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A PARAMETRIC ANALYSIS OF VISUAL APPROACHES FOR HELICOPTERS

Gene C. Moen,* Daniel J. DiCarlo, and Kenneth R. Yenni

Langley Research Center

SUMMARY

A flight investigation was conducted to determine the characteristic shapes of the

altitude, ground-speed, and deceleration profiles of visual approaches for helicopters.

Two hundred and thirty-six visual approaches were flown from nine sets of initial condi-

tions with four types of helicopters. Mathematical relationships were developed that

describe the characteristic visual deceleration profiles. These mathematical relation-

ships were expanded to develop equations which define the corresponding nominal ground-

speed, pitch-attitude, pitch-rate, and pitch-acceleration profiles.

INTRODUCTION

Numerous studies have been undertaken to improve the instrument flight capability

of helicopters during the final approach phase of flight. Various instrument approach

procedures have been studied ranging from the standard straight-in ILS (instrument land-

ing system) approach to the more complicated curved, decelerating, variable-glide-slope

approach. A typical method of attack during these investigations has been to predefine a

set of approach parameters (for example, altitude and velocity profile shapes) and inves-

tigate them under simulated instrument flight conditions. In many instances, even though

the predefined parameters were valid to accomplish the task safely, pilots were reluctant

to follow the guidance precisely to accomplish the desired profile because of "unnatural"

physiological cues. A typical comment was, "It feels like the helicopter is ’falling out’

during flare." It was believed that "natural" cues were those physiological cues asso-

ciated with approaches conducted under visual flight conditions. It followed that an

analysis of typical VFR (Visual Flight Rules) approaches might identify what constitutes

a "natural feeling" approach. This information could then be incorporated into the IFR

(Instrument Flight Rules) schemes under investigation.

The present investigation was undertaken to measure and define the characteristic

shapes of various visual approach profiles. The approach parameters of ground speed

and altitude were measured and recorded as functions of range, and the data were

^Langley Directorate, U.S. Army Air Mobility R&D Laboratory.



subsequently processed to determine the average (nominal) profiles for ground speed,

altitude, and deceleration. In addition, parametric and graphical analysis techniques

were used to develop a mathematical representation of the deceleration profiles, and

these results were further used to develop analytical expressions for defining ground-

speed, pitch-attitude, pitch-rate, and pitch-acceleration profiles.

The results from this study have several potential uses. First, knowledge of how

pilots fly visual approaches will be of value in assessing pilot comments from instrument

approach studies. Also, continuous mathematical functions have been developed which

describe the characteristic visual deceleration and ground-speed profiles; these equations

could be used to develop instrument approach control laws and to define further the cor-

responding hardware requirements. In addition, knowledge of the visual-profile charac-

teristics should be of value to traffic control planners in developing or assessing terminal-

area traffic control procedures.

SYMBOLS

The units for physical quantities defined in this paper are given in both the Inter-

national System of Units (SI) and U.S. Customary Units. All measurements and calcu-

lations were made in U.S. Customary Units. Factors relating the two systems are given

in reference 1. Secondary scales, incorporating U.S. Customary Units, are included in

several figures to assist the user in developing instrument approach profiles compatible

with existing aircraft instrumentation.

c constant (see eq. (3))

g acceleration due to gravity (Ig 9.8 m/sec2 (32.2 ft/sec2))

k constant, ^ (see eq. (4))

m slope of the ground-speed profile curve, sec

n exponential term

q pitch rate, deg/sec

q pitch acceleration, deg/sec2

t time, sec

2



x,y,z coordinates in rectangular coordinate system, m (ft) (see fig. 3) ^^H
-~ longitudinal drag coefficient, sec" (see eq. (8)) E^^B
y flight-path angle, deg ^^B
0 pitch attitude of the aircraft relative to the pitch attitude for hover (pitch-up HIH

d initial condition for a variable at the start of the deceleration maneuver ^--(Range 850 m (2800 ft)) !^H
max maximum I^^^H

A dot over a symbol indicates the first derivative with respect to time; two dots H^H
indicate the second derivative. ^^H

DESCRIPTION OF TESTS BH
Test Vehicles and Facilities H^^l

Four types of helicopters, shown in figure 1, -were used in the present investigation; !HH
they were selected to represent a cross section of operational helicopters. The general ^HB
characteristics of each helicopter are shown in table I. Each cockpit was equipped with !-IH
the standard instruments for that aircraft. ^^H

All tests were conducted at the NASA Wallops Flight Center and used a GSN-5 ^^H
precision tracking radar (fig. 2) to determine and record the helicopter positions and i^^H
velocities in a rectangular coordinate system (fig. 3), the origin of which was located at H^H
the center of the landing pad. A description of the radar is contained in the appendix. BHI
During each approach, altitude, cross range, and ground speed were recorded as functions H^H
of range on x-y plotters. These plots were subsequently processed to determine the H^H
characteristic profile shapes for visual approaches. E^^H

Task Description I^^H
The pilots’ task was to fly a descending, decelerating, visual approach having a ^^H

predetermined set of initial conditions and terminating in a 12-m (40-ft) hover over a ^^H
landing pad. All approaches were started at a range in excess of 3 km (10 000 ft) and ^^H



one of nine sets of initial airspeed and altitude conditions (fig. 4) was used. The pilots

were instructed to fly what they considered to be a visual approach from the given set of

initial conditions and to assume that there were commercial passengers aboard the air-

craft. In addition, they were instructed to avoid abrupt maneuvers and to maintain the

given initial altitude and airspeed conditions until they initiated either the descent or

deceleration portion of the approach. No approach guidance was provided except for the

standard aircraft instruments normally used for visual approaches. The task was com-

plete when the aircraft was brought to a hover over the landing pad.

FLIGHT RESULTS

Two hundred and thirty-six approaches were flown by both NASA research pilots

and military test pilots. All test subjects were proficient and experienced in the heli-

copter types used in the present investigation. During each approach, the variables of

altitude and ground speed were recorded .as functions of range. These plots were then

processed to determine the arithmetic average values and standard deviations at selected

range intervals. For the purpose of this study, the resulting plots of the arithmetic aver-

age as a function of range were used to provide the characteristic shape for the visual

profiles, and the standard-deviation envelopes provided an indication of how the individual

profiles varied with respect to the characteristic shape. Initially, the data were analyzed

in terms of the individual helicopter types, and the differences caused by these variations

were determined to be minimal.

Altitude Profiles

The altitude profile results are shown in figures 5 to 7. Shown in figure 5 are six

individual altitude profiles which were obtained during the tests and are presented here as

being representative of the multitude of flight data obtained. The approaches from which

these data were taken were initiated at an altitude of approximately 300 m (1000 ft) and

from three different airspeed initial conditions. Also, these data represent the results

from only one test subject in only one helicopter type.

The arithmetically averaged profiles for each of the nine sets of initial conditions

are shown in figure 6. A review of these profiles indicates that the pilots fly a concave-

down flight path until they obtain an average value ranging from 6.5 to 12.5. Following

the concave-down segment, the pilots fly a straight-line segment, terminating with a

concave-up segment which starts approximately 300 m (1000 ft) from the hover point.

A further review of these results indicates that a decrease in the initial airspeed results

in an increased nominal flight-path angle; conversely, a decrease in the initial altitude

results in a decreased nominal flight path.
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The altitude standard-deviation envelopes are shown in figure 7. A review of this

figure indicates that the standard deviation, which is a measure of profile repeatability,

varied primarily as a function of the altitude initial condition and was not significantly

affected by variations in the airspeed initial condition.

Ground-Speed Profiles

The results for the ground-speed profiles are shown in figures 8 to 10. Shown

in figure 8 are five typical ground-speed profiles which again represent actual flight-

test data obtained from a single test subject and a single helicopter type. The visual

approaches from which these data were taken were initiated from an 80-knot airspeed

initial condition and from three different altitude initial conditions, as shown in the figure.

The arithmetically averaged ground-speed profiles (fig. 9) have been grouped by

their airspeed initial conditions, and all profiles exhibit the same characteristic shape.

A review of these nominal profiles indicates that there is a tendency to fly a slightly

faster approach when the approach is initiated from the lower altitudes. The ground-

speed standard-deviation envelopes are shown in figure 10. A review of this figure indi-

cates that the ground-speed standard-deviation values were significantly larger for the

100-knot (high-speed) approaches than for either the 80- or 50-knot approach. From

discussions with one of the test subjects, it is believed that the larger standard-deviation

envelopes were caused by the pilot task requirement for holding the initial airspeed until

he initiated the deceleration maneuver. Furthermore, this test subject indicated that, in

the absence of the defined task, he would have preferred to have slowed the approach

speed to approximately 80 knots at a range of approximately 2 n. mi. which, in turn, would

probably have resulted in ground-speed profiles similar to the 80-knot profiles shown in

figure 10.

Visual Deceleration Profiles

The visual deceleration profiles are shown in figure 11. These profiles specifically

represent the component of deceleration measured along the X-axis of the coordinate sys-

tem. The circles shown in the figure represent the average deceleration value at that

specific range and were obtained by graphically differentiating the arithmetic average

ground-speed profiles shown in figure 10. The equation which was used to compute the

deceleration levels at the various range points was derived from the equation for the slope

of the ground-speed profile, which is

m ^ (1)
dx
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Dividing both sides of equation (1) by dt and rearranging yield

x mx (2)

where m is the slope of the ground-speed profile and x is the ground-speed value at

the specific range points.

Graphical differentiation methods usually result in a scatter of the differentiated

values, and this feature was observed in the slight scatter of the circles shown in figure 11.

However, even with the slight scatter, the circles reasonably define the characteristic

shape of the nominal deceleration profiles. These visual deceleration profiles exhibit a

concave-up characteristic over a major portion of the deceleration maneuver, which builds

up to a maximum level at approximately 60 m (200 ft) from the landing pad. For eight of

the nine initial-condition cases investigated, the maximum nominal values of deceleration

varied between 0.14g and 0.19g. The remaining case was the low-altitude, high-speed

approach which had a maximum nominal deceleration, level of 0.24g.

ANALYTICAL RESULTS

The flight-test results were analyzed further by using parametric and graphical

techniques, and the analysis has led to the development of mathematical relationships that

describe the nominal deceleration, ground-speed, pitch-attitude, pitch-rate, and pitch-

acceleration profiles for visual approaches. The best parametric results were obtained

when the parameter x- was plotted as a function of x on log-log paper. One example

of this parametric plot is shown in figure 12. The data points represent computed values

of the parameter S- for the 100-knot, 300-m (1000-ft) case, and the ground-speed and
x

deceleration values used to compute these points were taken from figures 10(h) and ll(h),

respectively, before the figures were reduced for this report.

The form of the equation for a straight-line plot on log-log paper is given in ref-

erence 2 and, for the parametric plot shown in figure 12, yields the following equation:

S ex" (3)
x

where n is the geometric slope of the straight line and c is the ordinate intercept for

x 1.

Algebraic rearrangement and substitution yield the following equation for

deceleration:

x ^ (4)x x"
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where x is in m/sec2 (ft/sec2) and k is equal to the reciprocal of c. (This recipro-
cal relationship is used in the development of all following equations.)

Nominal Deceleration Profiles

Analysis of the flight-test data has indicated that the nominal deceleration profiles
have the form of equation (4). The accuracy of this representation was evaluated by com-

paring the actual flight-test data with deceleration profiles obtained from equation (4)
using suitable values for n and k.

x2Values for n were obtained by plotting the parameter against range x for
x

each of the nine flight-test cases and then measuring the geometric slope of the straight-
line approximation which was drawn through the data points. (An example of these plots
was previously discussed and is shown in fig. 12.) The constant k can be evaluated by
substituting known values of ground speed and deceleration at any initial range x-i into

equation (4) and solving for k as follows:

x n
k ^2 ^d (5)

^The range x, for starting the deceleration maneuver computations was selected
at 850 m (2800 ft) because, for all approaches, 80 percent or more of the deceleration took

place within the last 850 m (2800 ft) of range. The corresponding initial ground speed
x, was obtained from the arithmetic average ground-speed profiles (fig. 10).

The initial deceleration level x, was first estimated from the flight deceleration
data (fig. 11), and then, through an iterative process, subsequent values were selected for
x until the continuous curves fit the flight deceleration data points reasonably well.
These analytically derived profiles were then superimposed on the flight deceleration data
as shown in figure 13. It can be seen that equation (4) provides a close mathematical

description of the flight-test data for each of the nine sets of initial conditions.

After determining the values of n and x, (which is used to compute k) for each
of the cases, it was recognized that a relationship existed between these values and the
initial ground speed x,. Shown in figure 14 is a plot of the exponential term n as a
function of initial ground speed Xj. It can be seen that the values of n tend to decrease
as values of x^ increase. Furthermore, a smooth curve (as indicated by the dashed

line) can be passed through seven of the nine data points, which, in turn, implies an empir-
ical relationship between these two parameters. After obtaining the final values for Xj,

it was again noted that these values varied basically as a function of x^; this relationship
has been plotted in figure 15. Again, seven of the nine data points can be connected by a

smooth curve. The significance of the dashed curves shown in figures 14 and 15 is that
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these curves relate the exponential term n and the constant k to the common param-

eter x^.

Nominal Ground-Speed Profiles

By inspection, it can be seen that the ^ portion of the second term of equation (4)
x

is equal to the factor m in equation (2), which, in turn, is defined as ^x in equation (1).

This inspection and subsequent substitution leads to the following differential equation:

dx k dx (6)
x x"

Integrating equation (6) between corresponding limits yields

f dx p k dx

w"
or

1-n
x kx^"" d

"x^ -1 n 1 n

and solving for x yields

k /^l-n. l-n)
x ^e1-^ /

(7)

where x is in m/sec (ft/sec).

The ground-speed profiles shown in figure 16 were computer-generated by using

equation (7). Direct comparison of these profiles with the average ground-speed profiles

obtained from flight data (fig. 10) indicates that equation (7) provides an extremely close

reproduction of the flight-test data.

Nominal Pitch-Attitude Profiles

An approximate value for the nominal pitch attitude can be determined from the fol-

lowing equation:

e 57^ ^ (^X^ (8)
g \ 3u /

Q-p

where -x corresponds to the stability derivative Xy in the body force equations on

page 124 of reference 3.
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Substituting equation (4) into equation (8) yields the following equation for the nom-

inal pitch-attitude profiles:

57 3 kx2 /^Fy\.’
^ ^^(l^ W

where 0 is in degrees and is measured with respect to the hover pitch attitude (pitch-
up positive).

Nominal pitch-attitude profiles were obtained from computer solutions of equa-
tion (9). In these solutions, a value of 0.025 sec"^ was used for the longitudinal drag

8F-Xcoefficient and was based on flight-test data from helicopter 3. It should be noted
Q-F du

that varies depending upon the aircraft; for example, flight-test results from heli-

1 ^Xcopter 4 yield a value of 0.019 sec for Thus, when applying equation (9) to a
ou

specific aircraft, an appropriate value should be used for the coefficient.

The nominal pitch-attitude profiles (fig. 17) exhibit the same characteristic shape as

the nominal deceleration profiles (fig. 13). Furthermore, the maximum pitch values occur

at approximately the same range (x 60 m (200 ft) from the landing pad) as the maximum

deceleration values. In all cases but one, the maximum nominal pitch values varied from

7 to 8.5. The one exception was the low-altitude, high-speed approach (fig. 17(g)) which

had a maximum value approaching 11.5. This exception is consistent with the deceler-

ation profile results (fig. 13(g)), wherein the same case resulted in the highest maximum

deceleration value.

Nominal Pitch-Rate Profiles

An equation for pitch rate can be obtained by differentiating equation (9) with respect
to time and by further substituting equation (4) into the differentiated expression. This

yields

57.3k 2kx3 nx3 f^X^" /,/.q ~g ~^ ~^i +\^j^_ (10)

where q is in deg/sec.

The nominal pitch-rate profiles which were obtained by using equation (10) are

shown in figure 18. A review of this figure indicates that the nominal pitch-rate values

gently increase up to a point approximately 120 m (400 ft) from the landing pad. A

further review of the figure indicates that the highest nominal pitch rates are negative

(pitch-down), approach or exceed -1.0 deg/sec, and occur at a range of approximately

12 m (40 ft) from the landing pad.

9



Nominal Pitch-Acceleration Profiles

The pitch-acceleration equation can be derived by differentiating equation (10) with

respect to time and by further substituting equation (4) into the differentiated expression.

This yields the following equation:

., 57.3j 6k3x4 7nk2x4 n(n + l)kx4 ^X/^x3 nkx3^ (11)q -r^^- ~,2wT +
x"+2 ^ I x2" xn+i/f

The nominal pitch-acceleration profiles are shown in figure 19 and were computer-

generated by using equation (11). A review of these profiles indicates that the highest

pitch accelerations are also negative, vary from -0.17 to -0.62 deg/sec2, and occur at a

range of approximately 36 m (120 ft).

Visual Profile Summary

With the exception of the ground-speed profile, all profiles achieved their maximum

values during the last 120 m (400 ft) of the approach. These maximum values have been

tabulated in a matrix format and are shown in figure 20.

Subelement A of this matrix contains the value of the nominal time interval required

to complete the last 850 m (2800 ft) of the approach. These time interval values were

obtained directly from the computer listings while generating the nominal deceleration

profiles shown in figure 13. A review of the matrix indicates that these time intervals

varied from 41 to 94 sec and that the low-speed approaches involved the longest time

intervals.

DISCUSSION

Significance of Pitch-Axis Profiles

During a helicopter decelerating approach, the pitch axis is the primary control axis

because deceleration is primarily a function of pitch attitude. This is verified by the fact

that most of the adverse pilot comments received during helicopter instrument approach

studies have dealt with pitch-axis control inputs during the latter portion of the deceler-

ation maneuver. For example, in reference 4 it is indicated that both the linear decel-

eration profiles (i.e., ground speed was a linear function of range) and the constant

deceleration profiles yield undesirable pitch-axis control characteristics close to the

hover point. Specifically, the linear deceleration profiles resulted in the pilot’s impres-

sion that he was being commanded to hover well short of the touchdown point, and the

constant deceleration profiles resulted in the pilot’s objecting to a high-pitch-low-power

condition when coming to a hover.

10



An analysis of the visual approach data indicates that, under visual conditions, the

pitch-axis control activity increases significantly during the last 120 m (400 ft) of the

approach. Furthermore, this is the same region of the approach where the helicopter is

in transition to the hover condition and is also the same region wherein the unnatural

physiological cues have been encountered during instrument approach studies.

Application of Mathematical Relationships

The mathematical relationships developed in this study can be used to define instru-

ment approach profiles which potentially do not result in unnatural physiological cues that

have been encountered on some of the previous instrument studies. However, before

applying these relationships, it is necessary for the user to select values for the exponen-
tial term n and the coefficient k. Values for n can be selected from the curve shown

in figure 21. This curve is based on the flight-test data shown in figure 14 and represents
a smooth curve drawn through seven of the nine data points.

The coefficient k can be computed by using equation (5); however, before using the

equation, it is necessary to select initial values for the variables on the right-hand side

of the equation. A value of 850 m (2800 ft) should be used as the value for x., because

the flight-test data and the subsequent development of mathematical relationships were

based on that value for the initial range. A value for the initial ground speed x, can be

selected at the discretion of the user. After selecting the initial ground speed the user
must determine the initial deceleration level x A value for x, can be selected from

one of the curves shown in figure 22. During this study, it was found that the maximum

(peak) deceleration could be varied by varying the initial deceleration level. Thus, a

number of computer runs were made by using an iterative process to determine the initial

deceleration values which produced maximum deceleration peaks ranging from O.lOg to
0.16g in 0.02g increments. The four curves (fig. 22) represent the results from the com-

puter study and can be used to select the initial deceleration level.

In applying these results to instrument approach profiles, it would be desirable for
the user to program the equations on a computer and subsequently to analyze the profiles
in terms of the defined task. For example, the 0.16g deceleration profiles, in general,
resulted in larger peak values for pitch attitude, pitch rate, and pitch acceleration than

were shown in the corresponding profiles obtained from the nominal flight-test results.

Thus, the 0.16g profiles would probably result in a high pilot workload during the last

portion of the deceleration maneuver.

Summary of Computer-Generated Profiles

The data matrix (fig. 23) has been included in this report in an effort to assist future
users of these data. The numerical values presented in the matrix were obtained from

11



computer-generated profiles that, in turn, were based on using the curves shown in fig-

ures 21 and 22 to determine the values for n and k. Each column represents different

initial ground-speed conditions x.,, and each row represents different maximum deceler-

ation levels varying from O.lOg to 0.16g in 0.02g increments. As shown in the figure key,

the upper left subelement is the time interval required to complete the last 850 m (2800 ft)

of the approach, and the remaining subelements are the numerical peak values for pitch

attitude, pitch rate, and pitch acceleration. In addition, a number of the subelements have

been hatched in an effort to point out particular features of specific profiles.

Specifically, the upper left-hand subelements have been hatched where the time

interval exceeded 94 sec, which was the longest corresponding time interval for the visual

approach data. Thus, it is believed that a deceleration time interval that significantly

exceeds 94 sec will probably result in a prolonged deceleration maneuver with correspond-

ing adverse pilot comments.

The remaining subelements have been hatched where the peak value for that respec-

tive pitch parameter exceeded the corresponding lowest peak value obtained from the

nominal flight-test results. For example, a review of figure 20 indicates that the lowest

peak value for pitch attitude was 7.14. Thus, all peak pitch-attitude values that exceeded

7.14 have been hatched in figure 23.

In presenting these results, it should be pointed out that the hatching was not intended

to eliminate that profile from consideration, but rather to point out any potentially adverse

characteristics of that profile. Similarly, several profiles shown in the matrix have no

subelements which have been hatched, and these have been designated by a dark border.

CONCLUSIONS

A flight investigation has been made to determine whether a characteristic shape

exists for approach profiles utilized by helicopters under visual conditions. Generally,

such was found to be the case, and variations in the characteristic shapes of the profiles

caused by differences in initial conditions were determined. Based on the results of this

study, the following conclusions were drawn:

1. Mathematical expressions were developed that closely describe the nominal

ground-speed and deceleration profiles obtained during flight tests.

2. All visual approach altitude profiles had nominal flight-path values ranging from

6.5 to 12.5 and exhibited a concave-up characteristic over approximately the last 300 m

(1000 ft) of the approach.

3. The maximum values for the nominal deceleration levels varied between 0.14g and

0,24g and occurred at a range of approximately 60 m (200 ft) from the landing pad.
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4. Under visual conditions, the pitch-axis control activity increases significantly
during the last 120 m (400 ft) of the approach.

5. The maximum values for the nominal pitch attitude occurred at approximately the
same range as the maximum deceleration values (60 m (200 ft) from the landing pad) and
varied from approximately 7 to 11.5 (nose-up).

6. The maximum values for the nominal pitch rates are negative, approach or exceed
-1.0 deg/sec, and occur within the last 12 m (40 ft) of the approach in a region where the
pilot is establishing a hover condition.

7. The highest nominal pitch acceleration levels were negative (pitch-down), varied

from -0.17 to -0.62 deg/sec^, and occurred at an approximate range of 36 m (120 ft).

Langley Research Center
National Aeronautics and Space Administration

Hampton, VA 23665

September 14, 1976
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APPENDIX

DESCRIPTION OF TRACKING RADAR

The GSN-5 precision tracking radar measures the position of aircraft in terms of

slant range, azimuth, and elevation angles of the radar antenna. Data from this spherical

coordinate system are transformed into the rectangular coordinate system shown in fig-

ure 3. Transformed aircraft data both positions and rates are recorded on stan-

dard x-y plotters. A passive corner reflector is mounted on the nose of the aircraft to

prevent skin tracking.

The GSN-5 is a K-band radar and has an antenna beam width of approximately 0.5.
This radar is capable of tracking from 0 to 30 in elevation and from 45 to -45 in

azimuth. Position uncertainties in rectangular coordinates are shown in the following

table:

Position uncertainty in coordinate
Range

x y z

km ft m ft m ft m ft

0 0 5 16.4 1 3.28 1 3.28

4 13 150 36 118 2.5 8.2 3.2 10.5

14
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TABLE I.- GENERAL CHARACTERISTICS OF TEST VEHICLES

Characteristic Helicopter 1 Helicopter 2 Helicopter 3 Helicopter 4

Type Light observation Light utility Medium transport Medium transport

Maximum gross weight 12 233 N 37 810 N 68 947 N 84 961 N

(2750 lb) (8500 lb) (15 500 lb) (19 100 lb)

Maximum airspeed 115 knots 120 knots 120 knots 142 knots

Configuration Single rotor Single rotor Tandem rotor Single rotor

Disk loading 148.4 Pa 225.0 Pa 201.1 Pa 301.6 Pa

(3. l ib/ft2) (4.7 Ib/ft2) (4.2 Ib/ft2) (6.3 Ib/ft2)
Power plant Single turbine Single turbine Twin turbine Twin turbine

Total power 410 kW 820 kW 1565 kW 1565 kW

(550 hp) (1100 hp) (2100 hp) (2100 hp)

Control stabilization None Augmented rate Rate Attitude

(gyro bar)



(a) Light observation; helicopter 1. (b) Light utility; helicopter 2.

1^^ .,.,.:".-.Kl...l-Eal,.Bl2^J,;-ES;SM
(c) Medium transport; helicopter 3. (d) Medium transport; helicopter 4.

L-76-234
Figure 1.- Test helicopters.
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Figure 2.- GSN-5 precision tracking radar.
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Altitude, m (ft)

150 ~~300 ^(500) (1000) (1500)___

4 12 4 5 1 12

o 30 24 26
m

5 9 4 11 4 9

-5 2 12 2 10 2 11

^ [--- [-L-^ (---[
-g |-- 28 29 28

| 4 10 5 12 4 11
<c

3 6 5 5 2 6
0

S 22 25 24

4 9 4 11 4 12

A Number of approaches by helicopter 1
A B B Number of approaches by helicopter 2

C Number of approaches by helicopter 3
E D Number of approaches by helicopter 4

E Total number of approaches by all "
c D helicopters

Figure 4. Initial condition matrix.
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Figure 5.- Typical altitude profiles; initial altitude, 300 m (1000 ft).
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Figure 6.- Average VFR altitude profiles.
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Figure 7.- Altitude standard-deviation envelopes for each initial airspeed and altitude. (Lines for arithmetic

average and standard deviation as labeled on upper left are typical.)
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Figure 8.- Typical ground-speed profiles; initial airspeed, 80 knots.
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Figure 9.- Average ground-speed profiles.
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Figure 10.- Ground-speed profiles for each initial airspeed and altitude. (Lines for arithmetic average

and standard deviation as labeled on upper left are typical.)
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Figure 20.- Summary of maximum profile parameter values for visual approaches.
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