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ABSTRACT ^i

s

4

J
In this stud	 the entrainment-shearear performance limit which occur.

in axial groove heat pipes was investigated and ex plained.	 In the exist-_ t r;

t. ing heat pipe literature the entrainment heat flux limit is defined as
;

r
the condition where the Weber number is greater than or equal to one. 	 In f	 (-

this analysis, the critical value for the entrainment', `Jeber number is ^ 7

found to be 2a < We < 3n,	 Perhaps more important to the heat pipe de-
7

signer than the entrainmentperformance limit is the prediction of the

u

vapor-liquid 	 which

described.

	

Preliimi nary qualitative experiments were conducted to observe

y
formation more

lstressewaveprovidevaluablepverificationuhperiments woulds ofthe shear

phenomenaand of associated performance degradat9 ; a and limits.	 The aqua-

 n

nomena

presented in this analysis may be used to predict and minimize the
t

vapor-liquid shear stress performance effects that occur in axial groove
A

- and puddle flow artery heat pipes.
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NOMENCLATURE

A Vapor flow area, m2
v

AZ Liquid flow area, m2

AZ Averaged liquid flow area, m2

C Wave velocity, m/s

Co Wave velocity in absence of current, m/s

D h Hydraulic diameter, 4A/P
Dv

Internal pipe flow diameter, m

d Characteristic dimension, m

f Frequency, cycle/s

fL- Friction factor for liquid flow in groove

fLP Friction factor for liquid flow in circular tube

f Friction factor for vapor flowv

G Total vapor flow rate per pipe flow area, kg/m 2 
sv

h Specific latent heat enthalpy, J/kgfg

K Wick permeability, m2

Leff Heat pipe effective length, m

Z characteristic mixing length, mM
Z., Half-width of zone of influence at interface, m

m Wave number, 2n/A

N Number of pipe grooves

NR Liquid transport factor

AP capillary pumping pressure rise, NIM 2S

Ap Pressure drop in the liquid, NIM 2

Apy Pressure drop in the liquid due to viscosity, N/m 2o"

Ap t Pressure drop in the liquid induced by counterflow, NIM 2,v

Ap Pressure drop in the vapor, NIM 2ggg v

P v
2Vapor pressure, N/m

P Liquid pressure, N/m 2Z
P Wetted perimeter of the fluid flow passage, m

fi

'j
j ! iv
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r

Q	 Heat transfer rate, watts

r 
	 Effective pumping radius, m

Re	 Reynolds number

S	 Dimensionless shear stress at vapor liquid interface, OTw)/(uRUII)

s	 Width of land between grooves, m

Uvk	 Relative vapor-liquid velocity, m/s

U 	 Axial vapor velocity, m/s

UR	 Liquid velocity, m/s

w	 Groove width, m

We	 Weber number, dimensionless

x	 Coordinate parallel to mean flow, m

y	 Coordinate perpendicular to mean flow, m

Greek letter nomenclature

0	 Disturbance growth factor, s 1

d	 Film thickness or groove depth, m

no 	 Amplitude of-the surface wave, m 	 -

Aspect ratio of capillary grooves, w/26

X	 Wavelength, m

uR	 Liquid dynamic viscosity, Ns/m2

11v	Vapor dynamic viscosity, Ns/m2

vR	 Liquid kinematic viscosity, m2/s

vv	 Vapor kinematic viscosity, m2/s

p R	 Liquid density Kg/m3

Pv	 Vapor density, Kg/m3

o	 Surface tension, N/m

T
w	 Shear stresscreated by the vapor on the liquid. at its free

surface, N/m

W	 Radian frequency of interfacial waves, sec-1'



INVESTIGATION OF PERFORMANCE LIMITS
` -	 -	 IN AXIAL GROOVE HEAT PIPES	 - - I ..

y, 1.0	 Introduction

A survey of the various types of heat pipes used by NASA, ERDA, and

industrial companies indicates a recent preference for configurations of

axial and circumferential groove wick designs. l	such groove wick heat

pipes, have the advantages of high evaporation and condensation film coef-

ficients, reliable operation, ease of manufacturing, and potentially low

' cost.

However, in operating the groove wick heat pipe, a number of per-

formance limits are encountered. 	 Since the groove wick heat pipe is nor-
3

_ mally not used with additional screen wick, there is a significant counter-,

flow shear interaction between the vapor and liquid. 	 The resulting pressure z

drop associated	 this counterflow vapor-liquid shear results in lowerwith
Is

y than maximum heat transfer rates and in some cases unstable operation due- V

to slugging or other entrainment-shear phenomena of the liquid. 	 When

operated in a gravity environment, the axial groove heat pipe-may have a

j	 Y puddle of excess liquid accumulate along the lower side . of the pipe. I

', k
Counter low shear and entrainment of liquid from the unshielded surface

of the puddle can occur at relatively modest heat transfer rates.

If Also, while operating in a 1-g environment, the axial groove 'heat -

,. ^a  can experience desaturation of thepipe	 p	 upper grooves along the top of the

- 11 pipe.	 Depending on the construction of the grooves, these upper grooves
t

E
may experience an additional hydrodynamic stress, which will cause them jl

to first dry out the upper side of the evaporator. 	 Heat pipe performance

U is thereby restricted by this capillary limit in the grooves. 	 Since these 'f

llimits are not fully understood for axial groove or circumferential groove i, q
i heat pipes, the expected heat flux limits and evaporation and condensation t

film coefficients needed for design of various groove geometries are not

it
r well

Becausetof these factors,a research project was initiat ed a^-	 p	 J	 e	 at -'

University of New Mexico to investigate the vapor-liquid shear and entrain- i}
axialanenterformance limits of the	 groove heat	 e	 pp	 g	 pip ..	 This project was i s

supported by the NASA Ames Research Center on Contract No. NSG-2064 over
r

the period from January 20, 1975 through January 19,'1976. S ^^

^1 1 1 9
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2.0	 Previous Research

p((
A modest <^.mount of previous rese=rch has been done on the problem of f

counterflow vapor-liquid entrainment-shear limits.	 A theoretical study

was reported in 1966 by BHhr, Burck, and Hufschmidt2 to predict friction 111111

r factors and pressure dro1:3 associated with counter flow vapor-liquid shear. ^I

Also in this paper, they described experimental work with water -air inter-
a

actions which had been initiated-.	 A companion paper published in 1969 byE{

" y Hufschmidt, Burck, Dicola, and Hoffman3 gives a detailed summary of the

theoretical analysis results, and a comparison with the experimental data. ^f
t

4 i
The theory was originally developed by Dicola 	 assuming laminar flow

of liquid in a rectangular open top channel with a counterflow vapor shear
r

at the surface.	 The friction factor increase due to the vapor shear over ;#

that for Poiseuille of liquid in a tube was given by the ratio
t

f £
Lf -f^ t1+ 3̂S ^,	 < 0.5	 (2.1)

6 r

where S is the nondimensional stress, defined as —q , and
1

p t U

(TLP)o

-.--.-
2(1+x) 2 (1-0.627 ¢)

1)
-

is the friction factor ratio for S = 0, zero vapor shear,	 ( zw = 0).

For a heat pipe with N rectangular grooves of cross-section 6w and (`

{.`Ak = 6wN the interface shear stress was given by

il
2 N6 w 

V.
S	 =

	
2(f	 Re-	 -	 - -	 -	 -	 (.2.3)v
DP	 kh

where the symbols are defined in the nomenclature list.

"
5

Florschuetz	 has taken these results and applied them to the perform-

ance of a sodium heat pipe and a water heat pipe both having open axial

grooves.	 For both heat pipes the effect of vapor shear was found to re- E

'

-duce the heat transfer rate significantly at low vapor pressures.

6 }
A related paper by Zimmermann	 also deals with the counterflow, shear

friction , Sfactor and pressure drop in heat pipes.

rr
1

G

LA
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Another paper dealing with the counterflow , shearing limit in the

U - g environment is by schlitt, et- al. 7	 The maximum heat transport is S

determined from the relationship

Aps 	Apk + Apv ( 2.4)

The liquid pressure drop consists of two terms, Y

ĵuNI ApR = ApL o + ApR ( 2.5) I°
J - t

0. where Apk 	is the viscous loss associated with the flowing liquid andI,L
applies to all capillary channels. 	 The second term, ApA 

 
	 is the pies-

sure drop in the liquid that is induced by the shearing action of the vapor

counterflow and applies to open channels.
ICI k

The individual pressure drop ratios were given as C ".

APR.,- _ Q Leff	 rP. (2.6)
fl

_ APs	 NRI

1-	
e o .. Ap	 Q L	 r	 V	 (w/D ) 2_

R,v	 eff	 1	 v	 y 7_
Aps 	N	 KAf [24	 V	 (1+s/w) 

-, fv Re (2.7)

APv 	 Q Leif	 r	 l vKAR	 f	 Re (2.8)

Aps 	 NR	 KAf [i4	 VR	 D2A	 v	 v

1v v

where

N
f

I 64/Re	 laminar vapor flow ?v _

(2.9)
fv = -

	

1/4
0.316/Rev	turbulent vapor flow

f^

tl 2
^

?t

i

and
	 K - (2fR Red)

( 2.10)

_ For the groove geometry given in Figure 1,

f° D	 4A (2.11) , r
h,Z	 26+w

an a
£Q Rei = f (w/6) = 15 (2.12) 4,

p,

^I { i u -; p

t v

I{
-	 -^

_	 3{



2. U"R0J)U0IBILITY OF `fill'!
, sLtIGINAL PAGE IS POOL

f(- The Equations2.4, 2.5, 2.6 2.8, 2.8, and 2.9 can be combined to

y	 solve for the 0-g transport capability. The averaged liquid groove area

was used which accounts for an average liquid meniscus recession.	 i
It	 .

AR - AR - N 4 xA	
(2.13)	 1^

j l

	

	The presence of the fvRev terms in Equations 2.7 and 2.8 makes it diffi-

cult to solve for the heat transport rate explicitly, particularly for

turbulent flow where the Reynolds number has an exponent as given in

Equation 2.9. A simpler formulation for predicting the shearing heat
F	

flux limit is needed for an explicit soluticn.
s

,Y
1.43

V.09	 p

y
VN "	 1,59	 ITYP1
1

♦
yw	 Y .043

.061

—' iflinn	 1,62 CMry _I	 S.-

\ EN
2T'	 GPI VE5^G^^ .

^ 	 AILS
7Fjt^^//FF--...•EQUALLY
SPACED -	 o-w.!•my nr. nn

Fig. 1.	 cross section of axial grooved
aluminum extrusion.

Also, a brief theoretical analysis of two-phase flow interactions

is given in the book by G. B. Wallis. a	However, none of these studies

includes a thorough investigation of the entrainment interaction whore

waves and liquid droplets are formed.

At the present time, in heat pipe design it is common to treat pre-

diction of the entrainment based on prior knowledge of a "characteristic
9,10

d dimension'" in the heat pipe. 	 Entrainment is presumed to occur when

the inertial vapor forces exceeded the liquid surface tension forces at

d the vapor-liquid interface.	 The ratio of these forces is expressed by

the Weber nemlber-

U2 
P
vQV

We =	 (2.14)
tl

f where d-= characteristic dimension such as the space between wires in a

screen wick heat pipe.

4



cotter9 stated this in a slightly different way. He stated that the

wavelength, X of a small disturbance on the liquid surface will grow in

amplitude exponentially with time if, a

t

if	 p U2X

We_ = 2r^	 l'	
(2.15)

i

"The process continues until the amplitude transcends the validity

of the linear theory, and presumably ends in stripping of liquid

j	 droplets from the crests of the undulations. The quantity on the

!( -

	

	 left is the Weber number with characteristic dimension X/27T, which

is a geometric property of the capillary structure in the interface

region_" (Ref. 9, p. 347)

Note here that Cotter's Weber number may be rearranged,

We p

v*JV ' 2X	 r

i	 o

	

(2.16)	 j

Later Kem_meh pointed out that the "entrainment heat flux limit,"

Qent/Av, is obtained by setting the Weber number equal to one, and combin-

ing it with	 yi

m = PVUVAV and Q = m hf ,i

t) 	Qent	 Pev ohfgiI	 = A	 d	 (2.17)
r	 E^	 v 

uI	 where

PeV = mean vapor density at the evaporator exit.

Equation 2.17 has been used to predict entrainment limit heat fluxes,

ki	 by assuming  value for the characteristic dimension d. However, some in-

vestigators have correlated this entrainment limit with d equal to the

space between wires while others use the wire diameter. obviously, there
k

is a need for better understanding the entrainment phenomenon and to clarify

Ba	 the use of the characteristic dimension d.	 k
u

t

,

L+

tt
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ns3.0 WAVE FORMATION AND ENTRAINMENT

Since the previous research just described has defined theL , friction

factors suitable for use in predicting increased pressure drop in axial

groove heat pipes but has not considered the unstable effects of waves,

ripples, or entrainment droplet formation, the work presented in this .

report is focused primarily on the latter phenomena. Also, a discussion

is presented to help clarify the use of the wave length, a, the character-

istic dimension, d, the Weber number, and the entrainment-shear heat trans-

fer rate limit.

Hanratty, et al. 11,12 have conducted both theoretical and experimental

studies on the initiation of waves due to the flow of gas or vapor over liquid.

Parts of the results of these studios have been incorporated in the follow-

ing discussion. Suppose a liquid is flowing in one direction in a gently

downward sloping open channel and its vapor is flowing over it in the op-

posite direction, as shown in Figure 2. At zero or very low vapor velocity,

the flowing liquid will be undisturbed, however, with increasing relative

velocity, a destabilizing effect is noted. The first waves to appear are

small two-dimensional ripples which extend over the width of the channel

and travel in the direction of the vapor flow. At even higher vapor velo-

city the amplitude and the wave velocity increases and a three-dimensional

cross-hatched wave pattern appears. This latter case is similar to the

waves which are obtained on a body of water during a light squall.

At a vapor velocity which is about double that necessary to produce

the cross-hatched waves, the first roll waves appear. The roll waves

occur when the crests of the waves are moving faster than the troughs.

This causes the downstream end of a wave to steepen and to roll over upon

itself. Thus, liquid in the wave is moving in a circular path. Such waves

are called roll waves. They were first described by Cornish 13 who ob-

served them in mountain streams. A good review of the literature on this

topic is given by Hanratty. 12 The first theoretical prediction for the

conditions causing roll waves was made by Jeffreys 14 who considered the

case of turbulent flow in an open inclined channel.

At hig'ier vapor velocity the shear forces on the tops of the roll

waves and the natural rolling action of the waves are adequate to over-

come the surface tension forces of the liquid so droplets of liquid are

6

a

s
'i

f	
gi
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a) Undisturbed liquid

+_ U
v

b) Drag on liquid initiates
flow reversal at surface,
and ripple waves are formed.

Y

C

	 U
v

^,

c) Initia' on of roll waves

^Uv

c) Poll waves, tuiiy deveioyed.

• O

e) Initiation of droplet

entrainment and "white

water."

Fig. 2. Subsequent wave phenomena
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1
d

1

separated from the surface and entrained into the vapor stream. The onset

of droplet entrainment is usually preceded by a noticeable roughening of

b	 the tops of the roll waves which resembles patches of "white water."

Further increases of vapor flow velocity increase the entrainment.

The sequence of events in the entrainment process is shown in Figure
II

2. The corresponding regions of wave activity are shown in Figure 3-for

an experiment.ronducted by Wallis, et al. in which air flowed ever water

in a horizontal duct 30 cm (12 inches) wide and 12.7 cm (5 inches) deep. 15

In a heat pipe the onset of entrainment may be encouraged by nucleate

boiling in the evaporator which can occur at sufficiently high heat fluxes.

The bursting of bubbles at the liquid surface, as shown in Figure 4, has

long been known as a source of droplet entrainment. 16

In order to help elucidate the phenomena of wave formation and en--

trainnent, the following definitions of terms are given:

1. Ripple Waves: Two-dimensional waves formed by gentle undula-

tions of low amplitude (less than 0.1 mm, 0.005 inches) on the

Liquid surface which travel at about 22-30 cm/sec (0.75 to 1.00

feet/sec) in an air-water system, and are not initiated by tur-

bulence in the vapor flow.

2. Cross-hatched Waves: As the vapor velocity is increased

slightly these three-dimensional waves appear as a criss-

cross ripple or as a pebbled pattern. For an air-water

system the wave lengths are of the order of 0.5-1 cm (0.25-

0.5 inches) and the waves travel at only slightly greater

velocity than the ripple waves.

3. Roll Waves: As the vapor velocity is increased the cross-

hatched waves become stable and persist up to a vapor velo-

city about double that necessary to produce the cross-

hatched waves. At this point, roll waves appear and travel

at about 60 cm/sec (2 ft/sec) down the channel. The roll

waves may take a finite distance along the channel to form

and normally they appear first where the film depth is a

maximum.

I.
e

1

8
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Fig. 3. Regions of wave activity in stratified air-water flow 15

AP

g)	 h)	 /

Fig. 4. Mechanism of droplet entrainment resulting
from the emission of a bubble from a liquid
surfacel6
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a 4.	 Droplet Entrainment:	 Further increases of vapor velocity,

4up to about 50 percent more than that needed to produce roll
n

waves, will cause droplets to be torn from the liquid sur-

face and entrained into the vapor flow.+
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4.0 EXPERIMENTAL OBSERVATIONS 	 a
(	 e^

In order to observe the entrainment-shear interactions, three dif-

ferent experimental heat pipes were built ,+nd preliminary qualitative ob-

servation tests were conducted. A schematic drawing of the final appara-

tus is shown in Figure 5 and a photo is shown in Figure 6._ The apparatus

is composed of an axial grooved copper tube with a 91.4 cm (3 Soot) evapo-

rator and condenser section, and a 15.24 cm (6 inch) glass tube adiabatic

transport ;zction. Each endof the tube has glass observation windows for

viewing phenomena along the axis.

In the experimental tests Freon-12-was used asthe working fluid -	-

since it has a low latent heat of vaporization which will give large mass

flow rates at modest heat transfer rates. With the heat pipe in a hori-

zontal orientation, the evaporator would experience nucleate boiling and

dryout before any wave phenomena were observed in the adiabatic transport

section.- By raising the condenser end 1.27 cm (1/2 inch), and by adding

cooling water over the condenser to lower the pipe temper .ure to 27°C

(80 0F), waves were observed in the adiabatictransport section, as shown

in Figure 7. The average wavelength of the waves observed was approxi-

mately 0.4 cm (0.157 inches). Also, in Figure 8, a sketch of the observed

wave phenomena is shown. The waves graduall• increase in amplitude down

the tube from the boiling wave source in the evaporator and become fully

developed in the adiabatic transport section and gradually die down as

they enter the condenser section. Further increasing of the condenser

elevation, evaporator heat input rate, and a slight reduction of the con-

denser temperature showed a slight increase in wave speed but no entrain-

ment was observed. Insufficient time and equipment prevented further

qualitative experiments. A chilled liquid cooling unit was ordered, but

was not received in time to conduct tests at lower temperatures. One

would expect that some entrainment could be observed at lower temperatures

where the vapor pressures and densities are lower and the entrainment limit

is lower.

I)

=3

3lY

I
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15.875 mm OD

12.7 mm OD
1.58 cm (5/8 in.) OD

4	
— Axial Crooved Copper 	 . 15 mm 	 ^{r

Tube

	

Glass Tube in	
.635 mm

MidsectionJ

Condenser	
Electrically 4
heated	 evaporator

------^34 crr---	 94 cm	 Glass window
15 cm	 on each end

Cooling
Water

Fig. 5. Sketch of experimental apparatus
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Fig. 6. Photograph of experimental apparatus
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Fig. 7. Photograph of waves observed in the adiabatic
transport section. (The evaporator is at the right
hsnd side of the photo.)

VV

Boiling

i

Condenser	 `„^ Evaporator

Fig. S. Sketch of nave phenomena observed
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j 5.0	 HYDRODYNAMIC WAVE INSTABILITY 	 -	 - Q `^.,;

The hydrodynamic instability of waves formed on a liquid surface by

gas or vapor flow over it may be explained physically as follows. 	 As the

surface film is disturbed from its equilibrium position, normal and tan-

gential stresses are produced and waves will form.	 The normal stress com-

ponent is in phase with the wave displacement, and it attempts to deform P

{
the liquid surface by exerting an upward force on the crests and a down- t

ward force Dn the troughs of small periodic waves.	 Also, the tangential

^

j

stress component is in phase with the wave slope, and it has the effect h

of accelerating the liquid on the windward slope while retarding that on p

the leeward slope.	 The latter mechanism tends to displace fluid towards

the crests and away from the troughs 	 of the waves, thereby increasing'

their amplitude.

The crests of the long wavelength disturbances on a flowing liquid

move faster than their troughs and this causes the downstream part of the

wave to steepen and roll over upon itself.	 The thinner the liquid film,

' the more effective this mechanism is, for in very thin films, the pertur-

bation velocity in the horizontal direction is much greater than in the

vertical, so the influence of the tangential and vertical stresses extends

throughout the whole film. 	 The development of waves is governed by con-

' tinuity conditions. 	 The wave growth rate is proportional to the rate of

accumulation of liquid near the crests, and this, in turn, is inversely

Ni proportional to the liquid viscosity.

Wave instabilities grow when the disturbing vaps;1 stress is sufficient ,-

Y
ggq
ppp to overcome the restoring forces of gravity and surface tension. 	 With a

given vapor flow rate, instabilities -can always be induced in an initially I

stable film by decreasingits-thickness.	 Also, -increasingthe liquid flow_

velocity simply increases the roll wave frequency_

5.1	 Analysis of the Wave Instability

As is shown in Figure 9, the wave flow along the surface of a liquid

film caused by a-vapor flow may be considered to be a sinusoidal wave mov-

ing at speed C.	 Analysis of the problem is simplified by using a coordinate -

system moving at the speed U R , so that the liquid flow velocity, UQ , is zero

' and the relative vapor velocity is Uvk = UvX+ U 

C 1 p	 ...



Y^i

I(

Core (Negligible liquid)

Uv2	 --^

n°
a

-^	
-------------

2	 _	 Liquid Film (negligible vapor)

0 —y

Fig. 9.	 System for film stability analysis. V

iic equation for the surface wave given by Tippets 17 is
J

BZ nd = 0 (5.1)

is the amplitude of the surface wave as shown in Figure 9 and-S

.urbance growth parameter given by

P
(w-mutanh(mZ") + P w2 coth W) - am3/pvvQ ) 2

v
P k coth(md) + tanh(mw")
P v

D

adian frequency of the interfacial waves is

md
r2

— (5.3)
p 2	 coth(md)i + p	 tanh(mk°)v

-liquid interface will grow indefinitely with time if S 2 >	 0. -r

.cal wavelength, for a = 0, is given by av

2n2	 /	 Pv 11 +	 I • (5.4)
P

PvUvk.
it

)

st growing disturbp °-.es are those having a wavelength a which t#
m

the growth factor 5, which is given by

k
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P1	 =	 311a	
1 +	 (5.5)

m	
PvUvR	

PR

'	 in obtaining these results Tippets 17 assumed that the fluid is in

potential flow.	 This idealization approximates the condition of well de-

veloped turbulence at the interface.	 He related the wavelength and film

thickness at instability to the common properties of the flow, under - the	 )

assumption that the interfacial wave motion is dominated by the stream

turbulence.	 He used Prandtl ' s mixing length theory to relate the turbu-

lent shear stress T = -PU'v' to the local mean flow properties by a char-

- This analysis assumes that the `surface wave-acteristic mixing length Rm. 

length, a, is proportional to Rm , R", and to the film thickness, 6. 	 He

further, explained that due to the character of turbulent flow there exists

a spectrum of possible disturbance wavelengths extending from near the dimen-

sions of the molecular motion up to within an order of magnitude of the
j{	

duct dimensions.	 Disturbances with wavelengths a < a c can be ignored,	 p
bp _3

since their amplitude will remain small.	 Disturbances with wavelengths

'	 a > X	 can also be ignored, be ,:ause their growth rates will be no faster	 9

j	
m

than those with wavelengths slightly less than a m .	 Thus, the dominant

wavelength a	 of the characteristic disturbance motion impressed on the 
6	

o

interface by the	 turbulence is bounded according to ac < ao < am"	 Hence,

from Equations 5.4 and 5.5

I^	 K o

3	

[	 P

ao 	 2'	 I1 + —v	 2v < g3 < 3w.	 (5.6)

PvUvR	
RP	 s

The corresponding film_	 thickness is	 )(	 _'A
^	 1

I

d = (P

f
(K3 /K1)	

U 2P	
\ 1 + PR	

(5.7)

v vR	 ^A

where K1 is defined by ko = Kl6, - and K1 = 1.0.-
j

The entrainment begins after the initiation of the instability if the

-	 disturbance wavelength is within the ao range.	 The occurrance of entrain-	 iE

ment reduces the liquid film thickness, 	 When the film thickness is re-

duced the wave disturbances are reduced, thereby reducing the entrainment.!

Thus, the wavelength and film thickness will tend to stabilize about the

r	 values given by Equations 5.6 and 5.7. 	 " l
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Heat transfer by evaporation from the liquid layer may be included in

the above analysis.	 However, boiling heat transfer cannot be included

since the forces on the film associated with boiling bubbles have not been

- I incorporated inthe analysis. it would be expected that liquid films on

high heat flux surfaces where boiling occurs would tend to be thinner than

jJ' that predicted by Equation 5.7.

5.1.1	 Weber -Number`Relationship J

We can write the Weber ntriber, previously given by Equation 2.14, as y

2

Pv Uv2^o ( 5.8)
Cr

where Xo is used for the characteristic dimension, in place of d. 	 We now ;"'"4

note that if Equation 5.6 is arranged as R
fi-

2
—

Pb U`o
X
o = K3 (1 + Pv/PR )- k y

jj

" then ll
t

i We = K3 ( 1 + pv/pt),	 2n < K3 < 37r.	 (5.9)
s

If we can assume that pv <<P 	 (for example, with water at 100°C, p v/p Q = }91
4),6.24 x 10	 then

We = K3	 2Tr < "3 < 37r.	 (5.10)

Thus, according to this analysis, growing instabilities and entrain-

ment will begin when We > 2r rather than We = 1 as has been suggested in

the past.	 However, if Cotter ' s 9 Weber number is interpreted as in Equa-

tion 2.16, then there is agreement that growing instabilities and entrain-
Y^

ment occurs when We > 27r. ^(
s„

, r

` 5.1.2	 Wave-Speed Relationship

The initiation of wave instabilities may be further described by de-
i
#t

- ter-mining the wave speed and wave length at the onset of ripple waves. 	 The
ij

}r

wave speed, C, may be most easily determined by a coordinate system with

the x-axis at the averaged liquid-vapor interface.	 Again, a sinusoidal

^{

k
wave is - assumed . to exist-at the liquid-vapor interface as shown in Figure

r ^f
^

} 10.
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Fig. 10. Wave speed analysis coordinate sys_em.

The analysis, given in Appendix A, describes the wave speed by the follow-

ing relationships.

_  2	
1/2

	

( p
t 
UR + P vuv )	 2 P vP R ( Uv + UR) 

°	 C =	 +	 +	 l:	 (5.11)

g
P2	 P 	 °	 (PR + P 

2

v) 
L

°

	I	 where

	

l	 t,
2	 a	

( P R - Pv)	
2Y	 a!

Co 	 2n (Pp + av) + a	 ( p y + pv)	
(5.12)

C is the wave speed of a,tra ,reling ripple wave in a quiet fluid where

UV = UR 0, that is, like that observed oy a pebble thrown in a still pond.

From Equation 5.11, we can see that the wave will be unstable if

	

1

2 	 y
U

PRPv	
P t 

+R P J	 Cp	 (5.13)_Lv
";

The value of for 'which Co is - a minimum may be designated by GripI

and corresponds to the point of onset of ripple waves. This value of
{drip

can be determined by differentiating Equation 5.11 with respect to a and

setting it equal to zero. We then find that the value of G rip is	 x
#

	

x^	 _	 s
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3.

drip ^_ 21T	 (P	
c 

p )	
(5.14)	 ^r

k _
	 v

and the corresponding minimum value of Co is

i	
20	 (p R - pv)	 1/2

Cc	 �

 L	

2	

J	

(5.15)	 -	
)	 t

rip	 L	 ( P 2	 P+	 ^)	 J

For a flowing vapor orgas to cause waves ona liquid surface, its

(	 speed must be greater than or equal to the minimum ripple wave speed, that

is, U	 > C	 As the vapor velocity is increased, the wave. speed and 	 i
vk _	 Drip

amplitude will increase correspondingly, decreasing in wavelength until

10 - am (where K3 = 3n) is reached, where we assumed in the analysis that

the entrainment is well developed.

5.1.3	 Unstable Wavelength

From Equation 5,13, the liquid film will be unstable if

U
F	

Pk	 P—vim	 Co	 (5.13)

'	 R	 v	

q and we know there is a dominant wavelength given b y Equation 5.6

2 Aao =	 K3	 (1 + Uv	 2n < K	 < 37r	 (5.6)

P  UvR	
Pk	 3

after rearranging and dividing through both sides by ( p R + p v) and dropping
i

the ac subscript, we get

UvR	
2	

aK3
R	 =

f

4	
Pg v	 PM +Pv	 a(PR 

+p° gives the value of p p 	 UvR	 25in6)?	 The ri hthand side of 

Equ 

ation 4.16
X v(p

k
 + p 

°)
	

y

'	 term of Vie wave length X. 

Thus, the incipient entrainment wavelength can be found by using Equa-

tions 5.12 and 5.16 satisfying the relationship 5.13. 	 This can be done by

plotting Co vs. a and	 t

19
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G.0	 ENTRAINMENT HEAT FLUX

.1 The entrainment is assumed to be developed as the result of the

liquid surface dynamic instability at wavelength

j ^tf^ p

den -
	 37tc^	 I 1 +	 v 1 (6.1)

1

P

Pv UVF	 t	 R J

thus,
it

1/2v^]

v	 en Ri
l;

!g+ For relatively low liquid velocities the following approximation holds,

UVR :; U
(6.3)

and because
1

.I
'i A = P v 

U 
	

hfgv

j
i;,	

1

so A i = P  UvQ hfg	 (6.4)
v/

en

By combining Equations 6.2 and 6.4, the incipient entrainment heat flux

can then be determined by,

—PV

 1/2

r 3TXen (1 	 + po
	

hfg	 (6.5)
A 

en	 L
i

Equation 6.5 has been plotted along with the sonic heat flux limit and the

wicking limit heat flux including counterflow shear effects for water,

i
	

freon-11 , ammonia, and methane in Figures 13 through 16, respectively.

The equation used for the sonic heat flux limit is that given by Levy 18

P C hv s fg

Av Js 	 2
(6.6)

where p  and Cs are the vapor density and speed of sound evaluated • at the

evaporator entrance temperature and k = cp/cv is the ratio of specific

heats. Equations 2.4 through 2.13 given by Schlitt, et al. 7 were combined

23
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Fig. 13. Performance heat flux limits for water in an axial groove

heat pipe.
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Fig. 14. Performance heat flux limits for freon-11 in ac axial
groove heat pipe
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to give,

I
N KA	 -V	 (w/D ) 2 	v	 KA	 -	 )

s	 _ R R	 8 v	 v	 8 v	 k

rpLeff	 3 vR	
/

(1+s w) + 1 + 3 vu DZB	
(6.7)

i j	 v v

which gives the wicking limit heat transfer rate including vapor-liquid 	 i{ Y

counter flow shear effects. The axial groove heat pipe dimensions given

j
in Figure l were used in these calculations. 	 }

	

In the Figures 13 through 16 it is apparent that the sonic limit heat 	 }^

flux is considerably higher than the other limits for all the fluids. How- 	 j

ever, since the wicking limit is more sensitive to the liquid properties

than the other limits considered here, the wicking limit exceeds the en-

trainment limit for water as shown in Figure 13. For freon-11, ammonia, 	 t{	 2

and methane, which are less effective working fluids (N R is lower), the

}	 wicking limit is the lowest limit. In all cases, the limits are lowest

lE

l^

^f

ie

-
FFi

at low temperature where vapor densities are low and vapor velocities are

high. This low temperature condition occurs during startup and causes re-

latively large pressure losses and low heat transfer rates.
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7.0	 CONCLUSIONS AND RECOMMENDATIONS

According to the analysis presented in this report, using the lin- 1!

earized instability theory, wave instabilities grow and entrainment begins

when 2n < We < 37r rather than at We > 1 as suggested in the past.	 Here
2

the Weber numberis defined as We E (p U A )1d and X , which is the wave-
V vk o 0

length of the growing instable wave defined by Equation 5.6, is used as

the characteristic dimension in place of d.	 It should be noted that this

result is identical to that suggested by Cotter
9 in Equation 2.15 if both

sides of his equation are multiplied by 27T to give	 Equation 2.16.	 Cotter

further stated that X/21r = d, is a characteristic dimension which _is a

geometric property of the wick surface. 	 Additional experimental data is

needed in order to determine any relationship between d and the wick sur-

fade geometry, particularly for axial g7:oove heat pipes.

The effect of the counter flow shear force between the vapor and

quid is to create an additional pressure drop, given by Ap t'v in Equa

IY tion 2.7, which reduces the overall heat transfer rate of the heat pipe,

given by Equation 6.7.	 if wicking forces are sufficiently high, as they J-F

are for water, the wicking limit can exceed the entrainment limit which

was shown in figure 13. 	 Thus, according to the calculations plotted in

iigure 13 for the axial groove heat pipe shown in figure 1, it is possi-

ble to observe entrainment. of water since the entrainment limit occurs
'A

A

before the wicking limit. 	 However, for this axial groove heat pipe ope-

rating with ammonia, freon-11, or methane, as'shown in figures 14, 15,

and 16, the wicking limit would be reached before the entrainment limit

and entrainment would never be attained.

The entrainment limit heat flux is given by Equation 6.5, the entrain-

ment velocity by Equation 6.2, and the entrainment wavelength by Equation

6.1.	 The onset of ripple waves occurs at a wave speed and wavelength given ii A

by Equations 5.15 and 5.14, respectively.
1J.

Further experimental measurements of the counterflow shear effects

and the entrainment limits need to be made and compared to the values pre-

dicted by the equations given in this report.

A
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APPENDIX A

Detailed Analysis of Wave Instability

Here an original analysis of the counterflow, shear wave instability

is presented. For this analysis a fixed coordinate system is assumed

	

where a liquid film is moving at -speed uR and -a vapor moving over it at	 i
I	 h

speed u  as shown in Figure Al.^

yok

!	
U 
	

,Y

no

h

Fig. Al
(

tJ

The liquid and vapor flows may be represented by a velocity potential,

j	 ¢ = ux, plus a perturbation term, ¢', to account for the waves, 	 !f

^Jli Ov 
= uvx + ^'	 (A.la)	 t

3	 {

i

u	 The corresponding boundary conditions are

r4

(P' = 0 at y = + 2"	 (A.2a)

Y	 and	 s
u	 4=

^^ = 0 at y = - $"	 (A.2b)
Ez

)	 G

The use of velocity potentials requires that the flow is irrot .tional;

that is, the perturbation terms, ', must satisfy the Laplace I s egsation,

33
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a	 a

ax 	 ay

The perturbation terms may then be described by a sinusoidal term,

^'(x,y,t) = Y(y) sin 
am 

(x - Ct) (A.4)

Introducing A.4 into A.3 we get

2	 2
Y	 21T

where the solution is

7	

2 7r

A	
Y
	

a
	

Y

Y=Ae	 +Be

thus Equation A:4 becomes

2n	 2n
'Y 	 -	 Y

O'(x,y,t) = (Ae^	 + Be	 )	 sin
a7T
	 (x-Ct) (A.5)

Applying the boundary condition A.2a to ^' we get

Ov(x,y,t) = D sin 
a^ 

(y-k") sin X11 (x-Ct) (A.6a)

and the boundary condition A.2b gives

R (x,y,t) = E Binh 	 (y+2,") sin -^ (x-Ct)	 (A. 6b)

where D and E are constants.

The forms of Equations A.6 indicate that the displacement n has a

sinusoidal form as,

q = go cos 27r 	 (A.7)

The linearized kinematic conditions across the liquid-vapor inter-

face are
r=,

34



. . \. . . . _	 2 ^,	 y_	 . r .Ali

\%..	 ? /^	 §\.	 y \.\	 \» >.§^	 ^	 .<	 ..	 \	 .	 ..^^<«	 .	 <	 ...«}^ \^

.A.	 . .	 . 	 .
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! a 9
a + % a . 2 (A. SO \

^ j <

a + \ a _a}	 . (A. 8b) i

r
} . aSubstituting ^ a^_ta,^e,ea^7^oA# »,tee ame> \)

)

! ively, we #t

} : \
' %^ \

D	
v

c a,>
=A	 c 7,

and
. \cent, .

z z	a r », \
cosh	 c 2, \

The dynamic pressure gradient condition  across the interfaces j y
. linearized forma

,
/Pi --a a.w, -. y \

14.

a	 > is the pressure perturbation eta is the surface  »esm \

The pressure, y, may & calculated fromace linearized s 62 \
equation \

_ l ;^^-# tat
, \

Substituting Equation tc into A.10,_ get \

,%	 ,,	 aI	 a\
- v ca + % a - #, + &`a	 3 a r, \

: _- ante \ :ax

»^\Now we substitute EquaaeA.&,A.a and A., we tee eliminate «
\^}D ea, A. e,s using A.9b, and n	 we get }
22 °\
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PV (-C+u v ) (C-uv ) tanh 
27 (y-Q")

pQ ( •-C+uQ ) (C-uQ) tanh -^ (y+Q") - ^ (P Pv) = o x?r
v

The above equation may be simplified with very little error, as did

Tippits Q171 by recognizing that Q" s .4 
X  

and y is very small so that

the tanh terms are nearly equal to 1, as

P  (C-uv) 2 + P t (C-ud - T ( P Q - 
P v ) - 2x0 = 0	 (A.13)

Rearranging Equation A.13 and solving for C, we get

1/2

	

(P u +P u ) -	 P p (u )2
C=	

1( Q v v + C 2 - v Q vQ	 (A.14)
(P 
91 v

)	 O	
(PQ+P)2v 

where
2 = ^

.	
(PQ-Pv) y	 2irc

Co 	 2fr ( P Q+Pv )	
1(PQ+Pv)	

A.15)

Note that Co is the wave speed of a :raveling ripple wave in a

quilt fluid where uv = uQ = 0.

From Equation A.14 we can see that the flow will be unstable and

waves will be formed if

2
( uv+u X. > C 2

PQPv (PQ+PV)	 O

or rearranging ^ YRODUCTBII 	 OF 'EHE

``	 Aj, PAGE" ^ POOR`
2	 , )I^,,IGiN

PQPv(

^uv%
e
	 >Ct(A.16)

Q

The magnitude of C given by Equation A.14 varies with .\ as is shown

in Figure 5.3. The value of n for which C is a minimum may be designated

r. ip
and corresponds to the point of onset for ripple waves. This value

of G rip can be determined by differentiating equation A.15 with respect
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I11j

to a and setting it equal to zero.

Solving for Grip we get

drip - 2w
	

(PR-Pv)gc
i

I
The corresponding minimum value of Co is

1/2
1	 r 2ogc(PQ-Pv)

_	 _

Co rip -	 (PR+Pv)2

(A.17)

(A.18)

1

For a flowing vapor to cause waves on a liquid surface its speed must be

greater than or equal to the minimnum ripple wave speed, that is, uv ^ Cc rip

we are interested in waves which are more unstable than the weak

ripple waves, we are therefore interested in waves which have a smaller

wave length than ripple waves, that is, we are interested in waves with

1 : arip' Fo,. small values of a the gravity term in equation A.15 for

C
0 
may be neglected, and then solving for A, from Equation A.16 we get

^ y 27r	 Po 2
	P

(1 + V )

Pv V9,R
(A.19)

i

which is identical to Equation 4.3 given by Tippets [17)1

,
	

,t

rs	 ^,
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