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This paper develops a hierarchically-structured, suboptimal controller
for a linear stochastic system co.,gosed of fast snd slug subsystems. It is
proved that the controller is optimal in the limit as thc! separation of
time scales of the subsystcir.s becomes infinite. The methoe.ology is illus-
trated by design of a controller to sup press the phugoid and short period

modes of the longitudinal dynamics of the F-8 aircraft.

INTRODUCTION

A com-non occurrence in engineering systems is the presence of
phenomena that natv;ally evolve in wi6ely separated time scales. Scar

examples drawn from the ti • lds of aerospace and power engineering w'
serve to illustrate this point.

It is well-known [1] that the longitudinal dynamics of an aircraft
are coaprised of two distinct oscillatory modes - the phugoid and short
period - of peziods on the order of 100 sec. and 1 sec. A terre y tri.al in-
ertial navigator has Schuler oscillations of period 84 min, and earth rate
oscillations with period 24 hr. [2]. A dual spin satellite in synchronous
orbit will be subject to an orbital oscillation with a 24 hr. period and
a n utation with period on the order of 1-10 sec. [3,4). These effects are
often used in an ad hoc way in the design of filters and controllers,
usually by assuming that the slo g modes are constant if the fast modes aie
of concern, or by ignoring the fast modes when the slow modes are of inter-
est. See [3, 5-8, 28) for examples.

Additional examples can be found in the f,.eld of electric power
system..s. An electrical machine has an oscillatory mode involving stator
fluxes that is invariably neglected in favor of the much slower elect_o-
r..ec`:anical oscillations in stability studies [9). A sir^ilar approximation
is made in studies of a large number of interconnected machines, in which
the intermachine electrcrechanical swings are ignored when the much slo.4er
average frequency behavior is of prir,.ary concern [10).

In addition to these concrete examples, note that proponents of
hierarchical control often :suggest that tha task of controlling a large
^.cale system should be partitioned into subtasks by time scale. Thus the
higher levels of the control system are concerned with slower: phenomena,
an-1 the lower levels with faster phenomena [11-1.4]. It is difficult to
pc,i.nt to any specific examples, with the possible exce-Ption of the inter-
a%tion'h•^tween automatic generation control and economic dispatch on

^ I e_tric power sy-teens [15).

The nulti :1•.- time scale phenomaria alluded to above are conveniently
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modelled via perturbation theory (16). There are a number of possible ap-
proaches, but we will adopt the framework of singular perturbation theory.
This theory has been applied to a variety of control problems by a number
of authors (17-21, 24-27) but the previous work most relevant to this paper
is that of Kokotov.ic et. al. (18-201 and Haddad (211. This paper is in the
spirit of (18-21), and moreover requires several of the detailed results of
these papers concerning singular perturbations of Ricatti equations.

Specifically, the paper begins by analysis of singular perturbations
for linear stochastic systems with two time scales. An approximating system
is obtained with the property that the mean-square error between the states
of the actual and approximating systems approaches zero as the separation
of time scales becomes infinite. The usefulness of this result is demon-
strated by application to the stochastic optimal linear regulator problem.
With the machinery properly set up, it is straightforward to identify the
asymptotically optimal controller, using known results on singular pertur-
bations of Riccati equations. The controller has an interesting hierarchical
structure, with the implication of reduced online computations.

These new theoretical results are illustrated by applicaticn to an
important control problem. An asymptotically optimal two time scale control-
ler is developed for the longitudinal dynamics of a jet aircraft. The two
time scale controller is compared to the optimal controller, and it is
demonstrated that there is negligible degradation in performance.

An attempt is made throughout to relegate technical details to the Ap-
pendix, so that the paper will be accessible to engineers interested only
in the two time scale design procedure.

MAIN RESULTS

Singular perturbation theory is concerned with systems of the form

i (t; E) = f (x, y, E)	 (2.1)

E f(t; E) - g(x, y, E)	 (2.2)

and the corresponding degenerate system

i (t; 0) - f (x, y, 0)	 (2.3)

0 - g (x, Y, 0)	 (2.4)

The basic question is whether (2.3) - (2.4) is an approximation to
(2.1) - (2.2) in the sense that

Jim x (t; E) = x(t; 0)	 (2.5)

E-+0

lim y(t; E) = y(t; 0) 	 (2.6)
E-+0

Various technical assumptions are required to obtain (2.5) and (2.6), but
under these assumptions the degenerate system is a valid reduced order ap-
proximation to the original system in the sense that for E sufficiently
small the solutions of the two systems are close.

In the stochastic case, the situation is more complex. Consider the
linear system

xl (t; E)	
A11(^) Al2(E) x

1 (t; E)^	 L1(E)

d	 ^+
at	 {{	

II ^(t)

E 
	 (t; E)	 A21 (E)A 22 (E)	 x 2 (t; 0	

L2 (E) J

(2.7)

Z



where

x1(0; E) 0

E (2.8)

x 2 (0; E) 0

x l (0; E) x1 (01	 E)	 x1 (0;	 E) x1 (0;	 E)	
%11	 Z12

E _ (2.9)

x2 (0; e) xi (0; 	 E)	 x2.,,0;	 E) x2 (0;	 E) I	
E21-22

E	 (t)''I	 - 0 (2.10)

E {E,(t)CT(s)} -	 Hd(t - s) (2.11)

x 1 (0),	 x2 (0)	 are independent of C 1 (t),	 C 2 (t),	 and all matrices are continu-

ous in E at E = 0.	 Moreover,	 A 22 (0)	 is stable.

An approximation to	 (2.7)	 is desired that is valid for small 	 E and is
simpler than	 (2.7). Note that Getting E - 0 in 	 (2.7)	 is inadequate; since

x
2 
(t;	 0) - A 22 1 (0)A 21 (0)x 1

(t;	 0)	 - A22 1 (0)L2 (0)U t) (2.12)

has a white noise component and therefore has infinite variance. Consequent-
ly,

E 1 I x 2 (t; E)	 -	 x2 (t;	 0) ) T (
x2 (t;	 E)	 -	 x 2 (t	 0)' I	 + m (2.13)

1
so that x 2 (t; 0)	 is no- an approximation to x 2 (t;	 E)	 (in the least squares

sense).

Instead, define the stochastic degenerate system associated with (2.7)
to be the system

z ld (t;	 E) - Alld(E)xId(t;	 E)	 +	 L ld (E)E(t),	 X Id (0;	 E)	 =	 x 1 (0) (2.14)

X	 )
2d 

(t;	 E = A	 (E	
ld

)X	 (t;	 E	
22d	 2d	 2d)	 + A	 (Ox	 (t;	 E)	 + L	 (E)^W'

21d

x 2d (0;	 0	 - x2 (0) (2.15)

where

A	 (E)
lld

A	 (E)	 -	 A	 (E)A	 -i (E)A	 (E)
11	 12	 22	 21

(2.16)

L ld (E) Ll(E)	 - A l2 (E)A22 1 (E)L
2 (E) (2.17)

A21d(E)
	 - A21 (r) (2.16)

L2d (E) L2(E) (2.19)

Notice that the stochastic degenerate system is of the same order as the
original system, unlike the situation for deterministic singular pertur-
bations.

Theorem 1

Consider the linear stochastic system (2.7) - (2.11) and a correspond-
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ing stochastic degenerate system (2.14) - (2.15). Assume that all matrices
in the two systems are continuous in E at E = 0, and that A 22 (0) and

A 11 (0) - A l2 (0)A 22 1 (0)A 21 (0) are stable 	 (i.e., have eigenvalues in the

open left half complex plane). Then the stochastic degenerate system is an
approximation to the original system in the sense that

lim E{(x 1 (t; E) - x ld (t; E)) (x 1 (t; E) - x ld (t; E)) T ) . 0	 (2.22)
Ei0

lim E { ( x 2 (t; E) - 
X 2 (t; E)) ( x 2 (t; E) - X 2 (t; E T) ) } 	 0	 ( 2.23)

E'* 0
uniformly for 0 < t < ^.

Proof

The proof of the theorem is quite involved. Differential equations for

E ll ( t ;E)	 E{xl(t ;E)x
" '
l(t;E)} = E{(x1(t ;E)-xld(t;E))(Z1(t;E)-xld(t;E T))	 }

(2.24)

E22 (t; E)	 E 
{x2 

(t; E) x2 (t; E) ) G E { ( x 2 (t; E) - x 2d (t; E)) ( x 2 (t; E) -x 2d (t; E)) T}

(2.25)
are obtained, and the limits are evaluated by (non-stochastic) singular
perturbation theory to establish (2.22) and (2.23). See the Appendix for
details.

Remarks

1. Note that the stochastic degenerate system is the same order as the
original system, so that (2.23) is valid for t = 0.

2. Clearly, the assinnptio.i A 11 (0) - Al2 (0)A22 1 (0)A21 (0) stable is only

necessary to insure uniform convergence in (2.22), (2.23) on the infinite
interval. without this assumption, a theorem of Tihonov [16] can be invoked
which insures uniform convergence in (2.22), (2.23) for sets of the form
[0,T).

3. Proof is easily generalized to cover uniformly asymptotically
stable time-varying systems at the expense of some additional notation.

Consider now the system 	 I

k(t; E) = A(E)x(t; E) + D(E)u(t) + L(E)^(t) 	 (2.26)

with observations

(2.27)y(t; E) = Cx(t; E) + 6(z)

and cost

T

	

J = lio T lE{	 xTQx + uTRu dt}]
T+ 0	 0

(2.26)

Mote that this assumption implies that there exists an E 0 >0 such that the

system matrix in (2.7) is stable for all 0 < E < E 0 [22].

y
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A11	 '12 B1
x ^	 A =

A21	 A22
B =

B2
x2 

J	 E	 E E

1

L 1 Qll	 Q21
L	 C a	 C1	 C2	 , Q = 	> 0,	 R> 0L

2
E Q21	 S`22

6.

E{^(t) }	 =	 0,	 E {6 (t) }	 =	 0

E {^(t)j(s)} 	 6(t-s),	 E{6(t)6T (s)}	 = Od(t-s)

^> 0	 0> 0

and ^(t), 6(t)	 are independent and Gaussian. The assumptions

[F+(E),	 B(E)],	 (A(E),	 L(E)]	 controllable (2.29)

[A(E) ,	 C] ,	 (A( E) , 3 Q]	 observable (2.30)

are made,	 0 < E < E0.

As is	 well known, the optimal control law is

u(t;	 E)	 _	 - G(E)x(t;	 E) (2.31)
where

G(E)	 - R-1BTK(E) (2.32)

and K(E)	 satisfies

0 -	 - K(E)A(E)	 -	 AT (E)K(E)	 - Q(E)	 + K(E)B(E)R- 1 BT (E)K(E) (2.33)

The estimate satisfies the equation

x(t;	 E)	 - A(E)x(t;	 E)	 +	 H(E) (y (t;	 E)	 - Cx(t;	 E))	 +	 B(E)u(t;	 ', (2.34)

where

H(E)	 - E(E)C'0-1 (2.35)

and E(E)	 satisfies

0 = E(E)AT (E)	 + A(E)E(E)	 + L(E)E_ LT (E) - E(E)CT R-10E(E) (2.36)

At this point, we are ready to apply Theorem 1 to approximate the

controller	 (2.31),	 (2.34)	 by a two time scale controller. Because of
Theorem 1, any system that has a stochastic degenerate system i;. common

with the optimal closed-loop system will be asympotically optimal. The

optimal closed-loop system can be written

3c 1 (t; E)

1 (t; E)
Eic2 (t; E)

fx 2 (t; E)

_s
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A 11 -B1G1(E) Al2 -B1G2(f)

H 1 (E)C 1 A11-b1G1(E)-H1(E)C1
H1(E)C2 Al2-BIG2(E)-H1(E)C2

A21 -B2G1(E) A22 -B2G2(E)

EH 2 (E)C 1 A21-B G	 (E) -EH	 (E)C EH	 (E)C A	 B G	 (E)-EH	 (E)22- 2 2	 22	 1	 2	 1 2	 2

	

x 1 (t; E)	 L1	 0	 (t)

1	 +	 1
(2.37)

	

x 2 (t; E)	 L2	 0

	

x2 (t; E)	 0	 tH 2 (E)

Note that the stochastic degenerate system can be obtained by eliminating
from the equations for x l , x 1 using the algebraic relations thatx2, x2 

result when E is set equal to zero in the left hand side of (2.37). of
course, the resulting system cannot be implemented since the value of E in
the x 1 and x2 equations is not a design parameter.

An implementable system that has a stochastic degenerate system in com-
mon with (2.37) is obtained as follows. Assume that (A22-B2G2(E)-H2(E)C2)-1

exists. Set E = 0 in the left hand side of only the x 2 equations of (2.37)
to obtain:

x2 	 -(A22	 B 2G 2 (E) - H2(E)C2)-1((A21-B2G1(E) - H2 Mc 1 
)X 

1  +

	

+ H 2 (E)C 1 x 1 + H 2 (E)C 2 x 2 + H 2 (E)6]	 (2.38)

Substitute into the x 1 equation to obtain

Rld(t; E) e A11Dxld(t; E) + H 1Dy(t; E)	 (2.39)

where

A 11D (E) - A11-B1G1(E) - H
1 (E)C 1 - (A 12-B1G2(E)-H1(E)C2) x

(A22-B2G2(E)-H2(E)C2)-1(A21 - B 2G 1 (E)- H 2 (E)C 1 )	 (2.40)

H1D (E) = H1(E)-(Al2-B1G2(E)-H1(E)C2)(A22-B2G2(E)-142(E)C2)- 1x2(E)

(2.41)

H2(e) - EH 2 (E)	 (2.42)

Bajed on this analysis, the following suboptimal closed-loop system is
obtained.

x 1D (t; E)

X ID (t; E) a
Ek2D (t; E)

EX2D (ti E)



h

I

A11
	 -B1G1(E)
	

Al2	 -A1G2(F)

H1D(E)C1	
A 11U (f )
	

H 1 ( E ) C 2	0

A21
	 -B2G1(E)
	

A22	 -B2G2(E)

H 2 (E)C1	 A 21 -B 2G 1 (L)-H
2 MC I	 H 2 (E)C 2	A22-B2G2(E)-H2(E)C2

x1D(t;F)

x1U(t;L)

Ix2r)(t; E)

1. x2D(t; L)

6 1	0	 r(t)

0	
H 1D	 (

(E)	 L e t)

L2	0	
I

0	 H2 (E) J
(2.43)

Clearly, (2.43) is not the stochastic degenerate system of (2.37), but has
been constructed to have a stochastic degenerate system in common with (2.37)

Theorem 2.

Consider_ the LQG problem defined by (2.26) - (2.28). Assume that the
controllability and observability assumptions (2,29), (2.30)hold and that

(A22 - B2G2(E)-H 
2(E )C 2 ) -1 exists, 0< L < E 0 . Then the suboptimal closed-loop

system (2.43) is asymptotically optimum in the following sense:

lim	 E{(x1 (tJE) -x ID (t;E))(x 1 (t;E)-x 1D (t;E)) TxID (t;E))( x 1 (t;E)-x 1D (t;E)) T  t 0
E+ 0

lim	 E{(x1(t;E)-x1U(t;E))(x1(t;E)-x1D(t;e))T} 	 0

C+ 0

lim	 E{(x2(t;E)-x2r)(t;E))(X2(t;E)-x2D(t;E))T} 	 0
C+0

lim	 E{(x2(t;E)-x2D(t;E))(x2(t;E)-x2D(t;E))T} = 0
C'0

Proof

As noted above, (2.37) and (2.43) have a common stochastic degenerate
system which go ,erns their behavior as E-+ 0. Therefore, all that is
required is the verification of the hypotheses of Theorem 1.

The required continuity properties follow from (18, 201. Note that
under the stated controllability and observability assumptions the degener-
ate and boundary layer system controllability and observability conditions
required are satisfied (24). The required stability properties are es-
tablished as a consequence of the stability of the closed loop LQG design
and a previously quoted result (22). Full details can be found in (23).

Remarks

1. Note that the above results are not the most general possible, since

the time-varying and finite horizon case could probably also be solved.
However, the above results are of the greatest practical interst.

2. Extension to more than two time scales in straightforward (22).

7r
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a.	 V,

3.1nvestigation of the rather ad hoc assumption ( A 22 A2(E)c;2(E)-}{.^(C)C2)-1

exists for 0 < E < co would be of theoretical interest since verification
is difficult. As a practical matter, this issue is less important, since
invertibility for the value of E of interest is easily checked. The per-
formance of the two time scale controller can then be directiy assessed.

4. The proposed suboptimal controller is illustrated in Figure 1. Notice
that there is a unidirectional interface between the slow and fast filters.
Thus there is opportunity for considerable reduction in en-line comput-
ational effort since the two sets of filter equations can be numerically
integrated in different time scales (i.e., with different step sizes).

5. The above development assumed, for simplic:Ly, that the optimal gain
matrices H(6), G(E) were computed. In fact, by a more elaborate analysis, it
is possible to show that only asymptitic approximations to H(E), G(E) near
C - 0 need to be computed (22]. I t_ is possible to compute these approxi-
mations by the methods extensivaIy studied in [18-21], thus obtaining a
potential reduction in off-line as well as on-line computation.

6. Notice that it is the two time scale nature of the closed loop
system that is required. In the above analysis, as E - ► 0 the closed loop
system automatically has fast and slow modes. In a physical system c has a
fixed, non-zero vas.:_. Consequently, it is possible that the open loop
dynamics can have fast and slow modes, but in the closed loop these slow
modes are eliminated.

TWO TIME SCALE CONTROL OF AIRCRAFT
LONGITUDINAL DYNAMICS

The particular problem to be addressed in this section is the design of
a feedback control system for the longitudinal dynamics of an F-8 aircraft.
Specifically the controller must produce elevator commands to keep the air-
craft in steady level flight in the face of wind disturbances. For simplici-
ty, the wind disturbance is modelled as white.

The equations of motion of an airplane are a set of coupled nor_linear
equations in the longitudinal and lateral state variables. if the equations
are linearized about nominal state and control variables, then the result-
ing linear equations are found to approximately decouple into separate sets
for the longitudinal and lateral dynamics. See [1] for an excellent discus-
sion of the modelling issues.

The aircraft's longitudinal variables are

V

X = a
	

u= 8e

q

where
V = horizontal velocity deviation in ft/sec
Y = flight path angle in radians,
a = angle of attack in radians,
q = pitch rate in rad/sec.
0 = is the elevator deflection in radians

The interpretation of these variables is given in Figure 2. Table 1 gives
the system matrices. It is assumed that velocity and pitch rate measurements,
both corrupted by wideband noise, are available.

Figures 3-4 show the system response to an initial pitch 9(0) = 1^,
V(0) - 100 ft/sec in the absence of the wind disturbance. The two time scale
behavior is well illustrated here. Table 2 gives the system's eigenvalues
and eigenvectors. Note that the variables V, Y dominate the slower phugoid

p 
0
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mode, and the variables a,q dominate the faster short period mode. The
physical nature of these oscillations is beautifully described on pages
320-328 of [1].

From the above discussion and inspection of the system A matrix, the
equations for V and Y are the logical candidates for the slow dynamics and
the equations for a and q are suggested as the fast dynamics. For determi-
nation of e, the following procedure is sug gested. Note that the state
equations can be written

	

d I x  1	 All	 Al2	 x 
	

+	 B1	 u +	 I1

	

dt F2 J	 X21 X22 J L	 x2 	 EB2	 F-L"
J

	

where x1 = [V YJ	 Z. = [a qJ. For E _ .01, the matrix

	

-.012	 .0100

EA22	
-.0901	 .0069

has eigenvalues comparable to those of A111. Determination of a value of E

is actually not required for desigr. of tF^e two time scale controller, but
is useful for judging the appropriateness of the approximation E = 0.

Before proceeding with the regulator design, a few remarks are in

order. First, the aircraft longitudinal variables more often include the

pitch 6 instead of the flight path angle Y. It was only after considerable
difficulty that the above formulation, in which the choice of fast and slow
variables is clear, was hit upon. Second, the extensive literature on
singular perturbation theory contains almost no discussion of the choice
of fast and slow variables, or the choice of E. But determination of these
quantities is th , first problem one has to face up to in applica"ions of
the theory.

A LQG controller was designed for the Q and R matrices Q = diag
[.01,0,3260,3260), R = 132601 using standard routines [29]. Design goals

	

were to (i) achieve a damping ratio ^ >. 707	 for both modes (ii) reduce
the state variables response to the wind disturbance. Closed-loop eigen-
values and RMS state variable and estimation error standard deviations are
given in Table 3. As noted in remark 6 of Theorem 2, it is critical that
the open loop separation of modes be present also in the closed loop. From
Table 2, the optimal design has this property. The closed-loop eigenvalues
of the two time scale controller and corresponding RMS state variable and
estimation error standard deviations are also listed in Table 3. Note the
generally good correspondance between the optimal and suboptimal designs.

SUMMARY AND CONCLUSIONS

This paper has considered the reduction in on-line computational ef-
fort for an LQG design with fast and slow closed loop modes. Together with
the results of [18-211, this paper demonstrates that the singular pertur-
bation approach to the LQG problem offers the potential of near optimal
performance with reduction in both on-and off-line computation.

ti

The design procedure of this paper has been applied to control of the
longitudinal dynamics of a jet aircraft. A two time scale design was
obtained with performance extremely close to that of the optimal design.
Note that recent proposals for adaptive flight control systems require
multiple Kalman filters running in parallel [30, 311, so that reduction of

9
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on-line computation is of definite interest.

Several directions for future research are evident. First, procedures
for systematically picking the fast and slow variables of a system with fast
and slow modes, as well as for determining explicitly f - , would be highly
useful in applications. Second, note that the design of Fiqure 1 has an
interesting hierarchical structure. In fact., as pointed out in [14), if a
system is composed of a number of fast subsystems with a slow interecnnect-
ing equation,a decentralized, hierarchical design is naturally obtained.
Therefore, the results of this paper are of potential interest in hierarchi-
cal systems theory. Finally, note that singular perturbation theory is only
one approach to the multiple time scale phenomenon. The results of Ramnath
[32], for example, provide another approach that could be exploited in
control theory.
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APPENDIX

Proof of Theorem 1:

From (2.7), (2.14), (2.15) the following equations are obtained

x1(t;E)	 Alld(E)	
0	

13 
(C)
	

Al2(E)	 x1(t;E)

Ex2(t;E)	
A21d(E) A22d(E)	

0
	

0	 x2(t;E)

x l (t;E)	 0	 0	 Ai1(E)
	

A l2 (E)	 x1(t;E)

Ck (t; E)	 0	 0	 A21 (E) 	A22 (E)	 x2(t;E)

L 1 (E)

0
(A.1)

L1 (E)

L2 (E)

where

A13(E)	 Al2(E)A221(E)A21(E)
	

(A.2)

L1 (E)	 Al2 ( E ) A221 ( E ) L2 (E)
	

(A.3)

Define

E11(t;E)	 E12(t;E) )13(t;E) E14(t;E)

E21(t;E)	 E22(t'E) E23(t;E)
E24(t;E)

E 31 (t;E)	 E32(t;E) E33(t,E) E34(t;E)

E41(t;E)	 E42(t;E) E43(t;£) E44(t;E)

(t;£)

x2(t;E)
	 T	 T	 T

= E	 xl(t;£)x2(t;E)xl(t;£)x2(t;E)
T

(A.4)

xI(t;E)

x2(t;E)

and let

E 44 (t;E)	 = EE 44 (t;E) (A.5)

6p '	 12—



I

Then the variance equations corresponding to (A.1) can be written

E11 
o 

A lld (E)E 11 + A13 (E)E 31 + Al2 (e)E 41 + E 11A lid (E) + E13A13(E) +

+ 
L 14Al2 (E) + L

1 (E) L1 (E)
	

(A.6)

	

13	 Alld (E)E 13 + A13 (E)E 33 + A l2 (e)E 43 + E13A11(E) + 
E
14 A12

L1 (E)EL1 (E)
	

(A.7)

E 33 = A11(E)E33 + Al2(E)E43 + E 33A 11 (E) + E34Al2(E) + Ll(E)ELT(E)

(A.8)

	

EE
12	 CAlld(E)E12 + EA

13 (E)E 32 + CA l2 (E)E 42 + E11A21d(E) + E12A22d(E)

(A.9)

EE 14 a CAlid(E)E14 + CA 13 (E)E 34 + A
l2 (E)E 44 + E13A21(E) + E14A22(E) +

+ L1 (E)=L2 (E)
	

(A.10)

EE22	 A21d (E)F 12 + A22d (E)E 22 + E21A21d(E) + Z A22d(E)	
(A.11)

EE
23 - A21d (E)E 13 + A22d(E)E23 + EE 23A 11 + EE24Al2	

(A.12)

EE 24 - A21d (E)E 14 + A22d(E)E24 + E23A24(E) + E24A22(E)	 (A.13)

EE 34	CA11(E)E34 + 
A l2 (E)E 44 + E33A21(E) + E34A22(E) + L1(E)HL2(E)

(A.14)

t
EE 44 = EA21 (E)E 34 + A22 (E)E 44 + EE43A21(E) + E44A22(E) + L2(E)=L2(E)

(A.15)

To apply the theorem of Hoppensteadt to (A.6) - (A.15), conditions

H i	
Hviii (The conditions are conveniently listed in (181) must be verified.

Conditions H ii.., H iv
	 v

. and H are satisfied since (A.6) - (A.15) are linear

time-invariant differential equations with coefficients continuous in E.

Condition H iii is verified by noting that (A.9) - (A.15) have a unique

solution, for E = 0 when E
ll' E13' and E

33 are given, as follows. since A22(0),

A2240) are stable, E 44 , E12' and E
23 are .miquely determined by



01 ,r

0 = A 22 (0)E 44 + E44A22(0) + L2(0)"L2(0)

0= 
E 11A 21d (0)+ E12A22d(0)

0 = A2140)113 + A22d (0) E23

Therefore, E 14 , E22' and E
34 are the unique solutions of

0 = A
l2 (0)E 44 + E13A21(0) + E

14A22 (0) + L1(0)^L2(0)

0 -A21d (0)E 12 + A22d (0)E 22 + E 21A21
d(0) 

+ E22A22d(0)

0 - A l2 ME 44  + E33A21(0) + E34A22(0) + L1(0)EL2(0)

Finally, E 24 is uniquely determined by

0 = A21d(0) E14 +A22d(0)E24+E23A21(0)+E24A22(0)

(A. 1E)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

To verify H , it must be shown that the solution defined by (A.16) -
(A.22) is an asymptotically stable equilibrium of the following boundary
layer system associated with (A.6) - (A.15).

3 E 12 - E 11A214
(0)+ 

E12A22d(0)
	 (A.23)

dT E 14	 A, (0)E 44 + E 13A21 (0) + EI4A22(0) + L 1
 (C) 	 (A.24)

d E	 =A	 (0) E	 +A	 (0) E	 + E AT (0)+ E AT (0)	 (A.25)
dT 22.	 21d	 12	 22d	 22	 21 21d	 22 22d

d	 =A	 (0)E	 +A	 (0)F.	 (A.26)
dT E 23	 21d	 13	 22d	 23

TT E 24 -A21d (0)E 14 +A22d (0)E 24 + E 2 3A21 (0) + E 24 22(0)
	 (A.27)

dT E 34 - A l2 (0)E 44 + E33A21(0) + E34A22(0) + L
1 (0)FL2(0)	 (A.26)

dT E 44 - A22 (0)E 44 + E44A22(0) + L
2 (0)HL2(0)	 (A.29)

The stability of (A.23) - (A.29) is readily verified using the stability
of A

22 (0), 
A22d(0) and working through the equations in the order indicated

in (A.16)-(A.22).
The final conditions deal with the degenerate system of (A.6) - (A.15).

Putting E - 0 in (A.6)-(A.15),and after som- algebra using (A.16)-(A.19),
(A.21), the following equations are obtained:



1f	 I	 t

E 33 = 
(A

ll (0)-Al2(0)A22(0)A21(0))E33+E33(A11(0)-Al2(0)A21(0)A21(0))T

+ L 1 (0) 1LT(0)

(A.301

E 31 u 
(A11(0)-Al2(0)A22(0)A21(0))E^1+E3^(A11(0)-A.12(0)A21(0)A21(0))T

(A. 31 )

E 11 = (A 11(0)-Al2
	

A(0)A-
22
1(0)21(0))F11 E11(A11(0)-Al2(0)A21(0)A21(0))T

(A.32)

Since A11 (0)- A l2 (h)A22 (0)A21 (0) is stable, H i and 11. are satisfied.

Thus by floppensteadt's Theorem, lim F 11 (t;e) and lim F 22 (t;E) are

equal to the solutions of (A.32) and (A.20). Since

x 1 (01E) = x 1 (0) - x 1D (0) = 0	 (A.33)

by choice of the initial conditions of the stochastic degenerate system, it
follows that the initial conditions of (A.32) are

E 11 (0; 0) = 0	 (A. 34)

Thus

lim F 11 (tre) = 0	 (A.35)

C►0

From (A. 35) , (A.17) and (A.20) ,

lim E 22 (t;e) = 0	 (A.36)

E-+0

Note that (A.30) is valid at t = 0 by choice of initial conditions.
Equations (A.34) and (A.36) are the desires result.
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-2
-3.220x101 -4.630x101-1.357x11) 0.000

-41.200x 10 0.000 1.214 0.000

A	 -1.212x10-4 0.000 -1.214 1.000

-4
-1

5.700 X 10 0.000 -9.010 -6.696x10

-4.330x 10-1 -4.630x101 [3.150x10-4)

1.394 x 10-1 1.214

B	 -1
L -

-1.394x10 -1.214

-1-1.577x10 -9.010

-4
0.0	 0.0 0.0	 1.0 6.859x10 0.000

C 0
4.000x1011.0	 0.0 0.0	 0.0 0.000

Table 1. System Matrices

eigenvalue	 -.94 ± j.2.98	 -.0075 t j.076

N
v	 1.3 ± j.4.7	 -4.3x102 + jl.lx102

Q)
G
00	 Y	 -5x10-4 + j.13	 -.15 t j1.0
J

l4

.0	a	 .33 ± j.10	 -.02 + j.005
u
v

a,	 q	 -.21 ± jl.0	 -.08 + j.02

v

Table 2. Open Loop Eigenvalues

and Eigenvectors.
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