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SUMMARY 

The endochronic theory of p l a s t i c i t y  or ig ina ted  by Valanis has  been 
applied t o  study t h e  a x i a l l y  symmetric motion of c i r c u l a r  c y l i n d r i c a l  t h i c k  
s h e l l s  subjected t o  an  a r b i t r a r y  pressure  t r a n s i e n t  applied a t  i t s  inner  
surface.  
The governing equations are then solved by means of t h e  n e a r c h a r a c t e r i s t i c s  
method. 

The c o n s t i t u t i v e  equations f o r  t h e  t h i c k  s h e l l s  have been obtained. 

INTRODUCTION 

The problem of dynamic p l a s t i c  response of s h e l l s  has received consider- 
Most 0% t h e  published works are based on t h e  a b l e  a t t e n t i o n  i n  recent  years.  

flow theory of p l a s t i c i t y  and usua l ly  l imi ted  t o  i s o t r o p i c  l i n e a r  work- 
hardening materials. 
of an i n i t i a l  y i e ld  su r face  coupled with an assumed hardening r u l e  t o  obta in  
subsequent y i e l d  sur faces ;  an ex tens ive  bookkeeping is  necessary t o  trace t h e  
evolution of t h e  y i e ld  su r face  which changes as deformation progresses.  The 
ana lys i s  of i n e l a s t i c  responses of t h e  bodies i s  the re fo re  complicated by pa th  
dependence and t h e  y i e l d  condition, which introduces d i f f e r e n t  governing 
equations i n  the  d i s t i n c t  regions - elastic and i n e l a s t i c .  Valanis (ref. 1) 
presented a new theory of p l a s t i c i t y  termed endochronic theory, which com- 
p l e t e l y  abandoned t h e  concept of a y i e l d  sur face  and i t s  subsequent hardening 
ru le .  

Theore t ica l ly ,  t h e  flow theory is based on t h e  ex is tence  

The endochronic theory of p l a s t i c i t y  is  based on thermodynamic theory of 
i n t e r n a l  v a r i a b l e s  and conforms t o  experimentally observed material behavior. 
The b a s i s  of t h e  endochronic theory i s  the  assumption t h a t  t h e  cu r ren t  state 
of stress is a func t iona l  of t he  entire h i s to ry  of defoymation. The inf luence  
of p a s t  deformation on t h e  cu r ren t  stress is measured i n  terms of a mono- 
t o n i c a l l y  increasing time scale of strain-defined ( r e f .  1 )  o r  stress-defined 
( r e f .  2) endochronic time. This theory has been applied t o  g i v e  a n a l y t i c  pre- 
d i c t i o n s  f o r  t h e  quas i - s t a t i c  mechanical response of engineering materials 
(metall ic ( r e f .  3) and non-metallic ( r e f .  4 ) ) ,  the dynamic response of a 
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thin-walled tube  subjected t o  a combined long i tud ina l  and t o r s i o n a l  s t e p  
loading ( r e f s .  5,6), and t h e  dynamic p l a s t i c  response of c i r c u l a r  c y l i n d r i c a l  
t h i n  s h e l l s  ( r e f s .  7,  8 ) .  It has been shown t h a t  t h e  theory does indeed have 
t h e  c a p a b i l i t y  of explaining t h e  observed phenomena q u a n t i t a t i v e l y  with 
s u f f i c i e n t  accuracy. 

In  t h i s  paper, t h e  endochronic theory is applied t o  t h i c k  ax ia l ly -  
symmetric c y l i n d r i c a l  s h e l l  subjected t o  dynamic loading. 
t i o n s  are then solved by t h e  method of nea rcha rac t e r i s t i c s .  

The governing equa- 

FORMULATION OF THE PROBLEM 

Consider 
thickness H. 
states are 

c T =  
% 

E =  
'L 

a c i r c u l a r  c y l i n d r i c a l  t h i c k  s h e l l  with mean r ad ius  R and 
For t h e  axisymmetric motion of s h e l l ,  t h e  stress and s t r a i n  

0 

20 -0 -5 B x r  

where g, is t h e  Cauchy stress tensor ,  E, is s m a l l  s t r a i n  tensor ,  and E are 
t h e  d e v i a t o r i c  stress and s t r a i n  tensors ,  respec t ive ly ,  and subsc r ip t s  x, r ,  
8 refer t o  t h e  components i n  longi tudina l ,  r a d i a l ,  and c i rcumferent ia l  
d i r ec t ions ,  respec t ive ly ,  L e t  U and W denote t h e  displacements i n  t h e  a x i a l  
and r a d i a l  d i r e c t i o n s  r e spec t ive ly  a t  t l m e  t of t h e  c ros s  s e c t i o n  a d i s t ance  
x from a re ference  sec t ion ,  and u and w are t h e  correspohding ve loc i ty  
components. The equation of motion i n  t h e  x and r d i r e c t i o n s  have the  
following form: 

a 0  cT - a5x x r  au xr +-- p - =  - -  
ax ar a t  R (3) 

aw 5 8 - 0  r - aar + - - p a t =  aoxr R 
ar ax 

where p i s  t h e  dens i ty .  
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The strain-displacement r e l a t i o n s  and t h e  corresponding compat ib i l i ty  con- 
d i t i o n s  are 

au 
x ax 

& = -  

W 
0 r  

& = -  

aEx au 
a t  ax 
- -  - -  

w - = -  a t  r 

(5) 

For i s o t r o p i c  material under isothermal condi t ion  with t h e  assumption of 
elastic hydros t a t i c  response, t h e  c o n s t i t u t i v e  equations i n  t h e  endochronic 
theory can be found from reference  1 as follows: 

dC2 = K 1 de kk de RE + K2deijdeij 

where a, B, K1, K2 are t h e  material parameters, 1-1 i s  shear modulus, K i s  bulk 
modulus, kk, RR,  and i j  are subsc r ip t s  denoting coordinates,  d< is  the  
endochronic t i m e  measure wi th  t h e  r e s t r i c t i o n  t h a t  K 1  -t- K2/.3 ,> 0, K2 1 0 ,  
and K 1  and K2 may not both be zero. 
i n  t h i s  problem, it  i s  poss ib le  t o  express t h e  t i m e  measure approximately as 

From the  d e f i n i t i o n  of s and i; considered 
% 

where 61 = Et/oo, E is  t h e  asymptotic s lope  of t h e  u n i a x i a l  s t r e s s - s t r a i n  
curve f o r  l a r g e  s t r a i n ,  oo is t h e  i n t e r c e p t  of this s lope  wi th  t h e  stress 
axis, and t h e  p o s i t i v e  s ign  holds f o r  s t r a i n i n g  while t h e  negative s i g n  is f o r  
uns t ra in ing  of dee. 
conditions (5) t o  (8) r e s u l t s  i n  t h e  following: 

t 

Using (12), and equations (9), (10) and t h e  compat ib i l i ty  

aoO. 

a t  a t  a t  - -  v - - v - -  aor E - =  au a 
ax 1 

ao aa 

a t  a t  a t  + - =  v -  2 aOr ' a  X -v - 
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"e au aw + - -  3 K - -  3 K - =  a + -  aOr 
ao 

at at at ax 
X - 

ar 3 

where 
a (20 -br-O ) 

- 1  1 x e w  
a l = + 2  1 + $ <  r 

r 
1 + BT 

W a = 3 K ;  3 

a 0  _ _  2xr w - 
a4 +1+$<r 

2 112 

a 1 = k+(%)2+(%)] $,a 

and E is elastic modulus, v is Poisson's ratio. Equations ( 3 ) ,  (4), and (13) 
to (16) are the fundamental equations of the problem considered here. 

NEARCHARACTERISTIC SOLUTION 

The governing equations presented in the previous section together with 
the auxiliary equations can now be written in matrix form as follows: 

[ A l { X l  = {B) 

where 
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and 

ao ao aoO ao x r  

The above set of equations is of hyperbolic type; the conventional 
bicharacteristic method would be very tedious for six dependent variables. 
Using the method of nearcharacteristics firstproposedby Sauer (ref. 9),we look 
for characteristic-like lines in the coordinate planes along which the solu- 
tion can be extended. (Sauer called these lines nearcharacteristics.) The 
formulation and numerical technique in the nearcharacteristics resembles the 
one-dimensional approach except that those partial derivatives which do not 
lie in the plane of interest are considered of zeroth order in that particular. 
calculation. 
interest, then those terms in [A] containing partial derivative in r-direction 
are combined with terms in {B) in equation (17). 
procedures as described in reference 8 for one-dimensional case, the near- 
characteristics in the x-t and r-t planes, respectively, are obtained as follows: 

For example, when the bicharacteristics in the x-t plane are of 

Now following the same 

dx = dr = 0 , O  (18) 

- -I=-= dx dr rt ,/- 
'D dt dt (l+v) (1-2v) p 

The nearcharacteristics obtained here indicate that there are two character- 
istic cones existing in the present analysis; one of them (eq. (19)) corre- 
sponds to the longitudinal wave propagation while the other (eq. (20)) 
corresponds to shear wave. They are right circular cones with their center 
lines perpendicular to the x-r plane as shown in figure 1. This is an expected 
result, because the governing equations have constant coefficients for the 
highest order terms. There are no convected terms appearing in the present 
analysis. The compatibility equations along the nearcharacteristics can be 
found in the same way as in the one-dimensional case. In the x-t plane, we 
have : 

do = + pC du + Cldx + C2dt X - D  

do = + pCsdw + C3dx + C dt xr - 4 

dx along - = CD dt 
dx along - dt - - 2 'S 

v do + C5dt along dx = 0 

dox + C6dt along dx = 0 

- - -  
I-v x 
V = -  doe 1 - v  



where 

S i m i l a r l y  

where 

aoxr xr 5----- R ar 

o - 

+2 1 + B C  r 

aor - 0 r - -  
c3 - R ar 

- 2 xr w c4 - T-- I + B <  r + 

o - o  

a 0  

C5 = 2 {E (v 4 1 - v  

C6 - - -2- {E (; + 
2 1 - v  

a [ (l+v)o +(1-2v)or-(2-v)o 

r 
1 X 

1 + B i  

i n  t h e  r-t plane,  w e  have: 

dor = 2 pCDdw + C7dr + Cgdt d r  
d t  - 2 ‘D a long - - 

d r  
d t  - 2 ‘ S  along - - = + pCSdu + C d r  + C d t  d‘xr - 9 10 

dOx I - v  r 

doe = E dor + C12dt 

V = -  do + Clldt a long d r  = 0 

a long  d r  = 0 V 

aaxr o - 0  - e r - -  
c7 - R ax 

0 a 0  - xr  xr 
c 9 - - - - -  R ax 

Cl0 = + ~ - 
a 0  

+ u  - 2 x r w  
1 + B c  r 

aw 
ax 
- 

a [(2-v)ox-(l+v)or-(1-2v)ag1 

r 
1 1 

1+6C 1 - v  
a [ (2v-1) ox- (l+v) or+( 2-v) o - 

C12 - 1 - v  2 {E (; + v e) i 4 1 + B C  r 
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Note t h a t  each set of t h e  above c h a r a c t e r i s t i c s  lies e n t i r e l y  i n  planes para l -  
l e l  t o  one of coordinate planes. Equations (21) t o  (28) have t h e  appearanceof 
a one-dimensional method of c h a r a c t e r i s t i c s  formulation except t h a t  they con- 
t a i n  t h e  p a r t i a l  d e r i v a t i v e  terms i n  t h e  o ther  coord ina te  d i r ec t ion .  The 
n e a r c h a r a c t e r i s t i c s  equation derived here  can be solved numerically by the  one- 
dimensional technique. Two independent so lu t ions  can b e  obtained, each corre- 
sponding t o  one of t h e  coordinate planes.  

NUMERICAL EXAMPLE 

Consider a c e n t r a l  segment of t h e  Clinch River Breeder Reactor steam gen- 
e r a t o r  flow shroud wi th  length  2% = 1.0668 m, mean r ad ius  0.47 m y  and thickness 
0.0127 m. The material is  2.25 C r - 1  Mo a t  756 K. The pressure  input  func t ion  
w a s  generated by t h e  hydrodynamics module ( r e f .  10 ) .  A constant volume, s t e p  
pressure  pu l se  of 13.79 MPa w a s  taken as t h e  source pressure  p a t  t h e  center .  
This is t y p i c a l  of t h e  maxima observed i n  l a rge  sodium-water r eac t ion  experi- 
ments during t h e  t r a n s i e n t  period. 
be  symmetric wi th  respec t  t o  t h e  mid-span, only half-length of t h e  s h e l l  needed 
t o  be considered here.  

Since the  pressure  loading w a s  supposed t o  

The boundary conditions f o r  t h e  example are shown i n  
f i g u r e  2. as follows : 

u = O  and a = O  a t x  

u = O  and w = O  a t x =  

CI = 0 and a = -p(x , t )  

x r  

xr I: 

= o  

R 
a t r = O  

CI = O  and a = O  a t r = H  x r  r J 
It has been shown i n  re ference  11 t h a t  t h e  two independent so lu t ions ,  each 
based on one coordinate plane, are numerically uns tab le  while a ca l cu la t ion  
method obtained by averaging t h e  above mentioned independent s o l u t i o n  y i e l d s  a 
s t a b l e  so lu t ion .  I n  v i e w  of equations (21), (22) and t h e  boundary conditions 
(29), i t  appears t h a t  t h e  n e a r c h a r a c t e r i s t i c s  equations i n  x-t p lane  are not  a 
proper choice a t  r = 0 and r = H because CIr are being prescribed there .  
f o r e  a combination technique is proposed here: 
r = H t h e  so lu t ions  are obtained from r-t plane n e a r c h a r a c t e r i s t i c s  equations 
while a t  o ther  po in t s  t h e  so lu t ions  are obtained from t h e  x-t plane. 
numerical r e s u l t s  here  show t h a t  t h i s  leads  t o  a s t a b l e  so lu t ion .  The advan- 
t a g e  of t h i s  technique over t h e  averaging method is  a tremendous saving i n  
computation time. The r e s u l t i n g  pressure  h i s to ry  a t  t h e  midspan (x = 0) of t he  
middle su r face  of t h e  s h e l l  is  ghown i n  f i g u r e  3. 
response of r a d i a l  displacement and v e l o c i t y  as a func t ion  of t i m e  f o r  t h e  same 
center  po in t  of t h e  s h e l l  is  a>so shown i n  t h e  f igu re .  
displacement p r o f i l e s  are shown f o r  several t i m e s .  

There- 
on t h e  boundaries r = 0 and 

The 

The r e s u l t a n t  dynamic 

I n  f i g u r e  4 ,  s h e l l  

CONCLUDING REMARKS 

The endochronic theory of p l a s t i c i t y  or ig ina ted  by Valanis has been ap- 
p l ied  t o  study t h e  a x i a l l y  symmetric motion of c i r c u l y r  c y l i n d r i c a l  t h i c k  
s h e l l s  subjected t o  an a r b i t r a r y  pressure  t r a n s i e n t  applied a t  i t s  inner  
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surface. The cons t i t u t ive  equations f o r  t h e  th ick  s h e l l s  have been obtained. 
The governing equations a r e  then solved by means of t h e  nearcharac te r i s t ics  
method. It has been shown that a s t a b l e  so lu t ion  can be obtained by t r ea t ing  
the  r a d i a l  boundaries i n  one coordinate plane while a t  other points  the  solu- 
t i ons  obtain from the  other coordinate plane. 
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Figure 2.- Boundary conditions. 
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Figure 3.- Radial displacement velocity, pressure history at x = 0. 
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Figure 4 . -  Radial displacement profiles. 
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