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SOME DYNAMIC PROBLEMS OF ROTATING WINDMILL SYSTEMS*

John Dugundji
Massachusetts Institute of Technology

SUMMARY

The basic whirl stability of a rotating windmill on a flexible tower is
ceviewed. Effects of unbalance, gravity force, gyroscopic moments, and aero-
lynamics are discussed. Some experimental results on a small model windmill
are given.

INTRODUCTION

There has been a renewed interest in the use of large windmills for
zenerating power. Such large, rotating structures mounted on tall flexible
towers may give rise to significant vibration and fatigue problems. A good
leal of the experience and knowledge gained during the last few years in con-
1ection with helicopter rotors and tilt-wing proprotors can be applied to such
large windmill systems. However, there are unique features of windmills and
their operating environment that will have to be explored individually.

A basic description of general rotating machinery problems can be found in
den Hartog's book, (ref. 1). Loewy (ref. 2) presents a good review of rotary
7ing dynamic and aeroelastic problems., More recently, a NASA special publica-
tion (ref. 3) gives a good sampling of current problems dealing with rotor
lynamics. References 4, 5, 6 are typical of recent investigations of problems
>f large windmill systems. The present article will first review some dynamic
sroblems of a rotating windmill on a flexible tower, then present some pre-
liminary experimental results on a small windmill model.

REVIEW OF THEORY

Figure 1 shows the model used for representing a windmill rotor mounted on
a flexible tower. There is an absolute axis system x, y, z fixed in space,
and also an axis system xXg, yg Zg along the windmill shaft and having xg lie
in the vertical plane (plane of xz). The ith blade rotates about the axis zg
#ith a constant speed {I, and can lag an angle ¢; in x ygplane and flap an angle
3i perpendicular to xXgyg plane. Any point, ‘£, on the blade can be expressed
relative to the shaft axes xg, yg, z_ as
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x, = e cos wi + & cos (wi + ¢i) cos Bi
y, = e sin wi + £ sin (wi + ¢i) cos Bi
z, = & sin By | (1)

In the above, i represents the angular position of the ith blade and e is, the
hinge off-set. The origin of the shaft axis is assumed to translate fore-and-
aft a distance qp and laterally a distance qp. Associated with these deflec-—
tions are an angular rotation Opqp about the yg axis, another possible rota-
tion Opqp, about the xg axis, and a vertical deflection hyqp in the x direction.
The coefficients GF, 01,5 h;, can be obtained from the vibration modes of the
tower (often, hy ® -h p). The shaft axes can be located relative to the fixed
axes by performing a rigid body rotation about the y, axis and about the x

s
axis respectively. This gives the relation

X [ cos quF sin quF sin eLqL ~sin quF cos GLqL_T X
y = cos BLqL - sin eLqL Vg (2)
z sin quF -cos quF sin GLqL - cos QFqF cos eLqL z

Using the small angle approximation, sin Opqy ® Opqp, cos Opqp ® 1 - q /2 ete,

in equation (2) and combining with equation (1) and the appropriate de?lectlons
gives,

X = thF + (1 - quF/Z)x + quF GLqL Vg quF z
y = q + (- BLqL/Z)y + 89 z | (3)
z = + Opap xs - Oq vy, + Q- FqF/Z - 9 L9 /2) zg

9

where x5, yg, 25 are given by equation (1). The velocity components X, ¥, 2
are obtained from equations (3) by differentiation with respect to time t.
Then, by forming the kinetic energy of the blades and tower, and placing into
Lagrange's equations, one can obtain the equations of motion of the windmill
system. To simplify the lengthy algebra involved, it was assumed the hinge
offset e = 0, and only those terms leading to linear terms in the final equa-
tions of motion were retained. The following standard mass integrals were de-
fined for the ith blade, : ‘ c

=J‘dm, | » Si ’= IE dm, Ii_ =‘r£2 dm (4)

In the development, a two-bladed rotor was assumed with slightly unequal
masses, such that M; = Mg + My/2 and My = Mg - My/2 where Mg was the average
mass and M, the unbalance in mass of the blades. Similar definitions were
made for the average and unbalance in moment Sg and S,;, and in moment of
inertia IB and Iy. The vertical gravity loads were put in by writing the
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incremental work as,

SW = j‘[fxéx + £ 0y + £,0v18 = 3q.80, (5)
where f = -mg, f = £, =0, 8q, represents Sqg, 8qp, 8B;,8¢; respectively,
and 8x, 8y, 8z are found by differentiating equation (3& A similar procedure
could be used for obtaining the aerodynamic forces acting on the blade. How-

ever there, it is convenient to relate the air forces perpendicular and paral-
lel to the blade axis &.

The final, linear equations of motion in terms of the six coordinates qF,
q1,s B]_’ 62’ ¢1, ¢2 are,

’ 2 ‘ R
[MTF + ZMB(l + hv) + ZSFSu cos wl + GA (1 + cos le)]qF - GF[Su sin wl
. .o 2 , .
+ GFIB sin Zwl]ZQqF QF 8, cos wl 9 qp * chF + quF - OL[Su sin wl
" . , 2
+ GFIB sin 21l)1]qL - SL[Su ?os wl + eFIB(l + cos 2w1)]ZQqL + eLSu sin wlﬂ q

{ o ‘ 2 i ] -
+ Z(Si + eFIi cos wi)Bi + ZGFIi cos wiﬂ Bi - Z(hvSi sin wi)¢i

s ¢ . 2 _ 2
ZhVSi cos wi ZQéi + ZhvSi sin wiﬂ ¢i = hVSuQ cos wl + g[~hv2MB

2 ) ¢
+ QF Su cos wl dp _'eFeL Su sin wl qy. + ZeriBiJ +'QFA (6)

GL[Su sin wl + eFIB sin Zwl]qF + B GF B(1 cos Zwl)ZQqF + [MTL + 2MB
02t (1 L , < . »
+ QLIB(l °¢S”2w1)]qL + eLIB sin. 2wl ZQqL + e + quL - ZGLIi sin wiBi

i , 2 ‘Vt _ _ 2
f ZGLIi SIn,wiQ Bi +»ZS cos w ¢ ZSi sin wi 29¢i ZSi cos wiﬂ ¢i

2 .
S Q sin wl 6 s, sin wqu +Qp, @)

[Si + eFIi cos wi]qF - QFIi sin wi ZSZqF - QLIi sin wi q; —-GLIi cos wi ZQqL

-.. , 2 . . N
+ IiBi + IiQ Bi + cBBiv+ kBBi = g[erin + Si cos wiBi] + QﬁiA (8)
. i=1,2
- hVSi sinwin + Si cos wiqL + Ii¢i + c¢¢i +\k¢¢i = g[Si sin wi
k8, cos xpicbi] + Q(b-iA , f - 1.2 (9)

n the above equatioens, the k,q, and cnqn terms represent structural stiffness
nd damping, the g terms represent the effect of gravity loads, and the Q

erms represent the aerodynamic forces. The Myr and Myj, are the generalized
ower masses corresponding to qy and qj respectively.
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Some of the gravity loads act as stiffness terms in the equations. The blade
coordinates Y = it and Yy = Y7 + m. For the two-bladed case, it is sometimes
convenient to introduce the symmetric and antisymmetric blade wvariables,

B, = B+ B)N/2, B, = (B -B)/2, ¢, = etc (10)
to lessen the coupling between the degrees of freedom. 1Indeed, for a com-
pletely balanced rotor without gravity effects, the ¢g would be uncoupled from
the other equations. In general though, all six coordinates are involved.

Equations (6) to (9) are a linear set of equations with periodic co-
efficients, subjected to gravity, rotor unbalance S, and aerodynamic wind
forcing functions. The gravity loads act directly on the blades while the un~
balance loads shake the tower which in turn couples into the blades. In addi-
tion to forced response, the homogeneous equations themselves may have strong
instabilities present. These are generally investigated by the use of Floquet
theory for these periodic coefficient equations. It should also be mentioned
that for a three or more bladed rotor, the analysis is generally easier since
one can eliminate the periodic coefficients by a suitable transformation of
coordinates (at least for the balanced rotor, without gravity effects). See
for example reference 7.

Various investigators have examined different subcases of equations (6) to
(9). Coleman and Feingold (ref. 8) first looked at the case qp = 0, By = 0,
6, = 0, with no gravity, unbalance, or aerodynamics present. Stroeng mechanical
instabilities of a whirling nature were found to be possible at certain rota-
tional speeds; involving coupling of lateral motion qj, with lag angle ¢,.
This is the so-called '"ground resonance" helicopter phenomenon. Reed (ref. 9)
looked at the case f; = 0, ¢; = O with aerodynamics present. Again, strong
instabilities were found involving qj and the vertlcal thF coupling through
the mechanlcal and aerodynamic gyroscopic forces (QqF, QqL terms). This is the
so-called "propellor whirl" flutter. Young and Lytwyn (ref. 10) looked at the
case ¢; = O with aerodynamics present. This is essentially "propeller whirl"
with flapping. Johnson (ref. 11) has looked in detail at the whole coupled
system, but without gravity and unbalance effects in connection with his studies
of proprotors. Equations very similar to the ones here are presented there.
Finally, it should be mentioned there is a whole series of detailed investiga-
tions of rotors attached to fixed hubs (qp = 0, qp, = 0) which emphasize the
aerodynamic interaction between blade flapping, lagging, pitching and nonlinear
dynamic effects brought on by large initial coning angles for the blades. See
for example, references 4, 5, and 6.

EXPERTMENT

Some preliminary tests were run on a small .915 m (3.0 ft) diameter wind-
mill placed in a wind tunnel. The general layout is shown in figure 2. The
windmill had generally 2 blades, cantilevered in both the flap and lag direc-
tions. The approximately uniform, untwisted blades had a .0762 m(3 in) chord,
and could be set at any incidence angle. TFor a few runs, 4 blades were
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attached to the windmill.

The weight of a typical blade was .175 kg (.386 1bs). The cantilever
natural frequencies of the non-rotating blades were measured as 33, 93, 172,
and 310 Hz for the 1St flap bending, 1St lag bending, 284 flap bending, and
1St torsion modes respectively. These were corrected for rotational effects in
the standard manner, wﬁ = wﬁR + 12, to give the rotating natural frequencies
shown in figure 3. The tower stand had natural frequencies of 8.8, 16, 25 and
/5 Hz for the lateral yawing, vertical pitching, lateral translation and verti-
cal translation modes respectively. The windmill was instrumented to measure
flap and lag bending moments at the blade root, and also lateral and vertical
accelerations of the tower near the front bearing.

The wind tunnel was run to about 18 m/sec (59.1 ft/sec), and after taking
lata on windmill performance, the wind was turned off and the windmill would
coast down to zero rotational speed. This gave a continuous frequency record
through all the resonances of the system. Figures 4, 5, and 6 show the
neasured bending moments and accelerations from such sweeps for a blade setting
angle 0 = 0°. Many superharmonic resonances can be seen for the flap and lag
>ending moments. These occur near integer orders of the rotation frequency as
can be seen from figure 3. Particularly strong vibrations occured at 2 per
tevolution for both flap and lag. Indeed, lag moments near 10 times the static
3ravity moments are present at 50 Hz. The corresponding accelerations show a
strong lateral resonance near 24 Hz. In these tests there was a small static
mbalance due to unequal blade weights. Subsequent tests with another set of
>lades having a greater unbalance showed the same vibration patterns, but
vith peak amplitudes increased more than double. Also, tests run with four
>lades on the rotor showed similar strong resonances at 2 peér revélution. The
strong resonances in figures 4 to 6 seem then to have been caused by the
cotating unbalance of the blade exciting tower stand frequencies which in turn

:xcite blade frequencies superharmonically. Further details of these tests
:an be found in reference 12. |

CONCLUSTIONS

A brief review of some of the dynamic problems associated with large
cotating windmills has been given, together with some preliminary experimental
results. The importance of flexible towers and their interaction with the
rotating blade dynamics has been discussed. Although much work has already
een done in this area, many interegting dynamic problems remain to be re-
solved, particularly those involving rotors with built-in coning angles where
onlinear dynamics must be considered.
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LOOKING DOWNSTREAM SIDE VIEW

Figure 1l.- Analytic model for windmill-tower systems.
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Figure 2.- Experimental layout of windmill assembly.
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Figure 3,- Rotating natural frequencies of blades.
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Figure 4.- Flap bending moment vibrationms.



LAG BENDING MOMENT

AMPLIDUTE,

(N-m)

o0 Hz

ROTATION VELOCITY, ft (Hz)

Figure 5.- Lag bending moment vibrations.
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Figure 6.~ Vertical and lateral tower accelerations.
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