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I. INTRODUCTION

I.I General

This report for NASA Contract NAS8-31782 describes the development

of a pattern-recognition system for determining the thickness of coal

remaining on the roof and floor of a coal seam. The system was developed

to recognize reflected pulse echo signals that are generated by an acoustical

transducer and reflected from the coal seam interface. The flexibility of

the system, however, should enable it to identify pulse-echo signals

generated by radar or other techniques -- the main difference being the

specific features extracted from the recorded data as a basis for pattern

recognition.

1.2 Background and Goals

It is difficult to interpret the pulse echo data conventionally due

to signal attenuation and noise reflected by cracks and impurities. This

is so because the desired information may not be present in only a small

set of extracted features. Rather, it may reside in a relationship between

many values and features which are useless when taken alone. Pattern

recognition is capable of discovering and using such relationships when

they are very complex and invisible to other techniques of examination.

Our goal has been to specify feasible pattern-recognition algorithms which

will permit application of acoustical pulse-echo techniques in the remote

control of continuous mining machines.

Specific program objectives included the following:

(i) To determine the applicability and explore the feasibility of

signal processing and adaptive pattern-recognition techniques

for detection of coal thickness by acoustic pulse-echo signals.

l-l
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(2)

(3)

(4)

To realize feasible detection algorithms and evaluate their

relative performance by computer in order to enhance the

reliability of detection.

To establish design specifications for implementation and

interfacing to the acoustical sensing system.

To provide guidelines for prototype construction and practical

field utilization.

1.3 Summary of Accomplishments

A software system was developed which does the following:

(I) Reads and processes data samples.

(2) Extracts features from each sample.

(3) Uses training data to train a pattern recognizer.

(4) Classifies test data.

Many features can be extracted including Fourier values, power

spectrum values, cross-correlation, cross-spectral density, time-domain

maxima and minima, derivatives, etc. Pattern recognition algorithms

include the following:

(1) Threshold Logic Machine (TLU) (See 2.4.1). I (Nilsson, 1965)

(2) Multiple-category classifier using discriminant functions

(see 2.4.2). I (Nilsson, 1965)

IThe TLU is really only a special case of a general discriminant function

system. They are considered separately here because the context of their

usage in the system is different.

I-2
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(3) K-Nearest Neighbor classifier (see 2.4.3). (T.M. Cover and

T.E. Hart, 1967; Young and Calvert, 1974; Duda and Hart, 1973.)

Success was achieved when we applied the system to ten acoustic

data samples and nine radar data samples in two independent experiments.

The K-Nearest Neighbor recogniiton algorithm was applied in both the acoustic

experiment and the radar experiment. The acoustic samples were classified

with 90% accuracy and the radar samples were classified with 89% accuracy.

I-3



2. SYSTEM SOFTWARE

2.1 Overview

A software system was developed which is capable of performing all

of the tasks necessary to recognize recorded data samples on paper tape.

In addition, options and parallel operations are available at three levels

in the processing sequence. These levels are: (a) Pre-Processing of

Signal, (b) reature Extraction, and (c) Pattern Recognition. A functional

diagram of tne system is provided in Figure I.

During the pre-processing phase, data samples are first read from

paper tape and scaled according to coded scale parameters provided on the

tape and, when necessary, according to coal-penetration energy. If there

was any drift in the time scale during the earlier recording process, the

scaled samples are then time calibrated. I A search window immediately

following the front-surface pulse echo is then located either by cross-

correlation with the transducer pulse or by a direct search (see Figure 2).

This front surface echo is invariably strong and presents no difficulties

in recognition. At this point a moving average can be used to smooth the

search window values.

Feature extraction can be performed in two ways: (I) Features can

be extracted from a smaller frame in the search window, just large enough

to contain the coal-seam pulse echo, or (2) features can be derived from

the complete search window. In the first case, the smaller frame is

moved across the search window to generate a set of features for each

possible position of the coal-seam echo. In the second case, only one

set of features is derived.

IWe found it necessary to calibrate the preliminary radar data samples.

2-I
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Features derived may include raw time-scale values, special time-

scale parameters including derivatives, maxima, minima, Fourier analysis,

and power spectrum. With a given data set, only those features which prove

most important during the pattern recognition phase are used.

There are three pattern-recognition algerithms available to the

system:

(I) Threshold Logic Machine (TLU)

(2) Discriminant-Function System

(3) K-Nearest Neighbor System

The TLU is only used with the moving-frame system of feature extraction.

This two-category classifier is first trained on the training data samples

to identify the coal-seam echoes in these samples. After training, when

the feature set for the specific frame containing a complete coal-seam echo

is presented to the TLU, a "YES" response is returned. The TLU responds

with a "NO" to the feature set for any frame in which the complete coal-seam

echo is not present. Test data is subsequently presented to the TLU to

locate coal-seam echoes and corresponding coal thicknesses.

The discriminant function system, used only with the full-search-

window, feature-extraction technique, utilizes a set of discriminant

functions representing a set of possible coal thicknesses. The number of

discriminant functions is, therefore, a function of the range of coal

thicknesses considered and the desired precision of the classification

process. For instance, if iC is desired that thicknesses between one

inch and two inches be resolved to an accuracy of one-tenth of an inch,

then eleven discriminant functions representing I", I.I", 1.2", etc., up

to 2" are required. These discriminant functions are given the training

2-4
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data from known coal thicknesses and adjusted until they can accurately

classify each member of the training set. Test data is then given to the

discriminant functions to classify according to the corresponding coal

thicknesses.

The K-Nearest Neighbor system is also used only with the full-search-

window, feature-extraction technique. Again, there is a category assigned

to each desired coal thickness within the desired range. However, rather

than using discriminant functions to represent categories, each element

in the training set of a particular thickness is used to represent that

thickness. Thus, if there are five training samples for I-3/8" coal, those

five samples collectively represent the I-3/8" category. A test sample is

classified according to its proximity to the representatives of the various

categories. The K-nearest representatives vote on the new sample's

membership in a category. For instance, with a balanced training set, if

K i 5 and the test sample is closest to representatives of the categories

I-I/2", I-5/8", I-5/8", I-3/8", I-5/8"; then the test sample would be

associated with the I-5/8" category.

2.2 Pre-Processing Signal

During the pre-processing phase, data samples are read into the

computer, scaled, and, when necessary, calibrated; search windows are identi-

fied and, if desired, smoothed. Each of these activities is described in

detail below. Phase 1 of Figure 1 diagrams this process.

2.2.1 Reading Tapes. The data samples sent us were on punched paper tape.

The scale parameters and data were read into the computer using a specifi-

cally designed paper tape control program. In order to be sure that all

data in a given set of samples was comparable in magnitude, the signals

were unscaled according to the associated scale parameters.

2-5



2.2.2 Scaling and Calibration. The K-Nearest Neighbor technique is

sensitive to any variation of energy content in the coal-seam echo;

consequently, when using this technique, steps were taken to normalize

the samples for energy content. This was done by scaling so that the

maximum peaks in the front-surface echo of all data samples in a set

were the same height. This procedure insures that the amount of signal

energy actually penetrating the coal sample is reasonably constant.

(Certainly some variation still occurs due to differences of reflectivity

of the coal surface. Under the circumstances, howew_r, it was the best

procedure available. In a prototype system the amount of energy pene-

trating the coa _ should be kept constant.)

We developed the calibration procedure to handle drifts in the

time scale in the preliminary radar data. A calibration value, the

distance between the original pulse peaks in the radar signal, was used

to stretch or shrink the time scale as needed.

2.2.3 Locating and Smoothin 9 Search Windows. After the data samples have

been processed for uniformity, it remains to identify an area of each data

sample called a "search window" (see Figure 2). These search windows

trail the front-surface echo by a fixed amount and are, therefore, aligned

with one another.

This procedure involves locating the front-surface echo with high

accuracy. This can be done using the cross-correlation of the data sample

with the transducer pulse. The highest peak in the cross-correlation

corresponds to the precise location of the front-surface echo. In the

last group of acoustical samples we received, no t_'ansducer pulse record

was available for cross-correlation. Consequently, we located the front-

surface echo by a simple search for peak magnitude in the data sample.

(A similar technique _as used with the preliminary radar data. See 3.2.)
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_Jhen a search window has been located, it may be smoothed using a

m)ving average technique. This procedure if used, must be applied

uniformly to ali search windows over the set of samples involved.

2.3 Feature Extraction

The feature extraction phase is diagramed in Phase II of Figure I.

2.3.1 Time and Frequency Parameters. The search windows provide a data

base for feature extraction. Programs exist to derive the following

parameters.

Time Domain.

(I) Selected raw amplitudes

(2) Maxima and minima

(3) Derivatives

(4) Maximum and minimum derivatives

FrequencY Domain. (Cooley, J.W. and Tukey, J.W., 1965; Rosenfield,

1969; G.D. Berglund, 1969.)

(5)
(6)
(7)
(8)
(9)

(10)

Fourier analysis

Power spectrum

Spectrogram snapshots

Maxima and minima of power spectrum

Derivatives of power spectrum

Maxima and minima of derivatives of power spectrum

Other features such as cross-spectral density and cepstrum can

easily be fitted into the current system if needed.

2-7
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2.3.2 Moving Frame. The moving-frame, feature-extraction technique is

diagramed in Figure 3. The moving frame is just as long as the expected

coal-seam echo. By moving the frame across the search area in the manner

of a template, the desired echo is sought. For each position of the frame,

features such as those given in 2.3.1 are derived.

If the moving-frame technique is used, the TLU pattern-recognition

system must be employed. The TLU, a two-category classification system,

is taught to respond correctly with a Yes or No answer to the question of

whether or not the current position of the frame contains the desired back

echo.

2.3.3 Representative Vector. The simplest form of feature extraction is

to use the entire search window itself as a feature vector. This technique

proved adequate when recognizing the preliminary coal samples. However,

the current system can derive any or all of the features mentioned in 2.3.1

and use them to represent the original data sample from which the search

window was derived. This algorithm yields a single vector representing

the data sample rather than a feature vector for each position of the moving

frame discussed in 2.3.2.

Such a vector is then given to either the Discriminant-Function

pattern-recognition system or the K-Nearest Neighbor system -- the objective

being to train the system used to correctly classify a test vector according

to the width of the coal from which its corresponding data sample was

taken.

2.3.4 Extraction Algorithms. By checking the accuracy with which a given

pattern recognition system works for different combinations of features,

a set of features can be extracted which relatively optimizes the performance

of the classifier involved. Sometimes the number of these "optimal" features

2-8
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AAÂ_.,,,.... . ,,..J._,_.-'--.-.-.....,:-_-÷

o s_2 Io_4 ' ' " ' '1535 2048 2580 3072 3584

10-- 05 SEE

L

4088
i

4508
t

E120

FIGURE 3. SEARCHWINDOWWITH MOVING FRAME

2-9



-<

may be substantially less than the number of features first used. This

makes subsequent pattern recognition simpler and, consequently, quicker

for the given reference set of values.

2.4 Pattern Recognition (Training and Classification)

The Pattern Recognition section per se in the current system is

diagramed in Phase III of Figure I. Figure 4 shows a Pattern Recognition

System of the TLU or R-discriminant function type. The TLU is discussed

in 2.4.1 and the more general R-discriminant function system is discussed

in 2.4.2. I

2.4.1 Threshold Logic Machine (TLU). Figure 5a diagrams a general TLU and

Figure 5b diagrams a specific TLU (i.e., a TLU with a specific discriminant

function). Basically a TLU is a single real-valued function g of a vector

X. If g(X) is greater than O, X is placed in category I, if g(X) is less tha_

or equal to O, X is placed in category 2. The current system uses a linear

or a quadric discriminant function. These functions have the following

forms:

Linear

(I) f(X) = alX 1 + a2X 2 + ... + anX n + an+ 1

IAn R-discriminant function system is actually equivalent to a system of

TLU's. The two are discussed separately because the single TLU is

applied in a different context here than the general discriminant function

system.

2-10
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Quadric

alXl 2 a2X2 2 2 +(2) f(X) = + + ... + anX n

an+iXIX 2 + an+2XlX3.,o + a2n_ 1 XIX n +

a2nX2X3 + a2n+l X2X4 + ... + a3n_3 X2Xn +

+ an • (n+l)/2 Xn-lXn +

an(n+l)/2 + 1 " Xl + an(n+l)/2 + 2 " X2 + "'"

+ an(n+3)/2 Xn +

a
n(n+3)/2 + 1

The coefficients of the discriminant function used are adjusted

until the function accurately classifies the training vectors (see Figure 4).

When the training is finished, the discriminant function is used to classify

the test vectors.

The vectors fed to the TLU in the current system are feature

vectors -- each representing a different position of the moving frame which

slides over the search area for a data sample (see Figure 3). The TLU

then classifies each feature vector as to whether or not the corresponding

frame contains the complete coal-seam echo.
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2.4.2 R-Discriminant Function Classifier. A pattern classifier with

several discriminant functions is diagramed in Figure 6. The discriminant

functions are of the same kind as those described in 2.4.1 and are trained

in the same manner. The object of the training program is to produce

coefficients in the various discriminant functions such that when

presented with a feature vector X representing category i, the i'th

discriminant function of X will be larger than the other discriminant

functions of X. When fully trained, the discriminant function system is

used to classify the test vectors.

The R-discriminant function classifier is used exclusively to

classify feature vectors representing entire data samples. One decision

is made to determine to what coal-width category the represented sample

belongs.

2.4.3 K-Nearest Neiqhbor Classifier. A K-Nearest Neighbor Classifier is

shown in Figures 7a and 7b. Although no discriminant functions are used,

the K-Nearest Neighbor algorithm is applied in the same way as the R-

Discriminant function technique. A single representative feature vector

is used for each data sample and there is no moving frame as discussed in

2.4.1. Just as in the manner given in 2.4.2, each discrete coal width is

represented by a separate category in the classifier.

The actual classification process, however, involves computing

the distance between a new vector and all vectors in the training set.

The closest K vectors in the training set then vote on the membership of

the new vector. Since each vector in the training set belongs to a

certain category, the new vector is assigned to that category

with the largest number of close vectors. This constitutes a simple-

majority voting technique and was adequate for our purposes. I

IA rejection rule can also be used to discard new vectors if their membership

is not adequately cle_r-cut. This might occur, for instance, when no 2/3

majority vote was present (I.T. Tomek, 1976). Additional]y, votes can be

normalized by the distance of the corresponding training vector from the

test vector (S.A. Dudani, 1976).
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INput:

M = Number of possible classes

N = Number of preclassified patterns

T = {X1 X2 XN} training patterns
• • °,°

L = {gl 62, ..., aN} labels• of training patterns

X = An unknown pattern

d : Distance function

Procedure:

I. Compute d(xJ,x) for j = I, 2..... N

2. Identify the k nearest neighbors Tk = {Xjl..... Xjk}

and their corresponding labels Lk = {_jl, . , _jk}

3. Count Ni the occurrence of class i in Lk

4. Assign X to class c* where Nc, = max {Nl.... , Nm}

FIGURE 7a. K-NEAREST NEIGHBOR ALGORITHM
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I means that category I is represented and II means that category II is

represented. Since the vote is 2 II's and l I, the new vector corresponding

to point VN is placed in category II.

IThe simple two-dimensional distance metric is used here

(i.e., D(X,Y) = ((Xl-X2)2 + (YI-Y2)2) I/2 .

FIGURE 7b. K-NEAREST NEIGHBOR DIAGRAM
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Such a pattern classifier is "trained" simply by providing it with

a set of training vectors. Unlike the discriminant function system, no

adjustment of parameters is required, and the vectors themselves are used

to represent the categories.
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3. EXPERIMENTS PERFORMED

3.1 Original Acoustics Data

Three experiments were performed with the original acoustics data

(i.e., the acoustics data received prior to early July). These three

experiments involved the pattern recognition techniques described in 2.4.

It is appropriate here to indicate the data-base requirements of a

successful pattern classification system. The R-discriminant function

system and the K-nearest neighbor technique require a representative set

of data samples for each thickness oategoru to train the system adequately.

In addition, the data acquisition and recording techniques must be uniform

(e.g., the amount of energy penetrating the coal being tested must be

about constant, artifacts from test apparatus used in recording must be

absent or at least consistent from sample to sample). The data base with

which we were dealing was very inadequate from these two standpoints.

Originally, we had hoped to obtain about six hundred uniform data

samples over four thickness categories (i.e., 7/8", I-I/8", 1-5/8", and

2-5/8"). In fact, we were sent sixteen data samples covering six categories.

Fourteen of these samples had been smoothed with a 27KHZ filter, two had

not. Ten of them represented an average of twenty signals, six were not

averaged, and six of the samples were recorded at I00 MHZ, ten were

recorded at 200 MHZ. The large variation in data acquisition and recording

techniques represented by these samples made them virtually useless for

training and testing purposes. However, we did the best we could with

these data until the final acoustic samples were sent to us in early July.

The experiments described below were performed merely to illustrate

the approaches _nd the methods from the very beginning to the very end

3-I
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including performance evaluations. They cannot be used as a scientific

proof. However, the last two experiments indicate strong anticipation

for a very high level of performance with an acceptably large data base.

Moreover, a considerable part of the current software system which has

been developed for this pilot study is still useful for a real system.

3.1.1 Using Six Discriminant Functions. Our first experiment used six

discriminant functions applied to smoothed search windows representing

fourteen of the sixteen acoustical samples available to us at that time.

(Note: the two unfiltered samples were eliminated from consideration

because visual examination of the graphs show _a a great difference in the

noise level present in these two cases.) The only features used were the

smoothed search windows themselves (see Figure l). The results of this

experiment were inconclusive.

A system of six discriminant functions representing six thickness

categories of from 7/8" to 2-5/8" were trained using ten samples from

the set of twelve we had received last. Convergence was achieved (i.e.,

the functions successfully learned to recognize the ten training samples). I

When the four remaining samples were presented to the pretrained system,

two were correctly classified and two were incorrectly classified. A

level of fifty percent success or better can be expected on a chance basis,

however, 13.2% of the time. This experiment is summarized in Figure 8.

3.1.2 Using TLU. The second experiment represented an attempt to deal

with the lack of uniformity in the data. A moving frame within the search

window was used. The technique described in 2.4.1 has the advantage of

providing rigorous training at identifying coal-seam echoes since each

possible position of the frame over all data samples in the training set

is used. All twelve of the latest acoustical samples we had received at

IThis was anticipated since the number of training samples is almost equal

to the number of discriminant functions.
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EXPERI_E_T

NO. DATA BASE FEATURES TECHNIQUE RESULTS

1 14 Acoustical Samples Smoothed Search Windows Six Linear Discriminant 50% Accuracy
Functions

2 12 Acoustical Samples TLU No ConvergenceSmoothed Search Window,
Maximum, Minimum;

Derivatives, Max., Min.;

PSD, Spectrogram

Snapshot, Derivative,
Max, Min.

3 12 Acouctical Samples Smoothed Search Windows K-Nearest Neighbors Failed
and PSD's

4 9 Coal-Ceiling Search Windows K-Nearest Neighbors 89% Accurate
Samples

5 lO Acoustical Samples PSD's for Search Nearest Neighbor 90% Accurate
Windows

FIGURE 8. EXPERIMENTAL RESULTS
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that time were used in the training set (i.e., the two unfiltered samples

were included in addition to the training set used in the first experiment).

A "maximal" set of features was selected so that if any combination

of characteristics could discriminate between coal-seam echoes and non-

coal-seam echoes, they would be available to the discriminant functions.

Features extracted included smoothed frame values, maxima, minima, deriva-

tives and their maxima and minima, power spectra, spectrogram snapshots,

power-spectrum derivative, and various maxima and minima in the frequency

domain.

No convergence was achieved with the training set -- indicating a

condition of linear inseparability. Stated simply, this means that it is

likely that none of the features derived provided consistent information

about the location of the desired coal-seam echoes in the training set. A

result summary is provided in Figure 8.

3.1.3 "Leave One Out" Method. Validation of a pattern classification

system should be made by preclassified samples which were not used in the

training set. With a large data base, we divide the available samples

into two groups S1 and S2. S1 is used for training and S2 for testing.

With a limited data base, the "leave one out" method is recommended

(Lachenbruch, 1968).

This method involves separating one sample out as a test and using all

other samples for training. After this test sample has been classified, it

is placed back with the other samples and a new test sample removed leaving

all others for training. This procedure is repeated until all samples have

served as a test exactly once. The accuracy of the system over that limited

data base can then be computed.
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3.1.4 Usin 9 K-Nearest Neighbors. A last attempt was made with the

preliminary acoustical data using the K-Nearest Neighbor technique (see

2.4.3). The advantage of this technique is for cases when discriminant

functions with a high performance level cannot be identified. For a large

set of training samples, it can also be theoretically proved to perform

almost as well as the optimal Bayes classifier. Its disadvantage lies in

its speed when many samples must be classified in a short period of time.

Fortunately this is not our situation. In a real-time system, there would

be adequate time to classify a sample while the transducer or radar

transmitter were being moved to position it for a new sample.

The meaning of training is slightly different in a K-Nearest

Neighbor system. Here we use the representative vectors themselves to

define categories and no adjustment of parameters is required before

testing can occur.

The features used were smoothed search windows and their power

spectrums. A variety of distance metrics were used, including the standard

Euclidean n-space metric, but under no circumstances was any success

achieved. A summary of the experiment is provided in Figure 8.

3.2 Preliminary Radar Data

Having had little or no success with the acoustics data then

available to us, we performed a fourth experiment with the preliminary

radar data we had (see Figure I0). The experiment was identical to

experiment number three except that the values had to be time-calibrated

due to a time-drift during the recording process. Also, a direct search

procedure was used to locate the front-surface echoes and, thereby, the

search windows.
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Success was achieved at last; nine of the coal-ceiling samples

were used and using the remove-one-at-a-time technique explained in 3.1.3,

eight were correctly classified.

The power spectrum proved useless for classifying these data and

the unsmoothed search windows provided the results indicated above. Also,

the standard Euclidean metric proved to be an adequate proximity measure.

A summary is provided in Figure 8.

3.3 Final Acoustics Data

In early July, we received the final batch of acoustics data (see

Figure ll). These samples had been taken under relatively uniform testing

conditions. Four samples, however, were from a coal sample of variable

thickness and were, therefore, not known to be associated with specific

distance categories. In addition, two more samples appeared to have

anomalous graphs within the search interval. Mr. Edward J. Drost suggested

that this might conceivably be due to over-driving the tape recorder. Thus,

of the sixteen samples sent us, we selected ten for testing.

We again used the K-Nearest Neighbor technique, only we let K be

one for a simple nearest-neighbor technique. In this case, the test sample

is associated with the category of its nearest neighbor. Nine out of ten

of these samples were correctly classified when the power spectrum of the

raw search interval was used as a representative feature vector.

Again, a standard Euclidean metric was adequate although the raw

search window_ themselves did not produce any results. It was only when

we looked at the vector proximity in the freque_y domain that the above

results were discovered. This is, of course, in marked contrast to the

radar experiment (see 3.2) where the power spectrums were useless but the

raw search windows yielded successful results. A printed output with a

3-6



metric exponent of 4.001 is shown in Figure 9, and Figure 8 summarizes the

experiment.

ISee Appendix A.
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TRAINING SUPERSET:

l

2

3

5

6

7

8

9

II

12

METRIC EXPONENT IS 4.00.

REF PT.

l

2

3

5

6

7

8

9

II

12

NEAREST PSD

l I/8

I I/8

I I/8

1 1/8

1 118

1 1/8

1 118

1 112

1 118

1 1/z

FIGURE 9. COMPUTER RESULTS PRINTOUT
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FIGURE I0. SA_._PLEOF RADAR DATA (Experiment No. 4)
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4. EVALUATION OF RESULTS

4.1 Operational Capabilities

The need for uniformity in data acquisition and recording techniques

cannot be over-stressed. Only the coal width itself should vary so that the

desired information is represented with good consistency over the sample set.

Our first three experiments were greatly hampered due to just such a lack

of uniformity in collection and recording procedures.

In addition, an exhaustive and balanced training set should be

provided for best results. If there are ten width categories, then each

width category should be represented by a set of samples which covers the

range of possibilities for coal of that width (e.g., variations in the

consistency of the coal, or angle of the coal-seam interface, etc.). This

variation s}_uld not incorporate any change in test or recording conditions.

Our experimental results suggest that the K-nearest neighbor

technique, in combination with an adequate data base, can be used with a

high degree of success to rapidly classify new acoustical or radar samples.

Such a system would use a set of training samples for each width resolution

within the desired range. Suppose, for instance, we want to know the width

of coal to an accuracy of I/I0" and that the acoustical technique was limited

to two inches in penetration. Then we would want to have twenty categories

between .I" and 2.0" and an additional over-2.0" category. Each category

would involve a set of samples in the training data that were exhaustive.

In addition, about the same number of samples would be provided for each

category. If five samples per category were adequate, then the training set

would consist of one hundred five (105) sanples.
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Since the acoustic signals are not useful for coal widths above

about 2", radar is a more promising approach. A practical system could

not be expected to be limited to classifying coal less than about 2" in

thickness.

4.2 Implementation of Real-Time S#stem

4.2.1 Training. The example data base given at the end of 4.1 could be

used as a training set for a K-Nearest Neighbor pattern-classification

system. A microcomputer could be pre-programmed and fed these data samples.

It would then generate a representative vector for each data sample and

associate it with the corresponding thickness provided by the user. All

such data could be read in from magnetic tape, paper tape, etc. The system

would then be ready to operate on-line.

4.2.? Operating. Once the microcomputer was trained it could be attached

to the digging equipment. Each new analog signal from the transducer could

be discretized and input directly to the microcomputer as a data sample to

classify. The system would then extract the representative vector and

classify the sample using its proximity to the other vectors in the system.

The resultant width could be typed out immediately or saved for later

dumping.

4.3 Suggested Avenues of Research

Subsequent experiments should be performed with radar or other

promising non-acoustic data.

Although the K-Nearest Neighbor system seems to be the most

promising for further research, the moving-frame TLU system should be

checked out as well. The latter system requires a smaller training set

and offers the possibility of continuous width-measurement read-outs.
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In addition, it might just also be possible to achieve continuous

read-out thruugh the use of regression techniques. This avenue should

also be explo.'ed.

Additionally, it is suggested that further work utilize samples

taken in a coal mine rather than collected in a laboratory. The cracking

and drying-out of coal could greatly influence the outcome of further

experiments and, in any case, more realistic samples would provide more

useful results. The larger the data base the better; we would prefer

to work with hundreds of data samples rather than a maximum of sixteen.

Tests for the levels of significance of future experiments can be

developed using methods developed from non-parametric tests (Gibbons,

1971).
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5. CONCLUSIONS

A pattern recognition system can be constructed to detect coal

t ckness using acoustic or radar pulse-echo signals.

As a result of our success with both acoustic and preliminary radar

samples, the K-Nearest Neighbor technique appears to be the most promising.

The moving-frame TLU system might be further explored, however, since it has

yet to be applied to "goJd" data and would provide continuous depth read-out.
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APPENDIX A

The general metric used in the K-Nearest Neighbor classifier is

given below:

D(X,y) = (Z (xi-Yi)P) I/p.
Vi

When p = 2.00, this is just the standard Euclidean metric.
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