View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by NASA Technical Reports Server

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)


https://core.ac.uk/display/42880492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA TECHNICAL NASA TM X-73,180
MEMORANDUM

NASA T™ X-73,180

ADVANCED POROUS TRANSONIC WIND-TUNNEL NOZZLES

Norman E. Sorensen

Ames Research Center
Moffett Field, Calif. 94035

(NASA-TM-X-73180) ADVANCED POROUS TRANSONIC N77-12069

WIND-TUNNEL NOZZLES (NASA) 21 p HC AQ2/MF
AO01 CSCL 14B
Unclas

G3/09 55824
November 1976

P



1. Report No. 2. Government Accemsion No. 3. Recipient’s Catalog No.
NASA TM X-73,180
4. Title and Subtitie 8. Report Date
ADVANCED POROUS TRANSONIC WIND-TUNNEL NOZZLES

6. Performing Organization Code

7. Author(s) 8. Performing Orgenization Report No.
A-681
Norman E. Sorensen 3
10. Work Unit No.
9. Performing Organization Name and Address
o 505-04-11
NASA Ames Research Center 11. Contract or Grant No

Moffett Field, Calif. 94035

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address .
National Aeronautics and Space Administration " :iz:?ii?l M::frandum
Washington, D.C. 20546 ' ™ gy

15. Suppiementary Notes

16. Abstract

Porous wall nozzles appear to offer an attractive alternative to
conventional variable geometry transonic wind-tunnel nozzles. However,
in the past at off-design Mach numbers, the porous nozzle designs resulted
in a nonuniform flow within the test section that was unacceptable. In
those designs, the single plenum chamber backing the porous walls did not
allow proper control of the plenum pressure and effective nozzle length.
Now, new advances in the design and control of the porous bleed flow
distributicn along the nozzle walls promise to solve the problem of
nonuniform flow at off-design conditions. This can be accomplished in a
two-dimensional nozzle with porous parallel sidewalls backed with a single
plenum chamber and employing a sliding compartment wall or backed with
multiple plenum chambers within which the pressure can be controlled.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Wind tunnels Unlimited
Transonic
Nozzles
Porous bleed STAR Category - 09
19. Security Clamif, (of this report) 20. Security Classif. {of this page) 21. No. of Pages 22, Price®
Unclassified Unclassified 21 §3.25

*For sale by the National Technical Information Servics, Springfield, Virginia 22161




ADVANCED POROUS TRANSONIC WIND-TUNNEL NOZZLES
Norman E. Sorensen

Ames Research Center

SUMMARY

Porous wall nozzles appear to offer an attractive alternative to
conventional variable geometry transonic wind-tunnel nozzles. However, in
the past at off-design Mach numbers, the porous nozzle designs resulted in
a nonuniform flow within the test section that was unacceptable. In those
designs, the single plenum chamber backing the porous walls did not allow
proper control of the plenum pressure and effective nozzle length. Now,
new advances in the design and control of the porous bleed flow distribution
along the nozzle walls promise to solve the problem of nonuniform flow at
off-design conditions. This can be accomplished in a two-dimensional nozzle
with porous parallel sidewalls backed with a single plenum chamber and
employing a sliding compartment wall or backed with multiple plenum chambers
within which the pressure can be controlled.

INTRODUCTION

Conventional transonic wind tunnels usually have square or rectangular
shaped nozzles and test sections. These shapes allow two opposing sidewalls
to be mechanically flexed to form nozzle contours to expand sonic flow in
the throat to the desired supersonic Mach number. Generally, for transonic
tunnels, the maximum Mach number is less than 1.4. However, flexing
sidewalls may be impractical for some facilities, such as high-pressure
(high Reynolds number) transonic wind tunnels or tunnels with circular
nozzles and test sections. For high pressure facilities, the nozzle walls
are thick and, therefore, may be mechanically impractical to flex and,
certainly, expensive to fabricate. For facilities with circular nozzles,
flexing walls are mechanically impractical.

To overcome the mechanical problems, porous nozzles with parallel walls
appear to offer a promising practical solution. Several porous nozzles
which expand the throat flow by bleeding air through the porous nozzle walls
downstream of the turoat have been operated at small scale in the past.
However, at off-design Mach numbers, these designs resulted in a nonuniform
flow within the test section that was unacceptable. Now, new advances
(ref. 1) in the design and control of the porous bleed flow distribution
along the nozzle walls promise to solve this problem of nonuniform flow
at off-design conditions. The main objective of this report is to describe
the new porous nozzles and show fundamentally how they can be designed and
operated.




NOMENCLATURE

A = area
a, = sonic velocity
d = hole diameter
h = height
1 = hole length
M = Mach number
- m = mass flow
P = static pressure
- Pe, = free stream total pressure
Q = sonic flow coefficient
A = velocity
= axial station
= static density
Pe = total density
Subscripts:
bl = bleed
¢ = centerline
cum = cumulative
e = exit

pl = plenum
th = throat

w = wall
- X = at x

A = incremental
- Superscripts:

- = average

DISCUSSION

Conventional Nozzles - The contours for a conventional two-dimensional
transonic wind-tunnel nozzle operating at supersonic speeds can be calculated
with the aid of available theoretical methods (ref. 2). The contours of
such a nozzle are shown in figure 1. In this case, the calculated contours




provide isentropic expansion of sonic flow in the throat to a uniform exit
Mach number, M., of 1.4 into the test section. With a nozzle inlet throat
radius equal to twice the throat height, h¢y, and for a test flow Mach number
of 1.4, the flow must be expanded to an exit beight of 1.113 h¢p at a nozzle
length equal to 2.16 h¢p. These relationships, of course, must change for
other supersonic Mach numbers. This requires flexing of the walls into new
contours as determined by analysis. As mentioned previously, flexing walls
for some wind tunnel applications may be impractical and expensive.

Previous Porous Nozzles - To avoid flexing the walls to vary the exit
Mach number, a fixed parallel wall two-dimensional porous nozzle can be
designed. The nozzle, shown in figure 2, with only a single plenum chamber
to collect the porous bleed flow, represents previous technology (ref. 3).
The wall porosity was designed so that for a given ratio of plenum pressure
to free stream total pressure, the length and porosity was suitable for only
the Mach number for which it was designed. At off-design Mach numbers the
plenum was merely back pressured by throttling the plenum exit to provide a
lower exit Mach number which led to test section flow nonuniformity. The
nonuniformity of the flow is shown in figure 3 where the Mach number
distribution along the centerline of the nozzle and the test section is
plotted. For the design exit Mach number of 1.28, the Mach number along the
nozzle centerline increases linearly and appears nearly uniform along the
centerline of the test section. However, at a lower exit Mach number of
approximately 1.2, the Mach number distribution in the test section has a
nonuniform wave-like form,

Sliding Chamber Porous Nozzle - One possible reason for the nonuniform
test section Mach number under off-design conditions is that the effective
length of the single chamber porous nozzle is constant. Typically, as shown
in figure 4, conventional nozzle length decreases for decreasing supersonic
exit Mach number. For a two-dimensioral nozzle with an initial throat radius
equal to twice the throat height, the length varies from
x/hyp/2 = 2.36 at Mg = 1.4 to x/hp/2 = 0 at M = 1.0,

Changing the effective length of the nozzle can be simply accomplished
using a translating plenum chamber divider, as shown in figure 5. At the
design exit Mach number the divider is at its most downstream position. For
operation at lower exit Mach numbers the divider is translated upstream
until at Mg = 1.0, the divider is at the throat and no bleed passes through
the porous walls.* Shortening the effective length of the nozzle also
increases the length of the test section at the lower supersonic Mach numbers
where length is needed more than at higher Mach numbers.

Multi-Chamber Porous Nozzle - Another factor believed to contribute to
the nonuniform test section Mach number for the single chamber porous nozzle

* In reality some bleed will probably be needed to avoid probable excessive
thickening of the boundary layer that could be caused by the disturbing
influence of the relatively rough porous surface.




is the lack of proper control of the Mach number distribution through the
nozzle. Figure 6 shows the Mach number distributions along the walls of
conventional nozzles with design exit Mach numbers ranging from 1.4 to 1.15.
Since the length changes with design Mach number, each distribution is
unique — something unlikely to be achieved with a single plenum chamber
porous nozzle. However, by using a distribut’on of porous wall bleed, the
Mach number distribution and length of a conventional nozzle can be
duplicated and should result in the desired uniform supersonic exit flow.

To provide for both a variation in nozzle length and Mach number
distribution, a multiple plenum chamber porous nozzle can be designed, as
shown in figure 7. 1In this design the porosity at the design exit Mach
number is such that the length and wall Mach number distribution matches
that of a conventional nozzle. At the design exit Mach number, the plenum
chamber pressures can be equal. At off-design conditions, the length can
be reduced by gradually throttling the flow from each chamber starting with
the most downstream chamber. Further, the pressure in each active chamber
can be throttled to provide a Mach number distribution on the porous walls
approximating that of a conventional two-dimensional nozzle or until a
desired uniform M, is achieved.

Design Procedure - The recommended design procedure is based on
approximating the length and wall Mach number distribution of a conventional
nozzle by properly bleeding along parallel porous walls. For parallel walls
the required cumulative bleed mass-flow ratio (mbl/mth)cum along the length

of the nozzle for Mg up to 1.4 is shown in figure 8.7 First, a porous hole
pattern is derived for the design M, using the (mbl/mth) m distribution and
cu

known hole sonic fiow characteristics shown in figure 9 (ref. 4). Sonic
flow coefficients for round holes normal to the surface with a length to
diameter ratio of 3 for various wall Mach numbers, My, are plotted as a
function of plenum pressure ratio ppl/th' The required hole area distri-

bution on the porous walls at design M, is then calculated using co-
efficients for a constant ppl/pt . At off-design M, the plenum pressure
[ ]

required to maintain the cumulative bleed requirements is then calculated
using figures 8 and 9.

The results of the above procedure for a typical porous nozzle design
are shown in table I. Shown are the hole area and the off-design plenum
pressure schedules for each chamber of a six-chamber nozzle with a design
Mg = 1.4 such as shown in figure 7. The porous pattern necessarily is
designed in a stepwise manner for each compartment (see appendix). At the
design M, the plenum pressures, as mentioned before, are constant at
pbl/ptcu = 0.2. As the My is reduced the aft chambers are successively

closed and the plenum pressures are increased in the remaining open chambers
until M, = 1.0, all chambers are closed. The greater the number of chambers

t+ Details of the mathematical procedure are shown in the appendix.




the more accurate the design procedure can be. However, there appears to be
a practical limit to the number of chambers if for no other reason than the
exit piping would be too complex, heavy, and expensive, at least for a large
wind tunnel.

Porous Cylindrical Nozzles - The previous discussion concerned only
two~dimensional nozzles. Circular conventional nozzles can be designed, of
course, but to vary the geometry of cylindrical walls seems less practical
than using a porous cylindrical nozzle as shown in figure 10. In the
scheme shown, rotating porous rings control the length and porosity of the
nozzle. The design procedure for determining the proper design porous
distribution should be similar to that of the two-dimensional porous nozzle,
only using an axisymmetric conventional nozzle as the basis for the porous
design procedure.

CONCLUDING REMARKS

To maintain a uniform off-design nozzle exit Mach number in a porous
transonic nozzle, the effective length needs to be varied and the Mach number
distribution along the walls of the nozzle must be controlled. This can be
accomplished in a two-dimensional nozzle with parallel sidewalls backed with
a single plenum chamber with a sliding compartment wall or backed with
multiple plenum charcbers within which the pressure can be controlled. Tests
are needed now to verify the design concepts and procedures.




APPENDIX

Wind tunnel tests (ref. 3) have established that properly hleeding flow
through parallel porous walls can expand sonic flow to supersonic flow
similar to a conventionally shaped supersonic nozzle. It is assumed in this
paper that the required cumulative bleed from the throat of the porous wall
nozzle to the exit is distributed so that the increase in local wall Mach
number, and, therefore, the flow expansion, approximates that of a con-
ventionally shaped nozzle. The total amount of bleed flow required up to the
exit, then, will be

mpp  Ag = Ay

th A

m th

if the porous walls are parallel and the nozzle flow is isentropic and
uniform. With this premise the porous hole distribution and size can be
calculated, first, by determining the distribution of mbl/mth required to
approximate the Mach number distribution along the walls of a conventional
nozzle at the design exit Mach number (highest Mg). This can be done, for
example, for a six-plenum chamber porous nozzle (fig. 10) by plotting the
increase in nozzle Mach number and area between the throat and the exit of a
conventional nozzle as shown in figures 6 and 11, respectively. At the
design Mg, each incremental nozzle area increase, A(Ay - Agp)/Ach, for each
of the six equally spaced plenum chambers is used together with the
corresponding average wall Mach number, M,,, over each increment to define
the terms (ref. 5) in the following equation:

I, (c>/c>t)}-i (V/a*)ﬁ A(Ax-Ath)

1 x X

—— = * * (1)
L . (p/ot)Mth (V/a*)Mth A

Assuming sonic flow in the bleed holes and nozzle throat

:bl QAx = :bl (2)
th/Ax th/ox
or
Ay =M1} A )
1Ax m Q
th/Ax Ax

where the sonic flow coefficient for each plenum chamber, Quy, is determined
from figure 9 for a constaut py;/p for each M (fig. 6)

Next, for lower off-design Me operation, the plenum chamber pressure
required to maintain the proper distribution of (m /m Ypy 18 calculated.
As for the design M., (mbl/mth)Ax is calculated for eac ienum chamber




involved in the shorter nozzle lengths. Since (A leth)Ax is known, Q,, can
be calculated from equation 2. Then, using Q. gigure 9 can be entereé to
determine Pbllpt for the corresponding M, . Sample calculations should

[ ]

check with the tabulations shown in table I.
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