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THERMAL STRESSES IN A SPHERICAL PRESSURE VESSEL HAVING
TEMPERATURE-DEPENDENT, TRANSVERSELY ISOTROPIC, ELASTIC PROPERTIES

T. R. Tauchert
University of Kentucky

SUMMARY

Rayleigh-Ritz and modified Rayleigh-Ritz procedures are used to construct
approximate solutions for the response of a thick-walled sphere to uniform pres~-
sure loads and an arbitrary radial temperature distribution. The thermoelastic:
properties of the sphere are assumed to be transversely isotropic and nonhomo-
geneous; variations in the elastic stiffness and thermal expansion coefficients
are taken to be an arbitrary function of the radial coordinate and temperature.
Numerical examples are presented which illustrate the effect of the temperature-
dependence upon the thermal stress field. A comparison of the approximate solu-
tions with a finite element analysis indicates that Ritz methods offer a simple,
efficient, and relatively accurate approach to the problem. .

INTRODUCTION

Modern engineering structures are often subject to thermal environments in
which the temperature causes significant variations in the thermal and mechani-
cal properties of the material. Over certain temperature ranges the material
may behave elastically, but have variable stiffness and thermal expansion char-
acteristics. In addition, modern materials of construction (e.g. composites)
often possess anisotropy and nonhomogeneity. While most classical thermoelas-
tic solutions are not applicable to situations involving temperature-dependent
anisotropic behavior, some progress has been made in this direction. For exam-
ple, the problem of a hollow sphere with temperature-sensitive isotropic elas-
tic properties has been studied by Nowinski (ref. 1) and Stanisic and McKinley
(ref. 2). More recently Hata and Atsumi (ref. 3) investigated the response of
a transversely isotropic sphere exposed to a sudden temperature rise on its in-
ternal surface.

In the present paper a transversely isotropic hollow sphere having temper-
ature sensitivity and/or initial nonhomogeneity is considered. The variability
of the thermoelastic properties may result from manufacturing processes, in
which case the properties depend upon position but not temperature, or the non-
homogeneity may be a consequence of the materials' temperature sensitivity.
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FORMULATION OF THE PROBLEM

Consider a hollow elastic sphere of inner radius ry and outer radius Ty
exposed to a temperature distribution T(r) in addition to internal and external
pressures, p; and Pyp respectively. Owing to the spherical symmetry of the

problem, the nonvanishing strain components depend upon the radial displacement
u according to the relations
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Assuming transverse isotropy, the thermal stresses are related to the strains
and temperature rise by
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in which Aij(T,r) denote the elastic stiffnesses and Bi(T,r) are the stress-

temperature coefficients. Alternatively, the strains may be expressed in terms
of the stresses and temperature as
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where aij(T,r) and ai(T,r) are the compliances and the coefficients of thermal
expansion, respectively.

For convenience in later operations the following dimensionless quantities

are introduced: N
p=r/r2 p1=r1/r2 v=u/r2
0="T/T, qr = P/B,T, ar1 = Prp/B,T, > (%)
tpp = 0r:tt/soTo tcbd) = Od)d)/BoTo tee - GGG/BOTO
By (0,0) =4, (T,0) /BT, by;(©.0) =a, (T,r08T
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Yi(e,p) = Bi(T,r) /B0 ei(e,p) = oci(T,r)To J

in which Bo denotes an arbitrary reference stress-temperature coefficient and

T0 represents some reference temperature.

In formulating the problem through the use of energy principles, we re-
quire specification of the total potential energy of the sphere. For the case
of quasi-static loading, the total potential energy Il consists of the strain
energy U plus the potential VE of the external forces. General expressions for

the strain energy in anisotropic, temperature-sensitive, elastic bodies are
given in reference 4. Based upon these expressions the total potential energy
for a transversely isotropic sphere with strains given by equation (1) is
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in which the integral expressions constitute the strain energy, and the terms
involving a7 and 411 represent the potential of the pressure loads.

A complementary variational approach to the problem, in which stresses
rather than displacements represent the varied quantities, involves the total
complementary energy. When tractions are specified over the entire boundary
of the body, the total complementary energy I[* is equal to the complementary
strain energy U*. From the general results given in reference 4 it can be
shown that for the sphere

1
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Before developing approximate solutions to the problem, it is noted that
the governing differential equation and natural boundary conditions can be de-
rived through direct application of the principle of minimum potential energy.
Requiring that the first variation of the total potential energy be equal to
zero (6Il=0), and performing integration by parts, one obtains the displacement
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equation of equilibrium
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Finding an exact solution to these equations does not appear possible for a
sphere of general nonhomogeneity.

RAYLEIGH-RITZ METHOD

In the Rayleigh-Ritz method a kinematically admissible displacement field
is assumed, and the principle of minimum potential emnergy is used to determine
unknown coefficients in the assumed solution. Here we shall represent the rad-
ial displacement v(p) by the power series

i -m n
i_Zmap =a_o0 +...ta t...tap 9

in which the number of nonzero coefficients a, is arbitrary. Although it is

only necessary to satisfy displacement boundary conditions when applying the
Rayleigh-Ritz method, generally it is desirable to satisfy traction conditions
“as well. Relations (8) will be satisfied identically by the displacement field
(9) if the coefficients a, satisfy

i
| _ 0o, )
£,(a;) =B, (p) E iag pi_l+ 2B.,(p)) § aip —f Y,(0,p)d0+q =0
o(1) Y Ao
£,(a;) =B, 1 (1) § ia +2B),(1) :zL ai—fo Y,(0,1)d0+q =0
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These equations can be used in order to eliminate two of the coefficients ai

from the assumed solution. Alternatively, equation (9) can be retained in its
original form and conditions (10) satisfied by the method of Lagrange multi-
pliers, as described in reference 4. In this case the restrictions (10) are

written in terms of Lagrange multipliers Al and Az as

£,(a) =0, Af,(a)=0 ' (1)

Necessary conditions for a minimum value of the total potential energy I, sub-
ject to the subsidiary conditions (ll), then are given by

P8 ol
Sa =0 (j=-m,...,n), Bk =0 (8=1,2) (12
where
I=1I+ Alfl+ )\zfz (13)

Substituting the assumed solution (9) into the potential energy expression o,
and dlfferentlatlng [ with respect to aJ as indicated in equation (12), gives

2
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in which
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The Ritz coefficients a, are then found by solving the algebraic equations- (14)
together with the const¥aint equations (10).

MODIFIED RAYLEIGH-RITZ METHOD

The modified Rayleigh-Ritz method consists of assuming a state of stress
which satisfies equilibrium and traction boundary conditions, and then deter-
mining unknown coefficients in the assumed solution by applying the principle
of minimum complementary energy.
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It is easily verified that equilibrium is satisfied if the dimensionless
stress components are expressed in terms of a stress function Y as

12 - vy,
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In this case the total complementary energy becomes
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We choose to represent the stress function Y by the power series
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in which the number of nonzero coefficients ai is arbitrary. In order that ex—
pression (18)yiel%§stresses which satisfy thé traction boundary conditions (8),
the coefficients aj must satisfy the relations
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Proceeding as in the standard Rayleigh~Ritz technique outlined earlier, condi-

tions (19) are next written in terms of the Lagrange multipliers Xf‘and A; .

Application of the principle of minimum complementary energy then leads to the
set of equatiomns

2
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644



R o
gjl pl ’ gj2 1 J

The coefficients a* and the Lagrange multipliers A: then are found by solving
equations (19) and (20).

FINITE ELEMENT TECHNIQUE

The energy formulation developed earlier also provides a convenient basis
for constructing a finite element solution to the problem. In this case the
sphere is idealized as a series of N hollow spherical subregions. A typical
element j has an inner radius Py and an outer radius p,} the corresponding rad-

ial displacement components are denoted by vy and vj, and the radial stresses
are taken to be (tpp)i and (tpp)j’ respectively. {

It is assumed that the displacement varies linearly with p within each
element, so that

(22)

Pe=p -p,+p
v(p)=[‘] + i}vj

v
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The thermoelastic properties are taken to be constant over each element, in
which case the following average values will be used
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By analogy with equation (5), the total potential energy for element j is
p.
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Substituting equation (22) into (24), and minimiéing H(J) with respect to.v,
and vj gives

‘ 2 3
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Application of equations (25) to each of the N elements provides a system of

2N linear equations for the N+ 1 displacement components and the N-1 interface
stresses. The interface stresses can be eleminated, resulting in a set of N+1
equations for the unknown displacement components.,

NUMERICAL EXAMPLES

To illustrate the influence of temperature-~dependent material properties

upon the thermoelastic response, and at the same time to demonstrate the appli-
cability of Ritz methods in thermal stress problems, numerical results are pre-
sented for a sphere subject to various temperature and pressure conditioms,
The ratio of the sphere's inner and outer radii is taken to be p, =0.8., It is
assumed that the body is initially homogeneous, and that the thermal expansion
coefficients vary linearly with temperature, while the elastic stiffnesses ex~
hibit a quadratic variation. In particular we let

_ .0 —n O ¢1_ .02
€ =€y (1+1b9), Bij Bij (1-cO7) (27)
in which b and ¢ are constants. The initial (zero-temperature) thermoelastic

coefficients are taken to be

o _ 4 o _ 4 o o _
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22 23
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These values are representative of certain fiber reinforced composite materials,
reinforced in the circumferential (¢ and 0) directiomns.

As a first example let us consider a sphere subject to a uniform tempera-
ture rise O=1 and zero internal and external pressure. Values of the thermal
displacements and stresses found using the Rayleigh-~Ritz and the modified Ray-
leigh-Ritz methods are compared with the exact solution (ref. 5) for the limit-
ing case of temperature-independent properties (b=c=0) in Table I. It is evi-
dent that the accuracy of the approximate solutions generally improves as addi-
tional terms are included in the assumed solution. When the Rayleigh~-Ritz ap-
proximation contains 3 independent coefficients (i.e., a total of the 5 coeffi-
cients a 2,a ]_,ao,al,a.2 of which 2 may be eliminated using the boundary condi-
tions), the value of the maximum stress amplitude It ¢(0 8)] exceeds the exact
value by 0.9%Z. TFor 5 independent coefficients the error is reduced to 0.3%. On
the other hand the maximum stresses predicted by the modified Rayleigh-Ritz pro-
cedure using 3 and 5 independent coefficients are 2.3% and 1.6% smaller than the
exact value. When the powers of p in either the standard or modified Rayleigh-
Ritz approximation are taken to be -5, 4, and 1, the computed values of the dis-

placements and stresses are exact, since the assumed solution then has precisely
the form of the exact solution.

Results of finite element analyses are compared with the exact solution to
this same problem in Table IT. Naturally the accuracy of the finite element
solutions improves as the number of independent displacement components is in-
creased. When the finite element solution is based upon 3 independent displace-
nent components (2 elements), the maximum stress [t (0.8)| exceeds the exact
value by 2.6%. The error is reduced to 0.7% when 13 displacement components
(12 elements) are used. However for this problem it was found that the compu-
tations required to achieve a given level of accuracy were less time consuming
vhen one of the Ritz methods was used than when the finite element technique
vas applied. ‘

To demonstrate the influence of temperature-~dependent behavior upon the
:ircumferential stress in the sphere, Ritz solutions based upon 5 independent
roefficients are plotted in figures 1-3. Each of the figures shows the stress
listributions associated with various values of the temperature-dependent pa-
rameters b and c¢ for temperature alone and for combined temperature plus inter-
tal pressure. Figure 1 shows the stresses induced by a uniform temperature
'ise O=1, Results for the linearly varying temperature distributions O=5-5p
md O=-4+5p are given in figure 2 and 3, respectively. Each of the Ritz solu-
:ions plotted in the figures was compared with a finite element solution based
ipon a l2-element model. Agreement between the values of the maximum absolute
itress ‘predicted by the two methods varied between 0.1%7 and 1.6%, with one ex~
eption. In the case of ©=-4+5p and zero internal pressure qp=0 (fig. 3) the
aximum stress was relatively small, and the discrepancy was nearly 5.0%.

As would be expected for the purely temperature loadings (qI“qII“O)’
aximum stresses diminish with increasing values of c(i.e., with decreasing
tiffness), whereas they become.larger with increasing values of b (increasing
hermal expansion). The influence of temperature sensitivity is less predict-
ble in the case of combined temperature and pressure, since both the pressure-
nduced and temperature-induced stresses are affected by the nonhomogeneity.
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Table I.

Ritz approximations for the thermal displacements and

stresses caused by a uniform temperature rise O=1 when b= c=0.

Rayleigh~Ritz Modified Rayleigh—ﬁitz . Exact
Powers of 0 -2,-1,0,1,21{~-3,-2,-1,{ -2,-1,0,1,2} -3,-2,-1, | -5,4,1
0,1,2,3 0,1,2,3

No. of indep. coefs. 3 5 3 5 3
Radial displ. v(0.8) .058 .059 . 066 064 .060
x 107 v(0.9) .355 .355 .354 .354 .354
v(1.0) .636 .634 .633 .632 .634

tpp(0.8) 0 0 -0 60 0
Radial stress tpp(0.9) -.084 -.091 ~-.092 -.092 -.091

t_ (1.0) 0 0 0 0 0

pp

t¢¢(0.8) -.948 -.943 -.918 -.925 ~-.940

Circumf. stress t¢¢(0.9) .001 ~.001 ~.006 -.003 -.003
t¢¢(1.0) .762 .757 .755 .750 .758

Table II. Finite element solutions for the thermal displacements and

stresses caused by a uniform temperature rise ©=1 when b=c=0.

Finite Element Exact
No. elements 2 4 6 12 -
No. indep. displ.
comps. 3 5 7 13 -
v(0.8) .062 .060 .060 .060 .060
Radial displ.
R it v(0.9) .356 .355 .355 .355 .354
v(1.0) .636 .635 .635 .635 .634
tpp(0.8) -.105 -.064 -.046 ~.025 0
Radial stress tpp(0.9) -.073 ~.092 -.092 -,091 -.091
tpp(l.O) -.033 -,022 -.016 -.008 0
t¢¢(0.8) ~.965 -.959 -.954 -.947 ~-.940
Circumf. stress t¢¢(0.9) .012 .001 -.001 -.001 -.003
t¢¢(1.0) .750 .752 .753 .756 .758
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