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INTRODUCTION 

Consider a system under the  influence o f  control parameters c. I t  may hap- 
pen tha t  f o r  some values of c the system has more than one s t a b l e  equilibrium 
state and consequently a continuous change i n  control  may cause a discontinuous 
change from one equilibrium state t o  another. This occurs, f o r  example, i n  t he  
"snap-through" of  a compressed beam under transverse loading. 
abrupt t r ans i t i on  between s t a b l e  equilibrium states - a branching or  bifurcat ion - has been the  subject  of much study ( r e f .  1 t o  4) and recent ly  the  French top- 
o logis t  Ren6 Thom developed a theory which presents seven standard types of d i s -  
continuous behavior (ref. 5 t o  6 ) ,  ca l led  elementary catastrophes, and proved 
t h a t  any discontinuous behavior i n  systems controlled by not more than four  var- 
i ab le s  is one of these seven elementary catastrophes.  Thorn's theorem i s  remark- 
able  f o r  providing a c l a s s i f i ca t ion  of discontinuous behavior but it i s  a l so  
useful as an a id  t o  visual iz ing phenomena of t h i s  s o r t .  The proof of t h e  theor- 
em is d i f f i c u l t  but  i t s  r e s u l t s  are easy t o  understand and t o  use i n  problems 
involving bifurcat ion.  

This kind of 

Applications of Thorn's theory t o  problems i n  mechanics a re  j u s t  beginning 
The first problem solved appears t o  have been an example by Zeeman t o  appear. 

(ref. 7) and his co-workers. This example has recent ly  been generalized by 
Woodcock and Poston so t h a t  i t  can describe higher order catastrophes. 

The most extensive s tudies  come from the  group of researchers t ha t  work 
with J .  M. T. Thompson of University College, London. Thompson and H u n t  ( ref .  
8) cor re la te  t h e i r  own theories  of elastic s t a b i l i t y  f o r  d i sc re t e  systems with 
the work o f  Thom and suggest possible  f i e l d s  i n  which the  theory w i l l  give s ig -  
n i f i can t  ins ights .  Troger ( r e f .  9) suggests the nature  of such ins ights  i n  h i s  
study of von Mises t rus s  and a shallow arch from the  point  of view of catastro-  
phe theory, and Fowler ( r e f .  10) i n  h i s  paper on t h e  Riemann-Hugoniot shock does 
the  same. 

Chillingworth and Guckenheimer apply the  theory t o  continuous systems. 
Chillingworth (ref. 11) uses a generalization of Morse's Lemma t o  Hilber t  spaces 
t o  reduce the  study of the  buckling of  a beam t o  a problem i n  f i n i t e  dimensions; 
Guckenheimer (ref. 12) discusses catastrophes and Hamiltonian systems. 

The papers by Schulman (ref .  13) on phase t r ans i t i ons ,  Kozak and Benham 
(ref. 14) on denaturation, and Mehra and B l u m  ( re f .  15) on t h e  ign i t i on  of paper 
provide examples i n  t h e  realm of thermodynamics. Detailed bibliographies of ca-. 
tastrophe theory and i ts  appl icat ions t o  problems i n  o ther  areas can be found i n  
reference 16 . 
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STRUCTURAL STABILITY OF POTENTIAL FUNCTIONS 

In t h i s  paper w e  w i l l  describe a method, using Thorn's c l a s s i f i ca t ion  of 

Examination of the  s t a b i l i t y  of s ingular  
catastrophes, fo r  the analysis of s t a b i l i t y  of systems whose s ta t ic  behavior i s  
derived from a poten t ia l  function. 
points  of po ten t i a l  functions w i l l  serve t o  i l lus t ra te  the  nature of the  elemen- 
t a ry  catastrophes, which can a l so  a r i s e  i n  non-conservative dynamical systems 
as well as i n  the  s ta t ic  case of po ten t ia l  theory. 

The f i rs t  s tep i n  examining the  s t a b i l i t y  of systems admitting discontinu- 
ous t r ans i t i ons  i s  t o  c l a r i f y  t h e  notion of s t a b l e  s t a t e .  Early work of Poin- 
car6 (ref. 17), and Pontryagin and Andronov (ref. 18) developed the notion of 
s t ruc tu ra l  s t a b i l i t y  which expresses two key ideas.  First, equilibrium states 
of  a system are characterized by t h e i r  topological type; it i s  the  general shape 
of a s t a t e  which i s  important and not numerical values which it might take on. 
In the  case of po ten t ia l  functions the  topological type i s  given by the  number 
of s ingular  points .  
( c r i t i c a l )  values of control parameters a t  which the  equilibrium state changes 
i t s  topological type. 
the state space. The poten t ia l  function i s  a smooth map, V(x,c), V:X x Rp +. R. 
A point x 
points  ana t h e i r  associated s ingular  ( s ta te )  points  form a manifold, ca l led  the  
catastrophe manifold, 

Second, discontinuous behavior of a system occurs for  those 

Let C(=RP) be the  space of control var iables  c, and X(=R) 

The col lect ion of control is  a s ingular  point  of V i f  DxV(xo,c) = 0. 

M = {(x,c) E X x Rp [ DxV(x,c) = 03. (1) 

"he dimension of M i s  p. 
a f ixed value of c, there  i s  a f ixed poten t ia l  function Vc(x) with a f ixed num- 
ber u f  s ingular  points .  
divides) the control space i n t o  open and dense regions i n  which t h i s  number is  
constant, separated by boundaries across which it changes. Such a change w i l l  
occur whenever the  manifold M has a tangent p a r a l l e l  t o  X,  i .e .  when D$V(x) = 0. 
A s ingular  point xo i s  sa id  t o  be s t ruc tu ra l ly  s t ab le  when D2V(xo) f 0.  The s e t  
of points  which are not s t ruc tu ra l ly  s tab le  appears as  a f o l 3  F i n  the  manifold 
M. 

Figure 1 i l l u s t r a t e s  M f o r  a qua r t i c  po ten t ia l .  For 

A s  t h i s  number changes with c i t  s t r a t i f i e s  ( o r  sub- 

F = {(x,c) E X x Rp I D$V(x,c) = 03 (2) 

These are points  a t  which the  map project ing M onto C is  singular.  
cr i t ical  control var iables  a t  which the  number of s ingular  points  changes (or 
equivalently which have s t ruc tu ra l ly  unstable singula; points) i s  ca l led  the b i -  
furcat ion set B. This set i s  given by eliminating x from (1) and (2) : 

The s e t  of 

B = M n F  

In Figure 1, B appears as the  cusp i n  the  c-plane. 

In the neighborhood of a s t ruc tu ra l ly  s t a b l e  point xo(D~V(xo) f 0) the  PO- 
t e n t i a l  i s  quadratic,  t h a t  i s  there  i s  a curvi l inear  coordinate system T i n  
which V(x) - V(x,) = 3. To invest igate  the  behavior of the  poten t ia l  i n  a 
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neighborhood of a s t r u c t u r a l l y  unstable point Thorn developed t h e  notion of a 
universal  unfolding of a s ingular i ty .  
V + V + 6V where 6V and a l l  o f  i t s  der ivat ives  are small. Two p o s s i b i l i t i e s  
arise - e i t h e r  the per turbat ion gives rise t o  an i n f i n i t e  number of d i f f e ren t  
topological types of t he  poten t ia l  o r  only a f i n i t e  number. 
the  var ia t ion  of V can be parameterized by a f i n i t e  number of var iables  which 
can be iden t i f i ed  with the  control var iables ,  as 

Consider a per turbat ion of t h e  poten t ia l  

In  the la t ter  case 

bV = clhl (x) + c2h2(x) + . . . (3) 

This var ia t ion  i s  universal  i n  the sense tha t  any var ia t ion  of V depending on 
p-parameters can be obtained by a transformation of (3 ) .  
begin with a cubic po ten t i a l  V(x) = x3, s o  tha t  0 i s  a s t ruc tura l ly  unstable 
point.  
V + 6V i s  described by the  value of the  parameter a as follows: 
has one root ,  an in f l ec t ion  point ,  and f o r  a < 0, V has 3 roots ,  thus one maxi- 
mum and one minimum, c.f. Figure 2. The importance of t h i s  resul t  of Thorn's 
work i s  t h a t  f o r  a l l  po ten t i a l s  with the  same s ingular i ty  type,perturbations 
need depend on only one parameter,and t h e i r  behavior i s  of the  fold type i l l u s -  
t r a t ed  i n  the following examples. 
i a t ion  of V is  ca l led  t h e  codimension of the  s ingular i ty .  A l l  s ingu la r i t i e s  of 
codimension 54 have been analyzed by Thom. There are four poten t ia l s  depending 
on one state var iable  and these have the following form: 

For example suppose we 

If t h i s  po ten t ia l  i s  perturbed by 6V = ax the  topological character  of 
f o r  a 2 0, V 

The number of parameters involved i n  t h e  var- 

We now summarize these r e s u l t s  by s t a t ing  a version of Thorn's Theorem t h a t  
we w i l l  use i n  the  examples of t he  next section. 
Hale and Mallet-Paret i n  reference 4 . 

This version is given by Chow, 

Thorn's Transversali ty Theorem and Catastrophes 

Let V(x,c) : X x Rp -f R and f(x,c)  
V are given by f(x,c)  = 0. 
ed i n  the form , 

dV/dx, s o  t h a t  the s ingular  points  of 
If x = 0 i s  a s ingular  point  of V,  f can be expand- 

k+l)  f(x,O) = Axk + 0 ({XI 

where A f 0 and k gives the  order of t h e  singular point .  
of f with respect t o  the  parameters: 

Expand t h e  der ivat ives  

- af  (x,O) = 1 A . .  - X j + 01x1 k- 1 
k-2 

a ci j =O 1J j !  i = 1 , 2 ,  . . .p 

Then when p ,< k-1 and . 

rank (A . . )  = k-1 
1J 

there  exis ts  a smooth transformation o f  coordinates 
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- 
“PI 

cP) 

Ai = hi(cl..  . 
x = hO(x,c  ,... - 

i = 1, ...p 

such t h a t  
-k -- --- 

f(X,A) = x + I-, + A2x + ... Xk$-* 

APPLICATION OF CATASTROPHE THEORY TO DISCRETE SYSTEMS 
WITH ONE STATE VARIABLE 

In t h i s  sec t ion  w e  w i l l  concentrate on t h e  simple case of p o t e n t i a l s  de- 
pending upon one state var iab le  and two control  parameters; problems of more 
genera l i ty  are approached i n  a similar manner. The physical problems w e  have 
studied are t r a d i t i o n a l  i n  e l a s t i c  s t a b i l i t y :  an imperfection-senstive strut 
and a t r u s s  t h a t  can experience snap-through. These two problems contain many 
of the  fea tures  of more general  problems, and t h e  r e s u l t s  obtained can be d is -  
played c l e a r l y  i n  a graphical form. 
ter ,  Thompson and Hunt, Sewell and Ziegler.  

Similar problems have been t r e a t e d  by Koi- 

Application 1: A S t r u t  With Imperfection S e n s i t i v i t y  

Consider t h e  r i g i d  hinged bar  of length 1 t h a t  i s  held i n  a ver t ical  posi-  
t i o n  by a l i n e a r  spring, with spr ing constant k ,  t h a t  i s  loaded by a vertical  
force P with an e c c e n t r i c i t y  e = vd (see f i g .  3). The spr ing is  attached t o  
the  strut at a dis tance h from the  base and i s  supported on i t s  other  end so 
t h a t  the  spring remains horizontal .  
a v e r t i c a l  l i n e  and t h e  ax is  of t h e  b a q s p e c i f i e s  the  s t a t e  of the  system. 

The coordinate &, which is  measured between 
The 

dimensionless parameters PR and 1-1 -are t h e  controls .  
h = w  

The force function f is  the  gradient of the i n t e r n a l  and external  poten- 
t i a l s  : 

f = f(0;A,v) = - kh2 [sinecose-X(sine+1-Icose) 1 
2 

We begin by f inding t h e  surface f = 0, which i s  t h e  catastrophe manifold, and 
t h e  points  of s t r u c t u r a l  i n s t a b i l i t y  Se= 0. 
i n  three  unknowns w e  f i n d  

Upon solving these two equations 

where t h e  subscr ipt  c denotes the  cr i t ical  condition of s t r u c t u r a l  i n s t a b i l i t y .  

Next we prepare t o  use Thorn’s Theorem. We expand f about the  cr i t ical  val-  
ue of the  state var iab le  and note  the leading term. Here w e  see t h a t  i n  the  
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case where p f 0, f (expanded as  required) is of t he  order  two i n  the  var iable  
x = 0-8,. 

The index k equals 
2 and n, the  number of control  parameters, i s  a l s o  two. Therefore the  inequali-  
t y  i n  t h e  theorem i s  s a t i s f i e d .  We note  a l so  t h a t  f evaluated a t  the  cr i t ical  
point vanishes, a fu r the r  preliminary of the theorem. In order t o  determine the  
nature of t he  catastrophe manifold along t h i s  port ion of  the bifurcat ion set, we 
must f ind  the  rank of t h e  matrix A which is  defined i n  the  theorem. Let f *  be 
f expanded about the  cri t ical  point i n  terms of x. 

If p = 0, f expanded i s  of  order three.  

Let us first consider the  case where f is  of order two. 

Now 

f;A(x;hc,v) = ~kh2[(sinec+~cosec)+(cosec-~sinec)x 1 

f;p(x;Xc,v) = $h 1 2  [ Xccosec+A sinecx + . . . I  
+ . . .] 

and therefore  

The rank of A i s  one; the  conditions of the  theorem are s a t i s f i e d .  The 
s ingu la r i t i e s  are loca l ly  equivalent t o  a fold a t  points  along the  b i furca t ion  
set away from (6,=0; X =1, v=O). 
i c  poten t ia l  discussed e a r l i e r .  

If w e  consider t h i s  la t ter  case of e =0, w e  f i nd  t h a t  t h e  function f i s  lo- 
ca l ly  equivalent t o  some form of a cusp, $he case where k=3 i n  Thorn's Theorem. 
In order t o  iden t i fy  the  normal and s p l i t t i n g  f ac to r s  fo r  the  manifold (see f i g .  
1 f o r  t he  meaning of these terms), and t o  display the  canonical form of t h e  pol- 
ynomial, w e  expand f about t h e  point (O=O; h = l ,  u=O). We need only r e t a i n  terms 
t o  the  t h i r d  order s ince the  manifold i s  a cusp i n  t h i s  neighborhood. 

This behavior i s  iden t i ca l  t o  t h a t  of t h e  cub- 
C 

f = -[-e3 kh2 + 2(1-x)e + 2 ~ ~ 1  
4 

If we place t h i s  expansion i n  t h e  canonical form 

we  f ind t h a t  xl = -2hu i s  t h e  normal f a c t o r  and x2 =-2(1-A) is the  s p l i t t i n g  
fac tor .  
as a cusp but  t h e  negative mul t ip l ie r  causes the  l o c i  of maxima and minima for  
the r e l a t ed  po ten t i a l  function t o  be interchanged. 
i s  the  dual cusp and t h e  behavior of the  system on t h e  catastrophe manifold i s  
al together  d i f f e ren t  from t h a t  on the  manifold of a regular  cusp (fig.  1). 

The force function f o r  t h i s  example is of  the same d i f f e r e n t i a l  type 

This type of force function 
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The b i furca t ion  set  i n  the  control plane is  described by 27y = 47;. 
r e l a t ion  is  an imperfection-sensit ivity curve and has the familiar two-thirds 
power form. 
1. 
which i n s t a b i l i t y  occurs. The area of the catastrophe manifold where xl > 0 i s  
composed e n t i r e l y  of unstable points ;  it is  not accessible t o  the system. 
bifurcat ion set  and a v isua l iza t ion  of the equilibrium surface can a l so  be pre- 
sented as i n  Figure 4. This presentation i s  possible  because the  equilibrium 
surface i s  a ruled surface: f o r  each value of the  state var iable  vector,  the 
equilibrium equation i s  an a f f ine  equation i n  the  control parameters. 
furcat ion set  i s  the  envelope of t he  project ion o f  these l i nes  onto the  control 
space. 
graphic technique t h a t  is  described i n  Woodcock and Poston ( re f .  19).  

This 

The equilibrium surface and the  bifurcat ion se t  a re  shown i n  Figure 
Notice the effect of t he  imperfection. I t  lowers the  value of the  load a t  

The 

The b i -  

The three-dimensionality of these f igures  can be enhanced by a s tereo-  

Application 2 :  An Essent ia l  Modification of the  S t ru t  
With Imperfection Sens i t i v i ty  

We w i l l .  now modify the s t ruc tu re  i n  Figure 3 so tha t  t h e  spring is  attached 
t o  a fixed point a t  a distance h from the  level  of the pivot and i s  fastened t o  
the r i g i d  bar with a sleeve t h a t  allows the spring t o  remain horizontal .  The 
catastrophe manifold near the  s t ruc tu ra l ly  unstable point (6=0; h = l ,  v=O) has 
the form 

In t h i s  case the catastrophe manifold is loca l ly  equivalent t o  a cusp with nor- 
mal fac tor  
behavior between t r a j ec to r i e s  along t h i s  cusp and those along the  dual cusp. 

= -$AD and s p l i t t i n g  factor x2 = +(l-h). Note the  difference i n  

Application 3:  A Symmetric Truss With Moveable Supports 

In t h i s  example w e  consider a modificaTion of the well-studied symmetric 
s t ruc tu re  t h a t  exhib i t s  snap-buckling (f ig .  5 ) .  The s t ruc ture  consis ts  of two 
linear-spring elements of unstretched length R, and spring constant k t h a t  have 
a horizontal  project ion of 2x and t h a t  a re  subjected t o  a downward load P. The 
location of the  t i p  of the  t ru s s  with respect t o  a horizontal  l i n e  through i ts  
end points  is  denoted by y. We w i l l  analyze the behavior of t h i s  s t ruc tu re  i n  
much the  same manner as w e  did i n  example 1. 

The force function f i s  

f = f(z;a,b) = z(1 - 1/ (z2+a2) 112) + b 

where b = P/kR, 
a = x/ to  

and z = y/R, 

The solut ion f o r  the  s t ruc tu ra l ly  unstable points  o f  the  mapping y ie lds  the  
cr i t ical  set  of points  whose project ion on t h e  control space i s  the bifurcat ion 
set. An invest igat ion of  the behavior of t h e  system on the  bifurcat ion set 
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away from the spec ia l  point  (z=O; a=1, b=O) shows t h a t  the  s ingu la r i t i e s  are 
folds  loca l ly ,  
indicates  t he  expected cusp there.  

A similar invest igat ion i n  the  neighborhood of t he  spec ia l  point 

In order t o  determine precisely the  normal and s p l i t t i n g  factors  i n  the  
neighborhood of the  cusp, w e  expand the  force function about the t i p  of t he  cusp 
re ta in ing  only terms as high as  cubic. 
rewri t ten i n  the  canonical form 

We find t h a t  the  force function can be 

-- 
2f = 2 + TI + h,u 

i f  

- 
h ,  = 2(a-1) 
- 

Therefore near the  cusp t i p  (T1=O, X,=O)x, =2b is  the  normal fac tor  and 
A, = 2(a-1) i s  the s p l i t t i n g  factor .  
- 

In  t h i s  example the  port ion of t he  equilibrium surface behind the  cusp is  
accessible t o  the system. Deformations of the system can occur t h a t  w i l l  take 
the  state var iable  from values on the  top of the  cusp surface t o  values on the  
bottom without the occurrence of a jump.- 

CONCLUSION 

I t  i s  c l ea r  from these examples tha t  catastrophe theory and the  methods of 
adjacent equilibrium and energy [given dynamical s ignif icance by t h e i r  embedding 
i n  the  theory of Lyapunov) lead t o  similar resul ts  and require  many of the  same 
calculat ions.  Qual i ta t ive features  of the s ingular  behavior of  systems, includ- 
ing a unique v isua l iza t ion  of discontinuous processes, can be gained quickly 
from the  representation of  t he  catastrophe manifold. Catastrophe theory pro- 
vides an exhaustive c l a s s i f i ca t ion  of s t r u c t u r a l  i n s t a b i l i t i e s  i n  systems with 
as  many as four  control var iables  and c l a r i f i e s  t he  nature of t he  controls.  A 
consistent set of controls must s a t i s f y  the  rank condition of the t ransversa l i ty  
theorem. 
the  need f o r  addi t ional  ones; f o r  example, it would haveAforced the  introduction 
of the imperfection parameter i n  application 1 had it been omitted. There s t i l l  
remains a good deal of work t o  be done before a uni f ied  theory of b i furca t ion  i s  
developed and Thorn's theory provides a useful se t  of ideas i n  t h i s  direct ion.  

This requirement pinpoints controls t h a t  are redundant and suggests 
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Figure 1.- Quartic potential: 
cusp (dual cusp). 

Figure 2.- Cubic potential. 

Figure 3.- Imperfection-sensitive bar. 
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Figure 4 . -  Ruled surface 
projections (cusp) . 

Figure 5.- Snap-through structure (symmetric). 
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