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AEROELASTIC ANALYSIS FOR HELICOPTER ROTOR BLADES 
WITH TIME-VARIABIE, NONLINEAR STRUCTURAL TWIST 

DERIVATION AND PROGRAM USER'S " U A L  
AND MULTIF'LE .STRUCTURAL REDUNDANCY .- ,MA"HEMATICAL 

bY 
Richard L. Bielawa ' 

United  Technologies  Research  Center 

SUMMARY 

The differential  equations of motion for  the lateral and torsional 
deformations  of a nonlinearly twisted rotor  blade  in  steady flight conditions 
together w i t h  those  'additional  aeroelastic  features germane t o  composite 
bearingless  rotors  are derived. The differential  equations  are  formulated  in 
terms of uncoupled (zero p i tch  and twist) vibratory modes with exact coupling 
effects  due to   f i n i t e ,  time variable  blade  pitch and, t o  second order, twist. 
Also presented  are  derivations of the m y  coupled ine r t i a  and aerodynamic 
load  distributions,  automatic  pitch change coupling  effects,  structural redun- 
dancy characterist ics of the composite bearingless  rotor  flexbeam-torque  tube 
system i n  bending and torsion, and a description  of  the  linearized  equations 
appropriate  for  eigensolution  analyses. Three appendices are  included pre- 
senting  material  appropriate t o  the d i g i t a l  computer program implementation 
of the  analysis , program &OO. 
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INTRODUCTION 

The composite bearingless  rotor employs fo r  i t s  primary  structural 
element a spar  fashioned from radially aligned  uniaxial  high  strength  fibers 
(carbon,  boron,  etc. ) in   an  epoxy matrix. The transverse  shear modulus of 
such a spar i s  suf f ic ien t ly  low t o  produce a torsionally  f lexible member-which 
when installed  over a finite  length  (designated  the  flexbeam.)  replaces  the 
feathering  bearings normally  used for  blade  pitch  control.  Figure 1 shows the 
schematic  of a . typical  rotor employing such a spar. Blade pitch  control is 
achieved  by elast ical ly   twist ing  the inboard  portion  of  the spar ; the  moment 
applied  to  the  blade from the push-rod i s  transmitted  through  the aerodynamic 
shell   or  torque  tube which, l ike  the  outer  portion of the  blade, i s  re la t ive ly  
stiff in  torsion. 

These struct.ura1  features produce  unique aeroelastic  characterist ics  not 
readi ly  amenable t o  conventional  analysis:  First,  the  primary  structural 
member, the  spar and included flexbeam is subjected  to  highly  nonlinear and 
time  varying  structural twist which, over  the flexbeam span, can  approach 
(equivalent)   to ta l  span twist angles  of +w". Second , although  the  torque 
tube and flexbeam have cont.rasting  specialized  structural  functions  (torsion 
and bending  load  transmissibilities , respectively) each  nonetheless  exhibits 
significant amounts of  both  types  of  load  transmissibility. Hence, the  torque 
tube -flexbeam system  comprises a doubly  redundant structure: redundancy both 
in   tors ion and i n  bending. Third , the simple  torque  tube shown in  Fig. 1 is 
that   of  a "cantilevered"  Configuration  wherein  the  inboard end is supported 
both i n  shear and torque  solely by the push-rod. Such a configuration  pro- - 
duces  not  only a soft  blade  torsion system, bu t  a high  degree  of  pitch-flap 
coupling. 

Because of  these  result ing  unique  aeroelastic  characterist ics,  none of 
the  various "comprehensive" (nonlinear)  rotor  aeroelastic  analyses  currently 
available  (e.g.,  Refs. 1, 2,  and 3 )  can  be just i f iably  appl ied  to   the  bear ing-  
less   rotor .  Most of   the  diff icul t ies  encountered  with  these analyses a re  due, 
i n  one form or  another,  to  inappropriate  assumptions made with  regard  to struc- 
tural  twist. Compared on t h i s  basis, the  various  analyses  generally f a l l  into 
e i ther  of two categories. I n  the f irst  category,  the  structural twist is . 

assumed t o  be l inear ,  small, andtemporallyconstant; such an  assumption is 
clear ly  a t  variance  with  the  aforementioned twist characteristics  of  bearing- 
less   ro tors .  I n  the second category,  large  nonlinear  structural twists a r e  
incorporated by the use of "coupled modes" wherein the  blade  bending  elasticity 
i s  defined by the use  of the normal (vibrational)  modes of an  arbitrarily 
pretwisted  blade a t  some nominal fixed  collective  angle.  Unfortunately, such 
a n  approach i s  rigorous  only  in  hover  wherein  the  control  angle is constant a d  
equal  to  the nominal collect,ive  angle.  Generally,  the  use  of coupled modal 
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analyses  for  typical forward flight cases  involving  substantial  cyclic  angles 
leads t o  an obvious contradiction of the  inherent assumptions upon which 
coupled modes are  predicted. To r ec t i fy  this conceptual  deficiency, coupled 
mode . .  analyses must .  incorporate,  in some fashion,  the mode shape and modal 
frequency  variations  over  the  appropriate  pitch  angle  range as defined by the 
given fl ight  case.  This  invariably  leads  either t o  extreme  complexity. and 
resul t ing computer storage and run-time,  requirements,  or t o  various  simplifying 
approximations to  the  variations  of  the mode shapes and frequencies  with  pitch 
angle.  Either  of  these consequences, however, tend to   nu l l i fy   the  advantages 
claimed for  "coupled mode" analyses. I n  Ref. 3 is presented a consistent sys- 
tematic development of  such a coupled .mode analyses which rigorously  addresses 
i t s e l f   t o   t h e  problem ar i s ing  from variable  pitch  angle. However, even for  
t h i s  exemplary analysis,  the  time  variable  (perturbational)  pitch  angle is 
assumed t o  be small, constant with span and, hence,  inappropriate t o   t he  
requirements  of  composite  bearingless  rotors. Because the use  of  coupled 
modes offered no c lear  advantage and because a val id ,   re la t ively simple yet 
prac t ica l  means .of incorporating  nonlinear  structural twist was found, a 
coupled modes approach was discarded i n  favor  of one based upon  more conven- 
t i ona l  uncoupled modes. Finally,   in a l l  cases  the  available  analyses were 
found t o  be to t a l ly  incapable  of  providing  an  analysis  of  the  structural 
redungancy of  the  torque.  tube - flexbeam system o r  of a cantilever  configured 
torque'  tube. 

The aeroelastic  analysis  described  herein is a multi-purpose- computer 
program characterized by rigorous modelings of  nonlinear and time  varying 
s t ruc tura l  twist, and of  the redundant  load  carrying  features  of  the  bearing- 
less   rotor .  Although developed i n  response to  the  requirements  of composite 
bearingless  rotors,  the dynamic equations  are  sufficiently  general  for  valid 
application  to all conventional  rotor systems: articulated,  semiarticulated, 
teetering and hingeless. The computer program implementing these  equations 
presently assumes a fixed hub, and hence, obtains solutions  of  the dynamic 
equation  for  only one blade. It cannot,  therefore,  be used for  teetering 
rotor  systems which inherently  require a two-bladed implementation of  these 
equations. The differential  equations  of  blade beam bending  (flatwise and 
edgewise)  and torsion  are solved  using a Galerkin  procedure  wherein the normal 
"uncoupled mode" shapes and spanwise derivatives  of  the  blade  pitch  angle and 
the  nonlinear twist are  appropriately combined to  describe  the "coupled" blade 
deflections. The general approach to   t he  development of  the  aeroelastis  anal- 
ysis closely  paral le ls  and draws upon tha t  used and reported i n  Ref. 1. Two 
types of solution  are  available:  eigensolutions  of  various  linearized equa- 
t i on   s e t s   fo r  coupled  frequency  and/or stabil i ty  analysis  purposes,  and time- 
history  solutions  of  the complete nonlinear  equations  for harmonic analysis 
and/or transient  aeroelastic response  calculation  purposes. The aerodynamic 
description  includes  the  use  of  predetermined s t a t i c   a i r f o i l  data, constant  or 
variable  inflow  (vort,icity induced  and/or momentum derived) and unsteady dynam- 
i c  s ta l l  data. 
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This document presents  the mre sa l ien t  details of this aeroelast ic  
analysis. Specific items t o  be described are: 1) the  principal  inherent 
assumptions, 2) the  coordinate  transformation used to  introduce  pitch and 
twist effects ,  3)  application' of the  Galerkin  procedure to  obtain  the  basic 
modal equations, 4) descriptions  of  the'  'required  load  distributions, 5) intro- 
duction of pitch-flat/edge  coupling, 6) simulation of t he  ."wobble mode," 
7) inclusion of the redundant  load  carrying  features  of  the  flexbeam-  torque 
tube assembly of  the  bearingless  rotor, and 8) the  detailed  statement of the  
linearized  equations used in  the  eigensolution. 

!these eight  sections  essentially  present  the  derivation of equations of 
m t i o n  whose solutions can then be implemented using a variety  of  numerical 
techniques.  In Appendix I is  presented,a  brief  description of the quadrature 
techniques employed in   the   ex is t ing   d ig i ta l  computer program  implementation of 
these  equations, program &OO. Appendix I1 contains a detailed  description of 
the  input  required  to run t h i s   d i g i t a l  computer program,  and Appendix I11 pre- 
sents a  comprehensive description of the computer generated  output. 

. . I :  
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LIST OF SYMBOLS 

free stream sonic  velocity. 

area of blade section. 

i n e r t i a  matrix. 

general  submatrices  of  partitioned  inertia  matrix  without and 
with  the  effects of coupling due t o  automatic pi tch change, 
respectively. 

t i p  loss factor,  used i n  momentum inflow  equations and i n  
approximate simulation  of  three-dimensional t i p   e f f e c t s .  

blade or  section  chord, as appropriate. 

section  drag  coefficient 

increment to   sect ibn  drag  coeff ic ient   to  account for  surface 
roughness . 
section l i f t  coefficient.  

section  pitching moment coefficient about  quarter chord. 

compression a t  an a rb i t ra ry  spanwise s ta t ion.  

integration  constants from solution  for flexbeam torsional 
element differential  equation. 

coefficient of damping rate for  blade lag damper. 

thrust   coefficient of the  rotor;   thrust  nondimensionalized  by 
( p 7 r h * )  

pla te  bending s t i f fness .  

coordinate  of  coincident  flat-lag  hinge  or  hingeless blade 
off set point. 

chordwise position  of  section  tension  center, (+) forward from 
e la s t i c  &s . 
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LIST OF SYMBOLS (Cont 'a. ) 

fa 

FY*, FZ5 

GJ 

kA 

element  of E and F matrices,  respectively. 

blade bending s t i f fness   for   f la twise and edgewise  bending, 
respectively. 

torsional  transfer  matrices  result ing from cascade  multipli- 
cation.and  other  algebraic  manipulations. 

spanwise  angle of attack correct ion  factor   to  account fo r  
thAe-dimensional  tip',effects. 

excitation  vector  in  time-history  solution form of nonlinear 
dynamic equations. 

push-rod load, (+) when directed  in   the z direction. 5 
concentrated  forces  applied  to  the  blade  in  the y5  and 25 
directions,  respectively. 

acceleration due to   gravi ty .  

to rs iona l   s t i f fness  of blade  section. 

identity  matrix of dimension m. 

radius of gyration of section  tension  carrying  area. 

mass rad i i  of gyration of blade  section,about  axes  through 
and perpendicular  to  the spanwise (x,) axis and i n   t h e ,  
chordwise and thicknesswise  directions,  respectively. 

KJE, %F spring  rates of  edgewise and flatwise  retention  springs, 
respectively,  of  torque.  tube t o  blade  spar at flexbeam - torque 
tube  juncture. 

Kv induced  velocity  gradient  factor. 

KsE, Q F  spring  rates of torque  .tube  principal  axes (edgewise and 
flatwise)  retention  springs,  respectively, of  torque  tube t o  
flexbeam a t  snubber  end  of torque tube. 
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LIST OF SYMBOLS (Cont 'd. ) 

spring rates of inplane,and  vertical   retention springs, 
respectively, of  torque.  tube t o  flexbe& at snubber end of 
torque  tube. 

spring' rate of  flexbeam torsion due t o  e l a s t i c  and bifilar 
effects .  

. . .  . .  . .>  

spring rate of effect ive  root   tors ion  res t ra int  due to   con t ro l  
system f l ex ib i l i t y  and flexbeam  bending. 

spring  rate of root  torsion  rsstraint  due to   cont ro l  system 
flexibility. 

length of  element  of  flexbeam  over which torsion  properties  are 
assumed constant nondimensionalized  by flexbeam length. 

length of beam element over which the  tension i s  assumed 
constant. 

m 

mO 

M 

NEM, NF", NTM 

vector of shears, moments, and deflections  given  as  linear 
combinations  of other  specified  deflections. 

subvectors  of L , having shear, moment, and deflection 
components each i n  y- and z- directions,  respectively. 

blade mass distribution. 

reference  blade mass distribution,  taken  to be tha t  of the 5th 
blade segment. 

flatwise bending moment a t  @n end of a beam element; a lso Mach 
number. 

moment due' t o   l a g  damper. 

blade root   tors ion  res t ra int  moment. 

components of  blade mment about axes i n   t h e  5?coordinate 
system, ar is ing from iner t ia ,  aerodynamic and/or  concentrated 
mechanical effects .  

numbers of assumed flatwise, edgewise, and torsion  natural 
"uncoupled" primitive modes, respectively. 

0 

. . .  
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LIST OF SYMBOLS (Cont'd.) 

number of harmonics in  variable inflow descript 

. .  

;ion.- .. 

number of segments i n to   Wch   t he  blade i s  divided each ha- 
assumed spanwise constant  section properties. 

section  shear  load  distributions in  directions o f  axes ' i n  the 
5.- coordinate system. 

general  earession for a response variable  deflection. 

element of % vector. 

blade k ' th  edgewise m o d a l  respanse variable. 

blade i ' th flatwise modal response variable. 

section moment load distributions about axes i n  the 
5- coordinate system. 

blade j ' t h  torsion m o d a l  response variable. 

vector of torque  tube  deflection  effectivity  constants. 

blade spanwise coordinate, measured from offset,  e, In 
direction. 

rotor rad ius .  

intermediate  torque.  tube bending s t i f fness  matrices. 

element of the So matrix. 

flabem length  (span),  or  flatwlae shear a t  an end of a 
beam element, as appropriate. 

carrponents of cancentrated  shear in  directions of axes i n  the 
5- coordinate system. 

trigonametrically  resolved  torque  tube bending stiffness 
matrices. 

element of 8 T matrix. 

xs 



UGT OF SYMBOIS (Cont'd,) 

T tension at an arbitrary  blade spanwise s ta t ion.  

Ti constants  for polynomial representation of spanwise variable 
torque  applied t o  flexbeam . 

Pkl 

[ S I  

elast ic   t ransfer   matr ix  a t  k ' th semi-segment. i 
, [ T1], [ T3] , [ T 4 ] j j  coordinate system transformation  matrices relating rotat ing 

coordinate system def lec t ions   to   the   iner t ia l  frame. 

' u e  e l a s t i c  spanwise deflection of arbitrary spanwise coordinate. 

: u  resul tant   a i r   veloci ty   re la t ive  to   blade  sect ion,  
I 

' 'T 

I 

U 
X 

a i r   ve loc i ty  component re la t ive   to   b lade  secti'on i n  (+) z5 
direction. 

air velocity conrponent r e l a t ive   t o  blade sec t ion   in  (-) 
direction. y5 

air velocity component re la t ive   to   b lade   sec t ion   in  (+) x 
direction. 2 

ves W e  e l a s t i c  edgewise and flatwise bending  deflections,  respectively, 
I of an arb i t ra ry  spanwise coordinate. 

vi,, v i  , vi  zeroth and n'th  cosine and sine components of variable induced + ns veloci t ies .  

" 

vP, vT components of air veloci t ies   re la t ive  to   blade  sect ion devoid 
of  cosine  and/or  sine of t o t a l  pitch angle and comprised  of 
response  variables. 

N r U  

Vy' vz components of air ve loc i t i e s   r e l a t ive   t o  a blade  section  in 
chordwise and thicknesswise  directions,  respectively. 

Av, Aw deflection  correction  terms due t o  first order twist effects .  

V st rain  enerm.  

AV, AM deflection  correction  terms.due 00 second order twist effects .  
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LIST Ol? SYMBOIS (Cont ‘d. ) 

5’ y-29 22 components  of the  2-coordinate system, defined t o  be affixed t o ,  
the  rotating hub. 

X5’ 5’5, 25 components of the 5-coordinate system, defined t o  be  rotating 
with the hub, but   a t  the blade coned  and lagged position. 

Ax length of blade spanwise segment m e r  which the spanwise 
properties  are assumed t o  be constant. 1 

coiponents of blade  deflection in   t he   i ne r t i a l  and 5-coordinate 
,systems, respectively,  as measured in   the  5-coordinate’ system. 

chordwise and thicknesswise position  coordinate,  respectively, 
of an arbitrary  point  within a blade  section. 

I 

YlO, 210 

A A 
YlO, 5 0  inplane and out-of-plane  position  coordinates,  respectively, of 

an arbitrary  point  within  a  blade  section. 

y10c/4, Y103c,4y chordwise distances of quarter chord, three  quarter chord, and 

‘l°CG 

mass Center,  respectively, from the  reference axis a t  a  blade 
section. 

subvectors of , having specified  deflections  in  y.and z 
directions, 

AZ 

Z 

“eff 

deflection i n  z direction of the push-rod attachment point 
due t o  any  and a l l  blade bending deflections,  flapping and 
lead-lagging,with  the push-rod disconnected. 

5 

flatwise  (vertical)  deflection  per unit force of inboard end 
of cantilevered  torque  tube, due t o  flexbeam bending 

effective  blade  section angle of attack  approdmately  corrected 
fo r  three-dimensional t i p   e f f ec t s  and used for  evaluation of 
section aerodynamic coefficients. 

. “qs quasi-static  blade  section angle of attack. 

“R . 

P blade  flapping  (or  precone)  angle; also used t o  denote tension 

rotor (hub axis) angle  of  attack. 

(or compression) to   e l a s t i c  bending stiffness parameter for  
a beam element. 



. .  

. .  
LIST OF m M B O I S  (Cont ' d. ) 

I 

i 

31 

A 
qk,  k+l 

0, I 

deflection 

deflection 

deflection 

deflection 

mode shape f o r  the k ' t h  edgewise normal mode. 

mode shape f o r  the i ' t h  flatwise normal mode. 

mode shape f o r  the j ' t h  torsion normal mode. 

shape for   the pseudo- ( r igid body) tors ion mode. ; 

bifi lar-twist   coupling  function  for j ' t h  torsion mode. 

blade lead  angle;  also  used  to  denote  perturbational  quantity. 

vector of specified  deflections. 

small nuniber (less  than  unity) used t o  assess .relative  orders 
of.magnitude  for  various  terms. 

flexbeam  spanwise coordinate, measured from offset ,  
nondimensionalized by S. 

spanwise coordinate of boundary point between k ' th  and k+l'th 
segments . 
built- in  blade  section twist angle; i.e., that. section  pitch 
angle  resulting when the aerodynamic pitch angle at 755 span . 

is zero deg. 

bui l t - in  twist angle  of flexbeam measured when flexbeam i s  
tors ional ly  unloaded. 

elastic  torsion  deflection  angle.  

blade  mot  torsion  deflection  angle. 

abbreviated  torsion  f lexibil i tv  coefficients  containing 
deflectio@.dependency. 

blade t i p  torsion  deflection angle. 

automatic  blade  pitch change per unit deflect ion  in  k ' th  
edgewise mode, i ' t h  flatwise mode, flapping and lead-lagging 
motions, respectively. 



LIST OF SYMBOLS (Cont la.) 

80 blade  pitch -le due t o  inp& control  angle. 

At3 automatic pitch changes accruing frm any and all blade 
bending deflection,  flapping and lead-lagging. 

e t o t a l   l oca l  blade pitch  angle. 
. i  

Osx, * * O S  e% flexbeam torsion flexibility coefficients. 

AeJ total torsion  deflection of flexbeam. a t  junction  point beyond 
built- in value. 
blade  section  pitch damping effectivity  factor. 

./ 

%c5 

x 

P 

V 

P 

4 .  

t o t a l  inflow  ratio,  or  section  torsional  characteristic  constant, 
as  appropriate. 

uniform portion of inflow. 

inflow  contribution from forward f l lgh t  "ram" effects. 

advance ratio. 

Poisson's ratio.  

a i r  density. 

inflow  angle. 

blade  azimuthal ( a n g u l a r )  position. 

(nondimensional) frequency used i n  quadrature formulae, taken 
t o  be uncoupled natural frequency of degree of freedom. 

(nondimensional) uncoupled natural  frequencies of i ' th  flatwise 
bending mode, k ' t h  edgewise bending mode and j ' t h  torsion mode, 
respectively. 

rotor  rotational frequency. 



Superscripts - 
0 

( * I  

'LIST OF SYMBOIS (Cont'd.) 

e f fec ts  of aerodynamic origin. 

structurally  built-in  parameter,  or  conditions of blade 
immediately  outboard  of juncture. 

e f fec ts  of dynamic origin. 

due t o   e l a s t i c  deformation. 

i n  edgewise (section maj.or p r i n c i p d  a x i s )  direction. 

in   f la twise  (sect ion minor principal axis)  direction. 

flexbeam . 
ef fec ts  of gravitational  origin.  

conditions a t  inboard  end. 

conditions a t  flexbeam - torque  tube  juncture. 

conditions a t  outboard end. 

push-rod. 

conditions a t  the  inboard end of the torsionally  active 
portion of *he blade. 

conditions a t  snubber  (inboard end of  torque  tube). 

torque  tube .' 

nondimensionalization by combinations  of R and/or a. 

different ia t ion with respect   to   (Qt) .  

dif ferent ia t ion with respect  to  (r/R). 

14 



LIST bF SYMBOLS (Cont" d. ) 

( pertains to  loads  arising from, -deflections. 

( 9 )  pertains t o  loads arising directly from  push-rod load. 

( )(l), ( )(2) pertains t o  first and second parts  of  definitions  of 
deflection  correction.terms,  respectively. 

( )(-I, ( )(+I €0 be  evaluated a t  a specified  point minus or plus an . 

infinitesimal amount. 



PRINCIPAL ASSUMPTIONS 

The principal assumptions used to  derive  the  basic  differential   equation 
of motion a re  as follows: 

1. . .  . The rotor  is rotat ing a t  a constant  angular  velocity,  has  infinite hub 
impedance, and is in   s teady  t ranslat ional   f l ight .  

2. ' The blade  e las t ic i ty  is adequately  described bd the  conventional  (linear) 
beam bending and bar torsion  characterist ics  described i n  Ref. 4. A l -  
though the  effects  of  the  additional  section  constants B1 and B2 described 
therein  are  usually  considered  to  be  negligible  for  helicopter  applica- 
t ions,   they  are  potentially important for  accurately  analyzing  solid 
sectional,  highly  twisted  propeller  blades and/or wind turbines. To pre- 
serve  consistency  with  the  rigor  applied  to  other  aspects  of  structural 
twist and t o  achieve  universality  with such nonhelicopter  rotor  systems, 
these  elastic  section  constants  are  retained  in  the  full.nonlinear formu- 
lation  given  in Ref. 4. 

3. The elastic  ( torsion)  axis  of  the  undeflected  blade is a s t ra ight   l ine.  
.However, when deflected  in bending, the  e las t ic   axis   def ines  a space 
curve  about which the  local  torsion  deflections must take  place. 

4. The blade aerodynamic and s t ruc tura l  twist distributions  are  nonlinear; 
additionally  the  structural  twist of  the flexbeam (bearingless  rotor 
applications  only) is time  variable. 

5. The total   ( integrated)   angle   of   s t ructural  twist is negligible beyond 
second order;  cases of large  local  twist rates  over  short  sections  of 
span a re  not  denied, however.  See section on coordinate  system  for more 
de ta i l s .  

6. Radial foreshortening  of  blade  elements due solely  to   e las t ic   def lect ions,  
i n  the absence  of  precone  (or  flapping), and prelag  (or  lagging) i s  ade- 
quately  represented by a second order  functionof  flatwise bending. 

7. The feathering axis i s  coincident with the   e las t ic  axis of  the  elastically 
undeformed blade. 

8. The blade  distributions  of  center  of  gravity, aerodynamic center and 
center of tension  (intersection  of  flatwise and edgewise neutral  axes) 
are,   in  general ,  noncoincident  with  the  elastic  axis. 



9. The blade  sections  have  finite  thicknesswise rmss, b u t  the  thicknesswi8a 
displacements  of  the'section  center-of-gravity away f r o m  the  chordwise 
principal   axis  is negligible. 

10. While assumptions  regarding  the  smallness  of  various  quantities and 
products  of  these  quantities are not  generally  required  for  the imple- 
mentation  of  .time-history  solutions  of  the full nonlinear  equations, they 
are  required  for  effecting  consistent  linearized  approximations  for  the 
eigensolutions. For this  case,  coefficients  of  the  perturbational vari- 
ables,  whose orders of  magnitude  exceed S2 are  neglected. Here 6 is 8n 
unspecified small number less than  unity and where the assumed orders of 
magnitude of  the  various.   pertinent  quantit ies,  as measured by a,  are 
given i n  Table I. . .  

17 



COORDINATE TRANSFORMATIONS DUE TO PITCH ANGIX AND YWIST 

The aemelast ic   analysis  is a mdal type analysis which uBes, as its 
basic  description  of  the  elastic  deflections,   hereafter  called  primitive M e s ,  
the normal vibration modes calculated assuming the blade t o  have zero  coning, 
pitch  angle and twist. These modes a re  sometimes referred  to  as "uncoupled" 
modes. Thus, the  result ing  aeroelastic bending  responses, as ultimately 
coupled by coning, pitch  angle, twist, aerodynamics, etc., must be interpreted 
as flatwise and edgewise responses  rather  than  out-of-plane and inplane  re- 
sponses. The basic advantage claimed f o r   t h i s  choice  of  primitive modes over 
those  appropriate  to a blade already  twisted and pitched a t  some nominal angle, 
which a re  sometimes referred  to  as "coupled" modes, is  the convenience of usage 
especially  for  bearingless  rotor  applications. A single  set  of uncoupled 
primitive modes needs t o  be  calculated  for any one rotor speed  and is adequate 
for  a l l  subsequent twist and pitch  angle combinations. The purpose  of t h i s  
section,  therefore, is to  describe  the  introduction  of  pitch  angle and twist 
using uncoupled normal modes as the  set  of  primitive modes. 

The basic  blade  coordinate system used herein and re fer red   to  as the "5" 
coordinate  system  consists  of  the  elastically  undeflected  blade a t  the flapped 
(or  preconed),  lagged  (or  prelagged)  position. See Ref. 1 fo r  a detailed dis- 
cussion  of  the  coordinate  transformations  preceding  this. As shown below in  
Fig. 2, the x5-axis i s  out  the span from the  blade  root  or  offset  point, as 
app-priate;  the y -axis is pa ra l l e l  t o  the hub p lane  and positi-re forward, 
while  the ~ g - a ~ i s  I s perpendicular t o  x5 and y5 and posit ive upward, bu t  not 
generally  parallel  with  the  spin  axis. 

As i s  discussed  above,  the local e la s t i c  deformations  (nondimensionalized 
by rotor  radius,  R )  consis t   of   f ini te   ser ies  summations of normal bending 
modes in   the  f l a t w  i se  and edgewise directions : 

NFM 
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Figure 2, - Schematic of the "5" Cobrdinate System. 

In  the  presence  of only blade  pitch  angle  the  resulting  deflections  in 
the "5" coordinate system are  simple  trigonometric  transformations  of  these 
flatwise and edgewise contributions. The effect   of twist, however, i s  t o  
require an "Integrated"  trigonometric  transformation. This integrated  effect 
can be achieved  by means o f ,  f i rs t ,  a direct  trigonometric  transformation not 
3n deflection,  but upon second (nondimensional)  spanwise  derivatives  of  the 
Seflections: 

I 



' This  coordinate  system  transformation has the advantage that  the  "force" 
boundary conditions at t h e   t i p  of the blade i n   t h e  "5" coordinate system are  
always satisfied.  Equations (3) and (4) and t h e i r  first spamise  derivatives 
taken together  with  the boundary conditions imposed  on  yw. and y given in  
Eqs. (1) and (2) are suf f ic ien t   for   th i s  result. Eqs.  (37 and (8 can then  be 
integrated by parts to   g ive   the  fundamental deflection  coordinate  transforma- 
tion used throughout the &O aeroelastic  analysis.  This transformation 
becomes the usua l  trigonometric  transformation on deflections  given  in  Refs. 1, 
4 and elsewhere i n   t h e   l i t e r a t u r e  , but with  the  addition  of  various  deflection 
correction terms due t o  twist: 

where the  underlined  terms  are, by assumption, negligible,  and where the 
deflection  correction  terms  are  given by the  following: 

first order   in  twist : 

(Avi + Avi )qw. = Aviqwi 
(1) (2) 

I 
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second order   in  twist : 

It i s  t o  be  noted tha t  t h e   t o t a l  (nondimensional) twist r a t e ,  8' , contains 
the  bui l t - in  twist , , the twist due to  control  inputs , e& , and the  time 
dependent e las t ic   def lect ion,  0; (= Yb a q ~  ). Thus, the  deflection  correc- 
tion  terms, Av, Aw, AV and AW, nominally  contain  nonlinear  products  of qej 
with ei ther  q and/or q Herein, however , the  products qe . Qwi and 
Q. - 9% are  retained only in   the  Av and Aw (f irst  order)  cor4ection  terms -and.' ' 
deaoted as &v, and Awe respectively;  the AV and AW (second order)  correction 
terms retain  only  tne  buil t- in twist ra te ,  e; , and that  due to   cont ro l  input.8, 

, i n  accordance  with  the assumed relat ive order-of-magnitudes  given i n  
Table I. 

j J  

w i  % *  

, ,.. 

To complete t h i s  section, a physical  interpretationoftheabove  formulated 
coordinate  transformation is presented by considering  the  following argument: 
Let a uniformly  twisted  blade  possessing  only  flatwise  flexibility be  uniformly 
bent  (in only the  flatwise  sense)  over i ts  span by continuously t ak ing  small 
bends a t  points outward along  the span s ta r t ing  at the  root,  as shown i n  
Fig. 3 below. Then, with each such small bend, the  deflection  locus  of  the 
blade  tip,  point P, is t raced  to  i t s  final  deflected  posit ion,   point  P ' .  The 
i n i t i a l  part  of  the  locus must be i n  a direction normal t o t h e  blade  root 
chord s ince  the  ini t ia l   f la twise bend is  defined t o  be  normal to  the  blade 
root chord. Similarly, the f i n a l  part of  the  locus must be i n  a direction 
normal to  the  blade tip chord since  the f i n a l  flatwise bend is defined normal 
to   the   b lade   t ip  chord. Thus , the  locus must define a curved path (arc PP' ) , 
as shown. In  contrast ,  u s ing  the straight trigonometric  transformation on the 
flatwise  deflection, we,  together with the  pitch  angle a t  the   t ip ,  8T, the 
blade t i p  would be predicted  to be a t  point P",  where the  flatwise  deflection 
equals  both  the PP" and the  arc  length PP" . The f igure  c lear ly  shows tha t  the 

- 



DEFLECTED 
SECTION 
POSITION 

CONSECUTIVE  SMALL 
FLATWISE  BENDS 

LOCUS OF BLADE  TIP  DEFLECTIONS 

:INITIAL  BLADE  TIP  SECTION  POSITION 

Figure 3.- I l l u s t r a t ion  of the  Physical  Significance of the  Deflection 
Correction Terms Resulting from Assumed Coordinate  Transformation. 

straight  trigonometric  transformation will yield  the  actual  deflection  only if 
the chordwise and thicknesswise  corrections, QP' and QP", respectively,   are 
added to  the  trigonometric  transformation: 
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Y, = (QP’) doseT - (Pp”-QP”)sin8, 

z5 (QP’) sin 8, + ( PP“- QP”) cose, 

which  reduce  to Eqs.  (5) and (6) where PP” is given  by we and  where QP“ and 
QP” are,  respectively,  approximated  by A i  and AW. 
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DERIVATION OF BASIC DYNAMIC EQUATIONS OF MOTION 

I . _  

Flatwise and Edgewise Bending Equations 

The differential  equations  of  blade  bending  are  obtained by equilibrating 
the  f latwise and edgewise moments at arbitrary span  locations.  Reference t o  
Fig. 2 and the  principal assumptions  leads to  the  following moment equilibrium 
equations : 

E I~W; = - M ~ ~ . C O S @  - MzSsinQ 

. Application  of  the  Galerkin  technique  requires that  the  equilibrium 
equations  be  in  the form of  loading  equations;  hence, Eqs. (11) and (12) must 
f irst  be  doubly differentiated.  A method of  performing t h i s  double differen- 
t i a t i o n  which maintains  equation compactness is given below. The first differ-  
entiation  yields  the  following  equations: 

flatwise bendinn: 

edgewise bending: 

I t  

[EIzVl  - eAT - EB, (8; +$e;) 8; ] - [~’EI,W;] [ 5 C O S 8  - M;,sinB] 
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where the  derivatives  of  the  applied moments, and are  expressible as: 

M&= jRpz dr, -ZjT-q. y5 (15 1 

5 

r 5  

R 
Mis=  1 py5dr,+)/jT-qz5 (16) 

and where the  tension is given by: 
R 

T =I P,,dr, 
r 

The applied  force  loading  distributions, 15 and p and the  applied moment 
loading  distributions qy and qz , a l l  include  not  only  the  inertia and aem- 
dynamic contributions bu? any  lozds due t o  mechanical  loads  applied by  push- 
rods, dampers, e tc .  The second different ia t ion of the moment equilibrium 
equations is performed a f t e r  first resolving Eqs. (13) and (14) to   i so l a t e  
h$5 and G5: 

5 =5 , 

Application  of  the  Galerkin  technique  requires  conside&tion  of the  work 
due to   v i r tua l  displacements  of  the bending modes. It must be  noted, however, 
as was shown i n  the preceding  subsection,  that i n  the  presence  of twist, f lat-  
wise and edgewise modal displacements  each  generate  deflections i n  both the 
flatwise and edgewise directions.  Hence, the  proper  form1  application of the 
Galerkin  technique is to   in tegra te   the  inner products  of  loadings and v i r tua l  
displacements : 



k ' th  edgewise modal equation: 

The quantit ies and (RHS)v, as defined by Eqs. (18) and (191, involve 
differentiated combinations  of twist and cosine and sine  of  the pitch angle 
and elast ic   res tor ing moment. Although  not  immediately obvious,  the  integrals 
of these (RHS) quantities  with  the components of  deflection, as given  by 
Eqs. ( 5 )  and (6) ,  can  be evaluated,  using  integration by pa r t s ,   t o   y i e ld   t he  
following  simplified forms : 

R 
(Y~),,,~(RHS),,]~~ = J YiEIyw:dr (22 1 

0 '  

. R  
(y  ) (RHS)ddr = J YDEIz [  -EB, (€&+&)6'~]dr (23) 

'k o 'k 

The desired  basic  bending modal excitation  equations can then  be  written by 
combining the  results  of Eqs. ( 5 ) ,  ( 6 ) ,  (15) , (16), (20) , (21) , (22) and (23). 
Hereafter a l l  quantit ies and equations w i l l  be wri t ten  in  nondimensional form 
(without  overbars) where the  nondimensionalization i s  accomplished  usingappro- 
pr ia te  combinations of R ,  n and Q: 
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k'th edgewise  bending  equation: 
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The subscripts A and D denote  terms  of aerodynamic  and dynamic origin,  
respectively, and t h e   f i n i t e  summations over m represent the modal excitations 
due t o  a f i n i t e  number of  concentrated  forces and moments. 

Tors ion  Equation 

In  a development similar t o  that given  above,  the differential   equation 
for   to rs ion  is  obtained by f.irst equilibrating  the blade tors ional  moment. I n  
Ref. 5 is derived  the  torsional  equilibrium  equation  for  the  blade,  consistent 
with  the  assumption  of a space  curve  torsional  axis: 

where y51 and z are  the  inplane and out-of-plane  deflections  evaluated at rl. 
51 

Differentiation  of t h i s  equation  yields  an  intermediate form of the 
required  torsion  loading  equation: 
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Integration by par ts   yields  a second intermediate form: 

which, when combined with Eqs. (15), (16), and (l7), with (11) and (U), and 
f ina l ly  with (3) and (4) yields  the f i n a l  desired form of  the  loading  equation: 

Application  of  the  Galerkin  technique t o  t h i s  equation  then  follaws i n  a 
straightforward manner to  give  the  following  basic form of  the j ' t h  torsion 
modal excitation  equation: 

where, again,  the summation over m represents  the  effect  of  concentrated  torsion 
loads on the  torsion modal excitation. 



Rigid  Flapping and Lagging.Equations 

"he  equations  of  mtion  for  rigid  flapping and lagging  are  obtained by 
equilibrating  the moments about  the  articulation  hinge  about  the y5 and z5 
axes,  respectively: 

r igid  f lapping : 

r ig id  lagging: 

where MLD is the  root moment due to   the   l ag  damper and is  typicallyproportional 
t o  blade  root  angular  rate: 

as the familiar l inear  damping rat,e  of  the damper.  Note that as per 
nondimensional)  time derivative of e l a s t i c  in-plane  slope w i l l  

generally  contain  contributions  proportional  to  flatwise and edgewise modal 
deflection and to  f latwise,  edgewise and torsion modal ra tes .  

The equations  of motion presented above for   the  bending and torsionmodes 
and for  r igid  f lapping and lagging ((24),  (25), (30), (31) , and (32) , respec- 
t ive ly)   a re  complete only i n  so f a r  as the  load  distributions  are  (explicit ly 
or  implicit ly)  available.  The following  section  presents  implicit  statements 



of the loading i n  terms of  the  blade  deflections., as formulated in   t he  
following  section.  Furthermare, these equations are basic  required forms of 
the  aeroelast ic  respon'se excitation  equations from which, together with appro- 

- p r i a t e  expressions  for  the  load  distributions,  a set of  linearized  equations 
can be expanded for  eigensolutions, o r  a set of  nonlinear  equations  of the 
form: 

can be written  for  time-history  solutions. The A matrix above consists  of  the 
coefficients  of the  second derivatives  of the modal responses and represent 
terms extracted from the compact expressions  for dynamic load  distribution. 
This matrix i s  also  discussed more fully i n  the  following  section. 



DYNAMIC AM) AEEIODYNAMIC LOAD DISTRIBUTIONS 

"lie: load  distribution  a@ear%g  in  the  above  derived  dynamic  equations  for 
the  response  variables  were  expressed only implicitly  for  two  reasons:  first, 
because  it  simplifies  the  explanation  of  the  application  of  the  Galerkin  tech- 
nique and second,  because  completely  expanded,  explicit,  expressions  for  the 
loadings ire tedious,  cumbersome  and  not  actually  required  for  the  more  impor- 
tant  time-history  solution.  Complete  linearized  expansions  of  the  loadings 
are,required,  however,  for a fornulation  of  the  linearized  equations used in 
the  eigensolution. 

- s  . 

Dynamic Load Distributions 

The  usual-.approach  of  using D 'AIabert ' s principle  to  express  the  inertial 
acceleration of the  distributed  blade mass as an equivalently  applied.  dynamic 
load  distribution  is  followed  herein.  The  position  vector  of a point mass 
particle,  with a chordwise  and  thicknesswise  displacement  relative  to  the "5" 
coordinate  system,  is  written  as  follows: 

r+u, -y,&y$os@ + zjsin8) -zo(t;cos@-y$in@) 
ys + y,cos@ -z,sin@ 
z5 + y,,sin@ +z,,cos@ 

(35) 

where  ylo  and  zl0  are,  respectively,  the  (forward)  chordwise  and  (upward) 
thicknesswise  locations  of  the  point mass from  the  reference,  x5,  axis,  and 
where  the  axial  deflection  due  to  elastic  flatwise  bending is given  by  the 
following  expression: 

The  displacement  of  the  point mass particle  relative  to  the  inertial 
frame  is  obtained  by  means  of  four  consecutive  coordinate  transfoxmations  and 
is  written in the  following  compact  form: 



where the four  coordinate  transfoqnations,  described in detail  in Ref. 1, in  
consecutive  order, account for rotor  rotation, blade  root offset, lead" 
rotation about the  (articulation) hinge or off  set  point, and flapwise rota- 
tion also about. the  offset  point: 

[ T ~ I  = [sin$ cos$ :] cos* -sin* 

0 0 I 

[T3] = [ sin8 cos8 ".I cos8 -sin8 

0 0 I 

cosp 0 -sinp 

sinp 0 cosp O I  
[ t ]  = [ 0 I 

Upon letting: 

the  inertial  acceleration  of  the point  blade element can be written as: 



where the   de ta i l s  of formjng the  indicated  differentiations and matrix 
mult ipl icat ions  are   omit ted  herein  for   c lar i ty .  The dynamic force  load die- 
tribut ions  are formed as follows : 

whose  components a re  f omed by using Eq. (39) and can be writ ten as : 

The  dynamic  moment load distributions  are  similarly formed: 

blade 
section 

area 

-310 
0 
0 0 

where the chordwise and thicknesswise  integration  variables  resolved into the 
"5" coordinate system are  given  by: 
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9, = ylocos8 -z&ine 

2, = Mosine +z,ocos@ (43b 1 

The canponente Qf the moment load distributions can then be written as: 
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where yl %GI 510 and %lo respectively, the  chordwise mass center  and 
the  thicknesswlse and chordwise mass radii of gyration. 

For both  the  eigensolution and the time  history  solution,  those  dynamic 
load terms  containing  secund  time  derivatives  must be extracted to form the 
inertia  coupling  matrix, [A] , indicated in equation (34). Using  the load 
distributions  given  above,  the  elements of this  matrix  can be conveniently 
written  using  the  following  partitioned  representation of the A matrix: 

where : 



” 



I 
Aoj - - = - -  my,ocGrG. sinOdr 

0 I 

I 
= Ass / mr2dr 

0 

Aerodynamic  .Load  Distributions 

The  aerodynamic  load  distributions  used  in  the  analysis  are  assumed to be 
two  dimensional  and  the  usual  strip-theory  techniques  as  typically  described 
in  Ref. 1 are  therefore  employed.  More  specifically,  at  each  spanwise  station 
the  two-dimensional  airfoil  section  angle-of-attack  is  calculated  based  upon 
section  geometric  pitch  angle, 8 , and  inflow  angle, 8, based  upon  airflow 
velocities  at  the 3/4 chord  point: 
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where : 

where the  radial  velocity component is given by: 

and  where the  derivatives of the "5" coordinate  elastic  deflections  are  obtain- 
ed  from appropriate  differentiation of  Eqs. (5) and (6). The total   rotor  
inflow, h ( r ,  +),  i s  comprised of a "ram" portion due to forward f l ight  and a 
(harmonic) induced velocity  portion which i s  assumed t o  be,. in  general,  both 
radially and azimuthally  variable : 

where : 

VT 
XRAM = sin aR = ptana,  (52 1 

Equation (51) represents a completely  general  description of the harmonic 
rotor inflow.  Regardless of how the induced velocity components are  obtained, 
either  experimentally  or  analytically,  they  are  accepted by the  analysis as 
an environmental excitation and used directly as' per Eq. (48). 

Two specific,  optional assumptions which can be made on the induced 
velocity  are as follows: 



a. uniform inflow: 

CT v. (r) = 
'0 2 B V Z j F  

v. = v. = o j  n = I, 2,. . ., NH Inc Ins. 

6 b . generalized  Glauert (mmentum) : 

v. (r) = vo (uniform) 
'0 

vi (r) = r(vIc+ K,vo) 
IC 

vi (r) = rvlS 
IS 

vi (r) = V. ( f )  = 0; n = 2, 3, . . . , NH 
nc Ins 

where : 

The nonzero (zeroth and first harmonic) components  of  induced velocity can 
then  be  related to   ro tor  steady  thrust and  hub  moments using momentum consi- 

. derat  ions : 

The Glauert induced velocity  gradient  factor, q, in  Eq. (54b) 'is used t o  
account f o r  the  strong  cosine  cmponent of inflow  present even for  zero  pitching 



moment. The approximation to IC, used  herein  is  that  given in Ref. 6 based 
upon  results  of Ref. 7: 

K, = 4P 
3.6 l&,l+3p 

The  formulations  given  above  for  the  local  velocities  together with. Eq. 
(47) is sufficient to define  a  quasi-static  two-dimensional  angle-of-attack. 
Approximate  three-dimensional tip effects  are  introduced by multiplying  this 
quasi-static  angle-of-attack  by  a  function  which  is  unity  over  most of the 
blade,  but  reduces  abruptly to zero at the.blade tip: 

where B is the conventional  tip loss factor. 

The  effective  angle-of-attack  used  to  calculate  aerodynamic  coefficients 
is then  given  by: 

The Mach  number at the  airfoil  section is  given  simply by the  following 
expression : 

From the effective  angle-of-attack  and Mach number, the  following  expres- 
sions for  (nondimensional)  aerodynamic  load  distributions  can be formed: 



I 

where : 

Acdo E incremental  drag  coefficient  introduced t o  account for  surface rough- 
ness. 

The dynamic equations  given  in  the  previous  subsection  together with the 
load distributions  presented above are   suf f ic ien t   to  complete the  basic  aero- 
elastic  analysis of the  rotor  blade. Such a basic analysis, however, omits 
the effects  of pitch-flat/edge  coupling. The following  subsection  includes a 
unified method for  including such coupling. 
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R I G I D  BODY FEATHERING MOTION AND 

BASIC PITCH-FLAT/EDGE COUPLING EFFECTS 

The simulations  of  the  rigid body feathering motion (if present) and the 
automatic  blade  pitch changes accruing from elast ic  bending deflections and/or 
flapping and lagging motions are both accomplished by the  introduction  of a 
torsional "pseudo"-mode.  Such a mode i s  no  more than  the  rigid body feather- 
ing motion of  the  blade as would be  generated by a control  input. Operation- 
a l ly ,  this "pseudo"-mode i s  treated  in  the  analysis as a spanwise variable 
mode shape in  addition  to  the conventional normal torsion modes used t o  
describe  the  blade  torsion.  In  general,  this mode has a unit  value  over  the 
blade span except, for  analyses  of  the  bearingless  rotor,  over  the flexbeam - 
torque  tube  portion of the  blade wherein the spanwise elastic  torsion  deflec- 
t ion of  the flexbeam (due t o  a control  input) i s  used.  Reference t o  Mg. 4 
shows the  pertinent  features  of  this pseudo-mode, especially as it i s  applied 
t o  bearingless  rotors: 

OFFSET  (HUB) ,-*FLEXBEAM -TORQUE .TUBE  JUNCTION 

INERTIALLY  AND  AERODYNAMICALLY 

EFFECTIVE  PORTIONS  OF  MODE 

ROD-LIKE 
TORSION I dl TFRNATF Fl3RM.S OF I 

PORTION OF MODE I /l PLATE-LIKE 
i 

. - . . - . - 

n ~~ 

y / -  TORSION I I I 
- 

0 
- 
'J 

NONDIMENSIONAL SPAN, T.. 

I 
1 .o 

Figure 4.  - Details of (Rigid Body) Torsion Pseudo W e .  
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Note.that  the  elastically  effective  portion of the  pseudo-mode  can, 
optionally,  be  taken  to  be a linear  f'unction  typical of rod-like,forsion  or 
an ogee  function  more  typical  of  plate-like  torsion.  Finally,  it  should  be 
stressed  that  this  pseudo-mode  is  not,  in  general,  orthogonal  to  the  blade 
normal  modes  in  torsion. 

. .. 

For  bearingless  rotor  applications,  the  pseudo-torsion  mode  serves  the 
unique  f'unction  of  providing a convenient  way of introducing  time-variable 
structural  twist  (i. e., due  to  control  inputs)  into  the  'analysis. Ey treating 
this  component  of  twist  as  but  an  additional  torsion  mode  proportional  to  con- 
trol  input,  the  following  expression  for  total  pitch  angle  can  be  written: 

I I 

I i 
Simildly, the  total  twist  rate  can  be  written as: 

! I  I' 

1 I 

By using  this  expression  for  twist  rate,  together  with  the  appropriate 
pseudo-mode,  the  incremental  deflection  functions,  Av, Aw, AV  and  AW  described 
in  an  above  subsection,  can  be  completely  formulated. 

. . . - - . . . . .. . . . .- . 

The  pseudo-torsion  mode  serves two additional  functions  common  to all 
. .  . 

types  of  rotors:  First,  it  provides a convenient  way  to  include a rigid-body 
torsion  degree-of-freedom  arising  from  root  torsion  restraint  (control  system) 
flexibility  and  second,  it  enables  the  effects  of  pitch-flat/edge  coupling  to 
be  systematically  introduced. 

. .. . 

Rigid-Body  Feathering  Degree-of-Weedom 

For this  purpose  the  total  pitch  angle  now  includes  the  root  feathering 
angle, eR, and  is  expressible as: 



where : 

QeNTM+I 
= 8, (root  torsion  deflection) 

A separate  rigid-body  torsion  equation  is  written  by a generalized  appli- 
cation of the  Galerkin  technique  wherein  the  torsion  equation is multiplied  by 
the  pseudo-mode  and  integrated;  this  effectively  calculates  the  torsion  moment 
resisted by the  equivalent  elastic  root  torsion  spring,, Kt32 : 

I 4 lgRB[distributed torsion loodingldr = Kq[80+8R+%j(5)qej+ 8B('Jj] 

where : 

KOl 3 torsional  stiffness  of  flex-beam = [(GJIFB + TkiFB] /SFB 

K+= equivalent  root  torsion  spring due to  control  system  flexibility,  etc. 

In addition  to  incorporating  Eq.  (63a)  into  the  total  set of dynamic 
equations,  addit,ional  terms  must.be  added to the  equations  for  the j normal 
torsion  modes : 



f5. [ distributed torslion loading] dr. = ( 5 .  qAx5 
0 1  

dr 
0 1  

Furthermore, appropriate 6~ (and time derivative) terms must be added t o   t h e  
load  distributions (wherever @ dependent terms  appear). 

Inclusion of Pitch-Flat/Edge Coupling 

Autoniatic pi tch change coupling effects  cstn a lso be  conveniently  included 
i n   t h e  equations of motion by use of the  pseudo-torsion mode. First, however, 
the  kin-tics of the push-rod t o  blade  attachment  point must be considered. 
Let Az be the upward "5" coordinate system displacement of t h i s  attachment 
point due t o  blade  deflections  with  the push-rod  momentarily disconnected. 
These deflections  are shown i n  Fig. 5 for  a blade  section at the attachment 
point  station: 

F!NAL POSITION  WITH 
PUSH-ROD  REATTACHED 1 

1 I. I 2 

- DEFLECTED~POSITION  WITH 
PUSH-ROD  DETACHED 

L UN-DEFLECTED 
---"_ . POSITION 

5.-  Geometric Features of Automatic Pitch Change 

. d u e   t o  Blade Deflection. 
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When the  push-rod is  reattach'ed, so tha t  the attachment  point i s  restored 
tg i t s  or iginal  25 posit ion,   the blade will have rotated  through  an  incremental 
pitch  angle (-A0 as shown i n  the figure). Using simple  trigonometry the fo l -  
lowing  equation  governing A0 and A Z  can be written: 

sin BoPR - sin ( BopR+ A@ = - Az 
ylOPR 

which upon  making the'small  angle assumption on A0 becomes: 

It should be noted  that  the Az deflections can r e su l t ,  depending on rotor  con- 
figuration, from flatwise bending,  edgewise  bending, flapping and/or  lagging. 
!rhus, A0 can generally be writ ten as: 

and the deflection  of  the  reference  point  of  the bla.de attachment  point  section 
(point 0, i n  Fig. 5 )  can similarly be writ ten as: 



: c .  -!&e above  development  can  then  be  incorporated  into a comprehensive ’ 

modeling ‘of ‘pitch-flat/edge  coupling  effects  by  building  upon  the  following . 

two considerations.  First,  the  incremental  pitch  angle,A9,  can  be  incorporated 
into  the  total  pitch  angle  and  twlst  rate, again using  the  pseudo-torsion  mode: 

NTY 

Hence,  the  incremental  pitch  angle  generates  aerodynamic  and  inertia  loads 
propprtional  to  those  which  would  be  generated by the  root  deflection  angle, 
%, whose  dynamics  are  described  by Eq. (634. 

The  second  consideration  is  that  in  the  process  of’equilibrating  the 
blade in torsion  and  maintaining  the  push-rod  attachment  point  at  its  level 
position  (as  indicated  above  in  Fig. 5) a push-rod  force  is  generated  equal 
in magnitude  to  the  applied  torsion  moments  on  the  blade  divided  by  the  push- 
rod  offset  distance,  but  directed in the  negative 25 direction: 

. .  

where  the  torsion  moment  is  obtained  from Eq. .. (63a) ‘and given  by: 
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The  push-rod  force, F ~ s .  ., is  then  a (negative)  concentrated  force acting a~ 
the'  virtual displacemen?? This displacement is derived f r o m  EQ. (68) a d  i 8  
expressible  by  the  following  equation 

merefore, combining  Eqs. (71) and' (72) -and using Eq. (67), the bending 
tions  and  those  for  flapping and lagging  are  modified as follamr: 

i'th flatwise  bending, 'Eq. (24) : 

l { ( Y  .- AWi)(inertia loads) + . . .} dr + eWiMx 
wI 5pR 

+ f{(Yw.- AWi )( aerodynamic loads) + . . .} dr + . . . = 0 
0 I I 

k'th edgewise  bending, Eq. (25): 

l { (Tvk-  Avk)(  inertia  loads) + . . .} dr + 8, k M ',PR 

+ 1 { (Y - Avk)(aerodynamic loads) +. . .}dr + . . . = 0 
I 

0 vk 

rigid  flapping, Eq. (311: 



- 111.11"1 I1111 I1 I111 I 1 1 1 1 I I I  , . I 1 1 . 1  .I.,. I ... I. I -. .... ""_, .. --.... -.- 

rigid  lead-lagging, Eq. (32) : 

The inertia  matrix,  CAI, developed i n  an above subsection  can  then 'be 
modified, as a result of Eqs. (69)  and (73) thru (77), t o  the  follawlng  general 
forms : 

1 1 

where P and Q denote any of  the  subscripts, wi, vk, B or  6, and where denot: 
any of  the  basic  inertia  matrix components given i n  Eqs. (46a) thru (46113. Thi: 

technique  for  the  introduction  of a f i n i t e  push-rod force  in   the bending, flap- 
ping  and  lagging  equations is appropriate only for  the  case wherein the  root 
torsion  retention  st iffness i s  assumed in f in i t e ,  no r i g i d  feathering degree-of- 
freedom exis t s  and the  incremental  pitch  angle i s  automatic. For cases where 
a f in i t e   roo t   s t i f fnes s  exists the push-rod force i s  eqressible more conve- 
niently  using  deflection  dependent.spring  forces. 

A 

The above somewhat abbreviated development i s  suff ic ient   to   wri te  a l l  the 
e-licit terms  involving  automatic  pitch change due t o  blade  bending,  flapping, 
and/or  lead-lagging. For the  bearingless  rotor with a cantilevered  torque  tube. 
however, this development m u s t  be expanded to   include  the  f ini te   effects  of 
flexbeam bending. This bending g ives   r i se   to   the  low stiff'ness  torsion (wob- 
ble) mode  whose equations  are developed in  the  next  subsection. 



AEROELASTIC SIMULATION OF  BLADE TORSION W0BBLF:MODE 

The  cantilevered  torque.tube  configuration  bearingless  rotor  comprises a 
relatively  simple  mechanical  system.  The  torque  tube  is  attached  at  its in- 
board  end t o  the  push-rod  and  at  its  outboard  end  to  the  flexbeam  and  outer 
blade  portions of the  blade  by  means of a cantilever.  mount  (see  Fig. 6). 
Typically,  the  skin  of  the  outer  blade  portion  would  continue  inboard  from  the 
flabemu4 torque  tube  juncture  to  form  the  hollow  torque tube: As shown in 
Fig. 6 ,  this conflguration  is  characterized  by a relatively  long  shear  load 
path for the  push-rod loads. 

Three  observatsons  can  be drawn *om  this  figure.  First,  because of  the 
combination of faexbeam  flexibility in both  torsion  and  bending,  the  blade 
possesses a rigid  body  feathering  degree-of-freedom  even  with  infinite  control 
system  impedance. This torsion  degree-of-freedom  inherently  involves  signifi- 
cant  vertical  or  flatwise  motion  and  is  referred,  herein, as the  "wobble"  mode. 
Second,  because  flexbeam  bending  plays a primary  role  in  defining  the  restor- 
ing moment  for  this  mode, an analytic  calculation  of  this  fleldbility  is  re- 
quired.  Third,  as a result  of  this  flexbeam  bending  flexibility  the  conven- 
tional  automatic  pitch  change  coupling  described  in  the  previous  subsection  is 
no longer completely  applicable. In the  present  case,  the  effect  of  bending 
modal deflection  is  to  develop a push-rod  load  which  acts  as an applied  torque 
to the  wobble  mode,  which in turn  has  finite impedance.characteristics. Thus, 
for  the  cantilevered  torque  tube  configuration  effective  pitch-flat/edge 
couplings may, in general,  be  dynamicslly  amplified  and  phase  lagged.  The 
development of the  equations  governing  the  wobble  mode  presented  herein  draws 
upon the  pseudo-torsion  mode  formulations  of  the  previous  subsection. 



UNDEFLECTED - 
ELASTIC  AXIS 

FLWBEAM  -TORQUE  TUBE 

ROOT  TORSION  DEFLECTION 
DUETO-FLEXBEAM. TORSION 

SHEA,R LOAD  PATH 

PUSH-ROD  ATTACHMENT  POINT 

Figure 6. - Pictorial Representation of Wobble Mode and had Path for Shears due to Push-Rod- Load. 
. .  ... . . 



Flatwise  FlexLbility  Characteristics of 
Flexbeam - Cantilevered Tbrque Tube Assembly 

,A 

> 

The required  qusntitative  description of the flexbeam bending f l e x i b i l i t y  
i s  the  flatwise  deflection  of  the  inboard end of  the  cantilever  wtmted  torque- 
tube  per unit load  applied  at   the same point. The assumptions i d e   f o r  this 
calculation  are  1) that the  torque  tube is r ig id  i n  bending, 2 )  that the 
effects  of flexbeam twist angle can  be neglected, 3) that over  the f l a b e m  . 
span the  tension is constant and equal  to that due t o   t o t U  .blade mass (i.e., 
the  flexbeam is  massless) and 4) that the  junction  point i s  a t   the  midpoint 
of a  blade segment. !The e l a s t i c  problem so formulated is  solved by meay of 
transfer  matrix  techniques using the  distributed (lumped) Ass and  fla&ise 
st iffness  properties assumed for  calculating  the normal flatwise benhing modes. 
Figure 7 shows the  features of the mathematical model of  the  total  blade. It 
i s  t o  be  noted,  f'urthermore, that all the  blade segments are, i n  a centrifugal 
force  f ield.  

P = 1 Ib. 

' JUNCTION  POINT 

/ 
/ 

/ 
(MASSLESS) 

OUTER PORTION OF BLADE 

Figure 7, - Features of  %thematical Model for Calculating  Flatwise  Flexibility 
Characteristics of  Inboard End of Cantilevered Torque Tube. 



Since  the  junction  point is assumed t o  act at the midpoint of a segment 
and since  the  centrifugal  force i s  a strong  (but known) f’unction of span,  each 
blade segment i s  f’urther  broken down in to  two semi-segments, each  of which is 
then assumed t o  have a constant  (average)  tension. Then, fo r  each semi-segment, 
t he  inboard  loads and deflections,  expressible as a s ta te   vector ,  can bere la ted  
to the  outboard  loads and deflections by means of an ‘appropriately  calculated 
transfer  matrix: 

= [ T k ] { i )  k = l ,  2 1 . .  . l  2(NSEG) 

Z’  Z’ 
k I  k 0  

where : 

[Tk] 

0 0 

[ I  + (coshPL-I)c, 

+ c,psinhP~] 
0 

0 

[- sin?L C I  
- c2cosh&+ c3 

(79 1 
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The  various  terms  are  evaluated  at  the  k'th  semi-.segment  and  defined as follows: 

f = average tension = 112 ( T ~ + T ~ )  (80b 1 

and where: 

L = 1/2AX 

* c3 = -I +-) ",'" ( 20 I 

S 3 = { ' j ( k - l ) I  

S 

k =  I corresponds  to the 
blade tip semi-segment 

k 0  

Cascade  matrix  multiplication,  together  with  the  introduction of the 
additional  shear  and  moment  at  the  junction  point  (arising from the  unit  load, 
P) and  the  imposition of boundary  conditions  (geometric  at  the  root  and  loading 
at  the  tip)  leads  to a matrix  equation of the following form: 
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This matrix  equation  constitutes a solvable  set of four  equations  in four 
unknowns. A partial  cascade  multiplication of transfer  matrices, T3, relat- 
ing  the  junction  state  vector  to  the  tip  state  vector, is then  used  to  ob- 
tain  the  deflection  and  slope  at  the  junction  point: 

The final required  flexibility  is  obtainable  from  these  two  quantities  as 
follows : 

where : 

STT = length  of  torque  tube 

K = flatwise  angular  spring  restraining  the  torque- 
FJ tube  to  the  blade  spar ( flexbeam ) 

Elastic  Rigid  Feathering  Torsional  Restraint 

The  combined  effects  of  flexbeam'  bending,  flexbeam  torsion  and  control 
system  flexibility  can  be  determined  by  examining  and summing the  contributions 
to  the  vertical  deflection  of  the  push-rod  attachment  point. As shown  in  Fig. 
8, the  attachment  point is allowed  to  deflect  sequentially  due  to  the  effects 
of blade  bending (Az), of  flexbeam  bending  due  to  the  application  of  the  push- 
Pod  load (-%), of  fiexbeam  torsion (e,), and  finally  of  control-system  flex- 
ibility (5). 

, .  

The  final  attachment  point  deflection  is  thus  given  by  the  following 
expressions: 
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FINAL  POSITION WITH 

PUSH-RODAND ROTATION 

- DEFLECTED  POSITION_ITH 
ZERO  PUSH-ROD  LOAD 

Figure 8. - Contributions to Vertical  Deflection of Push-Rod  Attachment  point, 
Cantilevered  Torque  Tube. 

This  deflection  together  with  the  actual  control  system  stif'fhess, Ke3, 
deflnes  the  push-rod  load: 

where : 

Ke3 = actual  control  system  stiffness. 

Recognizing  that the z2 deflection is itself  proportional  to  the  push-rod 
load: . .  



enables  the following expressions  for  the  push-rod  force  and  root  moment  to  be 
written: 

where  the  effective  root  spring,  introduced  in  the  previous  subsection, Ko2, is, 
now  given  by: 

Dynamic  Equation  for  Wobble  Mode 

As was observed  above  in  this  subsection  the  wobble  mode  is  essentially a 
rigid  body  feathering  mode;  hence,  the  developments  of  the  previous  subsection 
can  be dram upon.  First,  the  quantity Ae appearing  in Eq. (87%) for  this 
cantilevered  torque  tube  application,  must  now  be  considered a normalization 
of  the  flatwise  displacement  of  the  attachment  point  rather  than,  as  in  the 
previous  subsection,  an  automatic  pitch  change. Thus, the  total  pitch  angle 
and  twist  do  not  contain  the  quantity A8 and  Eq. (618) and (6111) become  the 
appropriate  expressions  for  the  total  pitch  angle  and  twist,  respectively. 
Using  the  root  restraint  moment, %, as  defined  by  Eq. (1.8~) the  dynamic 
equation  for  the  wobble  mode  then  becomes a modification  of  the  rigid  feather- 
ing  Eq. ( I. 63a) given  in  the  previous  subsection: 

<GRB[distributed torsion loodingldr = K,2(OR-Ae) - - 



comparison of this equation with Eq. (63a) shows a coupling of the wobble 
mode with blade bending  through the Ae term. It is reasonable t o  expect a 
similar coupling of the bending  equations  with  rigid body torsion  through a 
similar term. Indeed, the push-rod  force,  given by Eq. (878) can be d i rec t ly  
incorporated i n  the flatwise and  edgewise  bending equations t o  give  the ex- 
pected  symmetrical elastic coupling: 

I 
{(Ywi-AWi)(inertio loads) +. . .}dr +ewi$i@R-A@ 

0 (90) 
+ i ! { ( Y  .-Awi)(aerodynamic  loads) + . . .} dr + . . . = 0 

wI 

I J {(qk- AVk)(inertia  loads) + . .1) dr + 8vk%2(&- A81 
0 

I +/ { (Y  -Avk)(aerodynamic  loads) + . . .}dr + . . . = 0 
0 'k 

The development of this subsection has been directed  to  a type of bearing- 
less  rotor  configuration which i s  characterized by a torque  tube which is 
re la t ive ly  s t i f f  i n  bending. This high degree of torque  tube bending s t i f fnes s  
is generally  required  because of the  inherently  long  load  path  for  the-push-rod 
shear  loads. In the next  subsection an alternate  type of torque  tube is con- 
sidered wherein the  torque  tube bending s t i f fness .  i s  not  generally  high, This 
character is t ic   leads  to  a degree of bending  redundancy in   the  flexbeam. (torque 
tube e l a s t i c  system) and an  appropriate analysis technique is required. 



REDUNDANT ANALYSIS OF FIEU3ENM - TORQUE 
TUBE ASSEMBLIES W I T H  SNUBBER ‘ I E S T R A I N T S  

Basically,  bearingless  rotor systems are characterized by an inboard span- 
wise section comprised of two highly  specialized and contrasting  structural  
elements (see Fig. 9 ) .  The first is  the innermost portion of t he  blade spar 
and i s  referred t o  as the  flexbeam . Its function i s  t o  provide the inboard 
bending stiffness  appropriate  to  hingeless  rotor blades, while a t   t h e  same time 
being  very  soft in  torsion  to  al low  the  outer  portion of the blade t o  be  feath.- 
ered. The second s t ruc tura l  element i s  typically a cylindrically formed s h e l l  
relatively stiff in   to rs ion  which encloses the flexbeam and is re fer red   to   as  
the  torque  tube. The structural   functions of the  torque  tube are t o  provide the 
blade  torsion system with sufficient  general  torsion  stiffness  inboard of the 
junction and t o  transmit those  torques  to the flexbeam which are needed t o  
produce the input  control angles. The inboard end of  the flexbeam is attached 
d i rec t ly   to   the  hub whereas the inboard end of the torque  tube  attaches t o   t h e  
control push-rod and t o  the flexbeam . More precisely, the inboard end of the 
torque  tube is  restrained in torsion by the push-rod and control system, and 
i n  shear by means of an (effective) pinned  point  (elastomeric snubber or  equiv- 
a lent)   a t tached  to  the flexbeam . The cantilevered  torque  tube  described  in an 
ear l ie r   sec t ion  i s  restrained.  both  in  torque and shear by means of the push-rod. 
The redundant analysis of th i s  latter  configuration  requires  a much  more exten- 
sive development than is presented  herein  for pinned or snubbed configurations. 
Because of the  current  viabil i ty of the snubbed configuration, and t o  a  lesser 
extent, the additional  complications of analyzing the cantilevered  configura- 
tion,  the  present development is r e s t r i c t e d   t o  only  pinned  or snubbed configura- 
t ions.  The two s t ruc tura l  elements are  attached  (both  to  each  other and t o   t h e  
remaining outer  portion of the   b lade)   a t   the i r  common outboard end point, 
referred  to  alternatively  as  the  junction  or  juncture. 

For typical  bearingless  rotor  configurations the torque  tube and outer 
blade portion  skin would be integrally formed (for  practical   fabrication  reasons).  
Hence, while the torque  tube would nominally  experience  zero bending moments a t  
i t s  inboard end (due to   the   e f fec t ive  pinned jo in t ) ,  it would necessarily sup- 
port  bending loads a t  i t s  outboard end. Equilibrating  the  internal  loads a t  
the  junction  point  arising from the  load  transmissibil i t ies of the flexbeam , 
torque  tube and outer  blade  portions of the blade  defines  a doubly  redundant 
analysis. Over the flexbeam torque  tube  portion of the  blade,  dual  load  paths 
are defined in both bending and torsion, and an appropriate  solution must  con- 
sequently  require that the  e las t ic   def lect ions of the junction  point,  both in 
bending and torsion  of  the  three  structural  elements, are  consistent. The 
remaining portions of this section  develop  the  detailed  mathematical formula- 
t ion  and so lu t ion   to  t h i s  redundant analysis problem. For conceptual c l a r i f i -  
cation  the primary  bending f l e x i b i l i t y  system is considered t o  be the flexbeam 





whereas the primary tors ion system is  considered t o  be the torque tube. The 
subsections t o  follow  include: f irst ,  a development of the bending stiff- 
ness  characterist ics of the  torque tube; second, a development of the 
tors ional   s t i f fness   character is t ics  of the flexbeam arising from nonlinear 
loadings; th i rd ,  a method for  estimating  the  internal loads immediately  out- 
board of the junction; and finally, a mathematical  synthesis of these  elements 
t o   e f f ec t   t he  complete so lu t ion   to  the  redundant  analysis. 

Bending Stiffness  Characterist ics of the Torque Tube 

The appropriate  elastic bending description of the  torque  tube is  a 
s t i f fness  matrix expressing the inboard shears, the outboard  shears and the 
outboard moments as   l inear  combinations of the  relative  deflections of the 
ends of the  torque  tube. To this end the  following  specific  assumptions  are 
made : 

1. The torque  tube i s  a beam  whose section  properties have generally 
nonunif orm spanwise variation. 

2. The torque  tube  has  negligible twist but is inclined by the  pitch 
angle of the  junction  point. Hence, f latwise and edgewise s t i f fnesses  
generally  couple  the  in-plane and out-of-plane  bending  characteristics. 

3. The spanwise in-plane and out-of-plane  load  distributions  over  the 
torque-tube  span ac t   d i rec t ly  upon the flexbeam ; i .e .  , the  torque  tube 
i s  transparent t o  these  loadings. 

4. The radial   loadings due t o  torque  tube mass (centrifugal  forces) con- 
t r i bu te   t o   t he   s t i f f en ing  of the torque  tube i n  bending. 

5 .  I n  addi t ion  to  having distributed bending stiffnesses,   the  torque 
tube is e l a s t i ca l ly   r e s t r a ined   a t  i t s  outboard end with f i n i t e  angular 
springs  (defined i n  torque  tube  flatwise and  edgewise orientations) and 
a t  the  inboard end wi th  f inite  l ineal  shear  springs  (defined  alternatively 
either i n  torque  tube flatwise and edgewise, o r   i n  hub out-of-plane and 
in-plane orhe ntat  ions ) . 
6. The torque  tube is  supported  radially  either a t  i t s  inboard end 
(torque  tube  in'  tension)  or a t  i t s  outboard end (torque  tube  in  compression). 

Assuming the  torque  tube t o  be a beam allows a transfer  matrix  solution 
s imi la r   to   tha t  employed in  the  previous  section  for  calculating  the  flatwise 
. f l e x i b i l i t y  of the flexbeam . Analysis of a beam segment with  constant  pro- 
per t ies  forms the  basis  for  evaluating each component t ransfer  matrix and 
follows from a consideration of such a beam segment shown below in  Fig.  10. 
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Figure 10.- Uads and Deflections  of a Beam Element 
with  Constant  Section  Properties. 

Use of the standard beam theory  requires  the bending equilibrium  equation 
for  the k ' th  element t o  be written  as: 

II - 
(EIIki!-Tkt = (Lk-XISO + Mo - T Z 

- 
k 'k k 

(92)  

where the  average  tension is: 

As shown i n  Fig. 10, Tk represents  the  average  tension over the beam 
- 

element. Note t h a t  for  torcue tubes i n  compression Tk would be a  negative 
number. The boundary conditions  appropriate t o  E% (92 )  are: 



For torque tube elements in  tension  the above formulation  duplicates  that 
given i n  the  previous  section and the resulting  transfer matrix, as given by 
Eqs.  (8Oa,b,c,  and d) is applicable t o  this case. For the  case of a torque 
tube i n  compression, the quantity, B ,  is then  defined as: 

P = Jrn = J-E 

and the  resulting component transfer matrix is given as: 

CTkl * 

[ L +  ( L - F ) d ,  

+ (I - co>PL)d2] 

+ (L- T )  sin P L  

0 

[ I  + (I  - cosPL) dl 

+ PsinP~d21  

if -P sinPL 

0 0 

0 
-d,cosP~ + d3] 

0 COSPL 
- 

(95 
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As i n  the  previous  section,  the  total (uncoupled) s t i f fnes s  matrices, 
for both  flatwise and edgewise bend$%,. are  obtained by a cascade multipli- 
cation of the component transfer  matrices as indicated below: 

[ T I  = 3 [Tk] (97) 

The uncoupled  edgewise and flatwise stiffness matrices are defined i n  the 
"6" coordinate  system and are  denoted as: 

where the  subscripts (S) and (J) denote,  respectively,  the snubber and juncture 
ends of the  torque  tube. Eqs. (%a and b) must then be coupled by the  effects  
of juncture moment springs, snubber  shear springs and torque  tube  pitch  angle, 
eJ. The juncture mment retention  springs are defined by the  following  simple 
relationships:  

I 



Similarly, for inboard shubber shear springs  aligned i n  the  torque tube 
flatwise and edgewise directions ("6" coordinate  system),  the  following rela- 
tionships  hold: 

Noting tha t  %6 and M,G~ are both  zero  (snubber  transmits  shear  only), 
Eqs. (99a and b and $OOa and b )  can then be combined wi th  the  def ini t ion for  
the uncoupled stiffness  matrices . (  98a and b )  t o  give 
equations. 

0 

0 

-I 

0 

I3 

23 

t33 

t43 

t13 

23 

t33 

t43 

the following matrix 

In  both of these  matrix  equations the respective  premultiplicative 
matrices on t h e   l e f t  hand sides can  be inverted  to  give modified s t i f fness  
matrices  denoted  in the following  abbreviated f o r m :  
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These equations can be  represented even more compactly using  the  follow- 
ing notation: 

Because both edgewise and flatwise transfer  matrices were derived 
"uncuupled" (i.e., each assumes zero  deflection  for  the  other),  the  loads 
given by Eq. (103) are  properly  interpreted  to l i e  in  the  planes  defined by 
the  torque  tube  sections a t  the snubber and at   the  juncture.  These planes are 
oriented by rotations about  the y5 and 25 (or y6 and 26) axes by amounts deter- 
mined by the  blade slopes a t  the snubber and juncture  points. For what 
follows,  the  subscript "7" is given t o   t h e  moments so defined by the  torque 
tube  st iffness matrix with  the  understanding  that  they l i e  in   t he  plane  defined 
by the  torque  tube  section a t  the  juncture. 

or ,  in abbreviated  notation: 

where the  (d)  superscript  denotes  loqds due to   the  ( A 5 ) m  deqlections. 



Should.the  inboard  snubber springs be aligned i n   t h e  hub axis system 
rather  than i n  the  torque  tube flatwise, edgewise  system, then QE-l and 
QF-l i n  Eqs. (101a and b )  are zero and the following description of the 
snubber e las t ic i ty .must  be used: 

These linear  relationships  are  then  inserted  into the elast ic   descr ipt ion  as  
follows : 

0 

\ 
I3 

\ - 

0 

r 

where K, ys and GZz are  the snubber springs  in the in-plane and OUt-Of-Plane 
directions,  respec  ively. Eq. (107)  can then be inverted  to   yield the desired 
form, similar t o  Eq. (105) : 
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where the subscript (F-B)  on the  right-hand  side  indicates  deflections  of  the 
flexbeam a t   po in t s  where the  torque  tube and/or torque  tube  retention  springs 
are  attached. Note that the  torque  tube  inboard slopes are  included  in  the 
load  vector f irst  to   ind ica te  that they,  like the loads,   result  from the spe- 
cified  deflections on the RHS of this equation, and second, t o  show where i n  
the  analysis  these  quantities  are formed when needed for  pitch-flat/edge 
coupling  calculations. I n  practice,  these  quantities, once formed are par t i -  
tioned  out and handled separately.  In subsequent development they w i l l  be 
omitted fkom the  load  vector,   for  clari ty.  

The total   in ternal   loads  act ing  a t   the  ends of the  torque  tube  consist 
of  those e l a s t i ca l ly  produced by the deflections,  given by the above equation, 
and those  loads  arising from blade  root  torques and the  resulting push-rod 
loads. The torque  tube and loads due t o  push-rod loads are already  implicitly 
included in  the  f latwise and edgewise bending excitation  equations by reason 
of the  particular method for  including  pitch-flat/edge  coupling  discussed  in 
an above section. These loads, however, must  be expl ic i t ly   evaluated  to  
implement the  torsional redundancy portion of the  redundant  analysis. The 
remaining portion  of this subsection  discusses  those  derivations needed t o  
calculate the pitch-flat/edge  coupling when a flexible  torque  tube is employed, 
how Eq. (108) f o r   e l a s t i c   f l e x i b i l i t y  is used t o  account for   the bending  redun- 
dancy portion of the redundant  analysis,and how the  torque  tube  loads due t o  
push-rod force can be estimated. 

As was described in an above sectlon and shown i n  Fig. 6 ,  pitch-flat/  
edge coupling  effects are calculated from the geometry of the  pitch-horn and 
frm knowledge of the unconstrained ver t ical   def lect ion of  the  attachment 



point, Az, for unit deflections of the  various modes.  With the above analyt- 
ical   descr ipt ion of  torque  tube  bending f l e x i b i l i t y   t h i s  can be  readily  accm- 
plished. The Az.deflections  per modal def lect ion  for  this case  can be obtained 
from the last row of Eq. (108) for  ( ~ 3 ~ ) ~  and from ( ~ 5 ~ ) ~  which is  e i ther  
equal t o  ( ~ 5 ~ )  or, i f  the ,snubber spring  rates are finite, calculable from 
the   l inear   re lg ionships   g iven  by Eqs. (1OOb) through (105) and  (106b) through 
(108) using  routine  algebraic  manipulations. After these  manipulations  are 
performed, ( ~ 5 ~ ) T r  and ( z$!TT and, by l inear  combination, Az, can be ex- 
pressed  as a l l nea r  combinatlon  of  the flexbeam deflections due t o   u n i t  modal 
deflections : 

The above equation  for Az is then used with the  derivation  in  Section V t o  
obtain  the  values of  modal pitch-flat/edge  coupling. 

The bending  redundancy portion of the  redundant  analysis i s  accomplished 
by t reat ing  the snubber and juncture loads,  defined by  Eq. (108) a s  concen- 
trated  loads  for  direct   inclusion  in Eqs. (24) and (25) as  i s  provided  for  in 
these  response  equations. Due to  the  l inear  character of Eq. (108), the 
bending redundancy  can be included  in  the  eigensolution  as well as   the  time- 
history  solution. 

Calculation of the  external  torque  tube and loads  resist ing  the push-rod 
force is  accomplished by equivalencing  the  virtual work  due to   t he  push-rod 
load  with  that due to  the  equilibrating  torque  tube and loads. To t h i s  end 
Eqs. (109) can be used in  the  following manner: 



Therefore,  since  the conipopent v i r tua l  displacements are independent, 
the  external end loads needed to   equi l ibra te  the push-rod force, Fm, are 
given by the  following : 

i qTT, \ 

IFPR 
which, when combined with Eq. (108), yields   the  total   in ternal   loads  a t   the  
ends  of the torque  tube: 

In  addition  to  the  loads given by the above equation,  the  radial  shear 
a t  the  juncture, SxsJ, is  given by the following: 

Note that   the   axial   tors ion moment a t   t h e  outboard  end,. (Mx7 )TT, includes 
the  effect   of  the flsxbeam res i s t ing  moment and, hence, musg be solved for 
using  the  redundant  analysis. The following  sribsection  formulates the analysis 
stiffness  matrices  required  to  define  the  detailed  torsional  stiffness of the 
flexbeam . 



Torsional  Stiffness  Characteristics of the Flexbeam 

Calculation of an  appropriate  stiffness  matrix  statement  for  the flexi- 
b i l i t y  of the flexbeam , requires  that two special   character is t ics  of the  flex- 
beam be accounted  for: F i r s t ,  the composite material flexbeam is  a plate- 
like beam  whose cross  section  has a typical  aspect  ratio  of  order of magnitude 
10; furthermore  although the flexbeam, i s  re la t ive ly   sof t   in   to rs ion  (low GJ), 
it re ta ins  a re la t ive ly  high  bending modulus (high E I ) .  Hence, it i s  reason- 
able t o  expect that  the  appropriate  differential  equation  governing the 

- torsional  elastic  characterist ics  should  contain the tors ional   s t i f fening 
ef fec ts  due t o   p l a t e  bending. Second, the B 1  and B2 constants were retained 
i n  the  general development of the blade torsion  equation (Eq. 30) principally 
fo r   app l i cab i l i t y   t o  non-helicopter  rotor  applications  (i.e.  propellers and 
wind turbines). However, the  effect  of these  constants on t h e   t o t a l  stiff- 
nesses of composite bearingless  (helicopter)  rotor flexbeams i s  considered 
t o  be. negligible. Indeed, assuming a large  section  aspect  ratio 2 10) , 
the r a t i o  of twist squared s t i f f en ing   t o  S t .  Venant ( G J )  stiffening can be 
approximated by the  following  torsion  stiffness  ratio: 

5 

For comprnable section and planform aspect   ra t ios   (c / t  and  L/c, respec- 
t ively)  and even for  an (E/G) r a t i o  of 25, typical  of unidirectional carbon- 
epoxy sections, the above tors ion  s t i f fness   ra t io   reduces  to  approximately 
O.4Ae2. The t o t a l  flexbeam twist angle, b e ,  then must be i n  excess of 25 
degrees t o  achieve a tors ion   s t i f fness   ra t io  of 0.1, which i s  considered 
jus t i f iab ly  small for  present  purposes. Third,  because of the length of the 
flexbeam ,and the nature of the bending loads and def lect ions  a t  i t s  outboard 

end (result ing fkdm torque  tube and outer  blade  generated  internal  loads), the 
torsion moment over the flexbeam span i s  generally  variable and contains 
components  due t o  a l l  six concentrated loads at   the  juncture.  These three CQR- 
siderations  thereby  define  the  following  differential  equation  for a torsional 
element w i t h  constant  section  properties: 



wherein  boundary conditions on 8 and 8 '  must be specif ied  a t   the   inner  and 
outer ends of each tors ion element. A t  the  ends  of the  total   length flex- 
beam (inboard end (k = 1) ,  and the  juncture end (k = K) ), the  appropriate 
boundary conditions  are: 

Before solving Eq. (114) l e t  us first examine the  structure of the  r ight-  
hand side. Figure 1 1 b e l m  shows the  origins of the spanwise variable  internal 
torque which accrue from combinations of loading and deflection  at   the  out-  
board  (juncture) end of the flexbeam . 

t" 
I ( p &  6 ZERO, FOR CLARITY) 

LOADS  APPLIED TO 
FLEXBEAM BY' 
TORQUE  ,TUBE  AND 
OUTER  PORTION 
OF THE  BLADE 

Figure 1 1 9  Pictorial View of Elexbeam Showing Deflections and Applied Loads 
Producing Spanwise Variable  Torsion  Hment. 

73 



Eq. (27) can be readily  adapted  to'  the  present case wherein the loads are con- 
centrated a t  a point;  the  following  expression  for  the sparrwise variable 
torsion mament, B+ can  then  be  written as: 

Since the span of the flexbeam is short   re la t ive  to   the  total   b lade span, 
the  in-plane and out-of-plane  deflections, y5 andxg., respectively, can be 
approximated by polynomials  defined by the  deflections and slopes a t   t h e  junc- 
ture .  With the  definit ion of a flexbeam  spanwise variable: 

the  deflection (and  carresponding  slope) i n   e i t h e r  of the two directions can 
be expressed by the  following  general  expressions: 

where : 

- s = S./R 
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By using Eqs. (U8a and b),  Eq. (U6) can be expressed  as a polynomial 
i n  the flexbeam . spanwise variable, r): 

Thus, the  right-hand  side of Eq. (114) i s  seen t o  be a phlynomial o f '  
fourth  degree i n  the spanwise variable r). Since the flexbeam ? like the torque 
tube, w i l l  have section  properties  variable  with span, a t ransfer  matrix solu- 
tion  using span segments must be employed. For any constant  sect5on spanwise 
segment the appropriate  general  solution  to Eq. (114) becomes 

5 

i =o 
8 = cexT + De" + ~~7~ 

where Cy D and H i  are  constants  to be determined from the boundary conditions 
and from the polynomial coefficients of Eq. (llg), and where the  section 
characteristic  constant, A, is  given by: 

A = "J- C 

Since all the  boundary conditions  given by (U5) can be used only a f t e r  
a l l  the component t ransfer  matrices are cascaded? one  of the Hi constants, 
H, specifically,  m u s t  be t reated  as  a state variable (like 9 and 8 '  ) and varied 
by each component t ransfer  matrix. Eq. (120) can then be used t o  form an 
intermediate  (partial)  transfer matrix equation: 

75 
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-AsinhAA  cosh Ad AsinhA4 
A .  

( 1  - CoShAd) 

0 0 I 

where, far each k' th segment, the  constants H F k ( i  = 1, 2, . .., 5)  are com- 
pletely determined by the section  properties and the polynomial coefficients 
of Eq. (119). The length of the k' th spanwise segment, &, i s  conveniently 
taken t o  be the blade  break-up  segnent  length, Axk, divided by s. More speci- 
f ically,   using the following  notations: 

'k = (g)k 8 k  = - (GJ +TkA)k 

~ ~ ~ ( 7 1 )  2 TiTi 

I 2 
ak 

4 (123) 

i =o 

the explicit  expressions for Hik can be Written as: 

H3k = $[$T~ + 4(+)k~4j 

Equation  (122) i s  deemed a par t ia l   t ransfer  matrix because it does not 
yet  include  the  transfer of the HL constant from one  segment to  the  next; 
one additional  relationship is thus required  to complete the  t ransfer  matrix 
formulation.  For this purpose, Eq. (114) can be integrated  across an inter-  
segment junction  point, (v = 4kjk+l) : 
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Since  the  torsion moment is a smooth continuous  function  over  the  entire 
span the  in tegra l   in  the  above equation m u s t  equal  zero. Therefore the  quantity 
(-AQ"+BB ) must be continuous  across the inter-segment  junction  point. This 
relationship  results  in  the  following  additional  required  equation: 

! 

Combining  Eqs. (122) and (126) yields  the  followkg final expression  for  the 
complete transfer matrix equation: 

COSh (Aa)k --Sinh(AA )k 

= [ 
0 0 'k+ I ' 'k ] \'/k+l 

I - [ I -COSh(Aa)k] k+l 
'k  'k 

-Aksinh(Xa)k COSh(.hl?)k k+l AkSinh ( A A )  k 
Bk 
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Note that the Hik constants, (i = 1, 2,. . . . ,5 )  i n  the above equation are com- 
pletely determined by Eqs . (l24a  through e ) . This transfer  matrix  equation 
for the  k ' th segment can then be suitably cascaded t o  yield a final matrix 
equation, relating the  state variables a t  the flexbeam root   to   those  a t  
the juncture: 

The E and F matrices  appearing i n  this equation  are  the result of appropriate 
cascading' and,  hence, are not  sufficiently simple t o  express  explicitly  herein. 
They are calculable, however, i n  a straightforward manner using  routine matrix 
algebra. 

Application of the boundary conditions, Eq. (115) together  with the 
elimination of (Ho)l and (Ho)k from the above equation set r e su l t s  i n  the 
following  expression  for  the  elastic  torsion  deflection of the flexbeam. a t  
the  juncture: 

where e i j  and f are  the elements of the E and F matrices,  respectively, and 
where from Eq. &9) : 
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Equations (12% and b )  can be coihbined using  the  following compact notation: 

or  al ternatively: 

where the  various  st iffness  coefficients i n  Eq. (130b) are  deflection dependent. 

Thus, the  e las t ic   tors ion  def lect ion,  deJ, is seen to   r e su l t   no t  only frm 
the  usual  radially  ariented  feathering  torque MX2, buC from various  nonlinear 
combinations of loads and deflection. The following  subsection  presents  those 
calculations needed to  estimate  the  internal  loads  just  outboazd  of the  junc- 
ture which must be equilibrated w i t h  the  torque  tube and flexbeam loads a t  
the  juncture. 

Estimation of In te rna l  Blade Shears and Moments 
i n  Blade  Adjacent to  the  Juncture 

Two basic methods exist for  estimating  the  instantaneous  internal  loads 
in   the  outer   port ion of  the  blade: mode deflection and force-integration. A 
comprehensive discussion  of  these two  methods  and t h e i r  accuracy  characteris- 
t i c s  i s  contained i n  R e f .  8 and will be omitted  herein.  Briefly;  the former 
i s  re la t ive ly  simple t o  implement but  requires smooth spanwise load  distribu- 
tions  for  accurate  estimates w i t h  a small number of modal variables;  the 
l a t t e r  is, prima facie ,  a more complicated method t o  implement but  estimates 
the  loads  with  superior  accuracy. The l a t t e r  method (force  integration) was 
chosen  because, fo r  most practical   helicopter  applications,  it i s  s ignif icant ly  
more accurate, and because the  disadvantage by reason of  complexity i s  molli- 
f i ed  by certain  available  features  implicit   in  the  general   analysis  solution. 
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Because the  tors ional  redundance portion of the  redundant  analysis  itself 
entai ls   s ignif icant   nonl lneazi t ies ,   th6 redundant  analysis  effects  are most 
masingfully included only in the  total  nonlinear  formulation wherein the 
equations  are  solved by numerical inteeat ion  to   obtain  t ime-his tor ies .  Ekm- 
inat ion of the  various  differential  equations  formulated  for  the  aeroelastic 
responses, Eqs. (24)', (25) , (30) , (31) , and (32) revea ls   tha t   the   iner t ia  and 
aerodynamic load  distributions  me used expl ic i t ly .  That is ,  with  the excep- 
t i o n  of the double  (nondimensional)  time  derivatives of the  response  variables, 
which are  extracted t o  form the   iner t ia  matrix, a l l  load dis t r ibut ions such as 
Eqs. (41) and (44) are  calculated and used direct ly   in   the sparrwise integra- 
tions  required  for  the  various  response  excitations. Thus, the major necessary 
complexity  inherent in force-integration,  that of having to calculate  expli- 
citly  the  load  distributions, is for  the  most  part  already  satisfied.  The 
remaining  requirement fo r  implementation is  t p  approximate the doubly d i f f e r -  
entiated  responses  (vibratory  accelerations, ) and include them in   the  load 
distributions.  

The general  time-history  solution,  as  indicated by  Eq. (26), implies that 
a t  any one time  step when the  excitations  are  being  calculated,  the  accelera- 
.tion is not  yet known: The (RHS) of Eq. (26), which nominally  excludes a l l  

' 8 ,  i s  first evaluated t o  calculate  the ys" ' s  given on the (IJB) of t h i s  
equation. Thus, t o  implement the  force-integration  calculation, approxima: 
t ions   to   the  *$ ' s  implicitly  appearing  in  the (RHS) must  be  made. Fortunately, 
the  force-integration method i s  generally  "forgiving" of such  approximations 
since loads due to  vibratory  acceleration  usually  act   as dynamic corrections 
t o  the  "pseudo-static"  loads. A discussion and formulation of the  extrapola- 
t ion  formula requhed   t o  approximate these  accelerations is  contained  in 
Appendix I; brief ly ,  fo r  any response with an inherent  natural  frequency, w, 
the  acceleration can be approximated as: 

where A$ is  the  integration  step  size.  With t h i s  approximation  formula, Eqs. 
(4la, by  and c ) and (by b , and c ) can be evaluated and the  following  expres- 
sions  for  the  internal  concentrated  blade  loads  outboard and adjacent  to  the 
juncture can then be calculated. In these  expressions,  unless  otherwise  indi- 
cated,  the  load  distributions  are  understood  to  contain  both  inertia and 
aerodynamic contributions : 
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(132a) 

Additionally,  the push-rod force, FPR, appearing i n  Eq. ( U 2 )  murst 
similarly be appraxbated. Upon using the pr incipal   ( l inear)  component  of the 
flexbeam tors iona l   s t i f fness ,   the  push-rod force can be approximated by: 

where the subscript (R)  denotes  conditions a t  the root  of the  torsionally 
active portion  of the blade. The above apprcarimations together  with the re- 
su l t s  of  the two preceding  subsections  are  sufficient t o   e x p l i c i t l y  famrmlate 
the details of the redundant  analysis  solution which is accomplished,in  the 
following  subsection. 



Mathematical  Formuldtion  of the  Structural  Redundancy 

The results of the  previous  subsections can be brought  together t o  fcaPl 
a solution  for a l l  internal   loads  in   the  vicini ty  of the  juncture. From the 
deflections of the  juncture and inboard  torque  tube  attachment  point  -(snubber) 
a l l  concentrated  juncture  loads i n   t h e  torque  tube  except  torsion moment are. 
evaluated by means of Eqs. ( 1 1 2 )  and (113). All loads  outboard of the juncture 
are known from interaction of the spanwise loadings and are calculable  using 
Eqs. (l32a  through f ) .  Consequently, by equilibrating  the  internal  juncture 
loads and imposing the  consistency  constraint on the  e las t ic   tors ion deflec- 
t ion of flexbeam, the flexbeam and thence,  torque  tube  torsion moments are 
determined. ' Fi r s t ,  however, some at tent ion must be paid to   t he   i n t e rna l  bend- 
ing moments in  the  torque tube a t  the juncture. These moments as  calculated 
using Eq. (112) are oriented  in  the  torque  tube  section  plane a t   the   junc ture  
and must be rotated back t o  the "5" coordinate system using  the  following co- 
ordinate  transformation  pair: 

The primary  purpose  of t h i s  redFdant  analysis i s  t o  obtain the incre- 
mental torsion moment exerted by the flexbeam to  the  torque  tube, A%7, which 
i s  given by: 

But the flexbeam loads  are.  related to the outer  blade and torque  tube 
loads by the equilibration of loads: 
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Use -of the coordinate  transformation, Eq. (134a), on the  outer blade 
moments  Eqe.  (132d through f )  , the  torque  tube  loads , Eqs . (112 and 113) and 
the equibration of loads given by Eq. (136) sufficiently  determines a l l  loads 
in the "7" coordinate system except %7FB, which  can  be  determined,  however, 
from the  torsion  st iffness  equation of the flexbeam . Upon inclusion of the 
effects of flexbeam .bui l t - in  twist, . this equation can be rewritten  as: FB' 

and solving for  %7FB yields the final  required  result :  

A M  

This lncremental)moment is then  included as a  concentrated  torsion moment 
t o  the torsion  response, Eq. (30) as is therein  provided, t o  complete the 
redundant  analysis. 

The sect ion  to   fol low develops  the  equations needed for  aeroelastic  eigen- 
eolutione  using  a fixed azimuth  approach. While the  linearized  equations  derived 
do contain  the bending  redundancy, they omit the (essentially  nonlinear)  torsion 
redundancy described i n  t h i s  subsection. 



LINEARIZED FORM OF EQUATIONS 

m r  'time-history  solutions  of  the  complete  nonlinear  equations  the  complete 
explicit  expansions of the  inertial  and  aerodynamic  load  distributions  are  not 
required, In fact,  the  implicit  descriptions of these  load  distributions (hs. 
(41), (a), and (59 ) )  actually  facilitate  the  formulation  of  these  equations 
and  eliminate  the  requirement  for  assessing  orders  of  magnitude  in  order  to 
achieve  tractibility  through  simplification. cp1 the  other  hand,  the  unique  and 
desirable  features of eigensolutions  (i.e.,  relatively  short  computation  time 
for solution,  identification of a l l  coupled  mode  frequency  and damping charac- 
teri8tics  and  the  availability  of  established  analysis  techniques  for  assessing 
the  behavior of linear  systems)  are  sufficiently  attractive  to  warrant  equation 
linearization  using  explicit  expansions of these  loadings.  The  purpose of this 
subsection,  therefore,  is  to  present  the  main  results of this  linearization. 
The relative  orders of magnitude of the  various dpamic and  elastic  quantities 
are  presented  in  Tsble I; from this  tabulation  the  various  coefficients in the 

TABLE: I 

Assumed  Relative  Orders  of  Magnitude  of  Quantities  Appearing  in  Aeroelastic 
Qmamic Equations. 
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resulting  expanded  equations  of  motion  were  evaluated  and retdned only ifthey 
did  not  exceed e*. As a result,  some  terms so retained  remain  nonlinear,  but 
are  genera-  of a quadratic  form  (i.e., 9aeqb, pep ,  s'qb, etc.).  However, 
these  terms  can  be  locally  linearized  about  predeflected  positions.  .!The ex- 
panded  equations  presented  in  Table I are  consistently  expanded  to 'e2 in the 
coefficients  and  have  the  quadratic  nonlinear  dynamic  and  elastic  terms  segre- 
gated  for  clarity. 

* * 

.Reasonable  explicit  expansions  and  linearizations of the  aerodynamic  load 
distributions,contained only implicitly  in  the  above  equations.,  can  be  achieved 
within  the  context of various  optional  simplifying  assumptions.  Theaerodynamic 
linearization  actually  developed  for  the  analysis  parallels  the  aerodynamic de- 
scription  given  in  an  above  subsection so that  the  total  linearization  achieved 
should  represent a true  "local  linearization" of the  total  nonlinear  equations 
at  any  point  in  time. 

Using  Eq. (1.59) as a starting  point  the  following  terms  are  seen  to  con- 
tain  all  the  independent  response  variables  whose  perturbations  must  be  made: 

U, = N v,+Vycos@-Vzsin@ 

where : 
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Assuming  that  the  partial  derivatives  of  the  airfoil  aerodynamic  coeffi- 
cients, cay Cdy and cmC/4, with  respect to angle-of-attack  and m c h  number  are 
available,  the  following  expressions can be  written  for  perturbational  aero- 
dynamic  load  distributions : 

- 'd 

+ U  
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+ I 

where : 



and  where 6’3’ , flT, 6v , and f l z  are  obtained  from  appropriate  differentiations 
of Eqs . (1407 and  (62bY or (69). 

Further  explicit  expansions of the  perturbational  airload  distributions . 

beyond  this  point  would  rapidly  become  overly  tedious,  and  voluminous  andwould, 
thus,  not  serve  much  additional  purpose.  The  above  development  together  with 
appropriate  straightforward  perturbations  of  the  component  air  velocities  aze 
sufficient  to form the  desired  perturbational  airloads.  The  perturbational 
inertia  loads  are  obtained in a similar manner using Eqs. (41a, b and  c)  and 
Eqs. (4h, b and c). 
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m e  time-history  solution of the fully nonlinear  set of dynamic  equations 
of motion,  Eq. (26), requires  an  appropriate  set of numerical  integration, 
extrapolation  and  differentiation  formulae.  Numerikal  integration in (nondi- 
mensional)  time is required  for  the  basic  solution of the  nonlinear  equation 
set in a conventional  step-by-step  fashion.  Furthermore,  when va.riou~ of the 
elastic modal response  variables  are  characterized by large  natural  frequencies 
(2 12P), numerically  stable  integrations would require  prohibitively smal l  
integration  step  sizes. For such  cases  it  becomes  reasonable  to  assume  that 
the  inertia (v) term  is  negligible  compared  with  the  elastic (.w q)  term. 
This assumption  permits  eliminating  the  double  integration  of  the  inertia  term 
and  substituting a "quasi-static"  solution  which  involves  an  appropriate 
extrapolation  of  the  response  variable.  Flnally,  whereas  Eq. (26) impliesw 
that  the  right-hand  side  is a f'unction  devoid of  explicit  linear  terms in q 
(the  highest  derivatives of q), various  explicit  or  implicit  nonlinear  terms 
in these  derivatives may still  exist. Two particular  sources of nonlinear 
double  time  derivative  dependancy  are  the  estimation  of  dynamic  loads  for  use 
in the  redundant  analysis, and the  calculation of the  second  time  derivative 
of angle  of  attack  as  required  for  the  unsteady  airloads  formulation  (see Refs. 
9 and 10 for a detailed  description  of  this  formulation).  Because of such 
nonlinearity,  the usual time-history  algorithm  of  solving  for ?'$ at a given 
time  using  knowledge of the  lower  derivatives  at  that  same  instant  is  disrupted. 
Hence,  approximation  to v, based  upon a reasonable  extrapolation of past 
values,  is  required  for  evaluation  of  these  nonlinear  terms  on  the  right  hand 
side of Eq. (26). The following subsections  describe  the  numerical  algorithms 
used  to  satisfy  these  three  solution  requirements. 

4 2  

Numerc  ial  Integration 

* Double  integration  of  the  response  variable  accelerations, v, to  obtaiu 
q and q at  the  next  time  step is accomplished  using a variant of the  Adams 
method  (without  correctors). In this variant  the  accelerations  are  locally 
assumed  to  be  simple  harmonics  of  their  respective  characteristic  frequencies 
in order  to  integrate  over  each  subsequent  time  step.  Denoting  this  frequency 
as an  "integration"  frequency, z, the folluwing algorithms  result: 
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where A f  is  the  integration  step  size.  For  each  elastic (modal) degree of 
freedom  the  integration  frequency  is  taken  to  be  its  inputted  uncoupled  natural 
frequency.  The usual pendular  frequencies of a  rotating,  hinged,  rigid  beam 
are  taken  as  the  integration  frequencies of the  flapping  and  lead-lag  degrees 
of freedom. 

Quas i-Stat  ic Solution 

m e  static  solution on any  one of the  response  variables,  q , is achieved 
by manipulating  the  simultaneous  equation  solution of Bq. (349 

into  the following approximate form: 

where, in general Q, and Q .  are  not  equal.  The newly formed  quantity, .9sk, 
is  used only to effect  an  e&rapolation to  the  subsequent  time  step: 

A n 

The  results of Eqs. (I. 5 )  and (1.6) are then  used in exactly  the same way as 
those of Eqs . (I. 1) and (I. 2) to evaluate  the  right-hand  (excitation)  side of 
the  equations of motion, Eq. (26). Furthermore,  it  should  be  stressed  that 
these  equations  give  valid  approldmations only for,  and  should  be  limited  to, 
those  cases  where  the  integration  frequericy is large. 



Exhrapolation of q ** 

,As with  the  numerical  integration scheme presented in an above subsection, 
extrapolation of is achieved by assuming the accelerations to. be locsyY 
simple  harmonic.  The  resulting  extrapolation formula becomes: 

I 



APPENDIX I1 

PROGRAM G400 INPUT DESCRIPTION 

The required  input t o   t h e  program consists  of the following major punched 
card data blocks i n  order  of  loading: 

I. Airfoil  Data 
11. Inert ia ,   Elast ic ,  Geometric  and  other  Operational  Data 

( in  Loader Format) 
111. Blade Mode Shape Data 

IV.  Harmonics of  Variable  Inflow 

Details  for  preparing  the data for each  of  these  blocks  are  given  in  the 
sections which folluw. An additional  section of t h i s  appendix  provides  infor- 
mation fo r   f ac i l i t a t i ng  program operation and  improving i ts  efficiency. 

I. Airfoi l  Iata 

This data block  consists of tables  of two-dimensional lift, drag and 
pitching moment coefficients each  versus  angle  of  attack  for  various Mach 
numbers. Additionally, i f  unsteady aerodynamics are  used,  the  static stall 
angles and linear  coefficient  slopes  for  both lift and pitching moment are  in- 
cluded i n  this table.  Provision i s  made for  inputting and using  only one se t  
of aerodynamic coefficients; hence, it i s  assumed t h a t  the same a i r fo i l   sec t ion  
is  used  over the  entire  blade span. Provision i s  also made i n   t h e  program for  
optionally  using an analytic  representation  of  the NACA 0012 a i r f o i l ;  i f  this 
option i s  invoked it i s  not  necessary t o  provide any a i r f o i l  data to   the pro- 
gram. For usage  of the  analytic NACA 0012 a i r f o i l  option, however, the 
required  input  for this block  of data must be a single  card wi th  blank or  
zeroed columns 1 and 2. For the  general  case, however, t h e   a i r f o i l  data are  
loaded in   th ree  subblocks  (corresponding to   cay cd, and c%/4 data) using  the 
following  general  format;  note that the  required punch format i s  indicated by 
the FORTRAN format  information i n  parenthesis: 

card #1: TITIE (optional) (12 ,A78 1 
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card #2: 

where: NZ i s  the number of Mach numbers for  which groups of ca data a r e   t o  be 
read  in; TITLE i s  any (optional)  identifying  information. J i s  the number of 
data en t r ies   to  be inputted  into each  such  group. N i s  the number of  angle- 
of-attack  -c abscissa-ordinate  pairs to be inputted; N is restricted to a 
maximum of 3 t without, and 33 with  the  use of  unsteady aerodynamics. M i s  
the Mach number appropriate  to  the data group. A(i)  are  the N angle-of-attack 
abscissaeindegrees and CL(i) are  the N lift coefficient  ordinates. AISTAL 
and DCLDAQ are,  respectively,  the  static s ta l l  angle, i n  degrees, and the 
lift curve  slope a t  zero  angle-of-attack, in   per  degree; these  itemsareneeded 
only i f  the  unsteady  airloads  option i s  invoked. 

Cards 2 and 2+ are  repeated  for each successively  higher Mach number. A 
maximum of 1 2  Mach numbers i s  allowed and the  lowest and highest Mach numbers 
need not  define  the  total  working range as the  search  technique uses the 
boundary data fo r  Mach numbers  beyond the  inputted range. Thus, repeated data 
fo r  zero and supersonic Mach numbers are  not needed. The lowest Mach number 
inputted must contain an angle-of-attack  range  of from -180~ t o  180° or  from 
0" t o  180° depending on whether or  not unsymmetric a i r f o i l  data is being 
inputted; a l l  higher Mach number data need extend only from -30° t o  30° or 
from OO t o  30° i n  a similar manner. 
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The general format described above i s  repeated  for  the C d  and -14 
subblocks i n  that order. !the s t a t i c  stall angies and aerodynamic coefficient 
curve slopes at zero  angle-of-attack are deleted for  the C d  subblock. 

11. Inertia,  Elastic, Geometric and Other Operational Data 

M S  data block includes  those items used t o  define the more detailed 
dynamic features and/or those which are most :likely t o  vary from -case..to 
c&e. The format for  these data is as follows: 

NN L DATA(L) mm(Irk1). . .DAm(L+4) (I2,14,SF12.0) 

1 

where: NN i s  the  card word count, i.e.,  the number of data items on the  card 
t o  be inputted, columns 1 and 2; NN m u s t  not exceed 5. L i s  the  location  or 
identi- number of the first data item on the  card columns 3 - 6 r ight  
adjusted. DATA(Wi) rqyesents  the  various data items on 'the  card, columns 
7-18,  19-30,  31-42,  43-54,  and 55-66, in  floating  point format. The locations 
OF 3dentifylng numbers for  the various data and control items are  listedbelaw 
along with  definitions and other  pertinent coniments; note that data locations 
not  assigned data are  implied  to be intent ional ly   lef t  blank and/or not  inputted: 

mcation Item - Description 

1 m Rotor t i p  speed, ft/sec. 

2 R Rotor radius, ft. 
3 P Air density,  lb-sec2/ft . 4 

4 a, Speed of sound, ft/sec. 

5 b Number of blades. 

6 

7 

- 
e 

B 

Nondimensional offset  distance of start 
of deformable and/or deflectable  portion 
of rotor  blade, e/R. 

Tip loss, used to  define  equivalent mo- 
mentum area and three-dimensionality 
corrections  to computed two-dimensional 
airloads near  the  blade  tip. 



Location 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Item - 
NSEG 

NF 

*lS 

B1, 

e 75R 

Description 

Number of blade  segments  used to define 
spanwise  variable  arrays. 

Azimuth  increment  used in the  numerical 
integration of the  dynamic  equations, 
deg.  (See'  section on  general  informe- 
tion for  efficient  program  usage. ) 

Number of "flap  trials", i . e., mminnnu 
number of rotor  revolutions for which 
the  blade  time-history will be  computed 
in an attempt to obtain  convergence  to 
periodicity. If a -transient  response is 
desired  for only a  portion of one  rotor 
revolution  the  program w i l l  compute a 
time-history  solution  for any nonzero 
fractional  NF  value  inputted. An iden- 
tically  zero  value will cause  the  time- 
history solutionto.beby-passedentirely. 

Flapping  tolerance to within  which  the 
aeroelastic/dynamic  responses k t  repeat 
on successive  revolutions in order  for 
the  motion  to  be  considered  converged to 
periodicity.  The  tolerance  applied to 
lead-lag  motion  is  equal to 5sF. 

Longitudinal  cyclic  pitch,  coef'f'icient 
of minus  cos+  term  in  Fourier  expansion 
of blade  control  pitch  angle, deg. 

Lateral  cyclic  pitch,  coefficient of 
minus  sin*  term  in  Fourier  expansion of 
blade  control  pitch  angle,  deg. 

Blade  collective  pitch  angle as deflned 
at the 75% radius, deg. 

Mean  rotor  inflar  ratio. 

Forward  flight  velocity,  kts. 

Rotor  solidity ( 0  bc/nR) 



Location 

18 

19 

20 

21 

22 

23 

24 

25 

98 

(control) 

Ncut-out 

Description 

Increment  added  to all values of cd ~ 

obtained  from  tabulated airfoil data or 
from  the  analytic NACA 0012 data. Air- 
foil  data  generally  correspond.to  smooth 
wind  tunnel  models  and A c ~ ,  is  often 
used  to  adjust  for  the  higher drag of 
production  blades; a commonly  used  value 
Of ACd, is 0.002. 

Make  greater  than  zero (1.) for  first 
case  or  when  new  blade  modal  data  are 
to be inputted.  Program  automatically 
sets  this  control  number  to (-1.) after 
each loading of  modal  data. 

Number  of  blade  segments,  starting  at 
inboard  end  and  defining  the  cut-out 
region,  for  which  the  lift  and  moment 
coefficients  are  set  to  zero. 

The drag coefficient  used  on  the  first 

Ncut-out segments. 

81 Built-in  linear  blade  twist  angle;  i.e., 
difference  between  tip  and  root  built-in 
angles,  positive  when  tip  angle  is 
greater (L.E. up)  than  root  angle,  deg. 

A $print Azimuth  increment  used  to  present  printed 
output  of  various  pertinent  aerodynamic, 
dynamic  and  elastic  load  distributions 
as well as  aeroelastic  responses  and 
stresses,  deg. This input  quantity 
should be an  integral  multiple of loca- 
tion 9, deg. 

"Direct"  value  of  pitch-flap  coupling 
(= A e/~p). A nonzero  value will sup- 
press a calculation  of  this  quantity 
from  the  inputted  pitch-horn/push-rod 
geometry. 

Etch-lag coupling (= A ~ / A s ) .  



ziocation 

26 

28 

29 

30 

31-34 

37-39 

40-42 

43 

44 

Item - 

C 

m 

NEM 

Description 

Viscous  lag  damper  coefficient,  ft-lb- 
sec. 

Blade  chord if chord is constant, 
otherwise  omit, ft. 
Number of flatwise  bending  modes  to  be 
used (4 max). 

Number of edgewise bending modes  to  be 
used (3 max). 

Number of elastic  torsion  modes to be 
used (3  max) (note  that  the  total num- 
ber  of  dynamic  degrees-of-f’reedom  is 
limited  to 10. Thus, if the  articula- 
tion  degrees-of-freedom, B and/or 6 ,  
are  used,  or  if  the  rigid  feathering 
d. 0. f. is  invoked, NFM, NEM and  N9M will 
be  automatically  changed  to  keep  the 
total  degrees-of-freedom  to  no  more than 
10. ). 
Flatwise  modal  frequencies,  nondimen; 
sional  with  respect  to R, in- ascending 
modal  order. 

Edgewise  modal  frequencies,  nondimen- 
sional  with  respect  to R, in ascending 
modal  order. 

Torsion  modal  f’requencies,  nondimen- 
sional  with  respect  to R, in  ascending 
modal  order. 

Second  harmonic  cyclic  pitch  coefficient 
of minus  cos 2$ in  Fourier  expansion of 
blade  control  pitch,  deg. 

Second  harmonic  cyclic  pitch  coefficient 
of minus sin 2$ in Fourier  expansion of 
blade  control  pitch,  deg. 
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Iocation 

45 

46 

47 

48 

49 

50 

51 

(Control) 

(Control) 

(Control) 

(GJ)root 

%root 

(control) 

Description 

Acceleration  due  to  gravity,  ft/sec2; a 
negative  value  implies  inverted  flight. 

m e  nonzero (1. ) if airfoil  data  for a 
nonsymmetric  airfoil  are  to  be  used. 

Make  nonzero (1. ) if  the  total  (transi- 

i.e.,  responses  calculated  before  con- 
vergence  to  periodicity  is  obtained. 

- ent)  time-history  is  to  be  outputted; 

Make  nonzero (1.) if  the  modal  responses 
and  hub  shears  and  moments are to  be 
(negative)  Fourier  analyzed  after  peri- 
odicity has been  obtained. 

Torsional  rigidity  at  the  blade  root, 
lb/ft2. 

Torsional  spring  connecting  root  ofblade 
to  fixed  structure  to  represent  control 
system  flexibility,  ft-lb/rad. A non- 
zero  value will automatically  introduce 
the  rigid-body  feathering  degree-of- 
freedom  as  an  addition  "torsion  mode". 
Note  that  this  "mode" will inherently 
couple  with  the NTM normal  elastic  tor- 
sion  modes  at  frequencies  both belm and 
above  the  inputted  torsion  frequencies 
(locations 40-42); hence, a smaller 
integration  interval will generally 
be  required. 

Make  nonzero (1. ) to  siqlif'y  the  numer- 
ical  spanwise  integration  techniques 
from  the  nominal  trapezoidal rule to 
rectangular (Nerian) form.  Rectangu- 
lar  integration  is  effected  by  setting 
the  quadrature  numbers  used  for  spanwise 
integration  equal  to  the  inputted  seg- 
ment  lengths  (loc. (100-114) ) . Usage  of 
this  option  is  recommended  for  blade 



Location 

52 

53 

54 

55 

56 

57 

58 

59 

Item - 

(Control) 

(Control) 

(Control) 

Description 

configurations  with  significant 
ascontinuities  in  spanwise  properties 
(e.g.,  counterweights,  tip  weight,  step 
twists,  etc. ) . 
W e  nonzero (1.) to  output  modal 
integration  constants  used in the 
eigensolution  and,  to a limited  extent, 
in the  time-history  solution. 

Make  nonzero (1. ) to  load  prepunched 
(vorticity)  induced  velocity  distribu- 
tions . 

- 

Make  nonzero (1.) to  use  the  induced 
velocities  loaded  as  per  location 53. 

- 

Shaft  angle  of  attack,  deg.  This  input 
item  serves a dual  role:  when  variable 
influw  is used (either  vorticity  induced 
or  Glauert  momentum) ~~isusedtodefine 
xrm. Also, when a major  Iteration  is 
to  be  performed  (nonzero  location 6 0 )  
and when  trims  on  propulsive  force  are 
deactivated  (zero  location 59) the  pro- 
gram will trim  to  this  inputted shaft 
angle. 

Requested  value  of  lift  to  be  used in 
major  iteration,  lb. 

Requested  value  of  propulsive  force  to 
be  used  in  major  iteration, lb. 

Tolerance  on  lift  for  major  iteration, 
lb. A zero  value  deactivates  trimming 
on lift. 

Tblerance  on  propulsive  force  for  major 
iteration, lb. A zero  value  deactivates 
trimming  on  propulsive  force. The auto- 
matic  trim  calculation  (major  iteration) 



Location 

60 

61 

62 

63 

64 

65 

67 

68 

Item - 

NMI 

B 

* 
B 

Descrivbion 

must  trim  either  to:a  required  propulsive 
force  or  to a required  shaft  angle  of 
attack;  therefore a deactivation  of 
trim  to  propulsive  force  automatically 
directs  the  trim  calculation  to  trim  to 
requested  shaft  angle,  location 55. 

Maximum  number  of  major  iterations  to 
be  made  in an attempt  to  achieve  trim. 
A zero  value will deactivate  the major 
iteration; a negative  value will acti- 
vate a stall  avoidance  calculation  if, 
when  attempting  to  trim,  the  rotor  be- 
comes  stalled.  (See  section  on  general 
information  for  efficient  programusage.) 

Built-in  precone  angle,  deg. An identi- 
cally  zero  value  denotes a rotor  blade 
articulated  in  flapping;  similarly, a 
finite  nonzero  value  signifies a blade 
nonarticulated  in  flapping. 

Requested  value  of  pitching  moment  for 
major  iteration, lb-ft (positive  nose 
UP) 

Tolerance  on  pitching  moment  for  major 
iteration,  lb-ft. A zero  value  deacti- 
vates  trimming  on  pitching  moment. 

Requested  value  of  rolling  moment  for 
major  iteration,  lb-ft  (positive  port 
side  up). 

Tolerance  on  rolling  moment  for  major 
iteration lb-ft. A zero  value  deactives 
trimming  on  rolling  moment. 

Initial  condition  on  articulated  flap- 
ping  angle , rad. 

Initial  condition  on  (nondimensional) 
articulated  flap  angle  rate. 
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Item - 
6 

Description Location 

69 Initial  condition  on  articulated  lead- 
lag angle,  rad.  (positive  forward). 

* 
6 Initial  condition  on  (nondimensional) 

articulated  lead-lag  rate. 
70 

Built-in  prelead  angle,  deg. A n  iden- 
tically  zero  value  denotes a rotor 
blade articulated  in  lead-lad;  similarly 
a finite  nonzero  value  signifies a blade 
nonarticulated in lead-lag. 

72 6B 

(Control) 73 Make  nonzero (1.) to  harmonically 
analyze and output  harmonics  of  flat- 
wise  stresses. 

74 (Control) Make  nonzero (1.) to  harmonically 
analyze and output  harmonics  of  edgewise 
stresses. 

Make  nonzero (1.) to  harmonically 75 (Control) 
analyze and output  harmonics  oftorsional 
stresses. 

76 

77 

(Control) 

+ 
Make  nonzero (1.) to  bypass  the  eigen- 
solution. 

Initial  condition  on  rotor  azimuth,  deg. 
This value,  like  all  inputted  initial 
conditions,  is  likewise  used  to  define 
the  loadings  on  the  blade  about  which 
linear  perturbations are to  be  taken  in 
the  eigensolution. 

78 (FCR) Factor  in  momentum  inflow eqmtions to 
account  for  dual  (coaxial)  rotor  opera- 
tion : 

Note  that  CT  in  the  above  equation  is 



mcation 

79 

00-02 

83 

(Control) 

SR 

Description 
. ,  

the usual thrust  coefficient  as  defined 
for a single  rotor. An identicallyzero 
value  of (FCR) defaults  to a value of 
2. ; a value  between 1. and 2. will de- 
note a coaxial  rotor  operating some- 
where  between  hover and high  speed 
forward  flight. 

Generalized  Glauert  (momentum  derived) 
variable  inflow  option. A zero  value 
deactivates  usage. A value  of 1. 
causes  the  inputted  induced  velocity 
components  to  be  used,  as  inputted; a 
value  of 2. causes  the  inputted  values 
to  be  used  initially, and then  varied 
in  trim  calculations in place  of  control 
angles; a value  of 3. causes  the  control 
and shaft  angles  to  be  fixed and the 
induced  velocity  components  to be varied 
only  to  satisfy  momentum  equations  in 
any requested  major  iteration. If the 
value  is l., the  induced  velocity  com- 
ponents will be  varied  to satism mo- 
mentum  considerations  in  addition  to 
the  usual  trim  calculation, 

Initial  conditions  on  the  "momentum" 
induced  velocity  components  comprising 
aGlauert-likevariable inflow descrip- 
tion.  Note  that  the  "vorticity"  vari- 
able  inflow  (controlled by locations 53 
and 54) and  the  momentum  variableinflow 
canbeusedseparatelyor  simultaneously. 

Sample  rate  for  Transient  Spectral 
Stability  Analysis  (TSSA).  (See  Appen- 
dix I11 for a discussion  of  this  tech- 
nique.)  Every  (SR)'th  point in a 
transient  time-history  is  saved  for  use 
in a TSSA. A zero  value  bypasses  the 
'TSSA . 
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ljocation 

84-06 

87 

08 

89 

- Item 

(Control) 

u) L 

97 

(Control) 

90 (Control) 

91 

92 

94 

N 
FRE& 

(control) 

Description 

Channel  selection  for  each of three 
available  for  the TSSA. The  channels 
available  are: 1-4, flatwise  bending 
modal  responses;  5-7,.edgarise  bending 
modal  responses; 8-10 torsion  modal 
responses; ll, articulated  rotor flap- 
ping; 12, articulated  rotor  lagging; 
13, 14, and 15, blade  tip  vertical,  in- 
plane  and  torsion  deflections,  respec- 
tively. 

Lower  bound of frequency  band  chosen  for 
TSSA nondimensionalwithrespectitoQ. 

Upper  bound of frequency  band  chosen  for 
TSSA nondimensional  with  respect  to 

Initial  estimate of percentage of total 
transient  data  used in each  time dis-  
placed  data  sample  block in TSSA. 

Number of transient  (time  displaced) 
Fourier  coefficient  calculations  made 
to establish  modal  damping in TSSA; 
maximum  value is 200. 

Number of desired  resonant  frequencies 
to be  extracted  from  frequency  band 
defined by locations 87 and 88. 

Resonant  frequency  identification 
criterion. W e  (O., 1.) to identif'y 
resonant  frequencies  using  criterion 
of (maxirmun Fourier  Transform  amplitudes, 
mmdmum F.T. amplitudes + deletion of 
"image" frequencies ) . Note  that image 
frequencies  result  from  the  Floquet-like 
response  characteristics of rotors in 
forward flight. 

Critical  (viscous)  damping  ratio  used to 
approximate  structural  damping in edge- 
wise  bending  modes. 



Location 

97 

98 

99 

100-114 

115-129 

130-144 

- Item 

'1equ 

(Control) 

(Control) 

AX 

Description 

Linear  equivalent blade (nonlinear) 
twist angle  defined similar to   locat ion 
22, deg. A nonzero  value fo r  i s  
required  to  use the   input ted   nodgear  
twist arrays and i s  used to   ca lcu la te  
that portion  of  the aerodynamic inflaw 
velocity at the 3/4 chord  position, 
accruing from radial flaw and twist. 

Make nonzero (1.) for   s t ress   calculat ions 
using the mode deflection method. Zero 
value  defaults  to  force  integration 
method. 

Location  used t o  end a case  or  series 
of cases. Make (+l.) t o  end the Loader 
Format data block  for  the  case  defined 
by the Loader data and load  additional 
cases a t  the  conclusion  of that case. 
Make (-1. ) t o  end the Loader data and 
read no f'urther  cases.  Inbothinstances 
the word count, U, (see  beginning  of 
this section above) should be (-1). 
Note: this entry m u s t  appear  singly on 
an input  card, and that card m u s t  be the 
last  card  for  the case. 

Nondimensional blade segment lengths, 
i n  order from root   to   t ip ,  maximum of 
15 values,  starting from the  offset  lo -  
cation. Accuracy is generally improved 
i f  the last segment is s m a l l  ( ~ 0 . 0 3 ) .  

Mass of  each  blade segment, lb-sec2/ft. 

Aerodynamic built-in  nonlinear twist 
angle  distribution, deg. Since  collec- 
tive  angle i s  defined a t  the 75% span 
location, 8 b  should have a zero  value 
a t  75% span. Should the  s t ructural  
twist angle  distribution  differ from 
e g ,  their  appropriate data m u s t  be 



meation 

175-189 

190-204 

205-219 

220-234 

235-249 

250-264 

It  em - 

C 

% 

KE 

%O 

Description 

loaded  into  locations 690-704; otherwise, 
will be  used  for  both  aerodynamic 

twist  distributions w i l l  be  used on ly  
if a nonzero  value  is  inputted  into 

structural  applications.  Nonlinear 

location 97, 81 equ. 
Blade  chord  at  center of each  blade 
segment  (use  for  nonconstant  chord 
blades only), root  to  tip, f't. 
Constants  relating  (nondimensional) 
flatwise  second  derivative  to  flatwise 
stress (= Ec/R)~,  evaluated  at  center 
of  each  segment,  root  to  tip,  psi. 

Constants  relating  (nondimensional) 
second  derivative  to  edgewise  stress 
(=Ec/R)~, root  to  tip,  psi. 

Constants  relating  torsional  moment  to 
torsional  stress,  root  to  tip,  in-3. 

Chordwise  mass  radii of gyration  of 
blade  segments  about  elastic  (reference) 
axis, root to tip,  nondimensional  with 
respect  to  R. 

Thicknesswise mass radii of gyration  of 
blade  segments  about  axis  perpendicular 
to  chord  line and through  the  reference 
a x i s ,  root  to  tip,  nondimensional  with 
respect  to R. 

Area  radii  of  gyration  about  elastic 
a x i s ,  root  to  tip,  nondimensional  with 
respect  to  R. 

Distances  from  elastic a x i s  forward  to 
airfoil  quarter  chord  position,  root to 
tip,  nondimensional  with  respect  to R. 
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i 

Item 

- 
'"CG 

280-283 +i 

Qwi 286-289 
* 

292-294 ! 

295-297 
* 
qvk 

Qey 

' Description 

Distance from elastic axis  forward t o  
airfoil  section mass centers,  root  to 
tip,  nondimensional with respect to R. 

Initial  conditions  on i'th flatwise 
bending  mode  deflections. 

Initial  conditions  on i'th flatwise 
bending  mode  (nondimensional)  rates. 

Initial  conditions on k'th edgewise 
bending  mode  deflections. 

Initial  conditions on k'th edgewise 
bending  mode  (nondimensional)  rates. 

Initial  conditions on j'th torsion  mode 
deflections. 

Initial  conditions on j'th torsion  mode 
(nondimensiond) rates. 

Section  modulii  for  flatwise  bending, 
root to tip,  in3.  Note  that  the  pro- 

174) must  equal  the  bending  stiffhess 
distribution, EI/R. 

ducts of (I/c)F and KF (locations 160- 

Section  modulii  for  edgewise  bending, 
root  to  tip,.  in3.  See  remarks  above 
for  flatwise  bending  section  modulii. 

Stress  selection  number  for  each of (at 
maximum) 10 channels whose  time-history 
data  strings  are  saved  and  used  for 
automatic  plotting.  Value  is  determined 
by  formula: J x 100 + N, where J = 
(0.1,2,3) as  stress  is  (flatwise,  edge- 
wise,  torsion, flexbeam torsion)  and 
N - segment  number.  (Input  locations 
provided,  but  option  inoperative. ) 

108 



.mcation 

640-649 

705-719 

720-734 

735-744 

- Item 

STRSCALE 

B 
A 

Description 

Vertical axis scaling  for  the  automatic 
plotting of each  stress  channel  selected 
in  locations 630-639, psi x lO3/in. 
(Input  locations  provided,  but  option 
inoperative.) 

Torsional  stiffness  (to  be  multiplied 
by twist  rate.  sqwnl;ed),  as  defined in 
reference 4, lb-ft . 
Torsion  to  edgewise  elastic  coupling 
stiffness  (to  be  multiplied by twist 
rate), as defined  in  reference  4,lb-ft 3 . 
Structural  built-in  nonlinear  twist 
angle  distribution,  root  to  tip if 
different  from  aerodynamic  twist,  deg. 
See  remarks  above  for  aerodynamic 
built-in  twist,  location 130-144. 

Built-in  (structural)  twist  angle 
change  per  segment  length  distribution, 
root  to  tip,  deg.  Note  that  this  item 
is a direct  statement  of  the  builtbin 
twist  rate  distribution, 0;; if all 
values  of  this  distribution  are  inputted 
as zero,  the  twist  rate  distribution  is 
computed  internally  using  numerical 
methods  from  the  inputted  twist  angle 
distributions,  locations 130-1114 or 
690-704, as  appropriate. 

Distances  from  reference  (elastic) a x i s  
forward  to  edgewise  bending  neutral 
ax is ,  root  to  tip,  nondimensional 
with  respect  to R. 

Flexbeam  plate  bending  stiffness dis; 
tribution,  lb-ft.  Note  that all items 
in  locations 735 through 824 are  re- 
quired  only for a redundant  analysis  of 
the torque-tube ( flexbeam span of bear- 
ingless  rotor (CBR.) configurations)  (see 
location 991) . 



Iocation 

745-754 

765-774 

775-784 

785-794 

795-804 

958 

Item - 
J~~ 

CFB 

h 

%T 

Description 

Flexbeam torsion  (St. Venant) s t i f fness  
distribution, lb-ft2.  

Flexbeam section  width  (chord) distri- 
bution, f t . 
Torque tube  flatwise bending s t i f fness  
distribution, lb-f t2 .  

Torque tube edgewise bending stiff'ness 
distribution, lb .  f t  . 2 

Mass of  each  torque  tube segment  whose 
span is  defined by location 100-109, lb- 
sec'/ft. 

Distances  fromreferenceaxis forward to 
torque  tubemass  centerswhosemasses  are 
given in  locations 785-794, nondimensiond 
w i t h  respect  to R. (Input  locations 
provided,  but  quantity i s  not  used.) 

Section  modulii for  torque  tube flat- 
wise  bending,  in3.  (Input  locations 
provided,  but  quantity  not  used.) 

Section  modulii  for  torque  tube edgewise 
bending,  in3.  (Input  locations  provided 
but  quantity  not used. ) 

Height of posit ively  thrusting  rotor 
from ground or wind tunnel  f loor  for 
purposes  of  evaluating Heyson correc- 
tions  to  rotor  angle  of  attack  (see 
Ref. ll), ft. 
Height of wind tunnel  test   section  for 
purposes  of  evaluating Heyson correc- 
t ions,  f t .  Note t h a t  zero  values  for 
the wind tunnel tes t   sect ion dimensions 
implies tha t  ground effect  corrections, 
rather  than wind tunnel wall corrections, 
a r e   t o  be made. 



,Location 

959 

975 

976 

977 

978 

979 

980 

Item - 

WWT 

CASE 

NDm1 

Description 

Width of wind tunnel  test   section  for 
purposes of evaluating Heyson correc- 
tions, ft. 

Case  number, 

Built-in  elevation  angle of push-rod. 
attachment  point,  measurable when 8 = 
0, deg. 75 

Segment  number of  inboard  attachment 
point of pitch  input  structural  members 
(Pitch horn, feathering  cuff or torque 
tube)  to  blade  spar. 

Segment  number of  outboard  attachment 
point of pitch  input  structural  member 
t o  blade  spar. Note tha t  i f  this   s t ruc-  
tural element i s  attached t o  the  blade 
spar a t  a single  point  (cantilevered 
configuration) NDEWI and NDEWO m u s t  
both be inputted  with  the same appropri- 
a t e  value. For bearingless  rotor (CBR) 
applications NDEWO serves  the addi- 
tional  function of defining  the  outer 
limit of the flexbeam; t h i s  l imit  i s  
t&en  as  the  inner boundary of the 
NDEWO'th segment. 

Radial  location  (blade  station) of pusAL- 
rod to   pi tch  input   s t ructural  member 
attachment  point,  in. 

Location  forward of feathering axis of 
push-rod to   pi tch  input   s t ructural  mem- 
ber  attachment  point,  in. Note tha t  
input items 977-980 together  with  the 
inputted modal data provide  the geomet- 
r i c  data from which pitch-flap,  pitch- 
f l a t  and pitch-edge  coupling  are  calcu- 
lated. These calculations  are bypassed 
i f  ei ther  of locations 978 or 980 are 
inputted  identically zero. 

1ll 
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983 

984 

985 

987 

988 

989 

"m 

k~~~ 

(Control) 

(Control) 

(Control) 

Description 

Segment  number of innermost  end of the 
feathering  flexure;  defaults  to 1. 

Built-in  twist  angle of the flexbeam, 
positive  leading  edge  up  at  outboard 
end of flexbeam, deg.  Note  that e+B 
is  defined  relative  to  the  inputted 
twist  angle  distribution,  which  in  turn 
is defined  for  zero  collective angle. 

Average  torsional  stiffness of the  flex- 
beam  lb-ft2. 

Equivalent  or  critical  torsion  stress 
coefficient  for flexbeam; i.e.,  stress 
per  unit  average  torsion  strain  as  de- 
fined by total flexbeam twist,  in-psi. 

Make  nonzero (1. ) to  include  the  "wob- 
ble"  mode  for  cantilever  torque  tube 
configured  bearingless  rotors. 

- 

When  finite  snubber  stiffnesses  are 
inputted  (locations 987 and 988) the 
stiffnesses  are-  assumed  to  be  aligned 
(vertically and horizontally,  torque 
tube  flatwise  and  edgewise-) as location 
986 is (o., 1.) 

Snubber  vertical  (torque  tube  flatwise) 
spring  rate,  lb/ft. 

Snubber  horizontal  (torque  tube  edgewise) 
spring  rate,  lb/ft. 

When  the  torque  tube flexbeam redundant 
analysis  is invoked (location 991) the 
torque  tube  is  assumed  to  be  in  (tensio9 
compression)  as  location (989) is 
(o., 1.). 



Location 

990 

991 

992 

993 

994 

995 

996 

Item - 

(Control) 

(Control) 

*FB 

KvOB 

(Control) 

Description 
. .  

Segment  number  of  innermost  end of 
torque  tube;  defaults  to 1. 

Make  nonzero (1. ) to  activate  the  re- 
dundant analysis option.  When  the 
redundant  analysis  is  activated,  the 
flexbeam  and  torque  tube  stiffness and 
mass inputs,  locations (735) through 
(794), must be appropriately  nonzero. 

Used  to  weigh  the  effectiveness  of  non- 
linear AEI bending  excitation  of  torsion 
ovejr  the  flexbeam  span;  the  effective- 
ness  is  taken  to  be (loo$, O$, loo$ (x) 
pseudo-torsion  mode  shape as location 
(992) is (o., I., 2.)). 

Flexbeam  aspect  ratio  parameter 

(= $ .,/-) ) to  determine  plate- 
like  deflection  for  torsion  "pseudo- 
mode". A zero  value  gives a rod-like 
deflection  shape. 

Spring  rate  of  rotational  spring  con- 
necting  outboard  end  of  torque  tube to 
the  blade spar about  chordwise e s ,  
ft-lb/rad. A zero  value  implies  zero 
stiffness  for  pinned-pinned  torque  tube 
configurations  and  infinite  stiffness for 
snubbed  configurations. 

Spring  rate  of  rotational  springconnect- 
ing  the  outboard  end of the  torque  tube 
to  the  blade spar about  an a x i s  perpen- 
dicular  to  the  chord  line,  ft-lb/rad 
(see  above). 

Analytic  (static)  airfoil  option. m e  
nonzero (1.) to  use  thebuilt-inaaalytic 
approximation  to  the  static NACA 0012 
airfoil  data. 

I 



mcation 

997 

998 

999 

lo00 

1001 

Item - 
(Control) 

Kplot 

(Control) 

NA 0 75 

Description 

Unsteady  airfoil  data  option. W e  -. 
nonzero (21.) to  use  the  synthesized 
unsteady airfoildatatechiquedescrib'ed 
in reference 10. This can  be  used  with 
either  the  explicitly  inputted airfoil 
data  or  the  built-in  analytic NACA 0012 
static  airfoil  data. For nonzero values 
greater  than  unity,  the  "cutoff  Mach 
number"  (Mach  number  above  which  the un- 
steady  data  is  disregarded in favor of 
quasi-static  data)  is  taken  to  be  the 
inputted  value minus one (1.) rather 
than  the  built-in  default  value  of 0.6. 
However,  only  nonstandard  cutoff  Mach 
numbers  between 0.1 and 0.95 are 
accepted. 

Azimuth  increment  used  to  generate 
punched  card  output  to  be  used  as  input 
data  to UTRC program F389 for computing 
variable  inflow.  This  option  is  by- 
passed  with a (0.) input  value. A 
description of the  format  of  these  out- 
put  punched  cards  is  contained in 
reference 12. 

Scale  for  automatic  plots  of  various 
time-history  data  strings,  see  locations 
84-86 and 630-639. (Input  location  pro- 
vided,  but  option is inoperative.) This 
option  is  currently  inoperative  but 
would  be  bypassed  with a (0.) input 
value,  when  operational. 

Make  nonzero (1. ) to  activate  usage of 
the  tabulated  time-histories of incre- 
mental  control  angles. 

Number  of  abscissa-ordinate  point  pairs 
used  to  define  time-history of A0 (t); 
calculation  of  this  time-history d 5 b p  
passed  with a (0. ) value. 



Location 

1002-1050 

1051 

1052-1100 

no1 

Item Description 

NAkLs Number of abscissa-ordinate  point  pairs 
used  to  define  time-history of A A ~  (t); 
zero  value  bypasses  calculation. 8 

AAls Table of bA1 abscissa-ordinate  point 
pairs;  U(AlS7 = deg;  U(t) = sec. 

NA ?Ls Number of abscissa-ordinate  point  pairs 
used  to  define  time-history of ABls (t ); 
zero  value  bypasses  calculation. 

ll02-ll50 A% Table of A% abscissa-ordinate  point 
pairs; U(%s7 = deg;  U(t ) = sec. 

Iset  Card for Block I1 (Loader)  Data: 

(12, 14, F12.0) 

+: other  cases  follow 
-: preceeding  data  defines  last  case 

111.  Blade  Mode  Shape  Data 

Included  in  this  data  are  the  radial  distributions  of  the  blade 
(uncoupled)  flatwise,  edgewise  and  torsion  normal  mode  shapes  and  their 
derivatives.  These  quantities  must  generally  be  provided from an external 
source  such  as  Uhited  Technologies  Corporation  program E159 or an equivalent, 
in- the. following punched  card format: 

f .  
" 

NF" NEM NIIM NSEG (414) 

subsequent  cards: 

( F( I) F(I+1)  F(I+2)  F(I+3)  F(  I&) 



where: NFM, NEM, and NTM are,  'respectively,  the  numbers of flatwise  bending, 
edgewise  bending  and  torsion  normal  modes  whose  mode  shapes  and  derivatives 
are to be inputted. NSEG is the  number of blade  spanwise  stations  for  which 
the inputted modal data  are defined.  F(i) are  each of the.  below  listed modal 
fwrctions  (defined  at the i'th spanwise  stations)  and I must  be  either 1, 6 
or ll reflecting  the  requirement of five  entries  per  card  until NSEG entries 
w, made for each F function  inputted. me modal- functions must be  loaded 
in the  folluwing  order: 

(NSEG values,  root to tip) 

1 ' 1f 
l? 11 

(NFM flatwise  modes) 

( N "  edgewise  modes) 

(N'IM torsion  modes) 



IV. Variable Harmonic Inflow 

If location 53 of 'the Loader block of operational data is  nonzero, the ,. 

following  block  of  variable harmonic inflow is  loaded  in: 

/xLAMo( I) 
i 

(n4.0) 

~XLAMC(1,l) mAMC(I,2) . . . (5n4.0) 

(5~14.6) 

Subsequent cards  repeat  the  pattern wherein I, the spanwise s ta t ion Index, 
varies from 1 t o  NSEG. NHARML i s  the number of harmonics of inflow t o  be 
loaded, and XLAMO(i),  XLAMC(i,n) and mAMs(i,n) are,  respectively,  the  zeroth, 
n'th  cosine and n ' th   s ine components of harmonic inflow a t   t h e   i ' t h  radial 
s ta t ion,  wherein a positive  Fourier  series i s  assumed. The i n f l o w  is  deflned 
posit ive up and has the units of ft/sec. 

V. Multiple Case Runs 

The above described  data  set-up  defines  the  correct  ordering of required 
data blocks fo r  a general  case. When multiple  cases  are run the second and 
subsequent  cases u t i l i z e  most of the data inputted  for  the first case. The 
follawlng  rules  apply  to  the running of multiple  cases: 

1. Airfoi l  data is loaded  only for  the first case; a l l  subsequentcaseewithin 
the run use  the same tabular data, if analytic data is  not used. 



2. Only  those  items  within  the  operational  (Loader)  data  which  are  to  be 
changed  from  case  to  case  need  be  inputted. 

3. Item 99 of  the  operational  data  controls  the  running of subsequent  cases; 
a (+L) value  causes a subsequent  case  to  be  loaded  whereas a (-1.) value 
terminates  the  computer  run  after  the  current  case. 

4. Unless  otherwise  specified  (by a +l. value  for  operational  data  item 19) 
the  inputted  modal  array  data  block  is  used  for  all  cases  within  the run and, 
hence,  no  subsequent  input  of  this  data  need be made. 

5. Similarly,  unless  otherwise  specified (by a +l. value  for  operationd 
data  item 53) the  inputted  harmonic  variable  influw  data  block  is  used  for 
all  cases  within  the run and,  hence,  no  subsequent  input  of  this  data  need 
be  made. 

6. Operational  data  items 19 and 53 discussed  above  are  both  automatically 
set  to  zero  at  the  conclusion  of  the  data  input  for  every  case. 

7. Terminal  conditions on the  blade  azimuth  angle,  item 77, and  on  the 
degrees-of-freedom,  items 67-70, and 280-303, for  any  case  are  carried  over 
as  initial  conditions  on  these  quantities  for  the  subsequent  case.  Thus, 
for  some  applications,  e.g.,  investigations  of  unstable  responses,  it  would 
be  appropriate  to  reinitialize  these  items  on  the  subsequent  cases. 

General  Information  to  Facilitate  Operation  of  Program 
And  Improve  Efficiency 

Aside  from  considerations  of  the  actual  aeroelastic  parameters  describing 
the  blade  configuration,  which  are  covered  in  the  above  sections,  additional 
attention  should  be  paid  to  the  mechanics  of  obtaining  efficient  numerical 
solutions  of  the  dynamic  equations. In this  regard,  there  arise  two  basic 
areas  of  concern  wherein  this  section  should  be  of  assistance.  The  first  of 
these  areas  is  the  proper  selection  of  parameters  for  efficient  temporal 
numerical  integration  of  the  dynamic  equations  (flapping  or  minor  iterations) 
and  the  second  is  the  proper  selection  of  parameters  for  effecting a satis- 
factory  rotor  trim  (major  iteration).  The  following  subsections  provide 
information  for  making  proper  parameter  selection  in  each of these  areas. 

Temporal  Numerical  Integration-  As  is  discussed  in  Appendix I temporal 
integration  of  the  higher  differentiated  response  variables  to  obtain  the 
lower  ones  is  achieved  in  the G400 program  using a variant of the  Adams  inte- 
gration  a;lgorithm  (see  equations 1.1 and 1.2). The  selected  algorithm  is 
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defined  by  means  of  the  azimuthal  integration  step  size, A $ ,  and  the 
integration  frequency, iij. 

The  integration  step  size  should  be an integral  divisor of 360; a proper' 
choice  depends  on  the maximum coupled  frequency  inherent in the  various 
aeroelastic  responses. A reasonable  upper  limit  .for AJI is 45 divided  by  the 
maximum  such  frequency in per  rev.  Values  of A $  greater  than  this  upper  limit' 
will compromise  the  integration  accuracy  and,  for  sufficiently  large  values, 
will cause  the  computed  responses  to  develop  ."numerical"  instabilities. As 
a corollary, a check  on any response  which  is  predicted  to  be  unstable  by  the 
analysis,  is  to reruri the  case  with a reduced  integration  step  size  to  test 
for  the  possibilitx  of  the  unstable  response  being  merely a numerical  insta- 
bility. 

For  each  response  degree-of-freedom a different  integration  frequency, 
u), is  used  in  the  integration  algorithm;  this  frequency  is,  for  each of the 
elastic  modes,  the  respective  inputted  natural  frequencies  (locations 31-34, 
37-39, and 40-42). The  usual  pendular  frequencies  of a rotating,  hinged, 
rigid  beam are taken  as  the  integration  frequencies  of  the  flapping  and 
lead-lag  degrees-of-freedom.  In  addition  to  defining  modal stifkesses and 
integration  frequencies,  the  inputted  frequencies  serve  yet  another  purpose. 
As noted  above,  the  proper  value  of  integration  step  size, A $ ,  vsries 
inversely  with  the maximum modal  frequency. Thus, run times  (caused  by 
reduced  step  size) will significantly  increase  as  any  one  modal  frequency 
increases.  Since any degree-of-freedom  exhibiting a large natursfrequency 
tends  to  respond  quasi-statically,  i.e.,  as  if  the  acceleration (9) term 
were  negligible, a reasonable  approximation-to  the  response  calculation is 
to  avoid  the  numerical  integration  of  the q term  entirely  and  treat  the 
response  quasi-statically.  This  option  can  be  invoked  for any such  high- 
frequency  mode  by  inputting  the  appropriate  frequency  negatively; a negative 
sign will not  affect  the  proper  usage  of  the  frequency  in  the  calculation  of 
the  dynamic  equations.  Note  that  this  optional  response  calculation  can  be 
invoked  s.ingly  or  in  combination  for  any  of  the  elastic  modal  responses, 
(negative  values  in  any  of  locations 31-34 and 37-42). 

- 

Hub  Force  and  Moment TYim - Operation  of  the  trim'or  major  iteration  feature 
of  the  program  is  controlled by input  locations 55 t b  60, 62 thru 65 and, 
for  some  applications, 79. The  main  control  for  the  major  iteration  is  loca- 
tion 60, the  number  of  major  iterations, Nm. A zero  value  causes  the  major 
iteration  feature  to  be  completely  deactivated. On the  basis of past  usage, 
a reasonable  range  for  this  input  appears  to  be  from 5 to 10, depending  on 
the  tightness  of  the  convergence  tolerances  selected  and  the  "goodness'. of 
the  initial  guesses  on  the  control  parameters.  Convergence  of  the  major 
iteration  is  adversely  affected  by any lack  of  convergence of the  responses 



to  periodicity  within  each.trim  iter.ation  and  by  incursion of the  rotor  into 
a significantly  stalled  'flight  regime.  Note  that a negative  value of Nu 
will activate a. stall  avoidance  calculation  wherein  the  controls will be . 

perturbed  to  reachieve  unstalled  flight  rather  than  to  achieve  the  prescribed 
trim  condition.  Should a major  iteration fail to  converge  within  any  one run 
the  last  used  control  angles  and  initial  conditions  on  response miables are 
generally  available  in  output  punched  card  form  and/or  partially in the  out- 
put  printed  records. of each major iteration  (see  Appendix 111) for  use in 
subsequent major iterations. 

The  trim  iteration  is  operationally  flexible  as  to  what  hub  loads  it 
will drive  to  requested  values.  Generally,  the  various  requested  hub  loads, 
lift, propulsive  force,  pitching  and  rolling  moment  are  activated in turn 
by specifying  nonzero  values  for  each of their  respective  tolerances.  More 
specifically,  the  following  table  describes  the  optional  combinations  of  hub 
loads and rotor  shaft  angle  available  with  the G b  trim  capability: 

TABLE I1 

SUMMARY OF OPTIONAL BASIC TRIM COMBINATIONS 

Optior! 

where : 

Lift 

S 

S 

U 

S 

S 

U 

S 

S 

Prop. Force 

U 

S 

U 

U 

S 

U 

U 

S 

Pitch.  Momt. 

U 

U 

S 

S 

S 

S 

S 

S 

Rol l  Momt . 
U 

U 

S 

S 

S 

U 

U 

U 

F:  Control  parameter  kept  fixed 
V: Control  parameter  varied 
S: mim parameter  specified  and  trimmed  to 
U: mim parameter  unspecified  and  ignored 

'. 75R 
V 

V 

F 

V 

V 

F 

V 

V 

- 
*is - 
F 

F 

V 

V 

V 

V 

V 

V - 
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Note  that  for  each  option  available,  the  individual  trim  parameter  is 
activated by inputting  a  positive,  nonzero  value  for  the  respective  parameter 
tolerance.  For  each  option  the  trim  calculation  trims  either to the  specified 
propulsive  force  or  the  inputted shaft angle, as (location 5 5 )  as the  propul- 
sive  force  tolerance, em, is  finite  or zero,  respectively. A reasonable 
choice of tolerance  values  for  the  hub  force  and  moment loads can  be  obtained 
from  considerations.of  the  hellcopters  inertia  properties and acceptable.  de- 
viations  of  the load factor  from unity,  and of  the  pitching  and  rolling  accer- 
ations from zero. 

. .  

The trim  calculation  can  be  also .wed in conjunction  with  the  Glauert 
variable  inflow.  Location '79 controls  the  usage of this  simplified form of 
variable  inflow. A variety  of  trim  calculation  operations  are  achieved when 
this  control  location  is  nonzero. If this  control  option  is l., the  Glauert 
variable  inflow  induced  velocity  components So, vlc, and TlS (locations 80-82) 
would be varied in addition  to  those  parameters sham in Tkble I1 to effect 
momentum  balances  in  thrust,  pitching  mament, and rolling  moment  as well as 
the  specified  trim.  If  the  control  option  is 2., only  the  velocity  components 
would  be  varied  (instead of the  control  angles,  Als , and 5 ) , but in 
an analogous manner. If the  control  option  is 38:T5f!ie trim calcdation 
muld again  only vary the  velocity  components,  but  to  achieve  momentum  balance 
only, with  no  specified  trim. 

- 
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APPENDIX I11 

PROGRAM A00 OUTPUT DESCRIPTION 

The complete printed  output  generated by the &OO program can  be 
classi f ied  into the following  five major categories: 

I. Listing  of  Input Data 
11. Parameters  Calculated fkom the  Input Data 

111. Results  of  Solution Part I - Eigensolutions 
IV. Results  of  Solution Part I1 - Time-History Solution 

V. Results  of  Solution Part I11 - Transient  Spectral  Stability  Analysis 

This appendix w i l l  describe the pertinent  output pages associated  with  each of 
these  categories. It should be noted that while  output will always be generated 
f o r  the first two categories,  output  for the remaining  categories depends upon 
the  opt ional   ut i l izat ion of solution parts I, 11, and/or 111. The subsections 
which follow  describe, in   turn,   the   detai ls  of each of these five categories. 

Listing of  Input Data 

Output i n  this category  includes a l i s t i n g  of the s t a t i c   a i r f o i l  data (if 
any is  inputted), a descriptive  l ist ing  of  the  "inertia,   elastic,   geanetric 
and other  operational" (Loader  Format) data, and a l i s t i n g  of the harmonic 
variable  inflow:  blocks I, 11, and I V Y  respectively, of the  input data des- 
cribed i n  Appendix 11. If s t a t i c   d r f o i l  data is inputted,  then a l i s t i n g  of 
this data w i l l  be outputted fo r  c R ,  cd  and c each with  the  format shown 
i n  Sample  Page 1.where  each column represents data a t  one Mach number. With- 
i n  each column the first line  gives  the  nmber of angle-of-attack/aerodynamic 
coefficient  pairs  defining  the  functionality;  the second l i n e  i s  the Mach 
number, and the  ensuing  line pairs are  the angle-of-attack/aerodynamic coeffi- 
cient  pairs,  where the  angles-of-attack  are  in  degrees. Tkis output  closely 
follows  the  input format  described i n  Appendix 11. 

w 4  

A description o f  the  Loader Format data output is omitted  herein  since 
th i s  output  merely  duplicates  the  description  already  given  in even greater 
detail i n  Appendix 11. I n  Sample  Page 2 i s  shown the listings  of  the  inputted 
harmonic variable  inflow,  both by harmonic components  and  by azimuthal. varia- 
t ion   for  each  of the (maximum of) fifteen  blade segments. As with the  input 
format,  the  inflow i s  defined  positive up, has the uni ts  of f t / sec  and a 
conventional  positive  Fourier  series  representation i s  used. 
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x Y x . x x a x  
. x x a x x x  

X I X . X X X Y  
. X L X X X X  

X X X . X X X X  
. X X X X X X  

X Y X . X X X X  
. X I X Y X X  

x x x . x x x x  
. X X X X X X  

X X X . X X X I  
. X X X X X X  

x x x . x x x x  
. X X X X X X  

X X X . I X X X  
. X X X K X X  

x x x . x x x x  
. X X X X X X  

A X X . X X X X  
. X X X X X I  

X X X . A X X X  
. X X X X X X  

X X X . X X X X  
. X X X X X X  

x x x . x x x r  
. X X X X Y X  

x r x . x x x x  
. X X X X X X  

% X . X X X X  
. X X X X Y X  

X X . X X X X  
. X X X X X X  

X X . X X Y X  
. X X X X X X  

X X . I X Y X  
.IX:XXX 

X X . X X X X  
. X X X X X X  

X A . X X X X  
. X X X X Y X  

X X . X X Y X  
. X X X X Y Y  

X X . X X > X  
. X I X X Y X  

X X . X X X X  
. 3 X X A k X  

X X . I X X X  
. X X A X X X  

X X . X X 1 X  
.LLAIAX 

Y X . X X X X  
. k X X X X X  

Y k . X X X I :  
. X X I X Y X  

Y I . X X X X  
. X Y X X X X  

X X . X X X X  
. X X X X X X  

Y X . X X X X  
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Parameters  Calculated from the  Input Data 

Sample  Pages 3 and 4 l i s t  a  variety of  intermediate  parameter  calculations 
which, for  the most part   are  directly  applicable only t o   t he  composite 
bearingless  rotor. Sample  Page 3 presents  the  matrices and vectors used t o  
define,  respectively,  the  elastic bending characteristics  of  the  torque  tube 
and the  inboard  (snubber) end vertical   deflection of the  torque  tube. For 
each, a quadratic  variation w i t h  pitch  angle is assumed so that  the t o t a l  
bending stiffness  matrix, FDEFL, and inboard  deflection  vector, Z5I, are 
formed in  the  indicated manner wherein the  total   blade  pitch  angle at the 
75 percent  span, W O ,  i s  taken  in  radians.  Furthennore, all the results out- 
putted  for  these two quantities  are nondimensional (see the superscripts  sec- 
t ion of the L i s t  of. Symbols for   the proper  nondimensionalization). The matrix 
FDEFL duplicates  matrix S, whose  rows  and  columns are defined by equation 
(108) in . the  text ;   vector  Z5I shares  the same columnar dependence with matrix 
FDEFL. Finally, a t  the bottom of Sample  Page 3 are  evaluations of FDEFL and 
251, using  the  quadratic  representations, a t  a pitch  angle  equal  to  the 
inputted  collective  angle,  0.75~. It should  be  noted that  the  f’unctionaliza- 
tions of these  quantities  to  quadratic form is accomplished by matching 
exactly  the  quantities  calculated with pitch  angles  equal  to  the  collective 
angles. 

- 

The first  group of output  parameters  given i n  Sample  Page 4 consists of 
the (nondimensional) coefficients  defining  the  nonlinear  torsional  stiffhess 
characterist ics of  the flexbeam; they  correspond direct ly   to   the  coeff ic ients  
given i n  equation  (130a). Again the  standard  nondimensionalization is  used. 
The second group of  output  parameters on the sample page consists  of  the 
quadratic  functionality  coefficients f o r  the  pitch-flat and pitch-edge 
couplings and the  angular motions of  the  torque  tube  relative  to  the flex- 
beam at  ,the  juncture for each of  the  selected  flatwise and edgewise modes. 
The quadratic  f’unctionality on pitchangleduplicates that used fo r  FDEFL and 
251 described  in  the above paragraph. Note tha t  REM and RELMV are calcu- 
la ted only on the  basis of a n  infinitely  rigid  torque  tube and, hence, are 
omitted when the redundant analysis  option i s  invoked. The third group of 
output  parmeters  consists of the  specialized  elastic  description of the 
inboard end of a  cantilevered  torque  tube  (see Figure 6 and eqmtion (83)). 
The outputted  spanwise  distributions  are  the  static flatwise ,deflection shape 
(pseudo-flatwise mode) and i t s  two (nondimensional)  spanwise derivatives. 
The fourth group of  output  parameters  are  the  effective  torsional  springs 
Kgl, Q2, and k3, defined by equations (63b), (88), and (85), respectively, 
and the flexbeam st i f fness ,  G J  and T ~ A  , respectively. The units of the 
springs  are  lb-ft/rad and those of the  st iffnesses  are lb-ft2.  

2 
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In S.mple Page 5 are  shown  typical  modal  information  for  the  inputted 
flatwise  and  edgewise  bending  modes.  For  each  such  mode  the  (nondimensional) 
modal frequency,  pitch-flat  (or  pitch-edge)  couplihg and inputted  mode  shape 
and  spanwise  derivatives  are  listed. In addition  the  listing  presents  the 
derived  incremental  def1ecti.m  vectors  which  account  for  blade  twist  (see 
equations (7) through (10)). Within a ,flatwise  modal  information  group,  the 
DV% and DVE arrays  correspond  to  those,  first  order AV spanwise  functions  due 
to  built-in  twist  and  torsional  modal  twist,  respectively.  The  DWWBB,  DWWBC 
and DWWCC arrays  correspond  to  those  second  order AW functions due to  the 
combinations  of  built-in  twist  with  itself,  built-in  twist  with  pseudo-torsion 
mode  (control)  twist,  and  pseudo-torsion  mode  twist  with  itself , respectively. 
The  various-  arrays, DWBP,  DVaP,  DW2BBP, DWW2BCP,  and  DWW2CCP  are  the  first 
sparrwise  derivatives of the  second  components  (those  with  superscript "2") of 
the  above  discussed  arrays,  DVB, Dm, DWWBB,  DWWBC, and DWWCC,  respectively. 
!Be UWE nonlinear  deflection  arrays  correspond  to  the  bracketed  integral 
function  defined  in  equation (36). Within  the  edgewise  modal  information 
groqp,  the  various arrws, DWB, EWE, DVBB, DWBC, and DWCC etc.,  correspond 
t o  similarly  defined  spanwise  functions  involving  twist  and  the  edgewise 
modal  deflection  and  spanwise  derivative  arrays. 

The  first  group  of  output  parameters  presented  in  Sample  Page 6 consists 
of the  inputted  torsion  modal  arrays  together  with  the  derived  pseudo-torsion 
mode  shape (as defined  by  Figure 4) and  spanwise  derivative. The remaining 
output  parameter  group  consists  of  the  spanwise  distributions  of  various 
pertinent  aeroelastic  quantities.  The X and XCEN arrays  are  the  nondimen- 
sional.distances  of  the  centers  of  the  segments  f?rom.the  offset  and  rotor 
axis,  respectively.  The  units -of the CHORD .wrw are  feet.  The  angle of 
attack  descriptors THETA-AERO, PHI and ALPHA are,  respectively  the  geometric 
aerodynamic  pitch  angle,  the  inflow  angle,  and  the  resulting  section angle- 
of-attack, all in  degrees. These angles  are  calculated  using  the  inputted 
initial  conditions  on  azimuth  angle and on  the  response  variable  deflections 
and velocities. The resulting  Mach  number  and  aerodynamic  coefficients  are 
used  to  define  the  perturbational  airloads  used  in  the  eigensolution.  The 
quantity KAPPA/U is  the  spanwise  variation  in aerodpamic moment  damping 
coefficient whicEwhen multiplied  by  the  local  pitch  rate  approximatds  the 
potential  flaw  unsteady  pitching  moment  coefficient.  The  quantity  (YlOC/4)/C 
is  the  spanwise  distribution  of  quarter  chord  offset from the  reference  axis 
nondimensionalieed  by  chord.  The  dynamic  and  structural  quantities in the 
third  group of this  output  page  includes  the QUAD array  which  constitutes  the 
integration  weighting  numbers  for  sparrwise  integration.  The META-STR array 
is  the  pitch  angle  distribution  of  the  structural  principle  axes and has  the 
units  of  degrees and, in  general, differs from the  aerodynamic  pitch  angle 
distribution.  The two arrays, TWIST-BLT and TWIST-TOT, are  the  nondimensional 
structural  twist  rate  distributions  of  the  built-in  twist  and  the  total  twist 

- 
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. X X X X X  

. X X X X X  

D V V C C  

. X X X X X  
. X X X X X  

. x x x x x  

.xxxxx  

. X X X X X  

. x x x x x  

. x x x x x  

D V V Z C C P  

~ X X X X X  
. X X X X X  

. X X X X X  

. X X X X X  

. X X X X X  
..xxxxx 
. x x x x x  

Sample Page 5 



(inc~.u&,g .ehsfic  respope and  control inputs),  respectively;. these 
have the  units of radians. The quantities TENSB, EIYB, EIZB anrl MASSB am, 
Icespectively, the blade  tension,  flatwise  bending  stiffness, *ewise bending 
stiffness  and mass distributions a l l  nondinensiondized in the st- 
sense. The (YIONA)/C and (YIOCG)/C arrw are, respectively, the edg-e* 
bending  neutral a s  and mass center  offset  'distribution8 nondimensionalized 
by chord. - 

. e -  ... . . ~ 

. I .  

. .  



. .. 

1 . x x x x x  . X X X X X  . xxxxx  
2 . X X X X X  . X I X X X  . X X X X X  
3 . X X X X X  . X X X X X  . * X X X X  . . X X X X X  . x r x x x  . X X X X X  . . x x x x x  . X X X X X  . x x x x x  
, . X X X X X  . X X X X X  . x x x x x  
N . X X X X X  . x x x x x  . r x x x x  

. x x x x x  . X X X X X  

. X X X X X  . X X X X X  

. X X Y X X  ~ X Y X X X  
. X X X X X  . i x x x x  
. X X * X X  . X X X X X  

. X X X X X  . x x x x x  

. X X X X X  . X X X X X  

U b P l b L  DISTWIbUTIONS OF A E P O O V L A M I C  A R D  D V N A * I C / S T R U C T U ~ b L  O U A * T I T I L S  

X 

. x x x x x  

. X X X X I  

. X I  x 

. X X A Y h  

. X X X X X  

. X I X I X  

. X l X V X  

X 

. X X X X X  

. X X X X X  
. X X X I X  
. X X X X X  
. X X X X h  
. 1 X X X X  
. x x x x a  

X C C N  

. X I X X X  
. X X X X X  

. X X X X X  

. X X X X X  

. X X X X X  

. x x x x x  

. X I X X X  

X C E N  

. x r x x r l  

. X X X X X  

. X X X X X  

. X X X X l  

. X X X W X  

. X Y k X X  

. X X X X X  

. V X X X X  
. x x x x x  

. x x x x x  

. Y X X X X  

. x x x x x  

. X X I X X  

. r x x x x  

QUAD 

. x x x x x  

. X X X X X  

. Y X X X X  

. X X X X X  

. X X X X X  
. X X X X X  
. x x x x x  

C h O R D  THETL-AERO 

A . x x x  
X . X X X  
X . X X X  

X . X X X  
X .XYX 

X .XXX 
X . X X X  

T H E l b - S T R  

a.xxx  
X . X I X  

x . x n x  
X.XXX 
X . X X X  
1 . X Y X  
X . X X X  

P H I  

.xxx 
. X X X  
. X X X  
. X X X  
. X X X  
. X X X  
.AI x 

LLPWb MbCW 

X . X X X  
X . X X X  

. x x x  

. * X X  

X . X X X  . x x x  
x .xxx . xxx  
X . X X X  . . X X I  
X . X X X   . X Y X  
h . X X X   . X X X  

T Y I S T - B L T  T Y I S T - T O T  

. X X X X X  . X X X X X  
. X X X X X  . X X X X X  
. X X A X X  . X Y X X X  
. X X A X X  . I X X X X  
. X X A X X  . X X X X X  
. X X X X X  . x r x x *  
. X X X X X  . ~ x x x n  

T E N S 9  

. x x x x  
. X X Y X  

. x x x x  
. X X X X  

. X X X X  

. X X X X  

. X X Y X  

. X X X X X  . X X X X X  

. X X X X X  .xxxxx 

. X X X Y X  . X Y X X X  

. X Y X X X  . X X X X X  

. X Y X X X  . X X X X X  

. X X X X X  . X X X X X  

.xxxxx .xxxxx 

CL 

. X X X Y X  

. X X X X X  

. xxxxx  

. X X X X Y  

. X X X X X  

. X X X Y X  

. x r x x x  

E 1 1 3  

. X Y X X X  

. X Y X ) I X  

. X X X X X  
. X X X X X  

. X X X X X  

. x x x x x  

. x ~ x x a  

C D  

. x x x x x  
. X X X X X  

. X X X X X  

. axxxx  

. X X X X X  

.xxx,xx 

. X X X X X  

E 1 7 d  

. X X X X X  

. X * X X X  

. X X X X X  

. axxxx  
. X X X X X  
. X X X X X  
. A X X X X  

C11 

. X X X Y X  

. Y X X X X  

. X X X X X  

. X X X X X  

. X X X X X  

. X X X X X  

. x x x y x  

I Y l O N b I I C  

. X X X X X  

. X X X X X  

. X X X X X  

. x x x x x  

. xxxxx  

. X X X X X  

. X X X X X  

KbPPIIU t Y l O C / , @ l / C  

. X X X X X  . X X X X X  

. X X X X X  . X X X X X  

.xxxxx  . X X X X X  

.xxxxx  .xxxxx  

. X X X X X  . xxxxx  

. x x x x x  ;xxxxx 

. r x x x x  . xxxxx  

MASSE I V I O C G l / C  

X . A X X X X  . x x x x x  
X . X X X X X  .xxxxx  

x .xxxxx .xxxxx 
X . X Y X X X  .xxxxx 
x .xxxxx . xxxxx  
X . X X X X X  . X X X X X  

x.xxxxx .xxxxx 



Results of Solution  Part I - Eigensolutions 
Sample  Pages 7, 8, and 9 present  the  pertinent  details of the 

eigensolutions.  There  are  three  distinct eigensdutions calculated  and  the 
three  results  are  headed,  respectively, by the  following  titles: 

1 . TRUNCATED (LITWB TERMS ONLY) VACUUM CASE 
2. L-ZED Nom= VACUUM C A S E  
3. LINEARIZED NONXUWLR NONVACU" CASE 

In the  first  case, a l l  terms  nonlinear in the  response  variables  and 
terms  involving  aerodynamic  loadings  are  omitted. In the  second case,  those 
nonlinear  inertial  and  elastic  terms  omitted in the  first  eigensolution  are 
retained  and  linearized  about  the  inputted  response  variables  (initial  condi- 
tions on response  variable  deflections  and  velocities -- locations 67 through 
70 and 280 through 303). Note  that if these  locations  are  inputted  equal to 
zero this second  eigensolution  is  automatically  omitted. The  last  case 
includes  the  locally  linearized  perturbational  airloads  with  the  linearized 
formulation  of  the  second  eigensolution. A s  sham in  Sample  Page 7, the 
beginning of each  eigensolution  lists  the A, By and C matrices,  which  pre- 
multiply  the  acceleration,  velocity  and  displacement  response  vectors,  res- 
pectively, to define  the  eigenproblem.  The  extracted  eigensolutions  (coupled 
roots  and  frequencies.)  are  then  listed  by  root  pairs . A t  the  bottom  of 
Sample  Page 7 and  the  top of Sample  Page 8 are  presented  the  typical  fonnat 
for  the  case  where  each of the  root  pair  is real. For  each  root  the  eigen- 
vector or GENERALIZED MODE SHAPE is  presented,  normalized to  the  largest 
amplitude. . The  number of elements to this  vector is identical  with  the  dimen- 
sion of the A, B, and C matrices,  and  represent, in order, the  coupled  rela- 
tive  responses  of  the  flatwise,  edgewise,  and  torsion  modes.  The  arrays  labeled 
PHYSICAL MODE SHAPE c0nsis.t of  the  relative  spanwise  distributions of inplane 
(Y5), and out-of-plane (Z5) and  pitching (THETA) components of the coupled 
mode shape.  The Y5 and 25 deflections  are  nondimensionalized by blade radius, 
whereas THETA is in radians. 



PA91 I .  € I G t K S O L U T I O N S  F F  V A R I O U S  LINEIRIZATIONS OF E P U A T I O k  S E I  - C ~ A P A C I E R I S T I C  9 0 0 1 s  AND COUPLED MODE SHAPLS 

I M b T Q l X  

. x X x X I - v v  

. X X I X F - Y V  
. r x X x r - Y v  
. X X x X T - v v  
. * X X X E - v v  
. r x x x r - v ~  

' P Y I T R I X  

. x X X L I - v v  
. I x x x c - v v  
. r X x x F - v Y  
. X X L h E - V Y  
. K X X I F - Y V  

- . r x x r E - ~ v  

C " A T F ? I h  

. Y X X X ' - Y T  
. % L X x = - Y *  

. X Y X X f - Y V  

. v x x h ! - Y v  

. r X L Y I - * Y  

. X X X Y ~ - Y Y  

? n o 1 5  I 1 ,  ; I  1 

. X X x X F - Y v  

. X X X X f  - Y V  
. X k X X F - V V  
. X X X X t  - v v  
. X X X X C - v v  
. X Z X X F - Y I  

. X x X X " v v  

. x x r x r - ~ v  

. I ~ X k C - V V  

. X X X X F - Y V  

. I X X X F " I V  

. X h L X f - Y Y  

. X X > X F - Y Y  

. X h X Y C - Y Y  

. X X Y k Y - Y Y  

. X X r Y f - Y v  

. X I r X r - v v  

. X h r X F - Y Y  

. X I I X Y  

L E r f D A L i 7 E n  " O D E  S H A P E  1 )  

P H V S I C L L  N X 
" @ E  S P A P E  

1 . Y Y X L X  
2 . X I * X X  
3 . h Y X X X  . h X X X X  

. ? Y X X X  

h: . x r x x x  
. X X X X X  

. X Y X k f - V V  

. X Y X X E - Y V  
. X X X X f  - Y V  
. X X X C F - Y V  
. X Y X X f - Y v  
. X V X X F - Y V  

. X I X X F - V Y  
. X r X X F - Y V  
. X I X X f - Y Y  

. X ~ X X E - V Y  

. ~ Y X X F - V Y  

. r x x x f - Y v  

. X ' l L X C ~ Y V  

.X IXLE-YV 

. X Y X X C - Y Y  

. I Y X X " Y V  

. r : * x a r - v ~  

. x Y Y X t : - v Y  

; . X I X A X  

. X X X X X  

Y S  

. X X X X X  

. X X X X X  

. X X L X X  
. X X X X X  

. X X X I X  

. X X X X X  

. X X X X X  

. X X X X F - V Y  
. X X X X F - V V  
. X X X X f - Y V  
. X A X k F - V ' I  
. X X X X " Y V  
. X X X X F - v t  

. X x X X r - v v  

. X X X i r - Y v  

. X X X X E - Y ' I  

. x x x x F - Y v  

. X X X X F - v I  

. X ~ X X F " I Y  

. X X X X " V t  
. X h X X ? - V Y  

. I X X X " V Y  

. X ~ Y X F - Y V  

. r x x x r - ~ v  

. Y h X I F - V Y  

. X Y X X X  

. X X X X F - V Y  
. X X Y I E - ~ ~  

. X a X X E - Y y  

. x x y x E - Y Y  

. X X X X E - Y Y  

. Y h X X E - Y V  

. X X X A X  I 

7 5  

. x x x x x  

. X X X X X  
. X X X X X  

. X I X X X  
. X I X * X  

. x x x x x  

. I X X X X  

Sample Page 7 ,  
I 

. X X X X E - Y V  

. X X X X E - v v  
. X X X X E - V V  

. X X X X C - V V  

. Y X X X E - V V  

. x x x x F - v v  

. X X x X E - v v  
. X k X X E - V V  

. X X L X E - V Y  

. X X X X C - V V  

. X X r X E - Y Y  

. x x x x r - v v  

. X X X X E - V V  
. X X X Y f - V V  

. X X X X E - v v  

. X X X X E - Y Y  
. X X X X E - Y Y  

. X X X X f - Y Y  

I X X X X X  . X h X X X  . X X X X X  

THE 11 

. X X X X X  
. x x x x x  

. X X X X X  

. x x x x x  

. X X X X X  

. X X X X X  

. X h X X X  



A t  the bottom of Sample' Page 8 is  presented the typical  format for the 
case where the  root  pair   consists of  complex conjugates.  For t h i s  case, 
in   addi t ion   to  the r e a l  and imaginary components of  the  roots, the equivalent 
c r i t i c a l  damping r a t io ,  ZETA, and undamped natural  frequency, WN, are given. 
Note that fo r  a complex pair of roots,  the  eigenvector is also complex; 
the sign on the imaginary component corresponds t o  the root with the 
posit ive imaginary part .  Similarly,  the  physdcal mode shape is  given, which 
additionally  contains  the  velocity component d i s t r ibu t ion   to  accouht'@or 
the  generally nonuniform phasing  along the span. The velocity components 
a re  nondimensionalized by t i p  speed. 

G E ' . ! P A l I Z E D  P O Q C  S H A P E  ( 2 1  . x x x x x  . X X Y X X  . x x x x x  

9 3 0 7 5  I I, 4 1  Z 

S E \ E ? A L I ? E D  
U 3 P E  S P A F E  

P H Y S I C I L  N 
Y C G C  S P A P E .  

I 

3 
7 

N 

X 

. X Y X X X  
. X X l X X  

. X Y X X X  

. x Y X Y  x 

. X Y X X X  

. X Y A X X  

. r x x x x  

.XYXXI 

I Q E  I 
I I M l  

X 

? * Y X X X  
. X Y X X X  
. X Y X X X  
. X Y X X X  
. x  Y X I X  
. k x A X X  
. X Y X X X  

v 5  

. x x x x x  

. X X X X X  
. x x x x x  

. X X X X X  

. x x x x x  
. X X X X X  

. X X X X X  

*-I X . X X X X X  

X X X  A X  
. x x x x f  

'15 

. x x x x x  
. x x x a x  
. x x x x x  
. x x x x x  
. X X L X Y  
. x x x x x  
. I I I X X  

L C T L  1 

.XI(IXX 

. X X Y X X  

'1 5 r  

. x x x x x  
. x x x x x  

. r x x x x  

. x x x x x  

. x x x x x  

. r x x x x  

. I X X X X  

2 5  

. X X X X X  

. x x x x x  

. x x x x x  

. X X X X X  

. . ( X X I X  

. r x x x x  

. X X X X X  

. X X X A X  

. Y X X X X  

. ~ I Y X X  

7 5  

. x x r x x  
. x x x x x  

. x x x x x  

. r x x x x  

. X X X X X  

.xx . rxx  
. X X I X X  

. x x x x x  

.Y = 

. X X X X ' (  
. x x x x x  

2 5 *  

. r x x x x  

. X X X X Y  
. X X X I X  

. I X X I X  
. X X X d Y  
. Y X X X I :  
. X X Y X Y  

. X X X X X   . X X X X X  

THETA 

. Y X X I X  
. X X X X X  
. X I I I X  
. x x x x x  
. x x x x x  
.XXIXX 
. X X Y ) I X  

X .XXIXY 

. x a x x x  . x x x x x  
. x x x x x  . X X Y X X  

T H E T A  T h E T d *  

. x x r x x  . Y X X X Y  

. X I X I Y  . x x x * v  

.YIIXX . . IAYXX 

. X A I X X  . Y A X X X  

. Y X Y X X  . Y I Y X X  

. X A X Z X  . x x r x x  

. Y X X X X  . I h Y h X  

Sample  Page 8 



Should  one  of the roo t s   i n  the nonVacuum eigensolution  be  unstable, as 
indicated by a pos i t ive   roo t   o r   rea l   par t  of a camplex pair ,  an output l i s t i n g  
of  the  force  phasing  matrices  appropriate  to  the  instability is generated and 
outputted as depicted i n  Sample  Page 9. These matrices,  having  the same 
s i z e  as the A, B, and C dynamic matrices,  enable  the  various  destabilizing 
forces  to be identified;  descriptive  material   for-their   definit ion,and  inter-  
pretation'.are  contained  in  Reference 13. 

A PHASI~G R A T A I ~  

. X X X X E - v Y  

. X X X X E - Y V  
. X X X X E ' V V  

. X X X X E - Y Y  

. X X X X E - v Y  
. X X X X E - Y Y  

B P H d S I l v C I   M A T R I X  

. X X X X ! - V Y  
. X X X X E - V V  

. Y X X X E " ( Y  

. X X X X F - V Y  

. X X X X E - v Y  
. X X X X F - V Y  

C P H A S I N G  M l T R I X  

. X X X X € - Y Y  

. X X X X F - Y Y  

. X X X X E - v Y  

. X X X X E - V V  

. X x X X E - v Y  
. X k X X E - Y Y  

. X X X X F - Y V  

. X X X X F - Y V  

. X X X X F - V Y  

. X X X X f - Y Y  

. X X X X f - v Y  
.XIXX=-VY 

. X A X X E - Y V  

. X x X X f - Y Y  
. X X X X € - Y Y  
. X X X X E - Y Y  

. X X X X T - Y Y  
. X X X X ~ - Y Y  

. X X X X F - V Y  
. X X X X E - Y Y  
. X X x ' X F - V Y  
. X X X X € " I Y  
. X X Y X f " I Y  

. X X Y X ! - V Y  

. X X X X E - Y Y  

. X X X X E - V V  
. X Y X X F - Y Y  
. X X X X F - Y Y  
. X Y X X E - V Y  
. X V X X ~ - Y Y  

. X X X I F - Y Y  

. X X I X F - Y Y  
. X Y X X E   - Y Y  

. X X X X f - Y Y  
. X ~ X X C - Y Y  

.XIXXF-YY 

. X Y I X F - Y V  

. X X X X E - Y Y  
. I Y X X f - Y V  

. X x X X E - Y Y  
. X X X X f - Y Y  
. X r X X E - Y Y  

. V X X X F - Y V  

. X X X X F - Y Y  

. X X X X E - Y V  

. X * X X E - Y I  

. X X X X T " I Y  

. X A X X f - Y Y  

. X A X X E - V Y  

. X X X x F - Y Y  

. X X X X C - Y Y  

. X X X X F - Y Y  

. Y X X X F - Y Y  

. x X X X = - Y v  

. X A X X F - Y Y  

. X I X X F - Y Y  

. X X X X E - V V  

. X X X X E " I V  

. X A X X C " I V  

.XIXX~-YV 

. X X X X F - V Y  
. X X X X E - Y V  
. X X X X E - Y V  
. X X X X E - Y Y  
. X X X X E - V Y  
. X X X X E - Y V  

. x x x x i - y y  

. X X Y A F - Y Y  

. X X X X F - Y Y  
I X A X X F - Y V  
. X X Y X E - Y Y  
. X I X X " Y Y  

. X A X X E - Y Y  

. X I X X E - Y Y  

. X X X X E - Y Y  

. x A X X E - Y Y  

t X * X X E - v Y  

. X X X X E - Y Y  

. x x x x F - Y Y  

. X X X x € - Y Y  

. X X X X E - V V  j 

. X X X X E - Y V  

. X X X X E - Y Y  

. Y X X X E - v Y  

. X X X X E - Y v ,  

. x x x x E - Y Y ,  

. X X X X C - Y Y  

. X X X X E - Y Y  ' 

. x x x x F - Y Y  

. X X X X E - Y Y  

. X * X X E - Y Y  

. X X X X E - Y Y  

. X X Y x F - Y Y  I 

. X X X X E - Y Y ,  

. X A X X E - Y V ,  

. Y a X X F - Y Y :  

Sample  Page 9 

Results  of  Solution Part I1 -- Time History  Solutions 

Sample  Page 10 presents a var ie ty  of response and load quantit ies 
defining  the  transient  aeroelastic  'responses. The first row of parameters 
following  the page t i t l e   p resents ,  for  the subsequent time-history  solution, 
a l i s t i n g  of the  parameters  defining  the  flight  condition. These parameters 
consist of the various control  angles  (in  degrees),  the  inflow and advance 
ra t ios ,  and the  nondimensionalized  values of the "momentum" induced velocity 
components. The remainder  of Sample  Page 10 comprises the  typical  azimuthal 
l i s t i ng ;  this l i s t i n g  i s  outputted  for  every azimuth  angle which is a multiple 
of the  pr int  azimuth  increment,  input item no. 23 . 
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The first of  the  four groups  of result quantit ies on this  sample page 
l ists  the spanwise distributions of the  pertinent aerodynamic quantit ies.  
The inflow and total   section  ,angles of attack PHI and ALPHA, respectively,, are 
i n  degrees. The MACH NO. , 'CL , CD , and CM are self-explanatory and nondimen- 
sional. The air load  dis t r ibut ions  in   the 25 a& Y 5  directions,  SAZ5 and SAY5, 
respectively, have the  uni ts  of lb / in . ,   the  aerodynamic pitching moment 
distribution, MAX5, has  the Wits of  in.-lb/in. The quantit ies S D Z 5 ,  
SDY5, and MDX5 are "semi-dynajnic" load  distributions. These distributions 
are dimensionally similar t o  those above described  resulting from aerodynamics, 
but instead arise from all t h e  dynamic effects  except t he  doubly time differentiat-  
ated ones (see equations  klc, 41b and 44a, respectively). The q u a n t i t f i m g  
is the   e las t ic   to rs ion  moment distribution which consists of those  torsion 
couplings  arising from AEI, the tension-neutral  axis  offset and other twist 
re la ted   e las t ic   e f fec ts ;  it too,  has  the M + B s  of  in.-lb/in. 

The second  group of result quantit ies  consists  of the instantaneous 
generalized  excitations, X I ,  and the generalized  accelerations,  velocitZes, 
and displacements (Q**,Q*, and Q, respectively)  for each  of the modal response 
variables  selected, a l l  appropriately  nondimensionalized. The generalized 
excitations are defined t o  be the  element$  of the   r igh t  hand side  of  equation 
(34) 

'The t h i r d  group of result quantit ies are comprosed mainly  of  blade 
deflection and stress distributions.  The ver t ical  and inplane  deflections 
are those  in   the Z5 and Y5 directions,  respectively. All s t r e s s  quanti.bies 
have the  units  of  lb/in.2,  whereas the  torsion moment has the units of  lb-in. 
It should be noted tha t  , over t h e  flexbeam-torque tube  span, t he  flatwise 
and edgewise stresses outputted are those only for  the  flexbeam  whereas the 
torsion moments and stresses outputted  are  those  only  for  the  torque  tube. 
The last  two  columns are the  dis t r ibut ions of the A and B parameters needed 
t o  define the unsteady  airloads  (see  Reference 9 ).  The fourth group of 
result quantit ies at the bottom of the  sample page consists of ,miscellaneous 
deflection,  load and stress resu l t s   for   the  flexbeam and push-rod. 

The l i n e   t i t l e d  SPAR/FLEXURE P-mS presents similar stresses and 
torsion moments fo r   t he  flexbeam at  the  indicated spanwise location;  note, 
however, t ha t  the outputted  torsion moment i s  for   the flexbeam  immediately 
inboard  of  the  juncture. O f  t h e  remaining four  quantities, PUSH-ROD ( R E L A T m )  
DEFL. (in. ) , TORQUE_TUBE ROOT DEFL. ( in .  ) , and TORQUE TUBE ROOT SHEAR (lb. ) 
pertain  only  to  cantilevered  torque  tube  configurations wherein the "wobble 
mode" option i s  invoked (input  location 985). All three quantities  are  defined 
in the   posi t ive Z5 directioh. The quantity PUSH-ROD LOAD ( l b )  i s  the  upward 
(+Z5) directed  load  the push-rod exerts on the pi tch horn/push-rod attachment 
point;   this  quantity is  calculated  for a l l  blade  types.  For composite bear- 
i a l e s s  rotors,  the push-rod load  accounts  for the  to ta l   b lade  torsion.moment 
a t  the  root  less tha t  torsion moment resisted by the flexbeam. 
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After  the  time-history  solution  has  either  converged  to  periodicity or 
run to maxlmum flapping  tl"ials  (input  location 10) various  integrated  loads 
are  calculated  for  one final blade  revolution to form  the aerodynamic perfor- 
mance  and  stress  results  depicted in Sample w e  11. For  each of eight (8) 
performance  quantities  results  are  presented in nondimensional  coefficient 
form, in nondimensional  form  divided by solidity,  and in actual  dimensional 
form. Note  that  ten (10) dimensional  quantities  are  listed  and  the  units  are 
lb for forces  and  lb-ft  for  moments,  as  appropriate.  The  quantity EQU. DRAG 
(lb)  represents  the  combined  power emended by  the  rotor  due  to  rotor  rotation 
(torque)  and  translation (drag) divided  by  flight  speed. 

The  next  line  duplicates  the  parameters  defining  the  flight  condition  and 
includes  four (4) additional  quantities  which  depend  on  the  integrated  perfor- 
mance  for  evaluation.  At  the  beginning  of  the  time-history  calculation  it  is 
not known which  part  of  the  inflow  ratio  being  used  is  due  to  ram  effects  and 
which  due  to  momentum  induced  effects.  Cmce  the  integrated  rotor  thrust  is 
calculated,  however,  the  induced  portion  of  the  inflow  can  then be calculated 
using  the  simple usual momentum  formula  derived  for  flight in an infinite  con- 
tinuum  (Reference 14). The  complementary  portion  of  the  inflow  represents  the 
ram  effect  from  which  the  shaft  angle-of-attack ALPHA S, in degrees,  can  be 
calculated.  The  quantity VEL ACT.  is  the  actual  forward  flight  velocity, in 
knots,  consistent  with  the  advance  ratio  used  and  the  shaft  angle  of  attack. 
For finite  forward  flight  speeds EQU. L/D is  the lift divided  by  the  equiva- 
lent drag; for  hovering  cases  this  quantity  is  the figure of  merit. PAR. 
AREA, the  rotor  parasite (drag) area,  in  square  feet,  is  the  rotor drag divided 
by  dynamic  pressure.  The  line  titled  CORRECTIONS DUE TO WIND TUNNEL WALL 
INTERFERFNCE: consists  of  recalculations  of  those  quantities  which  depend on 
the  induced  portion  of  the  inflow  wherein  the  induced  inflow  is  calculated 
using  the  formulae  derived  for  flight in wind tunnels or in ground  effect 
(Reference 11). The  remainder  of  Sample  Page 11 consists  of  reductions  of  the 
various  stresses  (lb/in.2) and the  push-rod  load (lb. ) to median  and 3 peak- 
to-peak  values  over  the  final  rotor  revolution. 
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Should  major  (trim)  iterations be used  (see  description of input item 
60 and 62 through 65 in Appendix 11) output  depicted on Sample  Page 12 will 
be  generated by: the program. The first  line  consists of the,zeroth,  first 
cosine and first  and  second  .sine  harmonics of First  flatwise mode response, in 
radians,  and an estimate of an effective  angle-of-attack on the  retreating 
blade  side ($ = 270°), in degrees.  The  nonzero  elements of the  depicted (G) 
MATRIXgive, for each row, the  partial  derivatives of the four trim  quantities 

approximate  linear  strip  theory with reversed flow effects  and  are  calculated 
for  either  set of control  quantities,  as  appropriate. Tzle ERROR  VECTOR con- 
sists  of  the  differences  between  the four requested  trim  quantities  and  those 
achieved in the  preceeding  time-history.  The two lines  depicted  give theerror 
vector in dimensional (lb and  lb-ft)  and  nondimensional forms, respectively. 
The CORRECTION VECTOR consists of those  changes to the  control  quantities 
which  should null the  above  described  error  vector.  The  correction  vector is 
obtained from the  premultiplication of the  inverse of the G matrix with the 
error  vector,  but the  corrections are scaled, if necessary, to prevent  control 
changes  of  more than 2 degrees  within any one  iteration.  The  control para" 
eters  whose  increments are depicted in this  output  page are, in respective 
order: 8 75, Als, (sin as), X, CT, vo,  vlc, and  vh;  the  first threehave 
units of aegrees  and the r-der are dimensionless  or  nondimensionalized. 
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Once  the  time-history  solution has converged to periodicity  and all major 
iterations  have  been  completed,  the  program  optionally  performs harmonic anal- 
yses of the  azimuthal wiations of various  response  quantities  (see  descrip- 
tions of input items 48 and 73 through 75 in Appendix I1 ). The  outputs of 
these harmonic analyses  aze  depicted in Sample  Pages 13 through 15. In each 
of these  sample  pages  the  harmonic  information  for  each  response  variable  is 
contained in the  appropriate  horizontal  band of five  rows.  The harmonics are 
listed  by  columns  up  to a maximum of 10 harmonics. All harmonic analysis  out- 
put  depicted  on  these  sample  pages  assume a negative  harmonic  content  form in 
keeping  with  the  (negative)  harmonic  form  conventionally  as,amed  for  the  blade 
pitch  control  and  rigid  flapping  angles.  For  each  harmonic of response vari- 
able  five  quantities are outputted;  these  quantities  are,  respectively,  the 
cosine  and  sine  components,  the  equivalent  amplitude  and  phase  angle,  and 
lastly,  the  amplitude  of  the  harmonic  relative  to all the  other  harmonicamgli- 
tudes  outputted.  Sample  Page 13 depicts  the  harmonic  analyses of the  dimen- 
sionless  modal  response  variables  selected  wherein QW(I), QV(K) and QT( J) are, 
respectively,  the (I) flatwise,  (K)  edgewise  and (J) torsional  uncoupled  mode 
responses. 

Sample m e  14 depicts  the  harmonic  analyses  of  the  total  shears  and 
moments  exerted  by  one  blade  to  the  hub. In contrast  to  the  steady  hub  loads 
listed  in  the AERODYNAMIC PEFU?ORMANCE AND STRESSES output  (Sample  Page 11) 
which  are  calculated by integrating only the  aerodynamic  load  distributions, 
the  total  hub  loads  which  are  herein  harmonically  analyzed  are  calculated  by 
similarly  integrating  the  combined  aerodynamic  and  the  dynamic  load  distribu- 
tions.  The  longitudinal,  lateral and vertical  hub  shears  comprising  the  first 
three  quantities  of  this  sample  page  all  have  the  dimensions  of  lb  and  are 
defined  in  the  xl-(aft),  yl-(starboard),  and  zl-(up  and  along  axis  of  rotation) 
a x i s  directions,  respectively.  The  roll,  pitch  and yaw moments  comprising  the 
latter  three  quantities  on  this  sample  page  have  the  dimensions  of  lb-ft  and 
are  defined  positive  (using  the  right-hand rule) about  the 
axes,  respectively.  Note  that  the  aerodynamic  rolling  momen I-’ whose yl-y output and zl- is 
depicted in Sample  €age 31 is  defined  positive  starboard  side  dawn  and  is 
opposite  from  the  harmonically  analyzed  total  rolling  moment  depicted in Sam- 
ple  Page 14. Sample  Fage 15 depicts  the  harmonic  analysis  of  the  flatwise 
stresses  at  the  center of each of the  spanwise  segments. A similar  output 
listing  is  provided  for  both  edgewise  and  torsional  stresses. 
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X . X X X E - Y Y  
X . X X X E - Y Y  
X . X X X E - Y Y  

xxx.x . x x x  
X . X X X E - Y Y  
X . X X X E - Y Y  
X - X X X E - Y Y  

xxx.x  . x x x  

X s X X X E - Y Y  
X - X X X E - Y Y  
X . X X X E - Y Y  

xxx.x  . x x x  

X - X X X E - Y Y  
X . X X X E - Y Y  
X - X X X E - Y V  

' X X X . X  . x x x  

X . X X X E - Y Y  
X . X X X E - Y Y  
X . Y X X E - Y Y  

X X X . Y  . x x x  

a.xxxE-vy 

X . X X X F - Y Y  
X - X X X E - Y Y  

axx.x 
.xxx 

x.axxE-yy 
X . X X X E - Y Y  
X . X X X E - Y Y  

xxx.x 
. X X X  

X . X X X E - Y Y  

X . X X X E - Y Y  
X . X X X E - Y Y  

xxx.x 
. xxx  

X - X X X E - Y Y  
X e X X X E - Y Y  
X . X X X E - Y Y  

xxx.x 
. xxx  

X . X X X E - Y Y  

X . X X X E - Y Y  
X . X X X E - Y Y  

X X X . X  
. X X X  

X . X X X E - Y V  
X . X X X E - Y Y  
X - X X X E - Y Y  

X X X . X  
. x x x  

. . .  

X . X X X E - V Y  

X . X X X L - Y Y  
X . X X X E - Y Y  

X X X . X  
. X X X  

X . X X X E - Y Y  
X . X X X L - Y Y  
X . X X X E - Y Y  

xxx.x 
. xxx  

X - X X X E - Y Y  

X . X X X L - V Y  
x . x x x c - Y Y  

x x x  .X 
.xxx 

X.XXXE'YY 
X . X X X L - Y Y .  
X . X X X E - Y Y  

xxx.x 
. x x x  

X . X X X E - Y Y  
X . X X X L - Y Y  
X . X X X E - Y Y  

xxx.x 
. X X X  

x . x x x t - r Y  
x . x x x r - v Y  
X . X X X E - Y Y  

X X X . X  
. X X X  

X . X X X € - Y Y  
X . X X X E - Y Y  
X . X X X E - V I  

xxx.x 
.xxx 

X . x X X E - Y Y  
X - X X X E - Y Y  

xxx.x 
. xxx  

x . x x x c - Y J  

x . x x x € - Y Y  
X . X X X E - Y Y  
. X . X X X E - V V  

XXX.X 
.xxx 

X . X X X E - Y Y  
X . X X X € - V I  
X . X X X E - Y V  

XXX.X 
.xxx 

X - X X X E - Y Y  

X . X X X E - Y Y  
X . X X X E - Y Y  

xxx.x 
.xxx 

X - X X X E - Y  
* . X X X E - Y  

X . X X X E - Y  
XXX.X 

.XXX 

Sample Page 13 



LOY6.  SWR 

L11. SWR 

V E R I .  SHI) 

ROLL * O M 1  

V b M  U O W l  

10 

X X . X  

xx.x 

XX.X 

XX.X 

XX.X 

XY.* 

1 

X X X X X . X  
xxxxx;x 

xxx. x x  
1.11 

xxxxx.a 

X X X X X . X  
xxxxx.x 
xxxxx.x 

xxx.xx 
X.XX 

~ x x a x . ~  
xxxxx.x  
X X X X X . X  

X X X . X X  
X.XX 

xxxxx.x 
X X X X X . X  
X X X X X . X  

X X X . X X  
X.XX 

X X X X X . X  
L * X X X . X  
X * X X X . X  

Y X X . X X  
X.XX 

X * X Y X  .X 
X 1 X X X . X  
Y 8 Y Y X . X  

Y X Y . X X  
X . X X  

2 

XXX.X 
X X X . X  

X X X . X X  
X X X . X  

.xx 

xxx.x 
xxx.x 
xxx.x 

xxx.xx 
.XX 

xxx.x 
xxx.x 

X X X . X X  
xxx.x 

. X X  

xxx.x 
XXX.X  
XXX.X  

X X X . X X  
.XX 

xax .x  
X X X . X  

X X X . X Y  
L X X . X  

. X X  

X Y X . X  
XXX.X  
X X X . X  

Y X X . h I  
. X X  

3 

X X X . X  
xxx. x 
X X X . X  

.xx 
xxx.xa 

xxx.x 
xxx .x  

X X X . X X  
xxx.x 

.xx 

X X X . X  
X X X . X  
xxx.  x 

xxx .xx  
.x a 

X X X . X  
xxx.x 

X X X . X I  
X X X . X  

.X x 

XXX.X 
XXX.X 
X U I . X  

X X X . X X  
. X X  

X X X . X  
Y X X . 4  

X X X . X X  
X I X . X  

. X X  . .  

c 

xx.x 

XX.X 
1 X . X  

X X X . X X  
.xx 

XX.X 
xx  .X 

X X X . X X  
.XX 

ax.x 

XX.X 
xx.x 
XX.X 

X X X . X X  
.XX 

xx.x 
11.1 
XX.X 

.XX 
axx.xx 

YX.Y 
XX.X 

'XXX.XX 
XX.Y . x x  

* X . X  
xx .x  
x a . x  

X X Y . X X  
.-X x 

5 

I X . X  

xx.x 
XX.X  

X X X . X X  
.XX 

X X . X  
XX.X 
xx. I 

x ~ x x . x x  
. X X  

h X . X  
Y X . *  

X X l . X X  
xu.a 

. x - x  

X X .  I 
X X . Y  
1 X . X  

X X Y . X X  
. X  a 

XU. X 
X X . X  
XX.X 

X X X . X X  
.X X 

XX.X 
XX.X 

XX'.X 

xxr.ar 
. X I  

6 

X I . X  

Y X . 1  
x1x .xx  

.x1 

X I  .!I 

YX.X 
Y1.X 

1 Y X . Y Y  
. X X  

11.1 

11.1 
1 x  .X 
xa.x 

X X 1 . X X  
.XX 

YX.Y 
I X . X  

X Y X . Y X  
11.1 

"x 

* X . X  
X X  . X  
XX.X  

X X X . X Y  
.XX 

X X . Y ,  
hX.Y 
X X  . X  

X X X . X X  
.x* 

7 

xx.x 
#X.: 

X X X . X X  
.xx 

xa.x 

xx.a 
11.1 
1x.x 

xxx.xx 
..xx 

xa.x 
XX.X 
XX.X 

X X X . X X  
.xx 

XX.X 
XX.X 

X X X . I X  
X X . X  

.XX 

a x . x  
a x . X  
a x . #  

. X X X . X Y  
. Y X  

x x . u .  
a x . x  

L x x . a x  
A X m Y o  

. h X .  

I 

XX.X 
1 X . X  
XX.X 

X X X . X X  
.xx 

XX.X 
XX.X 

X X X . X X  
*X.X 

.xx 

xx.x 
XX.X 
XX.X 

xxx.xx 
.xx 

ax..x 

ax.x 
XX.X 

K X X . X 1  
.xx 

AX.X  
X X . X  
XX.Y 

xua .x * '  . x1 

a X . x  
1 X . Y  

x u a . I X  
a x . #  

. & X  

9 

xx.x 
xx.x 

'XX.X  

. X X  
xxx.xa 

XX.X 
XX.X 
XX.X 

X X X . X X  
.xx 

XX.X 
XX.X 

xxx.xx 
XX.X 

.xx 

XX.X 
XX.X 

' x x  .x 
X X X .  x x  . x x  

i x . x  
AX.X  
Y Y . 1  

. X X  
u # a . x x  

* X . ?  
XY.X 

X X X . Y X  
X I . X  

. ax  

' 0  

XX.X 
XX.X 

xxx.xx 
XX.X . xx 

XX.X 

XX.X 
X X X . X X  

.XX 

xr.x 

1x.x 
xx  .x 

X X X . X X  
xx.x 

.XX 

. .  

XX.X 
xx.x 
XX.X 

X X X . X X  
.XX 

11.1 
11.1 

axa.xx 
.ax 

X X . X  

a x . x  
X 1 . X  

' X Y X . X X  
h,X . I 

. X X  

Sample Page 14 



N X CEL A0 

1 . X X X X  X X X X . X  

z . x x x x  x x x x . x  

3 . x x x x  x x x x . x  

9 . x x x x  a x x x . x -  

' 5  . X X X X  x x x x . x  

6 . Z X X X   X X X X . X  

1 7 

x r x x . x  X X X X . X  
X X X X . X  X X X . X  
X X X X . X  x x x x . x  

x x  .x xx . r  
. xxx  x . x x x  

X X X X . X  
xxxx .x  

X X X X . X  
x x x . x  

X X X X . X   X X X X . X  
XX.X 
. X X X  

XX.X 
x . x x x  

x x x x . x  
x x x x . x  X X X X . X  

X X X . X  
X X X X . X  X X X X . X  

XX'. x 
. X X X   X . X X X  

x x  .x 

x x x x . x  X X X X . X  
x x x x . x  XXX.X 
X X X X . X  x x a x . ~  

XX.X X X . X  
. X X X  x . x x x  

X X X X . X  
xxxx.x  X X X X . ?  

X X X . X  
X X X X . X   X X X X . X  

x x . x  
.xxx 

XX.X 
x . x x x  

X X X X . X  X X X X . X  
X X X X . X  
X X X X . X  x x x x . x  

x x x . x  

XX.X xx.x 
. x x x  x . x x x  . . .  

5 

X X X X . X  
X X X X . X  
X X X X . X  

xx.x 
.axx 

x x x x . x  
X X X X . X  
X X X X . X  

XX.X 
. X X X  

x x x a . x  
I X X X . X  
X X X X . X  

x x . x  
. axx  

X X X X . X  
X X X X . X  
x x x x . x  

X X . X  
. X X X  

X X X X . X  
I X X X  .x 

X X X X . X  
xx.x 
. xxx  

x x x x . x  
xxxx .x  
x x x x . x  

X X . X  
. a x x  . .. 

5 

XX.X 
X X X . X  
x x x . x  

xx.x 
. X X X  

xxx.x  
X X . X  

X X X . X  
xx.x 
. xxp  

x x . x  
X X X . X  
x x x . x  

1 x  . x  
. xax  

xxx.x  
xx.x 

X X X . X  
x x . x  
. x x x  

X X . I  
x x x  . x  
X X X . X  

xx.x 
.xxr 

x x x . x  
X X . X  

XXX.X 
X X . I  
. x x x  

5 

X Y X . X  
x x x . x  
XXX.X 

YX.X 
. x x x  

XXX.X 

x x x . x  
XX.X 
. X X X  

X X X . I .  
XXX.X 
X X X . X  

I X . X  
. x x x  

x x a . x  

6 

I X X . X  
xxx.x 
X X I . X  

x x . x  
. X X Y  

x x x . x  
x x x  .X 

xx.x 
r xx .x  

, r x x  

x x x  .x 
X X Y . X  
XXX.X 

x x . x  
. X X X  

x r x . x   X X L . X  
X X X . X  X X X . X  
X X X . X  

xx.x 
X X X . X  

X X . X  
. x x x  . xxx  

X X 1 . X  
XXX.X 

X X I  .x 
XXX.X 

X X X . X  
x x . x  

xxx.x  

. x x x  
XX.X 
. X X X  

XXX.X x x x . x  
X Y X . X  
x x x . a  XXY.X 

XXY.X 

x x  .x XY.X 
. X X X  x x x  

1 

xx.a 
xx.x 
XX.X 
xx.x 
.xxa 

xx.x 
XX.X 
XX.X 
XX.X 
.xxx 

xx.x 
xx.x 
xa.a 
X X . X  
.axx 

XX.X 
xx.x 

xx.x 
X X . X  

. X X X  

X I  .X 

XX.X 
x x  .X 
. X X X  

XX.X 
XX.X 

XX.X 
xx.x 
. X X X  

xx.a 

8 

XX. x 
XX.X 
XX.X 
XX.X 
.xxx 

XX.X 

x x  .X 
XX. x 

X I  .X 
.?XX 

ax.x 
XX.X 
x x  .x 
ax.x 
. X X X  

XX.X 
XX.X 
X X . X  
XX.X 
. X X X  

XX.X 

XX.X 
XX.X 
. X X X  

xx.x 
XX.X 

XX.X 
XX.X 
.XXX 

xx.a 

9 

Y X . X  
X ? . X  

XX.X 
x x . x  
. X X X  

XX.X 
XX.X 
X X . X  
XX.X 
.xxx 

XX.X 
X X . X  
XX.X 
I X . X  
.xxx 

XX.X 
XX.X 
XX.X 
X X . X  
. X X X  

XX.X 
X X . X  
XX.X 
X X . X  
. X X X  

xa.x 

rx.x 
XX.X 

XX.X 
. x x x  

10 

xx.x 
xx.x 
X X . X  
XX.X 
.xxx 

X I . X  
XX.X 
X X . X  
X1I.X 
. X X X  

xx.x 
X X . X  
x x  .x 
XX.X 
. X X X  

X X . X  
X X . X  
T X . X  
X X . X  
.xax 

a x . x  

X X . X  
x x . x  

XX.X 
. X X X  

XX.X 
XX.X 
XX.X 
X I . X  
.xxx 



Results of Solution Part I11 - 
Transient  Spectral  Stability AnaLysis 

Transient  time-history  solutions  are  often  difficult  to  interpret for 
quantitative  stability  information. 'Ilhis is due  to  the  fact  that  the  total 
responses so calculated  inherently  consist of  several  component  modes  simulta- 
neously  and  transiently  approaching  (or  departing from) multi-harmodc perio- 
dicity  with a wide  range of natural  frequencies  and  inherent  damping  levels. 
m e  extraction of the  component  responses  at  discrete  frequencies in order to 
examine  their  individual  attenuation  characteristics  is  the  purpose of the 
Transient  Spectral  Stability Analysis (TSSA) portion of Program G400. '.The 
details of this  analysis,  which  utilizes  Fourier Wansform techniques,  are 
beyond  the  scope of this  report  but  are  treated in References 15. 

Essentially  the TSSA first  performs  Fourier  transformations of selected 
time-history  data  strings,  which  have  been  previously  generated in the  time- 
history  solution  portion  of  the  anallysis  (Solution Brt 11) and  appropriately 
saved.  The  purpose of  the  Fourier Wansform is to identify,  within  these 
time-histories,  those  frequencies  whose  amplitudes  are  relatively  largest and 
and  which  are  herein  denoted  as  "resonances".  The TSSA then  calculates  the 
transient  behavior of the  extracted  amplitudes of these  resonances  over  the 
time-history  time  interval  and  estimates  equivalent  linear  stability  indices 
(characteristic  exponent,  critical  damping  ratio,  and  time  to half amplitude). 

Sample  Pages 16 through 18 depict  the  output  typically  generated  by  the 
TSSA. The  sequence of output  depicted is duplicated  for  each of the  transient 
response  channels  selected  (see  input  locations 84 through 86, Appendix 11). 
Sample  Page 16 depicts  the  output  generated  by  the  Fourier Transform frequency 
identification  portion of the TSSA. Shown  at  the  top  of  the  page  is  the  tran- 
sient  response  channel  being  analyzed  and  the  frequency  range  whereinresonance 
identification  is  desired  (input  locations 87 and 88). The  series of flveout- 
put  items  to  follow  consist of parameters  defining  the  numerical  Fourier'ITans- 
form; note  that  the  results  of  the TSSA incorporate a time  nondimensionaliza- 
tion  based  on  rotor  speed, 0. The  tabulation of the  Fourier  Transform follows 
wherein,  for  each  frequency  (harmonic of the  fundamental as determined by  the 
total  nondimensional  time  interval),  the  real  and  imaginary  parts,  the  square 
of  the  amplitude  and  the  logarithm  to  the  base 10 of the Wlitude are  out- 
putted.  GeneraXLy,  this  tabulation w i l l  consume  more  than  the one page indi- 
cated in Sample  Fage 16. After  this  listing is completed,  those  frequencies 
and  their  respective  square ampztudes which  are  found  to  be  resonances, as 
defined  above,  are  listed. 
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P A R T  111. 1 R A N S I E N T . S P E C T R A L  S T A B I L I T Y  A N A L Y S E S   O F   S E L E C T E D   A E R O E L C S T I C   T R A N S I E N T   R E S P O N S E S  

T R A W S I C N T ~ R E S P O N S E   C H A N N E L  I r O .  X X  - F O U R I E R   T R A N S F O R M  AND D L S O N A W T   F R E O U E k C Y   I D E W T I F I C A T I O N  

D E S I R E 0   F R E O U E N C Y   R A N G E  I . X X  T O  X . X X  / R E V 1  

uuwxw OF P o x r m  IN TIME SERIES = 
I N U I  T I W E  I N C R E R E N T  = 

X Y X  , 

L E N G T H  OF I N T E R V A L  = X X . X X X X X  RAD 
. X X X X X  RAD 

FUNDA*ENTAL  FQEPULNCY = 
H I G H E S T   F R E O U E l r C V  = X X s X X X X X  / R E V  

. X X X X X  /REV 

T A S U L L T I O N  O F  F O U R I E R   T R A N S F O R M  B V  H A R M 3 h I C  O F  FUNUAMENTAL FREOUENCV 

HAR"ON1C  FREGUFNCY ConPLFx FOURI€R  TQANSFORM 

. X X I X X I  

. X * X X X X  

. X I X X X X  

. x x * x x x  

. i x x x x x  

. x x x x x x  

. x x x x x x  

. x x x x x x  

x . X X x x x x 1 ~ - v Y  

X . X x X X X X X E - Y v  
X . X X X X X X X F - Y v  

X . X X X X X X X E - Y Y  
X . x x X X X x X E - v Y  
X . X X X X X X X E - V Y  
X . X X X X X X X E - V V  
i . X X X X X X X E - v v  

x . x x x ~ X x x t - v v 1  
. O D D O O O D  I 

X . x X X X X X X E - v Y I  
X . x X X X X X X E - Y V I  
X . X X X h X X X E - Y Y I  
X . X X X X X X X E - Y V I  

X . x X x X X X X k : v Y I  
x * . x x r x x x x E - Y v I  

TRANSFO6IW 
M A G N I T U D E  

X . X Y X X X X X E - V Y  

X - X X X X X X X E - V I  
X . X x X X X X X E - Y Y  

X . X X A X X X X E - Y Y  
X . X x X * X X X E - v v  
X . x X X X X X X E - Y v  
X . X x X X X X X E - Y Y  
X . X x Y X X X X = - v Y  

LOG T O  ~ & S E  10 
OF  MAGNITUDE 

X . X X X X X X X E - I V  
Y . X X X X X X X E - Y Y  
X . x X X X X ~ X E - Y v  
X . x X X x X X X E - Y Y  
X . X X X X Y X X E - v v  
X . X X x X X X X E - Y Y  
X . X X X X X X X E - Y v  
X . X X X k , X X X E - Y V  

R E S G N A Y C €   F R E U U E N C I E S   F O U N D  B V  S E A P C H   D O U T I N E  

1 
2 

X . X X X I X X X F - V V   d . x X X X * x X E - Y v  

3 
d . X L X X X X X " V V  
X . X X X X X X X " V V  

~ . X X X X * X ~ c - v v  
x . x x x x x x r t - Y Y  

9 1 . * X X X X X X C - Y Y   x . d X X x X X L E - v Y  

THfRE I R E  LESS FUhOAUENTAL D t S O N A h r C E  FREOUENCIES  THAN E X D E C T E D *  I N P U T  4 FOUND = 3 

PESONANT F D E C U E h C I E S  D E T E R M I N E D  T O  UE FUNDAWENTALS 

2 
1 X S h X X X X X X F - V V  

3 X . # . X X X k X X F - V Y  
X . A I X X X Y X C - Y V  

Aside  from  their  several  nonlinearities,  the  dynamic  equations  of  motion 
of helicopter  rotor  blades  implicitly  contain  several  linear  terms  with  period 
coefficients,  which  arise  from  the  periodic  character  of  the  airloads  in  for- 
ward  flight.  It  is  not  unexpected  then,  that  the  aeroelastic  time-history 
responses  generated  by  these  equations  should  manifest  Floquet  Theory  charac- 
teristics  (see  Reference 16). In particular,  the  Fourier Transform is  capable 
of identifying  %multiple  resonances"  which are separated  by  (plus  or  minus) 
multiples  of  the  rotor  frequency  and  which  would  be  found  to  have  approldmately 
the same damping  level.  Hence,  the  resonant  frequencies  found by the  resonance 
seasch are further  screened  to  extract only those  frequencies  with  distinct 
noninteger  values  and  which,  within  the  set  having  the same noninteger values, 
have the  largest  transform  magnitudes.  These  extracted  frequencies are herein 
denoted  "fundamental  resonances"  and  are  the only ones  examined  f'urther  for 
stability in the TSSA. 



sample m e  17 depicts  the  results  of  frequency  fine  tuning  and  response. 
stability  estimation  for  each of the  f'undamental  resonances  extracted  earlier 
in the TSSA. The  results  for  each  of  these  frequencies  are  presented  in 
columnar  fashion.  The  top'.  horizontal  blocks of output represent the fre- 
quency  fine-tuning  results. Of most  practical  importance  axe  the  values 
Ubeled OPTIMIZED FREQUENCY which are, in  nondimensional  (per  rotor  rev)  form, 
the  best  estimates of the  frequency  of  'the  fundamental  resonant  frequencies. 
%ese  frequencies  are  obtained  by an optimization  technique,  the  details of 
which  are  beyond  the  scope of this  report.  The  remainder of the  output 
depicted  on  this  sample  page  (for  each  fundamental  resonance)  consists  of 
three  horizontal  blocks of output  representing  various  estimates  of  the  effec- 
tive  damping  characteristics.  These  three  types  of  blocks  are  best  explained 
by  first  describing  Sample  Page 18. % i s  sample  page  depicts,  columnar3y  for 
each of the  f'undamental  resonances  indicated in Sample m e  17, the  natural 
logarithm of the  magnitude  of  resonant  frequency  content  at  each  (nondimen- 
sional)  time  indicated. If these  amplitude  logarithms  attenuate  with  time, 
then  that  frequency  content  (mode)  is  deemed  stable,  and  conversely  the  slope 
of that  attenuation  with  time is a measure  of  the  effective  linear  damping;  in 
the  analysis  this  slope  is obtdned by a simple  least-square  fit.  It may 
hagpen that  the  variation  of qlitude logarithms  .with  time  is  neither  mono- 
tonic  increasing  or  decreasing in which  case a condition  of maximum or minimum 
.amplitude  is  defined.  weighting  the  least-square  fit  either  uniformly  or 
with an appropriate  f'unction  accentuating  the  initial  or  terminal  ends  of  the 
amplitude  logarithms  data  string,  the  three  latter  horizontal  blocks  of  output 
depicted in Sample €age 17 are  generated.  Within  each of these  blocks,  the 
first  quantity  depicted  is  the  nondimensional CHARACTERISTIC EXPONENT, which 
is analogous  to  and  interpreted  in  the  same way as  the  real  part  of  the  eigen- 
value discussed in the  output  for  Solution  Pa3.t I. The REVS to (MAX/MIN) AMpL. 
is an indication  of  the  asymptotic  behavior  of  the  component  response. STAN- 
DARD D F v y l T I O N  is  the  root-mean-squared  error  achieved  in  the  least-square 
curve-fit  and  is  an  indication of the  regulazity of the  amplitude  logarithm 
Function  depicted  in  Sample  Page 18, and of the  accuracy  of  the  stability 
estimation.  Based  upon  the OFTINIZED FREQUENCY outputted  at  the  top of the 
Sample  page,  the  equivalent CRITICAL DAMPING R A T I O  is  calculated  from  the 
characteristic  exponent  using  standard  formulae. Finally, the  output  item 
labeled FGVS TO HALF AMPLITUDE is  the  third  alternate way in which  the  equiva- 
lent  linear  damping  result  is  presented. 

In Sample  Page 19 is  depicted  the  typical  additional  page of output , 

generated at  the  beginning of every  case fo l lming  the  first  case of a multiple 
case sum. The two columns  depict,  respectively,  the  location  numbers  and  data 
values  for  the newly inputted  data  distinguishing  the  present  case  from  the 
previous  one. This feature  is  intended  solely  as an ease of usage  output  to 
aasist in data  management. 



I N I T I A L  NO. OF D A T A  P T S .  
I N I T I A L  PERCEN1AT.E 

NO. F O U P I E R   C O E F .   C A L C I .  

C Q I T I C A L  DA*PILG R A T 1 9  
Q E V S  T O  H A L F   A V P L I l U n E  Y X . X X X I X  

. X X X X X  

I 1 I ' I I I L L  E N 0  r C I G H T E O  CHARACTERISIICS 
C H A R b C T E R I S T I C  E X P O L E Y 1  
Q E V S  1 C  I H A X / M I N )  A M P L .  

STANDARD D E V I A T I O N  

. X X X X Y  
Y . X X X X Y  

. X Y X X X  

r x . Y x x x x  
. X X X X X  

I E R * I N A L  END Y E I G H T E D  C H ~ R A C T E U I S T I C S  
C H A P I C l E R I S T I C  EXPONE'JT 
Q E V S  I O  I M A X I M I N )  AHPL. 

STANLARI) D E V I A T I O N  

. X X Y X X  
* . X X X X X  

. X X X X X  

x x . x x x x x  
. x x x x x  

x x x  

x . x x x x x  
X . X X X X X  

Y V  

. x x x x x  
X . X X X X X  

. X X X X X  

. X X X X X  
X Y . X X X X Y  

. X X X Y X .  
X . X X X I X  

. X X X X X  

. X X X X X  
x x . x x x r x  

. X x K x l I  
X . X X X X X  

. X X X X X  

. X X X Y X  
x x . x x x x *  

x x x  

x . x x x x x  
X . X X X X X  

x 1  

. X X X X X  
X . X X X X Y  

, Y X X X X  

.* .XXXX 
X X . X X X X X  

. x x x x x  
X . X X X X X  

. x x x x x  

. X X X X X  
X X . X X X X X  

SEllllgle Page 17 



V 

H 

5 

c 
\o 

G? 
I 

X X X X  
x x x x  
X V X X  
x x x x  
X X X Y  
x 7 x x  
x x x x  
x x x x  
X X X X  
x x x x  
X V X X  
X X X X  
x x x x  
x x x x  
x x x x  
X X X X  

( N O )  T I P E  

a .  
X . X X X X X E - Y Y  
X . X X X X X E - Y Y  
X . X X X X X f - Y Y  

X . X X X X X F - Y Y  
X . X X X X X E - Y Y  

X . X X X X X E - Y Y  
X . X X X X X E - V Y  
X . X X X X X E - Y Y  
X . X X X X X E - Y Y  

X a X X X Y X F - V Y  
X . X X X X X E - Y Y  

X . X X X X X E - Y Y  
X . X X X X X E - Y Y  
X . X X X X X F - Y Y  
X . X X X X X E - V Y  

N A T U R A L   L O G  OF F O U P I E R   C O E F F I C I E N T  ( 1 5 1  H A P H O N I C  OF O P T I P I Z E D   F R E O U E N C V I  

X . X X X X X E - Y Y  
X . X X X Y X E - Y Y  
X - X X X X X E - Y Y  
Y . X X X X X E - Y V  
X . X X X X X E - V Y  
X . X X X X X E - Y Y  

X . X X X X X E - Y Y  
X . X X X X X E - Y Y  

X . X X X X X E - Y Y  
X . X X X X X E - Y Y  
X - X X X Y X E - Y Y  
X . X X X X X E - Y Y  
X . X X X X X E - Y Y  
X . X X X X X E - Y V  
X . X X X X X E - Y Y  
X . X X X X X E - Y Y  

X . X X X X X E - V I  
X . X X X X X E - Y Y  
X . X X X X X E - Y Y  
X . X X X X X E - Y Y  
X . X X X X X E - V Y  
x . X X X X X E - Y Y  

X . X x X X X E - v v  
X . X X X X X E - Y Y  

X . X X x X X E - Y Y  
X . X X X X X E - Y Y  
x . X X X x x E - v Y  
Y . X X X X X E - Y V  
X . X X X X X E - Y Y  
X . X X X X X E - Y Y  
X . X X X X X E - Y V  
x . x x x x Y E - Y Y  

sample Page 18 

X . X X X X X E - V Y  
X . X X X X X E - Y Y  
X . X X X X X E - Y Y  
X . X X X X X E - Y Y  
X . X X X X X E - Y Y  
Y . X X X X X E - Y Y  

X . X X X X X E - Y V  
X . X X X X X E - Y V  

X . X X X X X E - Y Y  
X . X Y X X X E - Y V  
X . X X X X X E - Y Y  
X . X X X X X E - Y V  
X . X X X X X E - Y Y  
X . X X X X X E - Y Y  
X . X X X X X E - Y Y  
X . X X X X X E - Y Y  

. X X X X X X F + V Y  

. X X X X X X E + Y Y  

. X X X X X X E + V Y  

. X X X X X X E + Y Y  

. X X X X X X E + Y Y  

. X X Y X X X E + Y Y  

. X X X X X X E + Y V  

. X X X X I X € + V Y  

. X X X X X X E + Y V  

. X X X X X X E + Y Y  

. X I X X X X E * V V  

. X X X X X X E + Y Y  

. X X X X I X T + Y Y  

. X I X X X X E + Y V  
. X X X X X X E + * V  

. X X X I X X E * V V  


