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FOREWORD

This is the Final Report on IIT Research Institute
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1976. The work performed in the preceding period August 1,
1972 to June 30, 1974 was reported in the First Interim Report,
NASA CR-134826 dated March 1975. Dr. C.C. Chamis was the
NASA-Lewis Project Manager. Dr. I.M. Daniel of IITRI was the
principal investigator. Additional contributions to the work
reported herein were made by Dr. T. Liber and Messrs. M. Iyengar,
and T. Niiro.
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LAMINATION RESIDUAL STRESSES IN HYBRID COMPOSITES

ABSTRACT

An experimental investigation was conducted to study
lamination residual stresses for various material and loading
parameters. The effeets of hybridization on residual stresses
and residual properties after thermal cycling under load were
determined in angle-ply graphite/Kevlar/epoxy and graphite/S-
glass/epoxy laminates. Residual strains in the graphite plies
are not appreciably affected by the type and number of hybridizing
plies. Computed residual stresses at room temperature in the
S-glass plies reach values up to seventy-five percent of the
transverse strength of the material. Computed residual stresses
in the graphite plies exceed the static strength by approximately
ten percent. In the case of Kevlar plies computed residual
stresses far exceed the static strength indicating possible
early failure of these plies. Static testing of the hybrids
above indicates that failure is governed by the ultimate strain
of the graphite plies. 1In thermally cycled hybrids, in general,
residual moduli were somewhat lower and residual strengths were

higher than initial values.
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IITRI Research Project No. D6073-1II
LAMINATION RESIDUAL STRESSES IN HYBRID‘COMPOSITES

1.0 INTRODUCTION

In the désign and evaluation of composite structures one
must take into account any preexisting residual stresses and
superimpose them onto those stresses produced by subsequent
mechanical and thermal loading. Lamination residual stresses in
composite laminates are produced during curing as a result of
the anisotropic thermal deformations of the various plies. The
analysis of these stresses has been the subject of many recent
analytical and experimental investigations.1-6 Residual stresses
are a function of many parameters, such as ply orientation and
stacking sequence, fiber content, curing temperature and other
variables.l"2 They can reach values comparable to the transverse
strength of the ply and thus induce cracking of that ply within
the laminate. Residual stresses in each ply are equilibrated with
interlaminar shear stresses transmitted from adjacent plies and

thus may result in ply separation.

Recognizing the need to verify the theory experimentally,
the NASA-Lewis Research Center has sponsored a two-phase multi-
task program with IIT Research Institute under Contract No.
NAS3-16766. This was a systematic experimental program with the
following objectives: (1) to measure directly the magnitude of
lamination residual strains in a variety of angle-ply laminates of
various materials and hybrids thereof and evaluate their dependence
on composite design variables, (2) to evaluate their influence
on the structural integrity, stiffness and strength of the composite,
(3) to study their relationship with composite response to
dynamic loading and (4) to provide experimental data for verification,
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extension and application of existing residual stress theory.

The first phase of this program consisted of five tasks:
(1) Literature survey and materials selection, (2) Residual
strains and static strength, (3) Evaluation of stress relaxation,
(4) Cyclic loading and residual strength, and (5) Effects of
laminate configuration variables. Results of this ﬁhase of
work have been described in the first interim report5 and various
publications.3’7’8 Embedded strain gage techniques were
developed and used for measuring residual strains during cﬁring.
It was shown that strains recorded in the first part (heating)
of the curing cycle are not significant as they correspond to
the fluid state of the matrix resin. Strains measured in the
second part (cooling) of the curing cycle correspond to .
differential thermal expansion of the various plies. It was
concluded also that the extent of relaxation of residual stresses
is low. Tensile load cycling, thermal cycling and thermal
cycling under tensile load did not have a measurable influence
on residual strength and stiffness of the laminates. Stacking
sequence variations of the same basic construction dia not have
an effect on residual stresses and residual properties after
thermal cycling under load.

The objective of the second phase of this investigation
described in this final report was to investigate the influence
of hybridization on curing residual strains and residual properties
after thermal cycling in angle-ply laminates. The laminates
investigated were graphite/Kevlar 49/high modulus epoxy and
graphite/S-glass/high modulus epoxy of [O/EAS{O]S and [+45/0,]
layups where half or all of the 0-degree plies were Kevlar 49 or
S-glass. The same matrik, ERLA 4617, was used in all three
material systems to insure uniform curing of the various plies
and to produce more compatible hybrids. Residual strains during
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curing were determined using previously developed techniques,
described in the First Interim Report.5 Uniaxial tensile
properties of these laminates under static loading to failure
were determined and compared with similar properties after

thermal cycling under load.
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2.0 MATERIAL QUALTIFICATION AND CHARACTERIZATION

2.1 Material Qualification

The three basic materials, HM-S graphite/ERLA 4617,
Kevlar 49/ERLA 4617 and S-glass/ERLA 4617 were ordered and
received in prepreg form, (Fothergill and Harvey, Ltd.,
Composite Materials Division, Summit iittleborough, Lancashire,
England). Unidirectional 15-ply laminates were prepared and
the standard qualification tests were conducted. Results of
these tests for the three materials are tabulated in Tables 1
to 6.

It can be seen from these tables that the results
for the graphite/high modulus epoxy are better than those
obtained by the manufacturer. In the case of Kevlar 49/epoxy,
however, the qualification results indicate strength values
lower than those suggested by the manufacturer.

2.2 Laminate Fabrication

Laminate plates were fabricated from each material system
to provide specimens for the qualification testing, characterization
of unidirectional laminates and residual stress studies.

Each plate was layed up from prepreg sheets on a flat
metal plate according to established procedures. The prepreg
layup was vacuum-bagged to the autoclave table using a teflon
film sealed by means of '"Prestite' tape vacuum sealant. The
curing §chedu1e used for all three materials is as follows:

Apply full vacuum to bagged layup

Pressurize autoclave to 587 kPa (85 psi)

Heat to 444° degK (340°F) and hold for 7 hours
Allow to cool to room temperature

W N

IIT RESEARCH INSTITUTE
4



Table 1
QUALIFICATION FLEXURE TESTS ON HM-S GRAPHITE/ERLA 4617

Specimen Thickness Width Flexural Strength
Number cm (in) cm (in) MPa (ksi)

0.178 (0.070) 1.280 (0.504) 1110 (161)
0.175 (0.069) 1.273 (0.501) 1035 (150)
0.175 (0.069) 1.283 (0.505) 970 (141)
0.178 (0.070) 1.283 (0.505) 1130 (164)
0.170 (0.067) 1.288 (0.507) 1050 (152)

NLSWN

Average: 1060 (154)
Manufacturer's Data: 1030 (149)

Table 2
QUALIFICATION INTERLAMINAR SHEAR TESTS ON HM-S GRAPHITE/ERLA 4617

Specimen Thickness Width Shear Strength
Number cm (in) cm  (in) MPa (ksi)
1 0.163 (0.064) 0.635 (0.250) 55.6 (8.06)
2 0.160 (0.063) 0.653 (0.257) 58.4 (8.47)
3 0.160 (0.063) 0.650 (0.256) 61.3 (8.88)
4 0.160 (0.063) 0.635 (0.250) 55.2 (8.00)
5 0.160 (0.063) 0.658 (0.259) 61.6 (8.93)
Average: 58.4 (8.47)
Manufacturer's Data: 54.5 (7.90)
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Table 3
QUALIFICATION FLEXURE TESTS ON KEVLAR-49/ERLA 4617

Specimen ' Thickness Width Flexural Strength
Number . cm (in) cm (in) MPa (ksi)
1 0.175 (0.069) 1.260 (0.496) 500 (72)

2 0.170 (0.067) 1.262 (0.497) 500 (73)
3 0.178 (0.070) 1.270 (0.500) 510 (74)
4 0.188 (0.074) 1.260 (0.496) 500 (73
5 0.168 (0.066) 1.262 (0.497) 500 (73)
6 0.165 (0.065) 1.260 (0.496) 500 (72)
N ‘ Average: 500 (73)
Manufacturer's Data: 610 (88)

Table &

QUALIFICATION INTERLAMINAR SHEAR TESTS ON KEVLAR 49/ERLA 4617

Specimen Thickness Width Shear Strength
Number cm (in) cm (in) MPa (ksi)
1 0.163 (0.064) 0.645 (0.254) 27.4 (3.97)
2 0.160 (0.063) 0.648 (0.255) 27.4 (3.97)
3 0.168 (0.066) 0.648 (0.255) 28.3 (4.10)
4 0.168 (0.066) 0.650 (0.256) 27.9 (4.04)
5 0.165 (0.065) 0.645 (0.254) 28.2 (4.09)
, 6 0.160 (0.063) 0.648 (0.255) 28.4 (4.11)
‘ - - Average: 27.9 (4.05)
: Manufacturer's Data: 49.7 (7.20)
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Table 5
QUALIFICATION FLEXURE TESTS ON S-GLASS/ERLA 4617

Specimen Thickness Width Flexural Strength
Number __cm (in) cm  (in) MPa (ksi)

1 0.180 (0.071) 1.265 (0.498) 1309 (190)

2 0.193 (0.076) 1.270 (0.500) 1245 (180)

3 0.185 (0.073) 1.262 (0.497) 1495 (217)

4 0.185 (0.073) 1.250 (0.492) 1313 (190)

5 0.180 (0.071) 1.262 (0.497) 1415 (205)

Average: 1355 (196)

Table 6
QUALIFICATION INTERLAMINAR SHEAR TESTS ON S-GLASS/ERLA 4617

Specimen Thickness Width Shear Strength
Number cm (in) cm (in) MPa (ksi)

1 0.170 (0.067) 0.630 (0.248) 95.6 (13.9)

2 0.168 (0.066) 0.632 (0.249) 96.0 (13.9)

3 0.173 (0.068) 0.630 (0.248) 89.0 (12.9)

4 0.178 (0.070) 0.638 (0.251) 090.4 (13.1)

5 0.168 (0.066) 0.630 (0.248) 93.3 (13.5)

Average: 92.9 (13.5)
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This procedure is slightly different from that used previously
for the graphite/high modulus epoxy, in that the recommended 6-
hour postcuring was combined with the l-hour curing.

2.3 Characterization of Unidirectional Laminates

Two unidirectional [06] specimens 2.54 cm (1 in.) wide
and 23 cm (9 in.) long of each material were tested to determine
O-degree tensile properties. Stress-strain curves obtained are
shown in Figs. 1 to 6. For each specimen, the initial axial
modulus, Poisson's ratio and strength were computed from the data.
Results are indicated on the respective graphs and summarized later
in Tables 7 to 12. Strains in the graphite/epoxy are linear to
failure. 1In the Kevlar/epoxy they are linear up to a stress of
approximately 965 MPa (140 ksi) thereafter, there seems to be
a stiffening of the specimen. The strains in the S-glass/epoxy
are linear up to approximately 1450 MPa (210 ksi), thereafter
they increase at a faster rate. The graphite/epoxy has the lowest
ultimate strain (0.0035) and the S-glass/epoxy has the highest
(0.035), ten times that of graphite/epoxy.

Two unidirectional [908] specimens 2.54 cm (1 in.) wide
and 23 cm (9 in.) long of each material were tested to determine
90-degree tensile properties. Stress-strain curves are shown
in Figs. 7 to 13. Results are indicated in the graphs and
tabulated in Tables 7 to 12. Strains in the graphite/epoxy
and Kevlar/epoxy are linear to failure. 1In the S-glass/epoxy
they become nonlinear above a stress of 28 MPa (4 ksi). The
Kevlar/epoxy exhibited unusually low strength (5.3 MPa; 765 psi),
much lower than published values.
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Compression tests were conducted with the IITRI fixture.
The specimens were 13.5 cm (5.3 in.) long and 0.63 cm (0.25 in. )
wide. The 0-degree graphite/epoxy and Kevlar/epoxy spec1mens
were 8-ply thick with a gage section 0.63 cm (0.25 1n.) long.
The 90-degree graphite/époxy and Kevlar/epoxy specimens were
15-ply thick and had a gage section 0.95 cm (0.375 in.) long.
All S-glass/epoxy specimens, prepared and tested last, were
20-ply thick with a gage section 0.95 in. (0.375 in.) long. All
compression specimens were instrumented with longitudinal strain
gages on both sides. Strain gages were monitored throughout
loading to failure. Stress-strain curves and the computed
modulus and strength values are shown in Figs. 14 to 22. Figures
14 and 16 for the 0-degree tests on graphite/epoxy and Kevlar/
epoxy show nonlinear behavior not associated with buckling.
Figures 15 and 17 for similar specimens show linear response
to failure. Initial modulus and strength in both cases seem to
be within expected experimental variability. In the S-glass/
epoxy the O-degree specimens respond linearly up to approximately
890 MPa (130 ksi), but their strength is appreciably lower than
the corresponding tensile strength. The measured compressive
modulus also appears somewhat lower than the corresponding O-
degree tensile modulus. The response of the 90-degree compression
specimens is nonlinear, apparently due to material response. The
nonlinearity in the S-glass/epoxy specimens is highly pronounced
above a stress of approximately 48 MPa (7 ksi). Strain data for
the 90-degree Kevlar/epoxy specimens were erratic and inadequate
due to their low strength. Most specimens displayed negligible
bending in compression. In all cases the 0-degree compressive
strength was lower than the corresponding tensile strength; it
was relatively higher for the graphite/epoxy and lowest for the
Kevlar/epoxy. The 90-degree compressive strength is always
- appreciably higher than the corresponding tensile strength.
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In-plane shear properties were determined by testing
two 10-degree off-axis unidirectional specimens of each
material. The specimens were 1.25 cm (0.5 in.) wide, 6-ply
thick, and 25.4 cm (10 in.) long. They were instrumented
with a three-gage rosette on each side. Shear stress and
shear strain computed from the measured data are plotted in
Figs. 23 to 27. The in-plane shear modulus and shear strength
are also shown in the figures. Of the two graphite/epoxy
specimens the one described in Fig. 23 apparently failed
prematurely at a low strength. The second specimen (Fig. 24)
shows linear response up to a shear stress of 16 MPa (2.3 ksi).
The behavior of the S-glass/epoxy becomes nonlinear at a small
fraction of its shear strength (17 MPa; 2.5 ksi). .

All of the characterization results obtained for the
three materials tested are summarized in Tables 7, 8 and 9.
Results for the graphite/epoxy are comparable to those obtained
for the same material, but of lower fiber volume ratio, tested
in Task II.5 Properties for Kevlar/epoxy were compared withﬁ
similar data available from the manufacturer. The latter
are summarized in Table 10. The longitudinal tensile properties
measured are in good agreement, but’in general the other

properties measured are lower than those published.
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) Table 7
PROPERTIES OF UNIDIRECTIONAL GRAPHITE/HIGH MODULUS EPOXY
(HM-S/ERLA 4617)

No. of
Property Specimens | . Value Range
Ply Thickness 0.114 mm (0.0045 in)
Fiber Volume Ratio, FVR 0.61
Longitudinal Modulus, E11 2 218.7-220.8 GPa(3l.7-32.0x106psi)
Transverse Modulus, E22 2 7.04 GPa (1.02 x 106 psi)
Shear Modulus, Gy, 2 6.0-7.3 GPa(0.86-1.06 x 10° psi)
Major Poisson's Ratio, Vio 2 0.28-0.34
Minor Poisson's Ratio, Vo1 2 0.02
Longitudinal Tensile 2 631-1007 MPa (91.5-146 ksi)
Strength, S11T -
Ultimate Longitudinal 2 0.0029-0.0041
Tensile Strain,e%lT
Longitudinal Compressive 2 642-690 MPa (93-100 ksi)
Stréngth, Sy,
Ultimate Longitudinal, 2 0.0033-0.0045
Compressive Strain, €11C
Transverse Tensile 2 33-39 MPa (4800-5600 psi)
Strength, SZZT
Ultimate Transverse 2 0.0048-0.0054
Tensile Strain, GBZT
Transverse Compressive 2 143-159 MPa (20.8-23 ksi)
Strength, SZZC
Ultimate Transverse u 1 0.0277
Compressive Strain, ¢
22C
Intralaminar Shear 2 30-72 MPa (4200-10,400 psi)
Strength, 512
Ultimate Intralaminar 2 0.0025-0.0061
Shear Strain, e%z
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Table 8

PROPERTIES OF UNIDIRECTIONAL KEVLAR/HIGH MODULUS EPOXY

(Kevlar 49/ERLA 4617)

No. of
Property Specimens Value Range
7

Ply Thickness 0.114 mm (0.0045 in.)
Fiber Volume Ratio, FVR 0.65
Longitudinal Modulus, E;; ° 2 69.0 GPa (10.0 x 10% psi)
Transverse Modulus, E22 2 4.35-4.67 GPa

(630,000-680,000 psi)
Shear Modulus, G12 2 2.37-2.60 GPa

(340,000-380,000 psi)
Major Poisson's Ratio, Vi 2 0.39-0.42
Minor Poisson's Ratio, Voy 2 0.01-0.02
Longitudinal Tensile 2 1364-1481 MPa (198-215 ksi)
Strength, S11T ‘
Ultimate Longitudinal 2 0.0189-0.0198
Tensile Strain, ¥

11T
Longitudinal Compressive 2 180-207 MPa (26-30 ksi)
Strength, Sllc
Ultimate Longitudinal 2 0.0034-0.0048
Compressive Strain, €Y
11C
Transverse Tensile 2 4.8-5.8 MPa (700-830 psi)
Strength, S
22T
Ultimate Transverse 2 0.0011-0.0012
Tensile Strain, €Y
22T )

Transverse Compressive 1 64 MPa (9,200 psi)
Strength, SZZC
Intralaminar Shear 2 23.9-24.1 MPa (3460-3500 psi)
Strength, S12 .
Ultimate Intralaminar 2 0-0049-0.0054

: u
Shear Strain, €yr
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Table 9

PROPERTIES OF UNIDIRECTIONAL S-GLASS/HIGH MODUtUS EPOXYA

(S-Glass/ERLA 4617)

Property

Ply Thickness
Fiber Volume Ratio, FVR
Léngitudinal Modulus, E11

Transverse Modulus, E22

Shear Modulus, G12
Major Poisson's Ratio, Vi
Minor Poisson's Ratio, Voy

Longitudinal Tensile
Strength, S11T

Ultimate Longitudinal
Tensile Strain, E%IT

Longitudinal Compressive
Strength, Sllc

Ultimate Longitudinal
Compressive Strain, E%IC

Transverse Tensile
Strength, SZZT

Ultimate Transverse
Tensile Strain, 532T

Transverse Compressive
Strength, SZZC

Ultimate Transverse
Compressive Strain, E%ZC

Intralaminar. Shear
Strength, 812

Ultimate Intralaminar
Shear Strain, E%Z

11T RESEARCH

No. of
Specimens Value Range
0.119 mm (0.0047 in.)
0.58
2 47.8-52.1 GPa
(6.9-7.5 x 106 psi)
3 19.1-19.3 GPa
(2.77-2.80 x 106 psi)
1 7.2 GPa (1.04 x 10° psi)
2 0.29
3 0.10
2 1587-1960 MPa (230-284 ksi)
2 0.0325-0.0387
2 942-1072 MPa (137-155 ksi)
2 0.0187-0.0218
3 72-85 MPa (10.5-12.4 ksi)
3 0.0041-0.0052
2 174-194 MPa (25-28 ksi)
2 0.0142-0.0187
2 69-72 MPa (10.0-10.4 ksi)
1 0.0101
INSTITUTE
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Table 10

PROPERTIES OF UNIDIRECTIONAL KEVLAR-49/EPOXY

(DuPont Published Data)

Property

Value

Fiber Volume Ratio, FVR
Longitudinal Modulus, Ell
Transverse Modulus, E22

Shear Modulus, G12

Major Poisson's Ratio

Longitudinal Tensile Strength,
ST

Ultimate Longitudinal Tensile
Strain, €%1T

Longitudinal Compressive
Strength, SllC‘

Transverse Tensile Strength,
S22t

Ultimate Transverse Tensile
Strain, Egzr

Transverse Compressive
Strength, SZZC

Intralaminar Shear Strength,
S
12

0.60
76 GPa (11.0 x 109 psi)
5.5 GPa (800,000 psi)
2.07 GPa (300,000 psi)
0.34

1379 MPa (200 ksi)

0.018

276 MPa (40 psi)
30 MPa (4,300 psi)
0.006

138 MPa (20 ksi)

60 MPa (8700 psi)

11T RESEARCH

14

INSTITUTE

- P el



3.0 RESIDUAL STRAINS

3.1 Experimental Procedure

The specimens were 2.54 cm x 22.9 cm (1 in. x 9 in.)
eight-ply graphite/Kevlaf 49/epoxy (HM-S Graphite/Kevlar 49/ ;
ERLA 4617) and graphite/S-glass/epoxy (HM-S Graphite/S-Glass/ .
ERLA 4617) laminates of the following constructions: :

e

[0%/+45C/0%1,, 10874458708, 1+45C70%70%1,, [+45%70,%1

[0%+45%/0%1,, 1067445670, 14458705701, 1445%70,%1

where superscripts C, K and G denote graphite, Kevlar and S-glass,
respectively. The same matrix resin, ERLA 4617, was selected for
all three basic materials to insure compatibility and uniform curing
of the various plies. Three specimens of each of the laminate
configurations above were prepared. Unidirectional [08] specimens
of graphite/epoxy, Kevlar 49/epoxy and S-glass/epoxy were also

used for control purposes to determine the unrestrained thermal
deformations of the three basic materials. The ply thicknesses

for these materials are 0.114 mm (0.0045 in.), 0.114 mm (0.0045 in.)
and 0.119 mm (0.0047 in.), respectively.

In order to facilitate data reduction from embedded gages
recorded during curing and thermal cycling of the laminates, a
""zero expansion coefficient" gage was evaluated. Samples of this
type of gage were bonded on a quartz specimen and subjected to
thermal cycling between room temperature and 450° degK (350°F).
The maximum purely thermal output of these sample gages was
approximately 150 pe. It was then decided to use this type of
gage for embedment in the hybrid laminates.

The unidirectional specimens were prepared and instrumented
with embedded two-gage rosettes (Micro-Measurements WK-00-125TM-
3502-0ption B-157) between the second and third ply and between
the fourth and fifth ply. The angle-ply hybrid specimens were

11T RESEARCH INSTITUTE
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prepared with embedded three-gage rosettes (Micro-Measurements
WK-00-~125RA-350, Option B-157). One rosette was embedded in

the middle of the laminate thickness and the other between the
+45-degree plies and the outer O-degree ply. The gages used
were fully encapsulated and had a minimal purely thermal output.
The attached ribbon leads were sandwiched between thin (0.013 mm;
0.0005 in.) polyimide strips. 1In all cases above a thermocouple
was also embedded in the middle surface of the specimen. To
determine the purely thermal output of the gage, a Titanium
Silicate specimen, which has a very low coefficient of thermal
~6¢-1 _ 9.017 x 107° in/in/°F), was
also instrumented with a two-gage rosette and a thermocouple.

expansion (a = 0.03 x 10

The instrumented specimens, including the reference
unidirectional and Titanium Silicate specimens, were subjected
to the curing and postcuring cycles in the autoclave. Strain
gage and thermocouple readings were taken throughout. Subsequently,
the same specimens were subjected to a thermal cycle from room
temperature to 444 degK (340°F) and down to room temperature.
Strain gages and thermocouples were recorded at 5.5 degK (10°F)
intervals. The true thermal strains were obtained by subtracting
algebraically from the recorded apparent strains the small output
of the gage on the Titanium Silicate specimen and adding the known
thermal expansion of the latter.

3.2 Residual Strains

The purely thermal output of the gages used is shown
by the apparent strains recorded on the Titanium Silicate
specihen (Fig. 28). The maximum apparent strain is 75 ue.
Thermal strains recorded in the three [08] unidirectional
specimens are plotted versus temperature in Figs. 29 to 31. Both
Kevlar 49/epoxy and graphite/epoxy exhibit negative thermal
strains in the longitudinal (fiber),direction..~The Kevlar 49/
epoxy exhibits the largest positive transverse and negative
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longitudinal strains. The S-glass/epoxy undergoes the lowest
thermal deformation in the transverse direction and the highest
(positive) in the longitudinal direction.

Coefficients of thermal expansion computed from these
data for the graphite/epoxy are:
At 297 degK (75°F)

-1.26 x 10791 (-0.7ue/°P)
33.9 x 10°%"1 (18.8ue/°F)

li

%11
%22
at 444 degK (340°F)

6

- -1.26 x 10”81 (-0.7ue/°F)

-6

11

= 83.7 x 10°% 1 (46.5ue/°F)

%22

Coefficients of thermal expansion computed for the

Kevlar/epoxy are:
At 297 degK (75°F)

-4.0 x 1078 (-2.20e/°P)

“11

a,, = 57.6 x 10°6%"1 (32.0ue/°F)

at 444 degK (340°F)
aj; = -5.7 x 10791 (~3.2ue/°F)
ayy = 82.8 x 10°%1 (46.0ue/°F)

Coefficients of thermal expansion computed for the S-

glass/epoxy are:
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At 297 degk (75°F)
ajy = 6.6 x 107571 (3. 7ue/°F)

0y, = 19.7 x 10781 (10.9ue/°F)
at 444 degK (340°F)

14.1 x 10" (7.9ue/°m)

“11
-6 '1 o
26.5 x*10 K (14.7ue/°F)

%22

Thermal strains recorded during cool down were very close
to and averaged with those obtained during subsequent thermal
cycling. Thermal strains as a function of temperature obtained
for the eight hybrid laminates described above are shown in
Figs. 32 to 39. It can be seen from these results that the
stacking sequence does not have an influence on the measured thermal
strains for laminates composed of the same type and number of plies.

The longitudinal strains in all graphite/Kevlar specimens

are negative. The specimens with all O-degree plies of
Kevlar have higher. transverse (positive) and longitudinal
(negative) strains than the specimens with only half 0-degree
Kevlar plies. This is a direct consequence of the relative
magnitudes of unrestrained thermal strains in unidirectional
Kevlar/epoxy and graphite/epoxy (Figs. 29 and 30). 1In

the case of the graphite/glass specimens the substitution of
the last two O-degree graphite plies with glass plies changes
the longitudinal strain from negative to positive (Figs. 36
to 39).

The residual stresses induced in each ply correspond to
the so-called restraint strains, i.e., the difference between
the unrestrained thermal expansion of that ply (unidirectional
specimen) and the restrained expansion of the ply within the
laminate (angle-ply specimen). Restraint or residual strains
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obtained for the 0-degree Kevlar, 0O-degree graphite and 45-degree
graphite plies of the [OK/i-_ASC/OC]s and [iASC/OK/OC]s graphite/
Kevlar 49/epoxy specimens are plotted in Figs. 40 to 45. These
strains are plotted as a function of temperature with room
temperature shown as the stress-free level. The actual stress-
free level is at 444 degK (340°F), the temperature at which the
matrix solidifies. To refer these residual strains to this level,
the curves of Figs. 40 to 45 must be shifted parallel to the
strain axis until they intersect the temperature axis at 444 degkK
(340°F). The highest residual strain is the transverse (690)
strain in the 0-degree Kevlar plies exceeding 9 x 10-35 (Figs. 40
and 43). This is associated with the high transverse thermal
expansion of the unidirectional Kevlar 49/epoxy (Fig. 30). The
transverse strain in the 0-degree graphite plies is much lower
reaching a peak value of 5.6 x 10 “e. The maximum strain in the
45-degree graphite plies is 6.3 x 10 3¢.

Restraint strains were computed for the 0- degree
Kevlar and 45 -degree graphite plies of the [0 /+45 /0 ]
and [+45C/0 ]S graphite/Kevlar 49/epoxy specimens. Results,
shown graphlcally in Figs. 46 to 49, do not differ much
from corresponding strains in the preceding group of specimens.
In the 0O-degree Kevlar plies the only noticeable difference
is the small reduction in the longitudinal (eo) residual
strain from -0.4 x 10”3 to -0.2 x 10 3¢. The strains in the
45-degree graphite plies show a small increase in the longitudinal
direction and a slight reduction in the transverse direction.

Residual strains in the 0-degree S-glass, 0O-degree graphlte
and 45-degree graphite plies of the [0%/+45€/0C]_ and [+45C/0%/0C 1
specimens were obtained as before and plotted in Figs. 50 to
55 with room temperature as the reference temperature. The
transverse strains in the O-degree S-glass plies are re1at1ve1y
low, compared to similar strains in the 0O-degree graphite plies,
because of the lower transverse thermal expansion of the unidirectional
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S-glass/epoxy. All three strain components in the O-degree S-
glass plies are close to each other because the corresponding
strain components are similarly related in the unidirectional
material. Residual strains in the graphite plies are very close

to those obtained for the graphite/Kevlar 49/epoxy specimens, since
these strains are primarily dominated by the strains in the uni-

directional graphite/epoxy.

Residual strains in the O-degree S-glass and 45-degree
graphite plies of the [0%/445C/0C]_ and [+45C/0,€]_ graphite/s-
glass/epoxy are not much different from the corresponding strains
in the preceding group (Figs. 56 to 59). The main difference
are a reduction in the peak longitudinal (eg) strain in the O-degree
S-glass ply from 1.75 x 10-35 to 1.45 x 10_35 and a reduction in

the peak longitudinal (egn) strain in the 45-degree graphite
0 3

plies from 3.5 x 10-%: to 3.1 x 10 “e.

The peak residual strains occurring at room temperature
are tabulated in Table 11 for all laminates tested including
the all-graphite laminate tested under Task II.5 Several
conclusions can be drawn from these results. For laminates of
the same composition, stacking sequence variations have no
influence on residual stresses. Hybridizing the basic [Ozc/iASC]s
graphite/epoxy laminate by substituting Kevlar or S-glass plies
for 0-degree graphite plies has a relatively small influence, a
small reduction, on residual strains in the remaining graphite
plies. This is due in part to the fact that the thermal deformations
in the angle-ply laminates are an order of magnitude lower than
the unrestrained strains in the unidirectional material and in
part to the relatively lower stiffness of Kevlar and S-glass.
Increasing the number of Kevlar plies in the graphite/Kevlar group
increases slightly the transverse (to the fibers) strains in the
Kevlar and graphite plies. Replacing Kevlar with S-glaés reduces
slightly the transverse strains in the graphite plies. Increasing
the number of S-glass plies in the graphite/S-glass group reduces
the transverse strain in the graphite plies slightly moretv
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RESIDUAL STRAINS AT ROOM TEMPERATURE IN ANGLE-PLY

Table 11

GRAPHITE AND HYBRID LAMINATES

respectively.

11T RESEARCH
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Laminate Ply Strain, 10 3¢
€0 €90 €45 €.45
[0,/+45%) oC 0 6.0 2.9
45C 3.4 2.6 -0.4 6.5
[0%/+456/0C) ok 0.4 9.0 4.3
o€ 0 5.6 2.8
45° 3.4 2.4 -0.5 6.3
[+456/05/0%) ok 0.4 9.2 4.4
0° 0 5.6 2.8
45° 3.4 2.3 -0.5 6.2
[0%/+45%/0%] ok -0.2 9.1 4.4
45C 3.7 2.2 -0.5 6.3
[+45%/0,%1 0¥ -0.2 9.3 4.6
45° 3.6 2.2 -0.4 6.4
[08/+45%70) oS 1.7 2.4 2.0
¢ -6.1 5.5 2.7
45C 3.5 2.2 -0.6 6.3.
[+45%/06/0%) 0¢ 1.8 2.4 2.1
o¢ 0 5.6 2.8
__— : 45C 3.5 2.2 -0.6 6.2
10%/445%/0°) .08 1.4 2.4 1.9
" 45C 3.1 2.1 -0.8 6.0
[+455/0,° 0° 1.5 2.5 2.0
45C 3.2 2.2 0.7 | 6.1
Note: Superscripts K, C and G denote Kevlar, graphite and S-glass,

A~ -



3.3 Residual Stresses

Residual stresses in any given ply can be computed from
the residual strains using the appropriate orthotropic constitutive

relations. Assuming linear elastic behavior, these relations

take the form

[o;5(D] = [AD] [e;;5(D]
where [Q], [oij] and [eij] are the temperature-dependent stiffness,
stress and strain matrices, respectively. In the case of uni-
directional graphite/epoxy and Kevlar 49/epoxy the strain response
in the longitudinal and transverse directions is linear to failure.
In the case of unidirectional S-glass/epoxy the response in the
longitudinal direction is linear up to at least a strain of
25 x 10-35, but in the transverse direction is linear only up to

a2 strain of approximately 1.5 x 107 3.

In the linear range, the residual stress components in a
given ply at a given temperature are given by the following stress-

strain relations:

o —__f_l_]_‘.__[g + v e]
11 1-v12v21 11 21722

——fg_z___[\)e +€]
22 1-v12v21 12711 22

Q
Il

= 2G

%912 12512

where the subscripts 1 and 2 refer to the fiber and the transverse
to the fiber directions and all quantities above correspond to

one temperature.
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Residual stresses at room temperature were computed for the
various plies of the laminates studied assuming linear elastic
behavior. Results are tabulated in Table 12. The maximum transverse
tensile stress for the graphite plies is 45.0 MPa (6.5 ksi) in the
all-graphite laminate and 41.0 MPa (5.9 ksi) in the hybrid laminates.
Bofh of these values exceed the static transverse tensile strength
of the material which is 36 MPa (5.2 ksi). This means that these
plies are most likely damaged in the transverse direction upon
completion of curing. In the case of Kevlar plies the computed
transverse stresses far exceed the measured static strength, which
means that these plies must be damaged transversely in the early
stages of cool down. Residual stresses in the S-glass plies reach

values up to seventy-five percent of the static strength.
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Table 12

RESIDUAL STRESSES AT ROOM TEMPERATURE IN ANGLE-PLY

GRAPHITZ AND HYBRID LAMINATES

Laminate Ply Stress, MPa (ksi)
‘11 922 912
[0,C/+45°1 ¢ | 13.11.9) 42.5(6.2) 0
45¢ | -73.5(-10.6) | 45.0(6.5) | 5.4(0.8)
[0%/+45%70% o® [-11.2¢-1.6) | 40.8(5.9) 0
or o€ | 12.3(1.8) 39.6(5.7) 0
[+45C/0%/0C] 45 |-97.0(-14.0) | 43.2¢6.3) | 6.9(1.0)
[0}/ +45%70%) ok 2.8(0.4) 39.4(5.7) 0
or
[+456/0,57 45 | -85.5(-12.4) | 44.0(6.4) | 9.3(1.4)
[08/+45C/0€] 0® |103.5(15.0) | 58.0(8.4) 0
% o 0 6.9(1.0) 39.2(5.7) 0
[+45%/0%/0%) 45C 1117.8(-17.1) | 42.8(¢6.2) | 9.0(1.3)
[06/+45¢/0%] o€ | 88.3(12.8) | 57.2(8.3) 0
or
[+45€/0,°1 45 [151.3¢-22.1) | 41.0(¢5.9) | 6.9(1.0)
Note: Superscripts K, C and G denote Kevlar, graphite and

S-glass, .respectively.
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4.0 STATIC STRENGTH

In addition to the specimens containing embedded gages,

three additional specimens of each laminate construction were
‘prepared without embedded instrumentation. Two specimens, one
- with embedded gages and one instrumented with surface gages,
of each of the eight hybrid laminates described before were
tested statically in tension to failure. Stress-strain curves
to failure for these specimens are shown in Figs. 60 to 75.
The axial modulus, Poisson's ratio and strength for each specimen
are indicated in these graphs as well as tabulated in Table 13.
Measured values are compared with theoretically predicted ones.
Predicted values for moduli and Poisson's ratios are based on

10

linear lamination theory using measured values of the constituent
properties. The predicted ultimate strains are based on the
predicted moduli and measured strengths of the hybrid laminates

assuming linear behavior to failure.

Specimens containing only two O-degree Kevlar plies behave
linearly to failure. Measured moduli range between 90 and 96 GPa
(13.0 and 13.9 x 106 psi), the average Poisson's ratio is
0.79, and the measured ultimate strain is 3.9 x 10'3. These
values are compared with corresponding predicted values of 85 GPa
(12.3 x 106 psi), 0.76 and 4.2 x 10-3. The measured and predicted
ultimate strains are comparable to the highest measured ultimate
strain of 4.1 x 10™3 in the unidirectional graphite/epoxy material
(Table 7). Specimens containing four O-degree Kevlar plies
display a characteristic nonlinearity starting in most cases at
a strain of approximately 4 x 10_3. The measured modulus, Poisson's
ratio and ultimate strain are 47 GPa (6.8 x 106 psi), 0.83 and
17.4 x 10-3, respectively. The corresponding predicted values are
47 GPa (6.8 x 10° psi),0.77 and 16.4 x 1073, respectively. The
reason for the lower predicted ultimate strain is the underlying
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assumption of linearity made for the prediction.. The ultimate
strain measured is still lower than the ultimate strain

(19.3 x 10-3) of unidirectional Kevlar :(Table 2-8), which indicates
that failure may still be governed by-'the +45 graphite/epoxy

plies.

In the graphite/glass group specimens containing only
two O-degree S-glass plies behave linearly to failure (Figs.
68 to 71). The average measured modulus, Poisson's ratio
and ultimate strain are 86 GPa (12.5 x 10° psi), 0.74 and 4.1 x 1073,
compared to predicted values of 81 GPa (11.7 x 106 psi), 0.71
and 4.3 x 10-3. The ultimate strain is comparable to that of
O-degree unidirectional graphite/epoxy, indicating that hybrid
failure is governed by the O-degree graphite/epoxy plies.
Specimens containing four 0-degree S-glass plies display a
characteristic nonlinearity starting at a strain of approximately
8 x 10-3. The average measured modulus, Poisson's ratio and
ultimate strain are 37 GPa (5.4 x 10% pis), 0.77 and 27.5 x 10~
compared to predicted values of 39 GPa (5.6 x 106 psi), 0.68,
and 21.7 x 1073, The ultimate strain in the hybrid is lower than
the measured unidirectional ultimate strain 35.6 x 10'3 in the
S-glass/epoxy (Table 9), indicating that failure may be
influenced by a lower ultimate strain of the +45-degree graphite/

epoxy plies.

3
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5.0 TENSILE LOAD WITH THERMAL CYCLING

5.1 Residual Properties After Thermal Cycling Between
Room Temperature and 411 degK (280°F) Under Tensile
Load

Two specimens, including one with embedded gages, of
each of the eight hybrid configurations discussed were subjected
to a static tensile load and to 100 thermal cycles between
room temperature and 411 degK (280°F) The first group of
spec1mens tested laminates [O [+45 /O ] [tASC/OK/OC]s and
[O /+45 /0 ] , were subjected to a ten311e load equal to 70
percent of the static strength. Of these, the two [0 /+45 /0 ]
specimens survived the thermal cycling. The [+45 /0 /O ]
specimens failed on the 90th and 97th thermal cycles, and the
[OK/i4SC/OK]S specimens failed on the third and sixth thermal
cycles. These failures are attributed to the higher strength
reduction with temperature of the Kevlar 49 component. In
subsequent batches the tensile preioad was reduced to 60 percent
of the ultimate in those specimens containing two Kevlar 49 or
two S-glaés plies and to 50 percent of ultimate in those specimens
containing four plies of Kevlar 49 or S-glass. All these
specimens survived the elevated temperature thermal cycling.

All specimens that survived the thermal cycling above
were tested statically to failure to determine residual elastic
properties and strength. Stress-strain curves obtained are shown
in Figs. 76 to 87. The modulus, Poisson's ratio and strength
for each specimen are indicated in these graphs as well as
tabulated in Table 14.

All specimens containing two Kevlar 49 or S-glass plies
behaved linearly to failure, with the exception of one of the
[iASCIOG/OC]s specimens where the 0-deg. graphite plies had failed.
The residual moduli in these specimens are somewhat lower than
initially measured values, probably because of some damage. in
the 0O-deg. plies. Ultimate strains vary between 3.9 x 1073 and
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4.8 x 10“3, which are slightly higher than those measured
initially. Residual strength values are also somewhat
higher than initial strengths, even in the specimen with the
damaged 0-deg. graphite plies. A possible explanation for
this trend is some possible relief of deleterious residual

stresses by thermal cycling under load.

Specimens containing four Kevlar 49 or S-glass plies -
show some nonlinear behavior. The residual modulus of the
_[i&SC/OZK]S specimens was higher and that of the [i45C/O ]
specimens was lower than initial values. Residual ultimgtz strains
were, with the exception of the [iASC/OZG]S specimens, lower than
those measured initially. The residual strengths in this group
were, in five out of six specimens, somewhat higher than initial
strengths.

The modes of failure in some of the specimens above
are of special interest. One [i&SCIOG/OC]S specimen failed
in a "brooming' fashion (Fig. 2-88). Upon loading, the O-
_degree graphite plies failed first and isolated the outer
layers consisting of the +45-degree graphite and 0O-degree S-
glass plies. The residual tensile stresses in the S-glass ply
made the layer curve with the convex side outward. Specimens
[OG/-_i_-ASC/OG]S failed in a different fashion illustrating the
relief of lamination residual stresses. The outer layers
consisting of one 0-degree S-glass ply and the +45-degree graphite
plies curled up after the graphite plies probably delaminated
from the middle O-degree S-glass plies. This again illustrates

the presence of tensile residual stresses in the 0-degree S-

glass plies. . T i

IIT RESEARCH INSTITUTE

30



5.2 Residual Properties After Thermal Cycling Between
Room Temperature and 200 degK (-100°F) Under
Tensile Load 4

Two speciﬁens, including one with embedded gages, of
each of the eight hybrid configurations discussed before were
subjected to a static tensile load equal to 70 percent of
the static strength and to 100 thermal cycles between room
temperature and 200 degK (-100°F). One of the [iASC/OG/OC]sa
specimens failed during static preloading prior to thermal
cycling. The rest of the specimens survived the thermal cycling
above and subsequently were tested statically to failure. Stress-
strain curves are shown in Figs. 89 to 103. The modulus,
Poisson's ratio and strength for each specimen are indicated

in these graphs as well as tabulated in Table 15.

All specimens containing two Kevlar 49 or S-glass plies
behaved linearly to failure, with the exception of a
[i&SC/OK/OC]s specimen in which a rapid increase in strain
was noticed prior to failure (Fig. 91). The residual moduli
of these specimens are consistently lower than initially measured
values. Ultimate strains are higher than initial wvalues.
Residual strength values are also, with one exception, somewhat
higher than initial values. The results above may indicate some
damage during thermal cycling but sufficient relief of deleterious
residual stresses to increase the residual strength.

Specimens containing four Kevlar 49 or S-glass plies
showed some nonlinear behavior but less pronounced than in initial
static testing. Residual moduli, with one exception, are all
lower than initial moduli. No significant differences were
noticed in residual strength of this group of specimens.
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6.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Residual strains were determined experimentally in the
various plies of angle-ply hybrid graphite/Kevlar 49/epoxy and
graphite/S-glass/epoxy laminates.

The unidirectional Kevlar 49/epoxy material exhibits the
highest positive transverse and'negative longitudinal thermal
expansion. The unidirectional S-glass/epoxy undergoes the lowest
thermal deformation in the transverse direction and the highest
(positive) in the longitudinal direction.

For laminates of the same composition, the ply stacking
sequence did not have an influence on measured thermal strains.

Residual strains in each ply were obtained as the
difference between the unrestrained thermal expansion of that
ply (unidirectional specimen) and the restrained expansion of
the ply within the laminate (angle-ply specimen).

Hybridizing seems to reduce residual strains and
stresses in the graphite plies, however, these strains are not
affected much by the type and degree of hybridization. The
maximum residual strain at room temperature in the 45-degree
graphite plies is 6.5 x 10-3 for the all-graphite laminate and
decreases to 6.3 x 1073 for the graphite/Kevlar hybrids and to
6.2 x 10”3 for the graphite/S-glass hybrids.

In.the hybrid laminates the 0O-degree Kevlar plies have
the higheétfrésidual strain, reaching a value of 9.2 x 10"3 in
the transverse direction. The 0O-degree S-glass plies have the
lowest (2.4 x 10-3) transverse strain.
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Residual stresses at room temperature were computed for
all the plies assuming linear elastic behavior. Computed transverse
to the fiber residual stresses in the S-glass plies are approximately
seventy-five percent of the static transverse strength of the
unidirectional material. Computed residual stresses in the
graphite plies exceed the static strength of these plies by
approximately teh percent, indicating that these plies may have
already failed transversely. 1In the case of Kevlar the computed
stresses indicate that these plies must have failed in the early
stages of cool down before reaching room temperature.

Specimens of all eight hybrid laminates were tested
statically to failure. Results were summarized in Table 2-13 and
compared with predicted values based on linear lamination theory.
Specimens containing only two Kevlar 49 or S-glass 0O-degree plies
behave linearly to failure, which is governed by the ultimate
strain in the O-degree graphite plies. Specimens consisting of
+45-graphite plies and 0-degree Kevlar or S-glass plies display a
characteristic nonlinearity. The ultimate strains of the hybrid
laminates are lower than the 0O-degree ultimate strains of
unidirectional Kevlar or S-glass, indicating that failure in
this group is governed by a lower ultimate strain of the +45-
degree graphite/epoxy plies. Specimens containing four O-degree
S-glass plies are only slightly stronger than those containing
0-degree Kevlar plies although the ultimate strains in the
latter are much lower. This is- another indication that failure
in this case is governed by the +45-degree graphite plies.
Poisson's ratios, influenced primarily by the +45-degree graphite
plies, vary between 0.73 and 0.86. No significant correlations

can be seen between measured values and laminate construction.
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Another group of hybrid specimens was subjected to a
tensile preload and 100 thermal cycles between room temperature
and 411 degK (280°F). Subsequently they were tested statically
to failure to determine residual properties. Specimens containing .
two O-degree Kevlar or S-glass plies behaved linearly to
failure. They exhibited somewhat higher than initial ultimate
strains and strength, possibly due to some relief of deleterious
residual stresses by thermal cycling. Residual moduli were some-
what lower than initial values, possibly because of some damage
in the O-degree graphite plies. Specimens containing four 0-degree
Kevlar or S-glass plies displayed the same characteristic non-
linearity as the initially tested specimens. Their residual
strengths were, in general, somewhat higher than initial values.
The presence of tensile residual stresses in the S-glass plies was
clearly illustrated by the failure modes of some of these specimens

(Fig. 2-88).

A similar group of hybrid specimens was subjected to a
tensile preload and 100 thermal cycles between room temperature
and 200 degK (-100°F). Subsequently they were tested statically
to failure. Specimens containing only two O-degree Kevlar or
S-glass plies had consistently lower than initial residual moduli

and higher residual ultimate strains and strengths. These
results may indicate some damage during thermal cycling

which, however, is accompanied by sufficient relief of
deleterious residual stresses to increase residual strength.
Specimens with four Kevlar or S-glass plies had residual
moduli lower than initial ones but unchanged residual strength.
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In all the tasks conducted to date the effects of
residual stresses are measured in an indirect manner, because
there is no comparison with similar residual-stress-free
specimens. The independent influence of residual stresses
should be studied by comparing conventionally fabricated
angle-ply laminates with similar stress-free laminates pro-
duced by bonding together precured plies at room temperature.
The effect of residual stresses on laminates with defects and
damaged areas would be of importance. Specimens with cutouts,
cracks or other defects with different laminate configurations
should be prepared and tested. The interaction of residual
stresses and interlaminar stresses near edges or cutout boundaries

should be investigated.
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