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SUMMARY
 

This report considers some aspects of the prediction of flap-lag
 

instabilities of hingeless rotor blades in hovering flight. Of partic­

ular interest is the sensitivity of analytical predictions of flap-lag
 

stability to various analytical modelling assumptions. The dependence
 

of the characteristic modes of motion on blade pitch angle is examined
 

for various analytical models using root locus techniques.
 

Prediction of flap-lag stability using a single bending mode for
 

each degree-of-freedom is examined in the case in which the bending
 

modes are assumed to be the same in the flap and lag directions and
 

are independent of pitch angle and stiffness distribution. It is
 

shown that this model gives results analogous to those obtained by
 

Ormiston employing a rigid blade model with the blade and hub stiffness
 

represented by springs in the limiting cases of the elastic coupling
 

parameter R = 0 and 1. For intermediate values of R the results are
 

shown to be quite different. The mode shape assumptions are shown
 

to result in what is referred to as the parallel spring model in
 

contrast to Ormiston's model which is referred to as a series spring
 

model. The similarities and differences between these two models is
 

developed in some detail. The differences between these two models
 

are examined for various typical rotor blade characteristics. Other
 

aspects of the sensitivity of this problem are also considered.
 

The notation used and the basic development of the rigid blade
 

equations follows that of two papers: "Linear Flap-Lag Dynamics of
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Hingeless Helicopter Rotor Blades in Hover", by Ormiston and Hodges, 

Journal of the American Helicopter Society, April 1972, and "A Study 

of Stall-Induced Flap-Lag Instability of Hingeless Rotors", by 

Ormiston and Bousman, Journal of the American Helicopter Society,
 

January 1975.
 

This report also indicates how equivalent lumped spring constants
 

and masses are determined from a modal analyses of a rotor blade.
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INTRODUCTION
 

It has been shown that hingeless rotor blades may experience
 

instabilities owing to the coupling between out-of-plane (flap) bending
 

and in-plane (lag) bending. The coupling between the flap motion and
 

the lag motion arises from aerodynamic, elastic and inertial forces
 

acting on the rotor blade.
 

The stability boundaries of this coupled motion appear to exhibit
 

a considerable sensitivity to the approximations employed in developing
 

the equations of motion. This is a result of the fact that the damping
 

of the in-plane bending motion is very small in the uncoupled case and
 

therefore, comparatively smali coupling terms can destabilize the coupled
 

motion.
 

This report examines some aspects of the sensitivity of flap-lag
 

motion stability to various assumptions which may be employed.
 

Of particular interest here is the examination of various modelling
 

assumptions associated with describing the structural properties of the
 

blade/hub system.
 

In order to be able to conduct parametric studies of flap-lag
 

stability, one particularly convenient approximation to the bending
 

motion of the blades is to assume that only a single mode is required in
 

each direction of bending and further that the mode shapes employed are
 

those of a non rotating uniform cantilever beam.
 

Another approximate treatment has been suggested in the literature1
 

which assumes that the blade and hub structural properties can be
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represented by torsional springs located at the root of the blade.
 

The blade is assumed to be rigid and the hub stiffness is represented
 

by a set of springs which remain at a fixed orientation to the rotor
 

shaft. The blade stiffness is represented by a set of springs which
 

rotate as the blade pitch angle is changed. This lumped model is par­

ticularly convenient for obtaining insight into the manner in which
 

various structural parameters enter into the stability analysis of
 

flap-lag motion.
 

A basic parameter in the flap-lag stability problem is the blade
 

pitch angle (or thrust level) of the rotor. Typically, instabilities
 

occur as the blade pitch angle is increased The importance of the
 

blade pitch angle to the instability, as well as the sensitivity of
 

the analysis noted earlier, raises the question of whether the two
 

approximate models described above result in a similar functional
 

dependence of the structural properties (the stiffness matrix) of
 

the blade/hub system on blade pitch angle.
 

Physically it would be expected that there would be a difference
 

in these two models for the following reason. If it is assumed that
 

the mode shapes of the hub/blade system are independent of the distribu­

tion of stiffness then as the stiffness is varied, the relative deflections
 

between segments remain the same since the mode shape does not change. As
 

a result, local equilibrium along the blade is not satisfied as stiffness
 

is varied and the assumption of a fixed mode shape is equivalent to assuming
 

2 
EPRODUCIBILITY OF T}I 

ORIGINAL PAGE IS P001' 



that various segments deflect proportional to each other independent of
 

stiffness. This is in contrast to the model in which the hub stiffness
 

is modelled as a pair of torsion springs and the blade stiffness is
 

modelled as a pair of torsion springs. This model, taken with the
 

assumption that the hub has no mass, determines a relative deflection
 

between the hub and the blade which is a function of the relative stiff­

ness of the hub spring and the blade spring. This spring model is
 

referred to as a series spring model implying that relative deflection
 

between the inner spring (hub) and the outer -spring (blade) is determined
 

by the relative spring stiffness.
 

It would be expected that the approach in which it is assumed that
 

the mode shapes do not depend on stiffness would be analogous to
 

the assumption that the relative deflections of the hub and blade are
 

proportional and that the constant of proportionality does not depend
 

on the relative stiffness of the hub and blade. This assumption corre­

sponds to what is referred to as a parallel spring configuration in the
 

following.
 

The similarities and differences between these two modelling approaches,
 

the spring model of Reference 1 and the fixed mode shape model are developed
 

in detail in this report. A spring model is developed which is equivalent
 

to the fixed mode analysis in the sense that it produces an identical de­

pendence of the stiffness matrix on blade pitch angle as the fixed mode
 

analysis. The pitch dependence of this model, referred to as a parallel
 

spring model, is compared to the pitch dependence obtained'from the series
 



* spring model and the differences discussed.
 

Also root locus techniques are developed to study the influence
 

of various parameters on the stability of the flap-lag motion with
 

particular reference to the importance of the difference in pitch
 

angle dependence obtained from the two model assumptions.
 

It
 



ROOT LOCUS STUDY
 

Owing to the sensitivity of the problem of predicting flap-lag
 

stability of a hingeless rotor blade, an examination of the problem
 

employing root locus techniques is highly desirable. This technique
 

can be conveniently used if it is assumed that the blade pitch angle
 

is small. The following analysis considers, in particular, the sensi­

tivity of the movement of the flap-lag roots with increasing blade
 

pitch to various assumptions which may be empolyed in studying the
 

problem. The difference between the results obtained if a flexible
 

blade model is used in contrast to a rigid blade with springs at the
 

root is considered. The influence of a simple approximation to the in­

flow is also examined. Further, the results obtained using a series
 

spring model are contrasted with those obtained with a parallel spring
 

model. It is shown elsewhere in this report that the parallel spring
 

model is analogous to the results obtained from a flexible blade model
 

in which the mode shapes are taken to be independent of pitch angle.
 

First the characteristic equation describing the flap-lag motion is
 

developed in a form suitable for root locus studies.
 

The perturbation equations for the flap-lag motion given by Ormiston/
 

'2
Hodges/Bousman1 are
 

-sc + s + s+ CC 

where 

F ~1 Ew + N sin2 01F ml+­

1 [2 _ N sin2 e] 
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C F -- sin 2 9 

2A
 

A 1 + NL sin2 e (2) 

where N R(W2 - W) 

L I-)W W2N (1R 

R - as defined in Equation (9) of Reference 2; see Equation (23) 

et.seq. herein. 

The notation N and L are introduced so that the matched stiffness case 

(W 2 = W 2) can be conveniently discussed. In addition these definitions 

serve to distinguish between the series spring model as developed by 

Ormiston1 2 and the parallel spring model as developed in a later section 

of this report. It is shown that the parallel spring model is equivalent 

to the formulation with A = 1; i.e., setting L = O'in the resulting 

characteristic equation gives the characteristic equation for the parallel 

spring model. 

The remaining terms in the equations of motion are
 

F- 1 (20 - 0) -20 ° (3) 

c. -f (0 - 20,) +2.° 

C! --- (2 Cdo + 00i)
 

where ' and structural damping has been neglected.8 

The coning angle is given by the steady state equations as
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C C C Cd° + 202 (4) 
0~ - -0a 8 1i 

Therefore the coning angle 0 is equal to
 

0i)
q C (0 F Cdo+2 21 

F0 C - C8 F( 

It is assumed that the pitch angle is small such that sin 0 l 0, cos B 1.
 

Further, it is assumed that the inflow angle at three quarters radius, Oi.
 

can be approximated by the following expression
 

i 8 2 (6) 

noted in an earlier paper by OrmistonI with 8 = 1. The constant 8 is re­

tained to permit examination of this approximation. It can be seen in the
 

paper by Ormiston that for a solidity in the neighborhood of .15, 6 = 1
 

is quite a reasonable approximation; however, as the solidity is reduced,
 

comparison of this result with momentum theory indicates that a smaller
 

value of 8 should be chosen to approximate inflow dependence on pitch angle.
 

A 6 of 0.5 will be examined to approximate the low solidity case.
 

Further, consistent with the approximation that the pitch angle is
 

small, the following approximation is made
 

02
1 i -NL (7) 
- 1 + NL sin2 9 

This is a consistent approximation when the pitch angle is assumed small,
 

except possibly in the case of a high chordwise stiffness.
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The form of the result for the characteristic equation is such that
 

it is necessary only to retain the linear term for the dependence of coning
 

angle on blade pitch to obtain the dependence of the flap-lag roots on
 

2

pitch angle. Therefore, introducing the notation p2 1 4w 


8 -(8)
0(o--

The small term depending on blade profile drag has been neglected.
 

The various terms in the equations of motion are therefore, approximately,
 

using (8) in (2).and (3)
 

p2 + N ( - L )0 
2 ­

2

' w 2-N (1+ LwU)2 ) 9e


o =F ~N9
 

F= 2T e (( - ~) - P1 2l­

2'fle~ 2+ + 1- J 

C= 2 4 2 8 
+
Ca= ( a 2 e 

The characteristic equation is from (1) 

(s 2 + F s + F) (S + C s + C - (sF - F .(sC C) = 0 (10) 

Using the approximations from (9) and retaining only terms of order e2
 

for the pitch angle dependence, the following is obtained from (10)
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+ s+ p.2) (8 + q(2 -) S + W) 

+ 0 2 s s + q( 2(18)2 (&3t + )(1 ) S( 

p21 + N ( s + 

2 )] 
2 

-NLw ((1% ) s 2 +Ts+ (1 + 0 ii)) 

where the N, L notation has been retained at this point so that the parallel
 

and series spring models may be clearly distinguished.
 

For the parallel spring model
 

L= 0 (12) 

1 
For the series spring model of Ormiston
 

L N [i - R j
wP2 W2 R 

The parameter N = R (WC2 - w,2 ) and was introduced to make it convenient 

to examine the matched stiffness case. For the flexible blade case, the
 

characteristic equation will of course be of similar form with different
 

coefficients as will be noted later.
 

The lag damping term ensuing from the profile drag of the blade
 

(T a) has been neglected when it appears added to the flap damping T. 

Now, consider various cases of interest in flap-lag stability. First 

it may be noted that in either of two particular values of the elastic 

coupling paramter R; R = 0 (the principal axes of the blade/hub system 

remain parallel and perpendicular to the rotor shaft and do not rotate 

with pitch) and R = 1 (the principal axes of the blade/hub system rotate 

an equal amount as the blade pitch angle), the parallel and series spring 
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models yield the same characteristic equation since L = 0 when R = 1
 

for the series spring model. These two limiting cases are considered
 

first.
 

a.) No Elastic Coupling (R = 0)
 

In this case N 0 and the characteristic equation reduces to
 

(s 2 s+ p') (s 2 + (Cd + w)
a
 

e2+ s 

p
 

(R=0) (14)
 

The poles of this locus are the uncoupled flap and lag motion. There are
 

three zeros, one at the origin, and a complex pair with imaginary parts
 

approximately located at the uncoupled rotating flap frequency,. and real parts
 

dependent upon the uncoupled rotating flap frequency (p2) and the assumption
 

regarding inflow (the parameter 8) and the Lock number. 

Select the following physical parameters 

p = 1.33 

=Ii = .625 (y 5)
 

a = 5.73
 

C .01

do 

2 
such that the results may be directly compared with Ormiston/Bousman. The
 

influence of various values of the lag frequency are of interest so it is
 

not selected at this point. With these values (14) becomes
 

(s2 + .625 + 1.333) (2 + .002 s +C )
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2
892 2 * 1 62 (1 8)(1- )

.3125 [s { s + .625 (1 -k (i - ) +( )ls 

+ 1.3334] = 0 (15) 

If 6 = 1, the quadratic factor for the zeros is equal to
 

[S 2 - .0785 + 1.333] 

=
If 8 .5,this quadratic factor is equal to
 

2s
[s2 - .352 s + 1.333]
 

Note the strong influence of the inflow model on the location of the real
 

part of the complex zeros. Note also that the parameter 8 appears in the
 

root locus gain. Denote
 

p _1)(p2 -2)D L)2 (P 


2 ~ p4 

such that the characteristic equation is 

(s2 + .6255 + 1.333) (S2 + .002 s + WC2 

+ .3125 6 e2 [S (s2 + Ds + 1.333)] 00 (16) 

As an aside, before discussing the root locus,a simple result can be obtained
 

for the coupled roots in the special case where wC= P2 = 1.333. Neglecting
 

the blade profile drag term, this case results in the characteristic equation
 

of the form
 

( S 2 + Df s + p2 ) (s2 + DL s + p) = 0 (17) 

where
 

1 (1 +-- =Df +OD 
2 L
 

] 92 D DDD
 

2 f iL 



and since the lag damping is small
 

Df =1 ( 1 + (18) 

2 

showing that a negative value of D leads to an instability in the lag motion.
 

For the particular values above the lag damping as a function of pitch angle
 

is given by
 

DL - .039 e2 (6 = 

2
' - .o88 e (8 = .5) 

2
in the special case where wC2 = p . Note the sensitivity of the result to 

the selection of the inflow parameter 8. 

Now to continue with the root locus considerations. Figure 1 shows the 

location of the zeros and poles for w = 1.1 and the locus of lag roots. The 

lower figure with 8 = 0.5, corresponding to a low solidity agrees well with 

Figure 6 of Ormiston, et. al., as would be expected. For simplicity the flap 

mode trend is not shown. The form of this locus will be quite similar for other
 

cases since the complex zeros are located at the flap frequency. It can be clearly
 

seen that the most critical case as far as destabilizing the flap mode is
 

concerned occurs when W ( is in the vicinity of p2 . Figure 2 shows the
 

influence of lag frequency on the locus. 6 is taken as 0.5 to agree with
 

Ormiston's results presented in Figure 6 of his paper.
 

Note particularly the importance of the inflow approximation (or 

essentially solidity); a value of 6 = 1.0 indicates that small pitch angles 

will stabilize the lag mode for w = 1.4 where a 8 = 0.5 indicates that 

increasing pitch angle destabilizes the lag mode. At w = .7the trend 

is less sensitive to 8. The matched stiffness case presents a special 

situation discussed later. 
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Recall that there is no influence of the parallel or series spring
 

approximation.
 

b.) Full Elastic Coupling (R = 1)
 

Now consider the other limit in which R = 1. The characteristic
 

equation in this case is from (11), recalling the definition of D,
 
2C do2
 

(s+ s + p') (s' + -a S + wC )
 

+ E02 [U s (s'+ D s+ p2 ) + (w2 - w 2) N'I6 s - 1] 0 (19) 

The zero location for the root locus now depends upon the difference
 

between the nonrotating flap and lag frequencies. A locus of zeros with
 

variation in w can be conveniently sketched as shown in Figure.3. The
 

matched stiffness case is the same zero location as R = 0 for the special
 

case when R = RC, and this locus is the same for either the series or
 

parallel spring model. The matched stiffness case is treated in detail later.
 

There is a difference between the parallel spring model and the series spring
 

model when RP RC.
 

With the zero locations given, the root locus for increasing pitch angle
 

for various values of lag frequency can be conveniently sketched as shown
 

in Figure 4. Generally in this case where R = 1, the lag mode is stabilized
 

by increasing pitch angle. At higher lag frequencies there appears to be a
 

tendency towards instability but care must be taken with the approximations
 

as noted.
 

These two limiting cases of R = 0 and R = 1 serve as a valuable view
 

of the limits encountered in the more general case of valuds of R between
 

zero and one. The zeros of the loci for increasing pitch angle at various
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intermediate values of R will move from the location shown in Figure 1
 

to the location shown in Figure 3. However, it should also be recalled
 

that in the cases where a value of R between zero and one is considered
 

there will be a difference between the results depending upon whether the
 

parallel spring model or the series spring model is employed. Recall also
 

that the parallel spring model is analogous to a flexible blade model with
 

an assumption of mode shapes independent of pitch.
 

c.) Intermediate Elastic Coupling (0<R< 1).
 

In this case the characteristic equation will differ in the
 

parallel spring case (L = 0) from the series spring case
 

L = N (1 -R)w 2 w 21 R 

The characteristic equation for the parallel spring model is from (1l)
 

(S2 + I + p2) (S2 + (do s + W 

21 0+2~ a 

+ e2 IS (s 2 +Ds + p 2 ) 

+ R (w 2 - W 2 ) (s + [(w -ws) (1- R) -1] 0 (20) 

Note-that the zero location bears a certain similarity to the R = 1 

case with the exception of the term 

2 (w2 -w ) (1-R) 

Without this term, the locus of zeros with R varying would be identical to
 

the locus shown in Figure 3 for w varying with R = 1.
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For the series spring model, the characteristic equation is
 

(s2 + 1(2 ­+ 

+Se 11S~ +s2 p2 ) Cd

a"
 

+ 	92 [U s s +D+ 2
 

2 + p s
R-+ ( )1s +( w'R 

(21) 

)+(-? ) 	 + (1 w 

Where there is an additional quadratic factor in the expression for the
 

zeros, the underlined terms, which arise in the series spring model, but
 

are not.present in the parallel spring model.
 

The series spring model will yield results which are the same as those
 
1 

obtained by Ormiston and shown in Figure 6 of his paper. The parallel spring 

model will yield quite different results. 

First consider the case in which the lag frequency w = 1.1. Substituting 

this and the other values 

2 	 = 1
p 1.333 a = 5.73 D = -.o78 


= .625 Cdo = 0.01 D = -.352 = .5
 

the characteristic equation becomes
 

(s2 + .6255 + 1.333) (s2 + .002 s + 1.21)
 

e 2+ .3125 8 	 [s (s2 + D s + 1.333) 

+ .88R (s + 	3 (.88(1 - R) - 1)) 

-(l - R) (8.416) (1.275 S2 + .625 s + 1.666) 3 = 0 
8 1 
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where the underlined terms are dropped for the parallel spring model. In 

this example we select 8 = 1, giving the following characteristic equation 

(s2 + .625 s + 1.333) (S2 + .002 s + 1.21) 

+ .3125 62 [(s) (s2 - .078 s + 1.333) 

+ .88R {s + 3.2 (.88(l - R) -l1 

- 10.73 (1 - R) (S2 + .490s+ 1.306)] = 0 

Now then to compare the series and parallel models the zero locations for
 

the series and parallel cases are shown in Figure 5. For reference, the
 

locus of zeros given in Figure 3 (R=l) is included as this represents the
 

limiting points.
 

Note the sensitivity of the zero locations to the use of the series or 

parallel model. 

Figure 6 shows the equivalent diagram for w 1.4 where the character­

istic equation is for 6 = 1, 

(S2 + .625 s + 1.333) (S2 + .002s+ 1.21) 

+ .3125 e2 [(s) (s 2 - .o78s+ 1.333) 

+ 1.63 R? {s + 3.2 (1.63 (1 - R) - 1) 

- 18.43 (1 - R) (S2 + .535 s + 1.426)] =0 

Figure 6 shows the locus of zeros for w = 1.4. It can again be seen
 

that the zero location is quite sensitive to the model employed. Figure 7
 

then shows the difference in the departure angles for these two models for
 

= 1.1 and w = 1.4. The limiting cases (R =0, R = 1) are the same, 
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however, the departure angles differ markedly again indicating the
 

sensitivity of the dependence of the lag modes to modelling assumptions.
 

Recall also that particularly at wu 1.4, there is a sensitivity to the
 

inflow parameter 6.
 

The parallel spring model also indicates one interesting special case,
 

corresponding to a particular value of R, in which the locus configuration
 

is similar to the R = 0 case. Note that this result will not agree with
 

the series case. The particular value of R is
 

(W 2 _WP ) (1 R) i 

or
 

R =1
 

For this specific value of R, the parallel spring model gives zeros at
 

S (s 2 +Ds+w ) o 

Thus this special case will always give a locus which is similar 

in shape to that obtained for R = 0. The complex zeros are located at 

the lag frequency and in the right half plane if D is negative. 

d.) Matched Stiffness (wC2 = W ) 

In the matched stiffness case the parameter N, introduced 

earlier is employed, rather than R which becomes infinite except in the 

case R = R Therefore 

CI
 
N =R(wC - 02 ) =W -R
 

If 1 RV N = 0 and the matched stiffness case will be tha same as R = 0. 
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If R R as would be more typical of the rotor blade, then there will
 

be a difference in the locus from the R = 0 case. The characteristic 

equation in this case is wC OP 

C 

(s2 + s + p 2 ) (s2 + p (2 a s + W ) 
a " 

+ 	 e2 s (s2 + Dls + pP) + N ss - (N + 1)) 

m
+ 	 2N (s 2 + ++1+ 2a =0 
WS 2 2 j 

where again the underlined terms appear in the series spring model and
 

not in the parallel model.
 

Since in this case
 

N = C I =2W AR ; AR = ,I R 

4' - .1 2 AR 
W08 W 

and a typical rotor blade would have a considerably higher chordwise 

frequency than flapwise, positive values of N are of interest. 

The departure angles are shown in Figure 8 for the matched stiffness 

case again using the previous parameters 

y = 5 	 0D = '.01 

UPj=*.333 a = 5.73 

for N = 0, where the blade stiffness is matched and the results are the 

same as for R = 0, and for AR = .75 which would be more typical of a 

rotor blade. 

The coupling in this case has a strong stabilizing tendency on the 

flap-lag motion. Again the two models exhibit a difference. AR could 

18
 



be somewhat larger than shown. It is equal to (in terms of frequency)
 

AR 2
 

and so is essentially limited to a maximum value of about one. Negative
 

values of AR would be highly unlikely physcially as this would imply
 

thatw > W
 

This completes the discussion of the rigid blade models and the
 

comparison of the series and parallel spring models. Now the rigid and
 

the flexible blade models will be compared. The flexible blade model
 

considered here (See Appendix I for a discussion of the flexible blade
 

equations of motion.) assumes that the mode shapes are independent of the
 

blade/hub mass and stiffness distribution and as shall be seen is structurally
 

equivalent to the parallel spring model discussed above.
 

If the flexible blade model is used to determine the stiffness terms
 

in the equations of motion and consequently the equivalent terms in the
 

rigid blade model, then these terms for the flexible blade model will be
 

identical to those of the parallel spring model.
 

The differences in the equations of motion in the flexible blade
 

case as compared to the rigid blade case, will arise therefore in the
 

aerodynamic terms and the coning angle. The coefficients of these terms
 

will be changed from the rigid blade values depending upon the mode shape
 

employed.
 

In terms of the previous discussion the following terms in the
 

characteristic equation are unchanged therefore,
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F = p2 + N sin2 G 

2 N sin2 CC = q

F -C sin 28
C P 2 

where A is taken as 1 since mode shapes independent of pitch angle are 

2employed. p2and q are the rotating flap and lag frequencies and include
 

the Southwell coefficient which no longer equals 1 as it does in the rigid
 

blade case.
 

The remaining terms are as follows. A uniform mass blade is considered. 

RIGID BLADE FLEXIBLE BLADE 

- TIia 

F' = 1 (26 - 0i) - 2 P ° FC =1 (X -a' + 2 -x-vc) C- O 

C = - (e - 20,) + 2 P° C = - I (-a + 2X fv) + C wo 

0 0Cdo ) + d' a xwvCc 1 (2 a 0 0,iC 1 (2 x~ _ a w 

a C=T (2a -a ) 

Table I gives the values of the various mode shape parameters given above 

when a Duncan polynomial is used for the first mode shape. 

Substituting numerical values for an untwisted rotor blade the following 

results are obtained. The terms for the rigid blade can be obtained directly 

from the mode shape integrals with * = x. See Appendix I. 

RIGID BLADE FLEXIBLE BLADE 

F- = ' 1.0701 

F- = ] (2 - ) - 2 [2.140 - 1.335 OT] - 2.110 w0 
C 0 210 

C =- 2(8-,2) + 2 Po - [1.070 8o - 2.6.70 ¢T] + 2.110w° 

C d o 
 Cd o 
, 1 0C' =11 [2 -d + eO] 1T [(1.070) (2 ) + .335 O T] 
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The coning angle is given by
 

0o=-- (9 i-° (xxeW ­- =- + ?O.xW 

p2o0 p2 ­

= -¢i) -o= [1.16886 - 1.5o14 oT] 
2
p p


wher& OT = 3 0 in the flexible blade equations, giving for the flexible 

blade the following coefficients 

F =1.070T1 

F =p [2.140 e - 1.001 0i] - 2.110;W 

C = -1l [1.0706 - 2.003 Oil + 2.1107' 

C- [1.070 (2 do + 1.001 60.] 

-o = 2 [1.1688 6 - 1.126 oi]

I pe
 

Introducing the approximation that 0± = -2 where here for simplicity theS2 
S = 1 only case is examined. 

--(1.64o - 1.278) 'e 
2
 
p 


c = (-.o68 + 1.278) Tl
 
2 

p 

F = 1.070 11
 

.50 0 C = 1 [I1.070(2 -) + 2] 

-o .6058'n 

pa 
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For comparison purposes, 'the rigid blade terms are
 

Fp
 

C= [2 Cd- + .5 ef] a 

p
 

.5'pe 
p


0 pe
 

The significant change appears through the coning angle affecting
 

primarily the coupling terms F and C
 

(s 2 + F s + F ) (s2 + C s + Co) - (C s -OC) (Fds - FC) 0 (10) 

The R = 0 case will be examined for these two models when R 0, F = C = 0 

and the pitch dependence appears in the C term, the lag damping,and the 

2 .
coupling term -C Ft s


The characteristic equation is therefore, with the e dependent terms
 

separated out equal to
 

C

(s' + Fs + F+ 'p(2 o s + CC) 

+2 s +F) = 0 (22) 

2 

The term which determines the real part of the complex zeros is essentially
 

the only place in which the difference in the two models appears. This is
 

the term which was denoted as D earlier.
 

22
 

REPRODUC]BILITY OF TED 
ORIGINAL PAGE IS POOP 



F- C-

D =F *- -6­

2 

For the rigid blade model
 

(p2 _ 1)(p( 2)D( 1 
4
 

P2 p2 p


This shows clearly the limits in flap frequency found by Ormiston} If
 

I < p2 < 2 then the complex zeros for the pitch angle locus are located
 

in the right half plane and for rotating lag frequencies in the vicinity
 

of the flap frequency, the lag poles will be attracted to the right half
 

plane by these complex zeros leading to instability with increasing pitch
 

angle.
 

For the flexible blade (with Duncan polynomials for mode shapes)
 

D = 1.070 1 - 2 (1.640 - 1.278)(1.278 - .068) 
p2p2 


D = 1.293 1 (p2 - 2.257)(p 2 - 1.119) 
4
 

'p
 

Thus the flexible blade model with Duncan polynomials as mode shapes will
 

give a somewhat different frequency range for instability. Instability
 

would be expected for 1.12 < p2 < 2.26.
 

The location of the complex zeros as a function of p for the rigid
 

and flexible models is shown in Figure 9.
 

The inflow model will affect these results. If 8 = 0.5 then the
 

rigid blade model gives for D
 

4.5 (p2 - 1)(p2 -2)D = 
4
 

p 
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It is interesting to note that selecting 8 = 0.5 does not change
 

the range of flap frequency over which an instability would be expected
 

but it does increase the movement of the complex zeros into the right
 

half plane.
 

In the flexible blade case with 8 = 0.5,
 

2 

D = 5.269 1 (p

2 - 2.35)(p _ 1.14) 
4
 

p 


There is again an increase in the variation of the real part of the com­

plex zeros with changes in flap frequency and the frequency range over
 

which the complex zeros are located in the right half plane is about the
 

same as in the case where 8 = 1. Recall that 8 also appears in the root
 

locus gain so that these changes in the zero locations do not directly
 

imply a proportional decrease in the stability of the lag mode.
 

In the particular case here note that for flap frequencies less
 

than v11.T2, in the-case where 6 = 1, the flexible blade model will not
 

predict an instability with increasing pitch angle while the rigid blade
 

model will owing to the fact that the zeros for the flexible blade will
 

be located in the left half plane.
 

Thus the nature of the stability of this system appears particularly
 

sensitive to modelling assumptions for the elastically uncoupled case.
 

and the results will depend upon the assumptions employed. Physically
 

this can be seen to arise from the fact that the real part of the complex
 

zeros is located by a term which is the difference of the product of the
 

flap damping and the part of the lag damping dependent upon pitch and
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the rate coupling terms arising from aerodynamics and coriolus terms, i.e.,
 

12[c 2 0do ­

-al ) F-
- Fa C 

The second term F. C. subtracts from the first and so this term may
 

be of either sign and is quite sensitive to the assumptions employed in
 

studying flap-lag stability. This is particularly the case when the un­

coupled lag frequency is in the vicinity of the flap frequency such that
 

the lag roots are directly attracted to these zeros. The important role
 

played by the dependence of the lag damping on blade pitch can also be
 

noted from this expression. If 8 is set equal to zero, the lag damping
 

becomes independent of pitch angle and there are two zeros at the origin.
 

2
The root locus angle condition will be 00 for 1 < p2 < 2 and 1800 for p


outside this range; indicating a more severe instability with increasing
 

pitch in the range of 1 < p2 < 2. The.presence of the lag damping depen­

dence on pitch acts to limit the instability with increasing pitch to some
 

maximum unstable damping as shown by the zero locations in Figure 9.
 

It is expected that the R = 1 case is not so sensitive as the zeros
 

in this case are moved into the left hand plane by the additional structural
 

terms introduced by elastic coupling as can be seen from Figure 3.
 

For small values of R it would be expected that the sensitivity to
 

modelling assumptions will exist. It has already been shown that for small
 

values of R, considerable differences exist between the use of a parallel
 

spring model, corresponding to a fixed mode shape assumption and the series
 

spring model proposed by Ormiston which physically appears to correspond to
 

a more refined assumption regarding the variation of the mode shanes with
 

blade pitch.
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To summarize this discussion it can be seen that for a hingeless
 

rotor blade with no elastic coupling the results of a flap-lag stability
 

investigation are sensitive to the details of the assumptions made in the
 

physical model.
 

For small values of the elastic coupling parameter a similar sensi­

tivity exists which depends upon the nature of the structural model as
 

well as the assumption regarding the inflow.
 

The fully elastically coupled blade (R = 1) does not appear to be
 

particularly sensitive to modelling assumptions on the basis of these
 

investigations and the same results are obtained from either the series
 

spring model or the parallel spring model.
 

Intermediate values of R appear to give'rise to a situation in which
 

the results of a stability investigation are very sensitive to the modelling
 

assumptions. There appears to be less sensitivity for blades which are soft
 

in the chordwise direction than for blades which are stiff in the chordwise
 

direction judging by comparison of the trends shown for a matched stiffness
 

blade compared to the stiff inplane case. As the chordwise frequency is
 

increased there appears to be an increasing sensitivity to the use of a
 

series spring model as compared to the parallel spring model as can be seen
 

by comparing Figures 5 and 6, implying that for intermediate values of R,
 

the details of the modal analysis for a flexible blade are significant.
 

The root locus technique appears quite valuable in pointing out some
 

of the sensitivities involved in this problem. It would be expected from
 

these results that while the general shape of a stability diagram such as
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I
shown in -Figure 4 of Ormiston's paper illustrates the nature of the
 

stability boundaries for flap-lag stability, the precise values will
 

be sensitive to the details of the model. Further it would appear that
 

for the results shown in Figure 6 of Ormiston's paper, the 'trends shown
 

for 0 < R < 0.4 are also very sensitive to the particular analytical
 

model used.
 

To make this point more concretely, Figures 10 - 12 have been 

prepared to show the locus of roots of the lag mode as a function of
 

blade pitch for three values of the uncoupled lag frequency, based on
 

the parallel spring model. These figures correspond to the root locus
 

sketches in Figures 7 and 8. The figures may be directly compared with
 

Figure-6 of the paper by Ormiston and Hodges and illustrate the
 

differences between the parallel spring model and the series spring model.
 

The two models give quite similar results for w = 0.7 and considerably 

different results for w = 1.1 and 1.4. Note the decreased sensitivity 

to pitch angle predicted by the parallel spring model as compared to the 

series spring model by Ormiston and Hodges. 
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THE PARAMETER R
 

1
 
The parameter R was introduced by Ormiston to represent the elastic
 

coupling of the blade/hub system. It can be conveniently interpreted as
 

being directly related to the rotation of the principal axes of the blade/
 

hub system. It can be shown that the rotation of the principal axes of
 

the blade/hub system yP is related to the blade pitch angle and the
 

parameter R by the following equation (see pp. 30 and 41)
 

tan2y - R sin 2e (23) 

R cos 2e + (1 -R) 

For small pitch anges this reduces approximately to
 

=Re
 

Figure 13 shows a graph of the principal axis inclination as a function of 

blade pitch angle for various values of R. Note that when R = 1, y = 0 p
 
e 

for all values of 0, and when R = .5, '1=Y=
 

In this investigation the range of R examined was between 0 and 1.
 

By placing R in a somewhat different form, an estimate of the possible range
 

of R can be seen. As defined by Ormiston
1
 

2 2
 w
 

WC _' 2
 

where
 

W2 

R 8WC2
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where w B and w2 are the natural frequencies of the blade rigidly
 

mounted. R can be expressed as
 

e
i w aW 

R = (1 

It can be seen that R = 1 if the hub mounting has no influence on the natural
 

frequencies such that
 

Ca W 

R = 0 if the blade itself is of matched stiffness,which is a physically un­

likely situation unless the blade is softened at the root in the chordwise
 

direction outboard of the pitch change bearing. R is also equal to zero
 

if the blade is articulated in the flapwise direction such that w 0 . Thu§
 

in the root locus studies described in another section, the case R = 0 implies 

that outboard of the blade pitch bearing, the nonrotating frequencies in flap 

and lag are equal. 

The case R = 1 can be achieved by a number of combinations including
 

the situation in which the hub is very stiff such that the blade/hub frequencies
 

are the same as the blade rigidly mounted. If the blade is not softened
 

outboard of the pitch bearing then it would be expected that (Uw would
 

be small leading to a value of R which depends upon the blade/hub system
 

frequency ratios and the reduction in the flapwise frequency ratio produced
 

by the hub. This gives the possibility of R values larger than 1 particularly
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for a blade/hub system which is soft in the chordwise direction.
 

Negative values of R, although theoretically possible from the form
 

of the expression, appear to be highly unlikely in practice.
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COMPARISON OF VARIOUS STIFFNESS MODELS
 

In this section, the form of the stiffness terms in the elastic
 

blade equations are examined for the case in which it is assumed that
 

the bending of the blade in the flap and lag directions is represented
 

by a single mode and also that the mode shape is independent of the
 

stiffness distribution between the blade and the hub. Of particular
 

interest is functional dependence of the terms in the stiffness matrix
 

on blade pitch angle. In addition two other simple models of the blade/
 

hub system are examined. The hub and blade are modelled as rigid members
 

with the hub stiffness represented by a spring at the root and the blade
 

stiffness by a spring between the hub and the blade. Two alternate
 

assumptions examined: one in which the blade deflection is assumed to
 

be proportional to the hub deflection and independent of stiffness of the
 

spring, and the second in which the relative deflection between the blade
 

and the hub is determined from the condition of equilibrium of the hub
 

segment1 . These two models are referred to as the series spring model
 

and the parallel spring model as well will be explained. The blade
 

pitch dependence of the stiffness matrix for these two models is examined.
 

It is shown that the parallel spring model yields a pitch dependence of
 

the stiffness matrix identical to the modal analysis with fixed mode
 

shapes and the series spring model yields different results, in general,
 

as to the manner in which the stiffness matrix varies with blade pitch.
 

First consider the elastic stiffness terms as given by the flexible
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blade equations of motion presented in Appendix I. The terms of interest
 

here are:
 

Kvw KwW v
 

where
 

K:;:]Ezi*" (E, d
d El) sin2 6 (41/)2
-I 


K = EI ,(4' dr + S (E l - El ) sin2 6 (,"')2 dr 
o 0 z w 

K7w9 = R EI - El, sin 26 - dr (4)) (24) 

2 v w0 


Now, if it is assumed that the mode shapes are independent of blade
 

pitch, that is, they are the mode shapes calculated at zero pitch then
 

the functional form of these stiffness coefficients is as follows
 

KVV' = RF EI (41)2 dr - sinF8 R (Elz, - ) ( v')2dr// 


z y V0v0 


K = R EI ,(*")2 dr + sin2 "9 R (EI - EI ,) (*')2 dr 
0 y w 0 z y w 

R 
Kvw8 = sin 8 cos 8ii (EI, -El,) (4'v4') dr 

0 z y v w 

If the rotor blade of interest is considered to consist of two
 

portions, an inner segment denoted by the subscript h which does not
 

rbtate, extending to a radius rh and an outer portion denoted by the
 

subscript b which rotates with the pitch angle e, the terms are
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rh
 

Kv v = h Elzh (*v")2 dr + 1R El *( 1v)2 dr ­

rh zb v
0 


R 
- sin2 e (EIb - Ely/b) (4/)2 dr 

Kww rh EI) R b(.,,)2 dr
 
h2E hEIy
+
h 


zb yb br yw 

R 
+ sin 2 0 r h (Ez - Ei It2 

Kv wG = sin Cos .0 (Ez El dr (25) 

If it is further assumed that the mode shapes are the same for both
 

directions of bending such that
 

=* = zb*V *w hh bzbyb(w 

and using the following notation
 

kz _ 
rh EIz h (*,,)2 dr
 

zb sin 0
yb co 
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These coefficient become
 

Kv v = kzh + kzb - sin 2 9 (kzb - kyb) 

w
ky ' = (kzb - kyb ) sin 0 cos 8 
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where the stiffness coefficients, the k's are independent of pitch angle.
 

Note that the effective spring constants of the hub kzh and kzb appear
 

as a sum. This result is of a form that would be expected for two 

springs with spring constants kzh and kzb connected in parallel.
 

This result can be written in matrix notation by defining three
 

matrices 

[ : ] 

kH =­

cos6e sine
 

[sin e cosO(7
 

The stiffness matrix may be written as 

where all of the effects of blade pitch are contained in the rotation matrix 

[0]. Thus this displays in convenient form the stiffness matrix for the 

flexible blade model in the case in which it is asstuned that the mode shapes 

are independent of pitch and are the same for both deflections. There are
 

five parameters involved in this form to define the coefficients in the 

stiffness matrix. The four stiffness coefficients and the pitch angle 0. 

The number of independent parameters in the stiffness. matrix can be 
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reduced by one by introducing the concept of a principal axis, that 

is by finding the transformation which diagonalizes the above matrix 

and then expressing the rotation of the principal axis in terms of the 

pitch angle. Consider therefore, a rotation matrix [y] which diagonalizes 

k by a similarity transformation ­

1[K] = [y]Y [k] [y] 

If the matrix [k] is denoted as
 

11 k1 
k 12 k22| 

the rotation which diagonalizes the matrix k is yp where (cf. (23))
 

2 k1 2  Akb sin 2 ( 
tanyp = i _ k 22 = Akh + Akb cos2O (28) 

where 

Akb (kzb - kyb) 

Akh (kzh - kyh)
 

yp is the rotation of the principal axis which is given above as a
 

function of the blade pitch angle and the various stiffnesses. It can
 

be noted that if the blade stiffness is equal in both directions then
 

the principal axis does not rotate with blade pitch. If the hub stiff­

ness is equal in both directions then the rotation of the principal
 

axis is equal to change in pitch angle.
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The stiffness coefficients in the diagonalized matrix are:
 

(Akh +.Akb cos 28-

K 13k1 
S2 h + 2 cos 2yp
 

(29)
 

1 (k + h + Ak cos 20
 
K22 = _2 h )-12 o- p
(Zk 
 ( Cs'2 


where
 

Sk M (kzh + ky) (kz + kb) 

It can be seen that if the blade stiffnesses are equal then these
 

two stiffness coefficients are independent of pitch angle. Similarly
 

if the hub stiffnesses are equal these coefficients are independent of
 

pitch. That is, in both these limiting cases, the two nonrotating
 

natural frequencies of the blades will be independent of blade pitch.
 

Now these results are compared to rigid blade-models with root
 

springs which may be assumed to represent the structural characteristics
 

of the blades for use in an analysis of flap-lag stability in a somewhat
 

simpler fashion. It will be shown that the spring model prposed in
 

Reference 1 gives rise to a different pitch dependence from that given
 

by the stiffness matrix of equation (27).
 

Therefore, two spring models will be considered, the one proposed by
 

Ormiston (Reference 1) which will be referred to as the series spring model
 

and a second one referred to as the parallel spring model. These two models
 

will be compared to the results obtained from the flexible blade assuming
 

that the mode shapes are independent of pitch angle. Particular interest
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centers around the manner in which the results depend upon pitch angle. 

Consider the 9tructural properties of the hub to be represented by 

two orthogonal springs which produce moments proportional to deflection 

in an akis system parallel to the perpendicular to the shaft. The struc­

tural properties of the blade are represented by two orthogonal springs 

outboard of the hub which are aligned parallel and perpendicular to the 

chord line of the blade (precisely speaking the principal axes of the
 

blade). In order to make the notation somewhat more compact the sub­

scripts 1 and 2 refer to the-two directions. A primed quantity is
 

referenced to the blade axis system and an unprimed quantity is referenced
 

to the hub axis system. Therfore, the stiffness matrices are
 

L:0- 1 KHJ ­

222
 

where these stiffness coefficients are independent of pitch.- The de­

flections about these two axes are denoted as follows
 

OM
0
 0
 

and of course fo'3 denotes the hub deflection in the blade axis system and
 

{0 8 } the blade deflection in the hub axis system. These angles are assumed 

small so that it is not necessary to introduceEuler angles. Figure 14 

shows the definitions of these quantities. These quantities are related 
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by the rotation matrix 

Fcose sin e1 

S cos JLsin e 

so that
 

{¢}= Fe] {¢H](30 
(30)[01 

The potential energy of this spring system can be written as (Meirovitch3)
 

V=1 (01 T_0

vC ~ 1 KH] (0N1 + (O' 1 T [K8 (f' ­H) O')(31) 

where the superscript T indicates the transpose of the matrix. 

The coordinates in the second term are expressed in terms of coordinates 

in the hub system using the transformation (30) 

V4 0H [KH] fOH3 + 1 ( 0- I T [9]T K] [e]eT(Oe -HI (32) 

where the notation
 
[ K 8]EKB] ----[01]T , [0] 

is introduced such that
 

V : 2 f 8 [KH] 1{0 J + - [K 6 ] {(8s - 01 (33) 

In this expression for potential energy there are four degrees-of-freedom 

the blade deflection in two directions (08] and the hub deflection in two 

directions [H. The two spring models to be discussed involve different 

assumptions as to the relationship between these degrees-of-freedom. Two
 

spring models are developed to show clearly the analog between the fixed
 

mode analysis and a rigid blade model with root springs. The parallel
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spring model is developed with the specific objective of obtaining a 

stiffness matrix which varies in the same fashion with pitch angle as 

the fixed mode analysis (Equation (27)). 

The parallel spring model consists of making the assumption that the 

hub deflections are proportional to the blade deflections 

f03= [a ]I (34) 

such that 

T=,![OBI T [a]T [K.] [a] t] + ([I] - [a])T [K.] ([I] -[]) [LB) 

(35) 
and the stiffness terms are therefore
 

[ = [a] [KH] [a] {0¢3 + (I] - [])T [Ka] ([I] - [a]) (OBI (36) 

In the parallel spring model it is further assumed that the c matrix
 

involves only one constant such that
 

[a] = a [I] (37) 

and therefore, the stiffness terms for the parallel spring model are 

2
b = a [E] + (1 - a)2 [K8 ] (38) 

where the bars are introduced to indicate that this is the result for the
 

parallel spring model. The pitch angle dependence is contained in [K6 ]
 

only where
 

[K] = [0 - 1 [K'] [0] 

Thus the assumption that the hub deflections are proportional to blade
 

deflections and are independent of stiffness yields a stiffness matrix
 

that has the identical pitch dependence as the flexible blade model with
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fixed mode shapes (Equation (27)).
 

The series spring model is obtained by allowing (0BI and {[OH to
 

be independent and determining the relationship between these two variables
 

from the potential energy expression assuming that the inboard segment,
 

i.e., the hub, has-no mass such that in effect the matrix [C] is found
 

-from the following conditions:
 

)= o 39) 

From (39), using (33) 

[[K.] 0H1 - [K9 ] {OB - O}= 0 (40) 

Therefore 

{o}= [K 8 + Kx] 1 [K3] {01} (41) 

that is for the series spring model, cf. (34) and (41),, 

-
[a] = [KH + K9] [KS] (42) 

Also 

[a]T = [K6 ] [KH + K 9
1 (43) 

since [KH + KB] and [K9] are symmetric. Now from (36) 

[{V I- ([a]T [K8 + KB] [a] + [KS] - [alT [K6 ] - [Ks] [a]) £(01 

using (42) and (43)
 

" ­= [K 8] [KH + KS] [K8] + [K] - 2 '[KS] [KH + Ks] f [K 9 ] (081 

= [KB] ([I] - [KH + K1]
- [Ks]) (091 
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Hence 

by = [K B] [K H + K;]- [K H] tOB3 (44) 
S 

Thus this is the form of the stiffness terms for the series spring model 

where again the stiffness dependence on pitch angle is given by [KB] which 

is equal to
 

- ' [K 8 ] - [ [KK8 ] [0] 

Thus, to summarize, the stiffness matrix for the parallel spring model is 

[Ki = a2 [=H] + (1 - a)2 [ e] (45) 

and the series spring model
 

[K] s = [K 8 ] [KH + K8]' [K.] (46) 

To show the manner in which the series stiffness matrix varies with pitch 

the series spring model can be written as follows, noting that det K. = 

det K' since [K8] and ['K'] are related by a similarity transformation, 

et (K8 + Ks) det (KH + K') AK 'K sins O') 

[ det (KH + K') (47) 

It can be seen that the first term in parentheses, (47), gives the same
 

pitch dependence to the stiffness terms as found in the parallel spring.
 

The second term in this expression gives rise to an additional pitch de­

pendence which is a function of the product of the blade and hub stiffness
 

differences.
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Now, compare these results to those obtained from the flexible blade
 

model with fixed mode shapes which are independent of pitch. This stiff­

ness matrix-is of the form
 

-[k] = [kH] + [9] 1 [kB] [9] (27) 

The same dependence with pitch angle is found as for the parallel spring
 

model as would be expected physically from the assumption of fixed mode
 

shapes, see (45). The matrix [1%] has the form
 

KS -AK sin 0 AK8 sin 9 cos 9
[Ka]= (48) 

AKI sin 9 cos 9 KI + AKS sinI..22 J 
Thus if the blade stiffnesses are equal then all three of these expressions
 

give stiffness matrices which are independent of blade pitch. If the hub
 

stiffnesses are equal again all three of these results agree as to the
 

pitch dependence of the stiffness terms. In the general case in which
 

both stiffnesses are unequal the series spring model yields a different
 

variation of stiffness with pitch from the other two.
 

It is further interesting to note that both the series and the
 

parallel spring models give the same principal axis dependence upon pitch
 

since the difference between the parallel spring model and the series
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spring model is multiplication of all terms in the series spring stiffness
 

matrix by the single factor
 

( + K 2 e14 6sin 
det (K. + Ks) 

The equivalence between the various models is as follows. For the elastic
 

model to be equivalent to the parallel spring model, we require
 

k8 C!2 R 

k H = 2 K s
 

22 22
 

(49)
 

2
k (1lS) 4 

22 22 

where the parameter a is arbitrary.-


For the elastic model to be equivalent to the series spring model, noting
 

that
 

det K, det KH
 
= 8 e and = (l - 8) (1-)
 

det (KH + K9') det (K. + K)
 

where 
K KB' 

II 22 

K,,' + K H K,' + K H 
11 11 22 22 

We require
 

k H =SeKH
 
11 11
 

kH = 8 e KH 
22 22 (50) 

kB = (1 -a) (1 - ) K1' 

k8 = (I - 8) (1 - e) K' 
22 22 

- 4t3 



Recall that this equivalence does not account for the multiplyinig
 

factor noted above which is a function of the pitch angle. This
 

equivalence will give the same principal axis direction for either
 

model. However, the dependence of natural frequency on pitch angle
 

will be different.
 

These equations give the following relationships between spring
 

constants.
 
kH
 

22
 
KH =2( H 11
K8
 

11
 

K8 ' =( 22 
11 kI'8


22 

(51)
 

kH 
K8 / = Q-__)2 1 KH 

22 11
 

11 

k(H 1+ kBd ()H22+ kB 22
 

K H 1 

22
 

Thus given the results of the flexible blade calculation, equations (25)-(27), the
 

spring constants to be used in the series ispring model are determined by
 

+ k2 2 
(52) 

KH = (k H + k9) + 
kH
 

22 S2 2 4 l
 



kH
 

Ke = (k8 + k6 ') +
 

22 
 22 	 2 . ks 
11 

The correspondence 	between the notation used here and that of Ormiston/
 

2 .
 
Bousman is
 

R = (± - 8) 

R= (l-)
 

(53)K9 KH 


Ks' + KH
 

K . K H 
22 22 

K K6 ' + K , 

22 22 

1'2 in terms of the elastic model withExpressing Ormiston's parameters


fixed mode shapes (equations (25) - (27)) 

kst
 

22 

C kH + k'
 
22 22
 

k
 
II 11 

11 11 

2
w =(k' +k. )
C B 1 11 

2 (k4 +k, ) 
22 22 
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ksI_' kB'
 
R11 22 (54) 

(kB' - kS' ) + (kH - kH) 
12. 22 11 22 

The factor missing in the elastic model with fixed mode shapes is
 

l (kH - kH ) (kB' - kB' ) ­

+ 22 s2in2 
(kH + ks' ) (kH + ks' )
 

The factor within the parentheses is A in Ormiston's notation.
 

Using the above equivalence; consider the nonrotating natural
 

frequencies and the differences which arise from the two approaches.
 

Recall that both models give the same rotation of the principal axes
 

with pitch angle.
 

The dependence of the nonrotating natural frequencies on pitch
 

is given in the series spring case as
 

w, 2 , W2 = -(2w 2 

Wi2 , 2) + 21 DcS)/-4(R)(1-R) sin2 e-2w~ = 

(55)
 
In the parallel spring (elastic model with fixed mode shapes.) case,
(ojjj9
______._____.,,__ 

W22pC 2 + / 1 - 4 (R) (l-R) sin 2 e
(56)
 

These differ by the multiplying factor noted.
 

For a helicopter rotor where the blade pitch angle is small, it may be assumed
 

that
 

4(R) (l-R) sin 2 e << 1
 

and the natural frequencies given by the two cases are approximately
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0Wl 2 2p 2W 

The principal axis rotation given by both approaches is the same using the
 

equivalences noted above. In terms of the elastic coupling parameter B,
 

Ssin2 

equvaenes bov. Bo)osn 2 +softeeati g parmeotd er (1-R) coune eR 

The frequencies given by each approach in general is different. In the
 

parcuarncaswhere the ratio( is neato oneethat is if( )2 = 
case weetertoparticular 

1 + 1 where I is small compared to one then the same frequency dependence
 

with pitch is obtained from both methods.
 

Thus using the equivalences given above to determine the corresponding
 

parameters each model will give the same principal axis rotation, but the
 

parallel spring and elastic blade model with mode shapes independent of pitch
 

will give a different frequency variation with pitch from the series model.
 

Thus experiments to be described in a later report Will not distinguish
 

between the two approximations when the principal axis direction is measured. 
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Also if pitch angles typical of a helicopter are examined, only small
 

changes in the frequency will be noted and it will be difficult to
 

distinguish between these two approximation, series vs. parallel spring
 

(or eldstic blade model with mode shapes independent of pitch) from
 

experimental results.
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CONCLUSIONS
 

As a result of this analytical study of flap-lag stability in
 

hovering flight the following conclusions can be drawn:
 

1.) Prediction of flap-lag stability is very sensitive to the
 

assumptions used in modelling the aerodynamic and elastic
 

characteristics of rotor blades.
 

2.) The equivalent lumped spring/mass model, determined from
 

a single mode representation of the elastic deformation
 

of a rotor blade/hub system in which the mode shapes are
 

assumed to be independent of blade pitch, gives rise to
 

a different dependence of the blade/hub stiffness matrix 

on blade pitch angle from the lumped model proposed in 

References 1 and 2. 

3.) These two lumped spring/mass models, referred to as the 

parallel spring model (equitalent to the single mode 

analysis) and the series spring model (References 1 and
 

2) give identical results for the variation of the charac­

teristic roots of flap-lag motion when the elastic coupling
 

parameters R = 0 or 1 and different results for other
 

values of R.
 

4.) 	 It is possible to determine the equivalent lumped spring
 

constants for either the parallel or series spring model
 

from the results of an elastic analysis of a rotor blade.
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5.) The elastic coupling parameter R can be conveniently
 

interpreted as a measure of the rotation of the
 

principal axis of the blade/hub system with blade pitch.
 

6.) Experimentally, the elastic coupling parameter R can be
 

more precisely determined from principal axis measurements
 

than from frequency measurements.
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APPENDIX I
 

FLAP-LAG EQUATIONS OF MOT-ION
 

The nonlinear equations of motion for a variable property rotor
 

blade undergoing flap, lag and elastic twist deformations are developed
 

in Reference 4 using a Rayleigh-Ritz procedure. Using a single mode
 

for each type of deformation and ignoring elastic twist altogether
 

we may write the modal equations for flap-lag motion as follows. It
 

has been assumed in developing the aerodynamic forces that the induced
 

velocity is independent of blade spanwise station. For convenience we
 

have constructed nonlinear steady state (or static) equations and small
 

perturbation (linear) dynamic equations about the steady state equilibrium.
 

The latter are required for stability analysis.
 

STEADY STATE
 

° 
v0 [M w +KVV + KVve ] +w0 K QY 

° 
" + W° I[KVw + KWW9] + vK Qz 

PERTURBATION 

u v - vEr[M + KV rv0 + * [bil 0o + v 

+ v [M' + K".+ K'] + w N + M V 
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v + Kww [M +Kw Vw wa °] +w[Kww @w] 

+KvwE w . 

AERODYNAMIC FORCES 

STEADY STATE 

QyQ = 
ac 
-tO 
2 

v 
in 

AXev 
A'O 

2 Av 
- v.AV+ 

in 

do 

a 

s x 
Gd02Ax-r 

0 

S - {-2 A + Q vin 

PERTURBATION
 
S - [Q[A" - 2v. AWV] + v 9in + 2 Axwv]j 

2 in -aQZ a EOAw A w ]+t0v AXW +22- ] 

9L *P-#*A' +[vin AvW- 2 0A xv 

The several inertial, stiffness and aerodynamic coefficient are given
 

below. *v, 4w are the lag and flap mode shapes assumed in the Rayleigh-


Ritz analysis. Note that the mode shapes are dimensionless; however,
 

dr
 

MASS
 

R 
Mw = -M m 2 dr 

R
'. 2


0 

= m f dr 
M =o 

= d 

40 =20 Pp m v w dr 

66 



MUVV = oj'R2 mr w dr
 

Mu v * v 20 v= 20 j R m CUW v dr 

KV* v = J'R C (Mi )2 dr 

KVi, = ,R cmv (47)2 dr 
o 

where
 

m u w@C = 20 m *4 dlm _ r () dq, cUVv = r dl 

w 
Note that KVi v = -M u v - v , M = -C? Mw3 Mw'= _02 M

STIFFNESS
 

KVV =yR 0mx (*,)2 dr
 

KIw = ?R (4/) dir
 

Cmx = 02SR ml d
 

KVVe jR [EI , cos 2 O + EI/ sin2 e] (")2 dr
0 z y 

wwK = R [EI, sin2 a +EI cos2 8] ("')2 dr
0zy w 

Kv we = Kw vI = R 0z -EI,] y sin2 2e W/(v 4'')w dr[EI z , 

G is the rotation of the blade and in general7consists of a constant part 

e and a linear twist e1 such that 
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In general, there would be a segment of the blade/hub which is inboard
 

of the blade pitch bearing and does not rotate with pitch. It- is
 

considered that this segment of the blade/hub system extends from the
 

hub to a radius rh and the stiffness characteristics of this segment
 

are denoted by the subscript h. The outboard segment rotates with pitch
 

and is denoted by the subscript b. In this case, therefore the stiffness
 

coefficients are
 
•rh
 

KVve 
 f= EI , (411)2 dr + 1 R (EII cos
2 0 + EI, sin 2 0)(4v1)2 dr0 zh vr h Zb yb V 

Kw8 r )2 dr + cos drl~h Eli, fR (EI , sin 2 0 + El / 2 0)('') 2 
h rh zb Yb w
 

KVW =fR (EI, - EI sin 20 * ") dr 

rh zb Yb 2 v di 

AERODYNAMIC
 

Axev = fo r dr 

=dr
 

~dr 

AXxWV= f r 2  dr 

Ax 
 = f r dr A 6 
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Aw =-- Ro*W v dr =Av 

AeWvv =fR e 4 2 Jr
 

A =ir*io dr 

If the same mode shapes are used for flap and lag deflections (4 = w = 

the following relationships hold among the coefficients: 

NMVV =MWW =-'_22 W'V =-_ 2 N' 

KV v = KVfw _ UV-rv = uww 

V-v Vw
 
K =K
 
KVv  KV= 

2DPC i 

Definenoting that (-)' indicates a derivative with respect to x: 

x 1
 

xx
 

M x) 2xf0 vdxd
 

cU (x) - -1) ( )22 d 

K {1
 

KD = xE ") 2 dx
 

1)=f (9
 

KX (XI) =SfXx 2 (V) 2 adX
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If a segmented blade is considered with constant properties within each
 

segment the several coefficients may be expressed more explicitly as given
 

below.
 

m(l) = running mass of segment locazed between 0 and x1 .
 

m(2) = running mass of segment located between x, and x 2 . 

EI(l) = stiffness of segment located between 0 and x1 .
 

EI(2) = stiffness of segment located between x, and x 2 .
 

e (1) = pitch of segment located between 0 and x1 .
o 

e (2) = pitch of segment located between x, and x2 . 

01 = linear twist
 

The tip of the blade is located at x. = 1.
 

( l ) ( 2 ) Mvv = m M (xj) + m [M (x,)-M x) 

+ ... + m (N) EM (xN ) - (XN-Jl 

eMl W=' PC 02 R2 M. (x-J) 

(2 )+ M[ [ (X2) - F (x) 

+ M(N ) [w (xN ) - W (xiUl) 
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-=nQ*VMvvvxL) 

+ m(2) [Wu m (x2) - jUvv (xl)] 

+ m(N) [uvt- (Xv) -&Uvv,- ] 

STIFFNESS COEFFICIENTS
 

3K+-----R s a() K (x 1 ) - [sin 2 0() 61 

ea )[sin
+ {sn (1 2 0] (x,)j 

+ cos (N) 

- [sin 2 61(N)]e [F$C (XN) - KX (XN~)]} 

+E {sins 6 (N)wSN)~-K (xr-j] 

+ [sin 2 0 ( (N)]N 61 [1x (ZN) (_)]} 
ERs 1Q 0 (1) (N 

K =~e(o sinin O(N'] (xO 2 61 (xi 

EI(') {cs ( T 

)
+ eCos6 (si) - [sin 2 60)] a1 
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K =K 

[EI T)z - 'I ( )y (sin 20 x)+2e o ( ) i? (x0 
2R3 

0 0 

KVv Q N - 7N-,) +m(N-l) [x -± - 7N-2] 

M( l) xIK "+ [xi)2 


M( ) 2((x)
 

+ [m(N) [ 2 Y-1 ] + 

- (2)1][K (x2 - x (x 

± t... 711...4 

m(N) [D (N) _V (xN-)] 

N)n 
 x
2M( kxx (XN)_- _ Dxx (X_, _ 

The various functions of mode shape are shown graphically in Figures A-i
 

through A-7 for a Duncan Polynomial mode shape
 

2 x- 4 xS + 1 X4 

3 3 

The aerodynamic terms are as follows for this mqde shape.
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AERODYNAMIC COEFFICIENTS
 

Av = .4R
 

Ax = .289R2 

Ax x v  = .225R 3 

Aw v 
 = .256R
 

Axwv  
 .206R2
 

A = 
oo .206R? 01 + .256 R?00
 

Ax t w v  R2
.172R 2 0+ .206 8 o 

vAx O = .225R2 61 + .289R' 0 
0 

A = .185R3 01 + .225R3 0 

The blade has a constant pitch 0 and a linear twist represented by a,. 

To place these flexible blade equations in a form which can be conveniently
 

compared to the rigid blade equations, the displacements are nondimensionalized
 

by the rotor radius and each of the equations is multiplied by (I -)
 

where I, is the flapping moment of inertia of the blade, 1 = R mr dr. 

The time is nondimensionalized by the rotor RPM, 0, such that 

0 0
 
-0 V -0 W
V = R , =­

v = -R' w = - ­
-" V ._*
 

v. =--, T
O2 R O2 R 

The equations become, where the primes indicate derivatives of the mode
 

shapes with respect to the dimensionless distance x,
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__ 

6R2Mj W\ /(2 KVV\ '(R 2 K oiC+ i / R K0 3Q 
0 pac 2 

t R__ 5 QZ(Mew + -0 (p 2 KVW 02i5 2, 

-+R' Kww )
24. 0 2/ I 02 1., n2 / x102 (Pa!c OR 2) 

/ uvtv 2 
u M uw w -o-_RM E3KV~I -o -o IR R_ 

V \ + I V + .. W + 
11I 11 I~0 / 

+ +__ + +)(
 

,II0 InO F I1 / 
r e ]2 V ) R 

4(VR 2M j 

jj /21, I 1 . +pae
(+ 2 v) E Q2)-R
 

0_ W]__ +(a
K__ 
QQ P02)+~-In )+ (PMw 

The dimensionless terms appearing in the above equations are denoted by 

small letters and 1 = mR 

-v
m R2 
2
 

1Ti0
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~2 MWF ff *2d 

Ii f axd 

m - - - -i 

11 f Tax 2 x 

- w v R2M 2 PJ0' v4 dx 
m -- i _ - _ _ _ _ _ 

11j0 2i . dx 

xw R#W f x ax 

110 ff x 2 dx 

in~ _ f 1_ Fn_ _ _ _ _ _ 

v - T1 0 iix * dx 

where 

in ­

110v 5iax ax 

VC-v RaHKV W fl c~Q 2 dX 

2~Iif ~x axT 
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R3 KV do w dx.kV = 

2

110 x dx 

and 

vk = -m u v ' v 

The aerodynamic terms are, denoting by small a's the dimensionless form
 

of the A's times 4,
 

x8v = 4Ax v x
R 2a =4fox6 dx 

vin
 
and X = - OR 

v v8Q - x ? 2 + Cdo XXV]
 
a
 

pac R3 Q 2 

0
 

8 QZ - [-ax x )w - Xaa ]
 

pac R s 02 

____•8Q - [ (a +2 X a )+t (-X a8w Cdo+2-a X)] 
3 2 a pac R n 

8Qz -w ax v + (- aT 2 axevw) 

pac R3 02 

The stiffness terms are
 

E2
k~~v f;)dX 1)" 2 


x s
II D2 f TH dx 

k=R w 0
2Vw_ KVW Jclx(4 1)2 dx 

1, 02 f l x2 dx 
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1 

cm = FnT 1l 
e
x
 

2
kVV = (ElCos2 + EIy sin2 0)(*vt)2 d-xK =1 


1 = 

KR 1 (Ez sin 2 + Ey COS 2)(w1)2wwO _ 2
k -K - __ 0 (El sin 0 E 

kVW_)sin 2 , l)dx
 

R2 
KvW8 -I SO (EIz'- E y 2 v w,

-

R3110c2 Q' fi EX 2 dx 

The equations become, using this notation, -

Steady State Equations
 

vvv -v o vw6 o v xC do X v
 
(in+k'v + V- k + 2 -Cd
kk) = (a a _ a
 

xw kww OoWea -0 = Y X xw 

in +(k+ '-+ v -(a +Xa)Owi k 

Perturbation Equations
 

W(m u w _+ + mv ) +v (m + k + kv)
 

+ " e..w Cdo Xwv) 

vw  v x w v v+k - = (-* (a e + 2Xaw ) + v (+Xa -2 -a
8 a 

gw ) + V (k )v(Min + kv 0+ (kVW +k 


xwv 
+i m + ' (+Xaw+ 2 a: lw )
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Dividing the perturbation equations by the coefficients of the
 

acceleration terms and collecting terms on the left hand side.
 

)
 . - m + kV + kv e 

Cd--- -(a (a )V + -- V 
""o a.xw GV 


(2_ 
M
 a m (m + k 

m m m 
-+ ( a' + + y+ =w ) + 0
 

V 
 k2k 0
For zero precone,*w 6 
+ kk 


www
 

m = 0
 

11r
 
m = 0
 

and defining the dimensionless uncoupled frequencies as,
 

q 0
 

m
 

wY Vv kWv

2 X+ ++k 

the coefficients of the Corioliss te as,
 

m
 
o V 

14WV 

kw
o 

m
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and the elastic coupling terms as
 

vv kWe 

m 

=, i~w
 
m 

the equations are
 

' a __0 v + qwv 

m m
 

wv\
y x~wv+±w ( + (a +2X a +)+crw= 0 

m m m 

If the mode shapes are assumed to be the same for both deflections then,
 

,m = m
 

w w C =-dW= C
0 0
 

= CrC, =C 

and defining
 

ii ii
-2ii a a 
a = =-­

vv w 
m m 

the equations are, recalling that X is the inflow angle at the blade tip,
 

a e 

° ~ vq aA 2 

""o -- lxw 

v+ (2
8 a 

+ w (-%0 ~+ Yg (-ev+ 2X + C =0 
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0 w + ax w + P27+ v w+ 2 ' vw)+ C, V 

8 0o~
 

Now these equations are in a form which may be compared with the rigid blade
 

equations. If a rigid blade model is employed, then the spring constants for
 

the rigid blade model are identified in such a way that the parallel spring
 

model gives identical coefficients to the stiffness terms represented by
 

p2. q2 and C as well as in the calculation of the coning angle V0 The
 

significance of these changes is considered elsewhere in this report.
 

The steady state equations are
 

/ Co
 
p 0 -o0 Y 2 

-, a +-a 

p 2 70 + C, 0 Y ( w + ~Xw)a 

The rigid blade terms can be obtained by substitution of 4 = x in 

the expressions given above. 
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TABLE I 

COMPARISON OF 

COEFFICIENTS IN FLAP-LAG EQUATIONS FOR RIGID BLADE 

AND DUNCAN POLYNOMIAL MODE SHAPE. UNIFORM MASS DISTRIBUTION 

Aerodynamic Terms
 

-
-vxw = 2x x 

a 1.333 0 + 0 1 1.156 0 + .900 I 
a + 

av 1.600 

axxv 1.00 .900 

a i.oo00 + .80 go 00 + .738 01o o 

a 1.333 1.156
 

xowv .2 67e
 
a 1.00 o0 + .800 .824 00o + .6870
 

S awv 1.333 1.028
 

"O 1.333 0 + 1.00 01 1.28 0 + .824 


a 1.000 .824
 

Mass Terms (uniform mass blade) 

4v = w x tv = w =2x2 - x3 +x 

m -1 -. 770 

vV1 
m .770 

m w 2PcC1.542 0PC 
mxw opc .867 Opc 

-m 2 1.625 
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Stiffness (uniform stiffness blade) 

4 =4=x 4=4 =42 x3+ Ix4 
v w v = w 3 3x-x+ 

kVv 2 1.625 

kV - 2 1.625 

kvv= kVT 1 9C4 
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