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PREFACE

The work described in this report was performed by the Infor-
mation Systems Division of the Jet Propulsion Laboratory,
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THE COVARIANCE MATRIX FOR THE SOLUTION VECTOR
OF AN EQUALITY -CONSTRAINED LEAST

SQUARES PROBLEM

1.	 INTRODUCTION

Consider the linear least squares problem

Ex 9E f

subject to the linear equality constraints

Cx = d

We refer to this as Problem LSE denoting Lease Squares with Equality
constraints.

Methods for solving Problem LSE are described in Chapters 20 - 22
of Ref. (1).

In this note we describe methods for computing the covariance matrix
V for the solution vector x. Different methods of computing V will be discussed
which are convenient for use witr each of the different solution algorithms
given in Ref. (1). Any reference to a Chapter, Section, or Page without further
qualification is to be understood to refer to Ref. (1).

We assume throughout that the covariance matrix of f is the identity
matrix. If the covariance matrix of f is known to be something other than the
identity matrix then a preliminary left multiplication :,f E and f by an appro-
priate matrix will produce the desired standard situation. (See Chapter 25,
Section 2. )

We assume that E, C, and d are known exactly, or at least that their
errors are very small relative to those of f.

'
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Let C be an m l X n matrix and let E be m 2 X n. We assume that

S

ml<n

ml +m2>n

Rank (C) = m 1

Rank 01) = n

With these assumptions Problem LSE has a unique solution vector and all of
the solution methods to be discussed apply without the need to consider unusual
special cases.

As a small numerical example to illustrate the computational methods
to be presented we use the same problem that was used in Chapters 20 - 22.
(See p. 140).

	

C = [0.4087	 0. 1593]	 d = 0. 1376

	

0.4302	 0.3516	 0.6593
E=	 f=

	

0.6246	 0.3384	 0.9666

The computations described in Chapters 20 - 22 were done using a relative
precision of 10 -8 whereas intermediate and final results were rounded to a)-,)ut
four decimal places for publication. In this note we begin with the published
intermediate results when applicable and compute using a pocket calculator.

2.	 SOLUTION METHOD USING A BASIS OF THE NULL SPACE

This solution method is described in Chapter 20, pages 134-141. It
may be summarized as follows.

Apply Householder orthogonal transformations to C from the right to
reduce C to lower triangular form. Apply these same transformations to E
from the right. Denoting the product of these orthogonal transformations by
the nxn orthogonal matrix K these operations may be represented by the equation:

2
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C ri

 ©^m
K=	 l,,,

E 	 1 E2 IM2

ml n-mI

Solve the following lower triangular system for yl:

C l Y l = d

Compute:

f=f - EIYI

Solve the least squares problem:

EZ y2 77

Compute:

K 
Y1

x=
Y2

To compute the covariance matrix, V, :or xy£irst compute the covariance
matrix S for y2:

_ -1
S = (E2 EZ)

Then the covariance matrix for

_ IYZII
Y 	 Y 

is
	 r

00

u= OS

and the covariance matrix for x is

do

(2)

(3)

(4)
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V = KUKT

Consider the numerical example given on pp 140-141.

In this example

[0. 1714
E 2 =

0.0885

and

-0.9317 -0.3632
K=

-0.3632 0.9317

Thus using Eq. (3) - (5) we obtain

S = (0.037210) -1 = 26.874

(5)

and

3.545 -9.044
V =	 (6)

-9.094 23.33

Note that although Eq. (3) is a valid mathematical definition of S it does not
represent the most stable way to compute S. if Problem (2) is solved using
Householder transformations, then one would have an upper triangular matrix
R such that

_ [R]
QE 2 =	 (7)

0

where Q is m 2 x m2 orthogonal.

a
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Then, as is described in Chapter 12, one could compute S as

	

S	 = R -1 (R-1) T
	

(8)

3.	 SOLUTION METHOD USING DIRECT ELIMINATION

This solution method is described in Chapter 21, pp 144-147. It
may be summarized as follows.

Assume column interchanges have been done in the augmented matrix

C

E

if necessary, to assure that the first m l columns of C are linearly independent.

Use Gaussian elimination to zero all elements below the diagonal in

the first m 1 columns of

[C],E

	

C d	 Cl 32 d } ml

	

G E f	 0 E2 f} m2

m 1 n-m 1 1

Solve the least squares problem:

E 2 x2 a f	 (9)

Solve for x  in

C1 x l = d - C 2 x2	(10)

5
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Then the solution vector is

Xl
x=

x2

To compute the covariance matrix of x introduce the m l x(n - m l ) matrix H,
obtained by solving

C1 H = C2

Then from Eq. (10) we may write

x l = %.'1 a - ri x2	ii^

Let a denote the expected value operator. Introduce the mean values

xl = E(x l )

and

x2 = E(x2)

These mean values satisfy Eq. (11), i. e.

x l = C
l

i d - H x 2 	(12)

Subtract Eq. (12) from Eq. (11) obtaining

(X l - x 1 ) _ -H(x2 - x 2 )	 (13)

from which we may write

xl - x l	[-H]
X - X =	 _ 	 (X2x2 - x2	 I

6

(lA)
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Let W denote the (n - m l ) X (n - m l ) covariance matrix of x2 , which from
Eq. (9) maybe defined as

W = (E2 E2)-1	 (15)

Then using Eq. (14) the covariance matrix V of x can be written as

-H	 HWHT -HW

V =	 W[-HT I,

I	 -WHT W

Consider the same numerical example as before, solved by this method. (See
p. 147). We have

[0. 1839
E 2 =

0.0949

and

H = C 1 C 2 = (0.4087) -1 (0. 1593) = 0.38977

We compute

W= (E2 E 2 ) -1 = (0. 042825) -1 = 23.351

and

	

3.548	 -9.101
V =

	

1-9.101	 23.351

Note that Eq. 1 15) is a valid mathematical definition of W but not a
recommended computational formula. See the remark at the end of Sec. 2 for
suggestions for a more stable way of computing W.

7

Ob..



33.807

4.	 SOLUTION BY WEIGHTING

This solution method is described in Chapter 22. It may be summarized

as follows:

Suppose the data are scaled so that the elements of largest magnitude

in the matrices C and E are approximately the sa.ne  size. Introduce a scale

factor, E, such that E 2 is smaller than the working precision. For instance

set E < 10 -4 for Univac single precision arithmetic and E < 10 -9 for Univac

double precision.

Solve the least squares problem

	

I C 	 d

	

Le	

x =	 (18)

	E 	 i f..

using Householder or Givens orthogonal transformations.

Solving the problem by either of these methods involves triangulariza-

tion by left multiplication by an orthogonal matrix O:

	

[]	

C	 d ^m1

C d

Q	 = EE 1 Ef l ^n - ml
E E	 if	 JJ

0	 if 	 ^m l +m - n

i.	 1

Then x is obtained by solving the upper triangular system

	

C	 d

X=

	

EE 1	Efl

The condition number of this problem is very large (about E -1 ) however this
does not affect the accuracy of the solution because of the special structure of
the matrix and right-side vector.

8
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The covariance matrix, V, of x is

TC -1	 C -1

	

V E2	 (17)

eE 1	EÊ`1

C
Even though the triangular matrix

	

	 has a large condition number
EE 1

its inverse can be computed without numerical difficulty.

Consider the example used before. The weighted problem to be solved

(see p. 156) is

	

0.4087	 0.1593	 0.1376

x 

	

0.4302E	 0.3516E	 19 0.6593E	 (18)

x2

	

0.6246E	 0.3384E	 9666 fj

Since we will be using 4 or 5 place decimal arithmetic we could choose any
value of E < 10 -3 . The point is that for any two numbers, a and b, of compar-
able magnitude E should be small enough relative to the computational precision

so that the computed value of a 2 + ( Eb)2 will just be a 2 . For our numerical
example we will not assign a specific value to E but will use the computational
rule that the computed value of an expression of the form a 2 + (Eb) 2 is a 2 when

a and b are of the same order of magnitude.

The data arrays of Eq. (18) can be triangularized by Householder

transformations to obtain the equivalent problem

-0.4087	 -0.:5930	 -0.13760

x 
0	 -0.20698E	 =	 -0.80403E	 (19)

x2

0	 0	 L 0.43606 fj

9
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Solving the nonsingular system represented by the first two rows of Eq. (19)

given the solution vector

13.88

1. 1?74

46

x -

Let R denote the leading 2 x 2 triangular matrix in Eq. (19). We compute

- 2.4468	 1.88311-1

R-1 -
0	 -4. 8314E -1

hen using Eq. (17) we compute the covarian r _ matrix V of x as

V = r	
_2 R -1 (R 1 T) =

1

3.5461 -9.0980

9.0980 23.342

This computational procedure looks peculiar in some ways but it is
valid. For e%ample the upper left element of R -1 , namely -2.4468, is entirely
lost in the roundoff error when the product R-1 

(R-1)T 
is computed and this

results i n the computed V being singular whereas R -1 was clearly nonsingular.

This is exactly the right thing to happen, however, since the covariance
matrix V for problem LSE should be singular and should not be influenced by
the upper left element of R-1.

Close analysis of this weigi.fed method (See Exercise 22.40, p. 157)
shows that with sufficiently small 1 this is just a sneaky way of performing the
direct elimination algorithm treated in Sec. 3 of this note (Chap. 21 of the book).

5.	 ONE MORE APPROACH

Still another way of looking at Problem LSE is presented on pp. 141-
143. As is noted there we expect that this approach may not have practical
value but may be of theoretical interest.

10
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Let K be the n x n orthogonal matrix defined in Sec. 2 of this note
(Chapter 20 of the book). Let K be partitioned as

K = [Kl	 K2 l^n

m l n - ml

Define

E = (EK2 ) (EK2 ) + E

where the superscript 'Y' denotes pseudoinverse. Define

C
A
A =

A
E

Then, as is proved in Chapter 20, the least squares solution of

[d]
A
Ax =

f

is the same as the solution of problem LSE:

Cx = d

Ex f

To compute the covariance matrix of x, regarding x as the solution of

Eq. (20), we first write

A 
+

[d]

X = A

f

MW

(20)

2
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d
Assuming the covariance matrix of f 

is

0 0 } ml

0 I Im,

m l m2

it follows that the covariance matrix, V, of x is

0 0

	

V = A+	
A +T

0	 I

From Eq. (20. 30) on p. 141 we know that A + can be written as

A + = [ C + - K2 (EK 2 ) + EC + , K2 (EK2 ) +1 'jn	
(22)

V

	m l	m2

Substituting Eq. (22) into Eq. (21) gives

	

V = K2 (EK2 ) + (FK2 ) +T K2	(23)

From Eq. (1) we have

EK2 = E2

and thus Eq. (23) can be written as

V = K2 E 2 E 2 T K2

K2 (E 2 E 2 ) -1 KZ

This last expression is identical to the right-side of Eq. (5). Thus we
obtain the same representation of V as in Sec. 2.

12
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