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SUMMARY 

An equation describing t h e  r a d i a l  displacement i n  a k layered an i so t rop ic  
cy l inder  has been obtained. The cy l inders  a r e  i n i t i a l l y  unstressed but are 
subjected t o  e i t h e r  a time-dependent normal s t r e s s  o r  a displacement a t  t h e  
ex terna l  boundaries of t h e  laminate. The so lu t ion  is  obtained by u t i l i z i n g  
t h e  Vodicka orthogonalization technique. 
i l l u s t r a t e  the  procedure. 

Numerical examples are given t o  

INTRODUCTION 

The problems assoc ia ted  with t h e  v ib ra t ions  of p l a t e s  and s h e l l s  have been 
of concern t o  many i n v e s t i g a t o r s  over t he  years.  Most of these works f o r  a 
s i n g l e  layered homogeneous material a r e  summarized i n  two monographs by Leissa 
( r e f .  1 , 2 )  and the  reader  i s  r e f e r r e d  t h e r e  f o r  f u r t h e r  re ferences ,  Since 
composite mater ia l s  have become popular due t o  t h e i r  mechanical and thermal 
p r o p e r t i e s ,  it has become necessary t o  study t h e i r  behavior t o  determine t h e i r  
unique c h a r a c t e r i s t i c s  before they can be used e f f e c t i v e l y .  
( r e f .  3)  and Dong and Nelson ( r e f .  4)  considered t h e  v ib ra t ion  prablem i n  
laminated p l a t e s  and t h e  re ferences  contained i n  These papers summarize t h e  
work i n  t h i s  a r e a  q u i t e  w e l l .  
cy l inders ,  t h e  book of Ambartsumyan ( r e f .  5) and Hearmon ( r e f .  6) and t h e  
papers of Gula t i  and Essenburg ( r e f .  7 ) ,  Stavsky and Smolash (ref. 8) ,  Cheung 
and Wu ( r e f .  9), and Nelson e t  a l .  (ref. 10) are r ep resen ta t ive .  

Recently Cobble 

For works concerned with an i so t rop ic  and layered 

In t h i s  paper, t h e  r a d i a l  v ib ra t ions  of  a layered an i so t rop ic  cy l inder  
are considered. The cy l inders  are s o l i d l y  joined a t  t h e i r  i n t e r f a c e s ,  are 
i n i t i a l l y  unstressed, and can be subjected t o  e i t h e r  a r b i t r a r y  time-dependent 
normal stresses o r  displacements a t  t he  ex te rna l  boundaries of  t h e  system. 
The so lu t ion  i s  obtained by using a dependent va r i ab le  transformation i n  t h e  
displacement equation thereby obta in ing  a new p a r t i a l  d i f f e r e n t i a l  equation 
with homogeneous ex te rna l  boundary conditions;  t h e  Vodicka or thogonal i ty  
conditions are then appl ied  t o  t h i s  new system t o  ob ta in  t h e  f i n a l  so lu t ion .  
The plane s t r a i n  s i t u a t i o n  i s  considered f o r  t h i s  ana lys i s .  

To i l l u s t r a t e  t h e  e f f i c i e n t  and s t ra ight - forward  manner i n  which so lu t ions  
can be obtained with t h i s  method, numerical examples are given f o r  a two-layered 
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composite. 
tangential stress, and axial stress components at two interior positions. 

Results are presented for the displacement, normal stress, 

SYMBOLS 

t 

v 

constants, (eq. (1)) 

constants, (eq. (2)) 

Young’s modulus for r, 8,  and z directions, dyne/cm 

function of time, (eq. (5) )  

function o f  displacement and time, (eq. (10)) 

Bessel function of first kind of order D 

function of  r, (eq. (4)) 

constants, (eq. (23)) 

radial coordinate, cm 

time, seconds 

radial displacement, cm 

function of time, (eq. (11)) 

weighting function, (eq. (17)) 

eigenfunct ion 

Bessel function of the second kind of order D 

eigenvalues, l/sec 

constant 

Poisson’s ratio 

2 

i 

i 

normal stress in r, 6, and z directions, dyne/cm 

functions of time, (eq. (2)) 

functions of r ,  (eq. (9)) 
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PROBLEM 

The p a r t i a l  d i f f e r e n t i a l  equation descr ib ing  t h e  displacement u f o r  t h e  i i t h  l aye r  of a multi layered c y l i n d r i c a l  composite whose material p rope r t i e s  are 
constant f o r  each l aye r  is given by 

( r , t >  (1) 
i a 2~ 

- ( r , t )  + - - (r,t) - - u i ( r , t )  = - - 
ar 

a 2u 

r2 B~~ a t 2  

i 1 i  Di2 1 au 

2 r ar 

where 

31iv13i 

32iv23i 

1 -v  

1-v 
E2 i 

Eli 
Di2 = - 

32iv23i 1-v 
2 Eli B = -  

’i ‘i i 

The boundary and i n i t i a l  conditions associated with equation (1) a r e :  

e )  u.  ( r ,o)  = 0 
1 
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where 

(1-v 32iv23i) 
- Eli - -  

‘ill A~ 

+ v  Eli 
(‘21i 31iv23i) ‘i12 A~ 

= -  

The boundary and initial conditions given by equation ( 2 )  assume that either 
the radial stresses o r  displacements are known at the external boundaries 
and that the radial stresses and displacements are continuous at the interfaces. 

To obtain homogeneous external boundary conditions, let 
3 
I 

u. (r,t) = U. (r,t) + g L. .(r)F.(t) ( 3 )  
1 1 j-1 1~ J 

where 

F.(t) = $.(t), j=1,2 
7. J 

and 
D . 2  

L.. (r) = 0 v~L.. (r) - - -i 
1 J  r2 1J 

(4) 

(5) 

For a cylinder with r 
following form for i = 1: 

= 0 (solid cylinder) and D1~l, Eq. (4) and ( 6 )  take the 1 

and 

-A D lj 1 L (r) = V2L - - D12 

Ij r2 1j r2 

The functions L (r) satisfy the following boundary conditions: ij 
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i+l j (ri+l) c) L.  .(r ) = L 
ij i+l 

Substitution of  equation ( 3 )  into equations (1) and (2) yields the following 
partial differential equation with homogeneous external boundary conditions: 

a2ui 
(r,t> (8) 

aui Di2 1 
U.(r,t) = -- (r,t) + Hij 

i 1 . a2u 
(r,t) + - - (r,t) - - 

r2 1 Bi2 at2 r ar ar2 

with 
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aui 2 
f) - ( r ,o )  = - C L . .  (r) F. ’ (O)  = q2(r) at j=l 13 J 

and where 

2 
.C  L . .  (r)F.”(t) H. .(r,t) = - 1 

13 ~~2 J=1 13 J 

SOLUTION: Ui(r,t) 

The problem has now been sufficiently simplified so that a series 
solution for Ui(r,t) can be assumed where the orthogonality conditions developed 
by Vodicka (ref. 11) can be utilized. Let 

W 
U. (r,t) = C um(t)Xim(r) 

r . <  r < r  i = 1,2,3, ..., k,t - > 0 
(11) 1 m= 1 

1 -  - i+ly 

where the function u (t) is to be determined from the initial conditions and 
the functions Xim (r)mare eigenfunctions of the eigenvalue problem 

Bi2 Di2 

r2 
Xim(r) + cxm2Xim(r) = o r dr 

with 

= o  dXkm Xkm(rk+l) 
b, ‘kll dr (‘k+l) + ‘k12 rk+l 
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The solution of equation (12) is 

The eigenvalues, a are found by substituting equations (14) o r  (15) into the 
boundary conditions, (eq. (13)). The 2k linear homogeneous equations that 
result from this substitution are then solved for the constants A 
(ref. 12). 

m y  
and Bim im 

The orthogonality condition for the eigenfunctions is 

where 

wi2 = Cill/Bi2 = Pi (17) 

The functions L . . ( r )  and H..(r,t) will satisfy Dirichlet’s conditions so 
13 13 they can be expanded in an infinite series of the eigenfunctions 

(18) 
co 

L.  .(r) = C k .X. (r) ,  j = 1,2 1 3  m=l m j  i m  

and 

where 

i51 Pi (r) Xim(r) dry j = 1,2 (20) 
k 1 = -  

mj Nm 

and 

1 r 
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Substituting equations (ll), (18), and (19) into equation (S), we obtain the 
following relationship: 

The initial conditions asssociated with equation (28) are obtained in the 
following manner : 

co co 
Ui(r,o) = mgl um(o) Xim(r) = $,(r) = - C R .F . (o)  Xim(r) m = l  mj J 

and 

Thus 

a) um(o) = 2 C R F.(o)  = p, 

2 

2 

j=l m j  j 

b) urn' (0) = -jzl Rmj F j  ' (0) = % 

The solution of equation (22) subject to the initial conditions (eq. (23))  is 

2 R  
(24) 

qm 
a m m j=1 a j 

um(t) = - sin a t + p, cos a t - .C F."(t) * sin (amt) 
m m 

where the symbol * denotes convolution. Substitution of equation (24) into 
equation (11) and that result into equation (3) gives the desired relationship 
for the radial displacement of the composite cylinders: 

2 2 
u. (r,t) = C L.. (r) F .  (t) + mfl um(t) Xim(r) (3) 
1 j=l IJ J 

where the functions Lij (r), F j  (t), Xjm(r) and u (t) are given by equations ( 4 ) ,  
(5), (14) o r  (lS), and (24),  respectively. m 
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STRESS 

The stress i n  t h e  ith sec t ion  of t h e  composite i s  given by 

V E  23 3 vie 

i z  ir E2 . 

EXAMPLE 

Consider a two-layered composite with t h e  following p rope r t i e s :  

Layer 1 Layer 2 

p1 = 1.73 gm/cm3 3 
p 2  = 1.75 gm/cm 

= 0.11 V = v  = 0.14 

= 0.18 = 0.16 V 

= 0.1 V = v  = 0.22 

122  132 

212 - v312 

232 322 

131 

311 

32 1 

= v  v121 
- = v  211 

231 

V 

= v  V 

= 6.6 x l o5  newton/cm2 2 = 7.93 x 105 newton/cm2 

- = 1.14 x lo6  newton/cm2 EZ2 - - E32 = 8.76 x 105 newton/cm* E21 - E31 

The above p rope r t i e s  are t y p i c a l  of some of  t he  more common g raph i t e s  (ATJ and 
CHQ) ( r e f .  13).  Assume f u r t h e r  t h a t  t h e r e  i s  a normal stress applied a t  t h e  
ou te r  boundary of t h e  cy l inder .  

$ 2 ( t )  = 6895 s i n  ( l o t )  N/cm2 

and t h e  phys ica l  dimensions are 

r = 0; r = 2.54 cm; r = 5.08 cm 1 2 3 
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Following the procedures outlined in the text, the radial displacement and the 
radial and tangential stresses within the composite are obtained; values at 
two positions are shown in Figures 1 through 3. 

SUMMARY 

A closed-form solution for the radial displacement in layered orthotropic 
cylinders has been obtained. 
computer which enables one t o  calculate natural frequencies, displacements and 
stresses quite easily. 
directly by hand o r  a numerical integration subroutine can be written to perform 
the calculations. 

The solution can be programmed on a modern 

The functions hj and Nm can either be integrated 
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Figure 1.- Radial displacement of composite. 
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Figure 2 . -  Radial stress compared to external excitation. 
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Figure 3 . -  Tangential stresses within composite. 
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