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SUMMARY

This report congiders some aspects of the prediction of flap-lag
instabilities of hingeless rotor blades in hovering flight. OFf partic-
vlar interest is the sensitivity of analytical predictions of flap-lag
stability to various analytical modelling assumptions. The dependence
of the characteristic modes of motion on blade piteh angle is examined
for wvarious analytical medels using root locus techniques.

Prediction of flap-lag stability using a single bending mode for
each degree-of-freedom 1s examined in the case in which the bending
modes are assumed to be the same in the flap and lag directions and
are independent of pitch angle and stiffuess distribution., It is
shown that this model gives results analogous to those obtained by
Ormiston employing a rigid blade model with the blade and hub stiffness
represented by springs in the limiting cases of the elastic coupling
parameter R = O and 1. For.intermediate values of R the results are
shown to be gquite different. ‘The mode shape assumptions are shown
to result in what is referred to as the parallel spring model in
contrast to Ormiston's model which is referred to as a series spring
model. The gimilarities and differences between these two models is
developed in some detall. The differences between these two models
are examined for wvarious typical rotor blade characteristics, Other
agpects of the sengitivity of this problem are also considered.

The notation used and the basic development of the rigid blade

equations follows that of two papers: "Linear Flap-Lag Dynamics of
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Hingeless Helicopter Rotor Blades in Hover", by Ormiston and Hodges,
Journal of the American Helicopter Soclety, April 1972, and "A Study
of Stall-Tnduced Flap-Lag Instability of Hingeless Rotors", by
Ormiston and Bousman, Journal of the American Helicoptef Socie%y,
January 1975.

This report also indicates how equivaelent lumped spring constants

and massesg are determined from a modal analyses of a rotor blade,
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THTRODUCTION

It has been shownl that hingeless rotor bhlades may experience
instabilities owing to the coupling between oub-of-plane (flap) bending
and in-plane {lag) bending. The coupling between the flap motion and
the lag motion arises from aerodynamic, elastic and inertial forces
acting on the rotor blade.

The stability boundaries of this coupled motion appear to exhibith
a considerable sensitivity to the approximations employed in developing
the equations of motion. This is a result of the fact that the damping

"of the in-plane bending motion is very small in the uncoupled case and
therefore, comparatively small coupling terms can destabilize the coupled
motion.

This report exemines some aspects of the sensitivity of flap-lag
motion sbtability to various assumpbtions which may be employed.

Of particular interest here is the examination of wvarious modelling
assumptions associated with describing the structural properties of the
blade/hub system.

In order %o be able to conduct parametric studies of flap-lag
stability, one particularly convenient approximation to the bending
motion of the blades is to assume that only a single mode is required in
each direction of bending and further that the mode shapes employed are
those of a non rotating uniform cantilever beam.

Another approximate treatment has been suggested in the literaturel

which assumes that the blade and hub gtructural properties can be



represented by torsional springs locéted at the root of the blade.

The blade is assumed to be rigld and the hub stiffness is represented
by a set of springs which remain at a fixed orientation to the rotor
shaft. The blade stiffness is represented by a set of springs which
rotate as the blade pitch angle is changed. This lumped model is par-
ticularly convenient for obtaining insight into the manner iﬁ which
various structural parameters enter into the stability analysis of
flap-lag motion.

A basic parameter in the flap-lag stability problem is the blade
piteh angi; (or thrust level) of the rotor. Typically, instabilities
occur as the blade pitech angle is increasedl. The importance of the
blade pitch angle to the instability, as well as the sensitivity of
the analysis noted earlier, raises the question of whether the two
approximate models described above result in a similar Ffunctional
dependence of the structural properties (the stiffness matrix) of
the blade/hub system on blade pitch angle.

Physically it would be expected that there would be a difference
in these two models for the following reason. If it is assumed that
the mode shapes of the -hub/blade system are independent of the distribu-
tion of stiffness then as the stiffness is varied, the relative deflections
between segments remain the same since the mode shape does not change. As
a result, local equilibrium along the blade is not satisfied as gtiffness

is varied and the assumption of a fixed mode shape is equivalent to assuming

SEPRODUCHRILITY OF T
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that various segments deflect proportional to each other independent of
stiffness. This is in contrast to the model in which the hub stiffness
is modelled as a pair of torsion‘springs and the blade stiffness is
modelled as a pair of borsion springs. This model, taken with the
assumption that the hub has no mass, determines a relative deflection
between the hub and the blade which is a function of the relative stiff-
ness of the hub spring and the blade spring. This spring model is
referred t0 as a series spring model implying that relative deflection
between the imner spring (hub) and the outer spring (blade) is determined
by the relative spring stiffness. -

Tt would be expected that the approach in which it is assumed that
the mode shapes do not depend on stiffness would be analogous to
the assvmption that the relative defiections of the hub and blade are
proportional and tThat the constant of proportiénality does not depend
on the relative stiffness of the hub and blade. This assumpition corre-
sponds to what is referred to as a parallel spring configuration in the
following.

The similarities and differences between these two modelling approaches,
the spring model of Reference 1 an@ the fixed mode shape model are developed
in detail ;ﬁ this report. A spring model is developed which is equivalent
to the fixed mode analysis in the sense that it produces an identical de-
pendence of the stiffness matrix on blade pitch angle as the fixed mode

analysis. The pitch dependence of this model, referred to ags a parallel

spring model, is compared to the piteh dependence obtained from the series



spring model and the differences discussed.

Also root locus techniques are developed to study the influence
of various parameters on the stability of the flap-~lag motion with
particular reference to the importance of the difference in pitch

angle dependence obtained from the two model assumpbtions.



ROOT L.OCUS STUDY

Owing to the sensitivity of the problem of predicting flap-lag
stability of a hingeless rotor blade, an examination of the problem
employing root locus techniques is highly desirable. This technique
can be conveniently used if it is assumed that the blade pitch anéle
is smell., The following analysis considers, in particular, the sengi-
tivity of the movement of the flap-lag roots with increasing blade
piteh to various assumptions which may be empolyed in studying the
problem. The difference between the results obtained if a flexible
blade model is used in contrast to a rigid blade with springs at the
root is considered. The influence of a simple spproximation to the in-
flow is also examined, Further, the results obtained using a series
spring model are contrasted with those obtained with 2 parallel spring

model., It is shown elsewhere in this report that the parallel spring

model is .analogous to the results obtained from a flexible blade model

in which the mode shapes are taken to be independent of pitch angle.

First the characteristic equation describing the flap-lag motion is
developed in a form suitable for root locus studies.
The perturbation equations for the flap-lag motion given by Ormiston/

Hodges/Bousmanl’2 are

s+ Feg+ W -gFe + AB

B B X g -0 (1)
(e 2 .
SCB + CB 8% + CC s + Cg AT

where

- 1 2 .2
F.=2=1+=Jw+ N sin< 8
B A } B ]

=.]—". 2 _ i 2
Cg =3 [w N sin® 8]



C, =1 _= I sin 2 @

B L 2A
A =1+ WL sin® s (2)
where N = R(wg - w;)
N
2
wg wB wB wg R

R - as defined in Equation (9) of Reference 2; see Equation (23)
et.éeq. herein,

The notation N and L are introduced so that the matched stiffness case
(wB2 = wg?) can be conveniently discussed. In addition these definitions
gerve to distinguish between the series spring model as developed by
Ormistonl’2\gnd the parallFl spring model as developed in a later sechtion
of this report. It is shown that the parallel spring model is equivalent
to the formulation with A = 13 i.e.,-setting L = 04n the resulting
" characteristic equation gives the characteristic equation fégwthe parallel
spring model, .

The remaining terms in the equations of motion are

Fs =

B
Fe=1 (28 - ¢.) -8 (3)
Gg = -1 (6 - 2p,) +28_

]
m

Cdo
T 2 — + 8¢,)

where T = % and structural damping has been neglected.

The coning angle is given by the steady state eguations as

OF TEE
Eﬂ&(ﬂ)tﬂ?ﬂBILffY’ ?
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W

% 9 )
O
Cs e % tEds

Therefore the coning angle B o is equal %o

c
N1C, (8 -9,) -NF, [- 22 .06¢, +2¢2]
= —& L ¢ a 1 87 (5)

Fg ¢ - G ¢

It is agsumed that the pitch angle is small such that sin 6 =6, cos & = 1.
Further, it is assumed that the inflow angle at three quarters radius, ¢i’

can be approximated by the following expression

n

6
8, =8 3 (6)

i
noted in an earlier paper by Onnistonl with § = 1. The constant § is re-
tained to permit examination of this approximation. It can be seen in the
paper by Ormistonl that for a solidity in the neighborhood of .15, § =1
is guite é reasonable approximation; however, aé the solidity is reduced,
comparison of this result with momentum theory indicates that a smaller
value of § should be chosen to approximate inflow dependence on pitch angle.
A§ of 0.5 will be examined to approximate the low solidity case.

Further, consistent with the approximation that the pitch angle is

small, the following approximation ig made

1_ 1
A 1l + NL sin< 6

* 31 - NLO° (7)

This is a consistent approximation when the pitch angle is assumed small,

except possibly in the case of a high chordwise stiffness.



The form of the result for the characteristic equation is such that
it is necessary only to retain the linear term for the dependence of coning
angle on blade pitch to obtain the dependence of the flap-lag roots on

pitch angle. Therefore, introducing the notation p? = 1 + w®

B

~ T8 5 ‘ 8
BO—EJ; (1—2) . (8)
The small term depending on blade profile drag has been neglected.

The various terms in The equations of motion are therefore, approximately,

using (8) in (2). and (3)

= 2 _ 2 2
Fg ®p + N (1 ]'_wB)G

¢, =uw

2 _ 2 2
c N(l-i-Lut ) .8

CB = FC =N6

Fg =1 - (9)

rp= 210 (- 3) -2 @ - 3

' - 1+6

cg = 2186 {{ l; )"‘%2 (l—%)}
cs =1 (gf_ﬁs_‘z+§_ 62)

= a 2

The characteristic equation is from (1)
2 . 2 . - . oo . =
(s® + Fgs + Fy) (s + Ces + Cg) (ng Fg) (sCg - Cg) =0 (10)

Using the approximations from (9) and retaining only terms of order 8=

for the pitch angle dependence, the following is obtained from {10)



) C
(s® + s+ p®) (8% +1 (2—2‘9) S+wg2)

-

+ 9% [2? s 232 + 7 (i - g (1 _ %)2 (éﬁ%;;_k) + % (1 - %) (1 - 5)) S

p‘?} + N ('T]%s%—M%;Rl-l)

~—

&

w 2
_Nngg ((1+u—)§-—g) s® + s+ (l+2wsz))] =0 (11)

where the N, L notation has been retained at this point so that the parallel
and series spring models may be clearly distinguished.
For the parallel spring model -
L =0 (12)
For the serieg spring model of Ormiston

L. _ X (L= R

w2 w2 R

B Y

] "(13)

The parameter N ; R (wgz - mBE) and was introduced to make it convenient
to examine the matched stiffness case. For the flexible blade case, the
characteristic equation will of course be of similar form with different
coefficients as will be noted later.

The lag damping term ensuing from the profile drag of the blade

2c
M 20) has been neglected when it appears added to the flap damping 1.

Wow, consider various cases of interest in flap-lag stability. First
it may be noted that in either of two particular values of the elastic
coupling paramter R; R = O (the principal axes of the bladé/hub system
remgin paraliel and perpendicular to the rotor shaft and do not rotate
with piteh) and R = 1 (the principal axes of the blade/hub system rotate

an equal amount as the blade pitch angle), the pérallel and series spring



models yield the same characteristic equation since L = Owhen R =1
for the series spring model. These two Llimiting cases are considered
first.

a.) No Elastic Coupling (R = 0)

—_

Tn this case ¥ = O and the characteristic equation reduces to

c
(5% + M+ p2) (241 (252 ) s +02)
o [afernp2a-Y A ta-ha-e) .
P

+ p? }] -0 (8 = 0) (14)

The poles of this locus are the uncoupled flap and lag motion. There are
three zeros, one at the orxigin, and a complex pair with  imaginary parts
approximately located at the uncoupled rotating flap frequency,.and real parts
dependent upon the uncoupled rotating flap frequency (p®) and the assumption
regarding inflow (the parameter &) and the ILock number.

Select the following physical parameters -

p? = 1.33
T = .625 (y = 5)
2 = 5.73
Cdo = . 0L

r

' 2
such that the results may be directly compared with Ormiston/Bousman. The

influence of various values of the lag frequency are of interest so it is
not selected at this point. With these values (1) becomes

(s® + .625 + 1.333) (s® + .02 s + wcz)

10
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+ .3125 §6° [3{52 + .625 (1 - ’_*55 (1 - %)2+ % (L - %)(1 - 5))' g
+ 1.333}] = 0 - (15)
If § =1, the guadratic factor for the zeros is equal to
[s% - 0785 + 1.333]
If § = .5, this guadratic factor is equal to

[s® - .352 &% + 1.333]

Note the strong influence of the inflow model on the location of the real

part of the complex zeros. Note also that the parameter 6§ appears in the

root locus gain. Denote

D=n§(;_%2 (% -1) (p° -2)

p4

such that the characteristic equation is -

(s® + .6255 + 1.333) (s® +..002 —s + wgg)

+ .3125 6 g% [s (s® + Ds + 1.333)] =0 (16)

Ag an aside, before discussing the root locug,a simple result can be obtained
for the coupled roots in the special case where wéa= p? = 1.333. Neglecting

the blade profile drag term, this case results in the characteristic equation

of the form
(s® + Ds + p°) (s® + Ds + %) = 0 (17)

where

it



and since the lag damping is small

Df;ﬂ(lJ’éga"
(18)
=8 a2
D, =2 DB

showing that a'negative value of D leads to an instability in the lag motion.

For the particular values above the lag damping as a function of pitch angle

is given by

n

2
Dy ¥ - .039 ¢ (6 = 1)

n

D = - . 088 @&° (&

.5)

-

in the special case where wgg = p® . Note the sensitivity of the result to
the selection of the inflow parameter §.

Wow o continuve with the root locué congiderations. ‘ Flgure 1 shows the
location of the zeros and poles for wg = 1.1 and the locus of lag rocts. The
lower figure with § = 0.5, corresponding to a low solidity agrees well with
Figure 6 of Ormiston% et. al., as would be expected. For simplicity the flap
mode trend is not shown. The form of this locus will be quite similar for other
‘casessincethe complex zeros are located at the Tlap frequency. It can be clearly
seen that the most critical case as far as destabilizing the flap mode is
concerned occurs when wCE is in the vicinity of p®. Figure 2 shows the
influence of lag frequency on the locus. § is taken as 0.5 to agree with
Ormiston's results presented in Figure 6 of his paper}

Note particularly the importance of the inflow approximation (or

essentially solidity); & value of §

It

1.0 indicates that small pitch angles

will stabilize the lag mode for wg = 1,4 where a § = 0.5 indicates that

increasing pitch angle destabilizes the lag mode. A% wC = .7 the trend

ig less sensitive to §. The matched stiffness case presents a special

situation discussed later.

12



Recall that there is no influence of the parallel or series spring
approximation.
b.) Full Elastic Coupling (R = 1)
Now consider the other limit in which R = 1., The characteristic
equation in this case is from (11), recalling the definition of D,
2C

(82 + 15 +9%) (7 +1—25 +u?)

+92|:n,§—s(sz+ns+p2)+(wz-w§)('H%S‘l)] =0 (19)

The zero ldcation for the root locus now depends upon the difference
between the nonrotating flap and lag frequencies. A locus of zeros with
variation in wg can be conveniently sketched as shown in Figure 3. The
matched stiffness case is the same zero location as R = O for the special
case when RB = Rg, and this locus is the same for either the series or
parallel spring model. The matched stiffness case is treated in detail later.
There is a difference between the parallel spring model and the series spring
model when RB # Rg.

With the zero locationg given, the root locus for inereasing piteh angle
for various values of lag frequency can be conveniently sketched as shown
in Figure 4. Generally in this case where R = 1, the lag mode is stabilized
by increasing pitch angle. At higher lag frequencies there appears to be a
tendency towards instability but care must be taken with the approximstions
as noted.

These two limiting cases of R = 0 and R = 1 gerve as a valuable view

of the limits encountered in the more general case of values of R between

zero and one. The zeros of the loei.for increasing pitch angle at various

13



intermediate values of R will move from the location shown in Figure 1
to the location shown in Figure 3., However, it should also be recalled
that in the cases where a value of R between zero and one is considered
there will be a difference between the results depending upon whether the
parallel spring model or the series spring model is employed. Recall also
that the parallel spring model is analogous to a flexible blade model with
an assumption of mode shapes independent of pitch.

c.) Intermediate Elastic Coupling (O0<R<1).

In this case the characteristic equation will differ in the

parallel spring case (L = 0) from the series spring case
i (l - R)

w2 w ? R

B C

T =

The characteristic equation for the parallel spring model is from (I11)

20d05

=
n s +w ")

(s*+7 s +0%) (s2+7 ( c

- ol [s (s%Ds + p?)
*+ R (‘”;;2 - w;) (s +1-% [(wgg - wBB) (L - R) -1]\)]= 0 (20}

Note that the zero location bears a certain similarity to the R = 1

cagse with the exception of the term
2 (B 42
18 (wg wB ) (l - R)

Without this term, the locus of zeros with vaarying would be identical to

the locus shown in Figure 3 for wg varying with R = 1,

14



For the series spring model, the characteristic equation is

¢
(2 + M5+ p?) (52 + M2 —52) s + 0

)

+ g% [H—g s (¢® + Ds+ p?)

+ R (02 - 0g®) {18+ 7 - u) - R) - 1}

] ] , (21)
-(l—R)(Lig—-l) ((l+0%)sz+'ﬂs+(l+2w3))J =0
0g? W B

where there is an additional quadratic factor in the expression for the

zZeros, the underlined terms, which arise in the series spring model, but
are not present in the parallel spring model.

The series spring model will yield results which are the same as those
obtained by Ormiston and shown in Figure 6 of his paper% The parallel spring

model will yield guite different results.

First consider the case in which the lag frequency mg = 1.1. SBubstitubing
this and the other wvalues -

p® = 1.333 a = 5.73 D =-,0718 8 =1

il = .625 a0 = 0.01 D = -.352 8 = .5

the characteristic equation becomes
'
(s® + .6255 + 1.333) (s® + .002 s + 1.2L)

+ .3125 6 67 [s (s® + D s + 1.333)

+ .8 (s +22 (.88(1 - R) - 1))

-(1 - R) (8.416) (1L.275 52 + 625 s + 1.666) ] =0
5

15



where the underlined terms are dropped for the parallel spring model. In

this example we select § = 1, giving the following characteristic equation

(s® + .625s + 1.333) (s2 + .02 s + 1,21)
+ .,3125 8% [(S) (s® - .078 s + 1.333)
+ 868 {s + 3.2 (.83(1 - R) -1j}

- 10.73 (1L - R) (s® + .b4oos+ 1.306)] =0

Now then to compare the series and parallel models the zero locations for
the series and parallel cases are shown in Figure 5. For reference, the

locus of zeros given in Figure 3 (R=1) is included as this represents the

limiting peoints.

Note the sensitivity of the zero locations to the use of the series or

prarallel model.

Figure 6 shows the equivalent diagram for wg = 1.4 where the character-

istic equation is for & = 1,
(s + .625 s + 1,333) (s® + .002s+ 1.21)

+ .3125 67 [(s) (s® - .078s + 1.333)

+ 1.63 R {s + 3.2 (1.63 (1 - R) - 1)}

- 18.43 (1 - R) (s® + .535 g + 1.h26)] 0

Figure 6 shows the locus of zeros Tor wg = 1.4. It can again be seen
that the zero location is quite semsitive to the model employed. Figure 7
then shows the difference in the departure angles for these two models for

w =1.1 and w, = 1.4, The limiting cases (R =0, R = 1) are the same,

g g

16



however, the departure angleg differ markedly again indicating the
sensitivity of the dependence of the lag modes to modelling assumptions,
Recall also that particularly at wC = 1.4, there is a sensitivity to the
Iinflow parameter 6.

The parallel spring model also indicates one interesting special case,
corresponding to a particular value of R, in which the locus configuration
ig similar to the R = O case. WNote that this result will not agree with

the series case. The particular value of R is

(w; -wBB) (L -R) =1

oY

For this specific value of R, the parallel spring model gives zeros at

s (s®+Ds+0”) =0

g
Thus this speéial case will always give a locus which is similar
in shape to that obtained for R = 0. The complex zeros are located at
the lag frequency and in the right half plane Lf D is negative.
d.) Matched Stiffness (wg2 = wﬁf)
In the mateched stiffness cage the parameter N, introduced

earlier is employed, rather than R which becomes infinite except in the

cage Rg = RB' Therefore

W = R(w; ;ng) =n? {Rﬁ - RC}

If RB = Rg, ¥ = 0 and the matched stiffness case will be thz same as R = 0.

L7
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If RB 7 RC as would be more typical of the rotor blade, then there will
be a difference in the locus from the R = O case. The characteristic

equation in this case is w ? ==w32 = o

C

C
(s2+ s+ %) (s2+1 (252) 5 +0?)

, e [ﬂis(shnwp?)-»m(“?ﬁs- (W + 1))

2
+_2_§_(Se+gs+l_fﬁ,_2‘£_)] o

where again the underlined terms appear in the serles spring model and
not in the parallel model.

Since in this case

N=w* {— - — )=0u® AR ; = - R
w. 2 w 2 3 AR =TF C
Bs
and a typical robtor blade would have a considerably higher chordwise
frequency than flapwise, positive values of N are of interest.
The departure angles are shown in Figure 8 for the matched stiffness
case again using the previous parameters
v = 5 CDO = Ol
»® = .333 a = 5.73

il

for W = Oi where the blade stiffness is matched and the results are the
same as for R = 0, and for AR = .75 which would be more typical of a
rotor blade.

The coupling in this case has a strong stabilizing tendency on the

flap-lag motion. Again the two models exhibit a difference. AR could
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be somewhat larger than shown. It is equal to (in terms of frequency)

2
2 W
aR =2 (1~ Ps

(1)2

2
“85 Cs

and so is essentially limited to a maximum value of about one., Negative

values of AR would be highly unlikely physcially as this would imply
that w, > w. .
Bs - Ce

This completes the discussion of the rigid blade models and the

comparison of the series and parallel spring models. Now the rigid and

the flexible blade models will be compared. The flexible blade model

considered here (See Appendix I for a discussion of the flexible blade
equations of motion.) assumes that the mode shapes are indépendent of the
blade/hub mass and stiffness distribution and as shall be seen is structurally
equivalent'to the parallel spring model discussed above.

If the flexible blade model is used to determine the stiffness terms
in the equationsg of motion and consequent%y the equivalent termg in the
rigid blade model, then these terms for the flexible blade model will be
identical to those of the parallel spring model.

The differences in the equations of motion in the flexible blade
case as compared to the rigid blade case, will arise therefore in the

aserodynamic termg and the coning angle. The coefficients of these terms

will be changed from the rigid blade values depending upon the mode shape

employed.
In terms of the previoﬁé discussion the following terms in the

characteristic equation are unchanged therefore,
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FB = p® + N sin® ©

2 - N sin® 8

9
¢
]
o]
1

N
= L =)
Fg CB 5 sin 2

where A is taken as 1 since mode shapes independent of pitch angle are
employed. p“and q® are the rotating flap and lag Frequencies and include

the Southwell coefficient which no longer equals 1 as it does in the rigid

blade case.

The remaining terms are as follows, A uniform mass blade is considered.

RIGID BLADE ’ FLEXIBLE BLADE

Fg =1 N E

Feo=1T (20 - ¢.) - 2 B Fe=f A3V 4230y Lo 7
C i o) C o)

65 =-T (8 -28) +2 B Cé=-ﬂ(ié.xew+2h'éw)+coﬁ°
c: =1 (2 qﬂ) +6 ¢ ce = (EEgg~xwv Aréevv)

t N a i - n a o -

Table I gives the values of the various mode shape parameters given above
when a Duncan polynomiagl is used for the first mode shape.

Bubstituting numerical values for an unfwisted rotor blade the foilowing
results are obtained. The terms for the rigid blade can be obtained directly

from the mode shape integrals with ¢ = X. See Appendix I.

RIGID BLADE FLEXTBLE BLADE

FB =T 1.070 1

Bz =T (260 -¢,) - 28, T [2.1408 - 1.335 ¢;] - 2.110 W
—0

C3 =-N(0 - 2¢i) +28 - % [1.0708 - 2.670 ¢;] + 2,110 W

c: o1 2 22 4« g ] [(1.070) (2 -22) + 1.335 891 ]

C _Tl a ¢l T‘ . a . . T
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The coning angle is given by

Bo=ﬂa ® - ¢.) ﬁ2=ng (O 5 5Ty
p )
1 o
B = - ®-9.) 7° = 32 [1.1688 6 =~ 1.501% ¢ ]

where ¢; = % ¢i in the flexible blade eguations, giving for the flexible

blade the following coefficients

Fg = 1.070 1 |
e =1 [2.1%06 - 1.00L ¢,] - 2.110 W
Gy = -1 [1.0708 -2.003 ¢, +2.110 7o

2
It

¢
do
¢ M [1.070 (2 T) + 1.00L 6 ¢ ]

70 = 32 [1.1688 8 - 1.126 ¢,]
S p -

Introducing the approximation that qﬁi = ?9 where here for simplicity the

6 = 1 only case is examined.

. _1.278
Fg = (1.640 ~———~——~p2 ) e
. 1.278
CB = (-.068 +---—-—pa ) 18
Fg = 1.070 1

Cdo
Cé M [1.070 (2 ?) + .500 87]

=0 - .6058 18

p.?.
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For comparigon purposes, the rigid blade terms are

Fé:—:n
c: =1 [2 fao 62]
g_ﬂ a -5
. =1 q o1
Fe=M8 (1.5 o
1

.51 8
B =
o] 2

The significant change appears through the coning angle affecting

primzrily the coupling terms Fé and Cé'
2 2
-+ - +- + - + - ] = - - =
(s Fgs FB) (s Czs cg) (ch CB) (ng FC) o . (10)
The R = O case will be examined for these two models when R = O, Fg = CB =0
and the pitch dependence appears in the Cé term, the lag damping, and the

coupling term -CB Fé s,
The characteristic eguation is therefore, with the © dependent terms

separated out equal to

C
(SB+FBS +FB) (s +1M (2 -S‘Tc—’) s +Cg)

Ty C: '
+ 6% g-s (s® + [Fg - g%rﬁ%] s + FB) =0 (22)
2

The term which determines the real part of the complex zeros is essentially
the only place in which the difference in the two models appears. This is

the term which was denoted as D earlier.

22
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For the rigid blade model

D='ﬂ--2-%(1.5—-3‘;)=ﬂ(pz'l)gpa'e)
b b b

This shows clearly the limits in flap frequency found by Ormiéton} If
1 < p® < 2 then the complex zeros for the pitch angle locus are located
in the right half plane and for rotating lag frequencies in the vicinity
of the flap frequency, the lag poles %ill be attracted to the right half
plane by these complex zeros leading to instability with increasing pitch
angle.

For the flexible blade (with Duncan polynomials for mode shapes)

D =1.070 0 - 2 (1.6ho - 2218y L:2T8 _ gy
2 2
b p
D =1.003 q B2 =2.257)(p® - 1.119)

p 4
Thus the flexible blade model with Duncan polynomials as mode shapes will
give a somewhat different frequency range for instability. Instability
would be expected for 1.12 < p® < 2,26,
The location of the complex zeros as a function of p for the rigid
ané flexible models is shown in Figure 9.

The inflow model will affect these results. If § = 0.5 then the

rigid blade model gives for D

D= b5 q {22 = 1)(p® -2)
P4
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It is interesting to note that selecting § = 0.5 does not change

the range of flap frequency over which an instability would be expected
but it does increase the movement of the complex zeros into the right

half plane.

In the flexible blade case with § = 0.5,

D = 5.269 1 (PB = 2-35)(132 = l.l’-l-)

péL

~—

There is again an increase in the variation of the real part of the com-
plex zeros with changes in flap freguency and the frequency range over
which the complex zeros are located in the right half plane is about the
same as in the case where § = 1. Recall that & also appears in the root
locus gain so that these changes in the zero locationg do not directly
imply a proporticnal decrease in the stability of the lag wode.

In the particular case here note that for flap frequencies less
than I.12, in the case wheve § = 1, the flexible blade model will not
predict an instabillity with increasing pitch angle while the rigld blade
medel will owing to the fact that the zeros for the flexible blade will
be located in the left half plane.

Thus the nature of the stability of this system appears particularly
gsengitive to modelling assumptions for the elastically uncoupled case.
and the results will depend upon the assumptions employed. Physically
this can be seen to arise from the fact that the real part of the complex
zeros is located by a term which is the difference of the product of the

flap damping and the part of the lag damping dependent upon pitech and
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the rate coupling terms arising from aerodynamics and coriolus terms, i.e.,

C

1 . 4o . . (la
52 [(cg-e = n)FB-Fch]

The second term F. CB subtracts from the first and so this term may

¢

be of either sign and is guite sensitive to the assumptions employed in
studying flap-lag stability. This is particularly the case when the un-
coupled lag freguency is in the vicinity of the flap frequency such that
the Iag roots are directly attracted to these zeros. The important role
played by the dependence of the lag damping on blade piteh can also be
noted from this expression. If 6-is set equal to zero, the lag damping
becomes independent of pitch angle and there are two zeros at the origin.
The root locus angle condition will be 0° for 1 < p?< 2 and 180° for p?
outside this range, indicating a more severe instability with increasing
pitch in the range of 1 < p2 < 2. The.presence of the lag damping depen-
dence on pitch acts to limit the instability with increasing pitech to some
maximum unstable damping as shown by the zero locations in Figure 9.

It is expected that the R = 1 case is not so sensitive as the zeros
in this case are mpved into the left hand plane by the additional structural
terms introduced by elastic coupling as can be seen from Figure 3.

For small values of R it would be expected that the sensitivity to
modelling assumptions will exist. It has already been shown that for small
values of R, considerable differences exist between the use of a parallel
spring model, correéponding to a fixed mode shape assumption and the series
spring model proposed by Ormiston which physically appears to correspond to
a more refined assumpbion regarding the variation of the mode shaves with

blade pitch.
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To summarize this discussion it can be seen that for a hingeless
rotor blade with no elagtic coupling the results of a flap-lag stability
investigation are sengitive to the details of the asssuwmptions made in the
physical model,

For small values of the elastic coupling parameter a similar sensi-
tivity exists which depends upon the nature of the structural model as
well as the assumption regarding the inflow.

The fully elaﬁﬁically'coupled blade (R = 1) does not appear to be
particularly sensitive to modelling assumptions on the basis of these
investigations and the same results are obtained from either the series
spring model or the parallel spring model.

Intermediate values of R appear to give rise to a situation in which
the results of a stability investigation are very sensitive to the modelling
assumptions. There appears to be legs sengitivity for blades which are soft
in the chordwise direction than for blades which are stiff in the chordwise
direction judging by‘compafison of the trends‘;hown for a matched stiffness
blade compared to the stiff inplane case. As the chordwise frequency is
increased there appears to be an increasing sensitivity to the use of a
series spring model as compared to the parallel spring model as can be seen
by comparing Figures 5 and 6, implying that for intermediate values of R,
the details of the modal analysis for a flexible blade are significant.

The root locus technique appears quite valuable in pointing oub 'some
of the sensitivitieé involved in this problem. It would be expected from

these results that while the general shape of a stability diagram such asg
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shown in ¥igure 4 of Ormiston's paperl illustrates the nature of the
stability boundaries for flap-lag stability, the precise values will
be sensitive to the details of the model, Further it would appear that
for the results shown in Figure 6 of Ormiston's paper, the ‘trends shown
for 0 < R < 0.4 are also very sensitive to the particular analytical
model used.

To make this point more concretely, Figures 10 - 12 have been
prepared to show the locus of roots of the lag mode as a function of
blade piteh for three values of the uncoupled lag frequency, based on
the parallel spring model. These figures correspond to the root locus
sketches in Figures 7 and 8. The figures may be directly compared with
Figure -6 of the paper by Ormiston and Hodgesl and illustrate the
differences between the parallel spring model and the series spring model.

The two models give quite similar results for wg = 0.7 and congiderably
different results for wg = 1.1 and 1.4. Note the decreased sensitivity
to piteh angle predicted by the parallel spring model as compared to the

series spring model by Ormiston and Hodges.
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THE PARAMETER R

The parameter R wasg introduced by Ormistoﬁlto represent the elastic
coupling of the blade/hub gystem. It can be conveniently interpreted as

‘ being directly related to the rotation of the principal axes of the blade/

hub system. It can be shown that the rotation of the principal axes of

the blade/hub system.yp is related to the blade pitch angle and the

parameter R by the following equation (see pp. 30 and L)

_ R sin 28
tan Y, = Foos 26+ (L <R

(23)

For small pitch anges this reduces approximately to

T Z RO
Yp

Figure 13 shows a graph of ‘the principal axis inclination as a function of

blade pitch angle for various values of R. Note that when R =1, Yp? 5

(0]

for gll values of @, and when R = .5, Y§= 5
"In this investigation the range of R examined was between O and 1.
By placing R in a somewhat different form, an estimate of the possible range

off R can be seen. Ag defined by O::'miston:L

o e wCQRB - wBERg
wgz _ w2
where
wB2
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2

where W
Bs

and wg ? are the natural frequencies of the blade rigidly
B

mounted. R can be expressed as

2
UJBB
- 2 2
¢, “s
R = 2 2
1. B “Be
2
“

It can be seen that R = 1 if the hub mounting has no influence on the natural

—

frequencies such that

w =W

G

W

Il
S

B B

R = 0 if %the blade itself ig of matched stiffness,which is a physically un-
likely situation unless the blade is softened at the root in the chordwise

direction outboard of the pitch change bearing. R is also equal to zero

0. Thus

If

if the blade is articulated In the flépwise direction such that wﬁ

in the root locus studies described in another section, the case R

0 implies
that outboard of the blade pitch bearing, the nonrotating frequencies in flap
and lag are\gqual.

The case R = 1 can be achieved by a number of combinations including
the situation in which the hub is very stiff such that the blade/hub frequencies
are the game as the blade rigidly mounted. If the blade is not softened
outboard of the pitech bearing then it would be expectea that w&aﬁngs would
be small leading to a wvalue of R which depends upon the blade/hub system
frequency ratios and the reduction in the flapwise frequency ratio produced

by the hub. This gives the possibility of R values larger than 1 particularly -
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for a blade/hub system which is soft in the chordwise direction.
Negative values of R, although theoretically possible from the form

of the expression, appear to be highly unlikely in prachice.
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COMPARISON OF VARIOQUS STIFFNESS MODELS

In this section, the form of the stiffness terms in the elastic
blade equations are examined for the case in which it is assumed that
the bending of the blade in the flap and lag directions is represented
by a single mode and also that the mode shape is independent of the
stiffness distribution between the blade and the hub. Of particular
interest is functional dependence of the terms in the stiffness matrix
on blade piteh angle. In addition two other simple models of the blade/
hub system are examined., The hub and blade are modelled ag rigid members
with the hub stiffness represented by a spring at the root and the blade
stiffness by a spring between tﬁe hub and the blade. Two alternate
assumptions examined: one in which the blade deflection is assumed to
be proportional to the hub deflection and independent of stiffness of the
spring, and the second in which the relative deflection between the blade
and the hub ig determined from the céndition of equilibriwum of the hub
segmentl. These two models are referred to as the series spring model
and the parallel spring model as well will be explained. The blade
pitch dependence of the stiffness mabtrix for these two models is examined.
Tt is shown that the parallel spring model yields a pitch dependence of
the stiffness matrix identical to the modal analysis with fixed mode
shapes and the series spring model yields different results, in general,
as to the manner in which the stiffness matrix varies with blade pitgh.

First consider the elastic stiffness terms as given by the flexible
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blade equations of motion presented in Appendix TI. The terms of interest

Kyvﬁ KVWG v
wwo KFWS W

here gre:

K

where

R R
_ re: _ - 742
Kyve = IO EIZ,(#V f dr + IO (EIy; EIZ,) sin” 6 (¢v )* dr

e ‘[R EI ,(4')% ar + J’R (B , - BI,) sin® 0 (¢'')?® ar
o ¥ Vw o 7 al S
R sin 2 8 :} ')
L0 = jo [EI,/ - EIyr] = (q:v v ) dr (24)

‘ Now, if it is assumed that the mode shapes are independent of blade
pitch, that is, they are the mode shapes caleulated at zero pitch then

the functiocnal form of these stiffness coefficients is as follows

—

If the rotor blade of interest is considered to consist of two
portions, an inner segment denoted by the subscript h which does not

rotate, extending to a radius r, and an outer portion denoted by the

h

subscript b which rotates with the pitch angle 8, the terms are

” R
ﬁﬁ&ﬁﬂID[KHEﬁLIPY OF T&x
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r

K - J’hEI (q;”)adr+‘]'REI )2 gr -
z'h My z'b\y
o r
h
2 R IR
- sin® @ J”rh (BI_sy - EIy:b) (47")% ar
T
h R
WWweg I W) 1Nz
K= | ELorp (e, ) dr+j'r BT sy (4. )% ar
h
2 R N2
+ sin® 8 Irh (EIz'b - EIbe) (?W )® dar
K™ - sin e cos 8 IR (BT -BL, ) (Y ¢'") ar (25)
" z'b y’b ¢v $w

h
If it is further assumed that the mode shapes are the same for both

directions of bending such that

and using the following notabtion

r

En= Ioh BLrp, (477)% ar
These coefficient become
X" = Kon * ¥pp - sin® (kzb - kyb)
K0 _ Kop + gy, * sin® 9 (5, - kyb) (26)
AL (kzb - kyb) gin 6 cos B
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where the stiffness coefficients, the k's are independent of pitch angle.
Wote that the effective spring constants of the hub kzh and kzb appear
as a sum. This result is of a form that would be expected for two
springs with spring constants kzh and kzb connected in parallel,

This result can be written in matrix notation by defining three

mabrices
kzh 0
ky =
_0 k&h
, kzb o)
kg = .
_O o yb

cos 8 sin ®

@
i

-sin 8 cos 6

The stiffness matrix may be written as
[k] = [k, + [6]7* [ki1 [e] (27)

where all of the effects of blade pitéh aré contained in the rotaéion matrix
[67. Thus this displays in convenient form the stiffness matrix for the
flexible blade model in the case in which it is assumed that the mode shapes
are independent of pitch and are the same for both deflections. There are
five parameters involved in this form to defiile the coefficients in the
stiffness matrix. The four stiffness coefficients and the pitch angle 8.

The number of independent parameters in the stiffness.matrix can be
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reduced by one by introducing the concept of a principal axis, that

is by finding the transformation which diagonalizes the above mabtrix

and then expressing the rotation of the principal axis in terms of the
piteh angle. Conéider therefore, a rotation matrix [v] whicﬂ diagonalizes

k by a similarity transformation -

(k] = [v]™ [k] [v]

~

if the matrix [k] is denoted as

kll km

b
m

Kip Kgp

the rotation which diagonalizes the matrix k is Yp where (ef. (23))

2 kyp Akb sin 2 ©
R P e v Bk, + Ak, cos 20 (28)
where
Ak, = (kzb - kyb)
bk, = (kzh - kyh)
Yp is the rotation of the principsl axis which is given above as a3

function of the blade pitch angle and the various stiffnesses. It can
be noted that if the blade stiffmess is equal in both directions then
the principal axis does not rotate with blade pitch. IFf the hub stiff-
ness is equal in both directions then the rotation of the prinecipal

axig is equal to change in pitch angle.
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The stiffness coefficients in the diagonalized matrix are:

akh +.Akb cos 26-

Kan =L (2, +2k)+E( )
’ (29)
Kea = % (E k]] T kb) - ;_- (Akh :Oilfg‘ycos 29)
p
where
Tk, = (kzh + kyh) Sk, = (‘kzb + kyb)

It can be seen that if the blade stiffne;ses are egual then these
two stiffness coefficients are independent of pitch angle. Similarly
if the hub stiffnesses are equal these coefficients are indepéndent of
pitch. That is, in both these limiting cases, the two nonrotating
natural frequenciles of the bladeg will be independent of blade pitch.

Now these results are compared to rigid blade.models with root
springs which may be assumed to represent the structural characteristics
of the blades for usein an analysis of flap-lag stability in a somewhat
simpler fashion. It will be shown that the spring model prposed in
Reference 1 gives rise to a different pitch dependence from that given
by the stiffness mat¥ix of equation (27).

Therefore, two spring models will be congldered, the one proposed by
Ormiston (Reference 1) which will be referred to as the series spring model
and a second one referred to as the parallel spring model. JThése two models
will be compared to the results obtained from the-flexiﬁle plade assuming

that the mode shapes are independent of pitch angle. Particular interest
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centers around the manner in which the results depend upon pitch angle.
Consider the structural properties of the hub to be represented by

two orthogonal springs which produce moments proportional to deflection

LI
in an axis system parallel to the perpendicular to the shaft. The struc-

tural properties of the blade are represented by two orthogonal springs
outboard of the hub which are aligned parallel and perpendicular to the
chord line of the blade (precisely speaking the principal axes of the
blade). In order to make the notation somewhat more compact the sub-
scripts 1 and 2 refer to the-two directions.: A primed quantity is
refereﬂ;ed to the blade axis system and an unprimed quantity is referenced

to the hub axis system., Therfore, the stiffness matrices are

where these stiffness coefficients are independent of pitch.. The de~
flections about these two axes are denoted as follows

0y b

lod =] lgg} =) - 2
¢'H Y $s

2 2

and of course {¢L} denotes the hub deflection in the blade axis system and
{¢s} the blade deflection in the hub axis system. These angles are assumed
small so that it is not necessary to introduceEuler angles. Figure 1L

shows the definitions of these quantities. These quantities are related
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by the rotation matrix

cog gin 6°
(8] =
-sin @ cos B
gso that
{95} =101 {¢g}
’ (30)
{od =181 {o.}

The potential energy of this spring system can be written as (Meirovitch3)
1 T 1 T
v=5{od" [k {0} +5 {06 - ol}" [x6] { 9b - o} (31)
where the superscript T indicates the transpose of the matrix.

The coordinates in the second term are expressed in terms of coordinates

in the hub system using the transformation (30)

V=507 (K (63 + 5 {0 - 037 (017 K41 (0] (00 - 63 (32)
where the notation

[Ks] = [017 [K4] [8]

is introduced such that

v

I

5 (837 K (0 + 5 (0s - 07 (K] {60 - 6,3 - (33)

In this expression for potential energy there are four degrees-of-freedom
the blade.deflection in two directions {¢g} and the Hub deflection in two
directions [¢H}. The two spring models to be discussed involve different
assumptions as to the relationship bétween these degrees-of-freedom. Two
spring models are developea to show clearly the analog between the fixed

mode analysis and a rigid blade model with root springs. The parallel
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spring model is developed with the specific objective of obtaining a
stiffness matrix which varies in the same fashion with piteh angle as
the fixed mode analysis (Equation (27)).

The parallel spring model consists of making the assumption that the

hub deflections are proportional to the blade deflections

{¢H} = [a] {¢a} (3}4)

such that

v =3 (00" [e1” [Ky) [@] (86} + 5 8a}" ([T = [a])T [Ke] ([I] - [o]) {$6)

(35)
and the stiffness terms are therefore

{g—%a} = [o1% [Ky] o] 84 + ('[I] - [a))T K] ([I] - [o]) {8g) (36)

In the parallel spring model it is further assumed that the o matrix

involves only one constant such that

[@] =« [I] - (37)
and therefore, the stiffness terms for the parallel spring model are

(5 dp =@ Kl + (L - 0)® (%] (38)

where the bars are introduced to indicate that this is the result for the
parallel spring model, The pitch angle dependence is contaiﬁed in [Es]
onily where

[Ke] = [077 [K%] [6]
Thus the assumption that the hub deflections are proportional to blade
deflections and are indépendent of stiffness yields a stiffness matrix

that has the identical piteh dependence as the flexible blade model with
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fixed mode shapes (BEquation (27)).

The series spring model is obtained by allowing {¢g} and {¢,} to
be independent and determining the relationship between these two variables
from the potential energy expression assuming that the inboard segment,

i.e., the hub, has mo mass such that in effect the matrix (@] is found

-from the following conditions:

{g—gH} = 0 (39)
From (39), using (33)
(27} = [Ka) (9 - [Ke] (5 - 83 = O (10) .
H
Therefore '
{¢H} = [Ky + Kajﬂl [Kgl {@g) (41)

that is for the series spring model, cf., (3%) and (41),

[e] = [Ky + Ko™ [Ks] )
Also

fe]T = [Ks] [Ky + Kgl™ : (43)

since [K, + Kg] and [Kg] are symmetric. Now from (36)

{%%a} T ([o]T [K, + Kg] [o] + [Kg] ~ [@]T [Ke] - [Kg] [@]) {98}
using (42) and (43)

= [Kgl [Ky *+ Kgl™ [Kg] + [Kg] = 2 TKal [Ky + K]~ * [Ke] {04}

= [Kg] ([TI] - [Ky + Kpl™ [XKgl) {04}
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{== 1 =[Kg] [Ky + KgJ™ [Ky] {g} (44)
¢ g

Thus this is the form of the stiffness terms for the series spring model
where again the stiffness dependence on piteh angle is given by [Kg] which

ig equal to
[Kg] =_[eJ“1 [k3] 6]

Thus, to summarize, the stiffness matrix for the parallel spring model is

(K], = o (Kl + (1 - @)? [Ke (45)

-

and the series spring model

(K], = [Ka] [Ky + Kol ™ [Ky) (46)

To show the mamner in which the series stiffness matrix varies with pitch
the series spring model can be written as follo#s, noting that det Ky =

det K§ since [Kg] and [Kg] are related by a similarity transformation,

det Kf det X 1
BI [Ky] + H - 8] -
det (K, + Kg) det (Ky + Kg) ~ 1 4+ OKy AKs
det (Ky + Kq')

[K]

g =
sin® 0

(7)

Tt can be seen that the first term in parentheses, (47), gives the same .

pitch dependence to the stiffness terms as found in the parallel spring.
The second term in this expression gives rise to an additional pitch de-
pendence which is a function of the product of the blade and hub stiffness

differences.
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Now, compare these results to those obtained from the flexible blade
model with fixed mode shapes which are independent of pitch. This stiff-

negs matrix.is of the form

[k] = [k, + [617" [xg] [O] (27)

The same dependence with pitch angle is found as for the parallel spring
model as would be expected physically from the assumption of fixed mode

shapes, see (45). The matrix [EB] has the form

4

Ke - AKg sin® o AKg sin 8 cos ©
11

=i

]

[Ka] (48)

AKg sin © cos 8 Ka +AKg sin 8
23

Thus if the blade stiffnesses are equal then' all three of these expressions
give stiffness matrices which are independent of blade piteh., If the hub
stiffnesses are equal again all three of these results agree as to the
piteh dependence of the stiffness terms. In the general case in which
both stiffnesses are unequal the series spring model yields s different
variation of stiffness with piteh from the other two.

It is further interesting to note that both the series and the
parallel spring models give the same principal axis dependence upon pitch

since the difference between the parallel spring model and the series

k2



spring model is multipliecation of all terms in the series spring stiffness

matrix by the single factor -
1

AK, bRy
1+ sin® g
det (K4 + K§)

The equivalence between the various models is as follows. For the elasgstic

model to be equivalent to the parallel spring model, we require

kH = a"a KH

11 11
k, - =ca?K,

22 22

- (49)

kf = (1 -0o)®K

11 11
kf = (1L -0o)®Kg

~ 22 22

where the parameter ¢ is arbitrary..

For the elastic model to be equivalent to the series spring ﬁodel, noting

that
det KE det Ky
=§g and =(1-8)(1-¢)
det (K, + Kg') det (K, + Kg)
where , ,
KB KB
_ 11 3z
§ = g =
Ke' + K, Ke' + K,
11 11 22 22
We require
ky =06eK,
11 11
k =8eK
HBB H22 (50)
kg = (L-68)(L-¢)Ks
11 11

kg' = (L-6) (1-e)Kky
22

- L3



Recall that this equivalence does not account for the multiplyirg

factor noted above which is a function of the pitch angle. This

equivalence will give the same principal axis direction for either

model., However, the dependence of natural frequency on piteh angle
will be different.

These equations give the following relationships between spring

constants.
ky
22
Ky = (=) Ky
22 L 11
ky
22
Ksll = ( - ) KH11
LI ‘ (51)
ky
; 22
Keg = ( ; ) Xy
- 22 kB 11
11
ky +kg ky + kg
(‘Hll B11) ( Hee Baz)
11 k’H

22

Thus given the results of the flexible blade calculation, equations (25)-(27), the

!
spring constants to be used in the| series ispring model are determined by

)

kg
22

Ky = (&, +kg' ) [1+ i
11 11 11 H22

(52)

kg ’
Ky, =&, +%kg ") [1+ '
ke 22 22 kH11

1k



22

Ko’ = (ky +kg ') (1+
11 11 11 kB !
22

ky

11

Kg =(k, +kg ) {1+
22 22 22 "k Y
11

The correspondence between the notation used here and that of Ormiston/

2 .
Bousman  is

R. = (L -4
c ( )
Kg Ky
K = 11 11
I A Ky
11 11
Kp. K,
K. = 22 az2
8=
Kg' + XKy

22 22
. . . ' 1,2
Expressing Ormiston's parameters

fixed mode shapes (equations (25) - (27))

kg’
R _ b=3-]
€k, +kg
22 22
3
11
LT
il 11
2 _( !
we =(k + Kk )
g B11 H11

hs

QEPRODUC
arIGINAL

(53)

in terms of the elastic model with
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ke' - kg’
11 22
R = F4 ! (SLI-)
(kg" = kg’ )+ (ky =~Xky )
11 22 11 22

The factor missing in the elastic model with fixed mode shapes is

(ky -ky ) (kg' -Xkg' ) -1
1+ 11 22 11 22 Sina 9
(ky +ke' ) (ky +kg' )
H 8 H B
11 11 22 22

The factor within the parentheses is A in Ormiston’s notation.
Using the above equivalences, consider the nonrotating natural
frequencies and the differences which arigse from the two approaches.
Recall that both models give the same rotation of the principal axes
with pitch angle.
The dependence of the nonrotating nétural frequencies on pitch
is given in the geries spring case as

1
2

W g :we; = {2w§ %f) (

of +92) (87 - 07) [LbR) (1R) Sin? o

(55)

In the parallel spring (elastic model with fixed mode shapes) case,
02, 022 ( ) *(i——“——)fl-u(a)(m)sm 0
(56)-

These differ by the multiplying factor noted,
For a helicopter rotor where the blade pitch angle is small, it may be assumed
that

4(R) (1-R) sin® 8 < 1

and the natural frequencies given by the two cases are approximately

L6



. wa
1-(5 - 1) ®) @) e?
B .

wg® |1 -(Z—Bg—- 1) (R) (1-R) 07
C

—_

2

2 2 “g : 2
Wags Wz, =OF 1+(@—§*' 1) (R) (1-R) © |

2
w ? 1+($_§§ - 1) () (1-r) 62

The principal axis rotation given by both approaches is the same using the

equivalences noted above. 1In terms of the elastic coupling parameter R,

_ R sin 2 € -
tan_zyp._ Rcos 2 8 + (1-R)

The frequencies given by each approach in general is different. In the

w 2 ui 2
particular case where the ratio(wj-) is near to one, that is if(w ) =
- B B

1 + M where 1| is small compared to one then the same frequency dependence
with pitch is obtained from both methods.

Thus using the equivalences given above to determine the corresponding
parameters each model will give the same principal axis ro£ation, but the
parallel spring and elastic blade model with mode shapes independent of pitch
will give a different ‘frequency variation with piteh from the series model.

Thus experimenfs to be described in a later report will not distinguish

between the two approximations when the prinecipal axis direction is measured.

L7



Alsoc if pitch angles typical of a helicopter are examined, only small
changes in the frequency‘ will be noted and it will be diffieult to
distinguish between these two approximation, series vs. parallel spring

(or eldstic blade model with mode shapes independent of pitech) from

experimental resulbs.
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CONCTLUSIONS

As a result of this analytical stu&y of flap-lag stability in

hovering flight the following conclugions can be drawnm:

1.) Prediction of flap-lag ;tability is very sensitive to the
assumptions used in modelling the aerodynamic and elastic
characteristics of rotor blades,

2.) The equivalent lumped spring/mass model, determined from
a singie mode representation of the elastic deformation
of a rotor blade/hub system in which the mode shapes are
assumed to be independent of blade piteh, gives rise to
a different dependence of the blade/hub stiffness matrix
on blade pitch angle from the lumped model proposed in
References 1 and é.

3.) These two lumped spring/mass medels, referred to as the
parallel spring model (equivalent to the single mode
analysis) and the series spring model (References 1 and
2) give identical results for the variation of the charac-
teristic roots of flap-lag motion when the elastic coupling
parameters R = 0 or 1 and different results for other
ﬁalues of R.

4.} It is possible to determine the equivalent lumped spring
constants for either the parallel or series spring model

from the results of an elastie analysis of a rotor blade.
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6.)

The elastic coupling parameter R can be conveniently
interpreted as a measure of the rotation of the

principal axis of the blade/hub system with blade pitech.
Experimentally, the elastic coupling parsmeter R can be‘
more precigely determined from principal axis measurements

than from frequency measurements.
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APPENDIX T

FLAP-TAG EQUATIONS OF MOTION

_The nonlinear gquations of motion for a variable property rotor
blade uvndergoing flap, lag and elastic twist deformations are developed
in Reference 4 using a Rayleigh-Ritz procedure. Using a single mode
for each type of deformation and ignoring elasgtic twist altogether
we may write the modal equationsg for flap-lag mobion as follows. I%
has been assumed in developing the aerodynamic forces that the induced
velocity is independent of blade spanwise station. For convenience we
have constructed nonlinear steady state {or static) equations and small
perturbation (linear) dynamic equations about the steady state equilibrium.

The latter are required for stability analysis.

STEADY STATE

-0
v0 [Myv + KVv + Kyvﬁj + Wo Kvwe Qy

: 0
B 4 O [KVW + wae] + ° Kva _ Q?

PERTURBATTON

MY 4 kY] G0 4 MY 0 4 Y

v T Kk e ™ ey = T
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- [MW + KVVW WOJ + [KVW + wa9]

+ v Kvwﬁ M - q
ARRODYNAMIC FORCES
STEADY STATE
Yp ac x0v Az Cdo XXV
_ . aéc L .2 2
Q B 2 o Vin B Vip &t UK }
z° . ac XXOw XW.
- _ 43t 2
Q = > {-0%a 0 vy A7)
PERTURBATION
C
y o oo_ _ &t ¢ X0wv WV . 8vv do  Xwv
Q = 5 {wQa 2v. . A 1+ v v, A + 20— 4 13
QZ = _ QE {ﬁ. Q AKWU 1 '\.T [V AVW - 2QAX9VW]}
2 in

The geveral inertial, stiffness and aerodynamic coefficient are given
below. wv’ ¢W are the lag and flap mode shapes assumed in the Rayleigh-

Ritz analysis. Note that the mode shapes are dimensionless; however,

() == ()

MASS

ATATS 2 R

- _ 2
M = -0*[ m¢ ar
!‘.f'v' R
M = [ n¢ ar

s}

. R
W _ =
M = Iornww dr
T WV R

b1 - — |
M M 20 B, Iom\:v y, dr
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%

R
IsPcQa Iomrtbw dr

quII

UV R
0[5 a0y,

=
i

m C dr

MY =20 [Ra¢™ y  ar
o v

=~
|

Viv _ R m¥r , . r42
Joc (q;v) dr

Viw _ pR ¥, s.2
K Ioc ()% ar

where )
my R WW _ P .12 uvw'r__r,:zb
c 20 [Tmy_an, ¢ =T ()2 an, = -fT (¥ )% an
Note that K 7 = M7, M7V = -2 M, ¥ = -2 M

STIFFNESS

v R mx ;. ry2
K'Y=l h? ar

Kyw - IE X (¢;)2 d;

™ = Qrz ji | dn

AR j§ (BI,: cos® 6 + BT s sin® 0] (‘1“?)2 dr
KWWG = Ilz [EL,, ‘sin® 0 + EIy; cos”® 8] (1'4!";')2 dr

vwb vae ='r§

[BL,¢ - EL.] ——-———-—~—Slg 28 Wl yl') ar

® is the rotation of the blade and in general consists of a constant part

90 and a linear twist 6, such that

67

. m
RODUCIBILITY - OF THH
ﬁ% AL PAGE IS POOR!



In general, there would be a segment of the blade /nub which is inboard
of the blade pitch bearing and does not rotate with piteh. Tt is
considered that this segment of the blade/hub system extends from the

hub to a radius ry and the stiffness characteristics of this segment

are denot;a by the subscript h. The outboard segment rotates with pitch
and is denoted by the subscript b. In this case, therefore the stiffness

coefficients are

Tor
h
w8 = Y] R 2 s rrem
K Io EIz; (¢v )% dr + Ir (EIzé cos” © + EIY% gin 9)(¢v ) dr

h
wwb n R
. - I BT s (b,)% ar + I (EI_, sin® 9 + BT, cos®8)(¢’')® ar
h h b b
VW R Sin 20 ,.s4 44
K = (BT , - BIL ,) == (/" ¢'") ar
Irh Zb yb o - W
ABRODYNAMIC
x0v _ pR
A = Jo rd ¢v dr
v _rR
A =lo ¥y ar
A5 R »2 y dr
o AT
xxOw R
A I0r29¢wdr
W R
A Io T ¢W dr
Xbwv _ pR 3 xBvW
A = [T ey, by ar = A
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WV _ R _
a7 =Ty e, ar =2

8vv _ R )
A -'Io ] ¢v dr
WV R
= !
A jorqquv dr

If the same mode shapes are used for flap and lag deflections (¢v = ¢W = )

the following relationships hold among the coefficients:

MY =M = -2 MY = -0 W
KV{r\r _ KV{rW= _ Muvw‘;v _ . Mum'rv
KVV _ KVW -
WA s

Define,noting that ()’ indicates a derivative with respect to x:

M (x1) = I

X1
2
o ¥ dx

ﬁxw(xl) = Iolx U dx

s Riatary
M (Xl)

]
|
N
e
(o]
e]
=
b
-
&

~—

Cuv{r (x1)

SPGB EEE-

]
~

*1 LAY
k =J, @)?® ax

% .
%X _ ‘rol - (Eu)e dx

- X

K (xy) = [ §)7 ax

D XX _Xl 2 /N2
KW (xy) = [, %% (1) ax
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If a2 segmented blade is considered with constant properties within each

segment the several coefficients may be expressed more explicitly as given

below,
m(l) = running mass of segment located between O and x.
m(2) = running mass of segment located between x, and x,.
EI(l) = stiffness of segment located between 0 and x,.
EI(E) = stiffness of segment located between x, and x..
90(1) = pitch of segment located between O and x,.
90(2) = pitch of segment located between x,; and x,.
8, = linear twist

The tip of the blade is located at Xy = 1.

an

W = 2 W% ) ¢ m®) ) - T ()

o ok m(N) [ﬂI(XN) - E:(XN-I)]

v - B, 07 R {m(l) MY (%)

+ @) [ (x,) - B (xy)

RN C ORI S R
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M = MV = Q{ m(l) u (%)

+ n®) E ) - W (1))
+

el T ) - B 1

STIFFNESS COEFFICIENTS

EI(})
- {cos% 60 % ) - [sin2eMye, ¥ (xl)}
RS ) R o]
EI(:}'_)
+ {sinz g(1) X (x,) + [sin 2 9(1)} 6, X (xl)]
Ra 8] o
T e
gr{l) .
i R® {COSQ ec()N) (K Gop) - & (ay_5)]
- [sin 2 Eic()N)] 0, [FI‘E:XTXN) - (xN_l)]}
(1)
ET\; _ .
+ -;Z— {sin2 ec()N) [K CXN) - K (XN_l)]
+ [sin 2 OgN)] 6, [X° (xN) - K (xN_l)]}
EI(:}) ~
KO Rz {sin"3 8(()1) X (x,) + [sin 2 Bgl)] 8, K (xl)}
rr(}) . :
+ —;{%“ {c:os2 egl) K (x;) - [sin 2 Ggl)] 0, I (x-l)}
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Kvwe _ KWVG

(1) (1)
[BEI)r/ - EI77]
= 2 J (sin 2 Bgl) % (x,} +2 98, cos 2 ec()l) e (xl))

2R%

va - Qg R

[m(N) Ly~ =) + p(I-1) Ly~ "]
‘ 2 2

(1) <2
+ ...t I-H—TL]HI’CD (x1)

L(1)
T2

FI‘{D}DC (Xl)

. [m(l\T) oy - x4

5 + ...

@)r.

P e - )
.

(W) & -

+ 55— %y _KD () - (X'N—l)]
m(N) —N X TUEX

e SN O (xN_I)].I

The various Ffunctions of mode shape are shown graphically in Figures A-1

through A-7 for a Duncan Polynomial mode shape

Vb =2x" -5 x¥ +35x

The aerodynamic termg are as follows for this mode shape.
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AERCDYNAMIC COEFFICIENTS

A = LhR

A" = 280re

AV = opeR®

A" = L256R

AV = o06R2

O - 20gr e, + .256 R 8,
£ « 172R° 0.+ .206 B2 6
A9V - oosp2 e, + .280R® o
KO L qgspee, + .oosR® 6,

The blade has a constant pitch 90 and a linear twist represented by 9, .

To place these flexible blade equations in a form which can be conveniently
compared to the rigid blade equations, the displacements are nondimensionalized
by the rotor radius and each of the equations is multiplied by (Tzsbg)

where I, is the flapping moment of inertia of the blade, I, = Ii mr®  ar.

The time is nondimensionalized by the rotor RPM, (), such that

O (o)
YL, @ =L
R R
%_'\'r = oW
QR QR
v = , W=
Q%R 0% R

The equations become, where the primes indicate derivatives of the mode

shapes with respect to the dimensionless distance x,
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o]
Y\, ofR2K" | RZKT 4 =0 R® (™ v (8¢
I, 07 I,0° I, Q%3 I, 0% 8 \pac %07
(R Rk o, o (B2 o RZM
T, Q I, Q I, 0 I, 0
2 .V 2 NV = vl 2 VWB\
oo (R2M  RPKY L R®K + = [RPK
I,0° 1I,0° T, Q3 I, 0%
L (BT} (8T
I pac R® Q7

. 2 W 3 Viw 2 VW 2 wwd
=lR2uM™) (RO K \ﬁojLR_K [R®E =
T, Q I, Q 1,07 1, 0%

2 WO\ 2 WW zZ
.5 [RPK = [RPM _ %( 8Q
T, Q° T, pac R®Q®

The dimensionless terms appearing in the above eguations are denoted by
small letters and M = mR
i
= . 2
mW_RQMW a -fomq!vdx

1,07

f; @ x° ax
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- -

v R2 y'Y J M ax v
m = = = - m
Ta lm.xad.x
)

o2
wwr \_RBMW _ -romqudx - g
Il ‘]"ﬁxe
1
: :
i v REM 2chjom¢vv
m =--,m =
1,0 Lo s
fomx

n B 2 B 1
T: O o x® ax
wiv 2 [ ® ey ax
LAV _ RZ M _ 0 v
T 0 Il #x?  dx
o]
where
uvv X N2
= - ¥
c Jo (1) an
w2 ]1 m oMV gy
Y R3 M _ ) Yy
I, 0 [mx® ax
Virv jl ™0y Y2 ax
v _ RS K _do & Wy
T € Il mx® ax
(o]
cm\'r -5 ‘rl - an
X "‘rv
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’ . L m{r FAW=1
Viw _REEK Y Jo o W)® o

e = =
I 0 [ mx® ax
and
vav - _muvvv

The aerodynamic terms are, denoting by small a's the dimensionless form

A

of the A's times L,

%0 1
XBV:___}-I-A =;+J" %8 § ax
Rg o] v
v,
in
and?x-—-ﬁ"ﬁ“
0 -
¥ C
___8_9__;..__; =~ [-A aXeV_KaaV_Fﬁaxxv]
pac R° (0
2°
._§.:.Q'...__..__.. = = [_aX_XeW - A am]
pac R Q%
¥
pac R® Q
Z . .
8Q3 - = - % a5 4% (o 2™ -2 axevw)]
pac R* Q

The stiffness terms are

Vv e (4’2 ax
VO _REK §o ¥v

I, 02 [ mx® ax

1
mx
w o me g™ Joe ()7 ax

I, Q? [ mx® ax ’
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mx —
¢ = [ _mnan
1
2 .- IR
kva _R® KFV9 1 Io (EIZ' cos” B + EIY,51n B)(¢v )2 ax
- - 1
1, 0° R® ° Ioﬁxa dx ,
1
: L 2 1raz
o _ B o 2 Jo (BL, sin® 6 + BT, cos® 0)(¢,)” ax
1
I, 0? R® Q° v-ro W x” dx
. 5 VWO J' (Ex_’- EI:)EL-I}——E—G(QJN V') ax
kVWB“R K = 1 e Z Y 2 v Tw
- a T
it 0® R® Q° L% ax

The equations become, using this notation,

Steady State Equations

C
(myv+kvv . kvve) © & kvwe =0 _ % o axev #3247 - Jdo axxv)

a
a7 ) 7 e ™ 0 - %-(aﬂeWr A oA
Perturbation Equations
< (muwﬁv 2 me) .7 (myv + EVV + kvve)
kA Trm'w =% { - (axewv +2ha’) + v (+A a@w -2 zo axwv))
F @™ ey w6 ™) 7 @)

7



Dividing the perturbation equations by the coefficients of the

acceleration terms and collecting terms on the left hand side.

. mV o+ x4 k7O
)?+( = v
w

a aia's

. C XWV 8vv
V+%—(E(a ) - A (G
m m

e
+
cop<

(am) W o+ (k_-_w + kwwe) T (mw ﬂ =0

v oV axﬁvw 3 kvwe }
o ()‘ma&wJ“gmﬁw v G) =0

For zero precone,

and defining the dimensionless uncoupled frequencies as,

2'_ kvw + kwwe
e
m
. A va T kvve
4 = T

UWWV
vV _ I
n) v
m
CWW _ kvvw
o _%w
m
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and the elastic coupling terms as

vV k

Cl — 3
m

ww _ Kk

Cl = =
WW
m

the equations are

. cdo STV aevv .
?_}%(2_3.—(%)“}% F'i'qgv
m m

- VvV =0 aXSWV a ‘VV
+ﬁ(c ﬁ+%(.. -!-27\..))-%-011-1:0
© m m

XV W xOvw
=Y /B - 2=, = ( WW 0 Y & a ) WV o
Wt g (mf YF + P W+ C, W 5 (k;r—-+ 2 S— )+ 0y T =0

If the mode shapes are assumed to be the same for both deflections then,

Ww v
m =m
NV WW
¢ =-C"=¢
0 o} 0
v W
¢, =C, =Cy
and defining
s ii ii
~1i _ a a
a = = = =%
m m



%+%'é ﬁ+p3r¢+"{?(coﬁ°-Yg(h'éw-re“éxew)) +C, vV =0

Wow these eguations are in a form which may be compared with the rigid blade
equations. If a rigid blade model is employed, then the spring constants for
the rigid blade model sre identified in suech a way that the parallel spring
model gives identical coefficients to the stiffness terms represented by

p°, q® and C, as well as in the calculation of tﬁe coning angle WB. The
significance of these changes is considered elséwhere in this report.

The steady state equations are

C
42 © 4 ¢, =0 .Y (h E;BV'+'l2 2V _ io'axxv>

[oe]

2 =0 -0
pTw +Cy vV =

ool =<

(axXGW'+ A EXW)

The rigid blade terms can be obtained by substitubtion of § = x in

the expressions given above.
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TABLE T

COMPARISON OF

COEFFICIENTS IN FLAP-LAG EQUATICNS FOR RIGID BLADE

AND DUNCAN POLYNCMTAT, MODE SHAPE,

Aerodynamic Terms

UNIFORM MASS DISTRIBUTION

¢v=\bw=x ¢v=¢w=2xe—%xs+%’-x4
X0V 1.3330_+6, 1.156 ©_ + .900 8,
a’ 2.00 1.600
a 1.00 .900
K0 1.00 8 _ + .800 6, .900 ©_ + .738 6,
a™" 1.333 1.156
2TV 1.008_+ .8008; 824 B+ .687 0,
a’l = a 1.333 1.028
27V 1.333 8 +1.00 6, 1.008 8 _ + .824 9,
ar 1.000 .82l

Mass Terms {uniform mass blade)

¢v = ¢W =x ¢v = ¢W = 2x°% - %—xs + % x*
m -1 - 770
mvv 1 770
e 2ch 1.542 ch
- ch .867 ch
™ 2 1..625
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Stiffness (uniform stiffness blade)

8o




=]

FIGURE A-1. MODE SHAPE INTEGRAL
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x=r/R

FIGURE A-2. MODE SHAPE INTEGRAL
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2 F
A F
O §
0 2

FIGURE A-3. MODE SHAPE INTEGRAL
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4.0

K(x)

O é | ] I' 1 I 1 1 1 1
o x=r/R

FIGURE A-4. MODE SHAPE. INTEGRAL
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x=r/R

FIGURE A-5. ‘"MODE SHAPE INTEGRAL
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FIGURE A-6. MODE SHAPE INTEGRAL
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FIGURE A-7. MODE SHAPE INTEGRAL
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