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SUMMARY

An equation describing the radial displacement in a k layered anisotropic
cylinder has been obtained. The cylinders are initially unstressed but are
subjected to either a time-dependent normal stress or a displacement at the
external boundaries of the laminate. The solution is obtained by utilizing
the Vodicka orthogonalization technique. Numerical examples are given to
illustrate the procedure.

INTRODUCTION

The problems associated with the vibrations of plates and shells have been
of concern to many investigators over the years. Most of these works for a
single layered homogeneous material are summarized in two monographs by lLeissa
(ref. 1,2) and the reader is referred there for further references, Since
composite materials have become popular due to their mechanical and thermal
properties, it has become necessary to study their behavior to determine their
unique characteristics before they can be used effectively. Recently Cobble
(ref. 3) and Dong and Nelson (ref. 4) considered the vibration problem in
laminated plates and the references contained in these papers summarize the
work in this area quite well. For works concerned with anisotropic and layered
cylinders, the book of Ambartsumyan (ref. 5) and Hearmon (ref. 6) and the
papers of Gulati and Essenburg (ref. 7), Stavsky and Smolash (ref, 8), Cheung
and Wu (ref. 9), and Nelson et al. (ref. 10) are representative.

In this paper, the radial vibrations of a layered anisotropic cylinder
are considered. The cylinders are solidly joined at their interfaces, are
initially unstressed, and can be subjected to either arbitrary time-dependent
normal stresses or displacements at the external boundaries of the system.
The solution is obtained by using a dependent variable transformation in the
displacement equation thereby obtaining a new partial differential equation
with homogeneous external boundary conditions; the Vodicka orthogonality
conditions are then applied to this new system to obtain the final solutlon.
The plane strain situation is considered for this analysis.,

To illustrate the efficient and straight-forward manner in which solutions
can be obtained with this method, numerical examples are given for a two-layered
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composite. Results are presented for the displacement, normal stress,
tangential stress, and axial stress components at two interior positions.
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SYMBOLS

constants, (eq. (1))
constants, (eq. (2))
Young's modulus for r, 0, and z directions, dyne/cm2
function of time, (eq. (5))

function of displacement and time, (eq. (10))
Bessel function of first kind of order Di
function of r, (eq. (4))

constants, (eq. (23))

radial coordinate, cm

time, seconds

radial displacement, cm

function of time, (eq. (11))

weighting function, (eq. (17))

eigenfunction

Bessel function of the second kind of order Di
eigenvalues, 1/sec

constant

Poisson's ratio

normal stress in r, 0, and z directions, dyne/cm2
functions of time, (eq. (2))

functions of r, (eq. (9))



PROBLEM

The partial differential equation describing the displacement uy for the
ith layer of a multilayered cylindrical composite whose material properties are
constant for each layer is given by

where

The boundary and initial conditions associated with equation (1) are:

a)

b)

c)

d)

e)

f)
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where

i
Ci11 = 3 (1-v293V533)
E..
_ 11
Ci1z = 5, (V15 * V31iY234)

The boundary and initial conditions given by equation (2) assume that either
the radial stresses or displacements are known at the external boundaries
and that the radial stresses and displacements are continuous at the interfaces.

To obtain homogeneous external boundary conditions, let

2
ui(r,t) = Ui(r,t) + jgl Lij (r)Fj (t) (3)
where
_ Di Di . _
Lij(r) = Aijr + Bij T, j=1,2 (4)
FJ(t) = ¢J (t): j=1’2 (5)
and
D2 '
V2L, . - =0 6
550 - 1y @ 6)

For a cylinder with r 0 (solid cylinder) and le}, Eq. (4) and (6) take the

1 4
following form for i = 1:
Llj(r) = Alj
and
D 2 -A,.D 2
V2L1. I Ll'(r) 5 I
J 12 ] 2

The functions Lij(r) satisfy the following boundary conditions:
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Substitution of equation (3) into equations (1) and (2) yields the following
partial differential equation with homogeneous external boundary conditions:
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e) Ui(r,O] =—j§1 Lij ('1') Fj (O) = \’)1(1‘)
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and where

2
1

H..(r,t) = — .Z. L..(x)F."(t 10

lJ( ) -2 §h 13()3() (10)
i

SOLUTION: Ui(r,t)

The problem has now been sufficiently simplified so that a series
solution for Uj(r,t) can be assumed where the orthogonality conditions developed
by Vodicka (ref. 11) can be utilized. Let

U () = ) u (00X (%) o

ri < r 5_ri+1, i=1,2,3,...,k,t >0

where the function u (t) is to be determined from the initial conditions and
the functions le(r) are eigenfunctions of the eigenvalue problem

Bi2 d dXim B12 Di2 2
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The solution of equation (12) is

81 [+
= _n o = -i
Xim(r) = AimJDi Bi rf + B.lmJ_Di Bi T s Di non-integer (14)
Otm Q.m ‘
Xim(r) = AimJDi ﬁz- Tl + BimYDi §;' T , Di = integer (18)

The eigenvalues, a , are found by substituting equations (14) or (15) into the
boundary conditions, (eq. (13)). The 2k linear homogeneous equations that
result from this substitution are then solved for the constants A and Bim
(ref. 12).

The orthogonality condition for the eigenfunctions is

K .
L1 f le T Xim(r) X, (r)dr = (const m = n) (16)
ry m#n
where
2 - 2 -
W, Ci11/B4 H (17)

The functions Li.(r) and Hi.(r,t) will satisfy Dirichlet's conditions so
they can be expanded in an infinite series of the eigenfunctions

Li; (@) = m§1 20 Xin ()5 3 = 1,2 (18)
and

B.2 Hij(r,t) = mgl [zijj"(t)] X, (1), ] - 1,2 (19)
where

z=1—-1§f i

mj N Z; rL (r) X (r) dr, j 1,2 (20)

1

and
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I.

i+l
10 f r [X, % (x)]dr (21)

|

nea =

N =,
m i

Substituting equations (11), (18), and (19) into equation (8), we obtain the
following relationship:

du 2
b B t) +a2u(t)+ L F )] X (o) =0 (22)
m=]1 dt2 m m j= 1 mj i im~™~

The initial conditions asssociated with equation (28) are obtained in the
following manner:

U (r0) = B u0) X (r) = () = - E e SFo(0) Xy (r)
and
3U; . »
5;—-(r,o) = i1 um'(o) Xim(r) = ¢2(r) “nE 1 2m3 J'(O) X (T)
Thus
2
a) um(o) = ;jél zmj Fj(o) =
2 (23)
b) um'(o) le lmJ j'(o) =q.

The solution of equation (22) subject to the initial conditions (eq. (23)) is

q 2 4,
= __Ill. 1 - __I_H_J_ " * 3
um(t) 5 Sin o t + p, cos amt .§1 5 F."(t) sin (amt) (24)

m J m

where the symbol * denotes convolution. Substitution of equation (24) into
equation (11) and that result into equation (3) gives the desired relationship’
for the radial displacement of the composite cylinders:

[

2
wy () = gB) L) Fo(0) + B u (6) X () (3)

where the functions Ljj(x), Fj (t), Xyp(r) and u (t) are given by equations (4),
(5), (14) or (15), and (24), respectlvely
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STRESS

The stress in the ith section of the composite is given by
E1 aui ui(r,t)
%ir 7, (1-v5ov93) 35 (1) + (Vg *+ Vzyvy0) — (25)
E, Bu; ui(r,t)
90 a; Vyp ¥ Vgoviz) gy (at) + (- gy ) = (26)
E v, E
5. = 12 3 (s és 3 Vig 27)
172 1 ir 2
EXAMPLE

Consider a two-layered composite with the following properties:

Layer 1
Py = 1.73 gm/cm3
v121 = v131 = 0.11
v211 = v311 = 0.16
a3y = Vzpp = 0.1
Ej, = 7-93x 105 newton/cm?
- - 6 2
E21 = E31 1.14 x 10° newton/cm

The above properties are typical of some of

CHQ) (ref. 13).
outer boundary of the cylinder.

Layer 2
3

Py = 1.75 gm/cm
V122 = v132 = 0.14
Vo12 = V312 = 018
v232 = v322 = (.22
E12 = 6.6 x 10° newton/cm2

= = 5 2
E22 E32 8.76 x 10° newton/cm

the more common graphites (ATJ and

Assume further that there is a normal stress applied at the

$,(t) = 6895 sin (10t) N/¢m2

and the physical dimensions are

T z

1 O; r

2

= 2.54 cm; r

3 = 5,08 cm
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Following the procedures outlined in the text, the radial displacement and the
radial and tangential stresses within the composite are obtained; values at
two positions are shown in Figures 1 through 3.

SUMMARY

A closed-form solution for the radial displacement in layered orthotropic
cylinders has been obtained. The solution can be programmed on a modern
computer which enables one to calculate natural frequencies, displacements and
stresses quite easily. The functions &p; and Ny can either be integrated
directly by hand or a numerical integration subroutine can be written to perform
the calculations.
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RADIAL DISPLACEMENT (u x 10°)
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Figure 2.- Radial stress compared to external excitation.
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Figure 3.- Tangential stresses within composite.
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