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OTW NOISE CORRELATION FOR SEVERAL NOZZLE/WING GEOMETRIES

USING A 5:1 SLOT NOZZLE WITH EXTERNAL DEFLECTORS

by U. von Glalin and D. Groesbeck

Lewis Research Center

ABSTRACT

Acoustic spectral data obtained from a model -scale study of several

OTW configurations with a 5:1 slot nozzle using various external deflec-

tors are correlated in terms of deflector geometry and flow parameters.

Variations in the deflector geometry include deflector size and deflector

angle. In addition, geometry variations in flap setting and nozzle chord-

wise location are included. Three dominant noise sources are correlated:

fluctuating lift noise, flap trailing edge noise, and jet mixing noise. Aero-

dynamic characteristics, including lift and thrust measurements, obtained

for the various configurations are summarized.

INTRODUCTION

The design of the exhaust nozzle shape for STOL engine over-the-wing

(OTW) configurations has conflicting requirements for cruise and powered

lift operation. For cruise, a small nozzle boattail angle (<100 ) is required

in order to minimize the engine nacelle cruise-drag. On the other hand, a 	 t
large internal nozzle angle, which can result in a large nacelle boattail angle,

is needed in order to direct the jet exhaust flow toward the wing/flap surface

and provide the flow attachment necessary for powered lift. Furthermore, in

the powered-lift mode, a nozzle exhaust flow area about 20-percent larger

than that for the cruise mode is needed for optimum engine performance. A

solution to these design problems can be obtained by the use of a retractable

external deflector shown schematically in figure 1. In the cruise mode, such

a deflector would constihite a part of the exhaust nozzle while in the powered-

lift mode the deflector would be extended to provide exhaust flow attachment to
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the wing;'flap surface and at the same time provide the necessary exhaust

area modulation„

—

	

	 As has been shown in references 1 to 5, the use of external deflectors

causes an increase in the configuration noise level due to exhaust flow ifi-

teractions with the deflector and the wing/flap surfaces. In the present

paper, representative acoustic spectra obtained from an exploratory model-

scale study of several OTW configurations using a 5:1 aspect ratio slot noz-

zle with various external deflectors (ref, 5) are correlated in terms of ex-

ternal deflector geometry and flow parameters, Variations in the deflector

geometry include deflector size and deflector angle relative to the nozzle

centerline. In addition, geometry variations in flap setting and chordwise

location of the nozzle are included. In order to provide for valid acoustic

comparisons between alternate methods of providing flow attachment for

powered lift, the aerodynamic characteristics, taken from reference 6, for

the present nozzle swing configurations are included.
4

APPARATUS AND PROCEDURE

Facility

The aerodynamic and acoustic data used herein were obtained using an

out-of-dours facility within the 715 in
	 of a subsonic wind tunnel

at the Lewis Research Center. This facility is described in reference 7.,

Open-cell foam pads were used to minimize reflections from the surround-

ing walls and ground,

Sound pressure level (SPL) spectra were obtained using a 1, 27--cm diam-

eter condenser microphone with wind screen, Data were recorded at 900 to

the jet axis at a microphone distance of 3, 05 meters, The noise data were

recorded on a FM tape recorder and digitized by a four second time aver-

aged one-third octave band spectrum analyzer. The analyzer determined

sound pressure level spectra in decibels referenced to 2x10 -5 N,'m2,.

Jet velocity profiles were obtained at the trailing edge of the shielding

surfaces. Measurements were made with a traversing pitot tube with an
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entrance cone angle of 600 to help minimize flow angularity effects resulting

from the jet. flow over the curved surfaces, A vane on the traversing probe

was used to establish the jet now angle for each traverse. When the flow

angle, as determined by means of the vane, exceeded the angularity capa-

bility of the pitot tube, the tube angle to the local flow was adjusted to provide

suitable data, The pressures measured were transmitted to an x-y-y* plot-

ter which yielded direct traces on graph riper of the total pressure distribu-

tion across the jet,

Acoustic data were taken at nominal jet velocities of 198 and 261 mjsec.

The lift-thrust measurements were made with nominal jet velocities of 195

and 253 mjsec while the flow contours at the trailing edge were obtained with

a jet velocity of 253 mjsec.

Models

Nozzle. A simple 5:1 slot nozzle (ref, 5) was used with various ex-

ternal deflectors to turn the flow (fig, 2). Each of the sides of the nozzle

converged at 50 and the nominal nozzle dimensions at the exhaust plane were

2. 0 centimeters by M 2 centimeters, The overall external deflector di-

mensions are also given in figure 2„ In general, the 40 0 full--lip deflector

was similar to that used with the "D .-nozzle"^ in reference 4,

Wing, - The wing used in the present tests was the same as the base-

line wing of reference 5 and is shown in figure 3 together with pertinent di-

mensions, The surface consisted of a metal plate secured to wooden ribs.

The surface approximated the upper surface contour of the airfoil with 200

and 600 deflected flaps used in references 1 and 2: The wing had a span of

61 centimeters. The nozzle was located at two axial locations on the surface

(1 -dimension in fig. 3) corresponding to nominal airfoil chordwise stations

of 21- and 46-percent with flaps retracted. The chord of the wing with re-

tracted flaps was 33 cm,

i
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iiData Normalization

The analysis of reference 8 indicated that the magnitudes of the several
noise sources identified were a function of the measured shear layer height,
be . The term be , obtained from the trailing edge Mach number contours
(see appendix A), is defined as the shear layer height of the free jet bound-
ary measured at the trailing edge where the local velocity is 0.5 that of the
local peak velocity, U m . The measured shear layer he ght is corrected for
the weight flow ratio, W/Wi as discussed in reference 8. For the present
nozzle, the characteristic normalized height, b * , is given by be +
h Wi/W - 1, Similarly, the normalized nozzle height, h * , (see ref. 8) is
given by h W1JW.

AERODYNAMIC RESULTS

Weight Flow Considerations

The ratios of the measured weight flow, W, to the ideal flow, Wi , for
the nozzle with the external deflectors and no wing are given in table I.

The measured weight flow in all cases is within 1. 1% of the ideal. This re-
duction in weight flow contrasts with up to nearly 10% for the 5 : 1 slot noz-
zle alone configurations of reference 6,

Also given in table I are the W /Wi ratios for the nozzle with external
deflectors and including the wing/flap system. The data all indicate a re-
duction in weight flow due to both the deflector and wing /flap system of less
than 10%. This, in turn, compares with reductions of, in some cases, over
20 percent for the 5:1 slot nozzle /wing configurations of reference 6 for a
similar wing geometry, The flow reductions in the present study generally
increase with increases in the nozzle chordwise location, deflector lip size,
and flap setting, The limited range of the variables are insufficient to pro.-
vide a general equation for prediction of weight flow reduction due to the
deflector/wing geometry,
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The preceding data indicate that the selected location of the external de-
flector relative to the nozzle exhaust plane affects the weight flow and that
the deflector lip should perhaps be located further downstream of the nozzle
exhaust plane for the case of plate-type deflector used herein. Use of a
vane-type deflector, such as that used in reference 9 would possibly elim-
inate the back-pressure effect of the deflector on the nozzle weight flow.

Lift and Thrust Characteristics

In order to provide meaningful comparisons of the aerodynamic data,
all configurations are compared on the basis of equal weight flow. This,
of course, does not imply equal lift and thrust.

In order to achieve equal weight flow, the nozzle area must be in-
creased, which would constitute a larger external wetted surface area re-
sulting in a cruise-drag penalty. The latter consideration is beyond the
scope of this study. The measured values of the static lift and thrust are
normalized by compensating for the weight flow reductions caused by the
nozzle/deflector configurations and the presence of the wing, as in refer-
ence 6. The adjusted measured static lift and thrust are then ratioed to
the ideal nozzle-alone thrust. These procedures led to the following ex-
pressions for the normalized lift and thrust: L T (Wi/W)Ti and T(Wi/W)Ti,
respectively. The normalized data in the form are shown in figure 4. The
flow turning angle shown is that made by the flow with respect to the nozzle
axis and is given by tan -1 (LT/T). The magnitude of the vector sum of the
lift and thrust, given by the magnitude of the radius in figure 4, represents
a flow turning efficiency.

The data shown in figure 4 were taken from reference 6 and are in-
cluded herein for completeness of the data presentation. Also shown in
figure 4 (shaded regions) are the data ranges of the slot-nozzle/wing con-
figurations from reference 6. These slot nozzles had internal roof angles
(j3) and were tested with and without nozzle sidewall cutback O ,). In general,
the flow turning efficiency increases with reductions in deflector lip size and
angle for the geometries included. The absolute efficiency values with the

1
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external deflector configurations are less (up to 10 percentage points) than
those for the comparable slot nozzle configurations of reference 6; however,
the present configurations are not considered to be optimum geometries. In
all cases the external deflectors provided larger turning angles (2 0 to 80)
than those with the slot nozzles.

Trailing Edge Velocity Profiles

From Mach number contour plots made normal to the flap trailing edge
(see appendix A), velocity profiles were developed at the nozzle centerline.
The resulting velocity profiles were normalized by the ratio 6/6 e and
MZ /Mp as shown in figure 5. For each flap setting in figure 5, the shape
of the normalized velocity profile is independent of deflector size and de-
flector angle. The shape of the profiles are similar in most respects to
those for the 5:1 slot nozzle,/wing configurations of reference 6.

The most significant difference between the present work and that for
the 5:1 slot nozzle/wing configurations of reference 6 is for the 600 flap
setting. The present velocity profiles indicate reasonably good flow attach-
ment to the surface whereas the 5:1 slot nozzles/wings from reference 6 did
not, as evidenrcd by low M  /Mp values near the surface and location of the
peak MZ /Mp at significantly higher 6/Se values than those with the present
configurations.

An overall comparison of the profiles for flap deflections of 20 0 and 600
is also shown in figure 5(b). While the profile shapes are somewhat similar,
the slope of the velocity profile curve at the free shear layer is steeper for
the 200 flap angle than that for the 600 flap angle.

Although the velocity profile shapes on a nondimensional basis are sim-
ilar, the dimensional profiles associated with various nozzle/wing configura-
tions are significantly different as shown in figure 6. The configurations
shown in figure 6 are selected for each flap setting at substantially similar
lift/thrust values (see fig. 4). At both flap settings the shear layer thick-
nesses with the 40/40 slot nozzle (0 = 400 , y = 400 ; ref. 6) are thicker and
the peak velocities higher than those with the external deflector. Further-
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more, as expected, with the nozzles at the shorter chord location (21%),
the profiles are thicker and the peak velocities are reduced compared with
those at the longer chord location (46%).

Jet Velocity Decay

The peak jet velocity decay measured at the trailing edge of the pres-
ent configurations is shown in figure 7 for both the 20 0 and 600 flap settings.
The data were obtained on the nozzle centerline plane for an M  of 0. 8.
The data are shown in termk of the ratio of M p/Mj as a function of
L/De 1 + Mj . The curves drawn through the data are similar in shape to
those for the 5:1 slot nozzle/wing configurations in reference 6. As is ap-
parent in figure 7, the ratio Mp/Mj decreases with an increase in
L/De 1 +M, and with increases in deflector size and deflector angle.
Also, the ratio Mp/Mj is somewhat less for a given configuration with a
60 flap setting than that with a 20 0 flap setting.

The peak jet velocity decay data range for the 5:1 slot nozzle/wing
configurations (ref. 6) is also shown in figure 7 (shaded regions) for com-
parison with the present data. In all cases the configurations with external
deflectors show a lower ratio of M /M. than those for the configurationsp J
of reference 6 at a given value of L/De V 1 + Mj.

CORRELATION OF SOURCE NOISE

Typical spectra for the nozzle/wing configurations with the various
external deflectors are shown in figure 8 for a jet exhaust Mach number
of 0. 8. Also shown for comparison are spectra for the 30/30 slot nozzle
configuration (0 = 300 , y = 300) from the study in reference 5. For the
data shown, the SPL levels increase with a decrease in the deflector angle.
For a constant deflector angle, the levels also increase with a reduction in
the deflector lip size,
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The shape of the spectra for the external deflector configurations are
similar to those for the 30,10 slot nozzle configuration. It should be noted
that in the mid-frequencies (500 to 5000 Hz) the 30/30 slot nozzle configura-
tion was noisier (2-5 dB) than the present configurations.

As in reference 8 three primary noise source regions are identified.
These regions are shown schematically in figure 9 and consist offluc-
tuati et lift noise (I), trailing edge noise (II), and a redirected jet mixing
noise source that includes the noise caused by reflections of acoustic waves
from the wing/flap surface (III). Also shown, for comparison, is a curve
representing the spectrum for the nozzle-alone noise. A brief discussion
of the characteristics of these noise sources is given in reference 8.

In the present paper, the noise sources are assumed uncorrelated and
the measured SPL is the anti-logarithmic sum of the noise levels from all
the noise sources. Lidependent correlations were developed for the peak
SPL values of each of the noise sources shown in figure 9 in terms of the
prime geometry and flow variables. The latter include the peak jet flow
velocity at the flap trailing edge, a characteristic dimensions, je exhaust
velocity, and nozzle geometric variables such as, in the present case, de-
flector lip angle, and deflector size.

In the correlation of the acoustic data for the several noise sources
associated with the present configurations, the open sides (spanwise direc-
Lion) of the deflector were assumed to constitute a cutback angle, y, of 900.
The nozzle height., corrected for weight flow reduction, was taken at the
nozzle exhaust plane. An alternate approach would have been to assume the
characteristic nozzle height to be the dimension between the deflector lip
and wing surface. However, this dimensional consideration was accounted
for in the present analysis by the deflector lip immersion ratio, Im "Im

T
(see table II for Im" I 	 values). The nozzle roof angle used in the cor-

T
relation of reference 8 was considered herein to be the same as the deflec-
tor lip angler i. e„ , 0.

I
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Noise Source I - Fluctuating Lift Noise

The correlation of noise source I (fluctuating lift noise) was accom-
plished in reference 8 with 5:1 aspect ratio slot nozzles having a variety
of nozzle roof (kickdown) angles and with and without nozzle sidewall cut-
back. The correlation curve is shown in figure 10(a) for flap settings of
200 and 600. Also shown in the figure are the data obtained in the present
work with the 5:1 aspect ratio slot nozzle using external deflectors fn order
to achieve powered lift. The ordinate in figure 10(a), as in reference 8, is
given by the following relationship:

U.	 W.
SPLI* p = SPLI p + 10 m log ? + 10 log 1 - 40 log U. - 10 log A (1)

Um 	W

where

m=10-4 1+0.5	 1	 (2)
1+0_1

M$

For the data herein, m = 5.70 and 4. 72 for M  values of 0.602 and 0. 8031
respectively.

The abscissa in figure 10(a) consists of: (1) the characteristic normal-
ized shear layer height, 8 * ; (2) the normalized nozzle height, h * ; and (3)
terms accounting for the external deflector angle, ^, The term accounting
for the nozzle sidewall cutback angle, y, with the external deflectors used
reduces to a constant value of 2. 0 for the present configuration (1 + sin 3y =
2. 0, where y = 90°). From figure 10(a) it is apparent that the present data
generally plot at higher SPLI 

p 
values than that represented by the curve

from reference 8. Also, the datafor the 400 half-lip deflector lies below
that for the full-lip deflector. The present data trend has the same slope
exponent as that in reference 8; namely, a 4-power exponent.

Examination of the data led to the inclusion of a deflector lip immersion
Im; Im T . This terns accountsfor the irnwersiou of the deflector i:p into

II'
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the nozzle exhaust flow. It adjusts, in a sense, the nozzle height from the
nozzle exhaust plane to the trailing edge of the deflector lip. Correlation
of SPLIT p in terms of the abscissa parameters given in figure 10(a) and

2
the deflector-lip immersion parameter, (1 + (ImflmT 

//
) 21 is shown in figure

10(b). The solid curve, included in the figurefor comparison, represents the
slot nozzle configurations of reference 8. (The ratio I.,/Im 

T 
for the ref-

erence 8 configurations is zero because no deflector was used. ) The pre-
sent data for noise source I correlate well, particularly with a 20 0 flap set-
ting, with these parameters and on the same carve as the data in reference 8.

With a 600 flap setting, the data deviate from the correlation curve in
much the same manner as those in reference 8. The lack of correlation
for the 400 half-lip deflector with a 60 0 flap setting is again believed due
to the partial separation of the flow from the surface at the 60 0 flap setting
as discussed in appendix A and also in reference 8.

Noise Source II - Trailing Edge Noise

The present data for noise source lI are presented in figure 11(a) in
terms of the correlation parameters developed in reference 8. Also shown
for comparison is the correlation curve for the slot nozzle configurations
from this reference. The ordinate is given by:

W.	 U.
SPL** p = SPL11 P + 10 log W + 50 log 

U 
-80 log Uj - 10 log A	 (3)

m

while the abscissa is given by 5 * /h* . It is obvious from figure 11(a) that
the preceding parameters do not correlate the present data. The data
trends, as plotted in figure 11(a), indicate a higher slope than that in ref-
erence 8 and a dependency on flap setting.

Because of the limited range of the data, several possible correlations
were examined before a final arbitrary selection was made. All the corre-
lations had a common basis; namely that the measured noise source II was

f
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a composite of noise (anti-logarithmic sum) due to the flow over the trailing
edge and the deflector. Consequently, the trailing edge noise correlation
for the slot nozzle was separated out of the measured i,oise level by assum-
ing that the trailing edge noise was represented by the correlation of ref-
erence 8. The remaining trailing edge noise attributed to the deflector was
then analyzed and correlated. The result of this data correlation is shown
in figure 11(b). The ordinate in figure 11(b) is given by:

W•	 U•
SPLII -D,p - SPL11-D p + 10 log 1 + 40 log	 - 80 log U  - 10 log A (4)

W	 Um

Also, the abscissa is given by b*/h* (1 + sin 2a)-I (IM'IInT ). These corre-

lation terms yield a 1-power slope or exponent as indicated in figure 11(b).
Note that the exponent of Ui/UM in equation(3)is reduced from 5 to 4 in eq-
uation (4). The effect of flap setting noted for figure 11(a) is accounted for by
the inclusion of the a-function in figure 11(b). The deflector-lip immersion
ratio (I ri1, IMT) correlates the full-lip with the half-lip deflector data.

Thus, the total peak noise source II level is obtained from the anti-
logarithmic sum of the nozzle associated flow noise at the trailing edge ob-
tained from equation (3) and the curve in figure 11(a) or reference 8 and the de-
flector associated flow noise at the trailing edge obtainedfrom equation(4)and
the curve shown in figure 11(b). Note that when Iill IIII is zero (no deflector),

the level of noise source II is that given in reference 8 for slot nozzles. 	 is

Noise Source III - Jet Mixing Noise

The data for noise source III are presented in figure 12(a) in terms of
the correlation parameters developed in reference 8 for slot nozzle con-
figurations. Also shown in the figure is the correlation curve for the slot
nozzle configurations from this reference. The ordinate is given by:
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U.	 W
SPLIII p = SPLIII p + 40 log ? + 10 log i - 80 log U.

Una	 W

- 10 log A + 20 log (1 + sin2 a')

while the abscissa consists of 6 * / h* with appropriate geometry param-
eters as indicated in the figure. As in the case of noise source II, the
present data are not correlated by the parameters developed for the slot
i,, zzle configurations in reference 8.

Consequently, the data were analyzed on the basis that the measured
data for noise source III with the external deflector configurations also
consisted of the anti-logarithmic sum of redirected jet mixing noise (due
to the nozzle flow interaction with the wing l 'flap (ref. 8)) and deflector noise
(due to the flow interaction with the deflector). The latter noise was corre-
lated in terms of the parameters shown in figure..12(b) where:

iJ.	 W.
SPLIU _L p = SPLIII-U p + 30 log ? + 10 log i - 80 log U j - 10 log A (6)

U

and the abscissa is given by 5*/h*(2-cosl3)(1+sin2a)Im;`Inl T . The data

appear to be reasonably well correlated by these parameters. Again, as for
the noise source II, the deflector associated noise source III becomes zero
when Im/Im 

T 
is zero (no deflector). The total peak noise source III level

is obtained from the anti-logarithmic sum of the nozzle associated noise
(obtained from eq. (5) and the curve from fig. 12(a) or ref. 8) and the de-
flector associated noise (obtained from eq. (6) and the curve from fig. 12(b)).

FREQUENCY AT PEAK SPL

As is evident from the spectral data shown in figure 8, as well as
that obtained in the entire program, the peak frequencies associated with

G
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the peak SPL values and the spectral shapes are substantially similar for
slot nozzles with or without external deflectors provided the jet flow is at-
tached to the wing/flap  surfaces. Therefore, the relationships predicting
these frequencies for noise sources I and Il for slot nozzles also apply to
the present configurations with external deflectors.. The spectral shapes
for each of the noise sources given in reference 8 with slot nozzles also
are valid for the present configurations.

The prediction of the acoustic spectra for the nozzle/deflector/wing
configuration herein is procedurally similar to that given in reference 8.
In this procedure, the noise sources are assumed uncorrelated and Thus
the total sound field can be approximated by summing anti-logarithmically
the contributions of the various noise sources.

CONCLUDING REMARKS

The various jet and interaction noise sources associated with STOL
engine over-the-wing configurations using a variety of 5:1 aspect ratio
slot nozzles were correlated in terms of configuration related geometry
and flow parameters in reference 8. Use of an external deflector for pro-
moting jet flow attachment to the wing/flap surfaces requires additional
analyses in order to include the effect of the deflector geometry on the pre-
viously identified noise sources. Because of the limited data available,
several correlations could be obtained that provide a high and equal degree
of data correlation. The final correlation parameters presented herein
for the deflector associated noise were selected on the basis of the least
variation from the parameters developed for slot nozzles in reference 8.
Further work to verify the selection of these deflector parameters is
needed. Finally, the noise levels of the present type of external defl- •°-
tor configurations having optimum aerodynamic characteristics remain
to be established.

a
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APPENDIX A

MACH NUMBER FLOW CONTOURS AT FLAP TRAILING EDGE

Mach number contour maps obtained normal to the flap trailing edge
are shown for all the present external deflector configurations in figures
13 to 15 for a nominal ,het exhaust Mach number of 0.8. The procedural
details used in obtaining these contour maps are given in reference 5.
From these maps, velocity profiles were developed at the flap trailing
edge centerline, The latter were used to determine the 6 * and Um
values necessary for the aerodynamic parameters in the correlation of
the acoustic. data..

The present configurations all showed a large spanwise distribution
of the nozzle flow at the flap trailing edge. Good attachment is apparent
for nearly all the data shown. However, with a 600 flap setting and the
nozzle located at 21<<^ chord, thr, location of the peak velocity (Mach num-
ber) was considerably farther away from the trailing edge surface than
for all other configurations, From this it may be implied that some degree
of flow separation from the flap is being encountered. In addition, the 400
half-lip deflector for this operating condition, has a much thicker trailing
edge shear layer (fig, 15) than the other configurations. This can also be
interpreted as a further indication of some flow separation from the flap
surface. As indicated in reference 6, lirr.<ted visual flow studies con-
firmed these observa6ms,

I
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APPENDIX B

NOMENCLATURE

(All data are in SI units,)

A nozzle exhaust area

De equivalent nozzle diameter

h measured nozzle height

h* normalized nozzle height

Im flap immersion into jet flow

Z wing chord length upstream of nozzle exhaust plane

L shielding surface length

Ls projected shielding length parallel to wing chordline

LT lift.

M Mach number

m exponent defined in text (eq. (2))

SPL* normalized SPL, defined in text

SPI, measured sound pressure level, dB re 2x10 -5 N/m2

T thrust

U flow veloci"y

W weight flow

Y,x,y,C,D wing surface contour dimensions (see figs. 2 and 3)

a flap setting (angle)

i3 deflector or nozzle roof angle (ref. 8)

Y nozzle sidewall cutback angle (ref. 8)

8 local shear layer thickness at flap trailing edge

f
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b	 shear layer thickness where U = 0, 5 Um

6*	 normalized shear layer thickness dimension at U = 0, 5 Um

I, II, III	 noise sources

Subscripts:

1	 D	 deflector
I'I

i	 ideal

j	 jet exhaust

Z	 local

m	 maximum

p	 peak

T	 total

I, II, III	 noise sources
a

L
^	 a

l
_.,



17

REFERENCES

1. M. Reshotko, W. A. Olsen, and R. G. Dorsch (1972). "Preliminary
Noise Tests of the Engine-Over-the-Wing Concept, I. 30 0-600 Flap
Position," NASA TM X-68032.

2. M. Reshotko, W. A. Olsen, and R. G. Dorsch (1972). "Preliminary
Noise Tests of the Engine-Over-the-Wing Concept. R. 10 0-200 Flap
Position, C ° NASA TM X-68104.

3. M. Reshotko, J. H. Goodykoontz, and R. G. Dorsch (1973). "Engine-
Over-the-Wing Noise Research," 6th Fluid and Plasma Dynamics
Conference, Palm Springs, Calif., AIAA Paper 73-631.

4. M. Reshotko and R, Friedman (1973). "Acoustic Investigation of the
Engine-Over-the-Wing Concept Using a D-Shaped Nozzle, " Aero-
Acoustic Specialists Conference, Seattle, Wash., AIAA Paper 73-1030

5. U. von Glahn and D. Groesbeck (1975). "Geometry Effects on;STOL
Engine-Over-the-Wing Acoustics with 5:1 Slot Nozzles, T ' NASA TM
X-71820.

6. U. von Glahn and D. Groesbeck (1976). "Nozzle and Wing Geometry
Effects on Or!W Aerodynamic Characteristics, 11 12th Propulsion
Conference, Palo Alto, Calif., AIAA Paper 76-622.

7. U. von Glahn and D. Groesbeck (1975). " Acoustics of Attached and
Partially Attached Flow for Simplified OTW Configurations with 5:1
Slot Nozzle, " NASA TM X- 71807.

8. U. von Glahn and D. Groesbeck (1976). " OTW Noise Correlation for
Variations in Nozzle/Wing Geometry with 5:1 Slot Nozzles," 3rd Aero-
Acoustics Conference, Palo Alto, Calif., AMA Paper 76-521.

9. U. von Glahn and D. Groesbeck (1976). "Effect of External Jet-Flow
Deflector Geometry on OTW Aero-Acoustic Characteristics," 3rd
Aero-Acoustics Conference, Palo Alto, Calif., AIAA Paper 76-499.

1



r	 1

18

TABLE I. - CONFIGURATION WEIGHT FLOWS; M  = 0.8

Deflector Nozzle Ratio measured-to-ideal weight flow, W/Wi:
chordwise

200 Flap setting 600 Flap settinglocation,

300 Full lip 21 0.962 0.943
400 Full lip ( .937 .911
400 Half lip y .956 .937

300 Full lip 46 0.949 0.937
400 Full lip 905 .918
400 Half lip . 949 .937

W/Wi:

300 Full lip ' No wing 0.989
400 Full lip . 989
400 Half lip 1 .998

Y

i

i,	t
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TABLE II. - DEFLECTOR LIP IMMERSION

IN JET STREAM

Im
Nozzle ^	 + + mT	-

Deflector Nozzle Flap setting,
ImT, ^n' ^nTchordwise 015 cm

location, deg

17,c

300 Full lip 21 20 2.29 0.39
46 20 2.39 .37

21 60 2.36 .11

46 60 2.41 .37

400 Full lip 21 20 2.24 0.42
46 20 2.34 .40

21 60 2.34 .40

46 60 2.36 .40

400 Half lip 21 20 2.26 0.23
46 20 2.29 .22

21 60 2.34 .22

46 60 2.44 .21

1
{

I	 ^
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Figure 1. - Conceptual OTW nozzle-on-wing configuration	 h. i
with external deflector.

F

tal 5:1 SLOT NOZZLE.
FULL-SIZE LIP,

HALF-SIZE LIP
V--D Ii0 NOZZLE AXIS]

10.2	

—i
—i

^t'
a
W

W

FLAP
ANGLE.
4 DEG

NOZZLE POSITION,
%CHORD

DEFLECTOR ANGLE 0

300
40P.FULL LIP

400-
;SLIP

C I D C I	 D C D

20 21
46

4.0 1.40
1.50

3.03 1.30
L 40

3.20 1.75
1.78

60 21

46
p 1.47

1.52
1-40

1.42
1.83

1.93

161 DEFLECTOR DIMENSIONS WITH 5.1 SLOT NOZZLE. ALL DEFLECTORS WERE
15.2 CM WIDE.

Figure 2. - Sketches of test nozzle and external deflectors. Dimensions In
centimeters.
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^-Y
WINf. CODRDINAIFS

FLAP ANGLE alts 00.4 0.5 0.6 0.7 1 0.8 0.9 0.95 0.975 LO
CL DEG ylY

20 0 0.04 0.l3 0.26 0.46 0.70 0.95 -•-•- 1.0

i	 60 0 O. D2 0.0550.1250.25 O.G 0.61 0.76 1.0

WING DIMENSIONS

MP NOZZLE POSITION. Y, d, Ls.
ANGLE 96 CHORD CM CM CM
o. DEG

20 21 6.6 6.9 33.9

d32

46 6.6 15.2 25.4

60 21 14.3 6.9 30.5
46 14.3 15.2 221

Figure 3. - Wing dimensions and coordinates. Dimensions In cen0meters,

NOZZLE LOCATION, DEFLECTOR
%CHORD
21 46

O Q	 30D FULL LIP

O Q	 4d7 HALF LIP
OPEN SYMBOLS DENOTE 200 FLAP SETTING
SOLID SYMBOLS DENOTE 60D FLAP SETTING

5:1 SLOT NOZZLES, REF.6

y

3
J

0
TLW IIWI/TI

Figure 4. - Static turning effectiveness for various nozzle/wing configurations with
external deflectors; Mf . 0.605.
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DEFLECTOR NOZZLE Ma 6e,
LIP CHORD cm

LOCATION,

O 400. FULL 21 0.36 3.2
q 400, HALF I .46 3.3
O 300. FULL 1 .395 3.2
,I 400, FULL 46 .52 2.3
v 400, HALF I .61 2.4
O 30°, FULL i .55 2.3

1.4

v

1.2

v
1.0 O

0
8

ba

DEFLECTOR NOZZLE MP	lie,
LIP CHORD cm

LOCATION,

O	 40P, FULL 21 0.28	 4.95
q 	 40	 HALF, I .375	 5.85
O	 300 .FULL t .305	 5.15
,ni	 400, FULL 46 .41	 3.70
v	 400, HALF I .535 4.20
0	 300, FULL 1 .45	 3.70

-	 I W

6
0 v

.4

)01

2 ^

0,2 .4 .6 .B 1.0	 .2 .4	 .6	 .8 1.0
MLIMP

WI NA FLAP SETTING. 	 (b) 6d' FLAP SETTING.

Figure 5. - Normalized trailing edge velocity profiles at nozzle centerline; M i . O.B.
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1
1H	

70

=3 100N
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d

Z

90
N

80

ta) 200 FLAP SETTING.

/^T

d'T
1

DEFLECTOR

O	 300 FULL LIP

O	 4t1° FULL LIP

100	 O	 40o HALF LIP

30130 SLOT NOZZLE

70 1	 1	 1	 1	 1

.2	 .5	 1	 2	 5	 10	 20

FREQUENCY, kHz

(b) 60P FLAP SETTING.

Figure 8. - Representative spectral comparison of external
deflector configurations with 30130 slot nozzl,, from ref-
erence 5 Mj

, 0.8; nozzle at 21% chord.

NOISE SOURCE

I - FLUCTUATING LIFT
II - TRAILING EDGE

III - REDIRECTED JET MIXING NOISE INCLUDING
SURFACE REFLECTED NOISE

NOISE SOURCE

a	 I	 ]I

1
W

t	 III

	

/ J 1	
NOZZLE ONLY

a	 ^ i
v i
z

0

FREQUENCY—

Figure 9. - Noise sources associated with OTNfcon-

figurations.
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DEFLECTOR

0 300 FULL LIP
C 40P FULL LIP
0 40P HALF LIP

SLOT NOZZLES (REF. 81

OPEN SYMBOLS DENOTE 2( P FLAP SETTING
SOLID SYMBOLS DENOTE 60P FLAP SETTING

TAILLESS: U	 0
TAIM)• 11 

U L , 198
	 o6-

45

3;'

25
2 	3	 4	

5 3 1)]	
6	 7

f(2- cos p)(I -sin

(a) CORRELATION PARAMETERS OF REFERENCE 8 APPLIED TO PRESENT
DATA

0 Ak

40

35

30

3	 4	 5	 6	 7	 8	 9

 - cDs 5)11 + sin3y)	 +Ch7112 
	 [ _MT

W) CORRELATION OF REFERENCE 8 MODIFIED TO INCLUDE DEFLECTOR AS-
SOCIATED DIMENSIONS.

Figure IQ - Peak SPL correlation for fluctuating life noise SOUrLe
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DEFLECTOR

O	 30o FULL LIP
q 4CP FULL LIP
O 4(P HALF LIP

CLEAR SYMBOLS DFF;JTE 20a FLAP SETTING
SOLID SYMBOLS DENOTE 60o FLAP SETTING

TAILLESS:	 U,	 198 mIsec
1161	 lsecTAILED:	 J	 m

-55

1
60

a -65

/	 SLOT NOZZLES
tR EF. 8)

r -70 —1—	 —

1 2	 3	 4
x	 J^

5
^	 ^ z

v" (al CORRELATION PARAMETERS [ROM REFERENCE B APPLIED

CL TO PRESENT DATA.

- 55
0

v

-60L .
C3 Q	 •	 q

65	 Q U

•	 `-I-POWER SLOPE

-7011 	 1	 1	 1	 1	 1

.2	 .3	 .4	 .5	 .6	 .7

6-^1 + sin 2 al l^lrnT )]

(b) CORRELATION OF DEFLECTOR NOISE SOURCE.

I igure 1L - Correlation of trailing edge related noise source H.

DEFLECTOR

G	 30o FULL LIP
q 40o FULL LIP
O 40o HALF LIP

OPEN SYMBOLS DENOTE CLEAR, 20o FLAP SETTING
SOLID SYMBOLS DENOTE SOLID, 60P FLAP SETTING
TAILLESS:	 U . 198198 misec
TAILED:	 U . -261 mise,

)„ -55 •

^i co •	 •
0

o a -60 n n

^^oN O QG♦•q^L]

N -65 QG

— REF. 8 CORRELATION
Cr
0 CURVE (1-POWER SLOPE)
z

70
i

2	 3	 4	 5

6* 1ha 	 [(I - cos p)(1 + sin312 YI(I + sin 2 a) 11

(ai CORRELATION PARAMETERS OF REF. 8
APPLIED TO PRESENT DATA.

-65
w

a °-70	
Q	

13oa 	 qZ
I POWER

o v	
75	

O	 SLOPE
N w	 .

	

2	 .4	 .6	 .8

6'Ih`I)))))(2- cos 51 0 +sin 2 0) 1(ImlImT)Jll

(b) CORRELATION OF MIXING NOI'-E RELATED
TO DEFLECTOR.

Figure IZ - Correlation of peak SPL for mixing
noise source II I-
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LOCAL MACH NUMBER 4

2
2

5	
.6

0

ia12& FLAP SETTING; NOZZLE AT 46% CHORD.

4

3	
2IN

.46C0

c

(0) 2d' FLAP SETTING: NOZZLE AT 21% CHORD.	 F5

6 WU6
C7

2	 4
/	 s

'3	
2

	

.5<.5	
zOQ

Ie161P FLAP SETTING; NOZZLE AT 46% CHORD.	 c

6

l^

4

2

0
SPANWISE DISTANCE FROM NOZZLE CENTERLINE. Cm

Of 60P FLAP SETTING; NOZZLE AT 21% CHORD,

Figure 15. - Mach number contours at flap tailing edge with 401
half-lipdeflactor; mi. 0.&
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