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ABSTRACT

One of the most critical deficiencies of modern control

theory is the reliance of the theory upon the fidelity of the

mathematical model of the system. This research approaches the

problem of model errors in linear system models by augmenting to

the original system of equations an "er_or,system"

Y.	
e=Py

Y Dy

which is designed to approximate the effects of such model errors

as external disturbances, truncated modes, and parameter errors,

when this "error vector" a is added to the system equations to

obtain

x Ax+Bu+ a	 (2)

Several researchers have concluded that increasing the order of the

model,(via augmented "disturbance models," "dynamic compensators,"

b	 etc.) can compensate for parameter errors, I and external

disturbances. 
2-6 

There is very little guidance available,

however, for the task of actually constructing such an auxiliary

' system for augmentation, or for determining whether such methods

can also accommodate truncated modes, a problem which has in the

past been treated by singular perturbation.7_9

The point of view taken in this research is that the total of
U

truncated modes, external disturbances, and parameter errors can

be corrected by the addition of a "model error vector," e, to the

original system equations. When state estimation techniques are

r
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applied to the assumed "error system" (1), and when the error

system (1) belongs to a class called the Sturm-Liouville equationsi

(which generate orthogonal functions), the resulting estimator is

labeled an "orthogonal filter." 	 A special case ofthe Sturm- q

Liouville equations called the Chebyshev error system generates the

Chebyshev polynomials, which provide a least squares fit to the

measurement residual over an interval T.	 The important selection

of this "observation window", T, is related to a property of the

closed loop system called the characteristic time (T A max VW=
x	 -v(x)

where v(x) is a Liapunov function for the asymptotically

stable linear system).	 Thus the parameter T is both a model param-

eter and an element of the control system serving to interweave the

processes of model development and control system design.

In this dissertation a Chebyshev error system is developed for

application to the Large Space Telescope (LST), an earth satellite

which NASA plans to launch in the 1980's.
y
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SYMBOLS

,j0 designation for a physical system

.A, designation for the j th model of a physical system
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eij an approximation of el^
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^	 B^

CJ

Cj Xj = Aj xj + Bj u
yj _

.
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MiMj

Q weighting matrix for output ; y^, in linear regulator problem
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SYIIBOLS (Continued)

R weighting matrix for control, u°, in linear regulator problem

Kj Riccati matrix associated with model 41

H weighting matrix for terminal y 3 (T) in linear regulator

problem r'
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K Kalman gain in Kalman filter (also more general estimator gain

of full order estimator)
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1

p a vector of parameters;	 p E Rr

P a matrix satisfying	 e31 = PY

D a matrix satisfying	 Y = Dy
_z

Y a vector of synthetic variables, characterizing the error

system

an "observation window" for the state estimator

d the order of the model error system

X
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d22
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1.0 Introduction

The task of determining a control policy so that the physical

dynamical system behaves in a desired *.Wanner usually begins with the

responsibility of obtaining a mathematical characterization (model) of

the physical system. However, any mathematical description of the phys-

ical system is subject to "model errors" in the sense that the mathe-

matical description does not precisely describe the dynamical behavior

of the physical system. Moreover, there presently is no well developed

theory to assist one in selecting a mathematical model of the physical

system which is appropriate for the particular control task at hand.

It is for this reason that model errors are a common cause of diver-

gence in the state estimators used in the feedback control policies.

For linear models of systems and under other appropriate conditions,

such state estimators are commonly called "Kalman filters" in stochastic

characterizations of problems and "Luenberger observers" in deter-

ministic characterizations of problems. It is understood by users of

the theory that model errors establish performance limitations of the

closed loop physical system, and thus the realized performance may be

unacceptable even though the design is based upon optimal control theory.

The reason this model error problem persists in spite of the vol-

10-12
ume of "model reduction" literature that exists (see for example 	 ,

lies in the fact that the appropriateness of a model depends upon the

^e
Model errors also limit performance of classical designs. The modern
"state estimator" approach is utilized throughout this paper because
its structure includes classical designs but is not limited to them.'
That is; a classical- compensation design may be viewed a state esti-
mator for some model of the system.

1	 _
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nature of its (desired or undesired) inputs. As a consequence of this

fact, the "modeling problem" and the "control problem" should not be

treated as separate and independent problems. Efforts to treat them

separately usually result in control policies which either

(a) suffer from modeling errors, causing performance requirements

to be violated

or

(b) satisfy performance requirements at a high cost of control

policy synthesis.

The conditions which cause (a) are sometimes not discovered before

"flight" of the system. The condition (b) often prevents use of modern

control theory in an application. To more sharply focus questions of

model errors, attention is restricted to linearized models of the

physical system.

In the quest for an appropriate system model. (call it e^^) it is

necessary to consider the impact of the choice of models on the total

closed loop system performance. It is helpful to consider the exist-

ence of a hierarchy of linear models as shown in Figure 1-1. In this

hierarchy, it is assumed that the physical quantity to be manipulated

for control purposes has been selected (corresponding to its mathe-

matical symbol, uo (t)). Likewise, the mathematical symbol selected for

the measurement vector is z o (t), corresponding to the selected physical

quantities. The output vector, y o (t), represents those variables we

actually wish to control, as opposed to the variables which are actually

0
measured,- z •^(t). To complete the model., then, we must write some dif -

ferential equations which dynamically connect the systems input

2
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actual output	 yo E Rk
actual measurements z° E RQ

xl Alxl + B1 u°
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1
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Figure 1-1. Hierarchy of Linear Models.
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(desired and undesired) to the system outputs. The order of these

equations (or, the number of equations in the state form of Figure 1-1)

remains to be determined; thus the hierarchy of possibilities illus-

trated in Figure 1-1.

The dilemma of model selection is complicated by two conflicting

goals. We wish to implement the simplest solution to the control prob-

lem, for economic reasons, and we wish to achieve satisfactory perform-

ance. If the models of Figure 1-1 are arranged in order of decreasing

model fidelity (fidelity being defined according to their ability to

faithfully predi c t the output of the physical system, y°(t) for a

specified input and initial conditions), then the better closed loop

system performance is achieved by designing the control policy on the

_basis of a model at the upper end of this model hierarchy, (since more

information about the physical system is made available) whereas the

simplest control policy obtains from the lower end of the model hier-

archy. The limits of this argument lead us to the conclusion that truly

optimal control decisions (policies) can come only from models which

are not finite in size (again assuming there is some small region

around the origin of state space in which linearized models are valid),

alternately, that the simplest feedback control policies require no

model at all (corresponding to open loop control)	 This is an easy

The actual arrangement of a'set of models in order of.-their fidelity
would be a most difficult task in itself owing to the fact that as the
models become larger (i.e., as more modes of the system are included)
more uncertainty is associated with the parameters.

The existence of the hierarchy of models in Figure 1-1 has been argued.
However, the actual construction of the "arbitrarily good" model
mentioned above is impossible, for obvious reasons.

4



way to visualize the fact, well known to users of optimal control

theory, that optimal solutions are only as good as the models upon

which they are based. Thus, in solving optimal control problems there

is always the (often unstated) economic constraint imposed on model
1

size. In problems of analysis this constraint may be imposed by the

capacity or cost of available computers. In problems of feedback con-

trol design this constraint may be imposed by the cost of synthesizing

the control policy. The model size versus controlled system perform-

ance dilemma leads us to the characterization in section 2.0 of a

problem we would like to solve (but cannot) called the "Minimal Con- 	 r

troller Problem." Because the Minimal Controller Problem cannot be
I	 3

solved, it is typical to employ various schemes for "discrediting" the

model (upon which control design is based) and these past approaches

are discussed in section 3.0.
A

The approach taken in this research begins in section 4.0 and

centers around the question, "Can an n^ vector, e(t), (called a model

error vector) be found such that when e(t) is added to the state equa-

tions of any model 14 j (see Figure 1-1) , the output of the model d 3 is

caused to be identically equal to the output of a better model, 	 ?"

Pursuit of this question ( and the adding of precision to it) leads one

to describe model error effects in four categories:

1. truncated modes a

2. parameter errors

3. neglected external disturbances

s	
4. neglected nonlinearities.

w
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Characterizing an error vector e(t) which compensates for the above

effects is not a straightforward task because one does not usually

know, prior to design of the control policy, what disturbing effects

(from external disturbances and truncated modes) are important to keep

in the model. The control designer must typically rely upon perform-

ance evaluations 
in a trial and err-or fashion to determine what

disturbance effects and modes of the dynamical system should be

actively controlled, and therefore be included in the model upon which

the control law is based. Also parameter uncertainties (whether

constant are due to "'in-flight" changes) and variations in the

disturbance environment cannot usually be reliably predicted. It is

for these several reasons that the appropriate model error vector,

e(t), cannot be rationally specified prior to control system design.

Therefore f the modeling problem 
is 

proposed as a two-phase task, as

shown in Figure 14.

STEP I: Coarse model reduction (,d1	 3 in Figure 1-2 describes

a reduction from a conservative model, .d1 , to a reduced model Ad 3 and

is accomplished prior to control design).
STEP II. Vernier model adjustment 

( 'd3 	
2 in Figure 1-2

describes a small increase in the order of the model by 'the augmenta-

tion of an "error system" to the model A4
3 

and must be accomplished

during the control design task. It will be shown that control designs

based upon model J are less sensitive to modeling errors than designs
2

based upon model d3.

This research is more concerned with a theory of modeling of

linear systems than with any new theories of control, although from

6





prior discussions we know that the two cannot be considered entirely

separately. Therefore, section 4.0 will discuss the idea.of control

by model error estimation when the control problem of interest is the

linear regulator problem of optimal control.. In section 5.0 that

particular choice for the model "error system" is made such that the

model error vector considered evolves from a set of orthogonal functions

which are considered to span the space of anticipated errors. A brief

outline of the design procedure is given in section 5.0. This method

of control design is applied to the Large Space Telescope (LST) which

the National Aeronautics and Space Administration (NASA) plans to

orbit in the 1980's.

The relationships of various aspects of this work with existing

theories and practices are cited throughout the text, but a summari-

zing discussion of this sort is given in section 7.0, along with con-

clusions and suggestions for further research.

a

s
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2.0	 Some Effects of Model Errors in Control Problems

As modern control theory rapidly developed in the '60's the

press of the control theorists to alleviate system performance limi-

tations imposed by the control law (which he might have viewed as his

responsibility) exposed, sometimes dramatically, the effects of errors

in the system model (which he might have viewed as the dynamicist's

responsibility). Such model error effects were not always discovered

before "flight" of the system. Since failures of modern control

implementations do not usually make the journals one can be mislead,

on the basis of the literature, about the frequency of successes of

modern control theory applications. Optimal control theory "squeezes"

the models hard, and a theory that tells how to get more out of the

system (model) puts greater pressure on the modeling process. Thus,

the practicing engineer quickly learns that "optimal" solutions are

only as good as the model upon which the solutions are based.

Furthermore, since models for physical dynamical systems are always

approximations, we must conclude that truly "optimal" decisions can

only come from truly "best" models (since there always exists -a

better model, here "best" at least implies not finite dimensional).

Therefore, practical questions of optimality carry an often unstated

consideration of implementation constraints. This leads us to the

notion of the problem we would most like to solve (but cannot).

In the mathematical sense the word "optimal" always means with respect
to the given model and with reapect to the chosen performance criteria.
Poor system performance can also be attributed to a poor choice of
performance criteria rather than inadequate modeling.

a
a

3
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The Minimal Controller Problem:

Find a control policy of minimal complexity which allows the

required performance to be guaranteed. That is, find the control

policy u° - u°(z°, AJ , BJ , CJ , Mj ) which although based upon real

measurements z° and the model, 41j (of the physical system, 0)^

satisfies the performance requirement

vj a 
f 

(I I y°I I Q + I {u°(z°, ^) I i R)dt s v°

with minimum nil where V° is a specified number and where

do — physical system u°: actual inputs E Rm

y°: actual outputs 
E Rk

zo : actual measurements E RQ
^^	 n

-kj AO xi + Bj u°	 XJ: state E R J

d
J
, y 	 Ci r.J 	u° : control E R7

zj = MJ xJ	 yj : output E R 

zJ : measurement ERR

Note that z° is a real measurement and cannot be predicted with

certainty. Now therefore the Minimal Controller Problem is not a

mathematical problem (due to'the requirement of certainty, V  S V°)

and cannot be solved mathematically, and for that matter we have no

procedure to solve it even empirically. However one might attempt to

solve the minimal controller problem in the following way. Presume

that the output variables y° which we desire to control have been

identified and that the "controller," u0 (,d jI z°), is composed of the

The problem cannot be solved even in the statistical sense; see
section 3.0.

i

i	 10
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control law u	 Gx	 and the state estimator

^+ x 	 A - KMj ]^B	 K-+	 u+	 z

I
a.	 Choose the decision variables, ui (with due regard to the fact

that the model ,d^ presumes that ui(t) can be instantaneously changed.

In practice any delays in changing	 u	 must be small with respect to

the time constants associated with both the open loop and closed loop

system of model

' b.	 Chouse a model order, n 	 (for the sake of this discussion

begin with ri^ _ 1) .

c.	 Choose model parameters (Aj , Bi , Cj , Mj ) (Note that this

involves, in (A3 , M3 ), decisions of what measurements to make and in

(A3 , Bj ) decisions of where to apply the controls).

d.	 Choose a controller (that is, choose a functional relationship

-between the measurements, z o (t), and the control issued, uo(t)).

e.	 Evaluate V3 and test the inequality Vj S Vo .	 (If yes stop.

-If no, return to c. or d.	 After exhausting "all" possibilities in c.

and d., return. to b. increasing n^ by 1. 	 Continue until e. is.

satisfied.)

hThe statement of the minimal controller problem serves only to remind

us of desired objectives and is not in itself constructive. 	 Indeed,
3

! it is because we cannot solve the Minimal Controller Problem that we a

are forced to pay close attention to model errors.

Before considering the effects of model errors we should define

the terms.	 Errors in linear models may result from;,

The details of estimator (full order and reduced)- design will be z
discussed in sections 3.0 and 4.0.

11
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1. Truncated modes (those errurs introduced by model reduction,

recognizing that any mathematical model may be considered a reduction

from a better one; thus this effect is always present in models of

physical dynamical systems.)

2. External disturbances (those unmodeled effects which are 	 »a t`

independent of the state variables used to describe the model).

3. Parameter errors (even if the structure (order) of the model

	

is appropriate, there may exist better values for the parameters). 	 4•`

4. Effects of linearization (neglected nonlinearities).

Now, we wish to know now what price we pay for the presence of such

modeling errors.

2.1 Some Effects of Model Errors in Deterministic Characterizations
of Dynamical Systems.

Suppose we wish to minimize the functional
ro^

J(uo) = 1 T	 T j+ UOTRuo}dt + 1jT T H T 	 2.12^

 (yj 

QY	 /	 2YO	 yO 	 ( )

t
0

subject to the time-invariant linear system model, Aia

s

n.
xj = Aj xj + Bj a	 xi E R

Atlf	 yJ	 c 

z 	 Mj xj	y3 E R 	 (2.2)

x(to) - xo

REPRODUM LI'i`Y OF TH
12	 QRIqWAL PAGE IS POOP

f



Furthermore, let the pair (AJ . B3 ) be controllable and (AJ,C'])

be observable in the sense of Kalman (also, let Q, R, be positive.

definite matrices). Then, according to this model, the closed loop

optimal system obeys

xJ = [Aj - BJ Rxl}JK]Jj(2.3)

where K is the symmetric, positive definite solution of the matrix

Riccati equation

T	 T
K = - K Aj - AJ K + K Bj `R_ 1 Bj K - CJ_ Q Ci	 (2.4)

K(T) = H
Now A has an arbitrary spectrum. That is, there exist real values for

Q and R such that the eigenvalues of A may be arbitrarily specified,13.

Then, on the basis of the analysis of this system model, arbitrarily

good performance can be predicted. That is, there exist Q, R, such

than

J(u°) <_ e	 de z 0	 (2.5)

To synthesize (operate the real system) with this "optimal" control

	

:.	 T

policy, u° = - R-1 B1 K xi , a "separation principle" is usually invoked,

as follows. The control law is"determined (above) as if the state xJ

n,-1

The pair (Aj , , Bj ) is controllable if rank [ BJ , AJ Bj ..-. AJ	 B1 ]=nj .

n.-1
T T	 T	 T J T

The pair (AJ ,C,"^) is observable if rank [CJ , Aj	 CJ , ... , AJ CJ I=n j .

	

J	 In this repor'c the word "controllable" will always mean with respect

to the state vector (that is (AJ ,BJ ), satisfy above condition.) Output
n,

J -1

controllability (rank [CJBJ, CJAJ]3i' .,. ,CjAj	 ] [CJBi,
, 1
-

CJ AJ ;3J ,...,Cj AJ nJ B J ] = n^) is assumed throughout.

13



were available for measurement. A state estimator is then constructed

to asymptotically reconstruct x i . The estimate of x3 , labeled x3 , is

then used to synthesize the feedback control solution,
T

uo - R
_ 
1Bj K93 . The justification offered for this approximate

implementation of the optimal solution is that the state estimator (or

state "observer" as the literature on deterministic problems prefers)

can, under certain conditions, (observability of the pair (A3,ml))

be made arbitrarily "fast" so that errors between the state, x 3 , and

the estimate of the state, x J ,,are arbitrarily small after an arbi-

trarily short period of time. Thus, the synthesized "controller" is

as shown in Figure 2-1, where it is noted that theestimator has an

arbitrary spectrum (eigenvalues of (A3 '- K I43 ) may be arbitrarily

specified) by virtue of observability of A^, 143 . The full nth-order

form of the state estimator is sho^ ,m in Figure 2-1 instead of the

reduced, (n 
J_

R) th-order form, which might be implemented in practice,

to illustrate more clearly the effects of model errors. If the control

gains G are taken as those optimal for the model Ae. then
T

G = - R 1B3 K, see (2.1) - (2.4). Now the problem that sometimes

occurs with the control scheme of Figure 2-1 is that in spite of the

fact that arbitrarily good performance can be predicted on the basis

of the model Aj the physical system O can deliver arbitrarily bad

performance (i.e., yo diverges from desired value yo = 0). The gen-

eral situation is that while "arbitrarily good" periormance is not a

*See Wonham58 for one proof of this fundameiitally important result of
linear system theory which guarantees the existence of a real matrix
M which will give the matrix (L+121) an arbitrarily specified set of
eigenvalues if and only if the pair (L,N) is observable.

14
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I . -,

"CONTROLLER"

I —

0

j

x Aj xj + Bj uo

(Yzi

j

l

Ci

I'Mil
xj

Hodel dj is characterized by the parameters

(Ai , Bj , Cj Mj ) : MODEL PROUEM

State estimator is characterized by	 (K)	 : ESTIMATOR PROBLEM

Control Law is characterized by (G)	 : CONTROL PROBLEM

Figure 2-1. The Controller for the Linear Regulator Problem.

0/
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practical requirement, we cannot be sure that even "acceptable"

performance will be actually achieved.

To see how model error in the form of neglected external dis-

turbances can have the deteriorating effect described above, consider

the statement of the typical optimization problem (2.1), (2.2). We

see immediately that the solution is optimal for any initial condition,

X0
0 . 

Thus, if some impulsive disturbance "resets" the initial condi-

tions to a new value the system will respond optimally toward y j = 0.

However, in the presence of any disturbance which is not impulsive

(correlated in time) the system will not respond optimally even if

there are no other errors in the model. In fact, however, each of

the model errors classified earlier can cause divergence of the

physical system output.. If one is inclined to blame the control

theory for this condition then he may search for new ones (such as

the adaptive control theories). If one is inclined to blame the

modeling process for this condition, then he may search for better

models. This latter attitude is presented in this research.

A few words are needed here to justify our attention wholely to

state space models and further, to state space models which are not

minimal realizations. Our rationale rests solely on the argument

that physical dynamical systems are not completely state controllable.

To be more precise we must argue that as we progress up the hierarchy

of (mathematical) models in Figure 1-1 (which, recall, is arranged in

order of fidelity of the models), the expectation of controllability

Minimal realizations are state observable, controllable models, see
Deference 40, p. 94.

i
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of the pair (AJ ,, Bj ) decreases. This notion is at odds with those

offered by Ho and Lee, 
14 Preindler and Sarachik, 15 and Schultz and

Melsa, Reference 1.6, p. 29, who suggest that uncontrollable models of

physical systems are "inadvertent." To support our claim to the

contrary consider the

PROPOSITION: For every completely controllable linearized model of a

physical dynamical system, there always exists an uncon-

trollable linear model of the physical system which more

accurately portrays the outputs of the physical system.

For supporting arguments we cite two separate circumstances, the first

based upon the presence of external disturbances the second on inter-

nal disturbances. First consider that for any model of the system

there can always be identified some disturbance which is "external"

in the sense that it does not depend upon the state variables pre-

viously in the model (i.e., the neglected gravity gradient torques

on a spacecraft, or thermal gradients on a ground based antenna etc.).

Now adjoin a differential equation which that disturbance obeys (find-

ing that equation is quite another task) to the system description.

The resulting composite system then provides a more faithful charac-

terization of the output, y(t), than did the model which neglected the

disturbance. Moreover, those variables associated with the model of

the disturbance are uncontrollable. The second circumstance of

Thus, whether a particular effect qualifies as an external disturb-
ance depends upon the particular model, d j ,, at hand. Note that such

disturbing effects fall in either the category of external disturb-
ances or truncated modes, as listed on page 12_.



"internal disturbances" (truncated modes) is discussed in detail by

Likins and Ohkami. 66 In this report it is shown that some modes may
be found in a linear model of a physical dynamical structure, such as

a spacecraft, which are uncontrollable.

Now the danger in using minimal realizations to describe physical

processes is that while under contro.iled conditions (i.e., laboratory

prototypes) a controllable model may adequately describe the response

of the output, under "flight" conditions the natural environmental

disturbances (and truncated modes) may excite uncontrollable modes

(which are present in the physical system ). In this circumstance the

controllable models are loathe to explain the discrepancies observed

in the measurements and hence even adaptive techniques, designed to

update parameters within a controllable model, may fail to yield

stabilizing feedback. Thus, the choice of words "minimal realization"

to describe controllable, observable models of minimal order is per-

haps unfortunate since taey should not be taken to mean that if a

model is not controllable there is another, equally credible, model

that is.

It is not surprising then, that Astrom1 has found that increasing

the order of a model can compensate for parameter errors (without the

use of adaptive techniques). The converse is not true. That is,

changes in parameters may not compensate for the effects of truncated

The phrase "physical system" necessarily includeSeffects which qualify
as "external disturbances" with respect to a simpler (mathematical)
model. See footnote on page 17.

18
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modes. This point is discussed in section 3.0. Concerning

uncontrollable modes then we conclude that they may be (automatically)

truncated from the model only to the extent that they are also unob-

servable.

Finally, we note that classical techniques are restricted to

controllable (and observable) models and cannot be used to directly

compensate the effects of uncontrollable modes and external disturb-

ances. (This is one reason why classical design procedures are often

characterized in the oversimplified terms "design for stability, then

check for performance" and optimal control design procedures in the

terms "design for performance, then check for stability"). Compen-

sation of external disturbances may be (indirectly) :accomplished via

classical techniques if the right structure for the compensation is

proposed a priori. For example, if a bias disturbance is noticed (in

the "check for performance" phase of design), by the appearance of a

bias error in a pointing control problem, then an integrator can be

added in the compensation to correct for this disturbance. We will,

instead, use a procedure which allows consideration of both uncontrol-

lable modes and the treatment of disturbances directly.

One criticism which has been leveled at control policies which

utilize state estimators (see Figure 2-1) is "Why estimate all of the

state variables when only some might accomplish a satisfactory control

policy?" our response to this question is that if we consider our-

selves to be responsible for both the model and the control law design,

then, out of concern for the Minimal Controller Problem (presented in

section 2.0), we take the attitude that if a particular set of state

19
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variables does not need to be estimated to accomplish the control

task then those state (modes) do not belong in the model to be used

for controller design.

The overall control design task is often considered, from Figure

2-1, as three separate problems:

1. Selection of (Ai , Bi , Cj , Mj ) (including dimensions as well

as parameter values) as the modeling problem,

2. Selection of K as the estimator problem,

3. Selection of G as the control problem.

(Alternately, items 2 and 3 taken together may be considered as the

controller emblem).

In this research we will consider how these three problems might

be related through an approximation of the model errors which are

_inherent in any finite dimensional model of a physical dynamical

system.

It is notedthat the matrix K in Figure 2--1 can be chosen accord-

ing to a number of different criteria. If the problem description is

deterministic, as above, then K is chosen. for desirable stability

properties of the estimator. If the problem description is stochastic

the K can be fixed in terms ofstatistical properties of the random

variables of the problem. Thus as a special case Figure 2-1 also

describes the Kalman filter which is discussed in the next section.

2.2 Some Effects of Model Errors in Stochastic Characterizations of
Dynamical Systems

In the previous section the point was made that model errors in

deterministic models can cause state estimators to diverge, resulting

20
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in instability of the closed loop system. One approach often used to

provide a "dynamical cover" for the model errors is to add a noise

"disturbance" term w(t) to the model and write

x= Ax +Bu+w(t)

so that the ensuing mathematics will not lead us to believe that the

model (of the undisturbed system) is "arbitrarily good." In other

words some noise (real or imagined) can be added to "discredit" the

previous model. Now the point to be made in this section is that if

the actual disturbance acting on the system is a correlated random

process and we have modeled the disturbance w(t) as a white noise

process then the resulting state estimator may still diverge (further

details will follow in section 3.0). Moreover, there may not exist

a_ y set of parameters within the fixed structure of the model or any

set of parameters for the covariance matrices of the random variables

(only first and second order statistics are needed for the optimal

linear state estimator) which will yield a stable estimator.

To illustrate this problem let us refer to Figure 2-2 which shows

the solution of the linear quadratic Gaussian problem with the result-

ing Kalman filter identified. From the Figure it is seen that the

model zdi of the physical system J0 is shown with the same notation

(the superscript j is chopped in Figure 2-2 for clarity) as in the

previous section with the exception that the initial condition xo , the

plant disturbance, w(t), and the measurement noise v(t) are all

*It will be shown in section 4.0_ that -there exists a "model error
vector," e(t), which when added to the model (i.e., x = A x + B u +
e(t)) can correct for model errors due to a) truncated modes (unmod
eled dynamics), b) external disturbances, c) parameter errors, and d)
weak nonlinearities. In this section e(t) is considered to be white
noise.
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PHYSICAL SYSTEM

d0

^.Y

G

CONTROL LAW
(BASED UPON 4d

Bi

+

Aj —KMi

L STATE ESTIMATOR (KALMAN FILTER)
(BASED UPON MODEL J I )

xj - Aj x + Bj u + w(t)	 w(t)— N(0, Q(t))
,d j

z - ti x + v	 v(t)- 140, R(t))

_ T

Control u = -R 1Bj K x = G x	
x 
	 ...N(0, Po)

where K obtains from (2.4), and	 E[w(t)wT(T)] - Q(t) 6(t -T)

x	 Aj x + Bj uo + K(z°- 11 x) E[v(t) v(T)] = R(t) 6(t-T)

where K= E rijT R 1	 E[w(t) xoT ]	 0

E Aj E + E AjT- EMjTR 1Mj E + Q E[w(t) VT (t)] = 0

E(to ) = E 	 E[v(t) xoT ]	 = 0

E[x(t)xT(t)] A E(t)

E[x x T]
0 0

Figure 2-2. Linear Quadratic Gaussian Problem.

= Eo
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Gaussian random vectors with zero means and covariances P o , Q(t), and

R(t), respectively. Furthermore, v(t) and w(t) are uncorrelated

(white) processes. Now even though we assume the model ji is com-

pletely controllable and observable in the stochastic sense, the

Kalman filter (state estimator) may still diverge for the same reasons

as in the deterministic case: model infidelity. Consider the particu-

lar example of very small, or zero, plant noise Q O-VI 0. Now, the

estimator gain, K, which was non-uniquely chosen for stability of the

estimator in the deterministic problem of the previous section, (com-

pare Figures 2-1 and 2-2) is now uniquely determined in terms of the

statistical parameters of the random vectors xo , w(t), and v(t) (as

shown in the equations for K in Figure 2-2), and K is called, in this

A

case, the Kalman gain. Since Q Pi 0, K has a zero steady state solu-

tion, due to the fact that £ = 0 is a steady state solution of the

covariance equation. The result is filter divergence Gince for K = 0

the filter is no longer causally related to the measurements. Thus,

the filter "thinks" it has "learned" the model and disconnects itself

from the noisy measurements (by making K -> 0) and relies only on pre--

dictions from the (always erroneous) modelxe . Divergence occurs due

LO the fact that undue confidence is placed on the model (here the

word "model" includes the statistical parameters Q, R).

This example illustrates.how the gain K serves as an "arbitrator"

to weight between the measurements (which evolve from the real system

14o) and the predictions (which evolve from the selected model 'd  of

the real system do). The estimator "decides" which to believe

(weight more heavily) based upon model parameters presumed (Q(t), R(t),

23
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Eo , A,B ,M).	 Thus, when the model i; inadequate, the "decisions" made

by the filter can be bad, leading to system instability.	 This example

also has led many researchers to seek a "fix" for this divergence prob-

1em by increasing Q in some way, 18-20* thereby artificially, or other-

wise, decreasing the confidence in the model by causing K to be
f

increased.	 Detailed conditions of Kalman filter divergence may be
s`

found in References 21 through 24.

Conversely, the theorem of Price21 gives the conditions for uni-

form asymptotic stability in the large. 	 Under stated conditions the

theorem assures that the norm of the covariance matrix has an exponen-

tial upper hound

-G2t

I'E[(xjf - xj ) (xj - x^ )T ]II	 < 61 e

where x^ , is the state of a better model of the same dimension (i.e.,

more correct parameters) and x^	 is the state of the model d3 upon

which the filter design is based.	 The unsettling feature of this
E

result is that it is still possible for the filter to satisfy these

conditions (and thus be uniformly asymptotically stable in the large)

and yet, within time constants of the system, yield arbitrarily bad
3

estimates.	 This can occur because no upper bound is established for

6	 and o1	 2.

In a similar manner, persistent unmodeled "disturbances" (which
3

may result from truncated modes as well as external disturbances) do

the same "damage" to a deterministic (Luenberger) observer as unmodeled

Fitzgerald , 22 shows that an increase in Q can also make the estimates
worse.	 -
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correlated disturbances do to the Kalman filter. We now refer to some

specific alternatives and past attempts to compensate for the presence

of model errors in the control design problem.

r
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3.0 Past Approaches to Compensation for Model Errors

What follows in this section is a brief summary of various methods

of control design in the presence of modeling errors of the type dis-

cussed in section 2.0. A point of view one can adopt to help unify

these approaches is to consider that the basic objective common to all

methods to be discussed is to somehow "discredit" the mathematical

model. After all, discrediting an erroneous model is a first step to

better control decisions.

Basically, the problem is as follows: We have committed the

physical system to a linear model,

xj = A3 xj + B3 uo

y  = cj x3	 (3.1)

zj = Mj xjl
where z3 represents measurements (as predicted by the model, A4 )

where u  represents the "decision," or "control," variables selected

for manipulation, and yj represents (as well as this model is able to

predict) the output variables, the object of our control. We wish the

variables yj (t) to behave in a certain way in accordance with some

mathematical criteria we have specified to reflect the desired per -

formance of the physical system. Now, the selection of u o(t) is to be

based upon analysis of the model 
,dj 

(to avoid trial and error methods

with the physical system). On the basis of this "analysis" (the pre -

diction of physical system performance on the basis of the model, 4J

we can provide u (t) in an. open loop fashion,

27	
i^^^ .{^1;llL^1G PAGE BLANK NOT 1+1'



rtike	 +,e.-a-s^a•,	 —

a

/s

4	
uO;, XO t)	 ^O	 y°(t)	

}

 J

closed loop fashion (if some measurements z0 (t) are available), i

j

U°	 v	 + --► Y°

	o 	 z°

U°(dj, P°I t)

and modifications of the closed loop fashions which include the

capability to change parameters within the fixed structure of Id 

	

.`	

y°

o

U^(^^, z°, t)

CHANGE(A3,B3,M )

i

This latter scheme falls under the category of "adaptive" control.

Now let us begin our brief survey.
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3.1 Feedback Control

If the model Adj was a perfectly accurate representation of the

physical system then the physical output y (t) would behave in exact

agreement with the output y 3 (t) as predicted on the basis of analysis

with the model zi J* In this event, one can issue the controls u (t)

to the physical system in an open loop manner with confidence that the

h sical outputp y	 p y ° (t) will behave exactly as predicted. However, the

effects of nonlinearities, parameter errors, and external disturbances,

and modes of the dynamical system which have not been modeled (the

collection of these effects has been labeled in section 2.0 as "model-

ing errors") cause physical systems to deviate from their modeled

behavior. It is primarily for this reason that feedback control has

been so useful. Even though the selection of gains or dynamical ele-

ments in the feedback path is still based upon analysis with model Add,

the current measurements from the physical system serve to automati-

cally "update" the initial conditions presumed for the model. The

open loop command, on the other hand, is based upon prediction of

system performance for all future time from the fixed initial condi-

tions presumed for the system. Thus, feedback has the effect of

shortening the time over which the model ,,^^ needs to provide accurate

predictions.

3.2 Conservative Designs

To partially compensate for uncertainty in the model a "safety

margin" can be incorporated into the performance specifications.

Uncertainty in the disturbance environment may lead one to use "worst

case" disturbances for control system evaluation. purposes. Similarly,

F
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"minimax" designs have been used, 
25 

to obtain the minimum of a

performance criterion subject to those particular parameter changes

which tend to maximize the criteria.

3.3 Parameter Sensitivity Approaches

The attitude taken in sensitivity approaches, 26-34 is that if the

values of the parameters of the model are uncertain then one should

add sensitivity measures tc the performance criterion '-o be minimized.

Sensitivity of the original performance criterion or sensitivity of

the state trajectories may be considered.. In the latter case the new

optimization problem is:

Minimize	 T
J(u) _f (xTQx + sTSs + uTRu)dt

x = A(p)x + B(p)u 	 (3.2a

1	 9A(p)	 ,	 1 aB )	 au
subject to	 s = apl x r A(p) s + apl u+B(p) @pl

(3.2b)

. r = 
DA(p) 

x + A(p) sr+ aB(p) u+B ) auap 	ap	 (P ap

	

r	 r	 r

where s  A
ap 	

ap = 0 (assume)
i

u	 Fl x + F2 s

and	 Q , S , R are positive deftnite matrices.

Newmann, 32 shows that this problem generally has no solution and

Quardabassi, 33 proves why; the system is uncontrollable for a suffi-

ciently large number of parameters (r). Some results can be obtained.

if r is small and the requirements of positive definiteness of S

are relaxed. Sakharov 34 suggests that, in general, it is necessary

30
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to use first and second order sensitivity models. However, if the 	 _.._.'

trajectory x(t) is itself erroneous because of model errors then

differentiation of x(t) (with respect to p) provides variables,

ax
s = 

a , which seem to provide even less reliable information about the
p

system. Differentiating x twice (to obtain second order sensitivity)
r

seems even more hazardous. Also note that the state vector is doubled

in size for each parameter considered uncertain in the original model.

3.4 Singular-Perturbation Approaches

The sensitivity methods above increase the order of the system

under study. That subsystem (3.2b) which was augmented to the model

(increasing the order) was based solely upon information contained in.

the smaller model, ,dj . An alternate approas;h is to consider that

every ,model of a physical system can be co_^,31'dered a truncation from a

better model. In this view it is possible to increase the order of

by adding to y those modes which were truncated to obtain Ad.

originally. Now the optimal control solution for this higher order

model can be approximated by the application of singular perturbation

methods. 35 The method applied to the linear regulator problem proceeds

as follows, see References 7 through 9. Presume tbat"the equations

can be put in the form

	

x	 A11(E)	 Al2 (E:)x	 Bl(E)
_	 +	 u	

(3.3)

	

IEXt
	

LA21(E)	
A22(E)	 xt	 B2U)

.

where E is a small parameter and where x is an n-vector of variables.

Now xt is an N-vector (N might be large) of variables we would like to
3

truncate from our model, but because the truncated model

31

a



A A All (0)- Al2(0)A22-1(0)A21(0)

xAx+B u, let	 (3.4)

	

j	 B d B1 (0) - Al2 (0)A
22

-1
(0) B2(0)

might yield a controlled system which is sensitive to the neglected

effects of xt , we instead wish to find an approximate solution of the

coat'.rol problem using the higher order model (3.3). The exact solution

for

T
min J(u) _	 (xT Qx + uTRu)dt + x(T)H x(T) 	 (3.5)
u	 fo

subject to (3.3) and x(0) = xo x A (x, xt); Q,F, positive semi-
definite and R positive definite, is

u = - R
-1 

BTK x	 (3.6)

where K obtains from

K= - KA -AT K+KBR I BT K -Q	 K(T) =H	 (3.7)

and

A11(E)	
Al2(E)	 B1(E)

	

A =	 B	 (3.8)

A21(E)	 A22(E)	 B2(E)
E	 E	 E _J

Ql 0	 H1	 0

	

Q =	H =

0	 01	 0	 0

Thus a Riccati equation for the (n+N) th order system must be solved.

Now, in Reference 9 the approximation suggested is that the control

gain matrix G = - R-1 BT K be expanded in a MacLaurin series in E

and the first two terms be kept.

9
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G(E) = G(0) + 
F

(0) E
 J

This result leads to a requirement to solve (N(N+1)/2 + n(n+l)/2)

linear scalar equations for G (and inverting an NxN matrix) instead of

the (n+N)(n+N-1)/2 nonlinear scalar equations required in the exact

high order solution.

The method proposed in Reference 8 provides an alternate approxi-

mation by solving a boundary layer problem using two time scales, t

and [ = 
tET	

The Riccati matrix K is then approximated by "slow"

and "fast" solutions
N

K(t,E) = R(t,E) + K(T,e)

j

N

where K(t,E) is a power series in a and is a function of the slow

variable, t, and where K(T,E) is a power series in E and is a function

} of the fast variable, T	 The solution is then obtained by matched

asymptotic expansions. 35	The number of scalar equations to be solved

is the same as in the above case.

i This solution of the problem handles higher order effects (from

modes that might be truncated in a low order solution) very well.	 It

is still susceptible to external disturbances and parameter errors.

The implementation of the solution (to form the controller) is of

the higher order.

3.5	 Parameter Estimation Techniques

- Suppose we have determined that the zero state response of a

physical system can be reliably modeled by the completely controllable,

observable linear model ,dJ,, of order n,.	 Due to the fact that param-
J

eter changes, which are expected in the system from the aging of

f
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components, the changing of the environment, etc., cannot be reliably

predicted, we may wish to provide a means to update the parameters

presumed within the fixed structure of the model Ad j* There are on-

line and off-line techniques to accomplish this, Reference 1, and we

mention here only one basic scheme.

If we label the uncertain parameters, p1 p2,•..,pr, then state

estimation of the augmented system

xj = Aj (p ) xj + Bj (p)u

p = 0	 (3.9)

zl = Mixi

in response to real measurements z0 (t) may provide better values for

-p. This problem is difficult because it is now a nonlinear problem.

The method also cannot account for other types of model errors such

as external disturbances and truncated modes. Astrom1 has shown that

increasing the order of the (linear) model can compensate for param-

eter errors, without adaptive and nonlinear methods. Another way to

increase the system order is discussed next.

3.6 External Disturbance Point of View

Instead of concentrating on errors in the parameters of model 'jV

suppose we consider the effect of an external disturbance w(t) on
J

xl = A^ xj + B' uo + w(t)	 (3.10)

3.6-.1 Deterministic Disturbance Characterizations

If we can construct a differential equation which w(t) is known

to obey

f	 34
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w=Pz
(3.11)

z=Dz

then we can augment this disturbance system to d^ and obtain the new

system

xj, A	 P- x3	 B3

+	
U 
	 (3.12)

z	 0 D	 z	 0

zi = Mi xi

which was studied by Johnson  and Johnson and Skelton, 3 yielding an

approach which came to be known as "Disturbance accommodating Con -

trollers," Johnson. 4 Davison , 6 Bhattacharyya and Pearson 5 also studied

this problem. In fact, it was the writing of a differential equation

which an input (command or disturbance) obeys that led to the solution

of the servomechanism problem in Bhattacharyya and Pearson. 
36 

The

"tracking" of a time varying command or the "rejection" of a time vary-

ing disturbance both reduce to a linear regulator problem once the dif-

ferential equations that each obey are adjoined to the model equations.

When command inputs and disturbance inputs were considered simply as

functions of time, solutions of the servomechanism problem and the

problem of accommodating disturbances were both termed "unrealizable"

owing to their dependence on future values of these inputs, Reference

37, page 798.

The above approach presumes that the disturbances do not directly

contribute to the measurements. This limits its use in the accommo -

dation of disturbing effects which are not independent of the state
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variables already in the model, such as truncated modes (which can

affect the measurements directly).

3.6.2	 Stochastic Disturbance Characterizations

In the absence of better data we _might simply describe the

disturbance w(t) in (3.10) as white noise and take a stochastic 	 r

approach to the problem. 	 Stochastic approaches strive for good

(optimal) performance in an average sense.	 A particular experiment

might fail to meet requirements even without model errors.	 The

expense of the experiment places a proportionate degree of responsi-

bility on the control design(er). 	 But, obtaining reliable statistical

a togethert.data for the system is often difficult.	 This f ct, 	 with the

fact that the theory for linear Gauss-Markov models is so well devel-

oped (and with a lot of encouragement from the central limit theorem,

Reference 38, p: 96), leads to widespread use of the linear quadratic

Gaussian (LQG) approach (see Reference 39 for an entire journal issue

devoted to this subject):	 Three problems of the LQG approach which

are of concern in the present research are: 	 1) Pursuing "long term"

goals (the probabilistic approach) can lead to dire consequences in

the "short term."	 (Successive short term "failures' can lead to

system instability and Kalman filter divergence (denying long term

goals); 2) The assumption of Gaussian distributions can be restrictive;

3) The assumption of white noise can cause problems (section 2.2

discussed some effects of correlated disturbances which are modeled

as white).
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3.7 Adaptive Approaches

The basic question motivating most adaptive approaches is "Are

there better values for the parameters (within the fixed model

structure assumed) than those which were chosen a priori?" This

question applies equally to deterministic and stochastic models. In

Figure 2-1 and previous discussions we referred to parameters

(A3 , B3 , Cj , Aij ) , K , and G. It is these parameters that are avail-

`	 able for adjustment in either the deterministic or stochastic case,

although in the stochastic case K is usually changed via changes in Q

through the K(Q) relation shown in Figure 2-2. The various algorithms

Y	 employed to change the parameters will not be discussed here, but we

are interested in the question "Does there exist any set of parameters,

within the model structure assumed, which will stabilize (or make
I

acceptable) the controlled system?

3.7.1 Deterministic Parameter Identification

In deterministic problems the model usually used for parameter
r.

adaptations is a "minimal realization" Reference 40, p.94, (a control-

lable, observable model). The limitation faced by such a scheme

relates to the following arguments:

a. It is reasoned in this report that physical dynamical

systems are not completely controllable. (Supporting arguments will

be offered):

b. Input/output relationships obtained in a controlled experi-

ment (i.e., all initial conditions are zero) can lead one to select

"minimal realizations" to describe the system. however, in actual

operation of the system in its natural environment the uncontrollable
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modes (which are always present) can be excited and there may not exist

any set of parameters for the minimal realization which will yield

acceptable closed loop operation. 	 In the ;model reference adaptive

control schemes, the objective is to force the physical system (a very

large order "model") to behave as a low order system. 	 Parameter i

adjustments are sometimes used to find the best low order approxima-

tion to the (high order) physical system, and usually complete control-

lability is presumed, as noted above.

3.7.2	 Adaptive Kalman Filtering

Among the approaches to prevent Kalman filter divergence the

most common theme is to prevent the Kalman gain from reaching its

steady state value (as determined by the model, see Figure 2-2,

thusly, "instructing" the filter to discredit the model. 	 One way to

do this is to artificially, or otherwise, increase the intensity of

the plant noise (increase the covariance matrix Q in Figure 2-2,
4

Reference 17-20).	 Most Q selection procedures are based upon;
5

• comparison of predicted with actual statistics of the measure-

ment residuals, References 17 and 18.
3

• a priori experimentation, Reference 19,

• sensitivity approaches, References 41, 42, and 43.

Increasing Q can sometimes partially compensate for unmodeled corre-

lated disturbances, although estimates of states of a stable system

may also get worse with increasing Q, Re-11-a :ea(,, e 22.	 Steady state gain

prevention may also be accomplished by measurement: "aging" (viewing

the older measurements with less confidence). 	 Exponential aging is

proposed in Reference 44, and linear aging is used in Reference 45.
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Jazwin5ki 
46 

and Crump 
41 

use a limited memory filter to serve the

same purpose.

Finally, we are left with a basic requirement for the success-

ful application of these adaptive techniques; that the model assumed

possesses an "appropriate" structure. * Thus, errors in structure

(that is, the order of the assumed model is too low) can be more

critical than errors in parameters because the former errors may not

be compensated even by adaptive techniques. Likewise, in the LQG

problem, when correlated disturbances have been modeled as white noise

there may not exist any values of the system model. and covariance

parameters (A,B,C, 
M, 

Q,R,P 
0 ) 

which will yield a stable system even with

adaptive techniques, Reference 22. Correlated disturbances (either

w(t) or v(t) in Figure 2-2) may, of course, be modeled by a Gauss-

Markov process, Reference 18, adding order to the system model, but

it is not clear how to select such a model. Astrom 1 has also pointed

out that increasing the order of the model can compensate for param-

eter errors, and we have above discussed the fact that the converse is

not true (changing parameter values may not compensate for errors in

model order). Bryson and Henrikson 47 and Stubberud and Stear 48

accommodate correlated disturbances in the measurement process ( v(t)

is correlated in Figure 2-2), by differentiating (in continuous models)

or differencing (in discrete models) the measurements to make new

"measurements" white. Differentiation can create practical problems

We must keep in mind the fact that there are no well developed
theories to help one determine what is an "appropriate" model for the
particular control task at hand.
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I

r `	 because of noise amplification.- A more serious handicap with this

approach, however, is due to the fact that the system is more sensi-

tive to disturbance modeling errors than is the augmentation approach

using Gauss-Markov models.	 This notion will be made more precise in

the sequel,
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4.0 Control by Model Error Estimation

In the discussion of the last section it was pointed out that the

structure (order) of the model was very important to the success of

the control objectives. Several of the schemes discussed were con-

cerned directly with changing the model order and we will pause briefly
r

to show the relationship of these methods with the one to be proposed

in this section.

Refer to Figure 1-1 where the proposal was made that models be

constructed in two steps.	 The first step (dl -}.43) was a model

reduction (or in the language of the dynamicist, mode truncation)

which left us with a model-d3 which might be quite sensitive to the

model errors associated with truncated modes, neglected external dis-

turbances, and parameter errors. The second step of the proposed

modeling plan of Figure 1-1 requires the expansion of the model (but

not up to the order of J1) with the hope that the added modes, whose

description is to be accomplished in this section, would lend to the

composite system a degree of model error insensitivity. Now to be

more precise. The singular perturbation approaches of Kokotovic7 and

others, provide a way to obtain the approximate solution for the higher

order system controller based upon considerations of a lower order

model. (Specifically, the method yields, for the linear regulator

problem, an approximation of the larger dimensional, n  x n  Rccati

matrix based upon asymptotic expansions of the Riccati matrix in terms

of a small parameter C. When E 0 the state equations reduce from

order n  to order n 3 .) This then, provides one method to obtain an'42

That is, two steps after the construction of the conservative model r.
j

	
41

s
I



i
model: consider the model from which 

'43 
is a truncation A) and

implement an approximation of the higher order controller. Care must

be taken to restrict the model e l to an order which can be implemented

(in the state estimator of the controller); usually this restriction

requires a low order for controllers useful for spacecraft, for

instance. The other methods to be discussed, including the one out-

lined in this research, begin with the smaller model43 , although the

presumption is made that 
A43 

represents a truncation of a higher order

model, t̂ l (even though we might never actually construct in1) and is

aeten;iad with the associated model errors.

The sensitivity methods of Cruz, Perkins 0 and others provide

another way to construct a model 
'42 

from the model 
'43P 

and that is to

augment to 
A43 

the parameter sensitivity subsystem (the s 	 f(p,x,u,$)

equations in (3.2b)). This sensitivity subsystem is generally uncottol-

lable, as is the "model error system" ` to be proposed in this section.

However, a key difference between the methods is that the sensitivity

variables s(t) are desired to be minimized (to be penalized in the cost

functional of (3.1)) and their uncontrollability therefore creates

difficulties. The variables of the "error systems" described below do

not Appear in the cost functional and are only added to the system to

make the estimates of the state variables (of ,d
3) 

more reliable.

Therefore their uncontrollability creates fewer problems.

One further disadvantage of the sensitivity method of constructing

is to be noted. This approach expands the model from,J. tozi
2	

i

based solely upon information contained in,43 , the truncated model.

As mentioned in Section 3.0, this disadvantage is not shared by the

42
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singular perturbation methods ? or the method proposed in this report,

both of which "consult" ,ell before constructing li	 (Actually, 
'dl d2

in the singular perturbation method.)

There are numerous papers which concern themselves with feedback

through dynamical compensation, and as such can be considered as

methods to obtain an augmented system .d2. Johnson  and Johnson and

Skelton 3 provide a controller which is based upon the construction of

an observer to estimat,) the states of the equations that the external

disturbance is assumed to obey. Thus, in that paper -J2 is obtained by

:;augmenting to A4. the equations of the external disturbance. Johnson

labels such controllers "disturbance accommodating". 4 Davison 
6  

also

accommodates external disturbances and command inputs which satisfy the

(same) given differential equations. Bhattacharyya and Pearson, 49

include both equations for external disturbance and input command

signals and convert the resulting servomechanism problem (via the

transformation to an "error system") into a linear regulation problem

which is then solved. Algebraic conditions are given for the existence

of a stabilizing solution assuming availability of all states of the

composite system (i.e. perfect state estimation). Some sufficiency

conditions are also established for the existence of a stabilizing out-

put,feedback controller. A conclusion of Reference 49 is that the

model e (which is now the composite of Ae . the disturbance equations,

and the input command equations) is not always stabilizable by"'state

Bhattacharyya and Pearson's "error systems" describes quantities which
the control designer wishes to drive to zero. The model "error
system" of this report, which will shortly be defined, is not the same.

43
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(of '
4
2 ) feedback. The present study begins with the

uncontrollable and even unstabilizable models ,J2 , anc

practical concern is the stabilization of a model dii-__.____

In the sequel the model 
'J2 

is used only for determining the desired

structure of the dynamical controller (control law plus state estima-

tor). Also the papers described above say very little about how one

should go about constructing the models which are augmented to Ae 3- It

is a primary concern of this report to provide a procedure for

determining the parameters of the model '42 , given the model g3 . This

emphasis makes this study primarily one of modeling methods rather

than one of new control theory development, as noted previously; how-

ever the inherent interdependence of the modeling and control problems

obscures this distinction. Now, let us proceed t:.. develop the "model

error system" which we will augment to A to form '42. Firstly we must

provide suitable definitions of the model error.

4.1 Model Error Definitions

In this research the letter z always denotes the measurement

vector, and the letter y always denotes the output quantities which

are desired to be regulated by control. In other words, for the

optimal control problems we will discuss, yj appears as those ;,:variables

associated with model ,4 which we penalize in the performance functional

T
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y  C R 

0<-k<_n.i

REPRODUCIBILITY O

^ IS 1`00r ,44	 t)jU ANAL



where Q, R are always positive definite, and H is positive semidefinite.

The variables z(t) i = 1 - k are those variables which 'are actually

measured (as nearly as the model d can predict). The vector yJ E R 

where 0 s k :5 nj . Thus, one can sometimes choose k = n  if, he wishes

to obtain that extra quality of suiiothness in optimal-trajectories

x(t) afforded by the least squares theory when all of the n,
J 

states of

model ^ are penalized. The superscript j means that the variable is

associated with the model dj . The notation uo (t) denotes the control

actually input to the physical system. The notation zo (t) refers to

that time record of measurements actually obtained from the physical

system.

Consider the model Alj

n
^J'= AJ xJ + B J uo	xJ E R J
j	 CJ	 uo 

f 
Rm

dj	 yJ =
	 j xJ	 Y  

E 
R 	 (4.1)

Z	 M
zJ E Rk

and the model

n
xl = Alxi + Bluo + wl	x1 E R 1

o	 m
y1 = Ci xi	 yi 

E Rk	 (4.2)Y. 	 y ERZ	 Mu	 zi E Rk

Suppose n  > nj and consider a particular similarity transformation on

such that1

Xi	 T ^	 (4.3 )
J

T 'AiT	
A	

Ail	 (4.4)
21	 2'2
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T-1B1 BJ (4.5)B
2

MiT = [Mj0] (4.6)

C 
i T = [00] (4.7)

where all matrices without the j superscript are arbitrary. Note that

by counting the constraint equations,

[T lA'T] 11 = A^	 (n	 eqs,) (4.8)

[T_1Bi.]1	 = 13 3 	(njm eqs.) (4.9)

M i T	 IMj '01 	 (nik eqs.) (4.10)

C 
i 
T	 jCJ 00] 	 (nik eqs.) (4.11)

T 1T 	 = I	 (1 n(n +l) eqs.) ( 4 .12)2 i' i

A necessary condition for the existence of such ni unknown of T

is obtained*, requiring the model j. to be sufficiently larger than thei
model.j. such that

J

$
n	 >- 2.(k-+k)+!

1 +	 1 +	 n^^-Cn^ ) (4.13)i	 2 ,	
(2 

(k+Q)+1) 2

It is helpful in gaining insight in what follows to assume that such a

T exists although the main results do not depend upon it. In fact,

such a T need not ever be computed to utilize the procedures suggested

in the summary of Section 5.0.	 Note also that if the constraints on T

are relaxed by ignoring (4.11), then, (4.13) is relaxed to

l+	 1+ (4.14)
1	 2 2

(2Q+1)

The requirement n	 ? (2(k+k)+l)ni + 2 nj (n + m) yields at least as

many unknowns as constraint equations.
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where ( y 
i 

(t) evolves from (4.2) and yj(t) l evolves from
z i W)	

( z
i (t)/

xj = Aj xj + B j uo + e''l(t)

	

Y^ _ Ci	 J=	 x
zi	 M3

47

and by ignoring, instead, the constraint (4.10), (4. 13) is relaxed to

	

2k+1	 8n^ (n. +m}
ni >_ 2	 +1

+	 2	 (4.15)
(2k+1)

Prompted by these observations we offer the following definitions.

Definition I: If there exists a vector, a i (t,xo,xo) such that

zl (t) = zi ( t), where zl ( t) obeys (4.2) and z j ( t) obeys

XJ = AJ vr.1 + BJ uo + eZl(t)

zi _ MJxJ	
(4.16)

then such a vector is called a "model error vector with respect to

measurement".

Definition II: If there exists a vector, eyl (t,xo,xo), such that

yi{t)	 y^(t), where y1 (t) evolves from (4.2) and y j (t) evolves from

the system

xj = A3 xj + B3 uo + eyl (t)

y  = Cixi	
(4.17)

then such a vector is called a "model error vector with respect to

output".

Definition III: If there exists a vector e ji (t,xo, xo) such that

yl ( t )	 YI(t)
i(t

	

-	 (4.18)1	 -	 j(t)
z	 z

(4.19)

„	 ....



then such a vector is called a "model error vector with respect to out-

put and measurement". (In the sequel it is this model error vector,

edl , which finds the most frequent use and it will be convenient to

shorten the name to "model error vector".)

The first observation one can make concerning these definitions is

that if no restrictions are placed upon the functions of time, e ji(t),

ey1 (t), a i (t), then all such model error vectors defined above exist,

assuming observability of the model Ad. both in output and measurement

(the pairs (Aj ,Md ) and (AJ ,Cj ) are observable). To show this, consider

only the definition of eyi (t). The output of ^^i , differenced from the

output of ^ , is given by

yl (t)	 y (t) = Cl(l(t,o)x0 - CJ^J(t,o)x0
t

	

+C^ l (t ,a) (Biuo + wl) - O'^j ( t ,a) 
(Bj uo + e j i	 dcr

fo	 y
J	 (4.20)

The requirement yl (t) = y^(t) is satisfied by the choice

eyl(a)	 [Cj(Dj 
(t, CT) ]T 

t[CiDi(t,o)xi	 Cj (Dj (t,o)xo1S(t-a)

+ Ci ^Dl (t,a)wl + [Cl 4?l (t,a)Bi — cj,^j (t,a) Bi ju
0 (a4 	

(4.21)

where S(t-a) is the Dirac delta function and T denotes the generalized

psuedo-inverse of Penrose. The matrices ^Dl and 4)j denote the state

That is, if the functions are allowed to contain impulses, doublets,
etc.

**Note that Cj Dj (t,a)eji (a) - 0 if and only if e jl (a) = 0 under the
assumption (actually the definition) of observability of the model

A •
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^k

transition matrices for Al and A3 , respectively. Note also that the

above definitions of model error are relative to two models (of the

physical system) and thus have nothing to do with the physical systems

itself.
4

Now let us view the error vector, e jl (t,xo,X.), from another

perspective. Consider the transformed system ^i in (4.2)-(4.7) and see 	 z

that the vector which can be added to the plant equations of model ,4.

to make its outputs identically equal to those of the larger (and

presumed better) model J. is given by the "error system"

ejl(xo,xo,t)	 Al2xt + ^°lw1	
J

^1 A T-1	
Bt Q T 1 B 
	 (4.22)

Xt = A22xt+ A21x3+ Btu + 92w1 	2	
B

where the transformed n 
i
.-vector,	 , in (4.3) has been partitioned with

the designation

x7	
n

xf
xJ 

E R J	 (4.23)n. -n,
xt C R

To see this simply write the ,di model in (4.2) in the transformed

coordinates (4.3)-(4.7) to get (writing the separate equations for the

partitioned parts xi and xt).

xj = Aj xj + Bju	 + eji(1.)

G

^jj(4.24x)
)	 x
/ 	 i4^

^i	
•t	

t	

j	 t o	 a 5
x - A22x + A21x + B u + 92w,

(4.24b)
ejl ( t)	

Al2xt + 9w,
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and compare (4.24a) with (4.19) and (4.24b) with (4.22). We have

presumed also that the initial conditions, x i , associated with ^ in

(4.1)have also been applied to the n
j
-vector xi in (4.24x).

If we wish to make reference to models which approximate the

physical system (in an arbitrarily small region around the null solu-

tion of the (linear) model equations) well enough to serve as an

evaluation model then such models will necessarily be of high order

so that the condition (4.13) is satisfied and the interpretation of the

model error vector in (4.19) is useful Use of the transformation

defined in (4.3) clearly focuses the fact that, under the conditions

discussed above, there exists a model error vector which can be added

to any linear model Ad. which accommodates the effects of neglected

external disturbances, w(t), truncated modes, corresponding to the

truncated states xt (t) and parameter errors. To appreciate the

inclusion of parameter errors in this statement, note that only the

parameters of the transformation T would change to give Aa + AAj,

Bi + AB j , on the right hand side of (4.4)-(4.7), changing the second

equation of (4.24b) to

ejl (t) = AAjxj + AB 3 uo + A22xt
 
+8 	 (4.25)

Parameter errors in Ci and Mi are accommodated in the output and

measurement residuals to be defined in what follows.

>e
An -"evaluation" model is one which represents the physical system well
enough to be used to evaluate candidate control schemes via analysis
or simulation by computer in lieu of physical system testing.
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Any approximations of the model error vector which we will

subsequently use will have resi. ,-'ual errors associated with them,

requiring still further definitions. Suppose an approximation of e ji W

j i
"is written e (t) (when, in the sequel, it is clear which two models

and	 are being referenced the j,i superscripts will be omitted),

then define a residual model error

Zji eji	 0'	 (4.26)

Now the relative residual errors in the outputs and measurements are

defined as a consequence of the residual in the model error and are

defined by

711(t) Ci
	t

)	
f ^D (t,G) 9j '(CF )dcF	 (4.27)

E 
ji 

(0	 Mi	
o 

Now it follows that

y 
i	

y i
	 ji

z 

i	

zi ) 
+ Zvi (4.28)

Thus the relative output and measurement residuals are defined by

(4.27) if one, in turn, recalls the definition of Z j ' and ej'.

Equivalently, and more conveniently, one can take (4.28) as the

definition of the relative output and measurement residuals, 
Yji , jji.

Finally, the measurements evolve from the physical system and not from

the model of the physical system. Define any difference by

-i	 0	 i	 0 - i i
Y	 y	 y	 y	 C X
-i	

o	 i	 0	 i i	
(4.29)

Z1 ,	 z	 z	 z	 M X

,a
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The error relative to the physical system (called the output or

measurement residual) and the error relative to two models (called the

relative output or measurement residual) can be related by, using

(4.28), (4.29)

yl	 y°	 y^	 y^ 1

zi	z°	 zj	 zji

or by the "chain rule"

`	 jiyo	 yj	 y 	 yi

zo 	zi	
+ Zji + 

^i	
(4.30)

It should be noted that if the models of this section were

restricted to the unforced case (w l (t) = 0 in (4.2), and ejiVO - 0

in (4.19)) then the model matching results of Reference 50 can be

applied, to wit:

Lemma 1: (Moore and Silverman 50, p. 492)

Refer to models d. in (4.1) and ,4 in (4.2). Let

m s k

and define
r	 (n -1) 1

so	
rank Bl;AiB'',.i....Ai 

i	 BiJ

iD	 iT	 i T	 i(ni IT]6 0
	 L
= rank r( C) , (C A) , ...... (C A

(n .-1)
6j 

A 
rank [Bj ; 011 j ,....... Ai ^	 Bi

P

^ A	 i T	 j	 T
T

S — rank ( C )	 (G Aj )	 ........ (
j Aj (n,, - l)

O	 C

Then the models is "zero state equivalent in the output" to'd.
i

if and only if

a



C^(Aj)a B
j 	C1'(A') a B l 	(4.31)

for	 cc = 0,1,... v where

v max61 +6 1 -1,	 Sj +b^ —1
c	 o	 c	 o

A corresporiding result of "zero state equivalence in the measurements"
r

is available by replacing Cl by M3' everywhere in the above lemma.

"Zero state equivalence in the output (measurement)" means yj(t)

yi (t), (or, z i W = z i (t)), if the initial conditions, x i (o) and xi(o),

are all zero. In the physical system it is not usually possible to

ikeep the initial conditions (which correspond to all the variables xk,

k=1, -mi) zero, especially for large n i . For instance, in spacecraft

the structural modes of vibration are unavoidably excited by noisy

actuators (driven by noisy sensor measurements), and other disturb-

ances. Moreover, some of these modes (there are actually an infinite
a

number of :;hem in the physical structure) will correspond to those

truncated in the reduced modelW.. Therefore, input/output relation-

ships of model cannot account for x t (o) ¢ 0 (see (4.23)). Also,

input/output relationships cannot account for uncontrollable states

which are reasoned to be present in all physical dynamical systems. It

is for these reasons that input/output procedures will not be pursued

further here.

In the following section we wish to consider a description of the

synthetic modes assumed for the error system.

4.2 Selection of the Synthetic Modes for the Model Error System

Recall that the exact control problem which we would like to

j	 solve, neglecting implementation constraints, is the minimization of
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TT

J (u) = 2 J (Y1TQ Y  + u°TR uo)dt + 2 y1 ( T ) TH y1(T)
0

(4.32)

subject to the very large model 4

n
xl = Alxl + Blu° + wl	 xl E' R:1

Ad	
1

Y	 Cl	
Yl E R^

1	
zl = M1 x

1',	 x1 (o) = xo z l E R"	 (4.33)

where the coordinates of (4223) , (4.24) are presumed. Now (4.32) ,

(4,33) can be considered the exact variational problem which we can

only solve by approximate solution methods, owing to its large dimen-

sion. Alternately, this problem can be replaced by an approximat e

problem which we can solve exactly.

The approximate problem we might solve is as follows: Consider

the decomposition of (4.33) as given in (4.3)-(4.7), (4.24) but instead

of utilizing the exact error system (4.24b) to generate the vector

e 31(t), "curve fit" e 31(t) with a set of d approximating functions

fi (t), i = 1,2,...d.

d	 eji	
n,

E R

e31 (t) =	 Plfi(t)	 P°f	 d	 (4. 34)

i= 1	 f E R

We must pay particular attention to the initial conditions used in

(4.33) which are used to generate the particular e 31 (t) we wish to	 j

approximate, as discussed in the next section.	 3

The smaller model is labeledAd and the larger model in this discus-

sion is'd see Figure 1-1. Hence, through this section e ll becomes

e
31

a

7
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4.2.1 Model Error Compensation by Open Loop Signals

In this section (4.2.1) we discuss a technique of model error

compensation which we will not later use and this section only provides

a basis for comparison with the method (in the following section, 4.2.2)

which we do intend to incorporate into our overall design scheme.

For a given a 1 W * and a given set of functions, f i(t), the

coefficients P of (4.34) can be chosen to minimize the least squares of

the error, e 31 (t) - e" 31A e.

T

J(Po) =	 e(t)Tg(t) e(t)dt	 (4.35)
fo

or the least squares of error plus error rate

T
Te

J (Po) = J ( eT eT) Qe ( t) e dt	 (4.36)
0

where g(t) is a weighting scalar, Qe(t) is a positive definite matrix

V t E (A,T) and where T is the entire interval of the control problem.

(see (4.32)). A shorter interval for consideration in (4.35) will be

discussed in Section 4.3.

The use of least squares methods must be carefully considered so

as not to allow large instantaneous errors (4.36) (and even sustained

oscillations of large magnitude). The criteria will enforce a certain

The presumption of the availability of e 31 (t) has a serious conse-
quence. Nothing has been said so far which relieves us of the duty
to actually construct the larger model-41 , select a truncation (a

reduced model) and generate e 31 according to (4.24b). Some relief
from the pres of this requirement is found in the next section. For
a guess for e l`(t), one could "assume some modes" which are believed
to be present in (4.24b), such as, for example, some structural modes
of vibration which have not been included in the truncated model `J3'
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smoothing quality by simultaneously keeping error rates and errors

small. Alternately, the approximating functions, f i (t), of (4.34) may
i

themselves be selected so that even (4.35) yields certain smoothing

qualities, and this is a subject of Section 5.0. For the present, we

will consider (4.35) for the determination of P, noting that (4.36) may

i
be a wiser choice for arbitrary selections of approximating functions,

I

fi W. The P which minimizes (4.35) is given by (see Appendix A)

^	 T	

fT
Po = f g(t)e31'(t) fT(t)dt 	 g(t) f(t) J(t) dt	 (4.37)

o	 0
I

Therefore, one approximation of the original problem (4.32), (4.33) is:
i
l

Minimize,

T

gu°) - 
2	 (Y2TQy2 + u°TRu°, dt + Z y2(T)rHay2(T)
fo

subject to

x2 = A3x2 + B 3u° + P°f

2	 y2	 C3	 2	 (4.38)

z2	 M3 x

where P° is specified by (4.37) .

The solution of this type of control problem (with the forced

plant equation this was originally called the servomechanism problem)

can be found in a number of places. For constancy of notation see p. 15

of Reference 3,

When an error vector, 931 , has been added to the (truncated) model 13,

the new model will be labeledd2 , even though some parameters of ,12

are retained from -J3 , see (4.38) .
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T

U0 - - R71 B 3 (Kx2 + h(t)) i
where h, K satisfy	 (4:.39)

T	 T	 T
K=-KA3 - A3 K+ KB3R 1B 3 K- C3 QC3 	K(T) =H

 T	 ^x

h =
[. 3^,7

1B 3 	- A3	 h - KPf	 h(T) = 0

where it is assumed that the pair ( Aq , C3) is observable and the pair

(A3 B 3 ) is controllable. 	 The difficulties with this approximation of

problem (4.32), (4.33) include:

1.	 The error vector, e31 (t), which includes truncated states and
a

external disturbances must be reliably predicted over the entire con-

trol interval.	 (If c31 (t) is considered as only an external disturb- ;

ance then periodic updates in P and f mLy be helpful.) 	 Thus, e31 (t)

can be quite sensitive to the system (and model ^l) initial conditions,

j see (4.24b).
r

2.	 The control problem for the larger model,,91, may have to be

sol-),ed to obtain a suitable e 31 (t) .	 (See Rodgers rind Sworder 11 for a
a

1 method to obtain a smaller model by solving the control problem for

both the small and large models and minimizing the difference.)

We would welcome now a scheme for computing e"' 
31

without having
3

- to predict e 31 (t)accurately for all time, t E [0,T]. 	 We wish, for

example, to allow for changes in parameter values from time to time,

changes in the nature of external disturbances, and changes in the

initial conditions of truncated modes (see (4.25) for the way in which

these affect the actual model error vector, e 31 (t)).	 The a priori

specification of e 1 (t),:`d t E [0,T], as presented in the "open loop"

method above, precludes such flexibility.	 The fundamental difference
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in the approach of the next section is the recognition of the fact that,

as far as the construction of a state estimator is concerned, predic-

tion of model errors only over a short time into the future is of

interest. This fact allows us the freedom of modeling only those

modes in e 31(t) which appear to be present in a preselected (short)

interval of time, T <t T. Naturally, it follows that the choice for T

is an important parameter in the model. By relating T to certain

p:)perties of the control problem a (modest) mathematical relationship

is established between the modeling problem and the control problem.

Now soon we will restrict our attention to the class of functions,

ej1 (t), which are dth differentiable, because we wish to approximate

•ji (t) as the output of a d th order differential equation. Hence the

Existence of e ji (t) which was guaranteed for unrestricted functions of

time, does not carry over to the functions e 1 (t) which are restricted

(to be differentiable). However, in many practical situations the

physical system is sufficiently well behaved to consider only (linear)

differential equation models of all effects. In the following section,

however, we do not yet restrict ourselves to differential equations to

describe the synthetic "modes" assigned to the error system.

4.2.2 Model Error Compensation by Closed Loop Signals

In this section we propose an approximation of the model error

vector

e31 Pf	 (4.40)

which allows the coefficients, P the preselected function fi(t),

i = 1,2,...d, to change with time (P must change slowly compared to a

preselected time interval, T, where T will soon be defined). The
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ziatrix P is defined similarly to (4.37), except that T is replaced by T

T	 T	 ^1
P =	 fg(t)e31(t)fT(t)dt	 fg(t)f(t)fT (t)dt	 (4.41)

0	 0

Now construct a differential equation which f(t) obeys. 	 Find a matrix

D such that f(t) is an eigenfunction of the system,

Y = Dy	 (4.42)

Now replace f(t) in (4.40) by a set of "synthetic" variables y(t) C Rd

and write for the error vector approximation the "error system"

e31 = Dy(t)	 (4.43)

y = Dy	 (4.44)

where YOO in (4.43) is _ any solution of (4.44). 	 Then

D(t-t )	 .
e31	

= Pe	 ° 'y(t0)	 (4.45)

f

where the eigenmodes of the matrix D represent the synthetic modes

assumed to be present in e 31 (t), over an interval T.	 This construction

of the error system relieves us of the responsibility of predicting
r

e31(t) for all future time, t E [0,T], as required in (4.37). 	 The task

of "assuming modes" which characterize e 31 (t) only over short intervals

is a far simpler (realizable) task.

If y (t 
0 ) 

(see (4.45)) can be updated in real time by state esti-

mation of the error subsystem (4.43), (4.44) then the estimate &31 (t)

will not be a function of time which is fixed a priori as in the case

of Section 4.2.	 In this way another alternative approximation to

problem (4.32), (4.33) is formed: 	 Minimize

T	 T	 T
1 	(

J(uo)	 y2 Qy2 + u0 Ruo	dt + 2 y2 (T) THy 2 (T)	 (4. 46a)
2	 J0
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subject to the mo el '42

.2	 2 2	 2 ox	 A x	 B u

2	 (Y2)	 C2 x 2	
(4.46b)

2

z

where
2x	 (x3)	 x 3 n - vector of physical

	

Y	 3 variables

2	 A 
3 P(-F,d)	 2	

B 3
A	 10 B	 y: d - vector of synthetic0	 D(T,d)	 0[I	 I	 [t I	 (model error) vari-

2	 3	 ables
C	 [C *010 '42 = f.M3,O]	 x 2 n 3 + d = n 2 - vector

again observability of (A 3 C 3 ) and controllability of (A 3 IB 3 ) are

assumed and where P(T,d) is found by (4.41) * , and y(t) is to be esti-

mated along with x 3 (t) in real time. The current m6del error vector
'31estimate will be e 	 Py(t). The solution to this problem is given

by

uo = -R7 1 B 2 T K 2 X 2	 (4.47)

2 satisfies the matrix Riccati equationAere K

i2 = -K 2A2 - A2K 2 + K2 B 2 ClB 2 T K 2 _ C2 T 
QC 2	 (4.48)

K 2 (T) = C 2 T R C 2

^ a

F^

The order of the error system, d, and T, an effective "observation
window" are as yet unspecified. 	 A
The initial condition x 3 (t	 X in (4.46) is presumed known and0	 0
Y(t is actually unknown. However in the solution of the control

3problem, (4.47), Y(t 0 ) is assumed known. An estimator for x W,
YM will be constructed in Section 4.5 which will converge quickly
compared to T. The enforcing of this "separation principle" between
the control and estimation problems must be done with care and more
will be said about this in the sequel.

ar,,PRODUCIBILyry O^V60
0-alGINAL PAGE IS



R

i

f
5

(In the next section a partitioned form of this equation will be

examined.)

The addition of the "synthetic modes" (4.43), (4.44) to the model

(4.1) to form the-model-42 (4.46) is-similar in spirit to the

"synthetic modes" Likins 66 uses in the modeling of dynamical structures

tc account for incorrect coupling forces between the rigid body and

flexible appendages when the model has been truncated by some other

criteria (such as keeping "lowest frequency" modes). The method also

has some conceptual similarities with the "assumed modes" and Rayleigh

Ritz procedures for modeling dynamical structures, 
51 

p. 253, although

in the present work the assumption of mode "shapes" in (4.43) is in

time rather than in space as in Ray Leigh Ritz procedures. One choice

for the matrix D. for instance, is to "assume" some eigenvalues X,,
i

i	 1,...d of the matrix A22 in (4.22) and write D = X1 . 0

The eigenfunctions of this matrix then form the 	 0 •^d

definition of the approximating functions, f, in (4.40).

Even for a given dimension for n2 , such as might be imposed upon

a state estimator synthesis, it is not always clear how many modes to

associate with the physical variables x3 and how many to allow as

"synthetic modes" in y(t). The answer in a particular problem will

depend upon the f 
i 
(t, chosen and the uncertainties associated with the

model '43-

For example,, suppose the object to be controlled is a free dynami-

cal structure (such as a spacecraft) and there is some uncertainty in

the (small) modal damping assigned to a particular mode in the vibration

equations. Then if the frequency of vibration, w, is reliably known
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the mode in question might be truncated from the physical variables in

the model (deleted from 
4'3

) and considered in the synthetic variables

yi (t) of the error system (4.43) , (49,44) by choosing

0 w
D =

	

	 (4.49)
-w 0

The resulting control poligy (4.47) (where x3 y, is replaced by the

estimates x^
3 'y from the state estimator to be designed in a later

section), can lend to the closed loop system an insensitivity to the

modal damping (and even occasional changes in the damping) that is not

enjoyed by the closed loop system in which the mode together with its

assumed damping) is not truncated from but included in the model

If the frequency of vibration and the damping are both uncertain then

it might be more advantageous to use the error systems of Section 5.0.

This is possible because the amplitude of the assumed oscillation is

a function of the initial conditions of the synthetic variables (solv-

ing (4.43) , (4.44) with (4.48))

631 = Cl (yo) sin wt + C2 (yo)Cos wt

Thus, the use of state estimators to update yo allows an effective

"tracking" of the actual amplitude of oscillation, assuming, in this

example, that the damping is small so that the amplitudes change

slowly, compared to the T which we must specify in Section 4.4.

Now that some aspects of my approach to control by model error

estimation have emerged, let us pause to clearly state the questions

that are before us and see what tasks lie ahead.	 j

Al
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1. We wish to model the error system by

e = P(T,d)y

Y = D(T,d)Y

Where do we get P ,T ,d, and D?

2. We wish to solve the "control" problem

u° = G x
2	 x2 A (x3)

Y

Where do we get G?

3. We wish to design a state estimator for estimating x 2 for

feedback. The estimator will have the form

zt = d22 z t + d21 u + Bu°

x2 = T iz t + T2 z°

Where do we get d22' d2i' B, T1 , T2?

Now, the specification of G follows in Section 4.3. A way to

determine T is provided in Section 4.4. The structure of the estimator

is determined in Section 4.5 and selection of the parameters (d22'd21'

B, T 11T2 ) is discussed in Sections 4.6 and 47. Alternate choices of

D are discussed in Section 5.0, together with special cases of the P

selection method which was discussed in Section 4.2.2. Finally d the

order of the error system, is discussed in Section 5.2.

4.3 The Control Problem(Specifying the Matrix G)

In the context of this research exactly what is meant by "the

control problem" deserves some clarification. In Figure 2-1, the

"control problem" was described as the specification of the matrix G,

and that is what we intend to do here. However, we must keep in mind
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that the total "controller" design (see Figure 2-1) is not complete

until the state estimator is also constructed. Furthermore, both the

control law design and the.estimator design rely on a model, 42,

as yet incomplete (the "observation window';, T, and the order of the

error system, d, which influence the matrices (see (4.41)) P(T,d),

D(T,d) have not been determined). We will not, then, complete our

specification of the matrix, G, in this section but we can write the

formula for G(P(T,d), D(T,d)).

From the approximation of the control problem (4.32) (4.33) which

is given in (4.46), we can write immediately from (4.47)

(^3)

u° = G	
x	 (4.50)
Y

where
_	 T

G = - R 1 B2 K2	(4.51)

The Riccati equation (4.48) reduces to, upon substitutions from the

definitions under (4.46b),

T	 T	 T
K' -KA3 - A3 K + KB 3R TB 3 K - C3 QC 	 ( 4 .52)

T
X(T) = C3 ii C3

T	 T
L = [KB3R7 1B3 - A3 L - LD(T,d) - K P(T,d)	 (4.53)

L(T) = 0

F	 DT(T,d)F	 B D(T,d) - PT (T,d)L	 LTP(T,d)	 (4.54)

F(T) = 0

where the n2 x n2 matrix K2 has been partitioned according to

64

L^6	 _-AA



K	 L	
^n3

K2 	(4.55)
LT F	 ^d

n 3 	d

It is interesting to note the similarity of these equations (4.52)-

(4.54) with those obtained from the singular perturbation approach,8

where their "modelA42" did not contain synthetic modes but the modes

of the untruncated (441) model.	 Note also that (4.52) describes the

Riccati matrix for the "error free",e'3 model and can be solved inde-

pendently of (4.53) , (4.54) . Given K, then (4.53) is linear in L, and

moreover, given L and K (4.54) is linear in F. Finally, from (4.51),

together with the definition of B 2 in (4.46), using (4.55),
T	 T

u° 
(
-R7'B 3 Kx3 + 

(
-R7'B 3 Ly

=
u

0 
(C'3) 

+ u°(e)	 (4.56)

Hence, the control consists of the sum of two parts, a terw, which is

optimal for the error free systems, u°(e3), and a term which feeds back

a measure of the model error variables, y(t) (recall e = Py). Now the

gain matrix G in (4.50) is given by

T
G = -P. 1B3 [K,L]	 (4.57)

Note that any model we write for a physical system can be considered
a truncation from a better model. The point to be made above is that
if one considers an Jl model only slightly larger than the (truncated)
A model so that 41. is of the same order as the A42 obtained above (by
augmenting an assumed small order "error system" to the (truncated)
model A43) , then the computational burdens of the two approaches (sing-
ular perturbation and model error estimation augmentation) are the
same.
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There is some question of existence of G when T 4-	 Since the

airs (A3 B 3) , ( A3 C 3) are respectively,p	 ,	 ,	 p	 y, controllable and observable,
R^

the existence of a positive definite, symmetric K which satisfies

(4.52) for K	 0 is guaranteed (see for instance, Anderson and Moore, 52

for a discussion of Riccati equations). 	 Therefore, we have only to

show that L exists.	 Consider the defining equation for L, (4.53),

L = -LD - [A3 + B3G1 ) L - KP	 L(T) = 0	 (4.58)

T1B3
where G1	 - R	 K is the gain for the error free system. 	 Now we

show that L(0) exists if the error free system

x3 = [A3 + B3G1 ) x3

is sufficiently stable. 	 To show this, note that if L(t) has a steady

state solution, L(0), which satisfies

0 = L(0)D - [A3 + B3 G1) L(0) - KP	 (4. 59)
t

then the difference

;1(t,T)	
0 L(t,T)	 - L(0)	 (4.60)

satisfies (differentiate (4460) ; using (4.59), (4.58))

^(t,T) _ -(A3+ B3 G1) ^(t.T) - V(t,T)D	 (4.61)

where the notation L(t,t l) represents the solution of a linear matrix

equation such as (4.58) , expressed by the matrix variation of con-

stants formular (see Brockett40
 
P. 59)

1
L(t,t l)	 _ ^l(t,tl)L(tl)	 ^D (t,t l) - 1	 (Dl (t,(Y) K(Q)P^2(t,a)da

t
(4.62)

where 
01 is the state transition matrix for [-A3 - B3G1) and ^D2 is the
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state transition matrix for [-D]. Now, again applying the matrix
7

variation of constants formula to (4.61) we have

^(t,T) = (D1 (t,T) [L(T,T) - L(0)] ID2 (t,T)	 (4.63)

I
or simply, for constant [A 3 + B 3G], D,

L(t,T) = L(0) - e 	 1	 L(0) e
D (T-t)

Thus L(0) exists only if lim L(t,T) exists which is guaranteed if
1	 T -► o0

Re X
i
 [D] + Re X

i
 [A3+ B 3Gi ] < 0	 (4.64)

Vi E [l,d], j E [1,n 3 ]. Thus, the existence of L is guaranteed under

condition (4.64). 	 Now we turn to the task of defining the "observation

window" T, used in (4.41), and the overall design of the state esti-

mator for x3 , Y.

4.4	 Specifying the Observation Window, T.

r
In the operation of a state estimator (Kalman or Luenberger) three

basic functions are performed: 	 1) the receiving of measurements, 2)

the prediction	 of measurements, and 3) the feedback of the difference 	
a

between the measurements and their predictions. 	 The first 'function

causally relates the estimates to the physical system. 	 The second

function relies upon the model of the system, built within the estima-

tor, to instantaneously predict measurements, so that the estimate of

a

The use of the word "prediction" is not here restricted to the sto-
chastic

	
e

^isn	cestil

N

j -2j , where 2i	 theoutput ofl the
m ator, is called a prediction (instantaneous) of the measurement
(based upon model4.).
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the state vector can be changed (the third estimator function) if there

is a difference between this prediction, z j Mj xj , and the real

measurement, z0 W. (The difference z ° - z^ is called the measurement

residual, V, see (4.29).) In other words, unless there is a change in

the "initial conditions" of the physical system the state estimator will

not change its estimate of the state assuming the model within the esti-

mator is correct (so that the measurement prediction, Mj xj (t), remains

equal to the measurement, z°(t)). Now if one is concerned about con-

structing a model upon which to base the design of the estimator, a

logical question to ask is "Over what interval of time, T, should the

model (predictions, zj = Mj xj (t)) be accurate?". That is, how long

should the zero state response of the model match (to some prespecified

accuracy) the zero stat-- response physical system (see Figure 4-1 for

the "experiment")? Let us first agree on two extremes. If this time,

T. is "very long" then in some sense the model is "very good". In

fact, if one performed some (off-line) performance analysis with this

model, to determine some appropriate controls, one might, on the basis

of the above experiment, decide to issue such controls to the physical

system in an open loop manner (without further use of the model in an

on-line operation, having previously verified by the experiment that 	 l

the model predictions are 'very good") 	 Furthermore, if one used this

model to implement a state estimator for on-line feedback control, then

under the same conditions of the experiment the measurement residual

would (after an initial transient of the stable estimator) remain near

o	 j^'zero, z ti. M xJ* , and the feedback signal would soon be based solely on

3

68



ti

f

the prediction of the model. 	 On the other extreme, if the time, T,,

in the above experiment is very short and approaches zero then the

model is arbitrarily "bad" in the sense that no model can be worse,

since there is zero "correlation time" with the physical system.

Intuitively, one would guess that for stability of the closed loop

system the estimator (model) need only be accurate over time constants

of the closed loop system. This discussion prompts two definitions

which might be used as a characteristic property of the model. We

define a property called a "characteristic time".

Definition 4.1: Given a linearized time invariant model , of a

physical system,
0

x^ A^ xj + B  u 

d^	 zi Mi x3

Define a characteristic time, Tj , associated with the model ^^ subh that

the zero state response of the model, zi(t), satisfiesZSR

	

Z 0 W	 zi(t) I I	 6 e 6 E [o,TiZSR

if	 I l zo(0)	 zi(0) I I	 I I zo (0) I I c So^^r^
ZSR

see Figure 4-1. This definition of characteristic time of a model is

Alternately, it can happen in Kalman filters, with small or zero
assumed plant noise (see Section 3), that the weighting (Kalman gain)
on the measurement residual goes to zero because the estimator "thinks"
it has learned the model and disconnects itself (K -} 0) from the
(noisy) measurements, basing all future state estimates solely on the
prediction of the model. The result, of course, is filter divergence,
since the model is never perfect.

To make this definition practical in a deterministic sense some toler-
ance must be accepted on the initial condition z o (0) of the physical
system, since this cannot necessarily be controlled to absolute zero.
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not very useful owing to its empirical nature and the fact that it is

4R
a function of the small parameters 6 0 , 6.	 It is, however, closer to

the true property of the model (relative to the physical system) that

is important to us in estimator design than is the more tractable

definition which follows. 	 Note that the above T is not a property

solely of the model.	 That is, Tj cannot be determined solely by

examination of the model parameters (such as eigenvalues of the matrix

' y AJ).	 The following is a definition of T which is determined solely

from parameters of the model and the control law.	 It will be taken as

the definition of model characteristic time throughout the remainder of

the report.

Definition 4.2:	 Let V(xi (t)) be a Liapunov function for the asymptot-

tically stable model of the closed loop system

xJ = AJ x3 + B J u° (xi ) 	 u°(xJ) given	 (4.65)
J	

Yj _ Cj xi

R Then the quantity

 1^ 	
max	

V(xJ(t))T 	
(4.66)Xi

 -V(xJ(t))

will be called a characteristic time of the model d..

This definition of a characteristic time was first suggested by

Kalman, Reference 53.	 The proof that there exists such a TJ rests on the

proof of the fact that there exists, for any system J! which is asymp-

totically stable. a scalar function v(xj (t)) which is positive definite

and for which v(xj (t)) is negative definite.	 Such a proof was provided

by Messera, see Theorem 23 of Reference 54.	 It is another matter,
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.
however, to find such a function. In the following discussion let us

suppose there is such a Liapunov function of quadratic form

.T
V(xi ) = xj KJxJ 	(4.67)

for the closed loop system model J! which is linear.

xj = A^ xi

4!-	 (4.68)
y = C] x]

where

A^	 Ai + Bj Gj

Gj 4 
state feedback gain matrix.

We have tacitly assumed here that the state variables are available

for feedback. This is tantamount to the assumption that the state

estimator is perfect, an assumption which we will not tolerate else-.

where but in this definition of T. Now we cite the useful

Theorem 4.1: (Using some results in Reference 40 p. 128). Let the

closed loop system (4.65) have the Liapunov function (4.67) which

satisfies the Liapunov theorem for asymptotic stability (Theorem l of

Reference 53). Then V(xj) is a negative definite function of xj and

the model characteristic time, T, defined by (4.66), is given by the

spectral radius of the matrix [Rj-1 K1 ], where R^ a AST KI + Ki Aj

Proof: Extreme values of the scalar function

T(X] ) _ y(xjJt))	
(4.69)

-v(x (t))

must satisfy

aT(xi )	 0	
(4.70)

axJ
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From (4.67) , (4.68) , (4.69) ,

@T(xi) = xj T(Ki + KiT ) - xiT (Rj + RjT) xiT K
ixi = 0	 (4.71)

a xi T	 T	 2
x3 R3 xj 	(xi Rj xj).

T
multiplying by 

2 x3

	

	Rjx3, we have, for asymmetric Kj,

T
xJ [Ki - T(X J )Rj ] = 0	 (4.72)

-1
which implies that T ( xj ) must be an eigenvalv^_ of the matrix Rj Kj.

Hen ce

-1
T	 max T (xj ) - Xmax [ R^	 K3 ]

x
r[Rj-1 Kj ]	 (4.73)

where Xmax [•] denotes maximum eigenvalue (magnitude) of [•], sometimes

called the spectral radius of [•], denoted r[•].

Corollary; If V(xj ) is chosen for the system (4.65) , as
00

T	 T
V(xj )	 f (y i Q y j + u° R u°) dt	 (4.74)

t

and u0 (x^) is selected as

T
u0 (xJ ) = -R7 1 B  Kj xj	 (4.75)

where Ki is the symmetric positive definite solution of

0 = -Kj A3 - AiT Kj + K 
j 
B j R 

1B3T 
Ki - C3TQ C	 (4.76)

and where Q and R are positive definite matrices and the pairs (Aj ,Bj)

(Aj ,Cj ) are respectively controllable and observable, then the matrix

A^ in (4.68) becomes

A	
T

J = Ai - Bj R 1B j Kj	 (4.77)
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and (4 . 73) becomes, using (4.77) , (4.76) ,

-1

TJ = )Lmax 	 [KjBj R
_

 1BJ
T 

KJ 
+ CJ 

T 

Q CJ ] KJ 	(4.78)

where we have used the fact that (4.74) may be expressed V(xi)
.T

xJ KJxJ ; see p. 277 of Reference 16 for proof of this equivalent

expression for V (xi). The minus sign in (4.78) can be neglected since

'max was defined to mean the eigenvalue with maximum magnitude,

`max _ jo + jW1max'
The "observation window ` , T, needed for the model

J2 in (4.46b) for the estimator design is selected as

T = T 3

where T 3 is defined by (4.78) with j = 3. In this way the time con-

stants of the truncated model,,4 4
3 , are used to influence the error

systems (4.43), (4.44) which is augmented toAd 3 to defineA42 
(4 

is to

be used for the design of the structure (order) of the controller

(estimator and control law)).

4.5 Design of the State Estimator and Special Cases

II	 The problem to be solved in this section is the problem imposed by

the decision to implement a control policy which requires all n, state
n	 ^

variables of the model d. (such as u° GxJ , xJ f R J ) when there are
`	 J

only k measurements available, z °(t) , i £ RQ . The relationship of the

resulting design of a minimal order (n j - Q) state estimator w:h the

standard Luenberger and Kalman estimators is discussed. In particular,

the unifying approach of carrying along "model error vectors" in the

design allows one to later consider tha errors to be either determin-

istic or random (white noise) and to obtain, respectively, a Luenberger
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observer for the augmented system 
'42('43 plus error system), or a Kaln

filter in the limiting case of vanishing measurement noise. When the

fmodel is assumed perfectly accurate (j =.ei3) , then the standard

Luenberger observer is obtained. In this way the control problem nee

not be considered either as "deterministic" or "stochastic" until the

selection of estimator gains is made, and moreover, the choice may be

made under the consideration of both deterministic and stochastic

characterizations of the error vectors.

In section 4.1 we discussed the existence of a linear coordinate

transformation which would transform the large state vector x1 into

a vector of variables * in which x 3 appeared as a partitioned sub-

vector of * where x were certain variables whose physical signifi-

cance was known to us. Here we use the same transformation device.

We have available to us certain measurements z°(t), which in model

have been described approximately by z i = Mixi.

We wish to obtain an approximation of the vector xi which has a

larger dimension than z°. Consider therefore a nonsingular coordinate

transformation

Y
such that if x^ obeys

xJ = Aj xj +B j u°+W
n,'

xi ERA
a

zJ = MJ xJ zi E RQ	 (4.80)

yi" = Ci xi u° E Rm

!
then	 obeys

y

i
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i= T-1 Aj T*+ T-1 B 3 uo + T-1 w

z 3 - MJ T	 (4.81)

y3	 C3 T

Furthermore, let T be that special transformation which reveals the

measurement variables, z i , as explicit state variables (say the first

Q' of them) of the transformed system (4.81) . Then

z3	 ziC RP,	 ,	 0_<Q' <_R
=	 n.- R,	 (4.82)

z t	zt E R

where z  is an (n. - Q') vector of "truntazed measurements" in the
J

sense that they are not directly measurable from the system (4.80), as

are zi . However, since we have available (given T) the differential

equation (4.81) which'z t obeys we suspect that under certain conditions

we can, by integrating the differential equation in z t , obtain an

approximation of z t (t). In fact, since we have the differential equa-

tion for z t , the only question is whether we can recover the initial

conditions, z t (0). Now in the transformed coordinates of (4.81) we

have

zJ = d11 z^ + d12 zt + B1 uo + lw
t
z = d21 zi + d22 z  + B 2 u° + lw

y 	 c
1 

zi + c 
2 z 
	 (4.83)

zj = M1zi + M2zt

where

d11 d12 A T-1 Aj T

d21 d22
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I

B1	 T-1 Bj	 El	 = T 1

B2	 E2

[Cl' C2 ] = CiT

[Mi , M2 ] = MIT

Partition the matrix T so as to define the matrices T i , ri,
J	 J

follows.

	

T11	 T12	 Q e

T	
T21	

T22	 lnJ_ Q , _ q

-1	 r11	 r12	 }Q'
T =

	

r21	 r22	 q

Recall that eigenvalues are preserved through a similarity transfor-

mation. Thus the';eigenvalues of T-1AJ T are fixed a priori by the

eigenvalues of A3 . Now the fundamental principle upon which reduced

order observers (state estimators) rely is that even though the

eigenvalues of T 1 AJ T are fixed a priori, it is possible under certain

conditions to select T such that the eigenvalues of a block diagonal

submatrix within T -1 AI T may be arbitrarily specified. The conditions

under which this is true and the relevance of this fact to the design

of the state estimators are developed in what follows. To simplify

our immediate task we will only consider the case V = k. It turns

out that V = Q yields a minimal order state estimator. Circumstances
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when one might not wish to design the minimal order estimator are

discussed in the sequel.

Two requirements on the transformation T are immediate for non-

singularity.	 From (4.84),

P11 Tll +	 P12 T21 IQ'

P11 T12 +	 P12 T22 OQ^q
s

T-1 T = I	 =:O- (4.85)

P 21 T11 +	 P22 T 21 0qk I

P21 T12 +	 P22 T22	 = 1 

T11 P 11 +	 T12 P21 1k'

.	 -1 =	 ^TT	 I
T11 P12 +	 T12 P22	

_
OQ'q (4.86)

T21 P11 +
	 T22 P21 0qQ'

T 21 r 12 +	 T22 P22	 =
Iq

and from (4.82), (4.79), and (4.84)

CP11 , T
12] = M3 (4.87)

L  Y n^

For convenience define, T1 , T21 P	 by

T11 T12

T 
	
a T21 T2 = T22

n3 Q n^ q

P =	 P21 P22
J qn

Then

The notation[•]jk means that the matrix [•] has dimensions r by k.

^

1
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i	 a

d12 Mj

T-1 Aj
r11

 d
= A^

CT1 
T21

21	 22 r 1.	 J

Mj Aj Tl.
	

Mj A, T2
_ (4.88)

r	 Aj T1	 r	 Aj T2
r

I
Also (4.85), (4.86) can be expressed in the form

Mj T1	 Mj T2 IQ	 0

T-1 T= = (4.89a)r	 T	 r	 T
1	 2

0	 1
q

T T-1 =	 T l Mj + T2 r = In	 (4.89b)

i

Let us consider (4.79) as the output relationship for the transformed

system

= T-1 A) T	 + T-1 Bj uo
(4.90)

xj = T	 T	 zj + T2 zt

Now if we integrate (4.90) for any given u0 (t) we have x
j
(t) exactly,

assuming	 (0) = T_l x1 (0), because (4.90) is just a transformation
d

of the defining relationship for xJ (	 ), namely (4.80).	 On the

other hand, suppose we integrate only the zt equation in (4.90),

shown more specifically in (4.83).	 Now, instead of taking zi (which

is needed to solve for z t (t) in (4.83)) as the integral of the first

equation in (4.83), suppose we take instead the measurements available

from the physical system, z°(t), and construct (define) the estimate

1	 Rj as follows
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z	 d22 2 + d21 z° + B 2 u
(4.91)

a xj = Tl z° + T2 zt

j	 In order to see how closely 
R 

(t) approximates xj (t), which is defined

by (4.80) (or equivalently and more conveniently by (4.90) with
^	 s

(0) = T-1 xj (0)), let us rewrite (4.90) relating zj (that measure-

ment which is predicted on the basis of the model Aj to the actual
1

measurement z0 (t), as follows

^ - ° - zj	 z^ D °z	 z	 z
C

where z is a measurement residual and is present because of errors in

the model ^j . Then (4.90) becomes

3

z° - zj = d11 (z°- Tj) + d12 z t + B1 u

(4.92)

z t = d21 (Z6- '9j ) + d22 zt + B2 u

o , j	 txj = T 1 (z- z ) + T2 z

Defining the estimator error vector
_a

,fit A 
zt - zt	 (4.93)

And the estimation error vector

xj A xj - xj	(4.94)

it is straightforward to show, by differentiating (4.93), using (4.91),

(4.92) and (4.88), that z t (t) cbeys

zt _ d22 zt d21 zj _ rAJ T2zt rAJ Tl zj	 (4.95)

and likewise for xj
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ij = T2 r Aj xj - T  z	 (4.96)
	 .

Note also that

It	 r xj	 (4.97)

The requirements for perfect estimation and asymptotic estimation

are now before us. If we view (4.97) as the output of the system

(4.96) we can see that if the pair (T 2r A) , r) is observable, then the

event zt (t) = 0 guarantees that xj (t) = 0. Therefore, we conclude that

the estimate of xi (t) generated by (4.91) can be made to arproach xi(t)

arbitrarily fast if a transformation matrix T can be found such that

1. T is nonsinpillar (0.89) is satisfied)

2. The eigenvalues of the submatrix d22 A [T-1 Aj T1 22 may be

arbitrarily specified

3. The measurements appear as state variables in the transformed

equations (that is, (4.109) is satisfied)

and the final requirement is that the model	 is perfect in the

sense that z3 A z° - z^ 0. These conditions are further summarized

in the

Definition: The (n 
J_L)th order system of (4.91) is said to be a

state estimator for the model (4,80) if and only if

1) z^ = 0	 (the model is perfect)

2) r is selected to satisfy (4.89) with the additional require-

ment that d22 A r Ai T 2 is a stability matrix.

To show that these requirements for an estimator are the same as those

of Luenberger, multiply the equation in (4.89b) by rAj and compare

with Equation (5.5a) in Reference 55. Note also that the requirement

4), p. 275 of Kwatny, 56 is equivalent to (4.89b) but the additional
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(4.100)

requirement, 2), of Kwatny is unnecessary since 2) can be of

by multiplying 4) by P Aj . Now following a suggestion of RE

57, p. 606, to make 
r11 in (4.87) nonsingular, we shall elin

of the unknowns in (4.85) to facilitate design of the estimz

Suppose the state variables of (4.80) are arranged so that 3

(4.87) is nonsingular. Then from (4.85) it follows that T11

can be eliminated, yielding

P11 (I - r12T21 )	- r11 r 12 T22'
T

T21	 T22

which is nonsingular only if T22 is nonsingular, and thus

r11	 r12

T-1 =

-
T22 T21 r11	 T22 rI - T

21 r12]

(4.88)

P11 r12 , A r 
l

11 
rI 

12-P T21]

T21LL

1r21 r22]Aj
 r11 II-r12T211

T21

.1
_ - T

22 T21 r11

T22 
[I T

21 r12]

-1

ril
r Ajllr12
 12]

I

-r11 r12

[r2lrz2] 
AJ	

T22
I

RI PRODUCIBILM OF
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After some manipulation it is possible to write the neater form.

_	 d11 d12	 MWL1	 MJAJL2 T22
T lA)T = A = 	_

d21 d22	 T22 [Fl+ T21 Gl] 
T22 CF2+ T21 

G2] 
T22

L	 (4.101)

where

-1	 TL A r11 rI - P12 T21] 	
k	

= T1	 (4.102)

1	 LT21	
n^- Q = q

r-
1

11 r12	 Q
L2 p	 T2 T22	 (4.103)

	

Ig	 ^q

F1 A 10 q , Ig] Aj Ll	 (4.104a)

F2 A [Oqk , Ig]Aj L2	 (4.104b)

G1 A	 Mj Aj 
L 
	 (4.104c)

G2 A - Mj A3 L2	 (4.104d)

I'll
	 r12] A M

j	 (4.104e)

Now, T22 serves only as a transformation of estimator coordinates, as

seen by noting that the eigenvalues of d 22 are the eigenvalues of

[F2+ T21 G2 ]. Since the eigenvalues of d 22 (and of the estimator;

see (4.91)) are independent of the required nonsingular matrix T22,

we may without loss of generality set, hereafter,
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T22 = 1

and write

dll d12	 MJAjLl	 M3A,L2
-	 (4.105)

d21 d22	 F1+ T2
 
1G1 F2+ T71G2

By a .fundamental theorem of linear system theory, the matrix

F2 + T21 G2 has an arbitrary spectrum if and only if the pair (F 2 , G2)

is observable, or equivalently the pair (F2, G2) is controllable (see

Wonham58 , p. 660 for a proof). Also, the structure of F 2 and G2 is

such that the pair (F 2 , G2 ) is observable only if the pair (A j , Mj)

is observable. (This can be shown by construction using the definition

of observability).

4.6 Estimator Gain Selection on the Basis of Model '42

One approach for selecting the free parameters, T21 in the design

of the estimator, (4.91), is to make the estimator stable with respect

to model ,d2 . In this event the stability properties of the matrix

d22 in (4.105) are of interest. Another approach is to relate T 21 to

the properties of the closed loop system using model ,W1 . This latter

approach will be discussed in section 4.7. Presently, we proceed to

select T21 with reference to model 'd2 (that is, select T 2 in (4.105)

to make d22 stable)

One approach for selecting the gains of a state estimator proposed

in the Appendix of Johnson, 3 requires no transformation to canonical

form as do the algorithms proposed in References 57, 59, and 60.

The approach also leads to a state estimator which is equivalent to a

Kalman filter in the limiting case of vanishing measurement noise.
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In other words, the following completely deterministic design is also

optimal for the linear stochastic problem driven by white Gaussian

disturbances for some covariance of the plant. Furthermore, the

relationships between the covariance of the plant noise and the

parameters of the deterministic estimator eesign are given explicitly

in (11) of Reference 56. One can therefore proceed to design any

minimal order (n j-k) state estimator on the basis of a given covar

znce matrix of the plant noise or, on the basis of specified stability

properties of the estimator, whichever information/criterion seems

more credible in a particular application. It also readily follows

that any linear state estimator of order n,
J 

is equivalent to a Kalman

filter in the steady state for some plant white noise covariance

matrix and some measurement noise covariance matrix (see Reference 61).

There are a number of the reduced order state estimator designs for

stochastic problems by Novak, 62 such as those proposed, which allow

the order of the estimator to be specified anywhere between n,
J 

and

n.- k.
J

In general, the following conjecture seems appropriate.

Conjecture: Any stable linear state estimator of order n, n.>n>n.- k,J

is equivalent to a Kalman estimator for some given covariance matrix

of the plant disturbance process and some given measurement covariance

matrix of rank (k + n - nj ). The two limiting cases of this conjecture

(n = n  - k, and n = n j ) have been verified in the literature; see

Reference 56 and 61, respectively. Note that an k x k measurement

covariance matrix of rank r < k means that k - r measurements (or

linear combinations thereof) are deterministic (known exactly). We
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have now supporting arguments for a previous assertion of s(

that a linear control problem need not be viewed as either <

or stochastic until the selection of the state estimator ga:

accomplished.

A matrix T21 which will make d22 in (4.105) a stabilit;

may be obtained as follows. Consider the optimal control p.

min fon (PTP + wTRE W)dt

W 

subject to

= F2^+G w2

P = Q

Then if the pairs (F2 , G2), ( F2, Q)	 are both observable, the

matrix for the closed loop system

_ [F2 - G?Rol G2 K1	 (4.106)

has an arbitrary spectrum, where K is the symmetric positive definite

solution of

0	 KF2 - F2 K + K G2 R^1 	 G2 K - QTg Qg	(4.107)

Therefcre the choice

T21	 K G2 R-1	
(4.108)

yields a stable estimator (4.91) for any positive definite matrix R.

(Compare the matrix in (4.106) with d22 in (4.105) and recall that a

matrix and its transpose share the same spectrum). Furthermore, if

Recall that observability of the pair (F 2 , G2) is equivalent to

controllability of the pair ( F 2 , G2).
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the estimator is to have time constants smaller than the "observation

,
window," T, specified in section 4.4, this can be accomplished by sub-

stituting [F 2 + 1/T I1 for F 2 in (4.107).

By using some results from Kwatny56 it can be shown that the

procedure described above (4.107), (4.108) for selecting estimator

gains yields an estimator which is also optimal in the stochastic

sense with some restrictions: The (deterministic) estimator designed

above is also a Kalman filter in the case of vanishing measurement

noise. Kwa:tny shows the explicit relationships between the plant

noise covariance matrix assumed for the stochastic problem and the

deterministic design parameters such as R,, Q C in (4.107), (4.108). We

may therefore fix the estimator gains on the basis of either determin-

istic considerations (stability of estimator) or stochastic considera-

tions (minimum variance estimator) simply by making an appropriate

choice for Q and R E in (4.107, (4.108).

To model the behavior of the closed loop system assume that the

control law is a linear combination of the estimates of the states of

model J2.

control f u (t) = G x 2 (t)	 (4.109)
la 

On the basis of the state estimator designed, at least in structure,

in section 4.6 we have from (4.91),

state	 ^t d22 2
t + d21 z° + B2 G(T1 z° + T 2 zt)

estimator 2	°	 t	
(4.110)

x = T 
1 

z +T2^

Now, therefore, the dynamical system which is composed of the control

law (4.109) together with the state estimator (4.110) is called the
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"controller" and is given by,

zt	[d22+ B2GT2 ]zt + [d21+ B2GT1Iz
controller

lu
(4.111)

°(t) = GT1 z° + GT2 2t

The controller receives as inputs the physical measurements, z0 )(t),

0
and yields as its outputs the controls u (t) which are to be applied

101

to the physical system... c

_	 To evaluate a candidate controller design one could attach this

controller to the physical system which actually receives u ° (t) and
^y

generates z° (t).	 Such an experiment with the physical system might be

economically prohibitive. 	 Suppose for instance, that the gravitational
\^	 M

environment on the earth's surface precluded ground test of a fine

pointing system of a spacecraft; or that a mass Transit control policy

evaluation imposes unacceptable risk of life and property. 	 In such

cases evaluations are performed on the basis of mathematical models of

the physical system rather than the physical system itself. 	 Such a

prediction of physical system performance on the basis of a mathemati-

cal model which ha y burl programmed on a (digital or analog) computer

=	 is called a "simulation."	 It is really this set of circumstances

which provides,motivation in this research to introduce "multimodel"

designs.	 By multimodel designs we mean that selection of design

parameters and controller structure is not based upon the same

model.	 The actual control law design might be (wisely) based upon one

model, call it 9 2 , whereas the estimator gains might be chosen on the

basis of still another (better) model, J V which might be used for

evaluation of the total controller design. 	 The simpler model e^2

serves to fix the structure of the controller (i.e., order of
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estimator) whereas the information available in a better model, ell

serves to make the state. estimates (of that simpler model) more accurate.

To see if'this is practical let us construct the closed loop

system with model 14, using the controller (4.111), which was designed

on the basis of model d2 . Add to the model 'dl°

xl = Al x1 + Bl u  + w 

Adl

 [(

l Gl 1	 (4.112)Y	
x

zl 	Ml

the controller (4.111), to obtain

xl	 Al B1GT	 xl	 B1GT	 I
2	 +	 1	 z0 +	 wl

zt 	0	 d22+ 
B2GT2 zt	 d21+B2GT1	 0

-	 (4.113)1	 1
yi	 Cl 0'	 x

zl 	Ml 0	 zt
a

Now recall the definition in (4.29) to write

},0	 yl	 Y	 Clp	 1	 }
(4.114)

z = z + z	 Ml xl+ zl

Substituting this'in to (4.113) yields, using also (4.29),

xl 	Al + B1GT1Ml 	B1GT2 x 	 B1GT1	 I
+	 z +	 w1

zt + B
[[d	 GT M1 d + B GT	

2 	 d, +B GT	 021	 2 1,	 22 2 2	 21 2 1

Y	 Cl 0	 xl	 Yl
zo 

= Ml 
o	

zt + 

zl	 (.4.115)

.	 ^)
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It proves convenient to transform these coordinates to the coordinates

l where 'fit is defined by (4.82). 	 Accomplish this by using (4.93),

(7xt)

(4.94) and (4.97) to get the simpler ford for (4.115)

X1
xlAl+ B1GT1M1 -B1GTz

zt
0 d22

zt

+	 B1GT 	 B1GT2r	 02wl
zl

+ x2	 +[I]

o 	 o	 o -d
21

(a)	 (b)	 (4.118)

yo

[Mcil

O +

(—xZtl)z° 	 0 	 z1

Notice that the system (4.116) is driven by the disturbance w1

assumed for model 
41 

and the measurement residual zl A z0 - zl,

associated with model Ail , and, in addition, the state x2 (t) and

measurement residual 72 o z 	 - z2 , associated with model ,42.	 In

general, both models are inexact and z l t	 ^ 0 and Tzz (t) 1 0.	 The

residuals z1 , z 2, 	 may, in fact, be characterized as random processes

which might have been ignored in the control problem but which now

are to be considered in establishing estimator gains. 	 Other important

observations concerning (4.116) are to be made in the special cases

which follow.

Suppose in (4.116) it happens that

T1Mix (t) + TZ r X2 (t) = X1 (ti}	 (4.117)

then (4.116) reduces to

f	
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(Ixz.

l 	 Al+ B1G -B1GT2	x1	 I	 B1GT1	 0
_	 1	 ,Z l

t -	 0	
d22	

zt	 0 + 0	 z+ -d21 z

y  = [ C1 01	

(xi)

	 (4.118)

,fit

r

x
1

zl = [Ml , 01	 ,fit

The nontrivial conditions under which (4.117) holds is that the

("evaluation") model ed
1
 is identical to the ("design") model 'i2•

That is (A1 ,B
1
,Cl ,Ml) = (A2 ,B2 ,C2 ,M2), since in that event (4.117)

becomes

[T1M2 + T2P - ii x2 (t) - 0

which is guaranteed by the estimator design criteria (4.89b) repeated

here, (which ensured nonsingularity of the transformation T in (4.79))

T1M2 + T2P = 1

Now in this event where Ad
1
 and j2 are identical, (4.118) is

rewritten

	

x2	 A2+ B2G -B2GT2 x2	I	 B2GT1
 [

,Lt -
	 0	 d	

zt + 0 
e21+ -d	

Z2

22	 21

(

YZoC2 0
	

2	
y2(4.119)

	

o	 M2 0	 it + z2 `
a

a

where e^1 (t) represents those effects not included (modeled) in the

model error vector e(t) which became an integral part of the model ^2'

see (4.46b).. From the definition (4.26),

21 (t) e(t) + —e 21
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Note that (4.119) is stable if and only if the estimator is stable and

the closed loop 12 system is stable.

It is instructive to write the solution for the linear system

( 4.119) ,

k 0	 2
2

xo	 t I ,.,21 B2GT 1...2y (t) _ [C	 01 Nt,t)	 ,rt	 +fD(t,a) e +
-d21

z da

f
o	 Zo

0
0

+ y2 (t)	 (4.120)

IE,
where for the constant linear system t(t,a) is defined by

i
I 2 + $2G	 -B2A	 GT

^D(t,a) = exp
2

(t-Q)	 (4.121)
0	

d22

the partitioned parts of which are

0	 (t,0) = L-1	 sI-[A2+ B22GT -111	 l	 J

I[sI-[A2-
1

(D	 (t'0) = L
-1	 + B2G]]	 [B2GT2][sI- d22 I -

^D(t'0)	 0

4) 22(t'0) = L
-1 [sI- d22]-1

where L-1 denotes inverse Laplace transform and s denotes the complex

variable.	 Using these partitioned forms rewrite (4.120) as

Y (t)	 C2L^11(t,0) xo + 
^D	 7t	

+ fC2(Dll(t,a)621 d6
0

+ ftC^11(t,a)B2GT112(t,6)d21 z2dor + y2<t)	 (4.122)r
O L

Now we note that the zero state response of the output with respect to

the relative model errors in the plant, a 1 , is independent of
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estimator dynamics. Thus, these errors are transfered to the output

via the transfer functions

0

	

y21(s) = C 2 [si- (A2+ B2 G)]-1 ij	 (4.123)
e 

i 
(s)

Likewise it can be shown by taking the Laplace transform of (4.122)

that the measurement prediction errors, 12 , propagate to the output,

y°, according to the transfer functions

0

Y2
i(s) = JC2 sI- (A

2+ B2G) 
-1B2G 

[T1 T2(sI- d
22) 1a21	

(4.124)
z s	 [	 L	 i

which transfer function possesses roots associated with the optimal

control problem (due to the first term in (4.124)) and certain addi-

tional eigenvalues due to the estimator (but not equal to those of the

estimator). Further insight is obtained by substituting the specific

choices of the matrices A2 , B2 , C2 , and G defined by (4.46b) and

(4.57).

The closed loop system matrix from the control problem is, using

(4.46b),

3	 3
=	 A2+ B 

2 
G	

A P + B	
[G1 G2l

0 D	 0

A3 + B3G1	 P + B 
3 

G 2
(4.125)

0	 D

then since C2 = [C3 ,01, (4.123) becomes

i

• .i

j

y01(s)	
333	 -1	 3	

-1

..21	
C [sI-(A + B Gl)]	 I, + (P + B G2)(sI-D)	 (4.126)

e ^ (s)	 ij
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Now the relative error vector '921  has the structure

,..21
el

	

e21  - ,.,21	 (4.127)

e2

where e 1 and e2 lrespectively force the plant *Ai3 and the error

system which is augmented to model 4d3. (The composite system is

called model ^2).

	

x3 = A3x3 + B3 u° + e31	 (4.128)

But from (4.26)

31	 31	 31

	

e = e + e 	
(4.129)

Now the particular choice for 
e31 in section 4.2 was from (4.43),

(4.44)

Al P Ŷ

	

DY	
(4.13;3)

'	 Any errors associated with model ,d2 have the form

21	
A	 .g2 1	 e31`	 e 1

e	 =	 _	 +	 (4.131)

0	 e2	 0	
e21

since

„ 21	
e31

e =
0

and (4.128)  becomes

3	
A3 

P 
(x3) e21

X2	 x	
+ ,r21	

(4,132)

Y	 0 D	 Y	 e2

where'4
1
1
="e31 . But from the definitions (4.27) then the error in

the output (4.43) of the system (4.44) is

f
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3

1 A ft eD(t-o) e^lda e 1	 (4.133)

Now from (4.126), (4.131) and (4.133) we have

1
y0 (S) = C

3[
 sI- (A3+ B3G1)] CI + (P+B3G2 [sI-D]-le 

1 (s) (4.134)

The characteristic equation for this transfer function will have the

roots of the optimally controlled "error free" system 14310 and in

addition, the roots of the error system. The estimator dynamics do

not enter into the transfer of relative errors, e21 , of the model

error system, e = PY	 Dy, to the output yo , at least as far as

the zero state response is concerned.

Now consider the substitution of the A 2 , B2 , C2 definitions into

(4.124)	 The result is

-1y0 
(S)= C

3[ sI- (A3+B 3G1) ]	 B3 G[T l-T 2 (si-a22 ) -1a
21] z2 (s) (4.135)

4.:

which relation involves, again, the closed loop dynamics of the

optimally controlled "error free" system J 3 , and also the dynamics of

the estimator (but not precisely the same eigenvalues).

Errors in the state equations of the error system, e2 L propa-

gate to the output y° in a manner governed by the eigenvalues of the

optimal .43 "error free" system and the eigenvalues of the assumed

modes of the error system, see (4.134). The propagation of errors in

measurement prediction, z2 , to the output is governed by the eigen -

values of the optimal "error free" system '43 and the eigenvalues of

the estimator, see (4.135).
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Now the estimator gains generally should not be based exclusively

upon considerations of either (4.134) or (4.135). The sum of the two,

for given characterizations of z2 (s) and e2 l (s), could be considered.

However, difficulties arise when the error system model e'= Py , y=D'y

is unstable, a case that will prove desirable to consider in section

5.0. In such cases the transfer functions yi{s)/ e21
j
(s) are unstable.

^r
One possible remedy for this situation is to choose the estimator

gains in the best root mean square.sense

1
T

	o T	 o	 1/2
min lim 

T J y (t) 
Q Y (t)dt

	

T21 T+ 
0	 0

where y (t) is given by (4.120). Such a minimum exists if y°(t) is

bounded. Another possibility is to select the estimator gains T 21 to

T
min J y (t)T Q y(t)dt

T21 
0

For any finite T, much larger than T, the system characteristic time.

4.7 Selection of Estimator Gains On the Basis of Model J 

A more appealing choice for the gains of the estimator than the

model ,i2 referenced decisions of the previous section, is a choice

After all, it is our own characterization of the error system that is
unstable and not necessarily the actual "error system." Consider for
example an actual error vector that is sinusoidal (resulting perhaps
from a structural bending mode which was truncated from the design_
model). If the characteristic time of the controlled system is small
compared to the period of this sinusoid, it might be quite reasonable
to model such an error vector as a polynomial in time, since the state
estimator continually updates the initial conditions associated with
the error system rapidly compared to a period of the sine wave. In'
this way a bounded function is (piecewise),modeled as Lhe output of
an unstable system.

4
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which involves an evaluation model (,d 1) which is better than the

control design model (4 2). To appreciate this point consider that it

is usually the effects not included in the model upon which the con-

troller design is based, which serve to limit the overall performance

of the physical system, (which is under the influence of such a

controller). The following procedure allows us to consider plant and

measurement errors which were neglected in the previous modeling prob-

lems (and therefore in the estimator design). The flexibility offered

by this "second chance" is as follows. To include all such (possibly

correlated) model errors in the original statement of the problem

causes the order of the estimator (and therefore of the controller) to

be large. To neglect such disturbances all together limits the per-

formance of the overall physical system plus control , , r,r, perhaps

unacceptably.

To illustrate this point consider a completely deterministic

design. That is, the model errors defined for the model are completely

deterministic, as is suggested in the previous sections of this

chapter and in the "external disturbance accommodation" work of

Johnson. 
3,4 

But on the basis of the deterministic design there is no

natural "bandwidth-limiting" mechanism. A requirement of asymptotic

stability of the estimator design moves the eigenvalues "to the left

of the imaginary axis" of the complex plane. The requirement that

the estimator be faster than the system in the sense of placing eigen-

values "to the left of a vertical line s = 1 /T," where T > 0 is a

specified number (such as the characteristic time of the system, see

definition (4.66)) are used by some (see section 4.0 of this paper
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and Johnson, 3 page 20.) There are not, however, any known procedures

in the deterministic theory which naturally force the eigenvalues to

"lie to the right" of some line, thereby limiting the spectral radius

(r[A] A Xmax [A] of the closed loop system matrix A, and limiting the

amplification of system modeling errors.) In an engineering sense it
t

is precisely the feature of the stochastic optimization theory which

limits the spectral radius of the estimator (actually, by specifying

the poles uniquely, in the case of the Kalman filter), that is so

helpful. It is not the lack of uniqueness in the gains of the

Luengerger observer that invites poor pole placement, but the lack of

upper and lower bounds. The reason of course, that they are lacking

is that there is nothing in the model itself to warn of the limits of

its fidelity. There is associated with each model, ,^^, a finite

region in the complex plane, R., whose shape (and even connectedness)

is unknown, but which represents a region of "model credibility" (or

"spectrum of control authority") in the sense that closed loop system



poles placed outside this region cause the closed loop system

performance to "disagree" with that performance predicted on the basis

of the modelAJ . Such a set, R^ is a "fuzzy" set in the sense that the

boundaries cannot be precisely defined. Moreover the information to

establish the boundaries of 
J 

is not continued within the model itself.

These various reasons prompt us to investigate the possibility of

designing controllers on the basis of more than one model. These

"multi-model controller" designs have the advantage of the lower order

that the minimal order Luenberger observes affords, together with the

band limiting qualities afforded by the consideration of a second and

better model.

Returning to the task of estimator gain evaluation on the basis

of model Ad1, the equation of interest is (4.115), rewritten here in

the compact form,

x = Ax + G  z  + Gwwl 	(4.136)

y° = cx + yl

where we may take Xo , zl , wl , yl to be either random or deterministic

in character, and where

A1+ B1GT1M1 	B1GT2

A ^

[d21+ B2GT1 ]Ml I d22+ B 2 
GT 

2-

1
B GT1	

_ IG =	 , Gw	 I
d21+ B2GT1 
	

p

C_ A [Cl , 01

XlX D t
z

99



We wish now to solve the problem

T T
J(T )	 min E T r y° (t) Q yo (t) dt	 (4.137)

21	 T21	 0

for finite T (and also consider the limit as T	 Now if we

consider G 
d 
w 
d 

to be the deterministic term forcing the linear plant	 i

	and G 
r 
w 
r 

the zero mean white noise rand.or- process whose covariance is	 r

known, and yl is a zero mean white noise random process whose covar-

iance is known, then we can write (4.136) as

x = Ax + G  W  + GrWr

y° = Cx + y1	
(4.138)

where the specific definition of GdWd and GrWr will depend upon the

choice of zl and wl characterizations in (4,136). From Appendix B,

Equation (B.10) we can immediately write (4.137) as

*

f

oT _ _
J (T21) =TinT	 trC TQC	 ^ + x xT dt	 (4.139)

21 \ 	 1

where	 obeys

= AX:+ AT + GrQrGr	 (0) _ Fo = E[xoxo]

(4.140)

and x is defined as

t
x(t) pr (t,a)GdWdda	 (4.141)

o

where 1D is the state transition matrix for A, and satisfies

A D(t, a)	 (a, Q) = I

Thus, it is not necessary to restrict the original model error vector

-21e (t) to a deterministic description. It is however, convenient to

a
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do so, and no generality is lost * when one considers that the estimator

can be designed with full dimension (of order n2) or with reduced
n

dimension (of order 1 n2-k < n < n2) and that in the full dimensional

case the gains may be selected for "optimality" in the stochastic

sense, or for "stability" in the deterministic view. In the reduced

order estimator the gains may still be selected for stochastic opti-

mality in a limiting sense, corresponding to a Kalman filter with

vanishing measurement noise (see Kwatny56). Thus, it is convenient

and not restrictive (given any constraints on the order of the esti-

mator) to consider the deterministic design. In this view of the

model error description, the results of this research can be useful

to obtain a model, and a design, for systems subjected to correlated

disturbances. The modeling of correlated processes is an underrated

task.

It is well appreciated in stochastic problems that the condi-

tional expectation and more specifically the Kalman filter, is a

"biased" estimator if there are correlated disturbances (or "model

error vector") which have been modeled as white noise. It is common

to provide the simplest Gauss Markov model for such a disturbance, a

"bias" model (an unknown constant plus white noise, Y = 0 + w(t)).

5

Assuming Gauss Markov models of correlated disturbances are appro-
priately given by the deterministic structure given in (4.43),
(4.44) with white noise added to (4.44).

If only the first and second moments (the means and the covariance
kernels) of the random processes, are known, then the Kalman filter
is the best linear estimate for a large class of optimization cri-
teria (including minimum variance), and this is true regardless of
the statistical properties of the random variables (see Theorem 5.3,
p. 166 of Reference 38).

if)	
I

;j:

9

a
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Recall from section 4.2.2 that the modes present in the actual model

error vector e21 (t) which are important to model in the model error

vector approximation, e(t), are those which "appear to be present in

an interval T" (T is called in section 4 the characteristic time of

the system).	 Therefore, the condition under which bias models are

always sufficient as a characterization of a correlated disturbance is

that the system characteristic time approach zero (corresponding to a

controlled system with an infinite "bandwidth", to further abuse a

common word in control engineering). 	 It is perhaps unfortunate that

in the vocabulary of the stochastic control literature the words

"biased" and "unbiased" are u.:ed to describe estimators, when in fact

the difference between the mean of the state and the mean of the

estimate of the state is not at all constant. 	 Nor should one be led

to believe that the "biased" estimator can be made "unbiased" by the

incorporation of "bias" disturbance models in the estimator (filter)

design problem. 	 The next simplest class of models for error vectors

is the polynomial model (of which class the bias model is a member),

and section 5.0 will treat this class of error vectors. 	 The signifi-

cance of that procedure in section 5.0 to stochastic problems is that

the order of model for the correlated disturbance (error vector) is

related to the characteristic time of the system (which time might
-	 r

have also been labeled the "correlation time"). 	 This makes sense

because white noise models are appropriate only for those processes

whose correlation times are small compared to the system characteristic

time.	 In this sense, section 5.0 can be viewed as a procedure to

J	
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determine that model of the system including disturbance and

measurement processes which can be "appropriately" driven by white

noise.

To summarize section 4.0 it is helpful to consider Figure 4-2

where the controller design events are summarized. The hierarchy of

models indicated in Figure 4-2 is utilized in the following way. The

physical system go is committed to a mathematical description, Ail,

which represents the physical system sufficiently closely to serve as

a final evaluation model (i.e., via computer simulation) to select

between candidate controller designs, (in the event the physical

system, 
-9. 

is not used for that purpose). The model 
91 

is a

linearized model whose order exceeds that acceptable for on-line state

estimation.

Model ,d3 is a truncation of e^l (whether actually constructed in

this way or not) and some errors between 
41 

and 
-J3 

are noted (i.e.

the specification of e31 by "assumed modes" (4.43), (4.44)). A con-

troller design on the basis of d3 is likely to be sensitive to the

modeling errors. Model .d2 is therefore introduced, and is composed

of the model error system (4.43), (4.44) augmented to the truncated

model d3. The order of d2 is acceptable (actually by definition of

'1
3' '42) for controller design, and the structure of the controller

is established on the basis of the model A' 2 . Now, the gains of the

estimator, T21 , may be selected on the basis of model ,j2 , or, on the

basis of the better model ,dl . This latter "tri-model" design pro-

cedure (refer to the "design triangle" in Figure 4.2) is more difficult

computationally than conventional Kalman filter or Luenberger observer
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Figure 4-2. A Tri-Model Design Procedure.

R^'^ODUCIBILiTY OF TRIO	
3

oRG'' ^' pAC^I	
Is POOP

104

a



k

w^

i

3

designs (which are based upon a single system model which is assumed

perfectly accurate) but has the following advantages. The reduced

*	 e

order Luenberger estimator has no natural "band limiting" features

unless white noise is considered present in the plant, in which case 	 s

the estimator design becomes a Kalman filter in the limiting case of
1

vanishing measurement noise. By considering the tri-model design

procedure the estimator gains can be influenced by the presence of

both (white) noisy characterizations of relative model error vectors,

e21 (which play the role of plant noise) and measurement residuals I

(measurement noise). The following section 5.0 helps to further sys-

tematize the choice of the model error system characterization (that

is, the selection of P(T,d) and D(T,d)).
s

F

The eigenvalues can fall arbitrarily far to the left in the complex
plane.

r
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5.0 Orthogonal Filters for Model Error Estimation (OFFMEE)

In section 4.2.2 it has been suggeste& that the approximation of

the model error vector e(t) by e(t) be done with closed loop operation

in mind so that state estimation can be applied to the differential

equations the error is assumed to obey. Thus, a was chosen as a least

squares approximation to e(t) yielding the matrix of coefficients P

g ,Lven by (4.41) and the matrix D as determined to satisfy (4.17),

where the fi (t) are a selected set of approximating functions. In

this section the fi (t) are selected to be orthogonal functions with

respect to the weight g(t) on the interval [0,T], see (4.41). Toward

this end we introduce differential equations (for the error system)

which orthogonal functions are known to obey. We will restrict our

attention to the class of Jacobi polynomials which include via change

of variable, Fourier, Legendre, Chebyshev and other polynomials.

Before specializing to these cases, it is helpful to first develop a

model error system of the form

e=Py
(5.1)

y = Dy

which is capable of generating the more general Jacobi polynomials.

It will be convenient to normalize time to vary over the interval

[-1,1] instead of the interval (0,T]. Such a change of variable is

accomplished by the definition,

	

QA2T- 1 	(5.2)

Jacobi polynomials J i (a ' O (6) are determined by the property of being

orthogonal on the interval -1 < a < 1, with respect to the weight
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g(a) _ (1-G) (1+ a)^ and may be expressed in the form Reference 1,

page 24,

J (a 6) (a) _ (1 - a) a (1+6) -S 
	

[(1-Q)a+i(1-kr)s+iJ	 (5.3)
i	 dr

Theorem 5.1:

The model error system which yields the least squares approxima-

	

tion of e(a) to e (a) using Jacobi polynomials, f i (a) = Ji	 (a),

can be written, in terms of the normalized time, a,

e (a) = P Y (a)

(5.4)

do 	 = D(a) y(a)	
,.

where

Y E Rzd

e E Rm	
y

1
P' = 1 g(a)e(a)fT (a)da A'1
P _ [P',0]

0	 Id

0	
Y

D 	 2+a+s

diag.	 _	 r-^+a+(a+s+2) Q ^
2 3+a+s	 4	

1-a 2	 Ia

1-a2	
LLL

(d-1) (d+a+s)

1-a 
2

2dx2d

108

S

1	 -
^ y
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g(Cr) _ (1-a) (14.0	 a > -1 	 > -1

fT (a) _ (JO 
	 (a)	 J 	 (a) , ... ,J (d1

a : 
B) (o) )1 

where diag (•) means a diagonal matrix with the ordered elements of

(•) on diagonal. This result, (5.4), is the first order form of the 1

Sturm-Lionville, equations, Reference 62, page 60, and the eigen-

functions of (5.4) are Jacobi polynomials, Yi (a) = f i (CO = Ji(a'S)(6).

Now, depending upon the choice for the parameters (a,O the system

(5.4) may generate Legendre polynomials (a = S 0), Chebyshev poly-

nomials (a = _ - 1/2) and other polynomials of interest. It is also

Kr

	

	 possible to select time invariant representations of (5.4) for the

cases of interest which follow.

5.1 Chebyshev Error Systems

The special case of Theorem 5.1 when a = (3 yields ultraspherical

polynomials of which class the Chebyshev polynomials are a member

(specifically a = S = - 1/2). The Chebyshev polynomials are of

PYrimar interest in the remainder of our study because they include

(by change of variable) the Fourier series. They also provide a a

simple and systematic extension to the "bias" models often used to

model correlated disturbances in stochastic problems. Because of the
4

good curve fitting properties of Chebyshev polynomials we introduce a

Theorem 5.2: n

Suppose the model error system is modeled by

-60) = P YM
_	 (5.5)

Y' 0) = D Y(Q)
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i
P a 

J	
g (a) e(cf) fT (a)da A-1	 (5.6a)

l

1/2	 0
A-t 

Tr O	
Id-1

0 0 0 0

1 0 0 0

D	 0 4	 0 0	 (5.6b)

3 0 6 0

.. dxd

fT(Q) = TT(a)	 J (-1/2,-1/2)(Q). J (-1/2- 1/2)(CY).....1(-1/2,-1/2)(Q)
0	 1	 d-1

(5.6c)

where J1(-
1/2,-1/2)(a) A 

Ti (CY) are Chebyshev polynomials of the first

kind of degree i,

	

Ti (Q) G cos(i cos-1Q) ,	 cr A 2 t- l

Then, any solution of (5.5) satisfies

e (6) = P (Yo) T(a)	 (5.6d)

where

T
YO Ql

T
P (Yo )	 P	 YO Q2	 (5.6e)

T
YO Qd

(note: Y(Q _	 1)	 Y(t	 0))
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where

l	 p

Ql	
0	 0

dxd

	

,^	 1	 1

1	 0	 0

Q2	
0	

0
dxd

3	 4	 1

4	 4	 0	 0

1	 0	 0

	

r	 Q3	
0

dxd

The proof follows from theorems A6 and A7 in Appendix A. 	 7

We wish to now interpret the performance of the state estimator

for y(t), operating in the real time, t+(Q + 1).
r

Corollary:`?
^z

Given the model .43 6

x3	 A3x3 -f. g3u°
(5.7a)

^3 z3 - 23x3

and the model d2x
Y

x3 = A3x3 + B3u° + e(t)

z2 = M 
3 
x 
3

d2	
(5.7b)

where,
e P

Y = D y

111	
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0 0 0 0

1 0 0 0

D	 0 4	 0	 0	 (5.7 c)

3 0 6 0

L	
dd

Then the difference between the physical measurements z 0 W and those

predicted by model 143 , (z 3 (0), is given by

	

z0(t) - z 3 
(t) A z3 = 

M
3 

^
3 
(t ' t 0 ) P(Yo T (t) + Z

2 	 (5.7d)

where 4) 3 (t,t 0) is defined by

- 3
^D (t, t0) 
	

A3 ^(t,t 
0 )	 (D (t 

0 t 
0

OW2an z is defined by

,...2z A z0 - z2	 (5.7e)

and

T(t) A T(a = 2/T t	 (5.7f)

(T(a) defined by (5.6c))

and where P(Y0) is defined by (5.6e).

Proof: The proof follows immediately by construction of the solution

of (5.7a), (5.7b), and the definitions in (4.29), and Theorem 5.2.

On the basis of Theorem 5.2 and its corollary, it is possible to

interpret the performance of the state estimator (whose construction

is based on model 142) in the following way. Assume that e^ 31 
M is a

very good approximation to e31 (t)  so that, in terms of the definitions

in (4.26), e31 = 0. Then'12 
= 

0 (by definition of e31 in section 4.1),

and (5.7d) implies that the difference between the physical measure-

ments z 0 
(t) and those predicted by model A 3 is equal to a linear

112



combination of Chebyshev polynomials, and furthermore the coefficients

of these polynomials are a function of the initial conditions, yo.

Recall from a discussion in section 4.5 that the presence of a nonzero

measurement residual, z 0- z3 , causes the estimator to change its asti-

mate of the state vector from that predicted solely on the basis of

the model. Therefore observe from these comments and (5.7d) that if

the estimator is stable, then, in response to real measurements z0 M

the state estimator automatically selects those coefficients of

Chebyshev polynomials which cause improvement in the estimate of the

state vector x3(t) and the model error vector e 31 (t), such that those

measurements predicted by z 3 (t) are closer to those from the physical

system, zo (t). This is not "adaptive" curve fitting of the measure-

ment residual in the sense of changing parameters within a fixed model

structure, but an "adaptive" function has been served by increasing

the order of the model with the error system. The Chebyshev polynomials

used to approximate the model error, e 31 (t), which are automatically

selected by the state estimator for y(t), yield a least squares approx-

imation to the model error vector e31 (t). Such an approximation of

e31 at any time, t, is based upon the present model error and the
i

prediction of model error T units of time into the future. To see this

prediction feature, note the estimator design of section 4.5 and note

than the matrices P and D are functions of the prediction interval, T.

This makesthe inherent prediction feature of the estimator accurate

only over the selected interval T. Selection of T was related in

section 4.4 to a property of the closed loop system called the charac-

teristic time, see (4.66),
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11 - F - ^ 1 11

The estimator associated with the variables y(t) (noting that
3

x2 A (Y )) can be thought of as an 'orthogonal filter" to estimate

model error, since the model upon which that portion of the state

estimator associated with Y is based generates orthogonal functions.

The particular error system given by (5.5) is called a Chebyshev

error system. The design of "orthogonal filters" for model error esti-

mation (OFFMEE) is summarized in the specific steps of the next section.

Some further properties of the Chebyshev error system (5.7) need

to be mentioned. The eigenvalues-of D are 0 repeated d times, and

this means that the error system model is unstable (see Appendix A).

The resulting closed loop system of a uni-model design is unstable.

That is, the analysis or "evaluation" of the controller with respect

to the same model, d2 , upon which the controller design is also based,

indicates instability. To see this, refer to (4.11g) (further,

2 N21 ...2
assume the model is perfect 6 , e , y all zero)). Then, using

(4.125), conclude that a subset of the eigenvalues of the closed loop

system (4.119) are those of D. Thus, on the basis of this "evaluation"

of the controller, some components of the state trajectory

x2 (t) = (x3 (t)) approach infinity as t + - from some nonzero initial
Y (t)

conditions. Two observations are pertinent to this situation. The

first has to do with the interpretations of this instability conclusion,

and the second has to do with the alternate suggestion for design of

the controller on the basis of more than one model of the system.

The concept of stability imposes limiting time, t -} -, arguments.

That is, from a given set of initial conditions, the initial conditions
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must not change again V t E [t 	 However, in the construction ofo
a model, we carefully noted that the model was capable of accurately

portraying the output of the physical systems only for a relatively

short time, and the particular time over which the model was argued to

be credible was the characteristic time, T, defined in section 4.4.
r

It was specifically argued in the model error system construction of

section 4.0 that only modes of truncated states which appear to be

present over an interval T need be modeled in the error system. 	 For

example, suppose an uncontrollable mode of ,d 1 were truncated from A^3.

Let the mode have the effect of a damped sinusoidal forcing function

on the state equations. 	 Let the effect of this truncated mode be

modeled (even exactly) over an interval T as a second order polyno-

mial in time.	 Such modeling relies upon the state estimator to update

the initial conditions associated with the error system, (for accurate

modeling of the errors) but arguments of stability remove the (prac-

tical) circumstance of initial condition changes (`d t C[t0 ,-)) asso-

ciated with the assumed modes of the error system. 	 Therefore, since

the model of the dynamical system is credible only over a relatively

i
small time, T, (prom a fixed initial condition) designing for stability

has less conceptual appeal than designing for performance of specific
3

i

variables as discussed next.

Suppose now, that all parameters are fixed by the controller 	 a

design except the estimator gains, T 21 (see (4.110) and (4.105)).

Section 4.6 shows how the estimator may be stabilized.	 However, the

closed loop system, (4.115), (with respect to model Ae 2) may not be

stable, from above arguments. 	 If, instead of using 
4^2 

in (4.115),

f	 115
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we flevaluate" the controller with respect to a different model,

the system (4.115) might indicate stability. (i.e., any

model for . which Aj + Bj GT 
1 

M 
j 

is a stability matrix). Instead

of using stability arguments to fix the estimator gains, one might

choose to minimize the functional

T
J(T21 	 T f y 

T 
Qy dt	 (5.8)

0

(y is the output of (4.136) with 2
) for finite T. Now again,

this functional is considered for a set of fixed initial conditions,

and in the limit as T	 we are faced with the same conclusions that

troubled us with the ► tability arguments: For fixed initial conditions,

J(T
21

 ) might not provide a faithful prediction of the physical system

performance for large T.. Making T equal to a fairly small multiple

of the control system's characteristic time, T, might provide an answer

in closer agreement with the physical system. (i.e., T = 20T or

T 10T). It was mentioned early in this report that the performance

of controlled physical systems is usually limited by those effects not

modeled in the design of the control law. We may wish, therefore, to

r ^choose T21 on the basis of (5.8) where y is the output of (4.136) (as

written, in terms of A^ model parameters).1
The Case of Infinite Terminal Time and Chebyshev Error Systems.

The defining equation for L, Equation (4.53), can be used (in

the case of T to produce a recursive solution for the elements

of L as follows. Since for the Chebyshev error system the matrix D

has a lower triangular form, the expression (from (4.53) with L E 0

corresponding to T	 in (4.46a)),
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T	 T -1
L - [K3B3R_ 1B3 - A3	CL D + K3P,

can be written

T _1

Lij - [K3B3Z-1B3 T_ A3 ]

 

lik ['kZ J DQ'3+ [K3P]k3'l

where k > j and the range of j is j=1,2,...d. Thus, beginning with

the 
dth 

column of the matrix L, denoted by L d , where

1 2d	 1 2	 dL	 [L , L ,... L ]	 ,	 P = [P ,P ,...,P ]

we have

_1

L  = [K3S 3 - A3T]	 K3 Pd

due to the fact that the last column of D is zero, see (5.7c). Pro-

ceeding to write the columns of L proceeding right to left among the

columns of L,

la
Ld-1 = [K3S

3 _ A3T]	 K3Pd-2+ L  D
d,d-1)

—1
Ld-2 = [K3S3 _ A3T] K3 pd-2

+
 Ld-1 D	

+ L 
d 
D	 l

_1

	

Ld-3 _ IK 3 S 3 _ A3T] (K 
3 
P 
d-3  + Ld-2 D
	

+ Ld-1D	
+ L d Dd-2,d-3	 d-1,d-3	 d,d-3)

1
Ld 4= [ K3S 3- A3T1 

(K 
3 
P d-4 +  Ld-3D d-3,d-4 + L(1-2D d-2,d-4 + Ld-1D

d-1,d-4

L dDd,d-4)

_1
d—j 3 3 3T	3 d—j j=1 d—kL	 [K S- A ] K P + E L D	 J=0,1,...,d-1

C	 _	 d-k,d-j)k-0

`a
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Thus, the above equations represent a solution for the columns of L

beginning with L  as given, requiring only that the matrix D have a

lower triangular form (with zero diagonal elements). In the case of

the Chebyshev error system the matrix D has certain other zero entries

which may be omitted.

_l

Ld j= [K3S3- 
A3T] (K3,d-j +
	 j	 D d-j+k,d-j Ld-3+k j=0,1,2,...,d-1

Lemma:

If the square dxd matrix D has a lower triangular form, and the

nxn matrix S is nonsingular then the equatinn

0 0	 0

SL+LDF	 ,D	 00
0

has the recursive solution which generates the d columns of L,

jLd-j = S-1 (Fd-j _ 
	
Ld-j+k] l	

J=0,l,..d-1
k=1,3

 
[D
d-j+k,d-j

beginning with the initial condition

L  = S-1 F 
5.2 Summary of a Tri-Model Design

Procedure using OFFMEE

In section 4.0 it was suggested that the controller design

involve more than one model. In section 5.0 it was suggested that the 	 a

model upon which the controller structure is based include an error

system such that the model errors are approximated with orthogonal

functions. The design of the controller based upon this augmented
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system involved the "orthogonal filter" which estimates (and therefore

F.

" reduces the impact of) the effects of the model errors which include

external disturbances, truncated modes, and parameter errors. 	 In this

section we outline the step by step procedure to accomplish these

..
design tasks.

Before outlining the steps it is helpful to review the total list

of parameters which are to be determined, in order of their determin-

ation.

A3

B 

3

Parameters of the model d3

C3

M3
X3 = A3x3 + B3u°

3 3]
3 1143

z33
%

[MC3

3

^_. Q. F	
'i

weighting matrices for the optimal control problem

T
R Y2T Q Y2+ u°R u°dtmin	

fo )o	 °
u'

p
K(A3,B3,C3,Q,R)	 Riccati matrix for	

d3_~

T(A3 ,B3 ,Q,R,K)	 Characteristic time of	 ,d3

31e 	
(t)	 assumed "mode shape" of model error vector

D(T,d)	 Matrix for synthetic modes of error system

P(T,d)	 Chebyshev-Fourier coefficients of error system

L(P,D,K,A3 ,B3 ,R) =4*G(R,B3,K,L).	 Feedback gains for model error

estimates

w
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zl measurement errors in model 
1 
which are to be considerea in

estimator gain determination

e21 model errors in .92 which are to be considered in estimator gain

determination

T21(721,721,m 3 all of above) Estimator gains, selected on the basis

of either 1) model Ad 

2) model 
AJ

d(J( Aj1))	 Order of the error system

The procedure is described for the case of infinite time solutions

of the optimal control problem. There are special considerations to

be made, such as imposing an artificial (large) finite value for

terminal time, when existence of an infinite integral is questioned,

and these are cases appropriately noted,

ASSUMPTIONS:

1. controllability of (A3 , B3)

2. observability of (D,P), (A3 , C3), (A3 , M3)

3. Q, R both positive definite

STEP I: Determine -43 (Reduce . from 
edl 

or write directly)

specify (A3,B3,C3,M3)

STEP II: Solve the error free problem.
specify (Q,R) and determine (K, G1) from

	

T	 T	 T
0 = -KA3- A3 K + KB 3R-1B3 K-C3 QC 

T

	

Gl= - 
R 1B3 K	 (5.9)

f	 120
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7

{ STEP III: Solve for T, the characteristic time of ^3

determine T from

I _1
 T	 T

T	 Amax
j[KB3R71B3 K + C3 QC 3]

K (5.10)
a

STEP IV: Assume a characteristic shape for e31 (t)

determine e
31 

( t ) from

a)	 compute precisely that e 31 (t,xo,xo) corresponding

s

LL

toe^i— Ad	 or
.j

b)	 assume some shapes expected in e31 (t) (damped sine-

waves, polynomials, etc.)

STEP V: Select orthogonal approximating functions f i (t) (i.e.,
:

Chebyshev, Legendre, Fourier, etc.)`

Specify D	 from

D f
AP

For Chebyshev error systems

0	 0	 0	 0

1	 0	 0	 0

I D(T,d) A T
0	 4	 0	 0 (5.11)

x.

3	 0	 6	 0

' dxd

STEP VI; Solve for the Chebyshev-Fourier coefficients, P.

9

determine P(T,d) from
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1
P =	 g(a) e31 (o) fT (a)da A-1	 (5.12)

1

where

1	
-1	

1/2	 0

A-1 = r g(a ) f (CO fT (a)d6 = 2
J 1	 7T 0	

Id-1

a A 2 t - 1	 f	
i

(a) = T(a) = J(-1/2,-1/2)(a) = cos(i cos-1 Cy
iT 	 i

STEP VII:	 Solve for error system feedback gains

T	 ,^

Determine G2 - 
R71B3 

L	 from

T

[KB 3R
7
 T
1B3 - A3 ] L - LD = KP	 (5.13)

Selection of estimator gains may be based upon either of two options

(VIIIa, IXa) or (VIIIb)

(STEP VIIIa): Specify measurement errors, z 1 , and relative model

errors, e21 , (which are to be neglected in designing

the structure of the estimator but which are to be

considered in the selection of estimator gains.)

Specify 'z
1
 (t), e21 (t)	 from either

a) deterministic: z 1 (t) , e21(t)
_ T

b) random: E[ l I , E(	 zl)(z zl)

E[e21^ E(e
21- e 

1)(e21- 
e21)T

In the infinite time problem the optimality of G2 has not been,

guaranteed but the existence of L has, provided (A3 ,B3 , C3) it a
controllable, observable model.

RETRODUCIBILFP)t 01,' THE
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(STEP IXa):	 Solve for estimator gains

determine T21 from
]

fTmin T	 tr CTQC (1; + x xTl dt
T21	 0

where F,

= AY: + F, AT + 
GrQrGr '	 (0) - E IXOxo J

-	
1	

(5.14)

and x is defined by

t
X (t) f(t,6)GdWddcy

 0:(5.15)

where ^D(t,a) satisfies r,

(D(t,a)	 = A q)(t,a) ^(^,6) = I

and z

A _
A3 + B3 GTl Mi B3 GT 2

(5.16)

[a21+ B2GT1]Mi a22
+ B2GT2

where T1 and T 2 are defined by (4.102) and (4.103).

r_1	
z	 - r

11 [	 12	 21,

T1

T21 ra

-1

- r 11	 r 12	 T22 (TAKE T 22	 I without loss of
T2

T22 generality) }

[r1T' r12^	
M3

=^3

'

a
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STEP VIIIb:	 Solve for estimator gains

determine T21	 from

T21	 KT G2 R 1 	(5.17)

where
i

0	 -K FT F K -1- g ^^GTR 1G - QTQ	 (5.18)
T2 2T T2 ^ 2KT

	

3	 -i
F2 	rOgk Iq^ 

Ana Pn3d 
-r11Q P12Rq

L	 (5.19)

0dn3 D 
	 I 

23	 -1G2 A - M	 Ana P n 
3 
d	 -r11R r12Qq

(5.20)

	

0dn3 D 	
Iq

r11Q r12Qgl A M 
2 
Qn2	 n2 A n3 + d

JA n - k
q — 2

R^ , Q any positive definite matrices.

STEP IX:	 Specify d	 from

T T
V2	

T J y
2 Q y2 dt < V°	 (iterate for d=0,1,2,... )

0

Several facts are summarized here concerning the options for

estimator gain selection, 
T21. 

(See further discussion in sections

4.5, 4.6).

The subscripts on the matrices [ • ] ab denote dimensions a x b, unless

a = b, in which case only one subscript is used.
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^w

Consider the design of the estimator for model 
'd2 

(the order, n,

of the estimator is then n2- Q < n< n2). It is helpful to keep in

mind that the Luenberger observer has no natural "band limiting"

feature which is imposed upon gain selection, while the Kalman filter

has no natural lower limit on the gains.

1. If the order of the estimator is n 2 , then it is possible to

select the gains so that the estimator becomes the steady state Kalman

filter. (Implying that the model error e2 1 in (4.132) and the measure-

ment residual error z2 (see (4.29)) may both be considered to be white

noise even though they are neglected altogether in the deterministic

point of view which leads to the same estimator).

2. If the order of the estimator is n 2- R, as outlined in section

4.5, *_hen the gains may be selected in STEP VIIIb so that the esti-

mator still becomes, a limiting form of the Kalman filter corresponding

to the case of vanishing measurement noise. (In this way the selection

of T21 is influenced by white noise errors e21 but cannot be influenced

by the measurement residual errors, z2).

3. If the order of the estimator is n2- k, as in section 4.5,

and the estimator gains are selected as in STEPS VIIIa, IXa, then the

presence of random errors in e21 and the presence of random errors in

z both influence the selection of gains, in addition to any determin-

istic effects presumed present.

The following section illustrates these steps of the design pro-

cedure for a practical problem.
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6.0 An bFFMEE Control Design for the Large Space Telescope (LST).

The control problem to be considered is that of the Large Space

Telescope (LST) sponsored by the National Aeronautics and Space

Administration (NASA).. The LST is an unmanned 3 meter optical tele-

scope designed for extra-galactic research, and diffraction-limited

performance of the optical system must be guaranteed to assure feasi-

bility of the mission. From the Rayleigh criteria two stars can be

discerned if they are 0 = 1.22 
D 

radians apart, where a is the average

wavelength of the visible spectrum of the stars and D is the diameter

of the telescope. The average wavelength of the visible region to be

used for LST design purposes is a = 628.3 nanometers and the diffrac-

tion limit of a 3 meter telescope is therefore

628.3 x 10
-4
	5 sec0 = 1.22	

3	
2.06 x 10 

rad	
z .05 sec

wherees c denotes seconds of arc. The control system for pointing the
3

telescope must allow dynamic errors much smaller than this diffraction

limit of .05 set. Considering the body-pointing control system

requirement to be .005es c, the problem then is to control this rather

flexible cylinder which measures 4m x 20m in such a way that the

optical axis is not perturbed more than .005 c, rms during an

exposure interval of up to six hours.

The disturbance environment depicted in Figure 6-1 includes aero-

dynamic, m; netic, and gravity gradient torques, spurious torques from

sensor noise, and vibrational "disturbances" from the flexible struc-

ture and from imperfect rotors in the particular choice of momentum

x
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T
,

exchange controllers called reaction wheels. Modal analyses of the

flexible LST structure have identified structural modes from .1 hz

upward. There are a number of problems in strategy that immediately

beset the control designer: He must develop a model of the physical

system including "significant" dynamical effects. He must design the

controller to actively control "significant" modes of the total

dynamical system (including internal and external disturbing

effects). The interdependence of the modeling problem and control

problem is evident since one cannot usually know what dynamical modes

of the system must be actively controlled (are "significant") prior to

establishing a model. The model which is appropriate depends, in

turn, on what disturbing effects must be controlled. In practice

several iterations of models and control "laws are usually tried. One

may avoid such iteration by working with the most general, or "con-

servative," model first (which is credible at "all" frequencies). In

practice, however, such a model might be extremely costly (in time aild

resources), if not impossible, to construct. Moreover, if it were

used for control design, a complex controller may result which also

feeds back insignificant variables. Thus, the economic motivation of

the Minimal Controller Problem of section 2.0 comes to the fore:

Design the least complex tontroller that will satisfy the performance

requirements. From this motivation we reduce our large model dl of

LST, derived in Appendix C, to a very simple model d3. We augment to

43 an "error system' s to partially compensate for the modeling errors
	 a

associated with this drastically reduced model.
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The "line of sight," or the "optical axis" of the telescope can

be displaced due to the effects of thermally induced displacements

of the solar panels. This "disturbance" turns out to be significant

and the effects are approximated in the derivation of 
14
1 i n Appendix

C. The approximations of gravity gradient, magnetic, and aerodynamic

disturbances are based upon a rigid spacecraft and are also summarized

in Appendix C.

6.1 Discussion of The Model 91

In Appendix C a linearized model for LST is developed considering

the effects of spacecraft flexibility, thermally induced appendage

motions, gravity gradient, and aerodynamics,. The model given by (C-77)

is x1 Al x1 + B1 u + E1 w1

y1 = C1 x1	 (6.1)

z 1 M1 x1

d
where A1 , B1 , El , C1 , M1 , x1 , y1 , z1 , u°, w1 are specified by

23 11

e

2381

23 11
	W 	 02

	

23w,	
8	

23811

3

X 	 23w'	 1	 0	 z1 A	
23w'11

Y _ 3	 _
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u° A h'	 w1_	
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F,

i[	 1
1	 i

where

T = T0

o(t)

A (e)

TI

and



u°	 T	 h	 011

1
e

W

W'
B1 =	 0	 E1 = 0	 0	 w^

	

^4	
0

h^

-p 3 14	
0	

p2

J

where empty partitions in matrices imply 2,ero entries. See Appendix C

for parameter definitions. Here, x 1 is a (24 + 2v)-vector where V is

the number of flexible appendage modes retained in the model Ae 1

(V= dim n). Of the 24 other variables, 4 are associated with rate

gyros, 2 with position sensors, 2 with rate signal filtering, 2 with 7
a

position signal filtering, 8 with reaction wheel control and 6 with

the rigid body dynamics. Figure C-3 illustrates in block diagram

`	 form the general model. Now according to the STEPS outlined in

section 5.2 we begin our OFFMEE design tasks.

6.2 Development of the model A^ 3 (STEP I)

The pursuit of formal procedures for reducing the model from AJl

to Ad 3 , shown as Step I in Figure 4-2 is reserved for furtherresearch.

One attractive method for accomplishing such a reduction, given the

desired order of 14 3 , is presented in Reference 11 but the method

requires manipulations of 	 which are costly owing to its large
:j

dimension. We will proceed to select a simple model for J3 directly
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which is based upon ad hoc procedures in order to illustrate the

procedures of sections 4.0 and 5.0.

It was argued in Appendix C that the cross product, terms, (S h)~0,

between controller momentum and vehicle rate were small, as were the

non-secular terms from external disturbances, G(t)0. Equation (C-74)

then becomes

0	 0	 0	
^-1 0 0	

6	 ^-1 L3
= J	 + J	 + J	 T

rj	 0 -2^a ri	
0 -62 

n	
0	 c

	

+ J-1 I3	0	 To
(6.2)

	

0	 ID

where the additional definition has been substituted, rSK ni A Tc,

where T
c 

is taken.as an approximation of the control torque. Noting

the definition of J-1 in (C-75) this model becomes

6- 0 F-1 r$ 2 6 	_ 8	 O F-1 r
^
D a2	 e

rj	 0 -[I + $TrTF lr^D]2^a	 0 -[I + DTrTF-lr^D]cs 2 (TI

	

F-1
	

F-1
	

-F-1D"T !	 To (6.3)

+ _0TrTF-1 T  + -0TrTF-1 	
T T -1	 T f

	

[ I+^ r F r^]^ ^	 o

where F-1 A [J* - rMTrT ]	 (The r of this section should not be

confused with r of earlier sections. See Appendix C for definitions).

Now if we choose to truncate all appendage modes from the model, we

must write, in the spirit of section 4.0,

Generally we might choose to keep some appendage modes within the
design model and truncate others, depending among other things upon
the uncertainty in the modal data.

i
Y ,

5	 ;.

^s

a



E

8 = F-1 Tc + e(t)	 (6.4)

where the model error vector e31 evolves from the error system

(regarding (6,2) as model ,dl for our present purposes),

e = F 1 P(D(25a r+ 62 n) + F-1 (T
0
- PoT	0)

r

'	
[I+0TPTF-lrO][2^d n + a n] - 0TPTF-1Tc

TPTF
-1 

T + [I+ TPTF-1PO]OT f̂ fZ	 (6.5)
0

If we further simplify the model to a single axis problem (principal

coordinates assumed) about axis b 2 , then

e2	
{F

-1 Tc}2 + e2
	 (6.6)

i
error e2 = {F-1PO(2^a n + 62 n)} 2+ {F

-1
(To= POOT W A)}2

system 11 = - OTPTF-1 (To+ T c	 ^) + [I + 0TPTF-1rO]OT
	A	 (6.7)

An alternate approach of approximating the truncated effects is

to identify a small parameter which multiplies the coupling terms on

the left band side of Equation (C-73) and apply singular perturbation

theory in the solution of the control problem. The methods of 8 may

be applied in this event as discussed in section 3.3. Such an approach,

however, seeks to implement a control law which feeds back all the

states of the higher dimension of (C-73) and is an approximate solution

to a higher order problem. We wish instead to formulate a version of

the problem that is less exact (than (C-73) represents) and then solve

this approximate problem exactly. Toward this end we identify some

a

For convenience; we drop the 31 superscript on the error vector.
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l'

j'

j

i

properties of truncated effects and implement an approximation which

evolves from an "error system" which is of smaller order than the

truncated modes, n in (C-73).

Returning to our immediate task of constructing a simplified

model, 43 , we noted in the discussion of section 4.0 that the

decision of how many modes to assign to the physical variables in .4
3

and how many modes to assume in the error system was not a straight-

forward decision to make even for fixed dimension of the (n3+d)-vector.

(n3 is the order of id  and d is the order of the error system).

There is, for instance, the decision of whether to incorporate a given

appendage mode into the model j3 and hence into the vector x 3 , or

whether to delete (truncate) the mode from 43 (x3) and incorporate

its effect in the "synthetic modes" associated with y. The first

difference to appreciate is that certain parameter uncertainties may

be "forgiven" if the mode is accommodated within the synthetic modes

of the error system as discussed in section 4.0. If all the param-

eters associated with the mode in question are quite well known and

if the mode is known to have a significant effect upon the output

then it may be desirable to leave the mode in a3• Usually in space-

craft structures the modal data is somewhat in question. The fre-

quencies of the assumed modes are often uncertain because of the

approximations made in characterizing the model. For example, the

frequencies of the forced appendage are not the same as those obtained

by solving the eigenvalue problem for the homogeneous appendage equa-

tion as is often done. The structural damping of spacecraft, is

another parameter which is difficult to predict reliably. A typical

i

z

10
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pattern is to select a number for,, the modal damping (after

transformation to distributed coordinates and truncation is accom-

plished), in (6.2), and if possible perform some ground vibration

tests. In such tests it is difficult and sometimes impossible to

provide the boundary conditions indicative of orbital (free) flight,

and the ground vibration data is suspect. In LST the task is further

complicated by the unprecedented pointing requirements, and test data

for damping with such small displacements will either be impractical

to obtain or unreliable (or both). For these various reasons our

first choice of an LST model 4 3 excludes all flexible modes so that

they can be approximated by the synthetic modes of the error system.

Also we wish to begin by considering the least complex controller

(hence smallest model). Thus, the model 
'd3 

is taken to be, from

(6.6) neglecting e,

x3 = A3 x3 + B3 u°

,4 y3 c3 x3	 (6.8)

Z3 = M3 x3

where the pitch axis b2 is selected for study in this planar problem,

and where

x3	
e

^ 2	 u°=T
62	 c2

A3 = [.011	B3 _
00

	(0 )

1 0
C3 -M3-	 r-	

LO l
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6.3	 Solution of The Error Free Problem (STEP II)

I
j

The solution of the linear regulator problem for (6.8) follows.

CO

fo
min	 (y3 Q y3 + u° 

T

R u0)dt
0 

u

subject to

 A3 =
x3 = A3	 + B

3
x3	

u  1

100 0]
B3 = (0)

' 1
3	 3	 3y	 = c	 x
3	 3	 3	 c 3 = I2 (6.9) -

z	
M	 x

x3 (o)	 xo

yields (since (A3 , c3) is observable, (A3 ,B3) is controllable)

fi
T

° _ - R	 B3
u 
	 K (6.10)

.;

where K obtains from )

0 = - K A3- A3 K + K B 3R-1B3K - c3	Q C3
T	 T;

(6,11) ".

The resulting K is

C

q l (q^^^—ql )	 Q
1

K = — (6.12)
q ,	 Vq2+ 2	 ql

where Q and R have been selected, in form,

R = 1 (6.13)

q	 0
Q

01	
q

(6.14)

2
M

Noting that the closed loop system for (6.9), (6.10) is a
a

x3 	 3	 3A 

j

x

where
j

I

a
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Ir	

w

Y

0

	

3	 (6.15)

	

- ql	 - q2 + 2 q1 	 I

S

We can relate the parameters ql , q2 to the classical parameters for a

second order system, C, wn , by writing A3 in the form
r

^	 0	 1

A3 - - w2	 - 2 w	
(6.16)

	

n	 n	 p

and equating (6.15) to (6.16). The result is

4
f	 ql - wn

	

(6.17)	 k
q2 = 2wn (2^	 1)

Thus, if we wish, in this case, to choose the matrix Q on the basis

of the classical parameters ^ and wn , we may do so since, from (6.14)
;z

(6.17)

W4	 0	 1
n

Q	 2	 2	 (6.18)	
a0 2wn(2C - 1)J

Note further that the requirement for Q to be positive definite

implies, from (6.18),

> .707	 (6.19)

for optimal solutions to (6.9). It is also helpful to rewrite (6.12)

	

using (6.17)	 s

I	 2^ wn	 W2

K	 (6.20)

W 
2

n	
2^ wn

Finally, the last required calculation of STEP II is

a

f	 -138	
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T
Gl - R 1 B3 K = (- wn -2^ wn)	 (6.21)

Rather than specify in (6.21) the free parameters C,wn (and

thereby place the poles of 4e ) immediately we will (since the model

is so simple) carry them in parametric form for a while.

In section 4.0 it was mentioned that deterministic designs by

optimization have no natural band limiting quality. It is interesting

to note in this simple example that the optimization solution (6.15)

allows pole placement anywhere in the region R3 of the complex plane

.707 = ^

Quite obviously, however, the fidelity of the rigid body model J

is questionable beyond the spectrum of truncated modes. That is,

L from Appendix C, the eigenvalue magnitude of the truncated rate

gyro modes, (from (C-31));

I

t



arg = cur = 2Tr 16

and the eigenvalue magnitude of the neglected position sensor mode

(from (C-33)),

ags I = 2Tr

and the eigenvalue of the truncated A/D prefilter mode (from (C-35)),

1p (	 27r 20

and the eigenvalue of the first appendage mode (estimated)
r

xFRUSA I = 2Tr (.1)

all establish bounds on the spectrum of credibility, C(gd 	 of the

r	 model^3; see Figure 6-2a.

I	 The Kalman filter design for model ,d3 provides further insight
I

into the effects of modeling errors. We will indulge in a brief

digression now to see where the Kalman filter for the estimation of

x3 places the estimator poles relative to the above spectrum of

credibility for model .4 3 . Using the 
,J3 

parameters in (6.9) and the

Kalman filter equations of Figure 2-2, it can be shown that the steady
•

state (i.e.,	 = 0 in Figure 2-2) Kalman fitter,

K e.

^`, r	 '

I

x3=dR3+B3u°+K z°

d A [A3 - K M3]	 (a)

has the eigenvalues

ti

a= 
2 
tr d 1+ 1- d/ 2	 (b)

(tr d)

where
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BOUNDS IMPOSED BY
TRUNCATED MODES

BOUNDS IMPOSED FOR
SOLUTION TO OPTIMIZATION
PROBLEM > .707)

MODEL CREDIBILITY
SPECTRUM

C(193)

Im

C('d3)

^p = 21r20
Re

C(143) DOES NOT

INCLUDE ORIGIN

FRUSA

Jxqs 1	 21r

Xrg	 2 ,rr 16

Figure 6-2a. LST Model Credibility Spectrum, C(A 3)-
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3 1/2
1/4	 qrl (qrl- 3r 22) - 2r2

trd= r1)	 (r- gr)2r
2 ^1 2	 (c)

1/2
Idl Ddetd=-

r1

where

rl = variance of the position sensor noise

r2 = variance of the rate gyro noise

q	 variance of the disturbance torque noise

r1 0

R A 0 r2	 RAq

Note that the estimator poles leave the model credibility spectrum

C(A 3 ) as q -r 0 and again as a(qr) > X (see Figure 6-2a). Under

these conditions the Kalman filter might diverge, because it is making

predictions over time intervals (too long or too short) for which the

model is not reliable. To see this more clearly, consider that the

right boundary of C(,d ) corresponds to time constants l = T CO,
3	 AIa=O

Now since the filter relies absolutely upon ("believes") the model it

has built within, it places the estimator poles at the origin (corre-

sponding to q/r l) -} 0 in (c)). This action serves to disconnect the

measurements from the filter (that is K = 0 in Figure 2-2) since the

filter feels justified in making predictions over arbitrarily long

intervals, T	 Now when the estimator places its poles at (or too

Recall that these events unfold in time according to the differential
`	 equation for K in Figure 2-2, evolving finally to the steady state

values described above.
I

r

i
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near) the origin, (to the right of C(4 3)) it can diverge because of

js predictions over longer intervals than that for which the model is

reliable.	 When the estimator places its poles to the left of C(,d3),

the estimator may diverge again due to predictions over intervals

f inappropriate for the model (but in this event the intervals, T , are
s

too short, 1/X = Tr , a > a).	 In view of this problem we might

naturally ask the following questions.

1.	 Can this estimator be stabilized by better statistical data

for the noise?	 Not necessarily.	 Assume that q, rl , r 2 actually

represent the properties of the physical system. 	 It might still

happen that the pole placement specified by (a), (b), falls outside

C(.d 3 )	 (note that information concerning the boundaries of C(,d 3 ) is

not contained in (a)).

2.	 Can this estimator be stabilized by better plant parameters?

Not necessarily.	 Just as with the statistical parameters discussed

above, there may not exist an	 plant parameters (A3, M3 , B3) which

will stabilize the divergent Kalman filter (see Reference 22 for

further examples of this circumstance).

3.	 Can this estimator be stabilized by the adaptive Kalman filter?

Again, not necessarily. 	 As discussed in section 3.0 most adaptive

filtering schemes increase q in some way.	 Note that increasing q may

help if the estimator poles are initially near the origin. 	 However,

if q, rl, r2 correspond to poles near the left boundary of C(,d 3 ) the

adaptive Kalman filter will actually cause the state estimates to get

worse.
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The conclusion dram from this digression with the stochastic

problem solution for 
d3 

is that poor performance from a Kalman filter

does not imply a poor choice of parameters for either the noise covar-

9e
fiances or for the plant. The Kalman filter ignores the presence of

boundaries of C(Ad3). The adaptive Kalman filter shares a fault with

deterministic estimators of Luenberger that the peesence of a left

boundary of C(Ad 3) for this example, would be ignored. From this

example we may conclude also that the deterministic (Luenberger) esti-

mator does not have to be "faster" than the control system, as is

typically suggested. 
55,57 

This follows from the result which shows

the equivalence between the steady state Kalman estimator and the

Luenberger estimator. From the note that the Kalman filter poles

might fall to the left or to the right of the poles of the closed loop

control system depending upon the selection of ^,wn in (6.18) and the

(independent) parameter values q, r l , r 2 in (c).

6,4 The Characteristic Time of A$3 (STEP III)

From the derivation of characteristic time in (4.78),

T	 -1
T = Amax {[K B 3 R 1 B 3 K + C3 Q C3]	 K}	 (6.22)

= a	 {K}
max

where from (6.9), (6.13), (6.18), and (6.20), the eigenvalues of K are

^{K} 4^2 - 1	 ^ + 14

^

2̂ 11

2wn (3^ 2- 1)	 —2-1

The more likely case is that the means of the random variables w, v
are not zero (nor or they necessarily constant). The method to model
such correlated disturbances is to use the structure of theerror
system proposed in this study, specifically in section 5.0.
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Then

T A W = 4C2- 1	 C+
 j 4̂C=2max2Wn(3C21)	 - 1

Note that the eigenvalues of the closed loop ,j3 system

6.5 Characterization of The Error Vector e 31 (t) (STEP

In the absence of other information one may assume

for e31 (t), as one alternative discussed in section 4.0

however, to calculate directly that e 31 which is define_ ___

(6.7) (actually, e31 e2 in (6.6)). From the approximate data given

in Table 6-1, (6.7) yields

e31 (t) = .3e • 05t + .3e
-.006t cos .628t

+ .007 sin .00111 t - .08 sin .00222 t + .007 sin .00333t

+ .007 sin .00444t	 (6.24)

where we have used the calculation of the external disturbances, To,

in Newton meters,

T - - .034 sin .00222 t + .02 cos .00222 t
0

.003 sin .00111 t + .003 sin .00222 t +

.003 sin .00333 t + .003 sin .00444 t 	 (6.25)

which is an approximation of (C-69) in Appendix C.



Table 6-1

LST PARAMETERS ASSUMED FOR SOLAR PANEL MODE

r^p	15.8

= .01	 modal damping

= 27x(.1) rad/sec	 solar panel mode natural frequency

ml = 10.0 Kg	 modal mass

F = J2 = 46000 Kg m2	12 axis inertia

X = .05 1/sec	 thermal time constant

A = 1.0 m	 steady state thermal deflection
0

Q = .00111 rad/s	 orbital rate
0

m = 8,000 Kg	 vehicle mass

k

6.6 Selecting The Synthetic Modes (STEP V)

Here we choose the Chebyshev error system

AlPy	 A

Y	 Dy

where

0 0 0 0

1 0 0 0
D = T
	

(6.26)
0 4 0 0	 j

fi

3 0 6 0

dd

and P is defined next.
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6.7 The Chebyshev-Fourier Coefficients, P(T,d) (STEP VI)

From (5.12)

1

	P = J
	

g(a) e31 (cr) TT (a)da A	 (6.27)
1

	

-1 2	 1/2 0A=

	

7	
0	 Id-1

Using the Chebyshev quadrature formula in (A-17) for evaluating (6.27)

I	 we obtain, using the data in Table 6-1, and e 31 (t) given by (6.24),

0	 0	 0	 0
P =	 . .	 (6.28)

P1 P2 P3 P4	
2d

where

P1 = .645

P2 = -.155

P3 = .62

P4 = .05

where we have now selected for 	 w
n

in (6.17)

=1.0
(6.29)

w = .4
n

6.8 Feedback Gains for the Synthetic Variables of the Error System
(STEP VII)

Now we solve for L from (5.13).

T	 T
IK B3R-1B3 

A3 
L - LD KP	 (6.30)

1

The recursive solution to (6.30) given by the lemma of section 5.1
T

yields (define S 3 A B3R-1B 3 )

s	 ^'

3 a



L 	 = [KS 3- A3T

-1

K Pd 	(6.31)

Ld-1 KS3_ r^3TJd-1	 d[	 (Kp	 + L	 Dd(d-1)

Ld-2 = [KS3- A3Tl (KP d-2+ Ld-1D (d-1)(d-2)^L	 J

Ld-3 = [KS3-A3T^

.1

K;d-3+ Ld-2D
+LdDd2	 d3-	 -	 dd-3

Ld-4 = T]KS 3_ A3

_1

Ld llK̂Pd
-4+ 

L
d-3D 	 -D(d-3)(d-4 )+	 (d-1) (d-4))

Now since

-1 wn	
_1

R
[K3S3

T
A3 ] = (6.32)1

2
W
n fi

s

and

(4^2-1)wn	 0

T
_1

[K A3 K3 = (6.33)
2^ wn	1

then the columns of L become, noting the values of 1)i j in (5.11) ,

for d	 1, (denote L
i

by Ll)

L^ L1
0

= (6.34)

v

g
P 
1

For d = 2, (denote L by L2 )

4
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0

L2 =
	

(P2
(6.35)#a

2
0	 (-P)

L1+ 
	

T	
=	

T P
2 (6.36)

p1	0 pl

n
For d	 3, (denote L by L3)

03
L3-:

P3

L2 =	 0	 +	 -p3	 4 T
	

=	 L2 + P 3	 8
(6.37)

3	
P2	 0 0

2^0	 - wn-p2	 2
L1 -
	 +	 +

4	 2
2

3	 T
P3	

`T/z 0P1	1
-	 2
w
n

1 __	 1 _	 16	 2^ w
p	 n 

L
L3	 2	 3

T2^2
n	

1
Thus, as d is increased, the old values of L are retained and a

correction term is added.3

For the matrix G we must compute

_	 T	 T
G =	 - R 

1B3 
K3 , - R-1B3 L	 = [GI ,  G

 2]
(6.38)

Hence, from the data (6.1), (6.3) and R = 1,

' - R-1B3TK3 _ - rw2	
2	 w

n	 n)
(6.39) -:

T
- R 

1B3 
L = +21'  I'Z2' ... ,L 2d) (6.40)
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From (6.12), (6.14), (6.15),f(6.13) can be written, for d < 3,

G	 -W2 -2^ wn' - p21 + 6	
(6.41)

22 p23 
T Wn

-p 22 	 -p23' .
	 .

and	
_	

r'

G2	 pl + 262	p3	 - p2 , - p3	 ...	 (6.42)
T Wn

where p i = 0 for i > d.	
ti

6.9 Estimator Gain Determination (STEP VIII)

In order to gain the insight available from an analytical compu-

tation of the estimator gains, choose d = 2, a tractable case. Now 	
x

first we will follow a simplified version of STEPS VIIIa, IXa, listed

in section 5.2.

To actually get a meaningful. evaluation of the controller design

a more substantial "evaluation" model should be used than the model

used here. We will here simply show a choice of estimator gains

which makes (5.16) a stability matrix when j =3. The alternate
a

STEP VIIIb may also be selected for the task of stabilizing the

estimator (with perhaps even less effort).

	

1	 using the modelNow for the matrix A in (5. 16),,	 nggiven in.d3 g

(6.9)

	

A3+ B3(Gl+ G2 T21)	
B3 G2

A	 (6.43)

DT 21-T21 (A3+ B3G1)	 D

Define the parameters within T21
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0 t2

T21 -	 (6.44)
0 t4

where the zero entries result from the fact that the matrix P has a

zero first row (hence the eigenvalues of the estimator,
^F

X[d22] 	 X[D - T21P] , are independent of the first column of T21).

The closed loop system is now described by two physical variables

e2 , e2 , and two synthetic variables of the error system state esti-

mates yl, y2 . This system is written, from (4.115), using (6.42)-(6.44),

82	 0	 1	 0	 0	 g2

ee2 - -wn	 -2^wn p1t2— p2t4 -PI -p2	 2	 +

Y1	
wn t2	

2Cwn t2 	0	 0	 yl

Y2	 wn t4	 2Cwn t4+ T t2	
T

0 	 y2

0	 0	 0

_wn	
-2Cwn p1 t2- P2 t4e
	 e(t)

:,	 +	 (6.45)
wn t2	 2^wn t 2	 8	 0

wn t4	 2Cwn t4+ 
T 

t2 	0

where A, 6 represents, as did z3 in (4 .115), the measurement residual

errors (the difference between the actual measurements and those pre-

dicted by the model). As noted in prior discussions these residuals

may be characterized as noise in the estimator gain evaluation, if

desired. The transfer function between the position e2 (s) and the

model error, R(s), is, from (6.45),
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a2 (s)	 s2

e(s)	
s4+ a3s 3+ a2s 2+ als + ao

(6.46)

where

a3 A 2C W  + 2CeWe

a2 A con	 n	 e+ 2C w (2C we)

al Awn 	 e	
n

2^w+2CwWe

2 2
ocp A Wn We

and where we have substituted in (6.46) the more convenient parameters

We A T t2 p2

2^ we A t2 pl + t4 p2

Furthermore, the eigenvalues of the estimator, which are derived from

the matrix d22 (see (4.91)), may be expressed in terms of ^ e , we

a[d22 ]	 We - ^e +	 ^e - 1	 (6.48)

A Routh analysis of (6,46) indicates that for stability of (6.45)

there is a lower limit for the "speed" of the estimator, w
e 2 

relative

to the "speed" of the controlled error free system, wn,

	

W	 4^2-^1
r A we > 2 e	 - 1+ 1-	 2 

2
2	 (6.49)

	

n	 4^ 1	 4 ^ ^

and, consistent with our expectations, there is no upper limit for we,

(based upon these stability argui_ents).

Now the controller which must be implemented according to this

design is illustrated in Figure 6-2 in block diagram form and given
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}
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Figure 6-2. Orthogonal Filter for LST Using Chebyshev Polynomials.
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below in equation form, from (4.111),

Yl 	0	 0	 Y1	 wn t2 2^ w  t2	 e2

Y2	 2/-r0	 Y2	
wn	
t4 

2^ 
wn t4+ T t2 80 ( 2

(6.50)
^	 0
Y6

u 	 = (-P,,-P2 ^1 + C-wn, -2^w 	 t
2 
p1 

t4p2) 
2

2	 e2

The state estimator, (4.91) (and the lower part of (6.45)) and the

closed loop evaluation model, (6.45)(from (4.115)), are both stabilized

by the choices

= 1.0
^T=3.0

w
n	

.4

t2 = -4.6

t4	 -25.6

It is further noted from (6.46) that due to the s 2 term in the

numerator the vehicle pointing position will be insensitive to any

model errors, e(t), which are closely approximated (within time

constants of (6.46)) by a constant or a ramp in time. Now, decreasing

(wn we) will give better noise rejection, but for the larger time

constants associated with smaller w  w e, fewer model errors can be

approximated by a constant and a ramp. Consideration of sensor noise

data, when available for substitution into (6.45) (for ^5, ^`) will

permit perhaps better choices for C. wn , t2 , t4 from the multi-model

procedure described above. The competition between the "low frequr_ucy"

and the "high frequency" effects of modeling errors indicates that a

"best" set of design parameters exists. Generally, however, neither

I
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the Kalman filter nor the Luenberger observer designs provide these

best parameters, owing to their commitment to a fixed model whose

resulting controller performance is eventually limited by the errors

of the model (such as truncated modes).

y
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7.0 Concluding Remarks

This research has been concerned with that deficiency of modern

control theory which causes it to fail to recognize limits to the

fidelity',of the mathematical model. A modeling plan is proposed for

model construction which allows a parameter of the control problem 	 r

(called the characteristic time, T) to influence the modeling problem.

This is accomplished through the introduction of an error system which

is augmented to the model of the system and which is designed to

approximate the effects of model errors (external disturbances, trun-

cated modes and parameter errors) only over the interval, T. The error

system chosen belongs to a class called the Sturm Liouville equations

which are known to generate orthogonal functions. The benefit such

an error system provides to the closed loop linear regulator controller

(using linear state estimation for feedback of the states of the model

and the states of the error system) is that when measurements from the 	 a
a

physical system differ from those predicted by the model (built within

the state estimator) the difference is automatically fitted with a set

of orthogonal functions (for a least squares fit over the interval T)

and the corrected signal is used for control. The estimator for the

error system is therefore called an "orthogonal filter" and is used

for control by model error estimation.

This report lends further support to prior claims 
1-6 

that

increasing the order of the model can provide better systems perform-

ance. When the "model error vector" described above is considered to

result only from external disturbances, then these procedures can be

used to design "disturbance accommodating controllers," discussed in
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Reference 4 when the "model error vector" is considered simply as white

noise the Kalman filter can be obtained. The method has a computa-

tional requirement similar to that of the singular perturbation

approach, 8 in that a kiccati equation need be solved only in the

smaller dimension of the "error free" !system model (corresponding to
f	

,_

the "truncated" model of Reference 8).

An example illustrates the application .!f orthogonal filters in

the special case when the orthogonal approximating functions are

SQ%z,ected to be Chebyshev polynomials. The Chebyshev error system

that results i5 then applied to the control of the Large Space Tele-

scope (LST) which the National Aeronautics and Space Administration

(NASA) plans to use for extragalactic research in the 1980's.

i
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9.0 Future Research

The following areas seem fruitful for further research.

1. Model Learning Observers: The model error vector, e31(t),

was defined to be that vector which makes the output of the smaller

model equal to the output of a larger, more credible model. The

approximations used for e31 (t), which were called e31 (t), do not in
fact render the two outputs exactly equal. The measurement residual

which results could be further approximated by considering the model

error vector to influence the measurements directly through some matrix

M
Y

Z2 = M3 x3 +MY Y , (M Y^' z2)

which matrix, Y, could be adaptively regulated to decrease the meas-
urement residual, z0 (t) - z 2 (t). Such a procedure, if found, would
make the estimator "model learning" in the sense that better knowledge

would be continuously obtained about how the model error vector

actually influences the measurements.

2. In the Tri-Model design approach no simple procedure has been

established for the solution of the estimator gains, T 21 , from

min J(T21) = min fT y1T 
Q Y  

dt
T	 0
21

when the output y  evolves from a different model, 91 , than that used

for the estimator design, -C'2 . When T -} - difficulties can arise in

evaluating J(T21) (see above) when the model error system is unstable.

(Recall according to an evaluation of the closed loop system with

V
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Model d2 , the eigenvalues are equal to those of the error system in

addition to those of the optimally controlled error free system).

From a practical engineering point of view such solutions might well

exist, and further work is needed to provide practical approximations

f

00 T
for T21 even though J*,;T

21
	min 	 y  Qy1 dt might not exist

mathematically.	 T21 O

3. Further reductions in the order of the controller can some-

times be realized by estimating the linear functional Gx 2 instead of

first estimating x2 and then multiplying by G. Possible reductions in

controller order should be investigated for the special matrix struc-

ture of the orthogonal filters.

4. Other practical problems should be solved using Chebyshev

and Fourier error systems to determine some guidelines to indicate

which o;:thogonal functions one should select. The limitations of the

error system approach should be investigated. It seems likely that

stability considerations will eventually limit the order of the error

system (and equivalently the degree of the orthogonal functions) which

can be augmented to the system model.

i
f
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APPENDIX A	 LEAST SQUARES FITTING OF DATA FOR MODEL ERROR

APPROXIMATION WITH JACOBI POLYNOMIALS

In this appendix we assume that the model error vector, e(t), is

a given function of time and we wish to approximate e(t) by e(t) where

e = Pf	 fT =	 (fl , .... fd)

and f.(t) are Jacobi polynomials. 	 This class of polynomials is one of
1

interest because as special cases -, ,̂ithin this class certain other

desirable polynomials are obtained, such as the Fourier series, the

Legendre and Chebyshev polynomials. 	 Before specializing to these

cases, however, we will first develop a model error system

e=P'y
(A.1)

Y=DY
]
3

which is capable of generating the more general Jacobi polynomials. 3

It will be convenient in this Appendix to normalize time to vary over

the interval [-1, 1] instead of the interval [0, T].	 Such a change of

variable is accomplished by the definition

^A2T-1	 tE[o, 'r]
(A.2) _z

The matrix P which minimizes

1
J(P) _	 (e(a) - e(6)) T q(CT)	 (e(a) - e (a))da	 (A.3) 1

-1

subject to

e=Pf

e(a), f (6) g(cy)	 specified	 cc [-1,1]

is given by

FtEPRODUCIBILITY
 r1
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P _	 1 &(o)e(c)fT1 (a)da f 1 g(cT)f(6)fT(C)d6
-1

(A.4)1 3 -1
One way to prove (A.4) is as follows.	 Assume P is of maximal rank.

Then we require

1
a J P ._ r	 (e - Pf)Tg - 2 aPf	

da'	 0 (A.5)
api	 J _1 api

where

P
•

,
i

pi	 ith row of P

•
n

p

Now

T
apf ap	 f 0

api api
i

i 0

fT *_ith row (A.6)

of 0
api

0 i

since

T

api f	 = f 	 8
ij

api

.	 Then from (Ai5), 	 (A.6),

3
9

3

f^

S
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'	 f 1 eT 
g OT 

dcs	 1 (Pf)T ^T g do
J 	 J_1

0	 0

l T	 0	 1	 T 0

	

e g	 dcr	 (Pf)	 g da
1	 0	 1	 0

f 	 f 

or in compact form

(l a f T g do' = f 1 P ffTg dcs
J_1	J_1

For a constant P

+1	 1	 -1

P = J	 efTg d6 J f fTg da
-1	 -I	 I•

Theorem A-2

If fi (a) Pi	 (a) are Jacobi polynomials then

g (G) _ (1 - a) a (1 + a) S

and

°;	 1

f f fT g da Il	 (A.7)
J 1

where

2a+s+1	
r(i+a+l) r(i+s+l)

	

A11 - (2i + a + S + 1)i! 	 r(i+a+s+l)	
(i=o,1,...,a-1)

Aij _ 0 ,	 ij

r( • ) is the gamma function.
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Proof

The Jacobi polynomials f i(a) Pi(a )(a) are orthogonal on the

interval a C[-1,1] with respect to the weight g(a) _ (1-a)a(l+a)^.

This implies

(' 1

J
f i (a) f i (a) s (a) cks = 0	 1# j

1

and from Reference 4, p. 774

1 2	 2a+^+1	
r(i+a+l) r(i+S+l)

J fi(a)g(a)da = (21+a+8+l)i!	 r(i+a+s+l)	 •
l

The Jacobi polynomials may be expressed by the Rodriques formula 63

p. 58,

P1(a,a)(a) _ (il) (1-a) -a (l+a)-8 di	 (1-a)0+1(108+i

2 i!	 da

i

Theorem A-3

The matrix P which minimizes (A.3) subject to

e=Pf

where f.3- ((Y) = Pl (a, ^ ) (a) are Jacobi polynomials, is given approxi-

mately by

1	 n

PiJ 
11 g(a) ei (a) f3 (6)da F ak ei (ak) f^ (Qk)	 (A.8)

where a  is defined by

Pn(a.8) 0 )	 0

and the coefficients
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2a+(+fi r(n+a+l) P(n+^+l)
(A.9)

n! r(n+a+s+l)(1-o'k)Ld^ Pna,$)(Qk)12

The positive numbers a  are called the Christoffel numbers. For a

proof of the Gauss-Jacobi quadrature formula, (A.8), see Reference 64,

p. 112.

Now that P and f are defined, the "open loop" model of the error

system, as discussed in section 4.2.1, is determined by

e = Pf	 (A.10)

However, to generate a from the "closed loop" model of the error

system (see section 4.1.2) we must define a set of differential

equations the orthogonal functions f i (a) are known to obey rather

than accept the "open loop" description of a as given by (A.10).

The Jacobi polynomials are eigenfunctions of the Sturm-•Liouville

equation (taken from p. 311 of Reference 64, Equation (7.8.4)),

(1-cs2 ) p"(G) [R-a-(a+s+ 2)6] pi(a) + i(i+a+R+l) p i (a) = 0 (A.11)

However, (A.11) is a time varying system and if placed in the first

order from

e = [P,U]Y(G)	 (A.12)
p (CY)

Y'	 D (a) y (a )	 y A

then D is a 2d x 2d time varying matrix which complicates our intended

procedure for real time state estimation of y.
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Chebyshev Error Systems

As a special case of the Jacobi polynomials, Pi(a,O (c), those.

obtained when a = S = - 1/2 are called Chebyshev polynomials (multi-

plied by a constant, ci).

Theorem A.4

	

The Chebyshev polynomials, f i (a) - Ti (CT)	
c 

Pi (-1/2, - 1/2)(Q)
i

yield for the g(a) in (A.3), (A.4)

g(6) _ (1 - 62 ) -1/2	 (A.13)

and

11
ffTgda =A

-1

2	 0	 l/2	 0

Il

	

1 	 2	
(A.14)= 2 

0 Id-1	 7r	 0 Id-1

where

C	
r(i + 1/2)	

(A.15)
i — 1 ! /--

	The proof follows from substitution of a S	 1/2 in Theorem A.2

and from the normalization defined for the Chebyshev polynomials,

resulting in the C  in (A.15), from (22.5.31) of Reference 65.

Theorem A.5 (from Chebyshev quadrature formula, 65 , Equation (25.4.38))

The matrix P which minimizes (A.3) subject to

e=Pf

where

fi(Q) _' Ti(6)

are Chebyshev polynomials, is given approximately by
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E

1 n

n^J P
ik 

= fl
g(a)ei (o') f (a)da =	

n 1;e
i (Gk)f

i
(ak)	 (A.16)

k=1

where a 	
are points when

Qk = cos	 22-1 Tr k=1,2,...,n	 (A.17)

Equation (A.16) is the Chebyshev quadruture integration formula,

(25.4.38) in Reference 65, but this result can also be obtained

directly from (A.8) and (A.9), using a = R = - 1/2, noting (A.15) and

c 	
T i (c7) = pi(-1/2,-1/2)(a). 	 The matrix a,ements A , in (A.16) are

J :J

defined by (A.14).

The Sturm-Louville equations whose eigenfunctions are Chebyshev

polynomials are given by (A.11) with a = S = - 1/2

(1-Q2 )P(Q)- a P1(o) + i 2 pi (Q) = 0,	 i=0,1,...,d	 (A.18)

and the first order forms corresponding to (A.12) are

Pi (o)	 12	 p i (CY) +	 12 pi-l(Cf)
i=0,1,2,...,d	 (A.19)

1-6	 1-0

The model error system using (A.19) is written

e = P'r
Y' _ (A.20)„	 dcsy= Dy

where P is given by (A.16) and

0	 0	 0	 0 0

1	 -a 	 0	 0 0

D	 0	 2	 -2r.7	 0 0	 12	
(A.21)

1-^
0	 0	 3	 -36 0

0	 0	 0	 4_	 -4cr

01
L • dxd
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Now (A.21) has a time invariant representation which can be obtained

by

Theorem A.6

A time invariant model error system which can generate the

Chebyshev polynomial least squares fit to the data e (cr) is given by
f

e = P'Y
(A.22a)

Y ' =

where P and 
a  

are given by (A.16) and (A.17), respectively and

0	 0	 0	 0	 0	 0	 0

1	 0	 0	 0	 0	 0	 0

0	 4	 0	 0	 0	 0	 0

3	 0	 6	 0	 0	 0	 0

D	 0	 8	 0	 8	 0	 0	 0	 (A.22b)

5	 0 10	 0 10	 0	 0

0 12	 0 12	 0 12	 0

dxd

Proof

The only thing new to prove is that the dxd matrix D can be

represented in the time invariant form of (A.22b) instead of the time

varying form of (A.21). Observe that the Chebyshev polynomials can

be written in the form

i
T (CF) _ F, C ak	(A.23)i	 k=0 k

and the inverse relationships

f

s

1	
r	 ^.	 ,:



I III

i = -1 1
b 
i E d 

k 
T 
k (G)	 (A. 24)

k=J

can be taken from Table A-1. Differentiating (A.23) with res pect to a

and then making the substitution (A.24) into (A.23) gives in a straight-

forward manner

T' = DT	 TT A (T -T ...,T	 T' A dT
0 1	 d-1	 da

where D is given by (A.22b)

Note that when normalized time, a, is replaced by t we have from

(A.2) y = (2/T)y' and the matrix corresponding to 	 Dy is obtained by

multiplying (A.22b) by 2/T.

Now we proceed to see how any solution of (A.22a) relates to the

Chebyshev polynomials, f 
i (a) = T i(G).

Theorem A.7

Any solution of (A.22a) satisfies

e = P(y(o))T	 T  A(To (a), Tl (a), ... ,T
Td-1(a)) (A.25)

where the T i (a)  are Chebyshev polynomials of degree i and the coeffi-

cients of T(a) are functions of the initial conditions of (A.22a),

specifically,

Y	 Q4

P Y(0) A P	 Y 
T 

(0)	 Q2	 (A.26)

T
_Y	 (0) Qd A

_j 11



Table A-1 (from Reference 5, p. 795)

COEFFICIENTS OF THE CHEBYSHEV POLYNOMIALS AND THEIR INVERSE

N
V
Q1

^0 Q1 ^2 Q3 64
or

bi 1 1 2 4 8 16 32

TO 1	 1 1 3 10

T1 1	 1 3 10

T2 -1 2	 1 4 15

T3 -3 4	 1 5

T4 -1 -8 8	 1 6

T5 5 -20 16	 1

T6 -1 -18 -48 32	 1

Example: T 6 (a) = 32 a6 - 48 a4 + 18 a2 - 1

Q6	 32 10 To + 15 T 2 + 6 T4 + T6



1 0 0 0 0Ql -	
_

0 0 0 0 0

0 0 0 0 0

.• dxd

1 1
Q2	 1 0 0

/ 0 0
dxd

E

341

Q = 440 0
3

100

0 dxd

^13 18 6 1 3

18 24 6 0
4

Q4	 0
6 6 0 0

++	 1	 0 0 0

	

0	
0f	 dxd	 y

Proof

The state transition matrix for A in (A.22b) may be computed

exactly from the finite series

„3	 ^d-1
^D(6,Cr = I + D6 + D2 ^2 + D3 6 ^ + --- D

d-1 6	
(A.27)o	 d	 2	 3.	 (d-l)!

^	 csoQ—Q
0

Then, from (A.22b), (A. 27) becomes
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1	 0	 0	 0 0

a	 1	 0	 0 0

(CT,Q)	 2a	 W	 1	 0 0

3a + 4 03	102	 Q	 1 0

102 + Sa4 86 + 10 2462 8a 1

By substituting a a + 1 (taking Qo = -1) and using (A

A-1, TQ, -1) can be written, after some labor;

T	 0	 0
0

T +T 1 	 To	 0

3To 4T1+ 2	 A UT1 	To

I(a,-1)= 13To 18T 1AT2+T3 	18To 24T1+6T2 	A 61

59To 88T1+36T2+8T3+T4 88To 128T1+48T2+8T 3 36To 4

or,

T
1

T

TKA)	
02

^Ta



r

Ga'

1	 0 To

^l -
QlT 0	 0	

Td-1

1	 1 To

$2 Q2T
1	 0 0

0 0
T
d-1

3	 4	 1 T0

^3 - 43T A
4	 4	 0 0 

1	 0	 0
Td-1

0 0

13	 18	 6	 1 I

4^	 =QT=
4

18	 24	 6	 0 0 To
6	 6	 0	 0

)

1	 0	 0	 0

IT
0	 0

59	 88	 36	 8	 1

88 128	 48	 8	 0 T

^5 - Q5 	 -
36	 48	 12	 0	 0 °

8	 8	 0	 0	 0
1	 0	 0 0	 0[ Td-1

0 0

Now since

^1 Y(4)	 YT(0) ^1

Y(Q) =	 D(cr,--l)	 Y(0) (A. 29)

^d Y
(0)	

YT(0) •^d

it follows from e Py, (A.29) and (A.28) that

e"(o-) = P(Y(0))T

where

a
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YT (0) Ql
P	 P

YT(0) Qd

On the basis of Theorem A.7 the closed loop "synthetic mode"
r

description of the error system (discussed in section	 and

described by (A.22a), is seen to have certain advantages over open

loop descriptions (a priori selection of e(6) as a prescribed function

of a).	 Specifically when on-line state estimation of Y(0) is accom-

plished (in response to real measurements) then (A.25) shows that the

model error vector, e(Q), is a least squares fit to the actual error

vector e (6) using Chebyshev polynomials whose coefficients are appro-

priately and automatically selected by the current state estimates

for Y(a) .

Fourier Error Systems

Let the Chebyshev polynomials be written

Tn (a) _ cos(n cos
-1 

a)	 6 E[-1,l]	 (A.30)

and make the change of variable

COS 0 = 6	 8 E [7T.0]

then,

Fn(0)	 Tn (a) = cos n 8	 (A.31)

Furthermore make the change ofvariable

8 = wt +	 t E [O,T]	 (A.32)

For consistant limits

lao ' LLI".`Y OF	
t

^'
^	

_Tt^RaDUCL4
r gjCiNAL WAGE IS PQf ,

i ,



Cos h	 - 1 => kTr	 k = + 1,3,5 ---

Cos (WT + =41 T = kTr
w

Then

Fn (t) = cos (n(wt + Tr))

and Appendix A may be used substituting for a

a = cos(wt + Tr) _ - COs wt	 CC[ -1,l]
(A.33)

k
6 = wt + Tr t E [0, kTr/w]

where k is any odd integer. Now to compute the D matrix corresponding

to the choice Fn (wt + Tr) we note dt = w sin wt and

Y'dtda

Then from (A.33)

y = d6dt DY = w sin wt DY	 (A.34)

Thus, the correct D matrix corresponding to Fourier series in the

i	 time varying choice

	

0 0 
0 0
	 -^

1 0 0 0

D(t)	 w sin wt 0 4 0 0 (A.35)
3 0 6 0

dd

A time invariant characterization for the Fourier error system is

F	 possible by increasing the order of the error system to 2d.
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APPENDIX B;	 EVALUATION OF THE COST WITH RESPECT TO MODEL ,tsl

In this appendix we wish to derive an expression for

T	 T
J(T21' d) = E	 Y( t) Q Y (t)dt f0

(B.1)

r

subject to

x	 Ax + Gr wr + G  w (B.2)

y°= y + y = cx + y

E[x0 ] = 0	
= X 

E[x xT ] = E
0 0	 0

E[Wr ] = 0	
= W 

E[Wr (t)wr (a) T I = Qr
 6(t-G) (S is Dirac delta)

E[xo wr( t )] = 0

E[Wd ] = w 	 = w 

E[wd wT ]	 wd wd

E [~Y = 0	 = yl

Ery(t) Y(6 ) T ]	 = R 	 8(t -C)
a

E [y ( t ) wr (t) T ]	 0

E [Y( t ) xo ]	 _ 0

Define

E	 [(x-x)(x-x)T]	 x A E[x(t)]

The form of the solution for (B.2) is

t
x(t) _ ^(t,t o)xo 	 4)(t T)(Grwrfo + Gdwd d6	 (B.3)

y
a
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Then

_ 	 t

fo
x(t) = 	 (D(t,cr)Gdwdd^ (B.4)

Now the covariance matrix 	 becomes

t

= E*	(t,to)xo + 
fo

^(t,Q)Grwrd6	 4)(t,to)x^+
^

t	 T

r^(t,cT)GrwrdS
Jo

But since w 	 is assumed white, the screening property of the Dirac

delta function present in the covariance kernel for w (t), see under
r

(B.2), allows us to write

t

F= '^(t,0) F o(D(t,0) + r (D(t,cl)GrQrGT (DT (t,a)da (B.5)
0

Differentiating (B.5) with respect to time yields

= A^ + ^ AT + G  Q  G^	 ,• L. (0) = L.ro (B.6)

An alternate expression for (B.1) is

f

T
J(T21 ,d) = E 	 (cx + y) T Q(cx + y)

0

T

=
	
(2yTQcx + yTQ7 + xTCTQcx)dtE.f

o

(B.7)
9
a

But from the fact that the state is uncorrelated with the measurement

error y and using the trace notation
3

T
J (T21 , d) _ tr	 (Q Ry (t) + CTQc E [x(t )XT ( t )l)dt (B.8)

r

1J 0

Now since i

E = E[(x-x)(x-x)TJ = E[xxT ] - x x 

Then

;z3
A
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n

ELxxT ] =F	 —T
allowing (B.8) to be written

f

T 
J(T21'd) = tr 	 [QRy(t) + CTQCE + CTQC x xT]dt

0

But since R  does not depend upon * T21' an equivalent problem is

T	 _ _
J(T21 )	 tr CT QC f (E + x xT)dt

0

(B.9)

(B.10)



—SECONDARY
MIRROR

1=7
jr=::7

L LIGHT SHIELD

A3

REAC1
WHEEL

A2

APPENDIX C: FLEXIBLE SPACECRAFT WITH THERMAL DEFLECTIONS

For our present purposes LST is modeled as a central rigid body

to which is attached appendages such as the solar panels, light shield,

and possibly the Service Support Module (SSM). The central rigid body,

B, is the primary/secondary mirror assembly togiither with either all

or part of the SEM and its subassemblies.

V%b ^ -,

I	 Oni AD DANIVI )

We require the rigid body B to maintain its inertial attitude in pitch

and yaw within .005 seconds of arc over a five hour period.

Following66 , R is the inertial position of the system mass

center, M is the system mass, and the applied resultant force is the

-vector F , see Figure C-1.

The procedure and notation of Reference 66 will be followed

without elementary developments. For further details the reader

should see section III of Reference 66. The addition of thermally
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I

«I	 a' I
f	 DI	 SUBBODY AI

t = TIME OF SOLAR
-	 INCIDENCE

p 	 _	 a	 AI = CHANGE IN EQUILIBRIUM

	

^^•^ ^...^	 Ri	 rI	 ^	 POSITION OF A I , t > t

	

_	 — ---

	

r	 C

	

CM13	 CM

RIGID BODY

	R 	 -- -y
RB	'

1

INERTIAL
REFERENCE, .k

Figure C-1. Flexible Body With Thermal Deflections.
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i

induced changes in the undeformed position of the appendage is the

only fundamental difference from the development in Reference 66,	 k

section IIIA.	 The plan is to write 6N + 6 scalar equations (2N + 2

Gibbsian vector equations).

M
FB	

--B

TB = 11B
rigid body B

Fi = mi rl 	appendage

T i - *i	
, i=1-N	 (N discrete nodal bodies) 

The resulting system of scalar equations will be linearized for

further study and truncation. 	 Preliminary facts and definitions which

will be useful are: 	 (see Figure C-1)

b	 O k

a = C b	 ,	 C = I3 indentity matrix

al= B a	 ,	 B = I

W D Q w 	 = angular velocity of B with respect to inertial space.

kWi= awi +w_	 i+w

awi= {a}T ai - ^i

N
MB C +	 (c + a + pl + 01 + ai)m^ = 0 (CM definition)

R = 0	 c = RB 	(CM non-accelerating)
a

Qa V= bd V + Qwb hVdt -	 dt -	 -	 V a

P'd 2	 _ bd2	 //Q,b	 bd	 Qb	 2b	 i,	 ^d tbV+	 X X (w x
{2 w)V	

dt V+dt2	 dt2
w V	

dt	 w X (V)
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tfi
e

Appendage Equations_:_

i

Write, from Newton's second law,

F1 =mi (iie°+c+r+Al +Oti+) (C.1)

But from CM definition and c 	 RB , write,

N
RB +. E (r + P	 + Ai + ai)mi = 0 (C.2)

i=1

and (C.1) becomes, using (C.2),

'jF 	 ml (Li + Di+ al+ Pi) (r' +	 + Zk+ ak)mk (C.3)

or

A1	 (	 i
Fi = Cl-	 )r ml + Cl- ^^ / mi (^i+ pi + a.i)

i	 N/
- 
m	 (Akk + ak)m (C.4)

`'fl k=1
k#i

,A	
mass of appendage.

Now compute

00r=r+2wxr+wx (wxr)+wxr
a

r = w x r	 (linearized) (C.5)

Now

..°	 k a	 °	 k	 Na 	 ka^?i	 a+ 2	 x^ + w	 x 	 x p
3.^+ w x pi

_ CO x P1	(linearized) (C.6)

q

Now

J
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°°i	 °°i	 Q al 	°i
+a	 =0+a+ 2w	 x (A

° i	 Q ai 	Q al 	i
+a)+	 w	 x (w	 x(^+a))

+ QWai 
x (Qi 

+ al)

_ Ai + al (linearized)

Then (C.4) becomes

i1
Fl	 1	

mi w xr + (1- m1 ml (w x Pi+ AO
°°i

+ al)

"
-	 im N

E mk (w x pk + ^k + ai)
`'ft k=1

k# i

The Euler equations for the appendage sub-body Al are
i

Ti - Hi

where

Hi = 01	
Qwi + Ui	 QWl

U

(-
0 
i+ Qwi x u i) Q

W + Di
	 Qwl.

Q i ,x ai	 QW^ +
W Ui	 QWi

Hl =	 ^i	 (Qw + aWi ) (Linearized)

But

awi = awi + awi Xa Wi = awi = Si

Hence

Ti 	^i	 (w + Si)

Now for matrix forms we record

W	 = {b }T w

w	 = {b 
IT 

W
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Si
= {ai}T Qi
	

= {b}T^i 	(for small S)

r {b 
IT r

p
_ {a}T pi	 = {b}Tpi	(for small ^)

Ak = {ai }TQK	
_ {b}	 (for(for small Ak,ak,^k)

a
{ai}Tak	

{b}Tak	 (for small A
k ,ak ,sk) r

Now (C.8) becomes, in frame b,	 (note Fi = {b}T Fi)

Fi =
_ 

1	 ^mi wr+(1- m
i 
}mi (

_
w pi+zi+ ai)

i	 N (C.11)

fl	 (w p  + ^k + a )mk
-. k=1

k#i

and (C.10)
T

becomes (note ^i = {ai }	 Ii{ai}•.{b}T I1 {b} for small

pk,ak,sk)

Ti = Ji Cw + ^i) (C.12)

`

Now combine (C.11), (C.12) using the definitions
9

q 	 A
T	 T	 Tl

(aT , ^T)	 a 	 D Cal 	a2	 J,	 ,.. . ,aN
^

T

ai =	 ai, a2, a3),c
T	 T)sT C^1 T= 	,	 ^2	 ,.••, aN

T
Ri 	 R2 	

^3J

Ti - T + Ti

Fi_F +^i

T - tKl 
^i	

(interconnection moments between subbodies Ai)

_ - Yai	(interconnection forces between subbodies Ai)

a

i

f
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tKi . torsional stiffness (3x3), 
f 

K i = translational stiffness (3x3)

and where Fi , Ti , are externally applied forces and torques on sub-

body Al . Rewriting (C.11)

	

mi i 1	 ml i i	 ml N N f i i

	

-^ m a	 .. + 1-	 m a ..... -	 m&+ K a

i	 i N	 k
=Fi + mi(r +p) - E mk(r+p) t+

1

i N
mi 4i	 ^l ^, mk ^k (C.13)

k=1

For N equations (i=1 --- N) the matrix form can be written

fM a + fK a
	 f + fMRca + fM Q (C.14)

where
•

1	
1

m1 (1-^ ) I3 --0	 3-----
i

-^W 13

fMp
2 1

-	 13	 m2 (1	
2 )

I3- - - -
2

-	
k 

N 
13 , I3A

1
0

0	 0

1	 0

0 1
a

-1
I3

N 1	 N 2
- 

mm	 mm
T3	 -	 I3 -----m)

`	 N
N 1- m	I,.4y 3

3Nx3N

f 
K 

1
	 0

t
f

KA
- O 	 fKN

3Nx3N

REPRODUCIBYLY'1,' x

ORIGMiNAL PAGE IS 1",
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(C.15)

^l

i
A- A	 r

^N

3Nx1

Al
i

f =
i

AN

3Nxl

R1

2

RA	 ,	 Rl
r+Pi

i

RN

Now, from (C.12),

J + tKST J' W

where

1	 1
J`	

0	
i	 inertia matrix of

3	 Q	 .JN
	

J	
JN	 subbody Al about

3Nx3N	 3Nx3 	 its mass center

rtKl	 0

	

tK =	 o	
tKN	 .!

3Nx3N
l

Together (C.14) and (0.15) imply	 w

Mq + Kq L'	 (C.16)

where

)
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i
I

f 
	 0	 f 	 0

M - 0	 J '	 K t
0	 K

L' = k - PT w + f^lA	 (C.17)

f f f

Q A

)6NX 1

^	 rT 
A

-M R ^ ^0

T
+J'	

6Nx3	
0	

6Nx3N

r

For appendage equation summary, see Figure C-2.

Now the thermally induced displacements of the appendage subbodies

are assumed to satisfy the first order descriptions

-A(t-t)1
=	 I - e A	 (C.18) I

J o

where
f

A1(t-t)
e\	 0

e-A(t-t)

N
e A (t-t)0

^. 3Nx3N

I

e	 0
a2(t-t)

e A 
( t-t)A 0	 e

-0

0	 0	 e

3x3 3

k
=

-1

)thermal time constant associated with the kth direction for
 

i
subbody A (assumed given)

Ao steady state displacement due to change in temperature
{
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For elements of the appendage, Ai , which are assumed unaffected by

solar incidence, set a3 - 0.	 If all such thermal effects are to be

ignored set aj = 0, j=1-N, and note that A - 0 - D and'(16), (17)

reduce to

L	 Mq+Kq=R - rT W (C.19)

Now to obtain the expression for D needed in (C.17), differentiate

(C.18) twice to get

0 = - A2 e-A(t-t)A (C.20)
0

where

A	 0 X1	 0 0

A2 	AA	 A  Ai 0	 X3 0

0	 SAN 0	 0 a3
If we further assume that the thermal time constant associated with

each modal body and each direction is the same then

A = - 
X2 e-a(t-t) A (C.21)

0

and the appendage Equations (C.16) become

Mq + Kq = Q -	 rTW - fM a2e-h(t-t)A0 (C.22)

If the system is time invariant then the convenient choice t = 0 is

allowed. The appendage equations are summarized in Figure C-2.

A



V

Mq+G q+K q= Q -r
T

+ fM D

f24  0 1 2	 1 N

fill = ' 
M - [fM f M -

l)m C
l-
	

I 3
I3	 ....	 - 13

0 0	 J l^/ .ill
6NX6N ,

2 1

a1
m M -

I3

Jl	 0

q= a J ••

0	 JN

N1

13

N
mN 1 ill I3l 1S 3Nx3N 3Nx3N

SN
6NX1

fK 0Q=f K=
T t

0	 K
6 xl 6NX6I1N

0 -r3 
r2	 T	 fMR	 R1	 Jl

r = r3 0 -r1 , r =	 , R =	 , if
NN	 . N

r2 r1 0 
3x3	 J 6Nx3	

R 
3NX3	 J 3Nx3

Figure C-2. Flexible Body Appendage Equations
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System Equations:

To obtain the system equations write the Newton, Euler equations

F = M R

T = H +	 (C.23)

where

He	 momentum from rotors

H	 Ap X p dm vehicle momentum
--v

p	 = generic position vector from vehicle mass center

Now omitting the details of the expansion of H and H which is

contained in Reference 66 we may write immediately after linearizing

(128) of Reference66,
S

N	 N ti	 N
T = J*w+H	 +wH+r	 ml ai + 	 (pl+ A')ml a1+ ^J l Sic	 i=1

1
(C.24)

where

i	 k	 CMSsj	 h	 Y	 (C.25)
h	 +H^ jL=.•1	 o	 1_1	 i	 V	 reaction wheels

a

k 
	 scalar magnitude of momentum of ith reaction wheel rotor

h	 D scalar magnitude of momentum of each of k CMG rotors

tai A unit vector describing direction of momentum vector of ith

CMG rotor relative to the frame b.

Yj A unit vector in direction of momentum vector of jth reaction

A

wheel rotor relative to frame b.
i

J	 G inertia of vehicle (considered as a rigid body)

Then since pi + Ai 1-1^ pl by assumption of small Vii,
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T JW +	
ho^i +
	 hjy3 +

	

ki (r + 71)61 E Jl Sl 	(C.26)
i=1	 3=1	 i=1	 i=1

since for CMGs ho = 0 and for reaction wheels l = 0. Moreover, since

t^l , i=1-k is a function of the gimbal angles, a matrix S may be defined

such that

= S(8)8	 = 3 x 1	 (C.27)

S=3xgk
le

8=gkx1

where

= 1+ 2+--^k

dT 
= (16
	 . l0
	 2

6 1 9
 

.. 2^	 kS	
ks )

 
l ,.	 g,.	 g,.	 .,	 g,.	

g

for k CMGs, each with g gimbals ( g = 1 for single '-ibal CMGs and

g = 2 for double gimbal CMGs). Then

	

T = J*w + ho S0 +	 yl j + P q + w hoV(a) + r hi(t)yl (C.28)j =1 j	 i=1	 )

	

Now the system equations are	 T
c

V	 V
J* w	 T - h cS(S)S -	 h.(t) y1- w h(S) + h.(t) yl - Pq ( C.29)	 A

°	 i=1 1	 °	 i=1 1

Mq + Kq = k +	 s - PTw	 (C.30)

Characterizing the Control Torques, T  for -a Reaction Wheel System.

The control torque may be characterized in many levels of detail,

depending upon how deeply one wishes to penetrate into the control

hardware dynamics. The level of detail chosen must be compatible

with the fidelity of the rest of the model. For linear system
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characterizations such as we use here, this implies that the eigen

values of the homogeneous appendage equation (setting right hand side

of (C.30) equal to zero) provide a spectrum within which the "spectrum

of control authority" (those roots associated with the generation of

T  from measurements which are yet to be specified) must lie. Thus,

erroneous information is obtained from analysis or simulation if we

insist upon modeling modes within the control mechanisms which can

excite structural modes of the physical system but which are absent

from the system model (C.29), (C.30). Likewise, erroneous results are

obtained if there are structural modes modeled in (C.30) which can

interact with modes of the physical controller implementation but

which modes are absent in the model for T  in (C.29). Therefore, to

be completely honest about the model for T  we must admit that T 

cannot be rationally described before an eigenvalue analysis is

completed for the appendage Equations (C.30), and before some controller

hardware is proposed. (In other words we cannot simply write T  in

(C.29) and proceed with the design or analysis (i.e., optimization)

and then later design the dynamical elements which produce Tc without

returning to check the spectrum compatibilities discussed above).

For the LST mode in (C.29) we have already neglected any shock

mount or elastic suspension of the CMGs or reaction wheels. It is

therefore inappropriate to include any appendage modes or controller

dynamics which exceed the shock mount frequencies. The functional

block diagram of the LST control system is shown in Figure C-3, and the

details of each block are provided in the next section with a view toward
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completing the system equations which presently have the form in

(C.29) ,	 (C.30) .

Description of the Contr ol System for LST:

For the rate gyro transfer function we have from (see Figure C-3),

1Grg (s) = = WI(s) (C.)2
s	 2(.7) )

(27r 16) 2	 27T 16 s + 1

or	 w' + 2^ wrw' + w' wr = wrw2 , which yields for each root of Grg(s)

1 =	 .7

w	 =27x16
r

Iaryll,2 = wr = 27T 16 (C.32)

For the position sensor

G	 (s)	 =	 1	 = 8^ (C.33)
gs	

2^r + 1
	 6

or	 8' + wg 8' = W 9	 (wg =	 2Tr)

which yields

ags I	 =	 2Tr (C.34)

For the analog to digital (A/D) prefilter

1	 w"

s20 + 1
	

w
2Tr

and the associated root

Ix	 I = 27r 20 (C.36)
P

applies to both prefilters for position and rate

w 11 +w	 w"=w	 w'
rp	 rp

6 	 + w	 8 ', _ w	 6 (C.37)
rp	 rp
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hr	 REACTION	 h r h	 TELESCOPE
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	A/D 	 RATE GYRO
N
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F ,^(sl	 GRG (s)

- —R 	q/D	 POSITION SENSOR.. 
pr..
	 _..
	 or

	

FP(sl	 GgA (sl

LST BLOCK DIAGRAM

Figure C-3.
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. A

}

The reaction wheel subsystem is illustrated in block diagram

form in Figure C-4.	 Neglecting the friction and the amplifier non-

linearities, the governing equations are, for each reaction wheel

j=1,2,3,.	 v	 (let v = 4).

E
1
 (s)iF

J	 j r'

E(s)_ +KB 0	 + KA El(s)
2	 J ;

E(s)
2

i f (s)	 1,	 s+ RT
	

(C.38)
J

_
h

Jas

K	 if
^.

where h, is the angular momentum (magnitude) of the Jth rotor.
J

The following is a qualitative argument for studying the linearized

equations for the reaction wheel. Some noise (which is always present

in the physical circuitry even though it is not modeled yet) will tend

to "smooth" a threshold type of nonlinearity as can be illustrated by

the use of the dual input describing function (DIDF). 	 Thus, the

amplifier threshold and stiction of the wheel are neglected in this

model.	 The elasticity of the bearing/shaft interface allows for

linear motion in the small (in the neighborhood of zero wheel speed).

For the more frequent non-zero wheel speed circumstance, the friction

plays less of a role in the dynamics. 	 Based upon these qualitative

arguments, linearity of the reaction wheel model is therefore assumed.

Quantitative arguments must await further test data.

, 4. 9
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a.	 a

ii

i
3

a

h^	 _	 EI	 EZ	 —hj	 ' 1

•	 +	
+	 1y	 K^Gp(s)Hf	 Kq	 JrLMs+ITT 	Km	 JRWS

x	 '^

KB

	

	 FRICTION
MODEL

RF	 z

t

K G (s) = 1	 RF, _ .316 to .48 ohms
C P	

=	
w

RA = 104 v/v	 m	
.316 to

?

.48 Mf/amp

L = 10	 JRW	 .2 Kg M
Lm
	 2Trs6

I	 = lU obms	
KB = • 316 to .48 v/rad/sec

Figure CA Reaction Wheel Control Subsystem.
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is the commanded rate of change of the angular momentum of

the j th rotor.	 In differential equation form the reaction wheel model

(C.38) becomes

d
if

-	
RT+ KARF	

+ K
B if -KA

dtt - Lm	 Lm +	 Lm	 h'
j K j

^ 1

_	 m	 0 0

JRW

- Km if (C.39)hj =

Or, for the four reaction wheel systems

d i RT+ KARF	KB i KA

dt h
I	 -+

Lm	 4	 JRWLm
I
4

+ -	 I
Lm	 4h

-K 14 	 0 0

t
(C.40)

h  1RW	 4 S2

where

h1 	 ifl1 hl
h2	 lf2	 ^2 h2

h = i Q	 h'
h3	 =	 if3	 ^3

=
h3

h4	 if4	 ^4 h4

14 A 4x4 identity matrix

where we have assumed the same hardware parameter values for each of

the four reaction wheel subsystems.

The middle term on the right hand side of (C.29) may be written

4
1 "	 rs >h (C.41)1

-'A

1
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;.,

^"..w.x.un+,...w,l

^	

-raw,:.-F "3^""a•	 .,aw;.szrae-^ems-n . ..v :..,..-*..swq-+ 	 a*,.ti--sma	 ae^x.+rz.. r	 -o—.+rew.e.,.m-..,.,-r

i

..	 -+mv ,..:

t

i

where
r

4	 ..

rS = 
[Yl ,Y2 9 Y3 f Y4 l	 hT A (hl,h2,h3.h4)

Likewise the next to last term in (C.29) may be written

4`
Yi h

i 	 rg h (C.42)
1-1 F

A
Y

For the rotor mounting arrangement for LST,

.342	 -.342	 .342	 -.942

rS = .664	 .664	 .664	 .664 (C.43)
S

,.664	 .664	 -.664	 -.664

The system equatI.ons, thus far, may be written, neglecting the CMGs j

in (C.29)

J w = T - rSh - wrSh - Pq	 system (rigid body + appendage)

Mq + Dq + Kq	 Q +	 D - PTw	 appendage

+ 2^ w w' + 
w, w2	

= W2 
2	 22	 r r	 2 r	 r

rate gyros
sw3 + 2^ ww	 + w	 wr	 = wrw33	 3r

+s

82 + wg 82	 = Wg62
position sensors

e 3 + wg 8 3 	 - Wg83
..z

= ww2wit + wrpw2rp

w3 + wr w3	 =	 rw	 w3
p	 p i

+ w	 en	 = w	 9	
prefilters, Fp

2	 2	 2gp	 gp ^-
6u +w	

e..	 = w	 8'
3	 3	 3gp	 gp

h	 _ - K im	 reaction wheels
i	 =-pli+p2h-P3 h'

s

The collection of these equations is numbered (C.44).
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External Disturbances:

The external disturbances acting on LST, in approximate order of

their importance, include:

1.	 gravity gradient

2.	 aerodynamic
r

3.	 magnetic

4.	 thermal

5.	 solar pressure

6.	 micrometeorites
a

Those internal effects which have not been included in the model thus

^ far include disturbing effects from:

1.	 rotating machinery (vibrations from unbalanced rotors)

2.	 sensor and electronic noise

3.	 equipment motion (pumps, shutters, etc.)

4.	 instrumentation anomalies (bias errors in instrument

alignment and amplifiers)

The first four of the external disturbance effects listed above are

considered important for LST.	 The thermal effects (4) have been

considered in the derivation of the flexible spacecraft model (C.44).

The first three, therefore, remain to be described.

Gravity Gradient Torques: a

Derivations of gravity gradient torques are found in several
a

sources, but the expressions in Reference 67 will be most useful here.

From Equation (B.22) in Reference 67, for circular orbit,

Tg	3Q2X	 3	 (C.45)

Y
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where T

=NOTbA N z 	 b = 0 z	 —

0 = I-6

cn	 ^snSn	 -cn	 snt	 X	 t	 X	 t

N = 0	 cn	 -snX	 X (C.46) 
Z

f

sn	 sncn	 cn	 cnt	 X	 t	 X	 t

0	 -03	 62

6 _ 63	 0	
-81 }

-62	 61	 0

nX = angle between orbital plane and sum line

nt = vehicle orbital position measured from orbital midnight

(nt = 0O t for circular orbit)

Q	 = orbital rate
o

JJ = inertia dyadic of vehicle (assume rigid)

{b 
IT J {b}

We wish to obtain an expression for the torques in b coordinates and

linearized about 6 = 0.

Tg = fb} T Tg

_g N	 g + GgT	 To	 0 (c.47)

To proceed, define from (C.46)

n3 A (snt , snX cnt , cnX cnt)

qT A n3	 n3[I + 6]O T (C.48)

Then (C.45) may be written in b coordinates as

T g = 3Q2 TT J q (C.49)
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But from (C.48), (C.49) becomes

Tg 	302 ([I--O]n3)— J[I-8]n3

X302 fW3 J n3+n3 J n3 8 -(6 n3YJ

discarding second order terms in 6. A usefu

(en	 = n3 6T - 6 n33)^'

gives (C.50) the form

Tg = 3Q	 { n3 in3+ n3 J n3 6 - n3n3 J6 +

Hence, comparing (C.51) to (C.47)

To =, 3Q	 J n3n3

Gg = 3Q2 { n3 J n3- n3n3 J + n3

l

J n3 	I r

J4 For the case

nX = 45 0 Q0 =

18,357	 0	 0

J = 0	 41,822	 0 Kg m2

0	 0	 44,484

To in (C.52) becomes



J

n	 n	 {J	 -32	33	33
J	 )
22	 32

sn cn	 c2 	 t
x	 x	 o

Tg = 3 ( .00111) 
2	

n	 n	 (J	 - J	 )	 = 3Q	 A cn	 1 s2 S2 t31	 110	 33 33	 0	 13 x 2	 0

n	 n	 (J	 -31	32	22
J	 )	 A
11	 21 sn	 1 s2 S2 t

x 2	 0

4
(1+ c2E2 t) s ncnx2 x

A32

s2t	 cn= M2	
2	

520	
x Ala

2 s2Q t	 snx
A21

I sn cn A	 0
x	 32

sn cn A
32

1
2 x x x

3Q0 0	
cnx 0 s 20 t

_	 2
13

0	
snx

0 c 2Q0t
21

Using the above data,
f

.002	 0	 .002 1

{	 Tg = 0 -	 -.034	 0 s 2Q t	 n.m. (C.53)
0 0

0	 .031	 0 c 2E2 to
J

0	 .0035s2n	 -.0035s2n

Gg _ .034s2n t	-.089 +
t
.059c2nt	-.024 -

t
.024 c2n t (C.54)

.031s2n	 -.022 - .022c2nt	-.022 - .065 c2nt t

where for circular orbit n t = 00t.	 Note that due to the small angles

6,	 the term Tg in (C.47) is more significant in magnitude than is the
i	 o

Gg 8 term.

Magnetic Torques:

An approximation of the geomagnetic potential, taken from a

Equation (6) of Reference 68, is

iPPODUO BILITX
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n+l

v ft r 
	

(.0
	

(gn cos m^ + hn sin m^)Pn(X-)	 (C.55)
n=1 m=0

where from Figure 4, p. 17 of Reference 68,

ro = radius of earth

»A R	 = radius of orbit

= 1./2 - i

X	 = latitude

easterly longitude

gm , hn = Schmidt coefficients (see Table 1 in Reference 68)

_ Pn(a) = Legendre functions with Schmidt normalization

The magnetic field in a region containing no sources satisfies

B = - V V	 (C.56)
a

and the torque applied to the spacecraft is

Tm =Mx B	 B= {b}T Bb

'
(C.57)

M	 {b}T 
Mb

where M is the magnetic field generated within the spacecraft. 	 Now

we wish to truncate the series for v and express TM in the vehicle

coordinate frame, b. 	 To relate a and ^ to the nx -and n 	 of previous

sections define the coordinate frame n as in Figure C-5.

The relation between the 	 frame and the spherical coordinate
i

Iframe s in the figure is

S S	 cs	 0

t s_ -cs	 ss	 0 3= B	 (C.58)

0	 0	 1

a
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Now the magnetic field in s coordinates is, from Equation (8) inGG
R

68,Reference	 with changes in notation,

B	 1 9
1 R as

B2	 -	 -	 1 	 av (C.59)
Rsin a

BB
s DR

-- where

^ n/2 - a

B = {s}T Bs = {b }T Bb

Now since from Reference 67, p. A-5
1

= Q b (C.60)

where a

Ct	 -sxst	 -cxst

Q 0	 cx	 -sx [I+8]

st	 sxct	 cxct

From (C.58),	 (C.60),

s = B Q b (C.61)

sect	 -s^sxst + escx	 -sScxst - Os-

BQ -csct	 cRsxst + s^cx	 c^cxst -sssx [I + 8]
st	 sxct	 cxct

Q

Thus

Bs=BQBb

Bb = QT B BS (C. 62)
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4A

Since from Equation (11) of Reference 68,

s inr
__ _	 o	 0

Bs	 gl R
cos a

for a simple dipole model of the magnetic field (only the first term

of the spherical harmonic expansion in (C.55) is needed). 	 From

Reference 69.

90  = - 30425	 gauss

ro = 6371 . 2 x 103 m a

The angle X can be related to n 	 from the geometry of Figure C-5

using spherical trigonometry.

sin(ny- Tr + n) _ sin X 	 sin(7t /2 - ^)	 = cos a
t	 sin ^	 sin(	 sin R

Then by the sum of angles indentity

cos a = sin S (sin(ny- 7i) cos nt+ cos (ny- 7i) sin nt)

sin a =	 1- cos t-	 (since 0 < T < 7)

Then
1/2

1 s2s(Sy + cl+ ]
3r -7rct	 -7rSt	

2Sy-7rcy-7rStct)
L=	 o

Bs	-gl
o

R	 (C.63)

2..SO(S (ny- 7i)Ct + C (ny- 7r)St)

and from ( C. 62)

7

:
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1
3	 (1-S2P(S2(ny-'T)Ct+C2(ny-70 St+2S(ny 7r)c(ny 7r)StCt2

y:	 B -g° `ro (B Q) T	 0b	 1 \R
2S$(s(ru- TOct + c(n

y
 7T) St)

(C.64)

By inspection of (C.57) and (C.64) it is apparent that Bb is not

i•

	

	 simply sinusoidal in time and that the linearized form of the magnetic

torques

Tm = Mb Bb^ To + Gm8

rtr

	

	
will yield terms in To and Gm which will, if expanded in a Fourier

series, contain higher harmonics of the orbital frequency. Specifically

it can be shown from (C.61), (C.64) that

*`
3

To - - ql

r

R	 Q ^^

r

(C.65)

and
3

,z.

3

gl R	 (Q ^) = T
o (C..66)

` Equation (C.65) could now be expanded into a Fourier series in time in	
jy

i

order to obtain the coefficients of the various harmonics of orbital

frequency.	 Of specific interest will be the first three or four

harmonics

To	
l oo+ Tblssin

n 
t + TOlccos 

nt + T02s sin 2nt (C .67)

+ T92ccos
2 n + T03ssin 3 nt+

T03ccos 
3 nt+--- ;.

t

t
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The magnitude of the magnetic field assumed for the LS'	 spacecraft is

100 Gauss.	 The first four harmonics of To (t) have been approximated

for use in the text as

To = .003(sin .00111t + sin .00222t + sin .00333t + sin .00444t)
(C.68)

Finally, the linearized disturbances from gravity gradient and

magnetic torques can be written (aerodynamic torques have been con-

sidered only to add some small amplitude to the Fourier terms com-

prising gravity gradient and magnetic torques.)

T = (To + To) 	+ [Gg + Gm]A = To GA (C.69)

so that the total system equations may now be written, substituting

A for w in the linearized equations

J A + rq = - rSh + (rSh)~A + GA + T 0 (t) }rigid body + appendage

Mq + Kq + rT 8 = ZW A(t) }appendage

h -Kl
is }reaction wheels

i = -pli+p 2h-P 3 h'

w2 2+ 2Cww	 + wr W2 = Wr 	62r r

}rate gyro
3 + 2^rwrw3 + wr w3 - wr A3 (C-70)

AZ + WAZ	 w	 A2
g	 _g

}position sensor
03 + wg 03 = wg 63

Oi l,2 + Wr w2 = w r W,
P	 P

}Prefilter rate signal
w3 + wr w3 =wr W3

P	 P

6„
2

+w	 A „ =w	 A,
2	 ZgP	 gP

A" + W	 A" = wA'
3

}prefilter, position signal
3 gP 3	 gP

.A
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- where external forces and torques on the appendage are neglected

(R, =	 0) .

To proceed to study this system of equations it is helpful to

first make some coordinate transformations to further simplify its

structure.	 Even if the equations were time invariant, an eigenvalue
r

analysis of these original equations might be too large a task for

the computer.	 Thus, two steps may be taken to simplify the task.

First, replace the time varying G with its value averaged over one

orbit.	 (It can be seen in the derivations of the external disturb-

ances that the G6 term is smaller than the T	 term in (C.69) if 6 is
0

small).	 Also, long experiments (5 hours) are required by LST and the

averaging of G over one orbit (-- 1.5 hours) seems acceptable.	 T0(t),

however is not to be averaged, since its time dependence may be

important to the control problem.

A further simplification is available if the cross product

between vehicle rate and rotor momentum is neglected.	 In this event

- the term ( rSh)'V6 in (C.70) is discarded.	 This step is more justified

if the nominal momentum is zero.

The appendage equations can be transformed to distributed or

"modal" coordinates, n , by the choice

q = fir;	 (C.71)

where 0 is the matrix of assumed independent eigenvectors satisfying

the orthonormality relationships (see Reference 66 for further

discussion).

J ;

CIB
A ^-

.
r

^l
T^

TI'
LE

7
P
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R

^
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T
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kT k

f

^ M ^	 = 1	 k=1,...,v

T
^1^ M ^j = 0	 k#j

T
k M^ = 0	 k#j

Then the appendage equation takes on the form, using (C.71) and pre-

multiplying (C.30) byT,

1j + 2C a p + a2 tj + (DTrTO =	 T fm o(t) (C.72)

where modal damping ^, is added in this form.

Now the first two equations of (C.70) may be written

J r(D	 6	 h	
0	 0	 G	 0	 0

(r^)
T

Iv p 0	 -2^a TI 0 -62 TI

r 	 K I3	
0 ToM

+ i	 + .. (C.73)

0 0	
((D

T) f

Solving for the highest derivatives

8 0	 0	 T

("n

= Ll	+ L2	+ L3 i + L4	° (C.74)

f TI	 n

where

„-1

ti
rSh	 0 „-1	 G	 0

L1	
J

0	 -2^a L2	 J 0	 -62
a

L3	
J-1

rSKOm] I	 0
 L4	

J-1	
3 T 

f
(C.75)

-- 0

J* r1) -1 _J -F-1 r
J

T
rT	

Iv

[F-1

-(DT r 	 F-1	 I + 0TrTF-1r
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r, y-, ao^

x
U2

8"

8'
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3

W1

W,
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m"
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8
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Now d

vecco

x^ ^̂

-^^^

l
state vector x * the control vecto:

the measurement vector, o-.

_

23'/

-_-_-_-

	

22`	 o	 ^^=	 m	 ,o ^b

__----_
^

	

23~,	 l_

	

m	 y A {H~~	 2-------
I8\	 |	 i	 m l	 & (8112

hA

U

i	 l
|	 |	 | 	 |	

'
L_'

where

b /1 b - 
^^~~	

-
` '-- 

	 current vaI^e of h(t) at time of update of linearized

model
'

Then the linear state equations may be written
'

`

`
'
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M

.1'-'9P.^:^:+^ vat ±^•u^::,},.	 -^..T	 .. .....,...„...	 ...	 ,.	 _ ,.	 ....	 -

xl = Al xl + B1 uo + E1 wl

yl = C1 xl (C.77)

z 1	 M1 xl

where

230 „	 23e1	 23W" 23W ' 23w' e1238 n 5 1235	 n hQi

—WgPI2 Wgp12
0 0 0 0	 0	 0 0	 0 0 0

23e^^

0 —Wg12 0 0 0 0 Wg1 20 0	 0 0 0 2381

0 0	 —WrpI 2 WrpI 2 0 0	 0	 0 0 0 0 0
23
W

0 0 0 0
12

0	 0	 0 0	 0	 0 0 0
23W`

Al 0 0 0 —W2I2 —2C rWr1 2 0	 0	 0 0 W21 2 0 0 0 23
w 1	 •1

= e

0 0 0 0 0 0
i3+v 0 0 n

0 0 0 0 0 L2 L1 0 L3 8

TI

0 0 0 0 0 0 0	 0 O—Km1 h0

0 0 0 0 0 0 0	 p214
—piI
iy

(C.78)

s

0 0 0

0 0 0

0 0 0 T
0

0
0 Q

B1
0 ^1 0 0 1w	 _ ---^---- (C.79)

1	

_
0

_
0 0 h 1

0 v4 0

0 0 0

—P3I4 0
P2
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Steps are outlined in section 6.0 of the text to reduce such a model

for control design.


