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SUMMARY

The stress and displacement distribution in a layered medium is
found by means of transfer matrices. The surface loading exhibits axial
symmetry, and each layer is of infinite extent in the horizontal direction,
of constant depth, and is considered to be linearly elastic, homogeneous,
and isotropic. The method developed has the built-in advantage of enforec-
ing interface continuity conditions automatically. Its application to
layered composites shows the flexibility with which it predicts the local
as well as the global response of the medium.

INTRODUCTION

Recently, this writer developed a transfer matrix approach to various
problems in mechanics by combining the method of initial functions due to
Vlasov (ref. 1), with the integral transform method developed by Sneddon
(ref. 2).

The method employed by this writer consists in applying the state
space approach, which has been used extensively to analyze linear systems
in various areas of systems engineering, such as modern control theory
(ref. 3), to the field of elastomechanics.

The topics so far analyzed through this approach cover two-dimensional
elastostatics (ref. 4), one-dimensional elastodynamics (ref. 5), applica-
tion to a typical elasticity problem (ref. 6), examination of the basic
foundation of the theory (ref. 7), application to numerical integration of
equations of motion to predict dynamic response (ref. 8), heat conduction
(ref. 9), boundary value problems (ref. 10) and earthquake engineering with
emphasis on soil-structure interaction (ref. 11). Additional references
pertaining to each topic considered will be found in the references cited
above and will not be repeated here.
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This paper extends the work described in (ref. 4) which was restricted
to a plane stress (or plane strain) problem, to a three-dimensional one with
axially symmetric loading. The motivation for considering the present
approach is to develop a flexible method for the analysis of layered media
subjected for instance to concentrated loads, ranging from classical problems
in soil mechanics, to the prediction of impulsive response of laminated com—
posites. In the latter case inertial effects must be included.

The main advantage of the method is due to the fact that continuity
of stresses and displacements at interfaces is automatically satisfied.
Therefore, upon determination of the missing initial displacements from
boundary conditions, the field quantities can be determined upon multipli-
cation of the initial state vector by the chain of layer transfer matrices
by the field matrix of the layer of interest. A Hankel inversion gives the
actual field quantities.

In contrast, the classical formulation requires the construction of a
transformed Airy stress function that contains four arbitrary parameters
per layer, thus producing a total of 4n equations in 4n unknowns for a
medium of n layers. These are determined by enforcing the continuity of
stresses and displacements across each interface, which yields 4(n~-1) con-
ditions to which the four boundary conditions are added.

DERIVATION OF THE TRANSFER MATRIX
The equations governing the state of stress of an axially symmetric,

homogeneous, isotropic, linearly elastic solid, are given by the equi-
librium equations

acr aTrz cr—ce
5z T3z g =0 (1a)
3T'.l:'Z 30‘Z TI'.'Z
+ =
ot oz + T 0 (1b)

in the absence of body forces and inertial effects. These equations must
be adjoined by the constitutive relations :
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The four stresses given by equations (2) are functions of the partial
derivatives of two displacements only, it follows that two of these stresses
can be eliminated. ~

For reasons of convenience, 0g and o, are chosen for this purpose.

Upon substitution of equations (2a) and (2b) into equation (la), the latter
can be rewritten as

O+ 20) Bzu +_L 3u _ u + aTrz P BZW = 0 (3)
Brz r Odr r2 9z 9z3r

Differentiation of equation (2¢) with respect to r yields

o0 2 : 2
z _ o"u 1 dJu_u w
ar [arz tT o rz} O+ 20 oo (4)

Elimination of the mixed derivative between equations (3) and (4)
results in the relation

or 2 r 2 az
or Y

30’2 ’azu 1 9u u 8Trz
A==+ 4u (A + W) ij'——‘+;'—————]+()\+2p) = 0 (5)

Consider a semi~infinite elastic medium which extends to infinity in
the r-direction as shown in figure 1. The medium is loaded by an axially
symmetric load as shown. Under the circumstances, taking Hankel Transforms
of order one of equations (5) and (2d4), and of order zero of equations (2c)
and (1b))results in the system of equations cast in matrix form as follows:

F— 3 — - = )
Huy 0 £ 0 1 Huy
a <uwo '>= =\E/ (A+21) 0 W/ (+21) 0 <uw0> ©
dz } 5 0 0 0 £ 5
0 0

T, sy E?/ 02wy 0 A/ Oek) 0 | T

where the subscripts indicate the order of the Hankel transform. Equation
(6) can be integrated by considering the column_vector of transformed
stresses and displacements as the state vector X(£,2z), and rewriting it as

£ e, = A©] &G, 2} 7

As shown in (ref. 4), equation (7) can be integrated to yield
{X(g,2)} = exp[zA(2)] {X(0)} (8)

where the matrix exponential has to be evaluated explicitly, The char-
acteristic roots of the determinant associated with the matrix A(Z) are the
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double roots + &, identical to the result obtained in ref. 4 . Thetefore,

the results are analogous to those obtained in that paper, in which it is
shown that 2 3

exp(zA) = aOI + alA + azA + a3A (9
where

a, = cosh £z - (£z/2) sinh £z

a, = [3 sinh £z - £z cosh £z]/2%. (10)

a, = [z sinh &£z]/2&

ay = [£2 cosh £z - sinh Ez]/2€3

Upon substitution of these values into equation (9), the transfer
matrix is obtained, and equation (8) gives, in turn, the state vector which
consists of the transformed stresses and displacements at an arbitrary depth
in the field. The details pertaining to the evaluation of the transfer
matrix are given in the Appendix. The results can be summarized in matrix
form as

@) iy T, Ly Ly | [ 60
~ Wiy (€, 2) ) Lyy Loy Do By <‘”_“0(€’0) 1y
oy (£,2) Lyp I3y I3z By 94 (£,0)
51 (E’Z)J - T B | ¥1(‘5’°);

where the influence functions mapping the initial field quantities into
those at an arbitrary depth in the field are given by

L11 = L44 = cosh z& + [(A+u)/ (A+2u) JzE sinh zE )

le = —L34 = [u sinh z& + (Au)z& cosh zgl/(A+2u)

L13 = —L24 = [(A+u)/ (A42u) ]z sinh z&

L14 = [1/2(+2) ][ (A+3u) sinh z& + (A+u)zE cosh zE]

L21 = —L43 = [1/(+2u) Hu sinh zE - (A+u)zE cosh z&]
> (12)

L22 = L33 = cosh z& - [ (M) / (A+21u) ]1zE sinh zE

L23 = [1/20420W)E1[ (A+3u) sinh z& - (A+u)zE cosh zE]

L31 = —L42 = —2z£2 sinh z&

L32 = [2(F) e/ (M21) 1{sinh zE - zE cosh zE]

L41 = [20+W)E/ (AH2u) 1[sinh zE + zE cosh zE] J
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The actual physical quantities are then recovered through the inverse
Hankel transform.

APPLICATION TO LAYERED SYSTEM

Consider a layered medium with perfect bonding along all interfaces
as shown in figure 2. This implies the continuity of transformed stresses
and displacements across each interface. In order to enforce this condi-
tion, the first two entries of the state vector which appear in equation
(11) are divided by the shear modulus, to produce a new state vector con-
sisting of transformed stresses and displacements. The elements of the new
matrix G become Gy3 = Lj3/u; Gy = Lig/us Gpg = Lag/u; Gog = Log/us
G31 = uL3l; G32 = uLsz; G41 = uLél; and 642 = uL42.‘ The remaining elements
of the G matrix are identical to the corresponding elements of the L matrix.

The modified equation (11) can now be written in contracted form as

{?(E,Z)} = [6(X\,u,2,8)] {§(530)} (13)

Applying equation (13) to each interface in turn, in the sequence shown in
figure 2, leads to

T(Eh)Y = (6O, s ,E) =GO Lupshy,8)] (T(E,0)) (14)

in which the missing initial conditiens are determined from boundary con-
ditions. Equation (14) then describes the overall response of the layered
system.

Local information consisting of state vectors at interfaces can now be
obtained by terminating the matrix multiplication indicated by equation (14)
at the appropriate interface. These relations are shown by the block
diagrams shown in figures 3 and 4.

The state wvector in any arbitrary layer m can now be found by the
relation
FED) = 001,20 T 004,p,0,01FE01 a5

in which the z coordinate is the local depth within the layer m, ranging
from zero to hm. The actual stresses and displacements are given by the
inverse Hankel transformation of the state vector.

CONCLUDING REMARKS

In this paper, a transfer matrix method to determine the response of
a layered medium subjected to an axially symmetric loading has been
presented.

The matrix formulation shows that the need for matching interface
conditions explicitly is avoided by imposing the continuity of the state

vector across each interface. This is accomplished through the continued
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multiplication of layer transfer matrices. Therefore, the size of the trans-
fer matrix remains four by four, and is independent of the number of layers
contained in the medium. This is the main conceptual as well as computa-
tional advantage of the proposed method.

APPENDIX
The transfer matrix is given by the expression exp(zh) = aoI + alA +
azA2 + 33A3, in which the matrices A,AZ, and A3 are given by
0 g 0
-Ag/ (A+2W) 0 u/ (+21)
A= )
0 0 0 -£
& () 2/ (b21) 0 NE/ (t21) 0
2 o
(3M+4u) g 0 A+ 0
9 0 —AEZ 0 -(A+) &
OF21)A° = 3 5
-4(A ) g 0 -AE 0
3 2
- 0 (At g 0 (3x+4n) E°_]
B 3 27
0 (BA+4u) E 0 (23 +3u) €
; - (32 87 0 -rg? 0
(A+2p)A° = 4
0 -4 (M) E 0 -(3A+4u)£3
80w £ 0 (3n2m) £ 0 |

and the coefficients ap,ajag, and ag are given by the set of

relations (10). The elements of the matrix exponential are given
explicitly by the expressions (12).
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Figure 2.~ Axially symmetric layered medium.
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