View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

SOME CONVERGENCE PROPERTIES OF FINITE ELEMENT APPROXIMATIONS OF
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SUMMARY

Some results of studies of convergence and accuracy of finite element ap-
proximations of certain monlinear problems encountered in finite elasticity
are presented. A general technique for obtaining error bounds is also de-
scribed together with an existence theorem. Numerical results obtained by
solving a representative problem are also included.

INTRODUCTION

In this note I summarize some recent results obtained on finite element
approximations of certain nonlinear elliptic-boundary-value problems in finite
elasticity. The results I quote here are given in a more elaborate form else-
where. In reference 1, Ricardo Nicolau and I reported some results on a class
of problems in which bifurcations occur. There we consider cases in which,
for a given set of external forces, not only can multiple solutions occur,
but a loss of regularity can apparently result on certain solution paths. A
complete account of these results is to be published in a lengthier article.

The principal features of this work are (1) a priori error estimates and
proofs of convergence of finite element approximations of highly nonlinear
elasticity problems (these estimates are optimal), (2) error estimates for
multiple solutions of a nonlinear elliptic problem (these estimates are also
optimal, but the predicated bounds are different for different solution paths),
(3) a discussion of specific numerical results and certain special problems
connected with the numerical analysis of this class of problems.

NOTATION AND PRELIMINARIES

We shall employ the following notations and conventions:

w = (u,v,w) = displacement vector in a material body B, u, v, and w being che
v cartesian components of displacement in the material directions
X, Y, 2.

* This work was supported by the National Science Foundation under Grant ENG-
75-07846.
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Vw = gradient of w
W = strain energy per unit volume of the body in a reference configuration, W
being an appropriately invariant twice-continuously differentiable func-

tion of Vw,

V = V(w,p) = potential of the external forces per unit reference volume, p
being a real loading parameter.

L = 3W/8Vw = gtress tensor = Zﬁw)

o=
I

=,gpace of admissible displacements = {W' jp(w + V)dXdYdZ < oo w o= 0 on 30}

(Here §) is a bounded open set of partlcles composing the interior of the
body B and 3Q is its boundary)

To indicate various dependences, we also use such notations as Z(W),
VV(w,p), ete.

The potential V(w,p) is assumed to be of the form

V(w,p) = = (pf,w) +V_(w,p)

where pf is a body force term and v, Cw,p) is nonlinear in w. To simplify
notatlons, we also introduce the operator

v
<A(y,p),g>=f (Z+Vn - a; * n)dxdyaz (1)
Q

~

Then, formally, A is given by

9VO (Y,P)

ow

A(va,p) = -Div%(w) - (2)

We are concerned with nonlinear boundary-value problems of the following
type: find w € U such that

<A(Tfsp)9n>= (Pfa'g) v D € u - (3)

We are particularly concerned with Galerkin approximations of (3). We
introduce a real parameter h, 0< h < 1, which, of course, corresponds to the

mesh parameter in finite element approx1mat10ns, and denote {Uh}o hel = a
<h< '
family of finite-dimensional subspaces of U such that LVJ Uh is dense in U.
0<h<1
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The Galerkin approximation of (3) then amounts to resolving the following
problem: find W € Uh such that

{AGw,.p),myv= Gf, n) v €U )

Upon subtracting (4) from (3) evaluated on n = Ny » wé obtain the ortho-
gonality condition: T

{A,p) - APy =0 Vo €U (5)

SOME HYPOTEHSES ON THE STRESS AND POTENTIAL OPERATORS

In many problems in finite elasticity, it appears to be justified to

make hypotheses of the following type concerning the operator A and the space
us

I. The operator A of (1) maps U into its topological dual U'; U is a
reflexive Banach space with norm ]lelu.

II. The displacement field in the body corresponding to a given load p

is contained in a space U with stronger topology than U, U being densely and
continuously imbedded in U.

I1I. The operator A is weakly continuous; i.e. if {Wh} is any sequence
converging weakly to LA then A(yn,p) converges weakly to A(yo,p).

Iv. The operator A is coercive; i.e.

<A(Wsp)9w~‘/\
lim TS = (6)
lul T >4+ 1wl
V. A sufficient condition that II holds is that A be a potential opera-

tor with a Gateaux differential DA such that <DA(WO-+6(an-Wb)) 'n,wn-wo> =0

as n > « for any sequence {Wh} converging weakly to Vs Vv n €.

Vi. A sufficient condition for coerciveness is that there exists a
constant W > 0 such that

< - | -, > - P _
CAGwy5P) = AGw,,p)s Wy = W,y >y |fwy - w| lu U ¢))
where Yo is a positive constant and p > 1.
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VII. There exist functions B: U X U >R and C: U x U IR, B weakly con-
tinuous, such that V Wy W,y € u,

[<AGw;5P) = AG,,p) 5w 0] < | [wy] ]ul lwy = w,l | BG1w,) (8)

|<AG;5P) = Alw,sp)s wy = WDl > y]lwy - w,] ]Z ()

where Y is a positive constant and p > O.
Theorem 1 (Existence). Let either of the following hold:
(i) Conditions I, III, and IV above, or
(ii) Conditions I, IV, and V, or
(iii) Conditions I, III, and VI, or
(iv) Conditions I, IV, and VI.

Then there exists at least one vector w & U that satisfies (3) for each
pfCU'.m ~

We emphasize that the operator A is not necessarily monotone.
FINITE ELEMENT APPROXIMATIONS AND ERROR BOUNDS

The subspaces Uh in (4) are assumed to be constructed using finite ele-

ment methods. Thus, the solution domain { is partitioned into E subdomains
Q2 over which w is approximated by piecewise polynomials of degree £ k. If

e, o~ > _ .
w & UMU and w, is its projection into Uh, it is well known that the subspace

~h
Uh can be designed so that the following hold:
1)
[lw - w1 <cn’llwll. (10)
~ ~h' = "o ~

h being the mesh parameter and 0 a positive number.

(ii)
2
a1, R
—— < e’ , v20 (11)
[ 1w, 11
il
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In (10) and (11), C0 and C1 are constants independent of h.
We proceed to determine error bounds as follows:

1. The approximation error is e = w - wh:

~

I'Sllu < v - %hl]u + IIYh - %hllu (by the triangle inequality)

< ¢’ |w ey -l (by (10))
2,
HYh - :hl IZ s Cl ﬂv”f’fh - i&hHZ (by (11))

< b’ 1[CAG ) - AGH D) w - @] By (9)

= c 1/ | CAGw,p) - AGHP),w, - ®Y|  (by (5))

h
Cl Y
< 5 ) Hey - Gl T - wlf 20 @y @)
3. For sufficiently small h, we assume that
B(w,wp) = B(w,w = w + W)
= B(w,w) + 0(0") w >0 (12)
owing to the continuity of B(*,*). Thus
Cc.,C
~ . 1l o, ,0+V
- < (—)n w| | AB(w) 13
o = 9l < & [l 1B G a3

by virtue of (10), wherein B(w) = B(w,w).

~

4, Combining the result 1 with (13), we see that as h - 0, a positive

constant C2 exists such that
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el < 6l el + 07" By (14)

Thus, for sufficiently smooth w, ﬁg obtain thé optimal rate of conver-
gence for the nonlinear problem so long as v > 0.

Theorem 2. Let (8), (9), and (13) hold and let there exist solutions

to the nonlinear boundary-value problem (3). Let w%lé U be a finite element

approximation of w in a subspace Uh in possessing properties (10) and (11).

Then the approximation error e = w - W satisfies the bound (14) as h -+ O.

Moreover, if V > 0 and w is sufficiently smooth, the optimal rate of conver-
gence is obtained for the nonlinear problem.

AN EXAMPLE AND NUMERICAL EXPERTMENTS

The following example is described in [1]:

W= E o+ B 0Pyl o re 004t - D+ 0% v - ) v B0 D)
) (15)

1. 3
V=-pu+ 7 Kpv , (16)

where A = 1+ u' (u = u®, v = v(x)), Eo,°°-,E4, Ko are constants, and p > O,
In this case, C :

L 0
1. U= {(u,v): f (W + V)dX < m}ﬂwi(l)
0 WA

° L
Wl(I) = Reflexive Sobolev space = { (u,v): .fl([u'|4 + |v'|4)dx < oo,
h 0

u(0) = u(L) = v(0) = v(L) = 0}.

1 1 L 1
al 1l = alloy o+ Hvlley = €f Twl* a® s (f o |* a)®
- WD N, (D) 0

1
4

- 4 4
ol = sttty e 1l

4 W, (D
3 G=-wmNwm 1= (0,1
b p =4, g = min(k,L-1), v = 3/2
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The functions B(w,w) and C(w,w) are complicated functions of the compo-
nents u and v and are given in [1]. 1In this case, the operator ‘A is not mono-
tone.

Test problems were solved using piecewise linear finite elément (k = 1),
The problem does not have unique solutions for p > p _. Figure 1 shows the

computed solutions for various values of p for the case L = 10, El =1,
E2 = 0.8, E3 = 0,5, E3 = 0.1, E&‘# -0.2, KO = 1.0. Observe that a bifurcation
is reached at p = 0.5.

Figure 2 shows the rate of convergence actually obtained in the analysis
computed by comparing the solution for coarse meshes with that obtained for
100 elements. As predicted, the rate of convergence is :

0w + 1% = ot + 172 = o)
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Figure 1.~ Computed equilibrium paths.
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Figure 2.~ Computed rates of convergence.
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