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S t a t i c  ground t e s t s  of a  l a r g e  s c a l e  l i f t / c r u i s e  t h r u s t  vec to r ing  nozzle 

were conducted a t  the NASA-Ames Research Center outside t e s t  f a c i l i t y  t o  

e s t a b l i s h  ( I )  vector ing performance "int '  and l1oue" of ground e f f e c t ,  (2) t h r u s t  

spoi lage c a p a b i l i t y ,  (3)  compat ib i l i ty  o f  t he  nozzle with a  t u r b a t i p  fan ,  and 

( 4 )  the nozzle  s t r u c t u r a l  temperatarc d i s t r i b u t i o n .  The purpose of the tests 

was the  experimental  determinat ion of vec to r ing  performance of a s h o r t  coupled, 

vented nozzle  design an  a l a r g e  s c a l e ,  60%, b a s i s  and t o  e s t a b l i s h  a comparison 

wi th  small s c a l e ,  4 . 5 % ,  t e s t  nozzle  results. The test nozzle  was a t 'boiler-  

plate" model of the MCAIR 'IDt1 vented nozzle  configured f o r  operat ion w i t h  the  

LF336/J85 t u r h o t i p  l i f t  f a n  system. C a l i b r a t i o n  of t h e  LF336/585 test fan  with 

a simple convergent: nozz le  was performed wi th  four  d i f f e r e n t  nozzle e x i t  a r e a s  

t o  e s t a b l i s h  reference thrus-., nozzle p r e s s u r e  r a t i o ,  and nozzle  corrected 

flow c h a r a c t e r i s t i c s  f o r  comparison with t h e  t h r u s t  vec to r ing  nozzle  d a t a .  

Thrust  vec to r ing  tests with t h e  "b" vented nozzle  were conducted over the  range 

of vector  angles  between 0" and 1 1 7 "  for several d i f f e r e n t  nozzle  e x i t  areas .  

Analysis of t h e  large s c a l e  t e s t  d a t a  and comparisons with smal l  s c a l e  

performance showed : 

o The e f f e c t s  qf model s c a l e  between 4.5% and 60% on l o n g i t u d i n a l  and 

VTO performance out  of ground e f f e c t  a r e  small .  Agreement wi th in  1% 

t o  2% was obt l ined  over t h e  range of  nozzle  variables t e s t e d .  

o Tn ground e f f e c t ,  t h e  vented nozz le  des ign was found t o  e x h i b i t  an 

i n c r e a s e  in e f f e c t i v e  exit a r e a  as t h e  r a t i o  of ground he igh t  t o  fan  

diameter was reduced t o  1.60. An i n c r e a s e  i n  t h r u s t  performance w a s  

recorded during ground he igh t  r educ t ion  a t  907; fan speed, the maximum 

speed t e s t e d ,  whereas a decrease  i n  t h r u s t  was measured a t  lower f a n  

speeds. 

o Thrust reduction modulation (TRM) , by p o r t i n g  exhaust flow through 

t h e  top  of the  nozz le9 i s  an e f f e c t i v e  t h r u s t  spo i lage  technique. The 

5RM rests  with the "D" vented design showed a c a p a b i l i t y  t o  reduce 

the  nozzle thrust c o e f f i c i e n t  t o  0.70 a t  the  90" v e c t o r  angle. 

o Compatibil i ty of the nozz le  design wi th  a t u r b o t i p  fan  during t h r u s t  

vec to r ing  and spo i lage  operations was demoastrated by successful 

completion of t h e  nozzle  t e s t  program without d e t e c t a b l e  adverse 

e f f e c t s  on fan opera t ion .  
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o Measurement of  nozz le  wall temperature d i s t r i b u t i o n s  i n d i c a t e d  that 

s i g n i f i c a n t  . d x i n g  of the fan f l o w  w i t h  t h e  high t empera tu re  ( 7 0 0 ~ ~ )  

turbine exhaust takes place w i t h i n  the nozz le  such t h a t  t h e  tempera ture  

cn t h e  hood el.ements remained below 400°K (260°F). 
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SYMBOLS 

%AN 
Cross sectional area at traversin probe location for integration of 
fan exit flow properties, 4776 cm !! 

ANoz Nozzle exit geometric area. cm2 

*o 
Nozzle entrance flow area, 6284 cm2 

A ~ R M  Thrust reduction modulation port open ares, 100% open area = 1581 cm2 

Cross sectional area at traversing probe location for integration of A'uRJ31N' turbine exit flow properties, 2465 cm2 

C~ Nozzle thrust coefficient, resultant gross thrust/ref erence thrust with 
Calibration Nozzle 

D~ LF336 fan diameter, 91.44 cm 

F~ Resultant gross thrust, newtons 

h Ground plane height, cm 

*F Fan speed, RPM 

NPR Nozzle entrance total pressure ratio, (PT)NOZ/PA 

P~ Ambient pressure, newtons/cmz 

s Nozzle fnternal wall pressure, newtons/ cm2 

P~ 
Toea1 pressure, neweons/cm2 

Total pressure recorded on traversing probes I through 4, newtons/cm 2 'TI-4 

C P ~ )  FAN Area weighted total pressure at fan exit, newtons/cmZ 

( P T ) ~ ~ ~  Mass weighted total pressure at nozzle entrance, newtons/cm2 

R Gas Constant, 2.8696 X 106 cm2/sec - KO 

% Hub centerbody radius at traversing pro17 ; location, 23.88 cm 

54 Turbine ddbox center radius at traversing probe location, 45.72 cm 

% Nozzle wcll radius at traversing probe location, 53.62 cm 

Ro 
Normal distance between thrust vector and hood pivot. point, cm 

r Radial position of traversing probe, cm 

T~ 
Ambient temperature, "K 
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SYMBOLS (Continued) 

T~ Total temperature, "K 

T ~ 1 - 4  Total temperature recorded on traversing probes 1 through 4, O K  

u Isentropic exit velocity, cm/sec 
ise 

W ~ A N  Fan mass flow rate, kg/sec 

'GG Gas generator mass flow rate, kg/sec 

'TOT Nozzle mass flow rate, kg/sec 

6 Relative absolute pressurp ratio, ambient pressurelstandard pressure 

8 t Relative total pressure t k t i o ,  Total pressure/standard pressure 

0 Relative absolute tamperature ratio, ambient temperature/standard 
temperature 

Bt: Relative tots! !Emperrture ratio, Total temperature/standard temperature 

0, Thrust vectox a r i ~ l t ,  degrees 

IC1 Yaw vector angle, degrees 

Y Ratio of specific heats, Cp/CV 

ABBREVIATIONS 
cm Centimeters 

N Newtons 

"K Degrees Kelvin 

kg Kilo grams 

OR Degrees Rankine 

T/C Thermocouple 

CONVERSIONS 

Newtone = 4,4482 pounds force 

KiZograms = .4536 pounds mass 

Centimeter = 2.54 inches 

"Kelvin = 1.8 'Rankine 
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1. INTRODUCTION 

Development of a high performance V/STOL a i r c r a f t  f o r  m i l i t a r y  and c i v i l  

a p p l i c a t i o n s  has been e s t a b l i s h e d  a s  a  major nea r  term R&D program by both  NASA 

and Navy. The Navy r e q u i r e s  a mult imission V/STOL a i r c r a f t  i n  t h e  1980's 

capable o f  sea  c o n t r o l  opera t ions  frcm many pla t forms a s  w e l l  as s h i p  t o  s h ~ r e  

and shore  t o  s h i p  func t ions .  C i v i l  a p p l i c a t i o n s  f o r  V/STOL a i r c r a f t  inc lude  

s h o r t  haul t r a n s p o r t s  and u t i l i t y  a i r c r a f t  f o r  remote s i t e  opera t ions .  

McDonnell A i r c r a f t  Company (MCAIR), as a r e s u l t  of  ex tens ive  s t u d i e s  of 

various V/STOL a i r c r a f t  des igns  over t h e  !ji-.st decade, has  i d e n t i f i e d  t h e  l i f t  

fan powered a i r c r a f t  a s  a conf igura t ion  which provides  s i g n i f i c a n t  improvements 

i n  range/payload,  speed,  and missron a d a p t a b i l i t y  over  e i t h e r  r o t a r y  wing o r  

o the r  proposed V / S  IOL designs.  The MCATR l i f t / c r u i s e  f an  a i r c r a f t  (Figure 1-1) 

i s  a fi::ka wing veh ic le  powered by t:rree in terconnected single s t a g e  f a n s ,  two 

l i f t l c r u i s e  fans and one forward fuse lage  lift f a n ,  which a r e  used f o r  powered 

l i f t  f l i g h t  modss. For c r u i s e  mode o p e r a t i o n s ,  t h e  forward fan  u n i t  i s  shu t  

dawn and t h e  two l i f t l c r u i s e  f ans  provide  t h r u s t  f o r  canvent ional  f l i g h t .  

In terconnect ion of  the  t h r e e  fan  u n i t s  and t h e  engines requ i red  t o  power them 

may be a c c ~ m p l i s h e d  mechanically via  gears  and s h a f t i n g  o r  pneumat icd ly  by 

means of h o t  gas duct ing and fan mounted t i p  tu rb ines .  

A key f e a t u r e  of t h i s  three f a n  arrangement is  t h e  u t i l i z a t i o n  of two f a n  

u n i t s  f o r  both  v e r t i c a l  and c r u i s e  f l i g h t  modes. ~ i f t / c r u i s e  vec to r ing  nozzles  

a r e  used t o  vec to r  fan t h r u s t  between the  h o r i z o n t a l  and v e r t i c a l  d i r e c t i a s .  

The vec to r ing  nozzles  a r e  a l s o  used t o  provide a p o r t i o n  of  t h e  a i r c r a f t  atti- 

tude c o n t r o l  f o r c e s  required dur ing low speed powered l i f t  opera t ion  where 

the re  is  i n s u f f i c i e n t  aerodynamic c o n t r o l .  The performance of  the  vec to r ing  

nozzle ,  p a r t i c u l a r l y  i n  the  90" vec to r  p o s i t i o n  (VTO) , impacts strortgl3 cn 

a i r c r a f t  performance. For example, a 1% improvement i n  VTO t h r u s t  vec to r ing  

e f f i c i e n c y  r e s u l t s  i n  a 1% i n c r e a s e  i n  a i r c r a f t  g ross  takeoff  weight c a p a b i l i t y  

and a  corresponding 52 t o  10% i n c r e a s e  i n  payload range c a p a b i l i t y .  A s  a 

consequence, t h e  developsent of a high performance t h r u s t  vec to r ing  nozzle  is  

of primary importance t o  t h e  s u c c e s s f u l  development of t h e  l i f t  f an  V/STOL 

a i r c r a f t .  

The "D" vented t h r u s t  vec to r ing  nozz le  i s  a des ign which MCAIR has se lec ted  

f o r  e x t e n s i v e  in-house developmental t e s t i n g .  This nozz le  conf igura t ion  is  

i l l u s t r a t e d  i n  Figure  1-2 i n  each of i t s  primary f u n c t i o n a l  modes, high speed 

c r u i s e ,  low speed c r u i s e ,  l o n g i t u d i n a l  vec to r ing ,  yaw vec to r ing ,  and t h r u s t  
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'FIGURE 1-1 
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reduct ion modulatfon (spoi lage) .  The des igna t ion ,  "D1' vented,  is used p r imar i ly  

t o  i d e n t i f y  t h e  shape of t h e  nozzle  e x i t  i n  i t s  c r u i s e  and VTO p o s i t i o n s  and 

t h e  open o r  t'ventedtl lower elbow corner which i s  formed i n  t h e  VTO pos i t ion .  

The vent ing f e a t u r e ,  on t h e  b a s i s  of small s c a l e  t e s t  r e s u l t s ,  provides 

entrainment of ambient a i r  i n t o  t h e  lower elbow corner  region of t h e  rAozzle 

flow and r e s u l t s  i n  improved 90' vec tor ing  performance over an unvented design,  

This f e a t u r e  was a l s o  found i n  t h e  small  s c a l e  t e s t s  t o  provide a constant  

e f f e c t i v e  nozz le  e x i t  a rea  when operated i n  ground e f f e c t .  

A s e r i e s  of small  s c a l e  model (3" en t rance  diameter)  t e s t s  have been 

conducted a t  MCAIR t o  e s t a b l i s h  t h e  performance envelope of the  "DM vented 

nozzle over a  range of nozz le  en t rance  cond i t ions ,  t h r u s t  vec to r ing  ang les ,  

and nozzle e x i t  geometries. A s  nored,  VTO performance is of major importance 

and the  smal l  s c a l e  tests have been focused p r lmar i ly  on def in ing  the  VTO 

performance map f o r  the  'ID" vented nozz, . Figure  1-3 d e p i c t s  the  VTO per- 

formznce map which has r e s u l t e d  from the  smal l  s c a l e  t e s t s  i n  terms of t h r u s t  

c o e f f i c i e n t ,  CT, s p e c i f i c  nozzle  entrance cor rec ted  flow r a t e ,  ( w ~ ~ ~ / G ~ A ~ ) ,  

and nozzle en t rance  p ressure  r a t i o  (NPR). To u t i l i z e  t h e  map of Figure 1-3, 

nozzle en t rance  flow, t o t a l  p r e s s u r e ,  t o t a l  temperature and entrance flow a r e a  

d a t a  a r e  requ i red  and a r e  u s u a l l y  a v a i l a b l e  from fan  and engine performance 

decks f o r  a p a r t i c u l a r  fan system. The above d a t a  are used t o  c a l c u l a t e  nozzle  

pressure  r a t i o  and s p e c i f i c  nozzle  entrance corrected flow parameter wi th  which 

t h e  map Ls en te red  t o  ob ta in  a  va lue  of VTO t h r u s t  c o e f f i c i e n t .  This procedure 

has been c a r r i e d  out  f o r  t h e  gas driven fan  system presen t ly  being considered 

f o r  t h e  MCAIR Model 260 multimission l i f t  f a n  a i r c r a f t ,  the General E l e c t r i c  

LCF459/J97 l i f t  c r u i s e  fan ,  Reference (1).  The LCF459/J97 VTO opera t ing  p o i n t  

has  been s p o t t e d  on Figure 1-3 and i n d i c a t e s  t h a t  a VTO t h r u s t  c o e f f i c i e n t  of 

0.94 i s  achievable  wi th  t h e  "D1' vented nozzle  us ing t h e  smal l  s c a l e  d a t a  base. 

The v a r i a t i o n  of nozzle t h r u s t  c o e f f i c i e n t  wi th  vec to r ing  angle  as measured 

v i a  t h e  smal l  s c a l e  models i s  shown i n  Figure  1-4 and i n d i c a t e s  t h a t  the  

c r u i s e  mode t h r u s t  coef f i c i e n t  of t h e  "D1' vented nozzle  i s  0.985. The VTD 

and c ru i se  mode t h r u s t  c o e f f i c i e n t s  defined from the  s c a l e  model t e s t s  provide 

t h e  MCAIR Model 260 multimissfon l i f t  fan a i r c r a f t  with exce l l en t  v e r t i c a l  

takeoff gross  weight c a p a b i l i t y  and e f f i c i e n t  c r u i s e  ope+rating c h a r a c t e r i s t i c s .  

Recognizing the  need t o  e s t a b l i s h  t h e  v a l i d i t y  of t h e  smal l  s c a l e  nozzle  

d a t a  base wi th  l a r g e  s c a l e  test da ta ,  t h e  NASA Research Center,  wi th  Navy 

support ,  con t rac ted  with MCAIR t o  design and test a "bo i le rp la te"  ve rs ion  of 
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FIGURE 1-3 
VTO PERFORMANCE MAP FOR "D" VENTED NOZZLE 
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t h e  "u" vented vector ing nozzle  under s t a t i c  ground condi t ions .  The objec t ives  

of the  t e s t  program were t h e  experimental  determination o f  (1) the "D" vented 

nozzle  v e c t o r i n g  performance "in" and "out" of ground e f f e c t ,  ( 2 )  the  t h r u s t  

spo i lage  c a p a b i l i t y ,  (3)  the compat ib i l i ty  o f  t h e  "DM vented nozzle  wi th  a  

rurbor ip  f a n ,  and (4) t h e  vec to r ing  nozzle s t r u c t u r a l  temperature d i s t r i b u t i o n .  

An a d d i t i o n a l  ob jec t ive 'was  a comparison of  s c a l e  e f f e c t s  on nozzle performance, 

The propuls ion system used f o r  t h e  l a r g e  s c a l e  nozzle  t e s t  program was a  

General E l e c t r i c  LF336/J85 t u r b o t i p  lift fan.  The LF336 is a 91.44 cm (36 i n . )  

diameter fan with an aerodynamic design p ressure  r a t i o  of 1 . 3 ,  and a desi,:n 

fan flow of 98.88 kg/sec (218 l b / s e c )  . The LF336 is  dr iven  by t h e  exhaust  flow 

of one 585 gas generator  which provides a system o v e r a l l  bypass r a t i o  of 5.0. 

The des ign  pressure  r a t i o  of t h e  LF336 fan  is  r e p r e s e n t a t i v e  of t h e  LCF459 

f a n  being considered f o r  t h e  f u l l  s c a l e  l i f t  f an  a i r c r a f t ;  however, ,:he o v e r a l l  ' 

bypass r a t i o  of the LF336/J85 system is approximately 60% lower than the  

LCF459/J97 system. The d i f f e r e n c e  I n  o v e r a l l  bypass r a t i o  is a r e s u l t  of t h e  

reduced gas power p e r  u n i t  exhaust  flow produced by the  J85 compared t o  t h e  597  

gas generator .  The d i f f e r e n c e  i n  gas generators  r e s u l t s  In a s p e c i f i c  nozzle  

corrected flow f o r  the  LF336/J85 which is  approximately 20% h igher  than the  

LCF459/J97 system a t  t h e  same nozzle  p ressure  r a t i o .  This d i f f e r e n c e  i n  spe- 

c i f i c  nozzle  corrected f l o v  w i l l  r e s u l t  i n  lower VTO nozz l :  performance than 

expected f o r  t h e  f u l l  s c a l e  a i r c r a f t  propulsion system. Consequently, l a r g e  

s c a l e  nozzle  tests with t h e  LF336/J85 a r e  n o t  completely r e p r e s e n t a t i v e  of t h e  

f u l l  s c a l e  system; however, tes Ling with t h i s  sys  tem provides a v a l i d  comparison 

o f . n o z z l e  s c a l e  e f f e c t s  over t h e  range of nozzle  p ressure  r a t i o s  and s p e c i f i c  

nozzle cor rec ted  flow developed by t h e  LF336/J85 syetem. I n  order  t o  produce 

a  l a r g e  v a r i a t i o n  i n  s p e c i f i c  nozzle  cor rec ted  flow, a t o t a l  of f i v e  d i f f e r e n t  

VTO nozzle e x i t  a reas  were evaluated dur ing the t e s t  program. 

The l a r g e  s c a l e  "bo i le rp la te"  nozzle was designed t o  approximate t h e  

i n t e r n a l  f low geometry of t h e  "D" vented design developed dur ing the  small 

s c a l e  r e s t s ,  c o n s i s t e n t  wi th  low c o s t  f a b r i c a t i o n  techniques.  A welded segment 

design us ing  a combtnacfon o f  f l a t  p l a t e  and s i n ~ ! e  curva tu re  segments was 

s e l e c t e d ,  A s  a  r e s u l t  of t h f s  design approach, s e v e r a l  dev ia t ions  from t h e  

smal l  s c a l e  i n t e r n a l  contours were required i n  t h e  l a r g e  s c a l e  model, The 

primary d e v i a t i o n s  were i n  t h e  downstream contour o f  t h e  f i x e d  s t r u c t u r e  element 

and i n  t h e  th ickness  and i n t e r n a l  n e s t i n g  of the r o t a t i n g  hood elements. The 
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e f f e c t  of t h e s e  dev ia t ions  caused some reduc t ion  i n  performance f o r  t h e  l a r g e  

s c a l e  nozz le  when compared wi th  the  small scale tesL da ta .  

The o v e r a l l  program was conducted under Contract  NAS2-8663 with  M r .  L. 

Stewart R o l l s  of NASA Ames Research Center s e r v i n g  as program Technical  Monitor. 

MCAIR e s t a b l i s h e d  t h e  design conf igura t ion  o f  t h e  t es t  nozzles  and provided 

d e t a i l e d  drawings of t h e  test apparatus .  F a b r i c a t i o n  and assembly o f  t h e  test 

nozzle  and a s s o c i a t e d  test hardware were performed a t  WASA Ames. The exper i -  

mental t e s t  program was c a r r i e d  o u t  by NASA Ames personnel  with MCAIR support .  

The tes ts  were conducted a t  t h e  Ames remote s t a t i c  t e s t  s i t e  dur ing t h e  per iod 

between 26 June 1976 and 20 J u l y  1976.  Data reduc t ion  and a n a l y s i s  of the  

t e s t  r e s u l t s  were performed by MCAXR, and a r e  documented i n  this r e p o r t .  

A d e s c r i p t i o n  of t h e  test apparatus  i s  provided i n  Sect ion 2 and t h e  test 

program and procedure a r e  presented i n  Sec t ion  3.  The r e s u l t s  and d i scuss ion  

of r e s u l t s  a r e  presented i n  Sec t ion  4 ,  and t h e  conclus ions  der ived from t h e  

t e s t  program a r e  s e t  f o r t h  i n  Sect ion 5. 
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2 .  EXPERIMENTAL APPARATUS 

The exper imenta l  appa ra tus  u t i l i z e d  i n  t h i s  test program c o n s i s t e d  o f  t h e  

LF336/J85 t u r b o t i p  l i f t  f a n  system, a t h r u s t  c a l i b r a t i o n  n o z z l e ,  a " b o i l e r p l a t e "  

v e r s i o n  of  t h e  "D" v e n t e d  v e c t o r i n g  n o z z l e ,  a s s o c i a t e d  t e s t  i n s t r u m e n t a t i o n ,  a 

d a t a  a c q u i s i t i o n  sys tem,  and t h e  NASA Arnes s t a t i c  test f a c i l i t y .  A d e s c r i p t i o n  

of  each  is p resen ted  below. 

2 .1  LF336/J85 TURBOTIP LIFT FAN SYSTEM 

The LF336/585 l if t  fan system used i n  the n o z z l e  t e s t  program was des igned 

and b u i l t  by Geaeral E l e c t r i c  f o r  NASA under  Con t rac t  NAS2-4130. The LF336 f a n ,  

shown schemat i ca l ly  in F i g u r e  2-1, i s  a s i n g l e  s t a g e ,  t u r b o t i p ,  fan-in-wing 

des ign  w i t h  a  f an  d i a m e t e r  o f  91.44 cm (36 i n .  ) and an  aerodynamic des ign  

p r e s s u r e  r a t i o  of  1 . 3 .  The LF336 f a n  f low is  98.88 kg/sec (218 l b / s e c )  when 

o p e r a t i n g  a t  a 100% design speed of  6047 rpm. The LF336 t i p  t u r b i n e  i s  an 

axial f low,  impulse ~ u r b i n e  f e d  by a 360-degree double  e n t r y  s c r o l l .  The 

t u r b i n e  is  designed t o  a c c e p t  t h e  f u l l  exhaus t  f low of a J85-GE-5 Genera l  

E l e c t r i c  t u r b o j e t  eng ine  a t  military power s e t t i n g .  F i g u r e  2-2 summarizes 

t h e  LF336/J85 sys tem performance.  

The LF336 f a n  map c h a r a c t e r i s t i c s  a s  determined by Genera l  E l e c t r i c  are 

shown i n  Figure 2-3 and were used  t o  e s t a b l i s h  t h e  test n o z z l e  e x i t  a r e a s .  

F i g u r e  2-4 i s  a curve of c o r r e c t e d  t h r u s t  v e r s u s  c o r r e c t e d  fan speed f o r  t h e  

LF336 as o r i g i n a l l y  d e f i n e d  by Genera l  E l e c t r i c  when o p e r a t i n g  i n  t h e  l i f t  f an  

mode. 

2 . 2  THRUST CALIBRATION NOZZLE 

C a l i b r a t i o n  o f  t h e  LF336/J85 l i f t  f a n  s y s t e n  ~ ~ i t h  a n e a r  i d e a l  t h r u s t  

performance nozz le  was performed w i t h  f o u r  d i f f e r c i ~ c  n o z z l e  e x i t  areas t o  

e s t a b l i s h  t h e  u n d i s t o r t e d  n o z z l e  p r e s s u r e  r a t i o - s p e c i f i c  n o z z l e  c o r r e c t e d  f low 

c h a r a c t e r i s t i c s  of the t e s t  p r o p u l s i o n  system and t o  e s t a b l i s h  b a s e l i n e  t h r u s t  

performance l e v e l s  t o  which t h e  v e c t o r i n g  n o z z l e  performance could  be compared. 

The t h r u s t  c a l i b r a t i o n  nozz le  was des igned by MCAIR and Eabrlccted a t  NASA Ames. 

F i g u r e  2-5 p r e s e n t s  a schemat ic  of t h e  t h r u s t  c a l i b r a t i o n  n o z z l e  which 

c o n s i s t s  of a c y l i n d r i c a l  o u t e r  duct and s i n u s o i d a l  shaped hub centerbody which 

t r a n s i t i o n s  t h e  exhaus t  f low from an annular c r o s s  s e c t i o n  a t  t h e  n o z z l e  e n t r a n c e  

s t a t i o n  to a c i r c u l a r  c r o s s  s e c t i o n  zt t h e  n o z z l e  exit s t a t i o n .  A t  t h e  n o z z l e  

e n t r a n c e  s t a t i o n ,  t h e  o u t e r  wall d iameter  is 107.2 c m  (42.22 i n . )  and the hub 

centerbody d iameter  is 47.75 c m  (18.8 i n . ) .  The  hub centerbody i s  alfgned w i t h  

t h e  f a n  r f t  hub and i s  suppor ted  o f f  t h e  o u t e r  wall by means of two s t r u t s  
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FIGURE 2-1 
GENERAL ELECTRIC LF336 TURBOTIP FAN 

LFAN EXIT STATOR 

SECTION A.A 

FIGURE 2-2 
- 

LF336/J85 DESIGN PERFORMANCE SUMMARY 

FAN FLOW. KG/SEC. (LB/SECl ................................ 98.88 (218) 

FAN PRESSURE RATIO ............................................. 1.3 

BYPASS R A f l O  ..................................................... 5.0 

RPM ....................................................... 6. 047 

FAN TIP SPEED. M/SEC IFf/SEC) .............................. 29.56 (970) 

FAN DIAMETER. CM. (IN.) ..................................... 91.44 (36) 

TURBINE INLET FLOW. KG/SEC (LBISEC) .................... . 2  0.01 (44.42) 

TURBINE INLET PRESSURE. N / C M ~  (PSIA) ..................... 21 -95 (31. 84) 

TURBINE lNLET TEMPERATURE. OK. (RO) ..................... .95 0.6 (1. 711) 

TURBlNE DISCHARGE PRESSURE RATIO ............................ 1.1 18 

TURBINE DISCHARGE TEMPERATURE. O K  (RD) ................... 833 (1. 500) 

FAN THRUST. N. (LB) ..................................... 19. 688 (4. 426) 

TURBINE THRUST. N. (LB) .................................. 4. 982 (1. 120) 

TOTAL THRUST. N. (LB) .................................... 24. 670 (5. 546) 
(iP76 0867-Jd 
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FIGURE 2-3 
LF336 FAN MAP CHARACTERISTICS 
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FIGURE 2-5 
THRUST CALlpRATlON TEST NOZZLE 
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which span t h e  annular f l c w  passage. The s t r u t s  incorpora te  a chord l eng th  oE 

12.55 cm (4.94 i n . ) ,  a  th ickness  t o  chord ratio of 0.10, and a double c i r c u l a r  

a r c  c ross  s e c t i o n .  

The nozz le  e x i t  a r e a  is  v a r i e d  by means of removable nozzle  a f t  cones. A 

t o t a l  of f o u r  a f t  cone s e c t i o n s  were f a b r i c a t e d  which provide  n o z z l e  e x i t  a reas  

of 6730, 6285, 5935, and 5485 cm2, 

Four suppor t  mounts f o r  r a d i a l  t r a v e r s i n g  probes a r e  c i rcumferen t i a l ly  

loca ted  on t h e  o u t e r  duc t  element a t  a s t a t i o n  15.24 ern (6 in.)  downstream of 

t h e  nozzle  en t rance  s t a t i o n .  The four  probes a r e  loca ted  on diameters or ien ted  

239' from t h e  hor izon ta l  plane.  

The e n t i r e  t h r u s t  c a l i b r a t i o n  assembly was mounted t o  a  suppcr t ing  frame- 

work by means of  a s e r i e s  of  s t r u t s  and b racke t s  which prevented t r a n s f e r  of 

nozzle  loads  t o  the  fan. A s e r i e s  of nichrome leaf s e a l s  was a t t ached  t o  the  

o u t e r  duc t  element a t  t h e  en t rance  s t a t i o n  t o  minimize gas leakage a t  t h e  

f an/nozzle i n t e r f  act.. 

2.3 "D" VENTED TEST NOZZLE 

The "bo i l e rp la te1 '  t e s t  nozz le  geometry is shown schemat ica l ly  i n  Figure  2-6. 

The t e s t  nozz le  c o n s i s t s  of  six elements:  a  nozz le  en t rance  support  r i n g ,  a  

f ixed  s t r u c t u r e  element, two movable hood elements,  and two "Dfl shaped spacers .  

The n o z z l e  en t rance  r i n g  i n c o r p o r a t e s  t h e  s t r u t  mounted hub centerbody, 

the  mounts f o r  the  f o u r  en t rance  t r a v e r s i n g  p robes ,  and a  s i n g l e  l o n g i t u d i n a l  

support  beam for the combination yaw vane-closure door assembly. The hub 

centerbody geometry and t r a v e r s i n g  probe l o c a t i o n s  are i d e n t i c a l  t o  t h a t  used 

f o r  the t h r u s t  c a l i b r a t i o n  nozz le  descr ibed above. The yaw vane-closure door 

assembly i s  simulafied by a  s i n g l e  door f o r  these  t e s t s  r s t h e r  than a s p l i t  vane 

assembly as proposed f o r  the f u l l  s c a l e  geantetry. The yaw vane is hinged t o  

t h e  suppor t  beam, the  combLnation of which forms an a r t i c u l a t e d  f o i l  s e c t i o n  

wi th  a chord l eng th  of 67.06 cm (26.40 i n . )  and a thickness-to-chord r a t i o  of 

0.13. The nozzle  en t rance  ring t r a n s i t i o n s  t h e  fan  exhaust flow from ah 

annular c r o s s  s e c t i o n  a t  t h e  nozz le  e n t r a n c e  t o  a "D" shaped c r o s s  s e c t i o n  

a t  the  v e n t i n g  l i p  l o c a t i o n  and i s  t h e  primary element through which t h e  nozzle  

loads  are t r a n s f e r r e d  t o  t h e  suppor t ing framework. 

The f ixed  s t r u c t u r e  element i s  an open s ided  s h e l l  element which i n  combi- 

na t ion  w i t h  the c l o s u r e  doors d e f i n e s  t h e  c r u i s e  nozzle  i n t e r n a l  flow geometry. 

A t h r u s t  r educ t i cn  modulation (TRM) p o r t  i s  located i n  the  af t - top region of  

the  f i x e d  element. The p o r t  open area i s  s i z e d  a t  1580 cm2 (245 in2) .  Test  



FIGURE 2-6 
BOILER PLATE "D" VENTED TEST NOZZLE 
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hardware w a s  f a b r i c a t e d  t o  permi t  v a r i a t i o n  o f  t h e  open a r e a  between f u l l  open 

and c l o s e d  i n  t h r e e  e q u a l  Increments .  The s u p p o r t  p i v o t  f o r  t h e  two movable 

hoods is l o c a t e d  i n  the lower  p o r t i o n  o f  the f i x e d  e lement  a t  a  d i s t a n c e  59.10 

c m  (23.27 in . )  below t h e  n o z z l e  e n t r a n c e  c e n t e r l i n e  and 46.23 cm (IC.2 i n , )  

downstream of t h e  nozz le  e n t r a n c e  s t a t i o n .  

The two movable hood e lements  a r e  'ID" shaped i n  c r o s s  s e c t i o n .  The 

i n t e r n a l  widths  of t h e  i n n e r  and o u t e r  hoods a r e  i10 .05  c m  (43.72 i n . )  and 

116.13 cm (44.72 i n . )  r e s p e c t i v e l y .  The mean r a d i u s  of c u r v a t u r e  of t h e  two 

elements  as measured from t h e  p i v o t  p o i n t  i s  53.95 cm (21.24 i n . ) .  Each of 

t h e  hood e lements  posses s  an  a r c  ang le  of 47' and a l l o w  geometr ic  d e f l e c t i o n  

angles  up t o  132'. 

The "D" shaped s p a c e r  e lements  are des igned tc  i n s e r t  between t h e  nozz le  

en t r ance  r i n g  and fixed s t r u c t u r e  element and t h e ~ e b y  p rov ide  v a r i a b i l i t y  i n  

VTO n o z z l e  e x i t  a rea .  

The VTO nozz le  e x i t  area is f u r t h e r  v a r i e d  by means of  removable t r a n s i -  

t i o n  f a i r i n g s  and v e n t i n g  l i p  e x t e n s i o n  p l a t e s .  The t r a n s i t i o n  f a i r i n g s  a r e  

l o c a t e d  Ln the two lower c o r n e r s  formed a t  t h e  v e n t i n g  l i p  s t a t i o n  and provided  

an improved i n t e r n a l  f low con tou r  i n  t h i s  r eg ion .  Addi t ion  of t h e  t r a n s i t i o n  

f a i r i n g s  se rved  t o  d e c r e a s e  the VTO exit area. 

The v e n t i n g  l i p  e x t e n s i o n  p l a t e s  a r e  f l a t  p l a t e  e lements  which span t h e  

nozzle  w i d t h  and e f f e c t i v e l y  extend t h e  v e n t i n g  l i p  downstream. Two l i p  

ex tens ion  p l a t e s ,  one 12.7 cm (5.0 i n .  ) i n  l e n g t h  and one 25.4 cm (16 in . )  

were f a b r i c a t e d  and t e s t e d .  The "Dl1 ven ted  test n o z z l e  w a s  designed by MCALR 

and f a b r i c a t e d  a t  NASA Ames.  

2.4 ASSOCIATED TEST TNSTRUMENTATIO~ 

The LF336 f a n ,  585 gas g e n e r a t o r ,  t e s t  n o z z l e s ,  and test s t a n d  were 

ins t rumented  f o r  measurement of  f a n  system and n o z z l e  performance and f o r  

monitoring of t h e  t o t a l  sys t em d u r i n g  t h e  conduct  o f  t h e  tests. The primary 

t e s t  v a r i a b l e s  were sys tem g r o s s  t h r u s t ,  t h r u s t  d i r e c t i o n  and l i n e  o f  app l i ca -  

t i o n ,  t o t a l  n o z z l e  mass f low, n o z z l e  e n t r a n c e  t o t a l  pressure and t o t a l  tempera- 

t u r e  ratios, i n t e r n a l  p r e s s u r e  and wall t empera tu re  d i s t r i b u t i o n s .  Gross 

t h r u s t ,  t h r u s t  d i r e c t i o n ,  and l i n e  of a p p l i c a t i o n  were determined by means of  

r h r e e  l o a d  c e l l s  which are mounted below t h e  f a n / n o z z l e  test assembly i n  a tri- 

form arrangement as i n d i c a t e d  i n  F i g u r e  2-7. 

MCDONNELL AIRCRAFT COMPANY 



FIGURE 2-7 
FAN NOZZLE TEST GEOMETRY 
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Each l o a d  c e l l  was a 3-component s t r a i n  gauge balance ,  wi th  26,690 N (6000 

l b )  normal f o r c e ,  17,793 N (6000 l b )  a x i a l  fo rce ,  and 13,345 N (3000 l b )  s i d e  

fo rce  c a p a b i l i t y .  The load  c e l l s  were o r i e n t e d  wi th  the normal f o r c e  elements 

p a r a l l e l  w i t h  t h e  v e r t i c a l  d i r e c t i o n  and t h e  a x i a l  f o r c e  elcments wi th  t h e  

h o r i z o n t a l  d i r e c t i o n .  The nomicsl accuracy o f  t h e  load c e l l s  was es t imated by 

NASA t o  be f l% of  f u l l  s c a l e .  T c t a l  nozz le  mass flow was e s t a b l i s h e d  by means 

cf c a l i b r a t e d  bellmouth i n l e t s  on both t h e  gas genera tor  and fan and flowmeter 

measurement of f u e l  flow. The nozzle  p r e s s u r e  and t o t a l  temperature r a t i o s  

were e s t a b l i s h e d  through r a d i a l  surveys a t  the  nozz le  en t rance  wi th  f o u r  t r a -  

ve r s ing  t o t a l  p ressure  and t o t a l  temperature probes. The p r e s s u r e  and tempera- 

t u r e  radial d i s t r i b u t i o n s  were i n t e g r a t e d  over  t h e  en t rance  f low a r e a  t o  y i e l d  

average p r e s s u r e  and temperature d a t a  f o r  both  t h e  f a n  and t u r b i n e  regions .  

The average va lues  f o r  t h e  fan  and t u r b i n e  were then  mass f low weighted t o  

provide nozz le  p ressure  r a t i o  and temperature da ta .  The i n t e g r a t i o n  procedure 

i s  descr ibed i n  Appendix A. 

Nozzle i n t e r n a l  p ressure  measurements were obta ined by means of a s e r i e s  

of w a l l  p r e s s u r e  t aps  l o c a t e d  around t h e  nozz le  per iphery .  Wall temperature 

measurements were e s t a b l i s h e d  by means of thermocouples a t t ached  to t h e  o u t s i d e  

su r face  of t h e  nozzle  s t r u c t u r e .  The l o c a t i o n s  of t h e  wa l l  p r e s s u r e  and t e m -  

p e r a t u r e  ins t rumenta t ion  on t h e  t h r u s t  c a l i b r a t i o n  nozz le  and I'D" vented nozz le  

a r e  shown i n  Figures 2-8 and 2-9. A d e t a i l e d  l i s t  of t h e  test ins t rumenta t ion 

is  provided i n  Figure  2-10. 

2.5 DATA ACQUlSITION SYSTEM 

The exper imenta l  test parameters were measured, d i g i t i z e d ,  and recorded 

on paper punch tape  u t i l i z i n g  a VIDAR Corporation d i g i t a l  d a t a  system. This 

system i s  comprised of  analog s i g n a l  conditioning, an i n t e g r a t i n g  d i g i t a l  

vol tmeter ,  and a Teletype Paper-Tape punch. A t o t a l  of 99 d a t a  recording 

channels a r e  a v a i l a b l e  wi th  t h i s  system. The f i r s t  20 channels of t h e  VIDAR 

system a r e  mul t ip le  scan channels and t h e  remaining channels a r e  s i n g l e  scan. 

For this test a t o t a l  of  60 channels were u t i l i z ~ 3 .  During a recording 

sequence, the f i r s t  20 channels y e r e  recordec' a t o t a l  of 48 t imes and t h e  

l a s t  40 channels were recorded once. The r o t a 1  time f o r  one d a t a  recording 

sequence was approximately 90 seconds. 

The multi-scan channels were s e l e c t e d  t o  record t h e  primary performance 

d a t a  such as f a n  speed, nozz le  f low, t r a v e r s i n g  probe informat ion,  and load  

c e l l  a x i a l  and normal f o r c e  components. Due t o  t h e  20 multi-scan channel 
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FIGURE 2-10 
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l i m i i i t i o n ,  t h e  load c e l l  s i d e  f o r c e  components were recorded on s i n g l e  scan 

channels. A s  a consequence, at  each t e s t  po in t  t h e  a x i a l  and normal f o r c e s  

were recorded 48 times whereas t h e  s i d e  f o r c e s  were recorded once. 

The paper tape  d a t a  r ecords  were processed a t  NASA Ames on the  40 x 80 

wind tunnel  data computer which converted the raw t e s t  d a t a  t o  engineer ing 

test parameters.  

2.6 NASA M S  STATIC TEST FACILITY 

The nozz le  t e s t s  were conducted a t  the  NASA-Ames Research Center Outside 

S t a t i c  Test F a c i l i t y ,  des ignated as t e s t  s i t e  number N-249. This  s i te  is  used 

p r imar i ly  t o  eva lua te  s t a t i c  performance of powered models p r i o r  t o  e n t r y  i n t o  

the NASA-Ames 40 x 80 wind tunnel .  This f a c i l i t y  i&ludes  an enclosed trailer 

t h a t  s e r v e s  as t h e  con t ro l  room and houses t h e  d a t a  a c q u i s t t i o n  systems. 

Auxi l iary  equipment loca ted  a t  t h e  s i t e  inc ludes  an  engine  starter u n i t ,  400 

cyc le  A/C power u n i t ,  and f u e l  tanker, 

For t h i s  program, the  n o z z l e  test r i g  comprised of t h e  fa= inlet bellmouth, 

LF336 fan, 585 gas.  generator  and suppor t ing framework was mounted on the  t h r e e  

load c e l l s  and o r i e r t e d  wi th  t h e  fan a x i s ' h o r i z o n t a l  and approximately 230 c m  

(90 in . )  above the  ground plane .  The vec to r ing  nozz le  was o r i e n t e d  t o  exhaust  

t h e  vectored f low upwards i n  t h e  ve r t i ca l .  d i r e c t i o n .  F igures  2-11 and 2-12 a r e  

photographs of the  nozzle  t e s t  r i g  wi th  the t h r u s t  c a l i b r a t i o n  nozzle at tached.  

Figures 2-13 through 2-16 show t h e  "D" vented test nozz le  i n  t h e  low speed 

c r u i s e  conf igura t ion  (doors open),  75" geometric hood p o s i t i o n  ( in termedia te  

vectoring, - 45 ' ) ,  112" geometric hood p o s i t i o n  (=90° v e c t o r i n g ) ,  and 132" geo- 

met r i c  hood, p o s i t i o n  ( reverse  vec to r ing ,  117') r e s p e c t i v e l y .  

Figure 2-17 shows the  t h r u s t  reduct ion modulation p o r t  i n  t h e  f u l l  open 

p o s i t i o n ,  and FiguL*c 2-18 shows the simulated ground plane  as i t  was being 

posi t ioned over  the  t e s t  nozz le  f o r  ground ef f  e c r s  t e s t s  . 
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3. TEST PROGRAM PROCEDURE AND DATA ACCURACY 

The procedure followed dur ing the  t e s t  program and an assessment of da ta  

accuracy are presented i n  t h i s  sec t ion .  

I n i t i a l l y  the  nozzle  tests r ~ e r e  t o  be conducted wi th  t h e  fan/nozzle  t e s t  

r i g  mounted on a hydrau l ic  l i f t  p la t form wi th  t h e  nozzle  exhausting downward. 

This arrangement, used i n  previous nozzle  t e s t s  a t  NASA-Ames (Reference Z ) ,  

allows t h e  nozzle ground height  t o  be  e a s i l y  v a r i e d  f o r  ground e f f e c t s  t e s t i n g .  

The i n i t i a l  t e s t s  of the "D" vented nozzle  on t h e  hydrau l ic  l i f t  p la t form r i g  

ind ica ted  a severe  fan  r e i n g e s t i o n  problem wi th  t h i s  arrangement. Reingestion 

of t h e  d e f l e c t e d  nozzle exhaust  flow as  observed i n  t h i s  test arrangement i s  

i l l u s t r a t e d  i n  Figure 3-1 and prevented s t a b l e  c o n t r o l  of t h e  LF336 fan speed. 

The i n i t i a l  t e s t s  were t e r n h a t e d  a f t e r  fo re ign  o b j e c t  damage w a s  de tec ted  on 

t h e  LF336 t i p  tu rb ine  s e c t i o n .  During t h e  per iod required t o  acqu i re  and rep lace  

t h e  LF336 t i p  turbine ,  t h e  nozzle test r i g  was reconf igured to t h e  rest arrange- 

ment descr ibed i n  Sect ion 2. 

The complete t e s t  program i s  summarized i n  t h e  test run summary shown i n  

Figure 3-2. Upon completion of  t h e  f i r s t  f i v e  t e s t  t u n s  wi th  t h e  t h r u s t  c a l i -  

b r a t i o n  nozz le ,  minor fo re ign  o b j e c t  damage was aga in  de tec ted  on t h e  LF336 

t i p  t u r b i n e  sec t ion , ,  The f a n  w a s  removed from t h e  t e s t  r i g  for d e t a i l e d  in- 

spect ion,  which revealed damage t o  8 of t h e  21  t u r b i n e  c a r r i e r  segments. The 

damaged c a r r i e r 8  were replaced with four  new c a r r i e r  elements and four  c a r r i e r  

elernel~ts which had been p r e v i o u s ~ p  used. The f a n  was reassembled i n  t h e  test 

r i g  and the reminder  nf t h e  test program was completed without inc iden t .  Due 

to the  cond i t ion  of t h e  LF336 t i p  t u r b i n e  c a r r i e r s ,  t h e  maximum f a n  speed was 

r e s t r i c t e d  t o  90%. 

3.1 TEST PROGRAM PROCEDURE 

The t e s t s  were i n i t i a t e d  each day dur ing the pre-dawn per iod t o  take 

advantage of low wind condi t ions  which normally e x i s t e d  dur ing t h i s  period.  

The major i ty  of t h e  t e s t  runs  were made with ambient wind v e l o c i t i e s  below 

f i v e  knots ,  For each t e s t  run t h e  propuls ion system was s t a r t e d  and brought 

t o  an i d l e  f a n  speed of 50% (3000 RPM) f o r  a  five-minute warm-up per iod,  a f t e r  

which t h e  f a n  speed was increased i n  f i v e  increments t o  90% (5400 RPM). Af te r  

completfon of da ta  a c q u i s i t i o n  a t  90% fan  speed, t h e  f a n  speed was reduced t o  

t h e  i d l e  l e t t i n g  f o r  a  three-minute cool-down per iod and then shu t  down. Fan 
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FIGURE 3-1 
SCHEMATiC OF NOZZLE EXHAUST REINGESTION ON 

HYDRAULIC LIFT TEST ARRANGEMENT 

\EXHAUST PIT ~ O L I D  DECKING 

INITIAL TEST ARRANGEMENT MODIFIED TEST ARRANGEMENT 
SEVERE REINGESTION REDUCED REINGESTION 

PROBLEM: 
REINGESTION OF NOZZLE EXH'UST 
PREVENTS OPERATION OF FAN 
AT CONSTANT SPEED 

C, 

SOLUTION: F \SIMULATED GROUND 

ROTATE NOZZLE 180' AND 
EXHAUST FLOW UPWARDS 
LOCATE GROUND PLANE ABOVE 
TEST STAND TO EVALUATE 

J - "A"E 

GROUND EFFECTS 

OP74.00l7.46 

FIGURE 3-2 
SUMMARY OF TEST RUNS 
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VTO PERFORMANCE 

YAW VECTORING 
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PERFORMANCE 
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1 
2 
3 
4 
5 

6 
7 

8 
9 
10 
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15 

16 

17 
10 
19 

NOZZLE 
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NO. 1 LIP C %TENSION 
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NO. 2 LIP EXTflJSlON 

OVN, 112a G t U  POSITION 
15* YAW VALVE 
OEFLECTION 
10" YAW VANED 
DEFLECTION 
OVN, 90° GEO POSITION 
1 5 O  YAW VANE 
DEFLECTION 
15O YAW AND TRIM 
100% OPEN 

RUN 
NO. 

20 

21 

' 22 

23 

24 

25 

TRANSITION FAIRING 
INSTALLED 
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DVN, l l z 0  GEOPOSITION 
TRM 100% OPEN 
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h/DF = 2.97 
hlDF - 1.30 

hlDF =1.W 
hlDF 1.93 

NOZZLE 
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TCN. A N O ~  = 6730 cm2 

TCN, ANOZ -6730 em2 
TCN. ANOZ " 6286 cm2 
TCN. ANOZ 5935 ern2 
TCN, ANOZ 5485 cm2 
TCN. a MBS cm2 

DVN, OD GEO POSITION 
DUN, 00 G E ~  POS~T~ON 
DVN, 7P GEO POSITION 
DVN, 90' GEO POSITION 
DVN, 132" GEO POSITION 

PURPOSE 

SYSTEM CHECKOUT 

THRUST AND MASS FLOW 
CALIBRATloN OF 
LF3381J85 FAN SYSTEM 

LONGITUDINAL 
VECTORING PERFORMANCE 

:ls";'A"pp&ERS 

26 1 DUN, 75" GEO POSITION 
l'io YAW VANE 

OVN. 112' GEO POSITION 

DVN, llZO GEO POSITION 

-REPEATABILITY. RUN 6 & 7 

-- 
VTO PERFORMANCE 

THRUST REDUCTION 
MODULATION 

- 
YAW VECTORING 
PERFORMANCE 

GROUND EFFECTS 
PERFORMANCE 

20 
29 
30 
31 

TCN . THRUST CALIBRATION NOZZLE 
DVN. "D" VENTED NOZZLE 

DVN. 1lP GEO POSITION 
DVN, 900 GEO POSITION 

OVN. 0' GEOPOSITION 

DVN, OD GEO POSITION 

LONGITUDINAL 
VECTORING PERFORMANCE 
SPACERS REMOVED 

REPEATIBILITY, RUN 30 
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and nozzle performance data were recorded at seven t e s t  poin t s  which corresponded 

t o  nominal fan speeds of 50%, 70%, 75%, 80%, 85%, 90%, and 50%. 

A t  each test poin t ,  d a t a  was recorded by means of the: VIDAR d a t a  acquis i -  

t i o n  system and a l s o  fan  and engine panel  ins t rumentat ion were manually recorded. 

Concurrent with the  i n i t i a t i o n  of t h e  VIDAR d a t a  recording sequence, the  nozzle 

entrance t r a v e r s i n g  probe drive system was ac tua ted  which simultaneously drove 

each of t h e  f o u r  entrance t r a v e r s i n g  probes. The probe r a d i a l  d r i v e  speed was 

s e l e c t e d  t o  provide a-complete inward and outward t r a v e r s e  of t h e  combined 

f a d t u r b i n e  annular f l o w  reg ion  dur ing t h e  approximate 90-second per iod  required 

far the VIDAR system t o  record  t h e  mul t iscan channels a t o t a l  of 48 t i m e s .  With 

t h i s  arrangement t h e  en t rance  probes were recorded a t o t a l  of  48 t i m e s  du~- , lg  

the inward and outward traverses. 

3 .2  DATA ACCURACY 

The probe d r i v e  speed was somewhat f a s t e r  than t h a t  required t o  achieve 

v a l i d  s teady s t a t e  p ressure  and teniperature recording a t  each r a d i a l  p o s i t i o n .  

The above conclusion i s  based upon a comparison of t h e  p ressure  and temperature 

p r o f i l e s  recorded during t h e  inward and outward probe t r a v e r s e s ,  a t y p i c a l  case  

of which is shown i n  Figure  3-3. As i s  shown, p r e s s u r e  and temperature l a g s  a r e  

evident p r imar i ly  i n  tlie h igh g rad ien t  region behind the t u r b i n e  midbox. For 

t h e  purpose of e s t a b l i s h i n g  a mean see of p r o f i l e  d a t a ,  t h e  inward and outward 

d a t a  t r a v e r s e s  were s e p a r a t e l y  curve f i t t e d  and t h e  two curve f i t s  were then 

averaged i n  t h e  i n t e g r a t i o n s  t o  de f ine  average va lues  of t h e  nozzle en t rance  

pressure  and temperature r a t i o s .  

A t  each t e s t  po in t ,  the a x i a l  and normal load c e l l  elements were recorded 

48 times, whereas t h e  s i d e  f o r c e  elements were recorded only  once. Figure  3-4 

i s  a p l o t  of t h e  48 normal f o r c e  readings  for each load c e l l ,  recorded during 

Run 21, a t  a f a n  speed o f  89.5%. Considerable v a r i a t i o n  of t h e  load c e l l  normal 

f o r c e  readings  about the mean values  i s  ev iden t  which suggests  t h a t  the  nozzle 

r i g  was undergoing a l o w  frequency o s c i l l a t i o n .  Typical v a r i a t i o n s  of the 

a x i a l  f o r c e  readings about t h e  mean va lues  a r e  shown i n  Figure  3-5 a s  recorded 

during Run 7 a t  a fan  speed of 88.58%. The peak-to-peak d i f f e r e n c e s  on the 

a x i a l  components were genera l ly  lower than t h a t  observed on the normal f o r c e  

elements. The o v e r a l l  accuracy of t h e  a x i a l  and normal force measurements i s  

d i f f i c u l t  t o  assess  due t o  t h e  l a c k  of c a l i b r a t i o n  apparatus  a t  t h e  reniote 

test si te and the obvious d i f f i c u l t i e s  i n  holding environmentel cond i t ions  

constant  a t  an outs ide  f a c i l i t y .  P re - tes t  checkouts of the load c e l l  system 
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FIGURE 3-3 
TYPICAL NOZZLE ENTRANCE PRESSURE AND TEMPERATURE RADIAL 

PROFILE MEASUREMENTS 

TOTAL 
TEMPERATURE 

RATIO 

T T ~ A  

RADIUS - cm RADIUS- cm 

I I I . I  

HUB fAI FLOW MID TURBINE OUTER HUB MI0 TURBINE OUTEl 
BOX CLDW W d L L  FANFLOW BOX FLOW WALL 
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FIGURE 3-4 
VARIATION OF LOAD CELL NORMAL FORCE READINGS 

DURING A . . RECORDING . -  SEQUENCE 
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LOAD CELL NO. 3 
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-14,000 1 
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DATA SYSTEM CYCLE NUMBER U r n  O l l 7  4s  
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FIGURE 3-5 
VARIATION OF LOAD CELL AXIAL FORCE READINGS 

DURING A RECORDING SEQUENCE 

LOAD CELL NO. 1 

DATA SYSTEM CYCLE NUMBER 
OPT1 0107 17 
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were c a r r i e d  o u t  by applying a h o r i z o n t a l  Eorce t o  t h e  nozz le  r i g  through the  

f a n  c e n t e r l i n e  by means of a cab le  and pu l ley  arrangement wi th  a c a l i b r a t e d  

dynamometer. The r e s u l t s  of these  t e s t s  showed agreement between t h e  load  c e l l  

reading and t h e  dynamometer reading wi th in  one-half of one percent .  Runs 6 ,  

7, and 27 were conducted on d i f f e r e n t  days wi th  the same nozzle  hardware and 

provide a measure of t h e  t h r u s t  measurement r e p e a t a b i l i t y .  Figure 3-6 p r e s e n t s  

t i e  cor rec ted  t h r u s t  ve rsus  f a n  speed performance f o r  t t lse t h r e e  runs and 

i n d i c a t e s  t h a t  t h e  t h r u s t  measureaent r e p e a t a b i l i t y  was wi th in  k1%. Runs 30 

and 3 1 w e r e  c a r r i e d  out  wi th  t h e  same nozzle  t e s t  hardwara on t h e  same day; 

however, t h e  sequence of d a t a  recording was reversed i n  t h a t  t h e  f a n  was brought 

from i d l e  t o  90% fan  speed and then decreased i n  5% increments r a t h e r  than 

s t a r t i n g  a t  70% fan speed w i t h  inc reas ing  increments. The cor rec ted  t h r u s t  

versus  f a n  speed performance f o r  these  two runs  i s  shown i n  Figure  3-7 and again 

the t h r u s t  measurement r e p e a t a b i l i t y  is shown t o  be  wi th in  1%. 

The u n c e r t a i n t i e s  i n  t h e  s i d e  f o r c e  measurements are considered t o  be q u i t e  

l a r g e ,  p r fmar i ly  because t h e s e  readings  w e r e  recorded only once p e r  d a t a  p o i n t  

and the  evidence from t h e  axial  and normal f o r c e  measurements t h a t  a l a r g e  num- 

b e r  of readings  were required t o  ob ta in  r e p r e s e n t a t i v e  average values.  A t o t a l  

of 20 runs were conducted wfth  t h e  e-:it yaw vane undef lected where a zero n e t  

s i d e  force was expected, The a c t u a l  side f o r c e  angle ,  I$, readings  recorded 

during t h e s e  test runs a r e  p l o t t e d  i n  summary form on Figure 3-8, The data i n  

Figure 3-8 ind ica ted  t h a t  a variation of 2%" i n  t h e  s i d e  f o r c e  angle  was 

obtained with a mean va lue  of 0.33". A t o t a l  of f i-re runs  were made wi th  t h e  

yaw vane g e ~ m e t r i c  d e f l e c t t o n  a t  e i t h e r  10" o r  15" which according t o  smal l  

s c a l e  teFjts should have produced a s i d e  f o r c e  ang le  of 6.5' and 9 . 0 ° ,  respeck- 

t i v e l y .  The s i d e  fo rce  readings  recorded on t h e s ~  f i v e  t e s t s  a r e  ind ica ted  on 

Figure 3-8 by t h e  closed symbols. The average of t h e s e  readings  i n d i c a t e s  a 

n e t  side f o r c e  of -1.58' which i s  l e s s  than t h e  expected value. Since t h e  

m c e r t a l n t y  i n  t h e  s i d e  f o r c e  measurement was of an e q u a l  magnitude as the  

expected r e s u l t ,  i t  is  concluded t h a t  t h e  experimental  setup was inadequate t o  

perform t h e  des i red  measurement, 
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FIGURE 3-6 
THRUST MEASUREMENT REPEATABILITY, RUNS 6,7,27 

CORRECTED 
THRUST, 

FG/6 
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FIGURE 3-7 
THRUST REPEATABILITY, RUNS 30 AND 31 
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FIGURE 3 8  
SUMMARY OF SIDE FORCE ANGLE MEASUREMENTS 
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4. RESULTS AND DISCUSSION OF RESULTS 

The experimental  d a t a  obta ined during t h e  tests of t h e  t h r u s t  c a l i b r a t i o n  

and "C" vented test nozzles  were reduced t o  y i e l d  nozzle  performance d a t a  which 

were then compared wl th  similar information obtained v i a  smal l  aca le  nozz le  

tests. The test r e s u l t s  and the  s c a l e  e f f e c t  comparisons are presented below. 

4.1 THRUST CALIBRATION NOZZLE TESTS 

The t h r u s t  c a l i b r a t i o n  nozzle  t e s t s  were conducted t o  e s t a b l i s h  t h e  ref- 

erence t h r u s t  performance l e v e l s  of t h e  LF336 test system wi th  near i d e a l  nozzles  

and t o  a e t e m i n e  the  s p e c i f i c  nozzle  entrance cor rec ted  flow c h a r a c t e r i s t i c s  of 

t h e  LF336 f a n  opera t ing  w i t h  a nozzle  i n  t h e  conf luent  mode (combined f a n  and 

tu rb ine  flows).  

4.1.1 THRUST PERFORMANCE - The corrected t h r u s t  ve rsus  cor rec ted  fan  speed 

c h a r a c t e r i s t i c s  obtained dur ing t h e  t h r u s t  c a l i b r a t i o n  nozzle  t e s t  r e s u l t s  a r e  

shotm i n  Figure  4-1, Also p l o t t e d  on Figure  4-1 a r e  t h e  General E l e c t r i c  per- 

f o r m n c e  c h a r a c t e r i s t i c s  which were o r i g i n a l l y  measured wi thout  an exit  nozzle  

a t tached t o  t h e  LF336 fan.  The t h r u s t  l e v e l s  obtained w i t h  t h e  l a r g e s t  nozzle  

e x i t  a rea  were s l i g h t l y  h igher  than t h e  E.E. da ta ,  whereas t h e  tb ree  smal le r  e x i t  

a r z a s  y ie lded  performance below t h e  G.E. quoted performance, The G.E. perfor-  

mance is  presented p r imar i ly  f o r  t rend comparisons s i n c e  t h e  condi t ion of t h e  

f a n  was d i f f e r e n t  between t h e  p resen t  t e s t s  and t h e  G.E. tests. 

The measured corrected f a n  flow versus  cor rec ted  fan  speed i s  depic ted i n  

Figttre 4-2 and shows the expected inc rease  i n  flow as the nozzle  e x i t  a r e a  i s  

increased.  

The r a d i a l  d i s t r i b u t i o n s  of t o t a l  p ressure  r a t i o  at t h e  nozzle en t rance  a s  

measured w i t h  t h e  four  t r a v e r s i n g  probes are s'tlown i n  F igure  4-3 f o r  t h e  l a r g e s t  

nozzle  e x i t  a r e a  (6730 cm2) c o n f i g a r a t i o n . a t  a corrected f a n  speed of 84.5%. 

Figure t$-4 i l l u s t r a t e s  t h e  t o t a l  temperature r a t i o  d i s t r i b u t i o n s  f o r  t h i s  test 

point .  Examination of t h e  t o t a l  p ressure  p r o f i l e  d a t a  i n d i c a t e s  t h a t  tHe fan 

flow w a s  s l i g h t l y  asymmetric i n  t h e  c i rcumferen t ia l  d i r e c t i o n  and t h a t  a 

g r e a t e r  a8ymmetry e x i s t e d  i n  t h e  tu rb ine  flow region. The tu rb tne  t o t a l  

pressures  were redaced on t h e  s i d e  opposing t h e  entrance t o  t h e  tu rb ine  s c r o l l  

and r e f l e c t  t h e  a d d i t i o n a l  s c r o l l  l o s s e s  expected f o r  t h i s  region of t h e  tur- 

bine,  The r a d i a l  p ressure  d a t a  f u r t h e r  show t h e  ex i s tence  of s i g n i f i c a n t  t o t a l  

p ressure  l o s s e s  i n  t h e  f a n  hub and t i p  regions .  The t i p  t o t a l  pressure  l o s s e s  

are accentuated by ho t  gas leakage from t h e  t u r b i n e  flow i n t o  t h e ' f a n  s t ream 

a t  t h e  forward s e a l  l o c a t f o n ,  The t o t a l  t e m p e r a t ~ ~ r e  d i s t r i b u t i o n s  i n d i c a t e  
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FIGURE 4-1 
THRUST CAtlBRATION NOZZLE, THRUST vs FAN SPEED PERFORMANCE 

22,000 

CORRECTED 
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FIGURE 4-2 
THRUST CALIBRATION NOZZLE, FAN FLOW vs FAN SPEED CHARACTERISTICS 
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FIGURE 4-3 
THRUST CALIBRATION NOZZLE, ENTRANCE TOTAL PRESSURE DlSTRlBUTlON 

ANOZ = 6730 cm2, N F / J B =  84.55% 
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RATIO 
P ~ p ~  

FIGURE 4-4 
THRUST CALIBRATION NOZZLE, 

ENTRANCE TO'f'AL TEMPERATURE DlSTRlBUTlON 
ANOZ = 6730 em2 N F/\/B= 84.55% 
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RATIO 

T ~ f l ~  
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\ 
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leakage i n t o  the  fan  stream t o  a r a d i a l  d i s t a n c e  of approximately one f a n  

chord length .  The temperature d i s t r i b u t i o n s  a l s o  e x h i b i t  a s i m i l a r  circum- 

ferential asymmetry as seen i n  t h e  p ressure  d a t a ,  1Xgures 4-5 and 4-6 ehow 

t h e  r a d i a l  p ressure  and temperature d i s t r i b u t i o n  a t  89.53% fan  speed f o r  t h e  

smal les t  nozzle  e x i t  a rea ,  5485 cm2. 

The r a d i a l  d l s t r i b u t i o n a , o f  t o t a l  p r e s s u r e  and temperature were a r e a  i n t e -  

gra ted over t h e  fan  and t u r b i n e  flow reg ions  t o  de f ine  average va lues  fo r  the  

two streams. The average p r o p e r t i e s  f o r  t h e  two streams were then mass flow 

weighted t o  provide nozzle en t rance  cond i t ions  a t  each test point .  The i n t e -  

g ra t ion  and mass weighting procedure i s  o u t l i n e d  i n  Appendix A. 

The sum of t h e  fan  and t u r b i n e  flows was cor rec ted  w i t h  r e s p e c t  t o  t h e  

nozzle en t rance  t o t a l  cond i t ions  t o  provide nozzle  cor rec ted  flow data .  The 

nozzle p ressuro  ra t io -cor rec ted  flow c h a r a c t e r i s t i c s  f o r  t h e  ~ ~ 3 3 6 / J 8 5  system 

as determined from t h e  t h r u s t  c a l i b r a t i o n  nozz le  t e s t s  a r e  shown i n  Figure 4-7. 

The NPR versus  corrected flow d a t a  are used t o  e n t e r  t h e  smal l  s c a l e  vec to r ing  

nozzle VTO performance map and thereby e s t a b l i s h  nozzle  performance es t imates  

f o r  the l a r g e  s c a l e  system, Fj.gure 4-8 shows the measured t h r u s t  data as a 

funct ion of nozzle  cor rec ted  fiow and r e p r e s e n t s  t he  r e f e r e n c e  t h r u s t  perfor-  

mance of t h e  LF336/585 system. 

4.1.2 WALL PRESSURE AND TWEKATURE MEASUREMELA'S - Figure  4-9 shows a t y p i c a l  

s e t  of i n t e r n a l  pressure  measurements recorded during t h e  t h r u s t  c a l i b r a t i o n  

nozzle tests. The d a t a  p l o t t e d  a r e  f o r  t h e  smal les t  nozzle  exit  area, a t  a 

f a n  speed of 89.53%. The c i rcumferen t ia l  d i s t r j -bu t ton  on the' hub centerbody 

and ou te r  duct  wal l  a t  t h e  nozz le  en t rance  s t a t i o n  is  r e l a t i v e l y  independent of 

t h e  angle, y ;  however, a r a d i a l  p ressure  g rad ien t  between t h e  hub and ou te r  w a l l  

e x i s t s  which i s  i n d i c a t i v e  of an inward tu rn ing  of t h e  flow around t h e  hub 

centerbody. The a x i a l  d i s t r i b u t i o n s  i n d i c a t e  t h a t  t h e  r a d i a l  g rad ien t  r everses  

approximately midway along t h e  centerbody. 

Figure  4-10 d e p i c t s  t h e  w a l l  temperature measurements f o r  t h e  same test 

configuration.  The w a l l  temperature d a t a  a t  t h e  nozzle  en t rance  e x h i b i t  t h e  

same c i rcumferen t ia l  v a r i a t i o n s  a s  recorded on t h e  t r a v e r s i n g  temperature 

probes. The nozzle s k i n  temperatures decreased as the flow progressed t o  t h e  

nozzle e x i t ,  i n d i c a t i n g  some mixing of t h e  f a n  and t u r b i n e  flows. 

4.2 "D" VENTED NOZZLES LONGITUDINAL THRUST VECTORING TESTS 

The l o n g i t u d i n a l  t h r u s t  vec to r ing  tests were i n i t i a t e d  wi th  t h e  nozzle i n  

t h e  low speed c r u i s e  conf igura t ion ,  0' geometric hood p o s i t i o n ,  yaw vane- 
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FIGURE 4-7 
THRUST CALIBRATION NOZZLE, NOZZLE PRESSURE RATIO - 

CORRECTED FLOW CHARACTERISTICS 
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FIGURE 4-8 
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FIGURE 4-9 
THRUST CALIBARTION NOZZLE, WALL PRESSURE DlSTRlBUTlONS 

ANOZ = 5485 cm2 

@ SECTION & A  

A X I A L  UISTAUCE ..1.11111 

FIGURE 4-10 
THRUST CALIBRATION NOZZLE, WALL TEMPERATURE DlSTRlBUTlONS 

ANOZ = 5485 cm2 NF/f l= 89.53% 
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closure  doors  open and two "D" shaped spacers  i n s t a l l e d .  With the  two spacers ,  

t h e  nozzle geometry provided t h e  l a r g e s t  VTO nozzle  e x i t  area .  Subsequent 

t e s t s  were conducted w i t h  the  movable hoods a t  geometric ang les  of 7 S 0 ,  9 Q 0 ,  

112' and 132O. The geometric hood angle  of 112" produced t h r u s t  vec to r ing  near  

90" and a t  t h i s  p o s i t i o n  t h e  t r a n s i t i o n  f a i r i n g  and two vent ing l i p  extension 

p l a t e s  were i n s t a l l e d  and t es ted .  The t r a n s i t i o n  f a i r i n g s  and l i p  extensions  

produced a t h r e e  s t e p  v a r i a t i o n  i n  t h e  nozzle  e x i t  a rea ,  The two "D" shaped 

spacers  were removed which produced a f i f t h  nozzle  e x i t  a r e a .  Tes t s  a t  geo- 

metric p o s i t i o n s  of l l Z O ,  90" and 0" were c a r r i e d  ou t  wi th  the  two spacers  

removed . 
4.2.1 THRUST PERFORMANCE - Figure  4-11 p r e s e n t s  t h e  r e s u l t a n t  t h r u s t  versus  

fan speed performance measured f o r  t h e  geometric p o s i t i o n s  of 0 ° ,  75', 90°, 

112' and 132" with the two spacers  i n s t a l l e d .  Corresponding cor rec ted  f a n  flow 

da ta  is shown i n  Figure 4-12. Resu l tan t  t h r u s t  decreased as the hood r o t a t i o n  

angle was v a r i e d  between 0" and 13Z0, whereas f a n  flow increased s l i g h t l y  

between 0' and 75" and then  decreased f o r  t h e  l a r g e r  hood angles .  The f a n  flow 

measurements i n d i c a t e  that: the maximum e f f e c t i v e  flow a r e a  of t h e  "D" vented 

nozzle conf igura t ion  occurs  a t  t h e  in te rmedia te  geometric hood pos i t ions .  In- 

s t a l l a t i o n  of t h e  t r a n s i t i o n  f a i r i n g s  and l i p  extension p l a t e s  i n  t h e  nozzle a t  

t h e  112' geometric p o s i t i o n  produced an inc rease  i n  r e s u l t a n t  t h r u s t  and a 

decrease in f a n  flow a s  depic ted i n  Figures  4-13 and 4-14. The t h r u s t  and fan  

flow measurements recorded f o r  the test wi th  t h e  two 'ID" shaped spacers  removed 

is  shown i n  Figures 4-15 and 4-16. 

The nozz le  entrance t o t a l  p r e s s u r e  and temperature measurements recorded 

at geometric p o s i t i o n s  of 0 ° ,  75', 90" and 112" w i t h  the two spacers  i n s t a l l e d  

a r e  shown i n  Figures 4-17 through 4-24. Tn general ,  r o t a t i o n  of t h e  hood 

elements from 0' t o  112' produced a change i n  t u r b i n e  flow t o t a l  p r e s s u r e  dis-  

t r ibu t ions .  At 112' geometric p o s i t i o n s  t h e  t o t a l  p ressure  a t  t h e  top  of t h e  

nozzle is h igher  than t h a t  recorded on t h e  bottom of t h e  nozzle  which i s  

s l i g h t l y  upstream of t h e  no::zle ven t ing  l i p .  Figures  4-25 and 4-26 i l l u s t r a t e  

f o r  comparison purposes the en t rance  t o t a l  p r e s s u r e  d a t a  f o r  t h e  t h r u s t  c a l i -  

b r a t i o n  nozzle and t h e  "D" vented nozz le  a t  t h e  O 0  and 112" geometric pos i t ions .  

A s  shown, the primary e f f e c t  of t h e  vec to r ing  nozzle  i s  t o  in t roduce  circum- 

f e r e n t i a l  d i s t o r t i o n  i n  the t u r b i n e  flow region.  

Nozzle corrected flow d a t a  were ca lcu la ted  us ing t h e  en t rance  flow measure- 

ments f o r  each of the l o n g i t u d i n a l  rest runs  and a r e  presented on Figure  4-27 
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FIGURE 4-1 1 
"D" VENTED NOZZLE, LONGlTUDlNAL VECTORING PERFORMANCE 

THRUST vs FAN SPEED 
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FIGURE 4-12 
"D" VENTED NOZZLE, LONGITUDINAL VECTORING PERFORMANCE 

FAN FLOW vs FAN SPEED 
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FIGURE 4-13 
"D" VENTED NOZZLE, VTO PERFORMANCE, THRUST vs FAN SPEED 
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FIGURE 4-14 
"D" VENTED NOZZLE, VTO PERFORMANCE FAN FLOW vs FAN SPEED 
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FIGURE 4-15 
"0" VENTED NOZZLE LONGITUDINAL PERFORMANCE, THRUST vs FAN SPEED 
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FIGURE 4-16 
"D" VENTED NOZZLE, LONGITUDINAL PERFORMANCE FAN FLOW vs FAN SPEED 
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"D" 
FIGURE 4-18 

VENTED NOZZLE, ENTRANCE TOTAL TEMPERATURE DISTRIBU'I 
3O GEOMETRIC POSITION 

N F/@ = 88.85% 
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FIGURE 4-20 

VENTED NOZZLE, ENTRANCE TOTAL TEMPERATURE DISTRIBUTIONS, 
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FIGURE 4-22 

VENTED NOZZLE, ENTRANCE TOTAL TEMPERATIJRE DISTRIBUTIONS, 
90' GEOMETRIC POSITION 
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FIGURE 4-24 

VENTED NOZZLE, ENTRANCE TOTAL TEMPERATURE DISTRIBUTIONS, 
112' GEOMETRIC POSITION 
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FIGURE 4-26 
COMPARISON OF ENTRANCE TOTAL PRESSURE DISTRIBUTIONS ON 
THRUST CALIBRATION NOZZLE AND "D" VENTED NOZZLE (1 12O) 

FIGURE 4-25 
COMPARISON OF ENTRANCE TOTAL PRESSURE DISTRIBUTIONS ON 

THRUST CALIBRATION NOZZLE AND "D" VENTED NOZZLE (0°) 
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i n  terms of cor rec ted  t h r u s t  ve rsus  nozzle c o r r e c t e d  flow. Also p l o t t e d  on 

Figure  4-27 i s  t h e  re fe rence  t h r u s t  d a t a  obtained with t h e  t h r u s t  c a l i b r a t i o n  

nozzle  f o r  cor rec ted  fan  speeds of 70, 80 and 90 percent .  F igure  4-27 i l l u s -  

trates t h e  e f f e c t s  of hood r o t a t i o n  angle  and VTO e x i t  a rea  changes on t h r u s t  

and the  r e s u l t a n t  v a r i a t i o n  of nozz le  cor rec ted  flow during t h r u s t  vec to r ing .  

The t h r u s t  d a t a  obtained with the "D" vented nozzle  were divided by t h e  

re fe rence  t h r u s t  values a t  t h e  corresponding cor rec ted  nozzle  flow i n  order 

t o  def ine nozzle  thrust c o e f f i c i e n t  data .  Figure  4-28 shows t h e  t h r u s t  

c o e f f i c i e n t  d a t a  as a funct ion o f  t h r u s t  v e c t o r  ang le  and is  based on t h e  90% 

fan speed data .  Also shown on Figure  4-28 i s  t h e  smal l  s c a l e  vec to r ing  per- 

formance es t imates  f o r  t h e  l a r g e  s c a l e  I'D" vented nozzle,  Agreement wi th in  

one t o  two percen t  i s  ind ica ted .  Comparison of t h e  l a r g e  s c a l e  VTO performance 

w i t h  small  s c a l e  t e s t  d a t a  i s  shown i n  Figure 4-29 i n  terms of t h r u s t  c o e f f i c i e n t  

versus  s p e c i f i c  nozzle cor rec ted  flow. The s o l i d  curve r e p r e s e n t s  t h e  est imated 

LF336/IrD" vented nozzle performance and was obtained v i a  the NPR - nozzle  

cor rec ted  flow c h a r a c t e r i s t i c s  measured w i t h  t h e  t h r u s t  c a l i b r a t i o n  nozzles  

and discussed i n  Sect ion 4.1.  The VTO t h r u s t  c o e f f i c i e n t  da ta  obtained by 

v a r i a t i o n  of t h e  nozzle VTO e x i t  a r e a  a r e  shown a s  the s o l i d  symbols and aga in  

i n d i c a t e s  agreement wi th in  one t o  two percen t  over t h e  range of test v a r i a b l e s .  

The r e l a t i o n s h i p  between the t h r u s t  v e c t o r  angle  and t h e  geometric hood 

p o s i t i o n  is  shown on Figure 4-30 f o r  both t h e  LF336 tests and previous  small 

scale t e s t s .  The large scale tests produced a s l i g h t l y  d i f f e r e n t  c h a r a c t e r i s t i c  

i n  t h a t  l e s s  f low tu rn ing  w a s  produced a t  in te rmedia te  hood ang les  and g r e a t e r  

tu rn ing  near t h e  VTO pos i t ion .  This  e f f e c t  may be due t o  t h e  d i f f e r e n c e  i n  

nozzle entrance condi t ions  which was uniform fo r  t h e  small s c a l e  t e s t s  and non- 

uniform for  t h e  l a r g e  s c a l e  t e s t s .  

The thrust vec tor  l i n e  of a p p l i c a t i o n  was def ined by t h e  perpendicular  

d i s t a n c e  (R,) between the t h r u s t  vec to r  d i r e c t i o n  and t h e  p ivo t  f o r  the r o t a t i n g  

hood elements. The d i s tance ,  Ro, was exper imental ly  determined v i a  the load 

ce l l  ax ia l  and normal components and a knowledge of t h e  load c e l l  l o c a t i o n s  wLth 

r e s p e c t  t o  t h e  hood pZvot. Figure  4-31 shows t h e  va r ia tdon  of % as a func t ion  

of vec to r ing  angle a s  recorded during the l o n g i t u d i n a l  t h r u s t  vec to r ing  t e s t s .  

I n  t h e  0' geometric p o s i t i o n  the t h r u s t  v e c t o r  l ies s l i g h t l y  below t h e  f a n  

c e n t e r l i n e  and a t  t h e  l l Z b  geometric p o s i t i o n  t h e  t h r u s t  vec to r  f a l l s  s l i g h t l y  

a f t  of t h e  hood cen te r  of curvature .  
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FIGURE 4-27 
"D" VENTED NOZZLE, LONGlTUDlNAL VECTORING PERFORMANCE, 

THRUST vs NOZZLE CORRECT FLOW 
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FIGURE 4-28 
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FIGURE 4-29 
"D" VENTED NOZZLE, VTO PERFORMANCE THRUST COEFFICIENT 
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FIGURE 4-30 
"D" VENTED NOZZLE, THRUST VECTOR ANGLE vs NOZZLE GEOMETRIC ANGLE 
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FIGURE 4-31 
"D" VENTED NOZZLE, THRUST VECTOR LINE OF 

APPLICATION vs THRUST VECTOR ANGLE 
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4 . 2 . 2  WALL PRESSURE AND TEMPERATURE MEASUREMENTS - Figures 4-32 through 4-36 
illuetrate the internal wall pressure distributions recorded during the thrust 

vectoring tests for the configuration with two spacers installed. In general 

the pressure distributions do not change significantly in character as the 

vector angle is varied. The pressure levels do vary in a manner consistent 

with the change in nozzle flow rate with vector angle. The nozzle entrance 

circumferential pressure distribution shows a radial gradient between the outer 

wall and the hub centerbody as was the case with the thrust calibration nozzle. 

However, with the "Dtt vented nozzle a circumferential gradient from the top to 

bottom exists which is indicative of a net downward turning of the flow at this 

station in the same direction as the deflected exit flow, Thus it is concluded 

that the "D" vented vectoring nozzle introduces a static pressure distortion a t  

the fan exit. The axial wall pressure distributions show the characteristic 

increase 2n wall pressure to near stagnation values as the flow proceeds through 

the rotating hoods and then a decrease to ambient at the nozzle exit. 

The corresponding wall temperature distributions are shown in Figures 4-37 

through 4-41. The wall temperatures at the nozzle entrance station also show 

a circumferential nonuniformity which increases as the vectoring angle is in- 

creased. A gradient from top to bottom of approximately 150°K exists at the 

132' geometric position, The temperature distribution throughout the nozzle 

fixed element and in the movable hood elements indicate that: significant mixing 

of the fan and turbine exhaust Elowe takes place within the nozzle. The maximum 

temperature recorded on the movable elements was 720°K arid occurred on the inner 

hood near the junction with the fixed structure elements. The wall temperatures 

decrease rapidly from this point to the nozzle exit station, For the 112" 

geometric positfon, the nozzle exit wall temperature was 309°K which is approxi- 

mately the temperature of the fan exit flow. 

4.3 VENTED NOZZLE GROUND EFFECTS TESTS 

A total of 4 test runs were conducted with the ground plane positioned 
over the nozzle test rig for the purpose of establishing the performance of the 

I'D" vented nozzle in ground effect. The tests were run with the nozzle in the 

112' geometric position and at ground plane heights of 272 centimeters (107 

inches), 177 centimeters (69.5 inches), 146 centimeters (57.5 inches) and 119 

centimeters (46.7 inches). The ground plane height was measured from the hood 

pivot point on the "D" vented nozzle. 
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FIGURE 4-32 
VENTED NOZZLE, WALL PRESSURE DISTRIBUTIONS, 

0' GEOMETRIC POSITION 
N F/@= 88.85% 
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FIGURE 4-34 
VENTED NOZZLE, WALL PRESSURE DISTRIBUTIONS, 

90° GEOMETRIC POSITION 
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FIGURE 4-36 
VENTED NOZZLE, WALL PRESSURE DISTRIBUTIONS, 

13z0 GEOMETRIC POSITION 
NF/@= 89.5% -- - 
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FIGURE 4-37 

"D" VENTED NOZZLE, WALL TEMPERATURE DISTRIBUTIONS, 
O0 GEOMETRIC POSITION 

N F/@= 88.85% 
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FIGURE 4-38 

"D" VENTED NOZZLE, WALL TEMPERATURE DISTR1BUTIONS, 
75O GEOME rRlC POSITION 

NF/@= 89.15% 
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FIGURE 4-40 
"D" VENTED NOZZLE, WALL TEMPERATURE DISTRIBUTIONS, 

1 1 2 O  GEOMETRIC POSITION 
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FIGURE 4-41 

"D1' VENTED NOZZLE, WALL TEMPERATURE DISTRIBUTIONS, 
13Z0 GEOMETRIC POSITION 

NF/fl= 89.35% 
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Reingestion of t h e  nozzle exhaust  f low i n t o  t h e  fan  and gaa generator  

i n l e t s  was ind ica ted  during each of ground plane t e s t s .  Figure  4-42 ahows t h e  

recorded temperature r i a e  at  both t h e  gae generator  and fan  i n l e t a  as a func t ion  

of ground h e i g h t  t o  fan diameter r a t i o .  A t  t h e  lowest  ground he igh t ,  foam 

i n s u l a t i o n  m a t e r i a l  which was a t t ached  t o  t h e  f a n  i n l e t  bellmouth was t o r n  

away by t h e  de f lec te2  exhaust flow. This test was terminated a f t e r  t h e  70% 

f a n  speed d a t a  was recorded t o  prevent p o s s i b l e  damage t o  t h ~  f a n  due t o  

re inges t ion  of Lhe i n s u l a t i o n  material. 

Figure  4-43 presen t s  the t h r u s t  ve rsus  f a n  speed c h a r a c t e r i s t i c s  recorded 

during t h e  ground e f f e c t s  test runs  and a l s o  out  of ground e f f e c t  d a t a  on t h e  

nozzle  f o r  comparison purposes, A d e f i n i t e  l o s s  i n  t h r u s t  i s  ind ica ted  a t  the  

low Jn speeds a s  t h e  r a t i o  ~ / D F  was reduced however, the  shape of t h e  t h r u s t  

versus  f a n  speed curves i n d i c a t e  an i n c r e a s e  i n  t h r u s t  a t  a f a n  speed or  90%. 

Figure 4-44 i s  a p l o t  of f a n  flow versus  f a n  speed recorded dur ing t h e  g ~ o u n d  

e f f e c t s  t e s t s  and i n d i c a t e s  t h a t  t h e  f a n  flow increased approximately 10% a t  

h/DF = 1 .6  compared t o  the  out  of ground e f f e c t  value. Figure  4-45 i l l u s t r a t e s  

t h e  ground e f f e c t s  d ~ t a  i n  terms of t h r u s t  ve rsus  nozzle  cor rec ted  flow, A t  

90% fan  speed, t h r u s t  and nozzle  flow increased whereas a t  reduced speeds r 3 r u s t  

decreased and nozzle flow increased.  This  tnc rease  i n  nozzle f low i s  i n d i c a t i v e  

of an i n c r e r s e  i n  e f f e c t i v e  nozzle e x i t  a r e a  with decreacing va lues  of h/Dp. 

This e f f e c t  is '-c c o n t r a s t  wi th  conventional exhaust  nozzle performance i n  

ground e f f e c ~  which general ly  e x h i b i t s  a decrease  i n  e f f e c t i v e  area .  The "D" 

vented nozzle ,  o u t  of ground e f f e c t  fs n o t  a f u l l  flowing nozz le  i n  t h a t  t h e  

exit region ad jacen t  t o  t h e  ven t ing  l i p  is void of exhaust f low and a l s o  a c t s  

as an i n l e t  region f o r  entrainment of ambient a i r  i n t o  t h e  exhaust  flow, The 

measured ground e f f e c t s  d a t a  suggests  t h a t  i n  ground e f f e c t  t h e  impinging 

exhaust p ressure  f i e l d  causes t h e  open region near  t h e  vent ing l i p  t o  become 

e f f e c t i v e  a s  exhaust flow area .  

Small s c a l e  pressur ized t e s t s  of t h e  "D" vented nozzle and a conventional 

f u l l  flowing nozzle a r e  shown i n  Figure  4-46. These d a t a  show t h e  expected 

decrease i n  flow for  t h e  conventional nozzle  and no change In mass flow down 

t o  h/D = .5 f o r  t h e  "D" vented nozzle.  

The d i f f e r e n c e  between t he  small and l a r g e  s c a l e  nozz1.e test! .  i s  no doubt 

a t t r i b u t a b l e  t o  the  presence of t h e  fan and t h e  o u t  of ground e f f e c t  nozzle  e x i t  

a r e a  s i z i n g  po in t .  I n  e i t h e r  case  t h e  vented lower elbow corner  i n  t h i s  nozzle  
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FIGURE 4-42 
FAN AND GAS GENERATOR TEMPERATURE RISE DURING 

GROUND EFFECTS TESTS 
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.. - 

FIGURE 4-43 
"D" VENTED NOZZLE, GROUND EFFECT PERFORMANCE, 

THRUST vs FAN SPEED CHARACTERISTICS 
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FIGURE 4-44 
"D" VENTED NOZZLE: GROUND EFFECT PERFORMANCE, 

FAN FLOW vs FAN SPEED CHARACTERISTICS - - - 
116 
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FIGURE 4-45 
"D"-VENTED NOZZLE, GROUND EFFECT PERFORMANCE, 

TtiRUST vs NOZ_Z_CE-CORRECTED FwW - - - -  - -  
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FIGURE 448 
"D" VENTED NOZZLE, GROUND EFFECT MASS FLOW PERFORMANCE 

Small Scale Test Data 

NESrED "D" VENTED NOZZLE 2-0 RECTANGULAR NOZZLE 

rNESTED "DM VENTED NOZZLE, 1.1 G NPR G 1.5 
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design appears  t o  be s e l f  r e l i e v i n g  wi th  r e s p e c t  t o  e x i t  a r e a  when opera t ing  

i n  ground e f f e c t .  The s i g n i f i c a n c e  of t h i s  f e a t u r e  on t h r u s t  performance i n  

ground e f f e c t  i s  a funct ion of t h e  f a n  des ign c h a r a c t e r i s t i c s  and the  o u t  of 

ground e f f e c t  nozzle s i z i n g  p o i n t .  The v a r i a t i o n  of t h r u s t  performance i n  

ground e f f e c t  wi th  fan  speed recorded on LF336 t e s t s  i n d i c a t e s  f u r t h e r  t h a t  

t h e  nozzle pressure r a t i o  is a l s o  an important parameter a f f e c t i n g  ground 

e f f e c t  performance. 

4.4 "D" VENTED NOZZLE, THRUST REDUCTION MODUL-ATLON TESTS 

Thrust  r educ t ion  modulation was i n v e s t i g a t e d  during t h r e e  t e s t  runs: two 

runs wi th  t h e  nozzle p o s i t i o n  a t  112' and one run a t  t h e  90' geometric pos i t ion .  

Two p o s i t i o n s  of t h e  TRM p o r t ,  33% and 100% open, were evaluated at the  112' 

nozzle p o s i t i o n ,  whereas the combination of spo i lage  and yaw vector ing was 

t e s t e d  dur ing the 90' geometric run. 

Thrust  ve rsus  f a c  speed performance recorded wi th  t h e  nozzle  a t  112" and 

the,TRM p o r t  closed,  33% open and 100% open i s  shown on Figure 4-47. Corres- 

ponding fan f low da ta  i s  presented i n  Figure 4-48 and shows t h a t  opening t h e  

TlU4 p o r t  appears  as an  i n c r e a s e  i n  nozzle  e f f e c t i v e  area, Thrust  ve rsus  nozzle  

corrected f low information f s  shown on Figure  4-49 and was used t o  e s t a b l i s h  

t h e  t h r u s t  c o e f f i c i e n t  d a t a  of Figure  4-50. Figure 4-50 shows t h e  nozzle 

t h r u s t  c o e f f i c i e n t  as a func t ion  of t h e  r a t i o  of TRM open area t o  riozzle entrance 

area .  S m a l l  s c a l e  TRM performance f o r  t h e  "Di' vented nozzle  is  a l s o  shown on 

Figure 4-50 f o r  com?arison. General  agreement between t h e  large and smal l  s c a l e  

performance was obtained f o r  v a r i a t i o n  of t h e  TRM port: open a rea  r a t i o .  The 

dev ia t ion  between l a r g e  s c a l e  and smal l  s c a l e  performance a t  t h e  c losed p o r t  

p o s i t i o n  i s  pr imar i ly  a s s o c i a t e d  wi th  t h e  d i f f e r e n c e  i n  s p e c i f i c  nozzle  corrected 

flow f o r  t h e  two t e s t s .  

The performance obta ined w i t h  t h e  nozzle  a t  the 90' geometric p o s i t i o n  wi th  

the  TRM port f u l l  open and the yaw vane d e f l e c t e d  15' i s  a l s o  shown on Figure 

4-50 and i n d i c a t e s  a nozzle  t h r u s t  c o e f f i c i e n t  of 0.76. 

4.5 'ID" VENTED NOZZLE, YAW VECTORING TESTS 

Several  tests were conducted wi th  t h e  e x i t  yaw vane d e f l e c t e d  e i t h e r  IOo 

o r  15', f o r  the purpose of establishing t h e  yaw vec tor ing  capability of t h e  "D" 

vented nozzle.  A s  discussed in Sect ion 3,  p o s t  test a n a l y s i s  revealed the  s i d e  

fo rce  measurement technique t o  be inadequate t o  de f ine  the s i d e  f o r c e  angle.  

Resul tant  t h r u s t  and fan  flow d a t a  were obtained   ring t h e  yaw vec to r ing  tests. 

Figure 4-51 shows t h e  r e s u l t a n t  t h r u s t  ve rsus  f a n  speed d a t a  f o r  yaw vane 
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FIGURE 4-47 
"D" VENTED NOZZLE, TRM PERFORMANCE, 

THRUST vs FAN SPEED CHARACTERlSf ICS 
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FIGURE 449 
"D" VENTED NOZZLE, TRM PERFORMANCE, 
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FIGURE 4-50 
"8" VENTED NOZZLE, TRM PERFORMANCE THRUST COEFFICIENT 
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FIGURE 4-51 
'"D" VENTED NOZZLE, YAW VECTORING PERFORMANCE, 

112O GEOMETRIC POSITION, THRUST vs FAN 
SPEED CHARACTERISTICS 
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deflections of Om, lo", and 15' at the 112" nozzle position. Corresponding 

fan flow data i a  plotted in Figure 4-52. No discernible changea i n  resultant 

thrust or fan flow were recorded for the range of yaw vane deflect ions tested. 

A similar resul t  was obtained a t  a nozzle posit ion of 75' with the yaw vane at  

15' deflection as shown in Figures 4-53 and 4-54. 



FIGURE 4-52 
"D" VENTED NOZZLE, YAW VECTORING PERFORMANCE, 

1 1 2 O  GEOMETRIC PERFORMANCE, FAN FLOW vs FAN 
SPEED CHARACTERISTICS 

CORRECTED 
FAN FLOW 

w\/KI6 

CORRECTED FAN SPEED, NF/@-PERCENT 
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FIGURE 4-53 
"D" VENTED NOZZLE, YAW VECTORING PERFORMANCE, 

75' GEOMETRIC POSITION, THRUST vs FAN 
SPEED CHARACTERISTICS 
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CORRECTED FAN SPEED, NF/@- PERCENT 
0~1n.ma7.a? 

MCDONNELL AIRCRAFT COMPLINY 

66 



FIGURE 4-54 
"D" VENTED NOZZLE, YAW VECTORING PERFORMAIVCE, 

75O GEOMETRIC POSITION, FAN FLOW us FAN 
SPEED CHARACTERISTICS 

CORRECTED 
FAN FLOW 
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5. CONCLUSIONS 

The l a r g e  s c a l e  tests o f  t h e  b o i l e r p l a t e  "D" vented nozz le  were conducted 

t o  e s t a b l i s h  vector ing performance ' ' int '  and "out" of ground e f f e c t ,  t h r u s t  

spo i l age  c a p a b i l i t y ,  f an /nozz le  compat ib i l i  t y ,  and nozz le  w a l l  temperature 

d i s t r i b u t i o n s  and t o  o b t a i n  a comparison of  l a r g e  s c a l e  nozz le  performance 

wi th  small s c a l e  t e s t  d a t a .  The conclusions der ived as a r e s u l t  of t h e  l a r g e  

a c a l e  t e s t s  a r e  presented below: 

o Longi tudinal  and VTO t h r u s t  vec to r ing  performance of  the "Dlt vented 

n o z z l e ,  out  of ground e f f e c t ,  I s  s t r o n g l y  dependent upon nozz le  

p r e s s u r e  r a t i o  and n o z z l e  cor rec ted  flow. Comparison of t h e  l a r g e  

s c a l e  vec to r ing  performance wi th  smal l  s c a l e  t e s t  data  showed good 

agreement, wi th in  1% t o  2%,  and i n d i c a t e s  t h a t  nozzle  s c a l e  e f f e c t s  

between 4.5% and 50% a r e  small .  

o I n  ground e f f e c t ,  t h e  vented lower corner  of t h e  I'D" vented configura- 

t i o n  provides  a s e l f - r e l i e v i n g  e x i t  a r e a  f e a t u r e  which can be  used t o  

reduce o r  e l i m i n a t e  back p ressure  e f f e c t s  on the propuls ion system. 

The 'ID" vented nozz le  w i t h  t h e  LF336/J85 system produced an i n c r e a s e  

i n  v e r t i c a l  t h r u s t  performance a t  t h e  maximum fan  speed (90%) a s  t h e  

ground he igh t  t o  f a n  diameter r a t i o  (h/DF) was reduced t o  1.6. 

A decrease  i n  v e r t i c a l  t h r u s t  was measured a t  reduced fan  speeds as 

~ / D F  was reduced. 

o Thrust reduct ion modulation by p o r t i n g  exhaust  f low through t h e  top 

of t h e  nozzle  i s  a n  e f f e c t i v e  method t o  reduce v e r t i c a l  t h r u s t  l e v e l s  

f o r  a i r c r a f t  c o n t r o l  purposes. Reduction of t h e  nozz le  t h r u s t  c o e f f i -  

c i e n t  t o  a value  of 0.7 was demonstrated on t h e  LF336 fan  system. 

General  agreement between l a r g e  and smal l  scale T-Kkl performance was 

obtained. 

o The compat ib i l i ty  o f  t h e  "Dtt vented nozz le  wi th  a t u r b o t i p .  f an  system 

was demonstrated by t h e  s u c c e s s f u l  completion of a l l  v e c t o r i n g  and 

c o n t r o l  func t ion  tests wi th  no d e t e c t a b l e  adverse  e f f e c t s  on f a n  

opera t ion .  Close coupled vec to r ing  of t h e  t u r b o t i p  f a n  exhaust  from 

0' t o  117' was accomplished wi th  l i t t l e  d i s t o r t i o n  of t h e  fan  e x i t  

t o t a l  pressure o r  temperature  d i s t r i b u t i o n s .  Circumferent ia l  d i s t o r -  

t i o n  of  fan e x i t  s t a t i c  p ressure  d i s t r i b u t i o n  and t u r b i n e  e x i t  flow 

to ta l  condi t ions  was in t roduced by t h e  vec to r ing  nozz le ,  t h e  r e s u l t  
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of which impl ies  nonuniform work e x t r a c t i o n  by t h e  t i p  tu rb ine .  The 

v a r i a t i o n  i n  t u r b i n e  work e x t r a c t i o n  caused by t h e  nozzle  is w e l l  

w i t h i n  t h e  d i s t o r t i o n  to le rances  of t u r b o t i p  f a n  systems as  evidenced 

by success fu l  test opera t ion  o f  t u r b o t i p  f a n s  wi th  L80° p a r t i a l  a r c  

t u r b i n e  admission. 

o The s t r u c t u r a l  temperatures  wi th in  t h e  "D" vented nozz le  a r e  r a p i d l y  

reduced below the  t i p  t u r b i n e  exhaust temperature l e v e l  as a r e s u l t  

o f  mixing processes w i t h i n  t h e  nozzle .  For t h e  LF336 tests t h e  maximum 

temperature recorded on t h e  two movable hood elements was approximately 

400°K (260°F). 

o The c a p a b i l i t y  of t h e  "Dl' vented nozz le  t o  accoinplish s i d e  f o r c e  

v e c t o r i n g  was n o t  demonstrated due t o  i n s u f f i c i e n t  test ins t rumenta t ion.  

No l o s s  i n  r e s u l t a n t  t h r u s t  performance was recorded dur ing d e f l e c t i o n  

of t h e  exit yaw vane up t o  15O. 

o  The l a r g e  s c a l e  performance t e s t s  have confirmed t h e  v a l i d i t y  of t h e  

small s c a l e  performance d a t a  base  f o r  the "D" vented nozzle.  Applica- 

t i o n  of this d a t a  b a s e  t o  advanced t u r b o t i p  fan systems such a s  t h e  

General E l e c t r i c  LCF459/J97 system i n d i c a t e s  that t h e  "Dl1 vented 

nozz le  will provide  a n  e f f i c i e n t  l i f t / c r u i s e  thrust:  v e c t o r i n g  system 

f o r  use on an advanced l i f t / c r u i s e  fan V/STOL a i r c r a f t .  
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APPENDIX A 

DATA ANALYSIS PROCEDURE 

Corrected Parameters 

Fan and nozzle performance was converted t o  cor rec ted  p a r a a ~ e t r i c  no ta t ions .  

The fan c o r r e c t i o n  f a c t o r s  were based on ambient temperature and barometric 

pressure  measurements which were recorded dur ing each t e s t ;  thus ,  

Nozzle corrected flow r a t e s  were corrected t o  nozzle en t rance  t o t a l  

condit ions where 

Nozzle Mass Flow Rates 

The t o t a l  mass flow r a t e  through t h e  tesL nozzle  was comprised of t h e  sum 

of LF336 fan flow ar!d 585 gas generator  exhaust f h w .  

LF336 f a n  flow was e s t a b l i s h e d  by means of t h e  l a r g e  diameter,  153.61 crn 

(60.5 in.)  fan bellmouth. Measurements of t h e  w a l l  s t a t i c  p ressures  a t  t h e  

th roa t  s t a t i o n  of t h e  bellmouth were used i n  conjunction wi th  a c a l i b r a t i o n  

curve f o r  this  hellmouth t o  determine t h e  fan flow rate. The gas generator  

i n l e t  flow was establLshed i n  a s i m i l a r  manner wi th  a standard 585-5 bellmouth 

supplied by General E l e c t r i c  Go. The gas generator  exhaust  flow was colnputed 

from t h e  sum of inlet flow, f u e l  f low and Lnters tage bq.=ed flows, where 

Fuel f low was d i r e c t l y  measured w i t h  a t u r b i n e  flowmeter whereas the  

i n t e r s t a g e  bleed flow was determined from measurements of the  bleed valve 

p o s i t l a n  and a c a l i b r a t i o n  curve of t h e  b leed  va lve  geometry. 

Nozzle Entrance Conditions - 
Average va lues  of nozz le  entrance t o t a l  p ressures  and temperatures were 

computed us ing  the  r a d i a l  temperature ana p r e s s u r e  i n f o r z a t i o n  obtained wi th  

'.ke Pour nozzle  entrance t r a v e r s i n g  probes. The p ressure  and temperature d a t a  

,l.b:xined from each probe dur ing the inward and outward t r z v e r s e s  were separa te ly  
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curve f i t t e d  and then averaged t o  account f o r  thc lack o f  adequate s t a b i l i z a t i o n  

time at  each radial pos i t ion .  The fuur curve f i t t e d  rad ia l  d ie tr ibut ions  were 

then ueed t o  calculate area weighted values o f  pressure and tenperature for 

both the fan stream and turbine stream. Phs equations used f o r  the area 

weighted propert ies  are  given below: 

where 

and 

where 

The area weighted fan and turbine propert ies  were then use& to  obtain mas  

weighted n o z z l e  entrance properties as given helow: 

and 
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