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SUMMARY 

A critical review is presented of the state of the art regarding methods of 
determining the transmission and attenuation of sound propagating in nonuniform 
ducts with and without mean flows. The approaches reviewed include purely numer- 
ical techniques, quasi-one-dimensional approximations, solutions for slowly vary- 
ing cross sections, solutions for weak wall undulations, approximation of the 
duct by a series o f  stepped uniform cross sections, variational methods, and 
solutions for the mode envelopes. 

INTRODUCTION 

The prediction of sound propagation in nonuniform ducts is a problem whose 
solution has application to the design of numerous facilities, such as central 
airconditioning and heating installations, loud speakers, high-speed wind tun- 
nel s, aircraft engine-duct systems , and rocket nozzles. 

The mathematical statement of sound propagation in a nonuniform duct that 
cagries compressible mean flows can be obtained as follows. 
q(r,t) can bz expressed 9s the sum of a mean flow quantity qO(r) and an acoustic 
quantity ql(r,t), where r is a dimensionless position vector and t is a dimen- 
sionless time. In nonuniform ducts, qo(r) is a function of the axial dimension- 
less coordinate z as well as the transverse dimensionless coordinates x and y. 
Substituting these representations into the equations of state and conservation 
of mass, momentum, and energy and subtracting the mean quantities, we obtain 

Eqch flow quantity 

( 3 )  1 1  + $1 0 VPO) = [lj~ V 0 (KOVT~ + K~VTO) + (y-l)Ql] + NL 
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E b = P 1 + L L  
Po Po To (4) 

where rl and 
tion aKd NL stands for the nonlinear terms in the acoustic quantities. 
equations are supplemented by initial and boundary conditions. 

No solutions to eqs. (1)-(4) subject to general initial and boundary condi- 
tions are available yet. To determine solutions for the propagation and attenua- 
tion of sound in ducts, researchers have used simplifying assumptions. In the 
absence of shock waves, the viscous acoustic terms produce an effective admit- 
tance at the wall that leads to small dispersion and attenuation (ref. 1). 
lined ducts, this admittance produced by the acoustic boundary layer may be 
neglected, but it cannot be neglected for hard-wal led ducts as demonstrated 
analytically and experimentally by Pestorius and Blackstock (ref. 2). 

(1)-(4) and the boundary conditions. 
not valid for high sound pressure levels. The effects of the nonlinear acoustic 
properties of the 1 ining material become signjficant when the sound pressure 
level exceeds about 130 dB (re 0.0002 dyne/cm ), while the gas nonlinearity be- 
comes significant when the sound pressure level exceeds about 160 dB. In parti- 
cular$ the nonlinearity of the gas must be included when the mean flow is tran- 
sonic. 

are the linearized viscous stress tensor and dissipation func- 
These 

For 

Most of the existing studies neglect the nonlinear acoustic terms in eqs. 
However, the assumption of 1 inearization is 

Another popular assumption is that the mean flow is incompressible. Theories 
based on this assumption will not be applicable to evaluating the promising 
approach to the reduction of inlet noise by using a high subsonic inlet, or par- 
tially choked inlet, in conjunction with an acoustic duct liner. 
imental investigations (refs. 3-20) of various choked-inlet configurations have 
been reported. Most, but not all, of these investigations have noted signifi- 
cant reductions of the noise levels when the inlet is choked. Further, most of 
the potential noise reduction is achieved by operation in the partially choked 
state (mean Mach number in the throat of 0.8 - 0.9). Some investigators (e.g. 
ref. 9) report the possibility of substantial "leakage" through the wall bound- 
ary layers, whereas others (e.g. ref. 12) report that leakage is minor. To 
evaluate these effects, one cannot neglect the viscous terms in the mean flow 
and perhaps in the acoustic equations. Since the mean flow is transonic at the 
throat, one has to include the nonlinear terms also because the linear acoustic 
solution is singular for sonic mean flows. 

Numerous exper- 

A fourth assumption being employed in analyzing sound propagation in ducts 
is the characterization of the effects of the linear by an admittance that is 
deterministic and homogeneous. 
that this is not the case. 
is in its infancy (ref. 21). 

in which the boundary layer is fully developed and the duct walls are parallel 
to the mean flow (ref. 22). 
flow is replaced by a plug flow, thereby neglecting the refractive effects of 

On inspection of any liner, one can easily see 
The analysis of the effects o f  stochastic admittances 

A fifth assumption which is usually employed is that of parallel mean flow 

Further, in some analyses, the fully developed mean 
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the mean boundary layer which become increasingly more significant as the sound 
frequency increases. Certainly, theories based on the parallel flow assumption 
will not be capable of determining the attenuation and propagation character- 
istics in nonuniform ducts (ducts whose cross-sectional area changes along 
their axes). 
sound propagation in nonuniform ducts. Each approach has unl'que characteristics 
and advantages as well as obvious limitations, either of a numerical or a physi- 
cal nature. Some of these approaches were reviewed in reference 22. The pur- 
pose of the present paper is to present an updated critical review of these 
approaches. 

Recently, a number of approaches have been developed to treat 

DIRECT NUMERICAL TECHNIQUES 

Direct numerical methods based on finite differences have been proposed 
(refs. 23-25) .  However, these methods have been restricted to simple cases of 
no-mean flow or one-dimensional mean flow and/or plane acoustic waves and pro- 
mise to become unwieldy for more general cases. Methods were also based on fi- 
nite elements (refs. 26 and 27) .  
practical because of the excessive amount of computation time and the large 
round-off errors. The latter is a result of the necessity of using very small 
axial and transverse steps or very small finite elements to represent the axial 
oscillations and the rapidly varying shapes of each mode. In fact, a computa- 
tional difficulty exists even in calculating the higher-order Bessel functions 
that represent the mode shapes in a uniform duct carrying uniform mean flow un- 
less asymptotic expansions are used. 
must be much smaller than the wavelength of the lowest mode in order to be able 
to determine the axial variation. These small steps and finite elements would 
cause the error in the numerical solution to increase very rapidly with axial 
distance and sound frequency. 

These purely numerical techniques would be im- 

Moreover, the axial step or finite element 

To simplify the computation of the axial variation of the lowest mode in a 
two-dimensional duct with constant cross-sectional area but varying admittance, 
Baumeister (ref. 28) expressed the pressure as 

where k is the propagation constant corresponding to a hard-walled duct. Then, 
he used finite differences to solve for the "so-called" envelope P(x,y). This 
approach is suited for the lowest mode. 

QUASI -ONE-DIMENSIONAL APPROXIMATIONS 

The earliest studies of sound propagation in ducts with varying cross 
sections stemmed from the need to design efficient horn loudspeakers. Such 
horns are essentially acoustic transformers of plane waves and their efficiency 
depends on the throat and mouth area, the flare angle (wall slope), and the 
frequency of the sound, The walls of the horns are perfectly rigid and they do 
not flare so rapidly to keep the sound guided by the horn and prevent its spread- 
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ing out as spherical waves in free space. 

For the case of no-mean flow, one writes the quasi-one-dimensional equiva- 
lent of eqs. (1)-(4). 
(ref. 29). 

Combining these equations, he obtains Webster's equation 

where S is the cross-sectional area of the duct. This equation can be derived 
alternatively as the first term in an expansion of the three-dimensional acous- 
tic equations in powers of the dimensionless frequency (ref. 30). It can also 
be derived by integrating the acoustic equations across the duct. Solutions of 
equation (5) have been obtained and verified by many researchers (ref. 22). 
ing the method of multiple scales (ref. 311, Nayfeh (ref. 32) obtained an ex- 
pansion for equation (5) with the nonlinear terms retained; the solution shows 
the variation of the position of the shock with the cross-sectional area. 

Us- 

In the case of mean flow, one writes the quasi-one-dimensional equivalent 
of equations (1)-(4). For linear waves and sinusoidal time variations, the re- 
sulting equations describing the axial variations were solved for a special duct 
geometry for which the equations have constant coefficients (ref. 33), for the 
case of short waves by using the WKB approximation (ref. 34), and for general 
duct geometry by using numerical techniques (refs. 35 and 36). The nonlinear 
case was treated by Whitham (ref. 3 7 ) ,  Rudinger (ref. 38), Powell (refs. 39 and 
40) ., and Hawkings (41 ) I 

In this quasi-one-dimensional approach, one can determine only the lowest 
mode in ducts with slowly varying cross sections and cannot account for trans- 
verse mean-flow gradients or large wall admittances. 

SOLUTIONS FOR SLOWLY VARYING CROSS-SECTIONS 

For slowly varying cross sections, the mean flow quantities are slowly vary- 
ing functions of the axial distance; that is,qo = qo(zl9x,y), where z1 = EZ 
with E being a small dimensionless parameter that characterizes the slow axial 
variations of the cross-sectional area. For linear waves and sinusoidal time 
variations, the method of multiple scales (ref. 31) is used to express the 
acoustic quantities which are expressed in the form 

where zn = E ~ Z  and 

?& = - w, = ko(zl) at (7)  

Expressing each acoustic quantity as in equation (6) , substituting these 
expressions into equations (1)-(4) and the boundary conditions, and equating co- 
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efficients of equal powers of E yield equations to determine successive- 

acoustic pressure can be expressed as 
. The zeroth-order problem is the same as the problem for a duct that 

lY is the loca 7 qy parallel with z1 appearing as a parameter. The solution for the 

QO(X,y9zl ,z2 * ,ZN) = A(x,y,zl,Z2,. - * ,ZN)$(X,Y,ZI) (8) 

where $(x,y,zl) is the quasi-parallel mode shape corresponding to the propaga- 
tion constant ko(z1 ) .  
approximation; it is determined by imposing the so-called evaluable conditions 
at the higher levels of approximation. To first order, one obtains the follow- 
ing equation for A: 

dA 
dz 1 

The function A is still undetermined to this level of 

(9) f(z1) - +  g(zl)A = 0 

where f(z1) and g(zl) are obtained numerically from integrals across the duct of 
$, qo, ko, and their derivatives. 

Equation (9) has the solution 

A(z1) = AoexPCiEJkl(z1 Id21 (1 0) 

where kl =ig(zl)/f(zl). 
from the initial conditions. Then, to the first approximation, 

To first order, A. is a constant to be determined 

p1 = Ao$(x,y;zl)exp [ k o ( z l )  + ~k~(z~)]dz - iwt 
According to this approach, one can determine the transmission and attenua-* 

tion for all modes for hard-walled and soft-walled ducts with no-mean flow (ref. 
42), two-dimensional ducts carrying incompressible and cornpressi ble flows (refs-. 
43 and 44), and annular ducts (ref. 45). %us, in this approach one can include 
transverse and axial gradients, slow variations in the wall admittances, and 
boundary-layer growths, but the technique is limited to slow variations and the 
expansion needs to be carried out to second order in order to determine reflec- 
tions of the acoustic signal. 

WEAK WALL UNDULATIONS 

In this approach, one assumes that the cross section of the duct deviates 
slightly from a uniform one. 
rical duct can be expressed as 

For example, the dimensionless radius of a cylind- 

R(z) = 1 + ER~(z) (12) 
and the dimensionless posi.tions of the walls of a two-dimensional duct can 
be expressed as 



where E is a small dimensionless parameter and R1, dl, and d2 need not be slow- 
ly varying functions of z. 

uniform one, a number of researchers (refs. 46-49) sought straightfoward expan- 
sions (called Born approximations in the physics 1 iterature) 
sional ducts and sinusoidal time variations, the expansions have the form 

N 

Taking advantage of the small deviation of the duct cross-section from a 

For two-dimen- 

(14) 
N 2 E~Q,,(Y,Z) + O(E 1 
n=l 

qi(Y,z,t) = exp(iut) 

Substituting expressions 1 i ke equation (14) for each flow quantity in equations 
(1)-(4) and the boundary conditions and expanding the results for small E, one 
obtains equations and boundary conditions for the successive determination of 
the Qn. 

Isakovitch (ref. 46), Samuels (ref. 47), and Salant (ref. 48) obtained 
straightforward ekpansions for waves propagating in two-dimensional ducts when 
dl and dp vary sinusoidally with z. Under these conditions, first-order ex- 
pansions are unbounded for certain frequencies called the resonant frequencies; 
hence, the straightforward expansion is invalid near these resonant frequencies. 
Nayfeh (ref. 50) used the method of multiple scales and obtained an expansion 
that is valid near these resonant frequencies. He pointed out that resonances 
occur whenever the wavenumber of the wall undulations is equal to the difference 
of the wavenumbers of two propagating modes. These results show that these two 
modes interact and neither of them exists in the duct without strongly exciting 
the other modes. These results were extended by Nayfeh (ref. 51) to the case of 
two-dimensional ducts carrying uniform mean flows in the absence of the wall un- 
dul at i ons . 

- _ L  - % 

Tam (ref. 49) obtained a first-order expansion for waves incident in the 
upstream direction on a throat or a constriction in a cylindrical duct. 
results show that substantial attenuation of wave energy is possible for an 
axial flow Mach number of about 0.6 and throats of reasonable area reduction. 
It should be noted that the straightforward expansion is not valid for long 
distances and it might break down near resonant frequencies. These deficiencies 
can be removed by using the method o f  multiple scales. Then, one can account 
for all effects except large axial variations. 

His 

APPROXIMATIONS BY STEPPED UNIFORM SECTIONS 

In this approach, one analyzes the effects of the continuous variations in 
the wall admittance and/or the cross-sectional variations by approximating the 
duct by a series of sections, each with a uniform admittance (refs. 52 and 53) 
and a uniform cross-section (ref. 54). Then, one matches the pressure and the 
velocity at all interfaces of the different uniform sections. Hogge and Ritzi 
(ref. 55) approximated the duct by a series of cylindrical and conical sections 
and matched the pressure and velocity at the approximate interfaces between sec 
tions. Since the end surfaces of the conical sections are spherical rather 
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than planar, the interfaces between sections do not match exactly and some error 
i s i n troduced . 

This approach is most suited for cases in which the wall liner consists o f  
a number of uniform segments (refs. 52,53,56-61) and/or cases in which the duct 
cross-section consists of uniform but different segments (ref. 62). 
latter case, determining the mean flow can be a formidable problem if viscosity 
i s  included. In approximating a duct with a continuously varying cross-sectional 
area by a series of stepped uniform ducts, a large number of uniform segments 
are needed to provide sufficient accuracy for the solution when the axial varia- 
tions are large. 

In the 

VARIATIONAL METHODS 

In the variational approach, one uses either the Rayleigh-Ritz procedure, 

Since the Lagrangian is not known yet 
which requires the knowledge of the Lagrangian describing the problem, or the 
method of weighted residuals (ref. 63). 
for the general problem, the Galerkin procedure (a special case o f  the method 
of weighted residuals) is the only applicable technique at this time. According 
to this approach, one chooses basis functions (usually the mode shapes of a 
quasi-parallel problem) and represents each flow quantity as 

where the 4 are the basis functions, which, in general, do not satisfy the bound- 
ary conditih. 
ing the result into equations (1)-(4) and the boundary conditions, and using the 
Galerkin procedure, one obtains coup1 ed ordinary-differentia1 equations describ- 
ing the $n. 

Stevenson (ref. 64) applied this approach to the problem of waves propagat- 
ing in hard-walled ducts with no-mean flow. 
used the variational approach with the Lagrangian for waves propagating in hard- 
walled ducts with no-mean flow, Eversman, Cook, and Beckemeyer (ref. 66) applied 
the Galerkin approach to two-dimensional lined ducts with no-mean flow, and Evers- 
man (ref. 67) applied it to ducts carrying mean flows. 

Since the $ (z) vary rapidly even for a uniform duct, $ (z) aexp(ik z) and 
k can be very lbge for the lower modes, very small axial steps must be k e d  in 
t!e computations resulting in large computation time, which increases very rapid- 
ly with axial distance and sound frequency. 

On expressing each flow quantity as in equation (15), substitut- 

These equations are then solved numerically. 

Beckemeyer and Eversman (ref. 65) 

THE WAVE ENVELOPE TECHNIQUE 

According to this approach, one uses the method of variation of parameters 
to change the dependent variables from the fast varying variables to others that 
vary slowly. Thus, each acoustic quantity q l  is expressed as 
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... ... 
+ An (z)exp[ -i ,(z)dz - iwt]Qn(x,y,z) (16) 

where the Q (x,y,z) are the quasi-parallel modes corresponding to the quasi- 
parallel prgpagation constants k (z), the tilde refers to upstream propagation, 
N is the number of modes used, aRd A ( z )  is a complex function whose modulus and 
argument represent, in some sense, tie amplitude and the phase of the nth mode. 
Since k is complex, the exponential factor contains an estimate of the attenua- 
tion ra!e of the nth mode. Thus, 

is the envelope of the nth mode. 
To use this method, one determines first the functions qn (1 1 (x,y,z), I), (2)  (x, 

y,z)9 $i3)(x,y,z), qn (4)  (x,y,z), and $(5)(x,y,z) which are solutions of the ad- 

Multiplying equations (1)-(4), respectively, by qn (l) , 9, (2 )  , qn (3) , $n (41, and qn (5 )  

n 
joint quasi-para1 le1 problem corresponding to the propagation constant kn. 

adding the resulting equations, integrating the result by parts across the duct 
to transfer the transverse derivatives from the dependent variables to the 
and using the boundary conditions, one obtains 2N integrability conditions (con- 
straints), one corresponding t o  each k . 
(eq. 16) into these integrability condhions, one obtains 2N first-order ordinary 
differential equations for the An. Then, these equations are solved numerically. 

This technique has been applied by Kaiser and Nayfeh (ref. 68) to the pro- 
pagation of multimodes in two-dimensional, nonuniform, 1 ined ducts with no-mean 
flow. 
al approach especially for large sound frequencies and axial distances. This 
approach is being applied to the inlet problem by Nayfeh, Shaker, and Kaiser. 

Substituting the truncated expansion 

The results show that the present technique is superior to the variation- 
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