Report under Contract NAS2-7613

Work under Contract NAS2-7613 started on July 1, 1973. The
research goals for a 3 year period stated in this contract arer

(a) Assess analytically the effects of fuselage motions on stability
and random response. The problem is to develop an adequate but
not overly complex flight dynamics analytical model and to study
the effects of structural and electronic feedback, particularly
for hingeless rotors.

(b) Study by computer and hardware experiments the feasibility of
adequate perturbation models from non-linear trim conditions.

The problem is to extract an adequate linear perturbation model
for the purpose of stability and random motion studies. The
extraction is to be performed on the basis of transient responses
obtained either by computed time histories or by model tests.

(c) Extend the experimental methods to assess rotor wake-blade
interactions by using a #-bladed rotor model with the capability
of progressing and regressing blade pitch excitation (cyclic
pitch stirring), by using a L-bladed rotor model with hub tilt
stirring, and by testing rotor models in sinusoidal up or side flow.
Seven reports on the work under Contract NAS2-7613 have been

submitted, references 1 to 7. Reference 1 completes research geal (a).

References 2, 4, 6, 7 pertain to research goal (b). It is incomplete

to date. References 3 and 5 pertain to research goal (c¢). It also is

incomplete to date. Reference 3 presants the results of extensive

frequency response tests. Reference 5 presents dynamic downwash
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moasurements in hovering during harmonic rotor excitation. Three
manuscripts for publication have been prepared. The first has been
published as reference 8. Two further manuscripts covering part of
the material in references 3 and 7 have been submitted to journals.
The extensive rotor state and parameter identification work with
computer simulated transients was found to be very useful for the
' subsequent data processing of the measured transients. It allowed to
sort out possible inadequacies of the applied identification algorithm
and of the inputs from possible inadequacies of the measurements and
of the applied mathematical rotor model. Rotor state and parameter
identifications from measured transients are presently complete for
hovering conditions using cyclic pitch stirring transients. They are
presented in reference 7. The corresponding work for forward flight
conditions and for hub tilt stirring is planned to be completed in
FY 13977 during an authorized extension of the research contract. It
is also planned to refine the analytical rotor model used for the
state and parameter identifications to include blade flexibility.
Rotor state and parameter identification from transients is still
a field where little experience is available. As elaborated in
Chapter . of reference 4 it takes four important ingredients to perform
a successful state and parameter identification from transients; a
suitable input, a suitable instrumentation for measuring key state
variables, an adequate mathematical model of the system, and an
efficient criterion function for the estimation algorithm. In all
four respects considerable work had to be done in order to finallv

establish a combination of these four ingredients that led to success.
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The lessons learned in this effort are hgped to pave the way for a
wider application of rotor dynamic perturbation state and parameter
identifications from transients about non-linear trim conditionms,

both in rotor wind tunnel testing and in rotor flight testing.
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Rotor Dynamic State and Paremeter Identification From

Simulated Forward Flight Transients

K. H. Hohenemser, D. Banerjee, and S. K. Yin

Abstract

State and parameter identifications from simulated forward flight
blade flapping measurements are presented. The transients are
excited by progressing cyclic pitch stirring or by hub stirring with
constant stirring acceleration. Rotor dynamic inflow models of
varying degree of sophistication are used from a one parameter inflow
model (equivalent Lock number) to an eight parameter inflow model.
The maximum likelihood method with assumed fixed measurement error
covariance matrix is applied. The rotor system equations for both
-fixed hub and tilting hub are given. The identified models are
verified by comparing true responses with predicted responses. An
optimum utilization of the simulated measurement data can be defined.
From the numerical results it can be anticipated that brief periods of
either accelerated cyclic pitch stirring or of hub stirring are
sufficient to extract with adequate accuracy up to 8 rotor dynamic

inflow parameters plus the blade Lock number from the transients.
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Notation

blade tip loss factor

rotor state matrices of size 8 ®x 8 and 11 x 11
respectively

matrices reiating induced flow and control
variables respectively to the rates of states

criterion function

rotor induced flow gain matrix

matrices relating the state, induced flow and
control variables respectively to the rotor

thrust and moment coefficients

information matrix

rotor induced flow parameters

blade natural flapping frequency

measurement error covariance matrix

blade section 1lift slope

rotor thrust coefficient, positive up

rotor pitching moment coefficient, positive nose-up
rotor rolling moment coefficient, positive to right

non-dimensional time (period of revolution 2w)

time it takes kth blade to move from rear position to
present position

control vector

total mean rotor flow velocity (non-dimensional), or
noise vector

rotor state vector
rotor measurement vector

hub tilting angle at kth blade, positive up



Notation (continued)

o nose down hub tilting angle

or1 left hub tilting angle

Bk flapping angle of kth blade, positive up

B1 nose down cyclic flapping angle

Br1 left cyclic flapping angle

Ba blade differential coning angle

Y blade Lock number

0) pitch angle of kth blade, positive nose up

6y nose down cyclic pitch angle

011 left cyclic pitch angle

0o collective pitch angle

u rotor advance ratio

x total mean rotor inflow velocity

v rotor mean induced velocity ggglgiszn:iszal

Vo mean perturbation induced velocity

VI perturbation cyclic induced velocity at blade tip,
down at rear

vI perturbation cyclic induced velocity at blade tip,
down at right

° rotor solidity ratio, or standard deviation

Sugerscrigts
. time differentiation

"

estimated value

T transposed matpix

* equivalent
Subscripts

m measured variable

£ empirical

REPRODUCIBILITY <.
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Introduction

This report covers the extension of computer simulation work pre-
sented in references 2 and 4, Reference 2 refers to rotor dynamic
state and parameter identifications in forward flight (.4 advance ratio)
using the concept of an equivalent Lock number to approximate rotor
dynamic inflow effects. Two analytical models were used; a complete
single blads representation in the rotating frame of reference, and a
simplified multiblade representation omitting periodic terms and
omitting multiblade accelerations. Two parameters were identified from
the simulated noise polluted blade flapping measurements; the equivalent
Lock number, and the collective pitch angle, Two transient inputs were
gstudied; a rectangular normal flow pulse, and a wave shaped normal flow
pulse. The simulated measurements with computer generated noise
pollution were first preprocessed by either a digital filter that took
out the high frequency noise or by a Kalman filter that used estimates
of the unknown parameters., The parameters were identified by integrating
a set of differential equations that sequentially minimized the system
equation error. The unknown parameters could be particularly well
retrieved for the wave shaped normal flow pulse. This was true both for
the single blade model with periodic coefficients and for the approximate
multiblade model with omitted periodic terms and accelerations.

Reference 4, Chapter 2, refers to rotor state and parameter
identifications both in forward flight and in hovering using cyclic
pitch stirring transients as inputs. The forward flight model was

limited to the concept of equivalent Lock number, either in the form of



a single blade representation with periodic coefficients, or in the
form of a multiblade represantation with congtant coefficients. The
simulated measuremsnts were again polluted by copputer generated

noise. The method used in reference 2 was modified in two ways; first,
instead of the sequential equation error minimization, a global
equation error minimization was used that is computationally more
efficient; second, the Kalman filter to preprocess the measurements

was used in an iterative way, being updated whenever new parareter
estimates were available. The iterated equation error estimation with
updated Kalman filter was compared with a version of the so called
maximum likelihvod methcd where system noise is not modeled. It was
found that despite somewhat more computer CPU time per iteration, the
maximem likelihood method was superior because of more rapid convergence
and because of more meaningful parameter covariances,

The maximum likelihood method was then applied to the problem of
rotor dynamic state and parameter identification from cyclic pitch
stirring transients in hovering using a time delayed rotor inflow.

Now 3 parameters were assumed to be unknown; the blade Lock number, the .
inflow gain, and the inflow time constant. Two inputs were assumed,

At time zero a step input in cyclic pitch, and at time t = 70 the
beginning of cyclic pitch stirring with constant stirring acceleration.
The identification process was started at t = 70. The transient from
the step input had not completely subsided when cyclic pitch stirring
began, It was found necessary to include the initial values of the
blade flapping deflection and of the rotor inflow as unknowns in the

parameter identification scheme, leading to 7 unknown parameters,



Though this required 6.3 CPU seconds per iteration, (IBM 360/65 computer)
the second iteration was found to be almost converged, so that the
total computer effort was moderate. For the tests there is no step
input of cyclic pitch, so that initial value identifications can be
omitted.

Reference U4, Chapter 3 develops a method of estimating the
optimum transient data length that proved to be later very useful in
all state and parameter identifications. In the maximum likelihood
method one needs the inverse of the so-called information matrix that
theoretically gives lower bounds to the parameter covariances. A
differential equation for the inverted intormation matrix was derived
and it was found that its integration results in the definition of a
data length beyond which no improvement to the parameter cowariances
can be expected, If less data are used in the identification, a rapid
increase in the parameter covariances occurs. Thus a rational way was
found to avoid errors from insufficient data length and to avoid
unnecessary computer effort and a degradation of accuracy from
meaningless additional data.

As mentioned before, the forward flight studies in references 2
and 4 were limited to the concept of equivalent Lock number. What
remains is to apply the concept of a time delayed rotor inflow to
forward flight conditions and to also consider rotor hub stirring
transients mentioned in research goal (c). Computer simulations were
performed to study the feasibility of these types of application of

the maximum likelihood method. The present report describes this work.
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Single Blade and Mult'blade Coordinates

As before, the numbmical analysis is performed for an advance
ratio of .4, Since now dynamic rotor inflow that couples the motions
of the various blades is included, a multiblade representation is
called for. The relations between single blade and multiblade
variables are:

Blade flapping angle: By = Bo + Bd(-lybl”tsl cos ty + Byy sin ty

Blade pitch angle: 0 = 0o - 81 sin t + 871 cos ty ()

Induced flow: Vk = Vo + vy(r/R)cos t + vyr{r/R)sin 1ty

The subscript I refers to forward cyclic flapping, cyclic pitch and
eyclic induced flow (the inflow is down in the rear), the subscript 1II
refers to left cyclic flapping, cyclic pitch and cyclic induced flow
(the inflow is down to the right). B4 represents differential coning
for the u-bladed rotor, whereby one pair of opposing blaces cones up,
the other pair cones down. Though a linear distribution of the induced
flow over the radius is defined in Eq. (1), this assumption is not
required for the parameter identification process. Different inflow
distributions merely produce different values in the identified
parameters but do not change the form of the equations.

For the tests the constant collective blade pitch 6, is known,
Also known are the cyclic blade pitch variables er(t), 677(t) as
function of time. The only measured state variables are the % blade
flapping angles By,, Bops B3ms Bym. As can be derived from Lg. (1)
the multiblade flapping variables are related to the single blade

flapping variable< by the transformation



with its inverse

= (1/4)

r—

2 cos

2 sin

@ﬂ’ 1 cos
89 1 -sin
B4 1l -cos
_B'ﬂ _l sin

t

t

~2s8in t

2cos t

sin t

-sin t

-cos t

1 1 7 "él'
~2 cos t 2gin t} |89
(2)
-2sint -2ces t 83
1 -3 118y
1| [8o]
-1 8
I (3)
-1 8
-l e d_a

Ffor the computer simulations it was assumed that there is additive noise

in the single blade flapping measurements,

equations are

| B

Bim 1 cost
Bom 1 -sin t
B3m 1l -cos t
Buym 1 sint

changea during the iterations.

2 of reference u)

Thus the measurement

4 - -
sin t 1 rBo '—V]_ [
cos t -1 BI V2
+ 4)
~-sin t 1 Brr V3
- L - L -
The measurement noise covariance R was assumed to be given and not
The innovation is given by (see Chapter
-]
Bm ~ 81
8, - By
- 2m . (s)
Bam ~ B3
Lsum - 8

nRPRODUCIBILITY .
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In order to determine the estimates §1. 52. 33, Eu from the estimates
for the multiblade coordinates ﬁo, EI- ﬁn, ad one needs Eq. (3).
For the state and parameter identifications from test data a
slightly different procedure was selected, as discussed in reference 7.
The measurements Blm’ 82&’ B3m’ Blm were first transformed to
multiblade coordinates by using Eq. (2). These multiblade variables
B’ Brm® Brim® Bay Were then considered in the estimation algorithm

om

as measured quantities with additive noise:

- - ~ -
Bom B, t Y
fm | _ [B1 ' 1
Brtn Brr + Vi1
Bam Bag + V4

L - L |

— s T
Bom - Bo
BIm - By
v =
Brim ~ B1I
Bim ~ Pa

The measurement error covariance was not considered given but was
updated in each iteration. The procedure used for the state and
parameter identifications from test data has the advantage of saving
for each iteration the execution of the transformation Eq. (3). Also

in this procedure suitable weights are applied to the test data in the

(6)

(7)



form of the measurement error covariance determined from the preceding

iteration.

Inflow Model with One Time Constant

We adopt here the rotor inflow model of references 9 and 10.

Eq. (33) of referenca 10, written in our notation, reads

kg O 0 ] Vo ] ve ] Cp
L Jo xk o T U A (VR RS N
ca 1 I E I ca M
0 0 -k v v c
I II II L
- - - .J. — - N - _J
Rotor thrust and moment coefficients Cps CM’ CL are from aerodynamic

contributions only. L. is the empirical L-matrix defined in reference

E

9. The theoretical values of Kk and kI, using potential flow around

a solid disk are given in reference 10 as k; = .849, k; = .113. The
components of the L-matrix as well as kp and k; will be identified
from rotor transient tests. From momentum theory one obtains

according to reference .0

r— -T
2v 0 0
-1 1
[L] = oa 0 -v/2 0
V] 0 -v/2
- d

with w2+ MX + V)

2+ T2)1/2

where A and v are the trim values, about which the rotor inflow

perturbations vg, vy, Vi1 are taken. Note that an induced flow

(8)

(9)

(10)
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trim value is only defined with respect to the axial induced flow.

For the pitch stirring rotor model we have prior to the start of the

pitch stirring transient a cyclic pitch trim condition equal to the

amplitude of the cyclic pitch stirring.

to be a linear perturbation variable and not part of a non-linear trim

condition.

This amplitude is considered

For steady conditions at advance ratio .4 one obtains from

reference 9

v | s o
1

v s - 0 -2.0
I n

Vi1 0 1.0

O11¢Cr
-1.0 CM
~3.0 c

L
I

In reference 9 cyclic induced inflow was assumed with constant dis-

tribution over the radius. To adjust for the linear distribution

assumed in reference 10 and in Eq. (1) the empirical L-matrix given in

Eq. (11) is changed to

After inversion of this matrix, division

U = .4 and rounding off the numbers, one

o5

-2.7

1.3

by kg and k1, insertion of

obtains Eq. (8) in the form

(11)

(12)



The rotor moment coefficients Cy and Cp are here assumed with their

usual sign, positive when the moments from the flow on the rotor are

-

1.00 0
0o 1,2
0 2

1

nose-up and to the right respectively.

Three types of state and parameter identification from computer

simulated measurements were performed.

are 8 unknown inflow parameters in Eq. (13):

The 5 parameters P; to Pg represent inflow gain constants, while

- -
P, 0 O
0 P, P4
o P, P
*

Ty are time constants.

-
rTo CT

= -1 Cy
[_"11 L

relations between the 3 time constants.

In the second case the theoretical relations 1y = 177 = 7.5 74

from reference 10 are used.

parameters from 8 to 6:

pane oy
L]

Vo
L ]
V1

VII

L.

[—Pl 0
0 Py
0 Py

This reduces the number of unknown inflow

Vo
VI

VII

VI f da2

"

Cp
-705 CM

In the most general case there

In this form no assumption is made about the

[ o

L—7.5 CL_.

-7.5 Cy

-7.5 ¢y,

(13)

(14)

To, TI,



12

In the third case only diagonal terms are retained in the inflow gain
matrix so that P, = P3 = 0. This further reduces the number of
unknown parameters from 6 to 4. The inflow gain parameters and the
inflow time constants will depend on the trim condition and on the

rotor advance ratio u .

Rotor System Equations, Fized Hub

The rotor system equations are wiitten in the form

X=Fx+G,v+Gu (16)

with the state vector x given by

T - . . ° .
with the induced flow vector given by vT = [vourvrrl (18)
and with the control vector given by  ul = [8,01677] (19)

Finally we have a set of equations that gives the aerodynamic
thrust and moment coefficients in terms of state vector x, inflow

vector v and control vector u:

H'.‘T/(aol2)
C,/€ac/2)| = Mx +N,v + N, u (20)
M v u

CL/(ao/Z)
L .

The matrices F, G,, Gy, M, Ny, N; are respectively of size 8 x 8,
8x3, 8x3, 3x8, 3x 3, 3x 3. For moderate advance ratio
neglecting reversed flow effects and assuming 4 straight constant chord

blades hinged at the rotor center, these 6 matrixes are:

REPRODUCIBILITY O
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When inserting Eq.(8) into Eq. (20) the rotor thrust and moment !

ficients are eliminated and one obtains a system equation of the . .rm
x=_P}x#Gu (21)
where the state vector now includes the Inflow variables

xT = [BOéOBIéIBIIBIIBdéd‘)o"IVII] (22)

where the state matrix F' is of size 11 x 11, and where the control
matrix G is of size 11 x 3, Note that in the state and parameter
identifications only 4 out of the 1l state variables are measured.

In addition to the inflow parameters the rotor system equations
have as parameters the advance ratio u that can be considered known,
the Lock number y and the tip loss factor B. In principle both ¥
and B could be identified from the transient test results. We usually
set B = ,97 and then identified y. The gystem equations also contain
the blade natural frequency when rotating P that could be easily
identified from transient test data. In many identifications we
assumed P as a known quantity. The assumptions made in deriving the
system equations are less restrictive than they may appear. Only the
form of the equations is used in the state and parameter identification
procedure. All parameters are left open and are adapted to the test
results in such a way that the quadratic differences between predicted

and actual measurements are minimized.

Rotor System Equations, Tilting Hub

As defined in Research Goal (c) transient rotor testing toward
establishing dynamic rotor wake-blade interactions is to be performed

both with cyclic pitch stirring and with hub tilt stirring. A second
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rotor model with the capability of hub tilt stirring is being built.
The rotor system equations on which the state and parameter identi-
fications will be based are described in the following.

The second of Eqs. (1) is now replaced by

o = ay cos ty + ary sin ty (23)

where a7 and ayy are the forward and left hub tilting angle
respectively. The blades are again assumed straight and elasticly
hinged at the rotor center. The blade flapping angles 8; +++ By and
the associated multiblade angles BI, Bry are defined not with respect
to the hub but rather with respect to the space fixed reference rotor
plane for zero hub tilting angle. Hub tilting a7 and ayy has the

same effect as cyclic pitch application 67 and 6jy, except for the
elastic blade restraining moments that are opposite those from 87

and 817. Thus the control vector is now given by

uT = (6, ap arg] (24)

instead of by Eq. (19), and elastic restraint terms must be added to
the G, - Matrix, since the elastic pitching and rolling moments are
now proportional to B1 - ay and 81y - ayy respectively instead of

proportional to By and Brg.



Gy - Matrix for Hub Stirring
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0 0
F, +2 Fy -2F,
0 0
0 p2-1 ¢ Fy ein bt
0 0
4F, -Fl—F3(3 + cos ut)
0 0
-2F3cos 2t 2F2 cos 2t

8
0

Fl+F3(1-cos ut)
0

P2-1-P3 sin ut
0

2F2 sin 2t

In all other respects Eqs., (16) to (22) including the expressions for

the remaining 5 matrices remain unchanged, though the flapping angles

are now defined differently as compared to the hub-fixed case.

The measurement equations (4) are now different since the blade

flapping angles are measured with respect to the hub.

For the computer

simulations we have instead of Eq. (4) the measurement equations:

_(Bl - al)m-{ rl cos t sin t 1— i Bo l
(B, - ay)p 1 -sint cost -1 Br - ag
(85 - ag)y 1 -cost -sint 1 By~ g
(B, - a)n 1 sint -cost -1 B4

The innovation is given,

pe——

(8,

(8,

(83

8,

instead of by Eq. (5), by

-
- o) - (8] - ap)
- o) - (;32 - a,))
- agdy - (By - ay)
- au)“ - (éu - @)

-
Fvl

v2
V3

vy

(25)

(26)

REPRODUCIBILITY OF 1;;
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For the state and parameter identifications from test data a
somewhat different procedure will be followed, whereby the single

blade measurements are first transformed into multiblade measurements:

” om r 1 1 1 1l (Bl - ul)m
(BI - ay) 2cost -2sint -2cost 2sint} {8, - a,)
"= (1/4) 2 2/m (27)
(Bry- 41 om 2sint  2cost -2sint -2cost] (B, - a,)p
° R N T N | AW,
- an -~ e ol L u u'E

The innovation vector is then defined by

-~ a -
Bom - Bo

(61 - GI)m - (BI - GI)

v = (28)

(BII - aII)m - (BII - “II)

Bdm - Bd
L i

The measurement covariance has been assumed given for the computer

simulations, It will be updated for each iteration for the state and

parameter identifications from transient test results, as explained before.

Numerical Results for Cyclic Pitch Stirring Transients

For the numerical examples presented in the following we assumed as
given the product of lift slope and blade solidity ratio ac = 2n/10,
the advance ratio u = .4, the tip loss factor B = .97 aud the blade
flapping frequency P = 1.20. The Lock number is assumed given as
y = 5.0 for some of the identification runs and assumed unknown in
other runs. The control variecbles 61, @77 are assumed given. In

previous experie~ce it was found that a moderate noise pollution of the
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control variables had no substantial affect on kha.

results of the state and parameter identification. For the cases
presented here 01. and 8;p were used in the rotor system equations
without noise pollution. The 4 single blade simulated flapping
angle measurements were polluted with computer generated Gaussian
zero mean noise with a standard deviation of Ogy = -1. A variety
of values for the pitch stirring acceleration were studied. It was
found that the slower accelerations required a longer time span to
yield the same accuracy of the identified parameters as the faster
accelerations. Here only the case of a cyclic pitch stirring
acceleration of ® = -.10/n is presented, using a data length of
12 time units from the start of the transient. Later it was found
that this data length does not provide optimal data utilization and
that for better results a data length of 18 time units should have
been used for @ = -.10/m.

In preceding studies it was found thav better rotor inflow
parameter identification can be achieved for progressing cyclic
pitch stirring as compared to regressive stirring. The reason for
this experience probably is that for regressive stirring the blade
natural frequency is resonance excited and that at the resonance
frequency the dynamic rotor inflow is theoretically zero. All
presented cases are for progressing cyclic pitch stirring accelerations.

It was first attempted to solve the problem in the same way as
describea in Chapter 2 of refcrence 4 by including the initial values
of the flapping angles and of the intlow variables as further unknowns

to be identi<ied, I'hig adds wuother /7 unknowns in the identification
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routine and led to difficulties. It was then decided to use in the
identification algorithm perturbations from the iniiial conditioms
before on-set of cyclic pitch stirring. Thus the initial values for
all state variables are zero and need not be identified.

Fig. 1 shows the cyclic pitch stirring input for a pregressing
stirring acceleration of = -.10/m. The amplitude of cyclic pitch
stirring is + 1.5°, Since the initial value is zero, the maximum
excursion of 8;p is from 0 to -3°. Fig. 2 shows the flapping
response of blade number 1 with the computer generated noise pollution
corresponding to 031 = ,10, The polluted values are used in the
state and parameter identification. Five different analytical models
will be discussed here.

(a) Dynamic inflow neglected, Lock number Yy = 5.

(b) OQuasistatic dynamic inflow, equivalent Lock number vy* identified.
(c) Diagonal L-matrix and inflow time constant identified, y = 5.

(d) Full L-matrix and inflow time constant identified, vy = 5.

(e) Full L-matrix and inflow time constant and y identified.

The inflow model given by Eq. (15) is used. In the following table the
given values (0 or 5), of the parameters are noted., If no value is

given, the parameter is identified.

Model Py Py ) Py Pg 1 Y
a 0 C v 0 0 0 5.0
b 0 0 0 0 0 0

(@]
S
[}
o
(o)

fa¥
w
<
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The results of the parameter identifications based on the analytical

models b, c, d, e are given in the follewing tables:

v*
Tnitlal Estimate ~2.50
Iteration 1 3.87
2 4,08
3 4,09
¥ /2 /1dent. .01
Value

Py P, Pg T
Initial Estimate .30 1.08 .88 1.08
Iteration 1 .26 .55 -.13 .38
2 . 36 .62 .11 .53
3 3 .85 .30 .68
b .54 .95 .36 74
S .54 .96 .37 .74
M 1/2/1den. Value | .30 17 .19 .12

Model (b), 4.1 CPU sec/Iteration

Model (c), 9.7 CPU sec/Iteration

P, By P P, Pg T
True Value 1.00 1.20 -.40 .40 .80 1.20
Initial Estimate .90 1.08 -.,44 .36 .88 1.08
Iteration 1 S .74 .71 .16 .61  1.09
2 .83 .90 -.72 .29 .76 1.13
3 .81 .86 -.68 ,25 .7 1.16
y .81 &7 -.69 6 .75 1.16
5 .81 .87 ~-.69 “g .75 1.18
M 2/2/1den. Value 57 .62 L7000 1,90 77 .51

“ZPRODUCIBILITY OF -
ORIGINAL PAGE IS Pu: v,
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Modsl (e), 16 CPU sec/Iteration

Py Py Py Py Pg 1 Y
True Value 1.00 1.20 -.40 .40 .80 1,20 5.00
Initial Estimate .90 1.08 -:ﬁu .36 .88 1,08 4,00
Iteration 14101 .63 -.89 .35 .59 1,05 4.85
2 .86 ,95 -85 ,38 .81 1,22 4.96

3 .79 .81 -.66 .23 .70 1.10 4.97
b .82 .87 -7l .27 .75 1.17 4,99
5 .81 .85 -.70 .27 .74 1.14% 4,98

w2 /1den. value| .60 .76 .76 2,06 .86 .67 .08

For models {b) and (c) nc true values of the unknown parame.ers are
available, since these mndels are different from that which generated
the simulated measurements. For models (d) and ‘2) the true

parameter values are known. Cne cannot exject that Py Py P3 1 for
Model (c) are the same as for Model (d) or (2). Apparently the much
lower value for 1 In Model (c¢) has teo make up for the omission of

the off-diagonal terms in the L-matrix. The parameters of Models (4)
and (e) are alizost the same. Thus identification of y does not affect
the accuracy of the other parameters, but it does increase the CPU

“zime per iteration from 13.3 to 16 seconds. The relative parameter

1/

standard deviations M 2/Ident. Value are rathe: large, indicating

that not sufficient data length has been used. We will see later
. . : -1/2 .
that a substantial reduction ir M / is possible for greater data

length.
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Verification by Response Comparisons

The identified models have first beemn verified by comparing the
responses for the transients used in the identification. The
comparison in Fig. 3 is between the exact responses - solid lines in
Fig. 3 and subsequent figures - with the response from the identified
model - dot lines in Fig. 3 and subsequent figures-. Fig. 3a is
for Model (a) without rotor inflow using the cyclic pitch stirring
acceleration w = -.10/w. It is seen that substantial errors of
Model (a) occur in the B; response, smaller errors in the 8,
response and insignificant errors in the B4 and Byy; responses.

These errors are the basis for the inflow parameter identifications.

Fig. 3b is for Model (b) using the equivalent Lock number
concept. The errors in the B8, and Bq responses are now insignificant,
while the B; and Byy responses show relatively small errors. Thus
the equivalent Lock number concept appears to be quite useful for
this case.

Fig. 3(c) is for Model (c) with given Lock number and 4 identified
inflow parameters; the diagonal L-matrix and one time constant. All 4
response variables show negligible errors. Figs. 3(d) and 3(e) are
for ¥ iels (d) and (e). Though more inflow parameters have been used,
the response errors are noticeable though still very small. One can
then conclude that Model (b) identifying only y* and using 4.1 CPU
seconds per iteration may be adequate in some cases, that Model (c)
identifying 4 inflow parameters and using 9.7 CPU seconds per iteration
is excellent, and that the inclusion of the off-diagonal terms in the

L-matrix is not necessary in this particular case. A sixth model not
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considered here would probably be useful in state and parameter
identifications from test transients, namely Model (c) including
Y as unknown parameter. The Lock number was found in all cases
easy to identify accurately. Theoretical values for y are not
always reliable since they involve the blade elastic mode shape,
the lift slc¢,: and the exact blade mass distribution.

The next step in the verification of the identified models is
to compare responses in transients that have not been used for the
parameter identification. Figs. 4 and 5 show the true responses to
a collective and to a longitudinal cyclic unit step input respectively
as compared to the responses of Models (a), (b) and (e). Again Model
(b) is a substantial improvement over Model (a) that omits rotor
dynamic inflow effects. Model (e) gives almost the correct responses.
Presumably Model (c) vith or without identification of y would show
the same excellent agreement with the assumed "true" model. Though
the inflow parameters P; to P5 and t in the various models deviate
to a certain extent from the true values, the responses predicted
by Models (c), {d), (e) are in very good agreement with the responses
of the true model not only for the cyclic pitch stirring transient

but also for quite different transients.

Inflow Model with Three Time Constants

Parcicularly at high advance ratio the time constants for pitch
and roll could be different, since different participating air masses
might be anticipated. It, therefore, appeared of interest to study a
case where 3 instead of 1 time constant are assumed to be unknown.

This is a further extension of Model (e). The complete L-matrix in



25

addition to y was identified. The parameters were defined somewhat

di fferently from Eq. (15), namely by

K B 7 .71 T M o

\’oT w00 an 0 0 ||% T 0 0 Cr

vp | tu 0 Ty O 0 Loy L23 v | = 0 1y O -cH

\’II i V] 0 TIIJ 0 L32 Laa \DII 0 0 TII -CL
(29)

The following table gives the results of 3 iterations. The value of

the criterion function
N
_ z N | 7.
J = (g - ¥;) RO (Y, - Yg) (30)
i=1

is given in the last colum. Contrary to the preceding cases the
assumed measurement standard deviation for all simulated measured
variables is o = .05, (R} = 400 I) instead of ¢ = .1, and the
time used for the identification is 18 instead of 12. Same as
before the rotor advance ratio is u = .4, and the cyclic pitch
stirring acceleration is @ = -.1/7, taken in the progressing semse.

Also, same as before, the time interval for the numerical integrations

is .1l.
Model (e) with 3 Time Constants, 45 CPU sec/Iteration
La  Ley  Lgg Lez Lag 7o L5 SIS ¢ S J

Ppya Value 1.00 M2 -,17 .08 .17 1.18 8.8 8.8 3.2
Initial Est. .83 .33 <14 .06 LA 1,35 7.0 #.0 4.5 8720
Iteration 1 1.16 .29 -,06 .08 .16 1.15 3.8 8.1 3.1 951

2 .97 .35 -,12 .06 .18 1.42 4.6 8.5 3.2 716

3 1.00 .37 -.11 .06 17 1,43 4.8 8.5 3.2
Error/True Value 0 12 .35 .25 0 .21 45 .03 0
M1/2/1dent. value | .12 .08 .72 .18 .11 .13 .42 A 01
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In comparison to the case for Model (e) with one time constant there is
beiter convergence and there are smaller parameter errors. The relative

predicted parameter error (H_1/2

/1dentified Value) shows the same
trend as the actual relative error, y having the best and Lp3 and g
the worst accuracy. The predicted parameter errors are much smaller
than for the case of Model (e) presumably because of the smaller
simulated measurement error (o = .05 instead of .l) and the longer
data length (t = 1J instead of 12). The CPU time per iteration is
almost 3 times the value for Model (e) with one time comstant. In all
the cases presented here the initial estimates are not drastically
different from the true values of the parameters. It was found that
very much larger errors in the initial estimates can be tolerated
without affecting the quality of the convergence or of the final
estimates.

A somewhat different presentation for verifying the identified
model is given for this case as compared to the preceding cases. In
Figs. 6a to 6d the blade flapping response computed with the identified
model (solid lines) is compared to the simulated measurements (crosses).
The good fit of the analytical model is evident. Figs. 7a to 7c¢ show
the dynamic inflow variables vg, vy, vy7 computed with the identified

model. Particularly vy; shows very substantial fluctuationms.

Optimum Data Utilization

In reference 4 Chapter 3 a differential equation for the inverted
information matrix M-l is developed that allows to compute the
Cramér-Rao lower bound for the parameter covariances vs. the duration

of the transient used in the parameter identification process. TFor the

RYPRODUCIBILITY OF 1.
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example given in reference 4 it was found that there exists an
optimum data length beyond which no improvement in the parameter
errors can be expected, It is of interest to find out whether or
not such an optimum data length can alzo be defined for the much
more complex cases studied in this report.

The case presented here referm to Model (e) with one time
constant, the dynamic rotor inflow being represented by Egs.(13)and
(15). The advance ratio is again u = .4. The simulated measurement
standard deviation is o = .05. The transient is a progressing cyclic
pitch stirring excitation with an acceleration @ = -.1/m. The true
Lock number is y = 5, Fig., 8 shows the predicted parameter standard
deviations (Cramé;-Rao lower bounds) divided by the parameter values
vs. the duration of the transient used in the identification process.
The Lock number y shows the lowest relative error, the parameter P,
ultimately the highest. It is remarkable that all 7 parameters reach
their asymptotic relative error at about the same t = 18, Thus using
a transient time of t = 12 as was done here for the identification
of Model (e) with one time constant (but not of Model (e) with three
time constants), does not give optimal data utilization. On the other
hand Fig. 8 shows that extending the data length used for the parameter
identifications much beyond t = 18 would be wasteful of computer
time and would not result in better accuracies of the parameter

estimates.
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Numerical Results for Hub Stirring Transients

As an alternative to cyclic pitch stirring transients hub stirring
transients have been considered, and the rotor equetions for this
case have been presented (Egs. (23)to(28)). The questien is whether
the accuracy of the parameter identifications is affected when using
hub stirring instead of cyclic pitch stirring. For blades articulated
at the rotor center cyclic pitch stirring and hub stirring are
identical and lead to identical flapping responses. For rotors with
off-set hinges or for hingeless rotors there are, however, differencss
in the two modes of transient excitatiom. .

Model (e) with one time constant and the rotor inflow defined by
Egs. (13)and (15)has been assumed for the study. The advance ratio is
u = .4, The stirring acceleration is © = -.1/m in the progressing
sense, Contrary to the preceding analysis for Model (e) the time step
has been increased from At = .1 to .2. The duration of the transient
has also been increased from t = 12 to 24 so that the computer time

remains the same.

Model (e), Hub Stirring, At = .2, t = 24, 16 CPU sec/Iteration

Py P, Py Py Ps T Y
True Value 1.00 1,20 -.40 .40 .80 1.20 5.00
Initial Estimate .50 .60 -.20 .20 .40 1.80 4,00
Iteration 1 1.14 .57 -.50 .50 .60 1.11 4.81
2 .94 1,04 -.65 .60 .82 1,37 5.03
3 .9 1.17 -.59 .40 .81 1.35 5.06
4 .88 1.15 -.56 .33 .78 1.32 5.06
5 .88 1.16 -.56 .33 .78 1.32 5.06
M 1/2/1dent. Value| .25 .26 .30 .75 .24 .18 .02
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To compare with the equivalent cyclic pitch stirring case, an analysis
of this case was mads on the same basis, that is using a time step

At = .2 and a duration t = 24,

Model (e), Cyclic Pitch Stirring, At = .2, t = 24,

16 CPU sec/Iteration

P 1 P2 P3 Pu P5 T Y
True Value 1.00 1.20 -.40 .40 .80 1.20 5,00
Initial Estimate .50 .60 -.20 .20 .40 1.80 4.00
Iteration 1 .96 .91 -.u3 .44 .68 .94 4,77
2 .72 1.26 -.46 .40 .86 1.16 4,96
3 .75 1.26 -.42 .34 .84 1,16 4,97
4 .75 1.26 -.42 .34 .84 1,17 4,98
5 .75 1.26 -.42 .34 .84 1,17 4.98
w1/2/1dent. Value 27 .16 .27 .27 .22 .26 .04

Note that in both cases the errors in the initial estimates are much
larger than in the preceding cases, yet good convergence is obtained.

In comparing the hub stirring with the cyclic pitch stirring case, there
are only insignificant differences in the parameter errors and in the
rates of conversion. The predicted parameter evrors are also rather
close except for a larger predicted error for P, in the case of hub
stirring. In both cases the predicted and actual errors for the Lock
number y are quite small. In comparison to the previous analysic for
Model (e) with one time constant and At = .1, t = 12, both the predicted
and actual parameter errors are much smaller despite identical computer

CPU time.

REPRODUCIBILITY OF |
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Conclusione

Rotor state and parameter identifications at .4 rotor advance ratio
have been performed based on simulated blade flapping measurements for
an analytical rotor model that assumes straight blades flexibly hinged

‘at the rotor center. Retersed flow, stall and compressibility effects

were omitted, but periodic coefficients in the equations of motion for

forward flight conditions were retained. All state and parameter
identifications were performed with brief periods of accelerated cyclic
pitch or hub stirring. The following conclusions can be drawn from the
study.

1. The maximum likelihood method with a fixed error covariance matrix
is well suited for the problem and gives good convergence in all
cases.

2. Using a model with an identified equivalent Lock number substantially
improves the predicted flapping responses in comparison to those
with neglected rotor dynamic inflow, but still leaves some errors in
the responses.

3. An identified dynamic rotor inflow model with 4 parameters that
include one time constant gives almost perfect response predictions.

4, The addition of 4 more inflow parameters including 2 further time
constants and of the Lock number does not affect the rate of
convergence or the accuracy of the estimates, though it requires
much more computer CPU time per iteration.

5. Cyelic pitch stirring and hub stirring transients are equally

suitable for the parameter identifications.



6.

8.

i

The accuracies with which the various paremeters can be identified
are quite different from each other, the Lock number having the
highest accuracy. Despite unavoidable inaccuracies in some of

the parameters, even relatively large errors in such parameters

have little effect on the responses.

There is a clearly defined optimal data length that can be

computed. More data do not bring improved accuracy of the estimates,
while a shorter data length leads to rapidly increasing errors in
the estimates.

The time step used for the numerical integrations is not a

critical quantity. Both At = .1 and .2 appear to be satisfactory.



32

Reforences

1. Hohensmser, K. H. and Yin, S. K., "Methods Studies Toward Simpliffed
Rotor-Body Dynamics", Part I of First Yearly Report under Contract
NAS2-7613, June 1974,

2, Hohenemser, K. H., and Yin, 8. K., "Computer Experiments in Pre-
paration of System Identifi{cation from Transient Rotor Model
Tests", Part II of First Yearly Report undsr Contract NAS2-7613,
June 1974,

3. Hohenemser, K. H, and Crews, S. T., "Experiments with a Four+Bladed
Cyclic Pitch Stirring Model Rotor", Part III.ef First Yearly
Report under Contract NAS2-7613, June 1974.

4. Hohenemser, K. H., Banerjee, D., and Yin, S. K., "Methods Studies
on System Identification From Transient Rotor Tests", Part I of
Second Yearly Report under Contract NAS2-7613, June 1975.

5. Hohenemsaer, K. H. and Crews, S. T., "Additional Experiments with a
Four-Bladed Cyclic Pitch Stirring Model Rotor". Part II of Second
Yearly Report under Contract NAS2-7613, June 1975.

6. Hohenemser, K. H., Banerjee, D., and Yin, S. K., "Rotor Dynamic
State and Parameter Identification From Simulated Forward Flight
Transients", Part I of Third Yearly Report under Contract
NAS2-7613, June 1976,

7. Hohenemser, K. H. and Crews, S. T., "Rotor Dynamic State and
Parameter Identification From Hovering Transients", Part II of
Third Yearly Report under Contract NAS2-7613, June 1976.

8. Hohenemser, K. H. and Yin, S. K., "On the Use of First Order Rotor
Dynamics in Multiblade Coordinates", 30th Annual National Forum
of the American Helicopter Society, May 1974, Preprint No. 831.

9. Ormiston, R. A. and Peters, D. A., "Hingeless Rotor Response with
Non-Uniform Inflow and Elastic Blade Bending", J. of Aircraft,
VOl. 9’ NO. lo’ OCt. 1972’ ppc 730-7360

10, Peters, D. A., "Hingeless Rotor Frequency Response with Unsteady
Inflow", Rotorcraft Dynamics, NASA SP 352, February 1974.

1ll. Hohenemser, K. H. and Yin, S. K., "Some Applications of the Method
of Multiblade Coordinates", J. American Helicopter Soc., Vol. 17,
No. 3, July 1972,



33

Figure Captions
Fig. 1 Cyclic Pitch S<irring Inputs with Zero Initial Values for

Fig.

Fig.
Fig.

Fig.

Fig.
Fig.

Fig.

Prograssing Stirring Acceleration o = -.10/w.

Single Blade Flapping Response with Simulated Measurement
Errors, ogk = .1.

Cyclic Pitch Stirring Response Comparisons.
Response Comparisons for Collective Pitch Unit Step Input.

Response Comparisons for Longitudinal Cyclic Pitch Unit Step
Input,

Identified Flapping Responses Using 3 Time Constants.
Identified Rotor Dynamic Inflow Using 3 Time Constants.

Relative Parameter Standard Deviation vs. Duration of Transient.
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