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OPTIMUM VIBRATING BEAMS WITH STRESS AND DEFLECTION CONSTRAINTS
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Virginia Polytechnic Institute and State University

SUMMARY

The fundamental frequency of wvibration of an Euler-Bernoulli or a Timo-
shenko beam of a specified constant volume is maximized subject to the con-
straint that under a prescribed loading the maximum stress or maximum deflec—
tion at any point along the beam axis will not exceed a specified value. In
contrast with the inequality constraint which controls the minimum cross-
section, the present inequality constraints lead to more meaningful designs.
The inequality constraint on stresses is as easily implemented as the minimum
cross-section constraint but the inequality constraint on deflection uses a
treatment which is an extension of the matrix partitioning technique of pre-
scribing displacements in finite-element analysis.

INTRODUCTION

The problem of maximizing the fundamental frequency of vibration of beams
of a fixed, prescribed volume and likewise its dual problem have been investi-
gated by a great many investigators (see reference 1). It appears that no
consensus has been reached however, on the existence of non-trivial solutions
for beams with certain types of boundary conditions. While the numerical
experiments do strongly emphasize the existence of such solutions (see refs.

2 and 3), mathematical proofs have been constructed (see ref. 4) to prove
otherwise. This situation is rather unique since more often than not it is
the dismal failure of the numerical techniques in obtaining a solution, which
is only presumed to exist, that calls upon mathematics to establish its exis-
tence or non-existence.

The difficulty stems from singularities which result from vanishing stiff-~
ness at some points along the beam axis. Although at such points the curvature
W,y @ssumes an infinite value,the products I(x)w,xx and I(X)W,%x are nonethe-
less finite at such points. Furthermore, the function I(x)w,%x is required to
be integrable over the length of the beam. Fallacies of the mathematical
proofs, if any, could well result from a failure to take proper account of
these properties for the functions I(x) and w(x).

Finite~element solutions of reference 3, which incidently emphasize
existence even in the absence of any inequality constraints appear to have
very limited practical value because the resulting designs are far from being
useful as load-carrying members. Controlling the minimum cross section of the
beam does not appear to be the answer. The optimized beam must sustain a given
loading, presumably the worst loading, without exceeding a prescribed level of
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stress or a prescribed value for the maximum deflection. 1In general, the
cross section with the least area is not necessarily the critical section in
terms of stress nor are the constraints on deflections met in a rational and
an expeditious manner simply by controlling the minimum cross—-sectional area
of the bean.

To generate more practical designs,it is deemed appropriate to require
that the optimum beam shall not (i) be stressed to more than a specified multi-
ple of the maximum stress or (ii) deflect more than a specified multiple of
the maximum deflection of the corresponding uniform beam of the same volume.
The present formulation allows the specification of an arbitrary vector of
stresses or of deflections, with those corresponding to the uniform beam case
being specializations of the arbitrarily specified vectors.

PROBLEM FORMULATION

The formulation is restricted to discretized finite-element models of
beams. Since the case of an Euler-Bernoulli beam can be obtained as a special -
case of a Timoshenko beam, the latter will be implied in the formulation.

The approach is exactly similar to the one used in ref. 3. It consists
of maximizing the minimum value of the Rayleigh quotient, w2, for a Timoshenko
beam subject to the equality and the inequality constraints. For a discreti-
zed finite-element model

w2 = [q1[K]{q} (1)
[q1M]{q}

where [K] and [M] are, respectively, the assembled stiffness and mass matrices
derived on the basis of a uniform cross-section beam element and {q} is the
mode shape of free vibration. In the case of a Timoshenko beam the stiffness
matrix accounts for the effects of shear deformations and the mass matrix
accounts for the effects of rotary inertia. Furthermore, for a general case,
the stiffness matrix may include the effect of a specified distribution of
axial loading and elastic foundation and likewise the mass matrix may include
the effects of a specified distribution of non-structural mass.

The optimization is to be carried out subject to the equality constraint
of a fixed, given total volume V which for a beam with elements each of
length %; and cross—sectional area A;, i=1,2...m,reduces to

m

T A L.=V

. i'i ()

i=1 )
The required relation between the cross—sectional area and the moment of inertia
is provided by a consideration of cross—sectional shapes for which

n v
I, = pAi 3
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p>0 and n being appropriate constants depending upon the type of cross section.

Stress Constraint

g

It is required that for a beam satisfying egs. (1) through (3), the Ray-
leigh quotient of eq. (1) be maximized subject to the constraint that

{o} < K2 {q} (4)

where {0} is the vectgr of nodal stresses for the optimum beam under a pre-
scribed loading and {c} is the vector of prescribed stresses. Since stress at
an internal node is discontinuous, the vectors {o} and {0} are assumed to be of
size 2m by one.

A beam element with a cubic transverse displacement field has a linear
variation of bending moment within an element. Thus, the maximum bending
moment within an element can occur only at the two nodes and hence,as in

eq. (4), only the nodal stresses need be monitored for the purposes of imple-
menting the stress constraints.

The stress 014 due to a bending moment M;; at node 1 of element i is
M. .c
it

lolil_l Ii ‘ (5)

For cross—sections specified by eq. (3), it can be easily verified that

ci Ii n-1
= 52 (6)
c, I,

i i

where quantities with superscript 0 pertain to the uniform beam of total
volume V. Equations (5) and (6) together imply that

M
{o}=1{ Bil} (7
(I)2n
Accordingly, eq. (4) can be written as
M 2 fo
{ il } k2 {0} (8)
(I)2n

The inequality constraint, eq. (8),can be transformed into an equivalent
equality constraint by Valentine's principle. An auxiliary functional which
is the original functional of eq. (1) modified by the two equality constraints
with the aid of undetermined Lagrange multipliers is constructed. In terms of
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non—-dimensional quantities this functional can be shown to be

[q#][K*]{q*}

m
2y% = - 2% % 0%k -
WD* = TorTneitqry ~ (I A7 4 - D
- 2 -
ZQ mp—kw>+mg (9
(I*)Zn
i
M
, 21 2." 2 :>
(e U S, % %
+ 2y, [¢ 1) k' (o%,)+ ¢%;]
(I*)Zn
i
where
(w2)* = square of the non-dimensional fundamental frequency
_x A2
g g0

A* = npon—-dimensional cross—-sectional area

, |
-4 -4 (10)
AO v

I* = non-dimensional cross—-sectional moment of inertia

I
0
I

M*

non—-dimensional bending moment
- M
EI

o.% = non—-dimensional stress

i

Ec0
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where 2, A, I? and cO are, respectively, the length, the cross-sectional area,

moment of inertia and distance of the extreme fiber from the centroidal axis
of the cross—~section of the equivalent uniform beam of volume V. ¢% and ¢§
are the non-dimensional auxiliary functions of &=x/%2, which trans-

form the inequality constraints into equivalent equality constraints.

The requirement of the vanishing of the variation of (w?)* with respect
to {q*}, A% and ¢* yields the necessary optimality conditions. Based on the
work of ref. 3,these conditions can be shown to be the following:

In those portions of the beam where the inequality constraint is not
effective, the conditions

»% * — * -— ® = = )
(nU’bi + Usi Tti n‘].‘r].‘)/v__,L constant, i=1,2...m (11)

hold true; while in other portions the stress constraint is effective. In
eq. (11) U*, and U*, denote non-dimensional strain energies due to pure

; i si . " .
bending and shear = deformations, respectively; T*i and T*i denote non-dimen-—
sional kinetic energy densities due to translaticnal and rotary inertia,

respectively, and v, denotes the volume of the i-th element.

Implementation of the stress inequality constraint in the optimization
procedure proceeds in a manner very similar to the one used for the minimum
cross—section inequality constraint of ref. 3. The moments of inertia of

. elements leading to improved designs are determined by recurrence relations
designed to force the specific energy density of eq. (11) to be a constant

for all elements assuming initially that none of the elements are governed

by any inequality constraint. (See reference 3 for details of these recurrence
relations.) In each iteration, however, determining if the stress constraint
is effective or not requires a complete static stress analysis of the beam

to obtain the vector of nodal stresses. The cross—sectional inertias of

those elements which wviolate the constraint are then set equal to

2n . 21
. . +
I* = mx[(~1l )n+l’ (~21 )n l] (1.2)
L o% o%
1i 2i

The cross—sectional inertias of the other elements which do not violate the
inequality constraint are adjusted to meet the volume equality constraint,
eq. (2).

Although for statically determinate beams eq. (12) guarantees the ,
satisfaction of the stress constraint in any given iteration of the frequency
optimization the same is not true of statically indeterminate beams. For the
latter, one could conceivably iterate within the static stress analysis to
determine the appropriate element stiffnesses so as to satisfy the stress
constraints to within a desired tolerance. However, in view of the iterative
nature of the frequency optimization procedure,such additional effort is not
warranted especially if stiffness changes in successive iterations are kept
small enough..
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In view of the equality constraint, eq. (2), it is obvious that the
maximum number of elements which may be governed by this constraint is at
most m1 for a consistent constrained optimization.

Deflection Constraint

In this case it is required that for a beam satisfying eqs. (1) through

(3), the Rayleigh quotient of eq. (1) be maximized subject to the constraint
that

{r} < kg‘ {r} (13)

where {r} is the vector of nodal displacements for the optimum beam under a
prescribed loading and {r} is the vector of prescribed displacements. Both
vectors are of size (2m+2) by one. As with the stress constraint the maximum
number of elements whose cross-sectional moment of inertia can be arbitrarily
specified is at most m-1. Hence, under the limiting case of a strict equality
in eq. (13), the number of equations which imply prescribed dlsplacements ‘can-
not exceed m~1 for a consistent constrained optimization.

In this case, the auxiliary functional in terms of non—dlmen31onal quan-
tities 1is

*11K %1
s = JBUBUGEL (3 ay 2g - 1
' (14)
m+l
2 .2.7..2 2 .
_131 MLED kg () 7]

where

h =1,/ for translational degree of freedom
i i (15)

1]

_ri for rotational degree of freedom

Proceeding as before the optimality conditions can be shown to be eq. (11) in
those portions of the beam for which the deflection constraint is not effective;
while in other portions the deflection constraint is effective. Since the
transverse displacement field varies cubically over the length of the element,
satisfaction of the constraint at the two nodes of the element does mnot
guarantee that the constraint is not violated in the interior, especially if
large changes in curvatures take place within the element. This is circumvented
by refining the discretization sufficiently.

Strictly speaking, the implementation of the stress comnstraint is, in
general, an implicit, nonlinear phenomenon which is rendered explicit by the use
of a very simple and approximate relation, eq. (12). No such approximations
are necessary for the implementation of deflection constraints. The problem
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in this case reduces to determing element stiffnesses which guarantee

prescribed displacements under prescribed loads. Let [K*] denote the assembled
matrix of the supported beam and let {r%*} denote those nodal displacements which
violate the constraints, eq.(13). The matrix [K*] and the corresponding dis~
placement and load vectors are accordingly parti%ioned as

K&a KﬁB ri Qg
L=< (16)
% * %* % -
Kea XEs | [ %8 Qg

where {Q*} and {Q*} are the vectors of externally prescribed loads with the
latter belng assoglated with those degrees of freedom which violate the
displacement constraints and are accordingly prescribed as being equal to
{r*} Equations (16) yield

[k%, 1{rk Kk 1rk}= (2} (17 a)

[Kgu]{r§}+[K§B]{r§e}= {Qg} (17 b)

Simultaneous solution of equations (17 a) and (17 b) yields
T 1,7 . )
[k}, 1{xx}={083- Ky 1(RE 17 ({Qx}-[R% 1{rsh) = {F§) (18)

If the elements of the matrix [K%* ] are assumed to be functions of moments of
Bg

inertia of as many beam elements as the number of prescribed displacements

rg} then the system of equations (18) can be uniquely solved for the unknown

ents of inertia which guarantee the satisfaction of the deflection constraint,
eq. (13).

Those displacements which violate the constraints are prescribed as being
equal to the specified wvalues. Invariably, more than one alternative will
exist for the specification of stiffnesses with prescribed displacements. If
both the degrees of freedom of a joint are prescribed,then the moments of
inertia of both elements common to the joint must be prescribed. However, if
a single degree of freedom is prescribed at a joint,then it is not obvious
which of the two elements should have a prescribed stiffness. Herein may lie
the nonuniqueness of the resulting solution for beams with certain boundary
conditions with certain loadings. A rational criterion for making such a
decision should be based on the magnitudes of displacements of one joint
relative to the other, since such relative displacements are functions of the
properties of the element alone. Accordingly, relative displacements of joints,
on either side of the joint whose displacement is prescribed, are determined.
The element with the joint which has a higher relative displacement is se-
lected for the purposes of prescribing the moment of inertia.

The procedure is straightforward from this point onwards. The moments of
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inertia of the constrained elements which guarantee the satisfaction of the
deflection constraints are obtained by the solution of eq. (18). The inertias
of the remaining elements initially obtained through the use of energy based
recurrence relation of reference 3 are finally adjusted to satisfy the
equality volume constraint, eq. (2).

RESULTS AND DISCUSSION

In general, because of the necessity of satisfying the equality constraint,
eqs. (12) and (18) do not guarantee the satisfaction of the stress and deflec~-
tion constraints exactly. This causes the optimization procedure to fail to
converge or converge extremely slowly to the optimum solution. This is avoided
by modifying the inequality constraints with a multiplicative constraint
factor, RB, which tends to unity with convergence to the optimum solution. The
parameter R is chosen to be the least of the ratios of the prescribed dis-
placements to the actual displacements in the case of displacement constraints
or to be the maximum of the ratios of the actual stress to the prescribed
stress in the case of stress constraints. B is chosen to be greater than
unity. Increasingly higher values of B imply increasingly stiffer designs.

Figures 1 and 2 portray the effects of the implementation of the stress
constraints on the optimum design of vibrating beams with two different support
conditions. Figure 3 illustrates the effect of implementing the deflection
constraint on the optimum design of a vibrating cantilever beam.

Figure 1 considers the case of a cantilever beam subjected to two
different types of loading for the implementation of stress constraints in
the optimization of its fundamental frequency of free wvibration. In one case
the loadlng consists of a concentrated load at the tip with k2—5 and {o}=
(cmax)1oa {1}. 1In the other case the loading con31sts of a _concentrated
bending moment at the tip with kg—S and {o}= (Gmax)load {1}. As expected, the
constraint corresponding to the moment loading is much more severe and
accordingly leads to a drastic reduction of the optimized fundamental frequency.
A comparison of these designs with the optimized beam without these constraints
emphasizes the importance of such constraints in optimal design.

Figure 2 considers the case of a clamped-clamped beam subjected to a con-
centrated load at the center with {0}—(0max)0{1} for two distinct wvalues of
kg. If it were not for the stress constraints, the moment of inertia would
approach zero at the center of the beam as in reference 3. Severity of the
Stress constraints brings about increased quantities of material to be dlsposed
around the center of the beam.

Figure 3 illustrates the material distribution of an optimum cantilever
beam subject to the deflection inequality constraint with k6=5 and {r}={r}010ad
under a concentrated load at the free end of the beam. Since no singularity
exists with inequality constraints of either the displacement or stress type
and since the deflected shape of the beam under a concentrated end locad or a
moment involves no change of curvature, it can be expected that the solution
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obtained using only ten elements for the cantilever beam model is a good
approximation to the optimum continuous model.

In conclusion, it may be remarked that with only a minor change of the

computer logic the formulation extends quite easily to cases wherein both
deflection and stress constraints are specified simultaneously. '
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Figure l.- Optimum area distribution for a beam clamped at %=0 and

free at x={ under stress constraints; n=2.
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Figure 2.~ Optimum area distribution for a beam clamped at both

ends under stress constraints; n=2.



(Al/v) ’

3.5

CONCENTRATED END LOAD

2.5

20}

.5F

05|

kg =5; (w? ¥ = 203.3350

0

A i X
00 020 030 040 0.50 060 070 0.80 0.90 LOO x/|

Figure 3.~ Optimum area distribution for a beam clamped at x=0 and

free at x=% under a deflection constraint; n=2.
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