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Preface t o  Third Yearly Report under Contract NAS2-7613 

Work under Contract NAS2-7613 s t a r t e d  on Ju ly  1, 1973. 

research goals f o r  a 3 year  period s t a t e d  i n  t h i s  contract  are? 

The 

Assess ana ly t i ca l ly  the  effects of fuselage motions on s t a b i l i t y  

and random response. 

not overly complex f l i g h t  dynamics ana ly t i ca l  made1 and to  study 

t h e  effects of s t r u c t u r a l  and e l ec t ron ic  feedback, pa r t i cu la r ly  

f o r  hingeless ro tors .  

Study by computer and hardware experiments t h e  f e a s i b i l i t y  of 

adequate per turbat ion models f r o m  non-linear t r i m  conditions.  

The problem is t o  ex t r ac t  an adequate l i n e a r  per turbat ion m o d e l  

f o r  t he  purpose of s t a b i l i t y  and random motion s tudies .  

ex t rac t ion  i s  t o  be performed on the  bas i s  of t r ans i en t  responses 

obtained e i t h e r  by computed time h i s t o r i e s  o r  by model tests. 

Extend the  experimental methods t o  assess r o t o r  wake-blade 

in te rac t ions  by using a 4-bladed r o t o r  model with the  capabi l i ty  

of progressing and regressing blade p i tch  exc i t a t ion  ( cyc l i c  

p i tch  s t i r r i n g ) ,  by using a &bladed r o t o r  model w i t h  hub tilt 

s t i r r i n g ,  and by t e s t i n g  ro to r  models i n  s inusoidal  up o r  s ide  flow. 

Seven repor t s  on the work under Contract NAS2-7613 have been 

The problem is t o  develop an adequate but  

The 

submitted, references 1 t o  7. 

References 2 ,  4 ,  6 ,  7 per ta in  t r ?  research goal (b) .  I t  is incomplete 

t o  da te .  References 3 and 5 per ta in  t o  research goal  ( c ) .  I t  a l s o  is  

incomplete t o  date.  Reference 3 presents the  results of extensive 

frequencv response tests. Reference 5 presents  dynamic downwash 

Reference 1 completes research goal  (a).  
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measmmnts i n  hovering during harmonic rotor exci ta t ion.  

m u s c r i p t s  for publicat ion have been prepared. The first has been 

published as reference 8. Two f u r t h e r  manuscripts covering p a r t  of 

t h e  material i n  references 3 and 7 have been submitted t o  journals. 

Three 

The extensive rotor state and parameter i den t i f i ca t ion  work with 

computer simulated t r ans i en t s  was found t o  be very useful f o r  t he  

- subsequent data processing of t h e  measured t r ans i en t s .  It allowed t o  

sort out possible  inadequacies of t he  applied iden t i f i ca t ion  algorithm 

and of the  i>puts  f r o m  possible  inadequscies of the  measurements and 

of the  applied mathematical rotor m o d e l .  Rotor state and parameter 

i den t i f i ca t ions  from measured t r ans i en t s  are presently complete f o r  

hovering conditions using cyc l i c  p i tch  s t i r r i n g  t rans ien ts .  

presented i n  reference 7. 

conditions and f o r  hub tilt s t i r r i n g  is planned t o  be completed i n  

Fy 1977 during an authorized extension of the  research contract .  

They are 

The corresponding work f o r  forward f l i g h t  

It 

is a l s o  planned t o  r e f ine  the  ana ly t i ca l  rotor model used f o r  t he  

s t a t e  and parameter i den t i f i ca t ions  t o  include blade f l e x i b i l i t y .  

Rotor s t a t e  and parameter i den t i f i ca t ion  from t r ans i en t s  is s t i l l  

a f i e l d  where l i t t l e  experience is avai lable .  As elaborated i n  

Chapter A of reference 4 it takes four  important ingredients t o  perform 

a successful  s t a t e  and parameter i den t i f i ca t ion  f r o m  t r ans i en t s ;  a 

su i t ab le  input,  a su i t ab le  instrumentation f o r  measuring key s t a t e  

var iables ,  an adequate mathematical model of t h e  system, and an 

e f f i c i e n t  c r i t e r i o n  function f o r  the  estimation algorithm. I n  a l l  

four respects  considerable work had t o  be  done i n  order t o  fina11y 

es tab l i sh  a combination of these four  ingredients t h a t  l e d  t o  success. 
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The lessons l e a n e d  i n  this effort are b p d  to pave the way for  a 

wider application of rotor dynamic pcrtwbation s t a t e  and parameter 

identif icat ions f r o m  transients about non-linear t r i m  conditions, 

both in rotor wind tunnel testing and i n  rotor f l i g h t  teat ing.  
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Rotor Dynamic S t a t e  and P a n z t e r  Iden t i f i ca t ion  From 

Simulated Forward Flight  Transients 

K. H. Hohenemser, D. Banerjee, and S. K. Yin 

Abstract 

S t a t e  and parameter i den t i f i ca t ions  from simulated forward f l i g h t  

blade flapping measurements are presented. 

exc i ted  by progressing cyc l i c  p i t ch  s t i r r i n g  or by hub s t i r r i n g  with 

constant s t i r r i n g  acceleration. 

varying degree of sophis t ica t ion  are used f r o m  a one parameter inflow 

model (equivalent Lock number) t o  an e igh t  parameter inflow model. 

The .maximum l ikel ihood method with assumed f ixed measurement e r r o r  

The t r ans i en t s  are 

Rotor dynamic inflow models of 

covariance matrix is applied. The r o t o r  system equations f o r  both 

-f ixed hub and t i l t i n g  hub are given. The iden t i f i ed  models are 

verified by comparing t rue responses with predicted responses. 

optimum u t i l i z a t i o n  of the  simulated measurement data  can be defined. 

From t he  numerical results it  can be ant ic ipated t h a t  b r i e f  periods of 

An 

e i t h e r  accelerated cyc l i c  p i tch  s t i r r i n g  o r  of hub s t i r r i n g  are 

s u f f i c i e n t  t o  ex t r ac t  wi th  adequate accuracy up t o  8 ro to r  dynamic 

inflow parameters plus the  blade Lock number from the  t rans icn ts .  
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Notat ion 

B 

F, F’ 

J 

L 

M, N,, Nu 

M 

PI ,  * * *  Pg 

P 

R 

a 

5 
Cn 

CL 

t 

tk 

U 

V 

x 

Y 

blade t i p  l o s s  factor 

rotor state matrices of size 8 x 8 and 11 x 11 
respect ively 

matrices relating induced flow and control  
variables respec t ive ly  t o  the rates of states 

c r i t e r i o n  function 

rotor induced flow g a i G  matrix 

matrices r e l a t i n g  the  state, induced flow and 
control  var iables  respect ively t o  the  rotor 
th rus t  and moment coe f f i c i en t s  

information matrix 

rotor induced flow parameters 

blade na tu ra l  f lapping frequency 

measurement e r r o r  covariance matrix 

blade sec t ion  lift slope 

rotor t h r u s t  coef f ic ien t ,  pos i t i ve  up 

rotor pi tching moment coef f ic ien t ,  pos i t ive  nose-up 

rotor r o l l i n g  momen+ coefficient, pos i t ive  t o  r i g h t  

non-dimensional time (per iod of revolut ion 2n) 

t i m e  it takes kth blade t o  move from rear posi t ion t o  
present posi t ion 

control  vector 

to ta l  mean rotor f l o w  veloci ty  (non-dimensional), or 
noise vector  

r o t o r  s t a t e  vector 

r o t o r  measurement vector 

hub t i l t i n g  angle a t  kth blade, pos i t ive  up 
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kotat ion (continued) 

V O  

V I  

V I  

U 

Superscripts 

A 

T 

* 
Subscripts 

m 

L 

nose down hub t i l t i n g  angle 

lef t  hub t i l t i n g  angle 

f lapping angle of k t h  blade,  pos i t ive  up 

nose down cyc l i c  f lapping angle 

l e f t  cyclic f lapping angle 

blade d i f f e r e n t i a l  coning angle 

blade Lock number 

p i t ch  angle of k th  blade,  pos i t i ve  nose up 

nose down cyc:ic p i tch  angle 

lef t  cyc l i c  p i t ch  angle 

co l l ec t ive  p i t ch  angle 

r o t o r  advance r a t i o  

non-dimensional I pas i t i ve  down 

t o t a l  mean r o t o r  inflow veloci ty  

r o t o r  mean induced veloci ty  

mean per turbat ion induced ve loc i ty  

per turbat ion cyc l i c  induced veloci ty  a t  blade t i p ,  
down a t  rear 

per turbat ion cyc l i c  induced 'veloci ty  a t  blade t i p ,  
d a m  a t  r i g h t  

rotor s o l i d i t y  r a t i o ,  o r  standard deviation 

time d i f f e ren t i a t ion  

estimated value 

transposed matnix 

equivalent 

measured variable 

e mp i ri cal 



Introduction 

This r epor t  covers t h e  extension of computer simulation work pre- 

sented i n  references 2 and 4. 

state and parameter i den t i f i ca t ions  i n  forward f l i g h t  (.4 advance r a t i o )  

using the  concept of  an equivalent Lock number t o  appiwximate r o t o r  

dynamic inflow effects. 

s ing le  blads representat ion i n  the  r o t a t i n g  frame of reference, and a 

simplif ied multiblade representat ion omit t ing per iodic  terms and 

omitting multiblade accelerat ions.  

the  simulated noise pol luted blade f lapping measurements ; the  equivalent 

Lock number., and the co l l ec t ive  p i t ch  angle. Iko t r ans i en t  inputs  were 

studied; a rectangular  normal flow pulse,  and a wave shaped norVal f l o w  

pulse. 

pol lut ion w e r e  first preprocessed by e i t h e r  a d i g i t a l  f i l t e r  t h a t  took 

out  the  high frequency noise o r  by a K a l m a n  f i l t e r  t h a t  used estimates 

of the unknown parameters. 

a set of d i f f e r e n t i a l  equations t h a t  sequent ia l ly  minimized the  system 

equation e r r o r ,  

re t r ieved  f o r  the  wave shaped normal flow pulse.  

the s ing le  blade model with per iodic  coe f f i c i en t s  and f o r  the approximate 

multiblade model with omitted per iodic  terms and accelerat ions.  

Reference 2 refers t o  r o t o r  dynamic 

TJO ana ly t i ca l  models were used; a complete 

Two parameters were iden t i f i ed  from 

The simulated measurements with computer generated noise 

The parameters were i den t i f i ed  by in tegra t ing  

The unknown parameters could be pa r t i cu la r ly  well 

This w a s  true both for 

Reference 4 ,  Chapter 2, r e f e r s  t o  r o t o r  s ta te  and parameter 

i den t i f i ca t ions  both i n  forward f l i g h t  and i n  hovering using cyc l i c  

p i tch  s t i r r i n g  t r ans i en t s  as inputs .  The forward f l i g h t  model was 

l imited t o  the concept of equivalent Lock number, e i t h e r  i n  the  form of 
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a s i n g l e  blade representat ion with per iodic  coef f ic ien ts ,  or i n  t h e  

form of a multiblade r e p r e s m t a t i o n  with constant coefficients. 

simulated measurements were again pol lu ted  by aqtputer  generated 

noise. 

ins tead  of  the sequent ia l  equation error minimization, a g loba l  

equation error minimfzation w a s  used t h a t  is computationally more 

e f f i c i e n t ;  second, t he  Kalman f i l t e r  t o  preprocess the  measurements 

w a s  used i n  an iterative way, being updated whenever new pararaster  

estimates w e r e  atrailable. 

updated Kalman f i l t e r  was compared w i t h  a version of t he  so ca l l ed  

maximum l ikel ihood methcd where system noise  is not modeled. I t  w a s  

found t h a t  despi te  somewhat more computer CPU time pe r  i t e r a t i o n ,  t he  

maximm l ikel ihood method was super ior  because of more rapid convergence 

and because of more meaningful parameter covariances, 

The 

The method used i n  reference 2 was modified i n  two ways; first, 

The i t e r a t e d  equation e m o r  est imat ion with 

The maximum l ikel ihood method w a s  then applied t o  the  problem of 

r o t o r  dynamic state and parameter i den t i f i ca t ion  from c y c l i c  pi tch 

s t i r r i n g  t r ans i en t s  i n  hovering using a time delayed r o t o r  inflow. 

Now 3 parameters were assumed t o  be unknown; the  blade Lock number, the , 

inflow gain,  and the inflow t i m e  constant.  

A t  time zero a s t ep  input  i n  cyc l i c  p i t c h ,  and a t  time t = 70 the 

beginning of cyc l i c  p i t ch  s t i r r i n g  with constant s t i r r i n g  accelerat ion.  

The iden t i f i ca t ion  process was s t a r t e d  a t  t = 70. The t r ans i en t  from 

the step input  had not completely subsided when cyc l i c  p i tch  s t i r r i n g  

began, 

blade f lapping def lec t ion  and of the r o t o r  inflow as unknowns i n  the 

parameter i den t i f i ca t ion  scheme, leading t o  7 unknown parameters. 

Two inputs  were assumed. 

I t  w a s  found necessary t o  include t h e  i n i t i a l  values of t h e  
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Though t h i s  required 6.3 CPU s e c o n b  p e r  i teration, (IBM 360/65 computer) 

the  socond i teration w a  found t o  be almost converged, so t h a t  the 

t o t a l  computer effort was moderate. For the  tests there  is no s t e p  

input of cyc l i c  p i t ch ,  so t h a t  i n i t i a l  value identificatiot-m can be 

omit t e d  . 
Reference 4, Chapter 3 develops a method of est imat ing the  

optimum t r ans i en t  da ta  length t h a t  proved t o  be la ter  very usefu l  i n  

a l l  s t a t e  and parameter i den t i f i ca t ions .  

method one needs the  inverse of the so-called information matrix t h a t  

t heo re t i ca l ly  gives lower bounds t o  the  parameter covariances. 

d i f f e r e n t i a l  equation f o r  the inverted inforination matrix was derived 

and i t  w a s  found t h a t  its in t eg ra t ion  r e s u l t s  i n  the  de f in i t i on  of a 

data  length beyond which no improvement t o  the parameter covariances 

can be expected. 

increase i n  the  parameter Covariances occurs, 

found t o  avoid e r r o r s  from insu f f i c i en t  data  length and t o  avoid 

unnecessary computer e f f o r t  arAd a degradation of accuracy from 

meaningless addi t iona l  data, 

In  the  m a x i m u m  l ikel ihood 

A 

If less data  are used i n  the  iden t i f i ca t ion ,  a rapid 

Thus a r a t iona l  way was 

As mentioned before,  the forward f l i g h t  s tud ie s  i n  references 2 

and 4 w e r e  l imited t o  the concept of equivalent Lock number. 

remains is t o  apply the  concept of a time delayed r o t o r  inflow t o  

forward f l i g h t  conditions and t o  a l so  consider r o t o r  hub s t i r r i n g  

t rans ien ts  mentioned i n  research goal ( c )  . 
performed t o  study the f e a s i b i l i t y  of these types of appl icat ion of 

the maximum l ikel ihood method. 

What 

Computer simulations were 

The present repor t  describes t h i s  work.  
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Single Blade and Mult'.blade Coordinates 

As before, the  nunhtbal  ana lys i s  is performed f o r  an cdvance 

r a t io  of .4. 

of the  various blades is included, a multiblade representa t ion  is 

c a l l e d  for. 

var iab les  are: 

Blade flapping angle: 

Since now dynamic rotor inflow t h a t  couples the  motions 

The relations between single blade and multiblade 

~k = fi0 + Bd(-lP1+fiI cos % t 811 s i n  t k  

Blade p i t ch  angle: = 8, - 01 s i n  t k  t 011 COS t k  

Induced flaw: Vk = Vo + vI(r/R)cos tk t vfI(r /R)sin t k  

The subscr ip t  

cyc l i c  induced flow ( the  inflow is down i n  the  rear), the  subscr ip t  

refers t o  left  c y c l i c  flapping, cyc l i c  pitch and cyc l i c  induced flow 

( the  inflow is  down t o  the  r i g h t ) .  Bd represents d i f f e r e n t i a l  coning 

f o r  the  4-bladed r o t o r ,  whereby one p a i r  of opposing blaGes cones up, 

the other p a i r  cones down. 

flow over t h e  radius is defined i n  Eq. (11, t h i s  assumption is not 

required f o r  the  parameter i d e n t i f i c a t i o n  process. 

d i s t r ibu t ions  merely produce d i f f e ren t  values i n  the iden t i f i ed  

parameters but do not change the form of the equations. 

I refers t o  forward c y c l i c  flapping, c y c l i c  p i t ch  and 

IT 

Though a l i n e a r  d i s t r i b u t i o n  of the  induced 

Different inflow 

For the  tests the  constant co l l ec t ive  blade p i t ch  Bo is known. 

Also known are the  c y c l i c  blade p i t ch  var iab les  

function of time. 

flapping angle. 

t he  multibla2e flapping variables are r e l a t e d  t o  the  sing1.e blade 

flapping variable- by the  transformation 

e I ( t ) ,  9 I I ( t )  88 

The only measured s ta te  variables a re  the 9 blade 

A s  can be derived from Cq. (1) B l m ,  B2m9 63mr B4,,,. 
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with its inverse 

1 

1 

1 [ 1 

1 

1 

cos t 

-sin t 

-cos t 

s i n  t 

1 

-2 s in  t 

2 cos t 

-1 

sin t 

cos t 

-sin t 

-cos t 

1 

-2 COB t 

-2 s in  t 

1 

1 

-l] -1 1 [jjj 
For the  computer simulations it w a s  assumed that the re  is addi t ive  noise 

i n  the  s ing le  blade flapping measmments. Thus t he  measurement 

equations are 

1 cos t s i n  t 1 

1 -s in  t cos t -1 

1 -cos t -s in  t 1 

1 s i n  t -cos t -1 

The riieasurement noise covariance 

changea during t h e  i t e r a t i o n s .  

2 of reference 4) 

R was assumed t o  be given and not 

The innovation is given by (see Chapter 

( 3 )  
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In order to deterdm the -timates i,, $2, i s ,  6, fmm the estimates 

fOP ths mtiblads oOOrdfn8te8 EO, kI, 611, i d  CWle need8 (3) .  

For the state and parameter identifications h test data a 

sligbtZy dimrent procedure w a s  selected, as discussed in reference 7. 

The masUre8ients 8,, BZls, 8*, 8, were first transfcmmed to 

multiblade coordinates by using Eq. (2). These mul t ibhde  variabJes 

Born, B,,, ftII,, Bdm 
as measured quan t i t i e s  with additive noise: 

we= then considered in the estimation algorithm 

The innovation vector  is then given by 

c 

v =  

The measurement erxr covariance w a s  not  considered given but  was 

updated i n  each iteration. 

parameter i den t i f i ca t ions  f r o m  test da t a  has t h e  advantage of saving 

for each i t e r a t i o n  t h e  execution of the transformation Eq. ( 3 ) .  

i n  t h i s  procedure s u i t a b l e  weights are applsed t o  the  test  da ta  in  the 

The procedure used for t h e  s t a t e  and 

Also 
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form of t he  masuremernt error covariance determined from t he  preceding 

i t e r a t ion .  

Inflow Model with One Time Constant 

We adopt here t he  r o t o r  inflow m o d e l  of references 9 and 10. 

Eq. (33) of referenca 10, writ ten in our notation, reads 

Rotor th rus t  and moment coeff ic ients  

contributions only. LE is the empirical L-matrix defined i n  reference 

9. The theo re t i ca l  values of 

a s o l i d  disk are given i n  reference 10 as IC,,, = .849, kI = .113. 

CT, CHI CL are from aerodynamic 

k, and kI, using potent ia l  flow around 

The 

components of the L-matrix as well as 

from ro to r  t ransient  tests. 

and kI w i l l  be iden t i f i ed  

From momentum theory one obtains 

according t o  reference -0 

2v 0 

0 -v/2 
1 -1 - CL3 = ua 

0 -  lo .v/2 :S 
- 

where X and are the  t r i m  values, about which t h e  rotor  inflow 

perturbations vo, vI, VII are taken. Note t h a t  an induced flow 
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t r i m  value is only defined with respect t o  t h e  axial induced f law.  

For t he  p i t ch  s t i r r i n g  r o t o r  model we have pr ior  t o  t h e  start of t he  

p i t c h  s t i r r i n g  transient a cyclic p i t ch  trim condition equal t o  t h e  

amplitude of t h e  cyclic p i t ch  stirring. 

t o  be a l i n e a r  p a u r b a t i o n  var iab le  and not par t  of a non-linear trim 

condition. 

This amplitude is considered 

For steady conditions at advance r a t i o  .4 one obtains from 

reference 9 

.5 0 0 

- 0 -2.0 

0 1.0 -3.0 
- 

In reference 9 cycl ic  induced inflow was assumed with constant dis- 

t r i bu t ion  over t he  radius. 

assumed i n  reference 10 and i n  Eq. athe empirical L-matrix given in  

To adjust  f o r  t h e  l i n e a r  dis t r ibut ion 

Eq. (ll) is changed t o  

.5 0 0 

0 -2.7 -1.3 

0 1.3 -4.0 

(11) 

(12) 

After inversion of t h i s  matrix, division by k, and kI, inser t ion of 

c1 = .4 and rounding off t he  numbers, one obtains Eq. ( 8 )  i n  the form 
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The r o t o r  moment coe f f i c i en t s  C, and CL are here  assmed with t h e i r  

usual sign,  positive when t h e  moments f r o m  t he  flow on t h e  rotor are 

nose-up and to the  r i g h t  respect ively.  

Three types of state and parameter i den t i f i ca t ion  f r o m  computer 

simulated measurements w e r e  performed. 

are 8 unknown inflow paramiters i n  Eq. (13): 

I n  the  most general  case there  

The 5 parameters 

T~~ are time constants. 

r e l a t i o n s  between the 3 time constants.  

P1 to P5 represent  in f l im gain constants,  while T ~ ,  fI, 

I n  t h i s  form no assumption is made about t h e  

In t h e  second case t h e  t h e o r e t i c a l  r e l a t i o n s  fI = rII = 7.5 T~ 

from reference 10 are used. This reduces the  number of unknown inflow 

parameters from 8 t o  6: 



12 

In the, third case only diagonal term am mtdaed i n  t h e  inflow gain 

m a M x  so that P4 = P3 * 0. This further reduces the number of 

unknown parametere from 6 to 4. The inflow gain parameters and t h e  

inflow time constantar w i l l  depend on the t r i m  condition and on t h e  

rotor advance ratio tr . 
Rotor System Equa t ions ,  Fixed Hub 

The r o t o r  system equations are &itten i n  t h e  form 

G = F x + G , u + G , u  

with the  state vector x given by 

with the  induced flow vector given by uT = [ U ~ U I V I I ~  

and with the con t ro l  vector given by UT = [0,010111 

Finally we have a set of equations t h a t  gives t h e  ahrOaynadC 

t h r u s t  and moment coe f f i c i en t s  i n  terms of  state vector x, inflow 

vector u and control vector u: 

The matrices 

8 x 3 ,  8 x 3 ,  

F, h, %, M, Nu, NU are respec t ive ly  of s i z e  8 x 8, 

3 x 8 ,  3 x 3, 3 x 3. F G r  moderate advance ratio 

(16) 

neglecting reversed flow e f f e c t s  and assuming 4 s t r a i g h t  constant chord 

blades hinged a t  the rotor center, these 6 matrixes are: 
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When i n se r t ing  Eq.(8) in to  Eq. (20) t h e  rotor, t h r c s t  and moment I t  1 

ficients are eliminated and one obta ins  a system equation of t h e  

x = F  * 5  x + G u  

where the  state wector now includes the  inflow variables 

(21) 

where the  state matrix F' 

matrix G is  of size 11 x 3. Note t h a t  i n  t h e  state and parameter 

i den t i f i ca t ions  only 4 out  of the  11 state variables  are measured. 

is of size 11 x 11, and where t h e  contpol 

In  addi t ion t o  the  inflow parameters t he  r o t o r  system equations 

have as parameters the  advance ratio 

the Lock number y and the t i p  loss f a c t o r  B. In  pr inc ip le  both y 

and B could be iden t i f i ed  from t h e  t r a n s i e n t  test results. 

set B = .97 and then iden t i f i ed  y. 

the  blade na tu ra l  frequency when r o t a t i n g  P 

i den t i f i ed  from t r ans i en t  tes t  data. 

assumed P as a known quantity.  The assumptions made i n  der iving t h e  

system equations are less restrictive than they may appear. 

form of the  equations is wed i n  the state and parameter i den t i f i ca t ion  

procedure. 

results i n  such a way t h a t  the  quadrat ic  differences between predicted 

and actual measurements are minimized. 

p t h a t  can be considered known, 

We usual ly  

The system equations also contain 

t h a t  could be e a s i l y  

In many iden t i f i ca t ions  w e  

Only the  

A l l  parameters are le f t  open and me adapted t o  the test 

Rotor System Equations, T i l t i n g  Hub 

As defined i n  Research Goal (c) t r ans i en t  r o t o r  t e s t i n g  toward 

es tab l i sh ing  dynamic r o t o r  wake-blade in te rac t ions  is t o  b e  performed 

both with cyc l i c  p i t ch  s t i r r i n g  and with hub tilt s t i r r i n g .  A second 
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r o t o r  model with the  capabi l i ty  of hub tilt e t i r r i n g  is being b u i l t .  

The rotor system equations on which the  s t a t e  and parameter identi-  

f i ca t ions  w i l l  be based'are described i n  the following. 

The second of Eqs.' (1) is now replaced by 

where 

respectively.  

hinged at  the  r o t o r  center.  The blade flapping angles $1 0 . 0  $4 and 

the  associated multiblade angles 

t o  the  hub but r a the r  with respect  t o  the  space f ixed reference r o t o r  

plane f o r  zero hub t i l t i n g  angle. 

same effect as cycl ic  p i t ch  appl icat ion 

e l a s t i c  blade r e s t r a in ing  moments t h a t  are opposite those f r o m  

and 611. 

a1 and a11 are t he  forward and l e f t  hub t i l t i n g  angle 

The blades are again assumed s t r a i g h t  and e l a s t i c l y  

BI, BII a re  defined - not with respec t  

Hub t i l t i n g  a1 and a11 has t h e  

81 and 811, except f o r  t h e  

$1 

Thus t he  control  vector is now given by 

T u = Ceo aI 0111 

instead of by Eq. (19), and e l a s t i c  r e s t r a i n t  terms must be added t o  

the Gu - Matrix, s ince the  e l a s t i c  pi tching and r o l l i n g  moments a re  

now proport ional  t o  respect ively instead of 

proportional t o  B, and B I I .  

$1 - a, and BII - a11 
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v =  

G, - Matrix for Hub S t i r r i n g  

r- 

(6, - a2Im - 

( 3 ,  - a3Im - 

(B,  - aQIT - 

F1 + 2 F3 r- 
0 

4% 

0 

- ~ F ~ c o s  2 t  

0 

-2F2 

0 

P -1 t Fg d n  4 t  

0 

2 

-F ( 3  f cos 4 t )  -F1 3 

0 

2F2 cos 2 t  

0 

3 
0 

F ~ + F ~ (  LCOS 4 t )  

0 

P -1-F3 s i n  4 t  

0 

2 

2F2 sin 2 t  

In a l l  o ther  respects Eqs. (16) t o  (22) including the expressions for 

the remaining 5 matrices remain unchanged, though the  flapping angles 

are now defined d i f fe ren t ly  as compared t o  the  hub-fixed case. 

The measurement equations (4 )  are now di f fe ren t  s ince  the  blade 

flapping angles are measured with respect  t o  the hub. 

simulations we  have instead of  Eq. (4) the  measurement equations: 

For the  computer 

- 
1 cos t s i n  t 1 

1 -sin t cos t -1 

1 -cos t -sin t 1 

1 s i n  t -cos t -1 
- 

(25) 

(26) 

REPRODUCIBILITY OF '1 ;I 
ORIGINAL PAGE IS Po(jT, 



18 

For t h e  s t a t e  and parameter identifications from test data a 

somewhat different procedure w i l l  be followed, whereby the s ingle  

blade measurements are first transformed into rnultiblade measurement$: 

= (1/4) 

- 
1 1 1 1 

2 ~ 0 s t  -2sint  -2cost 2sint 

2 s i n t  2cost -2sint  -2cost 

1 -1 1 -1 - 

The innovation vector is  then defined by 

The measurement covariance has been assumed given for the computer 

simulations. I t  w i l l  be  updated f o r  each i t e r a t ion  for t h e  s t a t e  and 

parameter i d e n t i f i c a t i o n s  from t r ans i en t  t e s t  results, as explained before. 

Numerical Results for Cyclic Pi tch S t i r r i n g  Transients 

For t h e  numerical examples presented i n  t h e  following w e  assumed as 

given the  product of lift slope and blade s o l i d i t y  r a t i o  aa = 2n/10, 

the advance r a t i o  p = . 4 ,  t he  t i p  loss f a c t o r  B = .97  aild t h e  blade 

flapping frequency P = 1.20. The Lock n,-mber i s  assumed given as 

y = 5.0 f o r  some of the  i d e n t i f i c a t i o n  runs and assumed unknown i n  

other runs. The control  varidbles 01, 011 a r e  assuwd given. I n  

p w v i o u s  experie-,ce i t  was found t h a t  a moderate noise pol lut ion o f  the  
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cont ro l  var iables  had no subs t an t i a l  af fec t  on &het 

results of the state and parameter i den t i f i ca t ion .  

presented here  

without noise pol lut ion.  

angle measurements were pol luted w i t h  computer generated Gaussian 

zero inean noise with a standard deviat ion of b@k = .l. 

of values for  the  pi tch a t i r r i n g  accelerat ion were s tudied.  

found t h a t  t h e  slower accelerat ions required a longer time span t o  

y i e ld  the same accuracy o f  the iden t i f i ed  parameters as the faster 

accelerat ions.  

accelerat ion of 

1 2  time uni t s  from the  s ta r t  of  the  t r ans i en t .  Later it was found 

t h a t  t h i s  data length does not provide optiinal da t a  u t i l i z a t i o n  and 

tha t  fo r  b e t t e r  r e s u l t s  a data length of 1 8  time units should have 

been used f o r  A = -.10/n. 

For the  cases 

eI and OII were wed i n  the  r o t o r  system equations 

The 4 s i n g l e  blade simulated flapping 

A var ie ty  

I t  w a s  

Here only the  case of a cyc l i c  p i tch  s t i r r i n g  

= -.10/n is presented, using a da t a  length of 

In preceding s t u d i e s  it was found tha r  b e t t e r  r o t o r  inflow 

parameter i den t i f i ca t ion  can h e  achieved f o r  progressing cyc l i c  

p i tch  s t i r r i n g  as compared t o  r e g r e s s i v e  s t i r r i n g .  The reason fo r  

t h i s  experience probably is  t h a t  f o r  regressive s t i r r i n g  t h e  blade 

na tura l  frequency is  resonance exc i ted  and t h a t  a t  t h e  resonance 

frequency the  dynamic ro to r  inflow is t heo re t i ca l ly  zero. 

presented cases a re  f o r  p r o g r e s s i n g  cyc l i c  pi tch s t i r r i n g  accelerat ions.  

A l l  

I t  was f irst  attempted t u  s o l v e  t h e  problem i n  t h e  same way a s  

descr i tea  i n  C h a p t e r  2 of ref-creqce 4 by including t h e  i n i t i a l  values 

of the flapping angles and of t h e  iril-low vdriables as fu r the r  unknowns 

t l )  t,e identi"ied. r1115- atids 'l,lottie:* / unh-riowiis Ir, t k . 2  i",..r?tifj cat ion 
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rout ine and l e d  t o  d i f f i c u l t i e s .  It  w a s  then decided to  use i n  t h e  

i d e n t i f i c a t i o n  algorithm perturbat ions f m m  t he  i n i t i a l  conditions 

before on-set of  cyc l i c  p i t ch  s t i r r i n g .  

a l l  state var iables  are zero and need not be iden t i f i ed .  

Thus t h e  i n i t i a l  vUues for 

Fig. 1 shows t h e  cyclfc p i t c h  s t i r r ing  input  f o r  a progressing 

s t i r r i n g  acceJeration of 

s t i r r i n g  is - t 1.5O. 

excursion of 

response of blade number 1 with t h e  computer generated noise pol lu t ion  

corresponding t o  

s ta te  and parameter i den t i f i ca t ion .  

w i l l  be discussed here. 

( a )  Uynamic inflow neglected,  Lock numbel? y = 5. 

(b) Quasis ta t ic  dynamic inflow, equivalent Lock number Y* i den t i f i ed .  

( c )  DiagoRal L-matrix dxid inflow time constant i den t i f i ed ,  y = 5. 

(d)  Full L-matrix and inflow time constant i d e n t i f i e d ,  y 5 .  

(e )  F u l l  L-matrix and inflow time constant and y i den t i f i ed .  

& = -.10/n. T h e  amplitude of cyclic p i t c h  

Since the i n i t i a l  value is zero, t he  maximum 

BII is  f r o m  0 t o  -3O. Fig. 2 shows t h e  flapping 

= .lo. The pol luted values are used i n  t h e  % 
F i v e  d i f f e r e n t  ana ly t i ca l  models 

The inflow model given by E q .  (15) is  used. In the following table the  

given values ( 0  o r  5), of t h e  parameters a re  noted. 

given, t h e  parameter i s  iden t i f i ed .  

If no value is  
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Initial Estimate 

Iterati on 1 

2 

3 

The results of the parameter identif icat ions based aa the analytical 

Y* 

2.50 

3.87 

4.08 

4 .09  

Irr i t ia l  Estimate 

Iteration 1 

2 

3 

4 

5 

M-1'2/Iden. V a l u e  

M-1/2/Ident. 
Value 

P1 p2 PS T 

.90 1 . 0 8  .E8 1.08 

.26 .55 -.13 .38 

.36 .62 .ll .53  

.43 .E5 . j o  .6a 

.54 .95 .36 .74 

.54 .96 .37 .74 

.30 .17 .19 .12 

.01 

Model ( d ) ,  1 3 . 3  CPU sec/Iteratim 

True Value 

I n i t i a l  Estimate 

I t e r a t i o n  1 

2 

3 

4 

5 

p 1  p2 p2 p 4  p5 
1.00 1.20 - . 40  .40 .80 1.20 

.go 1 . 0 8  - . 4 4  .36 .a0  1.08 

a74 .74 --.71 .16 .61 1.09 

-83 .90 - . 7 2  .29 .76 1.19 

.81 .86 -.69 .2S .71i. 1.16 

.81 .1:7 - . 6 9  . 2 6  .75 1.16 

.a1 . h 7  -.69 ."E -75  1.16 

.S7 .63 .70 1.9~' , ~ r  .51 

"l'lPRODUCIBIT,ITY OF ' 

ORIGINAL PAGE IS Pc;: 1 ,  
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I 

1-00 1.20 -.40 -40 .80 1.20 5.00 

.9O 1-08  -L44 .36 .88 1.08 4.00 
I 

wsrbl (e), 16 CPU sec/Iteration 

I p1 p p  p3 p4 p5 f Y 

True Value 

Init ial  Estimate 

Iteration 1 

2 

3 

4 

5 

M-1’2 /Iden. Value 

1.01 -63 7.89 .35 .59 1.05 4.85 

.el ,85 -.70 .27 .74 1.14 4.98 

.60 .76 076 1m e 9 6  .67 .O8 

For models (b) and ( c >  no t r u s  values of the -Jnkncwn parane.,ers are 

avai l sb le ,  s i n c e  these  nndels a x  d i f f e r e n t  from t h a t  which generated 

the  simulated measurements. For models ( d )  and ‘5) t he  true 

parzz::”ter values are known. 

Model (c> are  the  same as for Eodel ( d )  cr i f ? ) .  Apparently the  much 

lQwer value f o r  T i n  Model ( c >  has tc\ make up f o r  t h e  onission of 

the  off-diagonal t e rns  i n  t he  L-matrix. 

and (e) are a i cos t  the  same. Thus i f ien t i f ica t ion  of y does not affect 

the accuracy of t ne  o the r  parameters, but it does increase t h e  CPU 

t i m e  pe? i t e r a t i o n  from 13.3 t o  16 seconds. The r e l a t i v e  parameter 

s t a n d a d  aevia t  ions M-1’2/Ident. Value am rathe:* l a rge ,  ind ica t ing  

t h a t  not s u f f i c i e n t  da ta  length has been used. 

t h a t  a subs t an t i a l  reduction ir. Y i s  possible .‘or greater da ta  

length. 

One cannot ex.x!ct t h a t  P i  P2 P3 T for 

The parameters of Models (d)  

We w i . 1 1  see la ter  

-i/2 
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Verification by Response Comparisons 

me identified models have first been verified by compering the 

respoarses for the  transients used i n  t h e  ident i f ica t ion .  

coaaparioon i n  Fig. 3 is between t h e  exact responses - solid lines in 

Ng. 3 and subsequent figuxes - with t h e  response from t h e  i d e n t i f i e d  

mode l  - dot l i n e s  i n  Fig. 3 and subsequent figures-. 

for Hodel (a) without rotm i n f l a a  us ing  t h e  cyclic p i t c h  s t i r r i n g  

acoelerat ion & = - . l O / s .  

Mode1 (a) occur i n  t h e  81 response, smaller errors i n  t h e  Bo 

response and in s ign i f i can t  errors i n  t h e  Bd and BII responses. 

These e r r o r s  are t h e  b a s i s  for the  inflow parameter ident i f ica t ions .  

The 

Fig. 3a is 

I t  is seen that s u b s t a n t i a l  errors of 

Fig. 3b is f o r  Model (b) using t h e  equivalent Lock n u h e r  

concept. The errors i n  t h e  Bo and Bd responses are now insignificant, 

w h i l e  t h e  B, and BII responses show r e l a t i v e l y  small errors. Thus 

the  equivalent Lock number concept appears t o  be q u i t e  useful for 

t h i s  case. 

Fig. 3(c) is for Model (c) with given Lock number and 4 i den t i f i ed  

in f l an  parameters; t he  diagonal L-matrix and one time constant.  

response var iables  show negl ig ib le  errors. Figs. 3(d) and 3(e) are 

f o r  Y Jels (d)  and (e). 

the response e r r o r s  are noticeable though s t i l l  very small. 

then conclude t h a t  Model (b) ident i fy ing  only 

seconds pe r  i t e r a t i o n  may be adequate i n  some cases, t h a t  Model (c) 

ident i fy ing  4 inflow parameters and using 9.7 CPU seconds p e r  i t e r a t i o n  

is exce l len t ,  and t h a t  the  inclusion of the off-diagonal terns i n  the  

L-matrix is not necessary i n  t h i s  p s r t i c u l a  case. P. s i x t h  model not  

All 4 

Though more inflow parameters have been used, 

One can 

and using 4.1 CPU y* 
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considered here would probably be useful i n  state and parameter 

i den t i f i ca t ions  from test t r ans i en t s ,  namely Model ( c )  including 

y as unknown paramter .  The Lock number was found i n  all cases 

easy t o  iden t i fy  accurately.  Theoret ical  vslues for y a m  not 

always reliable since they involve t h e  blade elastic mode shape, 

the lift s l c - 2  and t h e  exact blade mass d i s t r ibu t ion .  

The next s t e p  i n  the verification of the  iden t i f i ed  models is 

t o  compare responses i n  t r ans i en t s  t h a t  have not been used for t he  

parameter ident i f ica t ion .  

a co l l ec t ive  and to  a longi tudina l  cyclic unit s t e p  input  respec t ive ly  

as compared t o  the responses of Models ( a )  , (b)  and (e). 

(b )  is a subs t an t i a l  improvement over Model (a) t h a t  omits rotor 

Figs. 4 and 5 show the  true re spmses  t o  

Again Hodel 

dynamic inflow e f f e c t s .  

Presumably Model (c) irith o r  without i d e n t i f i c a t i o n  of y 

t h e  same excel lent  agreement with t h e  assumed "true" model. 

the  inflow parameters 

Model (e)  gives almost t he  cor rec t  responses. 

would show 

Though 

P1 t o  P5 and T i n  the various models deviate  

to a cer ta in  extent  f m m  the  t rue  values,  the responses predicted 

by Models (c ) ,  Cd), ( e )  are i n  very good agreement with the  responses 

of the true model not only for the  cyc l i c  p i tch  s t i r r i n g  t r ans i en t  

but a l s o  f o r  qu i te  d i f f e ren t  t rans ien ts .  

Inflow Model with Three Time Constants 

Parcicular ly  a t  high advance r a t i o  the t i m e  constants f o r  p i t ch  

and r o l l  could be d i f f e ren t ,  s ince  d i f f e ren t  pa r t i c ipa t ing  a i r  masses 

night be ant ic ipated.  I t ,  therefore ,  appeared of i n t e r e s t  t o  study a 

case where 3 instead of 1 time constant are assumed t o  be unknown. 

This is a fur ther  extension of Model ( e ) .  The complete L-matrix i n  
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’ppus value 

I n i t i a l  E s t .  

I t e r a t i o n  1 

2 

3 

E r r o r / T r u e  V a l u e  

M-ll2/Ident. Value 

addi t ion  t o  y was identified. The garmetem were deffned sofmwhat 

1.00 .Q2 -.17 .08 .17 1.18 8.8 8.8 3.2 

a83 a33 -.14 .06 ,14 1.35 7.0 0.0 4.5 8720 

1.16 .29 -.06 .08 .16 1.15 3.8 8.1 3.1 951 

.97 035 -.12 .06 .18 1.42 4.6 8.5 3.2 716 

1.00 .37 -.11 .06 .17 1.43 4.8 8.5 3.2 

0 ,12 .35 .25 0 .21 .45 .03 0 

.12 .08 .7J .18 .11 .13 .UQ .1@ .01 

differently from Eq. n-ly by 

(29) 

The following table gives the results of 3 i t e r a t i o n s ,  The value of 

the criterlcm function 

is given i n  t h e  last column. Contrary t o  the  preceding cases t h e  

assumed measurement standard deviation for all simulated masured 

var iables  is ins tead  of (I = .l, and the  (J = .05, ( R - l  = 400 I)  

time used for the i d e n t i f i c a t i o n  is 18 ins tead  of 12. Same as 

before the  rotor advance r a t i o  is 

s t i r r i n g  acce lera t ion  is i = -.UT, taken i n  the progressing sense. 

AlsoI same as before, t h e  time i n t e r v a l  for t h e  numerical i n t eg ra t ions  

p = .4, and t h e  cyclic p i t ch  

is .l. 
Model ( e )  w i t h  3 Time Constants, 45 CPU sec / I t e r a t ion  
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In  comparison t o  the  case for Model (e) with one t i m e  constant there  is 

b e t t e r  convergence and t h w a  are smaller parameter errors. 

predicted parameter error (#'"*/Identified Value) shows t h e  same 

tPend as the  actual relative error, y having the  beeit and L23 and TI 

the  worst accuracy. 

The relative 

The predicted parameter errors are mch smaller 

than f o r  the case of Model (e) presumably because of the  smaller 

simulated measurement error (a = .05 instead of .1) and t h e  longer 

data  length (t = i J  instead of 12). The CPU t i m e  per i t e r a t i o n  is 

almost 3 times the  7allle for  Model (e) with one time constant. In a l l  

the cases presented here t h e  i n i t i a l  estimates are not  d ra s t i ca l ly  

d i f fe ren t  from the  true values of the  parameters. It w a s  found t h a t  

very much l a rge r  errors i n  the i n i t i a l  estimates can be to le ra ted  

without affect ing the  qua l i ty  of the convergence or  of t he  f i n a l  

estimates. 

A somewhat d i f fe ren t  presentation for ver i fying the  iden t i f i ed  

model is given for t h i s  case as compared t o  the  preceding cases. 

Figs. 6a t o  6d the blade flapping response computed with the  ident i f ied  

I n  

model ( so l id  l i n e s )  is compared t o  the simulated measurements (crosses). 

The good f i t  of the  ana ly t ica l  model i s  evident. Figs. 7a t o  7c show 

the  dynamic inflow variables  vo, vI, VII 

model. Par t icular ly  v I I  shckts very subs tan t ia l  f luctuat ions.  

computed with t h e  ident i f ied  

O p t i m u m  Data Ut i l iza t ion  

In reference 4 Chapter 3 a d i f f e ren t i a l  equation f o r  t he  inverted 

information matrix M-l is developed tha t  allows t o  compute the 

Cradr-Rao lwer bound for  the parameter covariances vs. the  duration 

of t h e  t rans ien t  used i n  the parameter ident i f ica t ion  process. For the 

REPRODUCIBILI'L'Y OF '! 
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example given i n  reference 4 it w a s  found t h a t  t he re  ex i s t s  an 

optimum d a t a  length beyond which no improvement i n  t h e  parameter 

errors can be expected. 

not such an optimum da ta  length can also be defined for t h e  much 

more complex cases s tudied  i n  t h i s  report, 

It is  of i n t e r e s t  t o  f i n d  out whether or 

The case presented here refers t o  Model (e) w i t h  one time 

constant , t he  dynamic r o t o r  inflow being represented by Eqs. (13) and 

(35). The advance r a t i o  is again p = .4. The simulated measurement 

standard deviat ion is u = . 05 .  

pi tch  s t i r r i n g  exc i t a t ion  with an acce lera t ion  w = -.l/m. 

Lock number is y = 5. Fig. 8 shows t he  predicted parameter standard 

deviations (CramerRao lower bounds) divided by t h e  parameter values 

vs . the  durat ion of the  t r ans i en t  used i n  the  iden t i f i ca t ion  process. 

The Lock number y shows the  lowest r e l a t i v e  error, t h e  parameter P 1  

ul t imately t h e  highest .  

t h e i r  asymptotic r e l a t i v e  errar a t  about t he  same 

a t r ans i en t  time of  t = 12 as w a s  done here for the  iden t i f i ca t ion  

of Model (e) with one time constant (but not of Model (e)  with three  

t i m e  constants) ,  does not  give optimal data  u t i l i z a t i o n .  

hand Fig. 8 shows t h a t  extending the  da t a  length used for the  parameter 

i den t i f i ca t ions  much beyond 

time and would not r e s u l t  i n  b e t t e r  accuracies of the parameter 

estimates.  

The t r a n s i e n t  is a progressing cycUc 

The t r u e  

0 

It  is remarkable t h a t  a l l  7 parameters reach 

t = 18. Thus using 

On t h e  other  

t = 1 8  would be wasteful of computer 
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Numerical Results fir Hub S t i r r i n g  Transients 

As an alternatiwj t o  cyclic p i t c h  stirring transients hub s t i r r ing 

transients have been considered, and the  rotor equqtions for t h i s  

case have been presented (Eqs.(23)to(20)9. The question is whether 

t he  accuracy of t h e  parameter i den t i f i ca t ions  is affected when using 

hub s t i r r i n g  ins tead  of cyc l i c  p i tch  s t i r r i n g .  

at t h e  rotor center cyclic p i t ch  s t i r r ing and hub s t i r r i n g  are 

identical and lead t o  ident ical  f lapping responses. 

For blades articulated 

For rotors with 

off-set hinges or f o r  hingeless  rotors the re  are, however, differences 

i n  t h e  two modes of transient excitation. 

Model ( e )  with one time constant and t h e  rot= inflow defined by 

Eqs. 03)and Q5)has been assumed for the  study. The advance r a t i o  i s  

1.1 = .4. The s t i r r i n g  acceleration is o = -.lh i n  the  progressing 

sense. Contrary t o  t h e  preceding ana lys i s  for Model ( e )  t he  time step 

has been increased from A t  = .1 t o  .2. The durat ion of the  transient 

. 

has also been increased from t = 12 t o  24 so t h a t  t h e  computer time 

remains the  same. 

Model (e), Hub St i r r ing ,  A t  = .2, t = 24, 16 CPU s e c / I t e r a t i o n  

I p 1  p2 p3 p4 p5 ‘t Y 

True Value 

In i t i a l  Estimate 

I t e r a t i o n  1 

2 

3 

4 

5 

M-1’2/Ident. Value 

1.00 

.50 

1.14 

.94 

.90 

.88 

.88 

.25 

1.20 -.40 

-60 -.20 

.57 - , S O  

1.04 -.65 

1.17 -.59 

1.15 -.56 

1.16 - ,56 

.26 .30 

.YO .80 1.20 5.00 

.20 .40 1.8P 4.00 

.SO .60 1.11 4.81 

.60 .82 1.37 5.03 

.40 .81 1.35 5.06 

.33 .78 1.32 5.06 

.33 .78 1.32 5.06 

.75 .24 .18 .02 



as 

True Value, 

I n i t i a l  Estimate 

I t e ra t ion  1 

2 

3 

4 

5 

M-l’*/Ident. V a l u e  

To compare with the equivsrlent cyclic pitch stirring case, an analysis 

of t h i s  case w a ~  macle on the same bas i s ,  t h a t  18 using a t i m e  s t ep  

A t  = .2 and a duration t * 24. 

1.00 1.20 -e40 040 -80 1.20 5.00 

-50 -60  - .20 .20 . I O  1.00 4.00 

a96 .91 - .43  .44 .68 .94  4.77 

072 1.26 -.46 .40 .86 1.16 4.96 

e75 1.26 - .42  .34 .84 1.16 4.97 

075 1.26 -.42 -34 .84 1.17 4 .98  

-75 1 .26  -.42 -34 .84 1.17 4 .98  

.27 .16 .27 .27 .22  . 26 .04 

Model (e), Cyclic Pi tch  Stirring,  A t  = .2, t = 24, 16 CPU erec/Iteratiam 

Note t h a t  i n  both cases the  errors i n  the i n i t i a l  estimates are much 

l a rger  than i n  t h e  preceding cases, ye t  good convergence is obtained. 

In comparing the hub s t i r r i n g  with the  cyc l ic  p i tch  s t i r r i n g  case, there  

are only ins igni f icant  differences i n  the parameter errors and i n  the 

rates of conversion. 

close except for a l a rge r  predicted error for P4 i n  the  case of hub 

s t i r r i n g .  

The predicted parameter e m =  are a l s o  r a the r  

In both cases the  predicted and ac tua l  e r ro r s  for the Lock 

number y are qui te  s m a l l .  In comparison t o  the  previous analysic for 

Model (e) with one time constant and A t  = .1, t = 12, both the  predicted 

and ac tua l  parameter e r ro r s  are much smaller despi te  ident ica l  computer 

CPU time. 

REPRCDUCIBILITY 01.’ ! 
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conalu8iOsre 

Rotor rtate st08 pameter identifiaationm at .4 rustor advance mtb 

have been performed based on siuwlated blade flapgLag m e a m m n t s  for 

an analyticel rot- model that asuniee~ s t r a i g h t  blder flexibly hinged 

at the rotor center. h+ersed flow, e ta l l  and compressibility efficts 

were omitted, but  periodic coeff ic ients  i n  the  equations of motion for 

fornard f l i g h t  conditions wemi retained. 

ident i f ica t ions  were, performed with b r i e f  periodis of accelerated cyc l ic  

p i t&  or hub s t i r r ing .  The following conclusions can be drawn from t he  

A l l  state and panmeter  

S t u d y .  

1. 

2. 

3. 

4. 

5 .  

The d w u a  l ikelihood method with a f ixed error covariance matrix 

is w e l l  su i t ed  for the problem and gives good convergence i n  a l l  

cases. 

Using a model with an i den t i f i ed  equivalent Lock number subs tan t ia l ly  

improves the  predicted flapping responses i n  comparison t o  those 

with neglected rotor dynamic inflow, but sti l l  leaves some e r r o r s  i n  

the responses. 

An ident i f ied  dynamic ro to r  inflow model with 4 parameters t ha t  

incltide one time constant gives almost perfect  response predictions 

The addition of 4 more inflow parameters including 2 fur ther  time 

constants and of the  Lock number does not affect the rate of 

convergence or the  accuracy of t h e  estimates, though it requires 

much more computer CPU time per i t e r a t ion .  

Cyclic p i tch  s t i r r i n g  and hub s t i r r i n g  t rans ien ts  are equally 

su i tab le  for the  parameter ident i f ica t ions .  
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6. The accuracies with whiah t h e  various parameters can be iden t i f i ed  

are quite different from each other, t he  Lock number having the 

highest accuracy. 

t he  parameters, even m l a t i v e l y  large eIplpo1?8 i n  such parameters 

have l i t t l e  e f f e c t  011 the responses. 

There is a c lea r ly  defined optimal data length t h a t  can be 

computed. 

while a shorter data length leads t o  rapidly increasing errors i n  

t he  estimates. 

The time s t e p  used for the numerical integrat ions is not a 

c r i t i c a l  quantity. 

Despite unavoidable inaccuracies i n  some of 

7. 

More data do not br ing  improved accuracy of the estimates, 

8. 

Both A t  = .1 and .2 appear t o  be sat isfactory.  
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Figure Captions 

Fig. 1 Cyclic Pitch S t i r r i n g  Inputs with Zero I n i t i a l  Valuer  for 
Progmssing Stirring; Acceleration -*lO/a. 

Fig. 2 Single Blade Flapping Rsspanse with Simulated Measurement 

Fig. 3 Cyclic Pitch S t i r r i n g  Response Comparisons. 

Fig. 4 

Errors, U$k f .I. 

Response Comparisons for Collective Pitch Unit Step Input. 

Fig. 5 Response Comptarisons f o r  Longitudinal Cyclic P i t &  Unit Step 
Input. 

Fig. 6 Ident i f ied Flapping Responses Using 3 Time Constants. 

Fig. 7 Ident i f ied Rotor Dynamic Inflow Using 3 Time Constants. 

Fig. 8 Relative Parameter Standard Deviation vs. Duration of Tranqient. 
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