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APPLICATIONS OF CATASTROPHE THEORY IN MECHANICS

Martin Buoncristiani and George R. Webb
Christopher Newport College

INTRODUCTION

Consider a system under the influence of control parameters c. It may hap-
pen that for some values of ¢ the system has more than one stable equilibrium
state and consequently a continuous change in control may cause a discontinuous
change from one equilibrium state to another. This occurs, for example, in the
"snap-through' of a compressed beam under transverse loading. This kind of
abrupt transition between stable equilibrium states - a branching or bifurcation
- has been the subject of much study (ref. 1 to 4) and recently the French top-
ologist René Thom developed a theory which presents seven standard types of dis--
continuous behavior (ref. 5 to 6), called elementary catastrophes, and proved
that any discontinuous behavior in systems controlled by not more than four var-
iables is one of these seven elementary catastrophes. Thom's theorem is remark-
able for providing a classification of discontinuous behavior but it is also
useful as an aid to visualizing phenomena of this sort. The proof of the theor-
em is difficult but its results are easy to understand and to use in problems
involving bifurcation.

Applications of Thom's theory to problems in mechanics are just beginning
to appear. The first problem solved appears to have been an example by Zeeman
(ref. 7) and his co-workers. This example has recently been generalized by
Woodcock and Poston so that it can describe higher order catastrophes.

The most extensive studies come from the group of researchers that work
with J. M. T. Thompson of University College, London. Thompson and Hunt (ref.
8) correlate their own theories of elastic stability for discrete systems with
the work of Thom and suggest possible fields in which the theory will give sig-
nificant insights. Troger (ref. 9) suggests the nature of such insights in his
study of von Mises truss and a shallow arch from the point of view of catastro-
phe theory, and Fowler (ref. 10) in his paper on the Riemann-Hugoniot shock does
the same.

Chillingworth and Guckenheimer apply the theory to continuous systems.
Chillingworth (ref. 11) uses a generalization of Morse's Lemma to Hilbert spaces
to reduce the study of the buckling of a beam to a problem in finite dimensions;
Guckenheimer (ref. 12) discusses catastrophes and Hamiltonian systems.

The papers by Schulman (ref. 13) on phase transitions, Kozak and Benham
(ref. 14) on denaturation, and Mehra and Blum (ref. 15) on the ignition of paper
provide examples in the realm of thermodynamics. Detailed bibliographies of ca-.
tastrophe theory and its applications to problems in other areas can be found in
reference - 16 .
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STRUCTURAL STABILITY OF POTENTIAL FUNCTIONS

In this paper we will describe a method, using Thom's classification of
catastrophes, for the analysis of stability of systems whose static behavior is
derived from a potential function. Examination of the stability of singular
points of potential functions will serve to illustrate the nature of the elemen-
tary catastrophes, which can also arise in non-conservative dynamical systems
as well as in the static case of potential theory.

The first step in examining the stability of systems admitting discontinu-
ous transitions is to clarify the notion of stable state. Early work of Poin-
caré (ref. 17), and Pontryagin and Andronov (ref. 18) developed the notion of
structural stability which expresses two key ideas. First, equilibrium states
of a system are characterized by their topological type; it is the general shape
of a state which is important and not numerical values which it might take on.
In the case of potential functions the topological type is given by the number
of singular points. Second, discontinuous behavior of a system occurs for those
(critical) values of control parameters at which the equilibrium state changes
its topological type. Let C(=RP) be the space of control variables c, and X(=R)
the state space. The potential function is a smooth map, V(x,c), V:X X RP > R.
A point x, is a singular point of V if D,V(x,,c) = 0. The collection of control
points ang their associated singular (state) points form a manifold, called the
catastrophe manifold,

= {(x,¢) e X x RP | D V(x,c) = 0} (1)

The dimension of M is p. Figure 1 illustrates M for a quartic potential. For

a fixed value of c, there is a fixed potential function V_(x) with a fixed num-
ber of singular points. As this number changes with ¢ it stratifies (or sub-
divides) the control space into open and dense regions in which this number is
constant, separated by boundaries across which it changes. Such a change w111
occur whenever the manifold M has a tangent parallel to X, i.e. when D2V(x) =

A singular point xg3 is said to be structurally stable when DZV(XO) z 0. The set
of points which are not structurally stable appears as a folé F in the manifold
M.

= {(x,c) € X x RP? | D2V(x,c) = 0} (2)
These are points at which the map projecting M onto C is singular. The set of
critical control variables at which the number of singular p01nts changes (or
equivalently which have structurally unstable 51ngu1ar points) is called the bi-
furcation set B. This set is given by eliminating x from (1) and (2):
B=MneF

In Figure 1, B appears as the cusp in the c-plane.

In the neighborhood of a structurally stable point xO(DZV(xo) # 0) the po-

tential is quadratlc, that is there is a curvilinear coordinite system X in
which V(x) - V(x;) = . To investigate the behavior of the potential in a
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neighborhood of a structurally unstable point Thom developed the notion of a
universal unfolding of a singularity. Consider a perturbation of the potential
V > V + 6V where 6V and all of its derivatives are small. Two possibilities
arise - either the perturbation gives rise to an infinite number of different
topological types of the potential or only a finite number. In the latter case
the variation of V can be parameterized by a finite number of variables which
can be identified with the control variables, as

8V = cihy (x) + c,h, () * ... cphp(x) (3)

This variation is universal in the sense that any variation of V depending on
p-parameters can be obtained by a transformation of (3). For example suppose we
begin with a cubic potential V(x) = x3, so that 0 is a structurally unstable
point. If this potential is perturbed by 8V = ax the topological character of
V + 6V is described by the value of the parameter a as follows: for a 20, V.
has one root, an inflection point, and for a < 0, V has 3 roots, thus one maxi-
mum and one minimum, c.f. Figure 2. The importance of this result of Thom's
work is that for all potentials with the same singularity type, perturbations
need depend on only one parameter, and their behavior is of the fold type illus-
trated in the following examples. The number of parameters involved in the var-
iation of V is called the codimension of the singularity. All singularities of
codimension <4 have been analyzed by Thom. There are four potentials depending
on one state variable and these have the following form:

L

-2 S|
X7+ ag_,X + a5 X + ... a.x

1

We now summarize these results by stating a version of Thom's Theorem that
we will use in the examples of the next section. This version is given by Chow,
Hale and Mallet-Paret in reference 4 .

Thom's Transversality Theorem and Catastrophes

Let V(x,¢) : X x RP -+ R and f(x,c) = dV/dx, so that the singular points of
V are given by f(x,¢) = 0. If x = 0 is a singular point of V, f can be expand-
ed in the form

£(x,0) = AxK + 0 (]x[**h

where A # 0 and k gives the order of the singular point. Expand the derivatives
of f with respect to the parameters:

k

2 (%0 =
ci ) j

2 o
A X+ ofx[*?
o B it

0~

Then when p < k-1 and
rank (Aij) = k-1

there exists a smooth transformation of coordinates

749



Ai = hi(cl...c

P) i=1,...p

X = ho(x,cl...cp)

such that

|
"

£(x,2) =

APPLICATION OF CATASTROPHE THEORY TO DISCRETE SYSTEMS
WITH ONE STATE VARIABLE

In this section we will concentrate on the simple case of potentials de-
pending upon one state variable and two control parameters; problems of more
generality are approached in a similar manner. The physical problems we have
studied are traditional in elastic stability: an imperfection-senstive strut
and a truss that can experience snap-through. These two problems contain many
of the features of more general problems, and the results obtained can be dis-
played clearly in a graphical form. Similar problems have been treated by Koi-
ter, Thompson and Hunt, Sewell and Ziegler.

Application 1: A Strut With Imperfection Sensitivity

Consider the rigid hinged bar of length 1 that is held in a vertical posi-
tion by a linear spring, with spring constant k, that is loaded by a vertical
force P with an eccentricity e = pf (see fig. 3). The spring is attached to
the strut at a distance h from the base and is supported on its other end so
that the spring remains horizontal. The coordinate 8, which is measured between
a vertical line and the axis of the bar, specifies the state of the system. The

dimensionless parameters , _ P2 and y are the controls.
' khZ

The force function f is the gradient of the internal and external poten-
tials:

2
f=£(0;A,u) = k%— [sin6cos6-A(sind+ucoso)]

We begin by finding the surface f = 0, which is the catastrophe manifold, and
the points of structural instability f,e= 0. Upon solving these two equations
in three unknowns we find
= 2/3y-3/2
Ao = (1 + u2/3)-3/
6 = tan"l(ul/3)
where the subscript c denotes the critical condition of structural instability.

Next we prepare to use Thom's Theorem. We expand f about the critical val-
ue of the state variable and note the leading term. Here we see that in the

750



case where u # 0, £ (expanded as required) is of the order two in the variable
x=6-6.. If u=0, fexpanded is of order three.

Let us first consider the case where f is of order two. The index k equals
2 and n, the number of control parameters, is also two. Therefore the inequali-
ty in the theorem is satisfied. We note also that f evaluated at the critical
point vanishes, a further preliminary of the theorem. In order to determine the
nature of the catastrophe manifold along this portion of the bifurcation set, we
must find the rank of the matrix A which is defined in the theorem. Let £* be
f expanded about the critical point in terms of x. Now

ffl(x;xc,u) = %khZ[(sinec+pcosec)+(cosec-usinec)x + ...
1 ;
B (xsAc,n) = kh?[ AeCOSO+A sinbox + ...]
and therefore

2
k%—-[sinec+ucosec]

-
u

‘ khZ .
- AccoseC

The rank of A is one; the conditions of the theorem are satisfied. The
singularities are locally equivalent to a fold at points along the bifurcation
set away from (6.=0; A =1, p=0). This behavior is identical to that of the cub-
ic potential discussed earlier.

If we consider this latter case of g =0, we find that the function f is lo-
cally equivalent to some form of a cusp, he case where k=3 in Thom's Theorem.
In order to identify the normal and splitting factors for the manifold (see fig.
1 for the meaning of these terms), and to display the canonical form of the pol-
ynomial, we expand f about the point (6=0; A=1, u=0). We need only retain terms
to the third order since the manifold is a cusp in this neighborhood.

2
€= k%_[_eﬁ + 2(1-2)8 + 2xy]

If we place this expansion in the canonical form

£f _ a3, 7 T
W—G +}\26+7\1

we find that i& = -2Au is the normal factor and Xé =~2(1-1) is the splitting
factor. The force function for this example is of the same differential type
as a cusp but the negative multiplier causes the loci of maxima and minima for
the related potential function to be interchanged. This type of force function
is the dual cusp and the behavior of the system on the catastrophe manifold is
altogether different from that on the manifold of a regular cusp (fig. 1).
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The bifurcation set in the control plane is described by 2722 = 4X3. This
relation is an imperfection-sensitivity curve and has the familiar two-thirds
power form. The equilibrium surface and the bifurcation set are shown in Figure
1. Notice the effect of the imperfection. It lowers the value of the load at
which instability occurs. The area of the catastrophe manifold where A; > 0 is
composed entirely of unstable points; it is not accessible to the system. The
bifurcation set and a visualization of the equilibrium surface can also be pre-
sented as in Figure 4. This presentation is possible because the equilibrium
surface is a ruled surface: for each value of the state variable vector, the
equilibrium equation is an affine equation in the control parameters. The bi-
furcation set is the envelope of the projection of these lines onto the control
space. The three-dimensionality of these figures can be enhanced by a stereo-
graphic technique that is described in Woodcock and Poston (ref. 19).

Application 2: An Essential Modification of the Strut
With Imperfection Sensitivity

We will now modify the structure in Figure 3 so that the spring is attached
to a fixed point at a distance h from the level of the pivot and is fastened to
the rigid bar with a sleeve that allows the spring to remain horizontal. The
catastrophe manifold near the structurally unstable point (6=0; A=1, p=0) has
the form

f - n3 2 2
e = B 4+ £(1-2)0 - £0p
%khz 3 3

In this case the catastrophe manifold is locally equivalent to a cusp with nor-
mal factor A; = -%Au and splitting factor A, = %{l-k). Note the difference in
behavior between trajectories along this cusp and those along the dual cusp.

Application 3: A Symmetric Truss With Moveable Supports

In this example we consider a modification of the well-studied symmetric
structure that exhibits snap-buckling (fig. 5). The structure consists of two
linear-spring elements of unstretched length 2, and spring constant k that have
a horizontal projection of 2x and that are subjected to a downward load P. The
location of the tip of the truss with respect to a horizontal line through its
end points is denoted by y. We will analyze the behavior of this structure in
much the same manner as we did in example 1.

The force function f is
£ = £(z;a,b) = z(1 - 1/(22+a2)1/2) + p
where b = P/kg,

a x/SZ,0
and z ylzo

The solution for the structurally unstable points of the mapping yields the
critical set of points whose projection on the control space is the bifurcation
set. An investigation of the behavior of the system on the bifurcation set
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away from the special point (z=0; a=1, b=0) shows that the singularities are
folds locally. A similar investigation in the neighborhood of the special point
indicates the expected cusp there.

In order to determine precisely the normal and splitting factors in the
neighborhood of the cusp, we expand the force function about the tip of the cusp
retaining only terms as high as cubic. We find that the force function can be
rewritten in the canonical form

2f =03 + Ay + Xéﬁf

if
u=2z
)
T, = 2b
%, = 2(a-1)

Therefore near the cusp tip (X;=0, 75=0fi1 =2b is the normal factor and
A, = 2(a-1) is the splitting factor.

In this example the portion of the equilibrium surface behind the cusp is
accessible to the system. Deformations of the system can occur that will take
the state variable from values on the top of the cusp surface to values on the
bottom without the occurrence of a jump.

CONCLUSION

It is clear from these examples that catastrophe theory and the methods of
adjacent equilibrium and energy (given dynamical significance by their embedding
in the theory of Lyapunov) lead to similar results and require many of the same
calculations. Qualitative features of the singular behavior of systems, includ-
ing a unique visualization of discontinuous processes, can be gained quickly
from the representation of the catastrophe manifold. Catastrophe theory pro-
vides an exhaustive classification of structural instabilities in systems with
as many as four control variables and clarifies the nature of the controls. A
consistent set of controls must satisfy the rank condition of the transversality
theorem. This requirement pinpoints controls that are redundant and suggests
the need for additional ones; for example, it would have -forced the introduction
of the imperfection parameter in application 1 had it been omitted. There still
remains a good deal of work to be done before a unified theory of bifurcation is
developed and Thom's theory provides a useful set of ideas in this direction.
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Figure l.- Quartic potential: Figure 2.- Cubic potential.
cusp (dual cusp).

Figure 3.~ Imperfection-sensitive bar.
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Figure 4.,- Ruled surface
projections (cusp).

Figure 5.- Snap-through structure (symmetric).
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