W

-

e oy

!

!
o
|

|
|
L

s i s .2

g -~
NASA CR-135070
(&ASA-CR-IJSO')O) SEACLLAE hlEEﬁIt_‘le‘I‘ N77-1340S0
DoFINITIUN STUDY GN FEaS: IE\ANSI_.I;OB_I'AhE MFE RG]
CalZTICaL PHENCHMeMs 1IN EuLULLS: m:u-m nclas
agPOET ON EXPERISENIAL JUSL;ELCAT.FUN -las
. (§ational Bureau cf Staadards) vv p HC AOYS G3/12 57895

Spacelab Experiment Definition Study

on

Phase Transition and Critical Phenomena in Fluids
Interim Report on Experimental Justification

by

M.R. Moldover and R.J. Hocken
National Bureau of Standards, Washington, D. C. 20234

W T

and
R.W. Gammon and J.V. Sengers
National Bureau of Standards, Washington, D. C. 20234
and

Institute of Molecular Physics, University of Maryland
College Park, MD 20742

x Prepared for

C.
* * Ndfional Aeronautics and Space Administration
NASA Lewis Research Center

Interagency Agreement C-62861-C

@ https://ntrs.nasa.gov/search.jsp?R=19770006147 2020-03-22T12:43:29+00:00Z

¢

M’ e



T

_-“4~.¢£\~.._

A.

=

o bttt e f . -
e gt g e it

TABLE OF CONTENTS

Phase Transition and Critical Phenomenz in Fluids:

Scientific Qurstions and Interactions with Other Disciplines.

1.1 Introductien.

1.2 The Relatinnship of "Phase Transition and Criticatl
Phenomena in Fluids" to Other Disciplines,

1.3 Important Questions in Phase Transition and Critical
Phenomena in rlulds.

Opportunities Provided by a low-g Environment.

2.1 Introduction.

2.2 Averaging Errors in "Bulk" Experiments.

2.3 Llimitations on Optical Experiments due to Gravity Induced
Refractive Index Gradients.

<.4% Llight Scattering Measurements and Some Gravity Related
Limitations.

Limitations in critical-regional experiments due to

mcdifications of fluid properties by a gravitational field.

Conclusions.

Appendix A, Paramctric equations of state for fluids near the

critical point,

Appendix B. Calculation of density profile,

Appendix C. Calculation of correlation length.

Appendix L. Physical constants for various fluids.

Appendi.. E, Parameters used for xenon in this report,

Nomenclature

Refereuces

— g

Page No.

e

[

64
T4
177
86
87
89
93

- —



Ry S
M’ -

SUMMARY

Important scientific questions concerning pure fluids and fluid
mixtures near critical points are identified and are related to the
progress of several disciplines. Consideration is given to questions
about thermodynamic properties, transport properties, and the complex
nonlinear phenomena which occur wheu fluids undergo phase tramsitions in
the critical region., We discuss, quantitatively, the limitations to
answering these questions by experiments in the earth's gravitational
field. The distinction 1s made between practical limits which may be
extended by advances in technology and intrinsic ones which arise from
the modification of fluid properties by the earth's gravitational field.
The kinds of experiments near critical points which could best expluit
the low gravity environment of an orbiting laboratory sre identified.
These include studies of the index of refraction, constant volume

specific heat, and phase separation.

Key words: Critical point; gravity effects; phase transitions.
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1. Phase Transition and Critical Phenomena in Fluids: Scientific Questions

and Interactions with Other Disciplines.

1.1 Introduction

The justification for space experiments in the area of "Phase Transition
and Critical Phenomena in Fluids" is essentially scientific. This particular
ar=a of science has strong interactions with solid state physics, fluid physics
and other areas of physics. We may expect that scientific advances in these
areas will bring, indirectly, long term technological e&nd economic benefits;
however, it cannot be said that the space experiments in themselves will produce
such benefits. Therefore the justification for space experiments in
phase transition and -ritical phenomena in fluids depends upon first establishing
that this is an important, active field of scientific research and secondly,
upon establishing that space experiments are likely to have a major impact on
its further development. A large part of the importance of this area of
research results from its initimate relationship to many areas of solid state
science., This will be discussed in the next section. In order to develop a
rationale for the argument that space experiments can have a ma‘or impact in
this area of research, we first discuss the important unanswered questions on
the subject; we then describe how gravity imposes severe limitations in
finding experimental answers to these questions; and, fina}ly, we indicate to
what extent these limitations can be reduced by conducting experiments in

space.
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1.2 The Relationship of "Phase Transition and Criitical Phenomena in

Fluids" to other Disciplines.

Many of the research iubjects described as included in research on
"phase transition and critical phenomena in fluids" are intimately related to
similar subjects in solid state physics. The experimental phenomena observed
and the theoretical ideas used to describe both fluids and solids have a high
degree of overlap. Indeed, this overlap is recognized by the "Phys_cs and
Astronomy Classification Scheme, 1975" adopted by the Abstracting Board of the
1 termational Council of Scientific Unions, This classification scheme,
which is used for grouping scientific articles for publication and information
retrieval, groups "phase equilibria, phase transitions and critical points"
together for both solid and fluid systems. We expect that important experiments on
fluid systems, such as those to be defined in this study, will have a substan-
tial impact on corresponding areas of solid state science. The basis for our
expectation is the strong interrelationship in recent higtory between the
study of phase transition and critical phenomena in fluid and in solid systems,
The interrelationgship arises from analogies between many phenomena which occur
near the critical point of the liquid-gas phase transition in pure fluids and
phenomena which occur at a corresponding "critical point" of phase tramnsitions
in very different kinds of physical systems. A list of these different kinds
of physical systems would include ferromagnets near the'Cutie point, aﬁti-
ferromagnets near the Néel point, certain ferroelectrics near the ferro-
electric-paraelectric phase transition, alloys exhibiting order-disorder
transitions (e.g. B-brass), crystals exhibiting order-disorder structural
transitions (e.g. ammonium chloride), binary liquid mixtures near consolute

points, multicomponent fluid mixtures near plait points, and helium near its



S

e e - e e
——

[ L S

superfluid transition. (For general references on these subjects see:
Elcock, 1956; Stanley, 1971; Heller, 1967; Fisher, 1967),

In each of these physical systems, there is a '"quality" (such as the
difference between tne densities of the liquid and vapor phases of a fluid)
which distinguishes betweer two phases which coexist in thermodynamic equilib-~
rium. As the critical point is approached this quality gradually disappears.
The gradual disappearance of this quality is the most obvious feature which
distinguishes phase transitions with critical points from other sorts of phase
transitions such as melting, sublimation, or crystallographic phase changes.

The diverse physical systems with critical points have a number of
experimental properties in common near theilr respective critical pcints. They
all exhibit a gpecific heat anomaly, long thermal relaxation times, a marked
sensitivity to external fields and impurities, and the quality which is
disappearing shows large long-lived fluctuations. The density fluctuations in
a pure fluid are responsible for the striking visual effects called critical
cpalescence. Analogous fluctuations in solid systems manifest _hemselves in
ways such as enhanced neutron scattering, ultrasonic attenuatiocn, and
electrical resistivity.

The existence of diverse physical systems displaying analogous critical
phenomena provides the experimenter with the opportunity to choose both the
best material and the best technique for studying one or another aspect of
critical phenomena., For example, the size of fluctuations is rather easily
studied in magnetic solids with neutron gcattering, even very far from the
critical point, The same technique cannot be used extremely close to the
critical point because the fluctuations become much larger than the wavelength

of the neutrons available, On the other hand, fluctuations in fluids may be

4
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studied easily quite close to the critical point using scattered light. We
wish to emphasize that extremely close (often near 99.9% of the

critical temperature) to critical points, all experiments on solids are limited
by lattice strains which result froam impurities, vacancies, etc. Thus
experiments with fluids (which continuously "anneal" themselves) offer the best
opportunities for closest approach to the critical point,

Since critical phenomena occur in a wide range of systems, one might expect
that their theoretical explanation does not depend upon the detailed nature of
the interatomic forces in each system but rather, c 1d be based upon an
accurate treatment of interactions which contain only those few general
properties of the true interatomic forces which are needed to make critical
points occur. Accordingly, similar theoretical treatments of microscopic
interactions have been used to interpret data on these diverse systems. The
van der Waals model of a fluid, molecular field model of a ferromagnet, and
the Bragg~Williams model of a binary alloy are closely related in approach and
yield similar predictions concerning thermédynamic properties near the critical
point of each of the corresponding systems. There is an exact correspondence
between the lattice gas model of & fluid and the Ising model of a ferromagnet,
This correspondence has been expioited as & plausibility argument for taking
a wide variety of theoretical results based on lattice models of critical
phenomena and applying them to describe real fluids as well as real solids
near critical points. Interestingly, severul important recent advances in the
theory of lattice models are outgrowths of the "renormalization group"
technique, a technique developed for problems in theoretical high energy

physics (Ma, 1973).
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Other aspects of phase transition phenomena in liquids have solid state
counterparts. Away from the critical point itself, phase transitions in both
fluids and solids may be initiated by nucleation processes or may occur
spontaneocusly through a spinodal decomposition mechanism, The theoretical
description of these processes make use of the concepts of interfacial energy,
bulk free energy, and diffusion. The concepts are appl‘cable to both fiuid
and solid systems. The time scales for phase changes are very different for
fluid and solid eystems, thus facilitating complementary experimental studies ~
which benefit the understanding of both fluids and solids, (Cahn, 1968;

Langer and Bar-on, 1973; Schwartz et al,, 1975).

In summary, basic scientific studies nf phase transitions and critical
phenomena in fluids are closely related to the study of similar phenomena in
solid systems. It is also quite likely that future developments in chemical
engineering will exploit the progress now being made in the understanding of
thermodynamic and transport properties of fluids near critical points. In the
study of pure fluids, equations of state for the critical region have been
developed recently which are much more accurate representations of data than
are standard engineering equations. (Levelt Sengers et al. 1976). These new
representations have very few parameters which must be adjusted for each fluid;
thus, they require fewer experi—=ntal measurements for reliatle predictions.
The extension of these new equations to special mixtures has been demonstrated
and work on extending them to mixtures of engineering interest is in progress.
(Leung and Griffiths, 1973; D'Arrigo et al., 1975). Similar advances have
occurred and are occurring in the correlation and prediction of transport :

properties in the critical region. Thus we can expect that advances in the

scientific understanding of rhase transition and critical phenomena in fluilds

will influence chemical engineering practice.
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1.3 Important Questions in Phase Transition and Critical Phenomena in

We will consider some of the important scientific questions in the
area of phase tranaition and critical phenomena in fluids which are amenable
at least to a partial answer by experiment. Naturally this cannot be done
without some reference to current theoretical ideas. We will first discuss
pure fluids and then fluid mixtures. Ferhaps the single most important
question in this area is: exactly how much alike are the superficially
analogous phenomena occurring -in the large variety of systems showing critical
points? Rigorous renormalization group calculations which apply to large
clagses of model systems indicate that static corr~lation functions and all
the thermodynamic properties (each of which can of course be calculated from
the correlation functions) are "universal" (in the sense that the same
description applies to each) asymptotically ciose to the critical point. More
specifically, they predict that the correlation functions will depend upon the
dimensionality of the system under consideration (e.g. whether it is two
dimensional like a membrane or three dimensional like a crystal) and the
dimensionality of the "order parameter” (or the "quality" which vanishes as
phases become identical at the critical point). Thus the correlation
functions for a fluid (where the order parameter 1s the scalar difference in
denslity between coexisting phases) will differ from correlation functionms for
isotropic magnets (where the order parameter is a three-dimensional vector).
(Wilson and Kogut, 1974).

Variables such as the lattice structure (e.g. hexagonal close~packed or
cubic) and the presence or absence of second nearest neighbor interactions

etc. are expected to be irrelevant in determining the functional

7
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form of the asymptotic expansions of correlation functions and thermodynamic
functions; however these other variables will determine the numerical value ¥
the critical temperature itself and numerical values of various amplitudga in
the expansions for correlation and thermodynamic functions. At the pregent
time, nearly all thermodynamic experiments on pure simple fluids indicate small,
but exparimentally significant, differences between the measured properties and
those calculated for three dimensional lattice models with a scalar order
parameter. (Levelt Sengers and Sengers, 1977)., It is possible that these
differences indicate that fluids do not belong to the same '"universality" class
as the lattice models with a scalar order parameter. It is also possible these
differences indicate that the amplitudes of the corrections to asymptotic behavior
are quite different for fluids than for the lattice models atudied., An experimental
distinction betw<en these two possibilities would be of great value in understanding
the range of applicability of this important idea of universality. It is possible
that this distinction could be made by measurements of thermodynamic properties
closer to the critical point than is now possible in experiments carried out
in the earth's gravitational field. The ve¢ y same situation exists to a lesser
degree when different pure fluids are intercompared. The apparent differences
between fluids are smaller (hence subject to greater experimental uncertainties)
than the differences between fluids as a class and lattice models; however, the
same question exists regarding their origin, Again, the answer could result
from experiments carried out closer to the critical point than presently
possible.

The decay of the range of density fluctuations (or the pair correlation
length) may be measured by measuring the angular distribution of light,
X-rays, or neutrons scattered by a fluid, The temperature and density

dependence of this quantity is predicted to be universal, but a significant
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test of universality cannot be made until twvc conditions are met: 1) The
wavelength of the incident radiation must be short compared with the range of
correlation. 2) The wavelength of the incideut radiation must be long - - -vred
with the range of the interatomic forces, Neutron and X-ray scatter 4
experinents easily satisfy the first criterion; however, the second criterion
1s not well satisfied in pres=nt experiments., Thus, a somewhat arbitrary
separatvion of the observed scattering into & part due to critical fluctue:ions
and a part due to short range order iun the fluid is now required prior to a
test of the predictions of universality (as defined above). The best
experiments to date ceem to indicate significant differonces between the
predictions of latcice models and the behavior of real fluids (Warkulwiz et al.,
1974; Lin and Schmidt, 1974). Experiments with scattered light are now unable
to satisfy the criterion mentioned above that the wavelength be much smaller
than the correlation length. Thes correlation length increases rapidly as the
critical point is reached, In a low gravity environment, the critical point
could be approached much closer than is now pessible; thus a much tighter test
of this aspect of universality will be possible,

Other questions which may be answered by experiments defined within this
study pertain more specifically to aspects of fluid dynamics and structure,
Hence the unswers are less likely to have as broad an impact on condensed
matter science than would a clear answer to the question of universality.
Nevertheless, the properties of fluids are sufficiently alike at critical
point ; that questions about large classes of fluids may be answered with an
experiment on one or two fluids,

Questions of consider;ble interest are: What is the nature of the small

anomalies which occur in the viscosity (Sengers, 1973), dielectric constant
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(Hartley et al., 1974), refractive index (Hocken and Stell, 1373; Stell and
lloye, 1974; Bedeaux and Mazur, 1973), and diameter of the coexistence curve
(Weiner et s.., 1974) (i.e, the average of the liquid end vapor densities) as
the critical point is approached? There are theoretical and experimental .
controversies ¢n the nature of the anomaly for each of these properties. Tt
is recsonable to believe that the more definitive experimental results
avallable from low-g experiments would have a significant impact on the
th;ozies for these properties in fluids. The experimental nature of the
stronger critical poirt anomalies in sound attenuation (Thoen and Garland,
1974) and thermal conduc-ivity (Sengers, 1973) is somewhat better understood
from earth based experimen.s, hence, low-g environments are less likely to
have an impact on the theory ~f these properties.

The dynamics of the process f macroscopic phase change in pure fluids is
poorly understood in the vicinity or the critical pc t. A variety of

questions remain to be answered. We wi.' briefly mention a few. There is

least une ohservation which suggests standar. nucleation theories are

furdamentally wrong near the criticel point in pure fluids (Huang et al., 1975).

Is this observation correct? Other earthbound experim.nts are necessary in
this area, but oniy in a low gravity environment will it be rossible to obtain
a homogeneous, macroscopic volume of a fluid under conditions sufi!cieatly
close to critical to yleld a defipitive study of this problem. The spinod:l
decomposition mechanism of phase separation occurs in alloys, glasses, and
binary liquid mixtures (Schwartz et al., 1975). Does this process occur in
pure fluids? 1f it does, it is ouite likely that tbe study of spinodal
decomposition in pure fluids (where many of the macroscopic parameters of the

theory are well understood) will clarify che understanding of spinodal

10



decomposition in these other kinds of systems. Are there critical point
anomalies in the process of bubble and droplet growth (or evaporation and
condensationj? Do they influence the time of equilibraticn of macroscopic
two-phase samples of pure fluids as has been suggested in two public: ‘ons?
(Dahl and Moldover, 1972; Brown and Meyer, 1972). What will be the dominant
mechanisms for macroscopic phase separ:tion upon cooling a pure fluid below
the critical point if bouyant forces on bubbles and droplets are greatly
reduced? Many other questions are possible in this poorly understood area
of phase separation.

In fluid mixtures, important scientific questions analogous to the ones
above exist. Specifically, the question: Do real fluid mixtures have the
same "universal" thermodvnamic and correlation function behavior as lattice
models and/or pure fluids, is unanswered. This question is more difficult to
angwer for mixture: i._:ause they have additional thermodynamic variables., For
example the '"quality'" which disappears at the critical point may be thought of
as bning either a mass density difference or a composition difference hetween
coexisting phases. In principle, if the critical point is approached closely
enc -h, either of these variables (or certain others) could be used to answer
the question of universality. Questidns analogous to those above may be asked
about weak aromalies and transport properties in fluid muixtures. The role of
gravity as an experimental limitation to answering these questions is much less
clear in the case of mixtures thay in the case of pure fluids. Thus will be

discussed briefiy bélow.

11
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2. Opportunities 2rovided by a low-g Environment.

2.1 Introduction
In this section we will discuss in detail the manner in which gravity
affects phase transition and critical phenomena experiments in fluids. We will
see that gravity limits the closeness with which the critical point may be
approached in all earthbound experiments. Thus a low-g environment will
provide an opportunity for conducting experiments closer to the critical point
than is possible on earth,

Meastrements .. the equilibrium properties of pure fluids near the critical
point can in principle encounter two distinct kinds of limitations because of
the earth's gravitational field. One kind of limitation 18 essentially a
technical one., All experiments measure average properties ove- some finite
height. Since the variation of fluid properties with height becomes
increasingly large as the critical point is approached, this averaging causes
incressing . .rors as the critical point i1s approached. In practical cases an
juportant averaging error occurs even for optical measurements (which at first
thought might be expected to average over a height of a wavelength of light
~0.5 ym). The size of this "averaging error" depends both upon the property
measured and the technique used to measure it. We will consider representative
cases below. We will find that for nearly all experiments the closeness of
approach to the critical point is limited by averaging errors. These errors
may prevent the answering of many of the questions we raised in the last
seccion.

A second kind of limitation to accuracy in the measurement of equilibrium
properties of pure fluids which is imposed by the preseunce of the earth's
gravitational field is an unavoidable or "intrinsic" limitation. Relatively

12
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simple considerations show that close enough to thre critical point the
correlation length (or the sizea of the density fluctuations) for the fluid is
limited 1a the earth's gravity field much as it would be limited if the fluid
were placed in a small container. This means that the properties of the fluid
itself are altered by the gravitational field. No improvements in experimental
technique will enable earthbound experiments to overcome this limitation. To
date there are no experiments which are limited by this phenomenon, but it
appears that this limit will be approached in the near future.

Gravity enters into the study of the dynamics of phase cﬁanges in pure
fluids and most fluid mixtures by causing relative motion of the two phases
which are almost invariably of different densities, Thus in a l-g environment
a bubble or droplet will rapidly travel to the top or bottom of a macroscopic
sample after it has grown to a size of the order of 10 um. There are a
variety of "levitation" techniques for studying droplet and bubble growth
which circumvent sedimentation, Unfortunately, none have been demonstrated as
being appropciate for studies of pure fluids near critical points where precise
control of temperature and pressure are also required.

If the study of binary liquid mixtures were conducted at equilibrium near
their critical (consolute) points, "averaging errors" similar to those which
occur in pure fluids, would appear. In practice, most binary mixture studies
have been conducted at congtant temperature but not in diffusive equilibrium
so that a different kind of error is present. The difiusion constant tends
towards zero at the critical point and diffusive equilibrium may take days or
weeks in samples a 1 cm high moderately close to the critical point, It has
recently been shown that the "pressure diffusion coefficient” diverges at the

consolute point of binary liquid mixtures (Greer et al., 1975; Giglio and

13
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Vendramini, 1975). This divergence indicates "averaging" errors of a different
kind may be encountered in liquid mixtures.
We will now discuss these expsrimental limitations more quantitatively

and in more detail.

14
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2.2 Averaging Errors in "Bulk'" Experiments.,

As a first and most simple illustration of averaging errors we now
consider a hypothetical experiment to measure the density of a pure fluid as
a function of height exactly at the critical temperature. Such a measurement
together with the thermodynamic relation for the gravitation contribution to

the chemical potential,

du = - mg dz (2.2.1)

(where g 1s the acceleration due to gravity, m is the molecular mass, z
is the height coordinate incressing upward, and u is the chemical potential
per particle) would make it possible to test the predictions of many model
equations of state.

These model equations of state all predict (see appendix A) a critical

i: ~therm of the form

Pc D {o-p

il P - )

c c

cI Sign (D-Dc) (2.2.2)

(Here u, P and p are the values of the chemical potential, pressure, and number

density respectively, and the subscript c indicates the critical value; D is

a numerical factor of order unity which varies from fluid to fluid and 5 is a
"critical exponent" which will be the same for all fluids 1f universality holds for
fluids in the critical region.) Fig. 2.1 shows the outcome of an ideal experiment of
this kind with xenon. This figure was constructed using the numerical values for

the parameters listed in appendix D. Note that the density can change by more



— ‘z-—-. S e

ViNmm s

RYITeY o

e Y S
-
S

10 10
6 [~ 4 - 6F
<
.6 53
1 5%
°r T 1 ¢e [
= E
£k
A 1 vo 4fF
oy
6— a— Gi—
8— d 8—
10 L L. d 10
5 0 5
p-p .
< IN% Lo IN %
P Pe

Fig. 2.1, The variation of the reduced density of xenon with height at the
critical temperature. The calculated curve is displayed on two different scales.
Note that near the critical density, a pressure change of 10-6 Pc will cause the
density to change 5% and a pressure changa of 10-9 Pc will cause the density to
change 1%,
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than 5% as a result of a pressure change, AP, which is only one one-millionth
of the critical pressure. At equilibrium this pressure change occurs (at
normal earth gravity, go) with a height change from 0.25 mm below the meniscus
to 0.25 mm above the meniscus. We have chosen xenon for this numerical

illv itration (and others in this report) because it is one of the few fluids
for which relatively complete data exist in the critical region. It is inert,
available in high purity and has a critical temperature near room temperature.
(CO2 and SF6 are other well studied fluids which are likely candidates for
low-g experiments.)

One practical instrument for the measurement of fluid densities in thermal
equilibrium at g, is & float densimeter (Greer et al., 1974). In this
ingtrument the bouyant force on a float of known density is balanced with a
spring or magnetic restoring force. The deflection of the spring or the
current in the electromagnet is then a measure of §, the difference between the
average float density and the average of the fluid density over the float's

height. Quantitatively,

fofluid(z) o(2z) dz
fo(z) dz

(2.2.3)

where o(z) is the cross sectional area of the float as a function of height,
The outcome of a hypothetical experiment with a 1 mm high cylindrical float is
shown in Fig. 2,2 (left). The average density § (points in Fig. 2) differs
substantially from the local density at the average height, z, of the float as

soon as any portion of the float overlaps the meniscus. An alternative

17
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presentation of the "data" is of interest. We may think of this experiment as
one which measures an average "susceptibilicy", Xp» of the fluid. This
susceptibility is thermodynamically related to the isothermal compressibility
and plays a role in the study of fluids which is analogous to the role of the

magnetic susceptibility near a magnetic critical point. By definitionm,

_ -1 Vv 30
Xp = p2 Ky = 02 () (1;5)T - W)T (2.2.4)

In Fig. 2.2. (right) we compare xT(z) with the average value of y computed from

our hypothetical experimental data by

1 [30
Xexp ~ mg (3—1) . (2.2.5)
T

It is interesting to note that the experiment which measures density by
averaging over.a finite height is analogous to a spectroscopy experiment with

a finite resolution, According to Fig, 2,2, the density experiment has only

a limited ability to "resolve" the diverging susceptibility. Details smaller
than the resolution are blurred, Yet, some information may be recovered on a
scale smaller than the resolution if theoretical guidance is available. For
example, if the shape and relative spacings of the spectral lines present in a
spectral peak are known accurately in a“-.nce, their absolute spacing may be
determined to much greater accuracy than they can be resolved by the instrument.
Similarly, if Eq. (2.2.2) were known to describe the density profile and

if techniques were of sufficient quality, accurate measurements of §, D, and

18
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Pe could be obtained with a float of, say, 1 mm height, Unfortunately, the
right hand side of Eq. (2.2.2) 1s only the first term in an expansion about
the critical density. The higher order corrections to Eq, (2.2,2) are not
known with certainty; thus, the interpretation of data of finite height
resolution becomes subject to the uncertainties arising from different choices
of correction terms. It is at this point that gravitational averaging makes
experimental tests of universality difficult,

A wide variety of realistic experiments have encountered the same density -
resolution problems we have illustrated here with the hypothetical density
measuring expetirent described above. For example Hohenberg and Barmatz {1972]
have analyzed in detall the effects of gravity averaging upon measurensats
of the constant volume specific heat and of.the low frequency velocity of sound.
It turns out that both experiments are strongly affected by gravitational
averaging at the critical temperature when the meniscus is within the
experimental cell (see Fig. 2.3). The shortest suitable calorimeters
constructed to date are about 1 mm high and the shortest low frequency
velocity of sound resonator is under 4 mm high, so that both of these
experiments will not resolve the density dependence of the quantity measured
within about 4Z of the critical density at normal earth gravity.

The density resolution limit L scales with sample height, h, and gravity

according to the relation

mg h e 1/46 o h

| = ) )
> D Pc DHO g,

(2,2.6)

The scale factor for the density profile at the critical temperature, D Pc/(pc m go),

varies among 17 fluids (Appendix D) ‘from 910 m in He3 to 10,400 m in H,. For

20
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xenon, it is 1310 m, a fairly low value among those fluids which are likely
candidates for low g experiments. Because the exponent 6 1s between 4 and 5
it is clear that a substantial reduction in gh is required to improve density
resolution at the critical temperature. Certain optical experiments
(whose limitations we will discuss below) have averaging heights of micrometers
rather than millimeters, thus optical experiments on earth become potentially
competitive with bulk experiments when the latter are carried out in an
environment of 10-3 g

We have illustrated the density resolution limits at the critical tempera-
tures arising from vertical averaging. The actual resolution 1s limited at
other temperatures as well, The shape of the resolution limited region is
shown in a qualitative fashion in Fig., 2.4. The true form of the region, of
course, depends upon the particular property being measured and upon the
techniques used. It is straightforward to estimate the extent of the gravity
affected region along the temperature axis as we have doue for the density
axis. We will do so in a qualitative fashion her;. Then we will indicate
how a more precise criterion for averaging errors could be used to define the
gravity affected region precisely. Such a ﬁrecise criterion is formulated in
Appendix C.3, -

A qualitative idea of the gravity excluded region can be obtained by
noting that the scaling equations of state (Appendix A) indicate that
asymptotically ciose to the critical point all thermodynamic quantities
(which usually are functions of two variables, say temperasture and density)
may be expressed in the simp e form rP£(8). Here r and 0 are parametric variables
which are related to the temperature and density by nonlinear transformations.
Roughly speaking, r is a measure of the distance from the critical point and 6 is

& measure of the distance "around" the critical point from the coexistence curve, The
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Fig. 2.4. Qualitative location of thermodynamic states in the temperature-density
plane which are inaccessible to bulk experiments because of gravitational
averaging. Averaging errors for a 0.3 cm high sample are substantial beneath the
curve marked r = 107", Avereging errors for & 0.03 cm high sample are substantial
beneath the curve r = 103,
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exponeut p depends upon the property vnder consideration, and £(8) is an
analytic function of 8 which also depends upon the property under consideration.
In those cases (including the iuportant quantities Cv’ KT and XT) where p < 0
and where f£(8) is not a very strong function of 6, the r dependerce of the
properties becomes dominant near Tc. It follows that divergent quantities will
assume approximately the same value along a curve of corsiant r and such

curves have been sketched in Fig., 2.4, It is also true that the gravity
excluded region for many experimenés is also approximated ! ‘urve of

congtant r. We have already estimated the gravity limit fo. arements of
X and Cv in a sample at the critical temperatuve, thus locating point B

on Fig. 2.4. To find the maximum temperature on the sam. contour of
constant r (point A on Fig. 2.4) we note that in one m del equation of state
a contour of constant r is identical with a contour of constant Xop (Appendix
A, Eq. A.13). Thus in this model Xt has identical values at B and A. (In

other realistic models the value of X will be nearly the same at B as at A).

Now the power law expression for Xg O the line Ap* = Q 18

2 T T-Tc -y -
RER (2.2.7)

We equate this expression for Xp with the expression for Xrp along the

rritical isotherm obtained by differentiating Eq. (2.2.2)

1-5
20 SR WL T R _I_(gh ) g
2
e D¢ e D & \g,PH,
T-1
- I‘(_.__—_.c_)-Y (2.2.8)
T
c
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Using the vaiues of the constants from the appendiczs we find that the tempcrature
limit for bulk susceptibility measurements is roughly 0.028 K for a 1 mm high
sample of xenon and that this limit scales with gravity and sample height as
(gh/g°n°)0'6s. If a contour of constant r is used as a gravity limit criterion
othér experiments will encounter gravity limits at some value of (T—TC)/'TC which

also scales as (gh/goﬂo)o'és.

A J

From the work of Hohenberg and Barmatz [1972), the constant volume specific
heat o+ a 1 cm high cylindrical sample of xenon beginus to deviate from the
specific heat of a zero height sample by several percent within 50 millikelvin
of the critical temperature; for a 1 mm high sample significant error will
occur within 12 aK of Tc' Naturalily the exact temperature depends on the
criterion of accuracy, but with a fixed criterion of accuracy the tempersture
of clcsest permissible approach to Tc will scale as (8h)0‘65. Thus a
substantial improvement in temperature resolution ig possible by doing C,
experiments in a low-g enviromment. 1n particular, the determination of T in
specific heat experiments would be greatly facilitated in a low g environment,

Instead of approximating the region of severe gravitational averaging by
a curve of constant r (=3 we have just done), a precise calculation could have
been done, The calculation would involve the following steps: 1) Identify
the quantity to be measured /say Q) and the precision with whi-h the quantity
is to be known; frequently the desired precision may be expressed as a small
fraction, p, of the quantity Q. 2) Examine the measurement technique to
determine over what range of heights it averages (say 0 < z =<h) and with what
function (say w(z)) it weights measuremen.s at esch height. 3) Compute the

values of p and T for which the inequality

h
%fW(z) Q (0(z), T) d2 - Q (p(h/2), T) < p Q(p(h/2), T) (2.2.9)

(o)
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is satisfied. Here we have assuiied that the weighted average of Q which the
experiment measures wil® be assignad to the thermodrnamic state (p(h/2), T)
at the midheight of the experiment. Exactly this calculation is carried out
in Appendix C where Q is taken to be the correlation length and w(z) is
assumed to be unity. A somewhat more complex calculation is required 1f Q is
s quantity measured by experimentally taking a temperature derivative (such
as the constant volume specific heat). This problem is discussed by Hohenberg
Barmatz [1972].

We have just completed several illustrations of how gravitational
averaging “ufluences the measurement of thermodynamic quantities. It is
important to note that most measurements of transport properties will also
be subject to limited density and temperature resolutions in the
earth's gravity. For example the density dependence of the viscosity or of
the thermal conductivity cannot be measured within 4-5X of e 1f the viscosity
or conductivity apparatus is 1 mm high at earth-normal gravity. It is also true
that the density dependence of the turbidity (or total light scattering
ntensity) cannot be measured within a few percent cof Pe if the scattering
volume is 1 mm high (Leung and Miller, 1975) because of the vertical averaging
that occurs in the scattering volume., On the other hand quite different
limications apply to the measurement of thermodynamic and transport properties
by optical techniques with very fine spatial resolution. They are

discussed in the subsequent section.
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2,3 Limitaetions on Optical Experiments due to Gravity Induced Refractive

Index Gradients.

As a fluid {ie brought near its critical points, its coefficient of
isothermal compresc<ibility diverges and, inr a gravitational field, the fluid
becomes compressed under its own weight. The density gradients thus produced
place strong limitations on the validity of measurements, even with optical
protes, very near the critical point. The most seriocus limitation may be
termed a "thick cell effect" and applies to all optical experiments including
measurements of the phase, intensity and spectral characteristics of light
passed through the fluid., Light which is directed horizontally into an
optical cell filled with fluid near the critical point will be deflected down-
ward by the index of reftactiop gradient (resulting from the density gradient).
The angle of deflection is proportioqal to the thickness of the fluid layer in
the cell, This effect is precisely the same one which enables the sun tc be
seen above the horizon several minutes after it has "set” according to
astronomical calculations. As the critical point is approached, the density
gradients and the deflections become so large that light 'rays" pass through
layers of fluid of widely varying density. Then it is no longer possible o
relate the intensity, the spectrum, or the phase of the light emergent from the
cell to the density or any other local thermodynamic variable. The Qeasurable
optical properties of the fluid become complex gravitational averages. In this
section we discuss and quantify these limitations for optical experiments
using a combination of analytical and numerical techniques.

Consider a sample of a dielectric fluid, in a cell with plane parallel
optical windows, with an average density, Py closely approximating the

critical density. When the sample temperature is held constant near Tc’ the
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fluid is compressed under its own weight and an equilibrium density distribution,
0(z,T), is formed. Since, in a gravitational field, the reduced chemical
potential u is directly proportional to z, the density profile is directly

given by the equation of state p(u,T). Furthermore, if current theory is

correct (Appendix A) such profiles are antisymmetric about some density

2 (ocen is not necessarily the critical density and in general will be a

cen

function of the temperature. For this analysis we will assume that pcen= oc)
which occurs at the height where the compressibility has a maximum. The plane
at this height, which we call the centrus, will serve as the origin for our
vertical coordinate system. In Figure 2.5 we represent such a profile
schematically for some supercritical temperature T > Tc‘ (A3l of our analysis
will deal only with the one phase reglon.) Because the refractive index of the
fluid is related to its demsity by the Lorentz-Lorenz (Loreﬁz, 1880; Lorentz,
1952; Hocken and Stell, 1973; Larsen et al., 1965) formula, there is a
corresponding refractive index profile n(z,t) in the sample. Now we
illuminate the coptical cell with a monochromatic horizontal (normal to the z
axis) plane wave of light, and examire the trajectories of rays through the
profile at various heights.

In Fig. 2.6 we illustrate this situation with a simple ray picture. A
ray enters the cell horizontally at height z' above the centrus and is
refracted downward orn a curving trajectory until it emerges at a height =z,
The output angle of the real ray will be proportional to the average refractive
index gradient 'seen' by the ray and its phase shift will be determined by an
average over its optical path, Also shown in the same figure are two ideal
rays which we call "thin cell' rays. Both are equivalent to the real ray when

the cell is infinitely thin or the gradient so small that z' ~ z. They are
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Figure 2.5, Schematic of density and compressibility profiles.
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Fig. 2.6, Rays through a density profile. "Real

ray" denotes the path

traversed by a light ray incident horizontally upon an optical cell filled

with fluid near the critical point.

The other rays are defined as follows: the

angle equivalent ray (TER) is that thin cell ray which is refracted at an angle
equal to the real ray. -It traverses the cell horizontally at a height (z + Az)
where the local refractive index gradient is equal to the average gradient seen
by the real ray; the height equivalent (ZER) is that thin cell ray which traverses

the cell horizontally at height z.
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defined as follows: the "angle equivalent” ray (TER) is the thin cell ray whica
is refracted at an angle equal to the real ray; it traverses the cell
horizontally at a height (z + Az) where the local refractive index gradieat is
equal to the average gradient seen by the real ray . The "height equivalent™ ray
(ZER) is that thin cell ray which traverses the cell horizontally at height z.
These thin cell rays are introduced for cowrarison purposes since for them
the relation of optical observables to thermodynamic quantities is particularly
simple (Estler et al., 1975). For instance, if we expand the Lorentz-Lorenz

formula, we find to a good approximation that

) +...=n1Ao*+ eee

(2.3.1)
(.- D2+ 2)
(n1 S ).

6 n

c

Then the index gradient becomes

g_r_l.x_ io—:snl -———ap* = nl * 3

dz 1 4z “;' du* C RS X (2.3.2)

*
where u* is the reduced chemical potential, Yp the reduced susceptibility
and Ho = Pc/(pcmg), the scale height for the fluid being studied. 1In the thin cell
limit the ray ZER simply comes out at height z with an angle proportional to

*
Xr at that height, 1i.e.
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X *(z) - lgi!l, for the ZER, (2.3.3)
T dn1

‘iere d 18 the cell thickness.
Fig. 2.7 offers a comparison between angles of rays as a function of 2
:» determined from equetion (2.3.3) and angles determined numerically by
‘racing rays (Born and Wolf, 1975) through the same density profiles. The
profiles were generated using the Stony Brook parametric equation of state (Wilcox
and Estler, 1971) with parameters obtained from actual profile measurements on xenon

(Estler et al,, 1975). The parameters used are given in Appendix E. The

T-T
c

computation was performed with AT* = = 5x10-6. The solid line represents

the thin cell results for the ZER (Eq. 2.3.3) and terminates in a rounded point
.t an angle of about .17 radians, that is, off the graph. The dashed line is
the result of tne ray tracing computation. The crosshatched region contains
rays that enter the cell close to the centrus above and below and emerge at
approximately the same height but at very different angles; the observer sees
a bright band at this height with a darker band above it. 1In this region the
gradient is so large that the rays are simply bent right out of the dark region
and into the bright band.

Fig. 2.8 shows the same results for the optical phase as a function of
height. Again the golic line is the thin cell result, i.e. neglecting any beam
bending.effects. (cf. (2.3.3) and the dashed line is the result of ray tracing.
The optical phase relative to that at the centrus (4¢) is simply related to

the density in the thin cell approximation:

hp = - k @ n, e*{z) (2.3.4)
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Fig. 2.7. The angles of emergent rays as a function of height. The solid

line represents the thin cell results for the 2ER (eq. 2.3.3) and terminates in
a rounded point at an angle of about ,17 radians, that is, off the graph. The
dashed line 1s the result of the ray tracing computation, -The crosshatched
region coutalns rays that emnter the cell closc to the centrus above and beluw

and emerge at approximately the same height but at very different angles.
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XENON PARAMETERS
d = 3mm
t=5x10%

]
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l
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Fig. 2.8. Optical phase as a fur-tion of height, The phase profile calculated
in the thin cell approximatfon (solid curve) has the same shape as the density
ve height profile. The observed profile is represented by the dashed curve.

The crosshatched area corresponds to the crosshatched area in Fig. 2.7,
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Hence, the solid curve 1s, except for sign and units, simply the existing
density profile. The dashed line is then the apparent density profile deduced
from actual! measurements and in fact such "kinked” profiles have been reported
in the literature (Lorentzen and Hansen, 1966),

Figures 2.7 and 2.8 offer a good visual picture of what happens to light
traversing a fluid near its critical point. They do not, however, offer
simple quantitative guidelines as to which regions of the thermodynamic
space are inaccessible to the earth bound experimenter., To provide these
guidelines we found it convenient to compare the real ray with the angle
equivalent ray (TER) rather than to the ZER as in Figs, 2.7 and 2.8,

As our computations progressed we discovered numerically a simple
relationship between Az (the height difference between the TER and the
real ray, see Fig., 2,6) and the output angle of the real ray (or TER since
they are defined to be the same). We then derived this expression for Az by
solving the ray tracing equations analytically in a medium where dn/dz was a

slowly varying function of height., We found that if

2
dn(z) ~ dn‘ d'n
S, 3!, (z-12), (2.3.5)
dz dz 2, dz2 z, 0
then
n d2 *
%% ~ T, X (2.3.6)

As long as equation (2.3,6) holds, the real ray carries average fluid
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information equal to the local information at a height 4z above the height of
the real ray's emergence. This equation is valid toth above and below the
centrus.

We then performed computer experiments to test the domain of validity of
v2.3.6) using numerica. parameters appropriate for xenon. We found that (2.3.6)
breaks down when Az reaches a certain value nearly independent of the temperature
and the fluid studied. The results are plotted in Fig. 2.9 for xenon. In this
figure the solid dark line represents the Az that would be calculated from

(2.3.6) using the fluid's maximum compressibility. That is

2 n d2

=Y
. i
max * THs_ *1__ 3anrlArl . (2.3.7)

The region above and to the right of this curve 1is nonphysical: no real
thermodynamic states exist in this region. The area below this curve and to the
left is physical but mostly inaccessible to the earth bound experimenter. On

this plot the critical point 1s at infinlte Az, The dashed line at Az =~ ,002 cm
represents the contour where (2,3.6) becomes incorrect by 1%, Above this line

the errors grow very rapidly. The region below this line is experimentally
accessible and here the properties of the interference pattern may be simply
related to local thermodynamic properties of the fluid. As a simple rule of thumb
we find that the observed interference pattern can no longer be simply related

to local thermodynamic fluid properties when the reduced compressibility
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accessible. Large valu:s of y

do not occur to the upper right of the solid

curve (i.e, far from the critical point).
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becomes larger than

-
‘4

* 3an
XT - (.002 an) —'-f . (2030{1)
max nld

It is convenient to tabulate some examples for comparison with gravitational

limits provided elsewhere in this repor:. We do so here for xenon

- H
* ) a” aT*
Cel. Thickness meax nax Pnin nin
cm. milliradians (At* = Q) (Ap* = Q)
1.0 2.6x10° 22 0.0471 1,6x107%
0.1 2.6x10° 220 0.0119 3.3x10°°

Thus any optica. ixperiment using a 1 cm thick cell is subject to limitations
comparable to a bulk experiment in a 0.1 cm bigh cell at 8, An optical
experiment ‘n a C 1 cm thick celi 1s subject to limitations comparable to a
bulk experiment in a 3 um high cell at 8, or e 3 mm high cell at 10-3 8¢
Optical cells with properties suitable for critical point experiments (Hocken
et al., 1975) have been fabricated vith a thickness of 3 mm. It seems likely
that 1 mn thick celis could be made., The feasibility of making much thinner
cells should be examined., One may expect that fluid samples in extremely thin

cells would be subject to contamination from the cell walls because of the large

gurface to volume ratio.
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2.4 Light Scattering Measurements and Some Gravity Related Limitations.

Scattering measurements provide a means to measure the space-time
dependence of fluctuatfons. Since rwci> of the fundamental picture of critical
fiuctuation phenomena deals with the distance scale over which fluctuations
are correlated (space) and the tine scale over which fluctuations grow and
decay (time),scattering spectroscopy continues to be an important tool for
studying critical phenomena.

Near tne gas-liquid .ritical point a fluid exhibits large fluctuations in
the density. The magnitude of these fluctuations is proportional to the
compressibility, The spatial extent of these fluctuations can be characterized
by a correlation :ngth £, As shown in Appendix C this correlation length is

related to the compressibility by

1

-1 _* 2-n
g=¢ (T Xop)

(2.4.1)

*
where X is the dimensionless 3ymmetrized compressibility dJdefined in A.2. The
constants go and T are the amplitudes in the power laws {C.4) and (A.4c) for thle
correlation iength and compreseibility along the critical isochore. The constant

50 is a microscopic distance of the order of the range of the intermolecular forces.

The spectral intensity as a function of scattering angle and frequency is
proportional to the spatial and temporal Fourier transform of the time
dependent correlation function of the order parameter. In a one component
fluid the integrated intensity of the scattering is proportional to the

static structure factor
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S(k) = / di el¥R

G(R) (2.4.2)
where the correlation frnction G(R) is defined in Appendix C. The wave

number k is related to the scactering angle 8 by

0
k=2 ko sin-i (2.4.3}
where ko is the wave number of the incident radiation.

In principle S(k) is a functicn of temperature AT*, densgity Ap* and wave
number k. However, according to the scaling hypothesis the structure factor

near the critical point can be written in the form (Fisher, 1967)
S(k) = €277 (k) (2.4.4)

where £ 1s the correlation length. This reduction of the description is va.id
for any thermodynaric pati. in the AT* - 4p* plane of conatant scaling variable,
i.e. AT* proportional to le*IllB. Here we shall consider specifically the
properties of scattered light at ~he critical isochore Ap* = 0,

The scaled “unction Y(k{) is known theoretically (Tracy and McCoy, 19753)
for the 2 dimensional Ising model for all values of k§{., However, the
mathematical form ot this function for fluids is not known except for the fact
tnat -s must approach a congtant in the limit ki » O and that it must vary as
®E) ™" for kg -+ o,

it has turned out to be very difficult tc determine a definitive value for

the exponert n. A precise knowledge of this exponent has a direct bearing
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on the questiun of uaiversality of the pair-correlation function.

In order to determine thia experimental n with any accuracy, measurements
are needed for ki sufficiently large so that the functior ¥(kE) can be
approximated by its asymptotic behavior (Tiacy and McCoy, 1975). Due to
limitations caused by multiple gcattering and the gravity induced density
gradients, it has been impossible to satisfy th.s condition for earch bound
light scattering experiments. It has been possible to reach sufficiently
large values of k with neutron scattering (Warkulwiz et al., 1975); however,
here one has difficulties in satistying the coandition that K1 must be large
compared to the range of the intermolecular forces.

Of the several available scattering techniques (light, X-rays and neutron
scattering), optical light scattering using laser sources seems to be most
feasible one for space experiments. It is the only scattering technigue with
suf ficient spectral resolution to examine the narrow spectrum of the
fluctustions, can be done with easily portable sources (lasers), requires no
radiation shielding, and uses windows compatible with other optical records
desired of the sample behavior. The principle drawback to light scattering
mes- .rements is multiple scattering: the extinct’>n of the beam gives a severe
lowar 1limit on the AT* which can be reached. Numerical estimates for this
limit are pregsented later in this section.

Using optical beating techniques, one can measure the spectrum of the
quasi-elastic Rayleic* line (Cummins and Swinney, 1970). The width of this
line is related to the diffusive decay constant of the fluctuation of the order
para..:ter. A survey of the curreat status of the experimental work on
Rayleigh scattering near the critical point of fluids has been given by

Swinney ard Henry [1973].
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In interpretating such experiments ome usually introduces the following
assumptions. First it is assumed that  fluctuations still decay

exponentially in time so that the dynamic structure factor has ..e form

2r
]

S(k,w) = S(k) ——— (2.4.5)
' +ou
S
where Ps is the decay rate of the entropy fluctuations. (Swinney and Henry, 1973).
Secondly, one uses the assumption of dynamical scaling to write the decay rate

rs in the scaled form
- =3 .
rg= &7 ¥ (ke) (2.4.6)

It should be pointed out that these assumptions are not valid rigorously, and
that one expects to see deviations if the critical point is approached
sufficiently closely. Theories for “he scaled function 0r(k£) have been
developed by Kawasaki and coworkers and by Ferrel and Perl; for a survey of the
literature the reader is referred to the article by Swinney and Henry [1973].
The various theories differ in their conclusions, but it has been impossible
to discriminate between the theories on the basis of earthbound experiments,
For light scattering measurements we need to consider the liuwitations on
the attainable errerimental precision due to gradients in the density Ap¥,
turbidity of the sample, and gradients in the correletinn length £. Our
purpose here is to estimate how much the acceasible range in AT* and Ap* can

be extended by conducting light scattering experiments at reduced g.
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We first consider the variation in density. 1In a light scattering
experiment close to 'l‘c one can consider using a weakly focused beam with a
diameter of 2 100 um. Stronger focusing would require much lower power levels
to avoid local heating particularly at window surfaces, Thus there exists a
practical height or spatial scale limit for critical point light scattering
measurements of about.100 pm.

The resolution of light scattering experiments has been exploited in earth-
bound experiments by moving the beam as a function of height, thus obtaining
local equilibriuﬁ isothermal scattering intensities (White and Maccabee, 1975)
and spectra (Swinney and Henry, 1973; and Kim, et al., 1974). 1In order for
the density change over a height to be within a precision p of the average
density in that region for a sample in a gravitation acceleration g*(g* = glgo)’

we require

d Ap*
Z

h<p (2.4.7)

Using the restricted cubic model and Eqs. A.13 and B.7 of the Appendices, we

find

1
rs (_hg: 2_)Y (2.4.8)
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For xenon, using parameters of Appendix D, we find

r>6.2x1074 (!'gi)-“ (2.4.9)

with h in meters. Thus this density limit is a contour of constant r in the
(41*%, Ap*) plane as discussed in Section 2.2. The following

table gives examples of the lower bounds to r and corresponding AT* = r (with
Ap* = 0) and 8p* (with AT* = 0), for p = .01 = 1Z, h = 10-4 m = 100um corres-
ponding to precision scattering experiments on earth (lg), worst case Shuttle

accelerations (10-33) and best case Shuttle accelerations (10.63).

Table 2.4.1

g* = g/g r = AT* bp*

° (bp* = 0) (aT* = 0)
1 1.3x107° 1.9x1072
103 3.9x1078 2.4x1073
1078 1.2x1070 3,0x107

Next we examine the effect of the strong (critical opalescense) scattering
of light in the sample., The density fluctuation scattering cross section per

unit volume per stearadian of a fluid 1s given by

1 2
di/V) . .2 Sin?e (devzy 7y (2.4.10)
dr . 2/ BT
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where A is the wavelength of the incident beam (in vacuum), € is the optical
dielectric constant at A and KT is the isothermal compressibility and 4 the
angle between the incident light polarization and the scattered wavevector.
Near the critical point KT has a strong temperature dependence leading to

the result that the scattering intensity diverges like KT' For k = 2%/) << 5_1
this dipole cross section can be readily integrated over all angles to give the

scattering attenuation coefficient called the turbidity, =
_ 1 deyo . R
T= 5 T (030) kBT K} (2.4.11)

For the present estimates we have neglected the angle dependence of the
scattering due to the correlation length & (see T'uglielli and Ford, 1970 and
Cannell, 1975).

Like the cross section, the turbidity follows the temperature dependence

of Kr- Using the cubic model (Appendix A.3) we can write for K,

2.2
Kp = (—3—-0—‘:) r! (2.4.12)
az c 4

Since close to the critical point p = Por e find that 1 is proportional to r .
In light scattering studies the intensity corrections due to turbidity
become severe for a path length £ such that 12 2 1., At approximately the same
T2 limit the corrections due to multiply scattered light reaching the detector
become severe. Thus we see that scattering experiments are limited to studying
the samples for AT* - Ap* such that 7 < l-l.
We have evaluated the turbidity and the resulting limitations for the case of

xenon using the parameters of Appendix E at ) = 6328A (He-Ne laser), and
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and approximating (p%%j ~ (ec—l). We find

r = 2510073 1019 71y, (2.4.13)

For an optical path t (m) we conclude that r must satisfy

r>6.53x10°3 184, (2.4.14)

Typical optical cells at present have 2 = 10-2 m (1 cm). More specialized cells

have been made with & = 10_3 m (1 mm). It may be feasible to work with

1= 10" (100ym). With such a thin cell one must carefully discriwminate against
scattering from the inner cell walls., These distances have been used to

calculate the lower bounds of r and corresrrnding AT* and Ap*. For xenon and

A = 63284 we find:

Table 2,4.2

Turbidity approach bounds at A = 63284 in Xenon

£ (m) r = AT* Ap*

(4p = 0) (AT* = 0)
1072 14x107% 4.4x1072
1073 2.0x10"° 2.2x1072
107% 2.8x10°8 1.1x10"2)
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Comparison of Tables 2.4.1 and 2.4.2 ehows that at lg, a 1 mm optical
path cell of xenon has bhoth the density profile and turbidity 1imit of about
£=1.x10 °, This limit corresponds to AT =~ 3 mK. In order to take advantage
of decreased density gradients at 10-3g one would need a cell with optical path
less than 100um = 10“m. The ability to fabricate such a cell has not been
demonstrated. Thus we see that turbidity and multiple scattering place a severe
bound to scattering experiments closer to the critical point. On earth at 1lg this
has not been as severe because the sample density gradients have caused most of
the sample to be off the critical density giving reduced scattering and
turbidity., In a low g environment one expects to see the sample uniformly
opalescent and becoming quite opaque to visible wavelengths as the critical
point is approachted. The fact that the sample i{s uniformly opalescent at low g
should make the analysis of the influence of multlple scattering much more
manageable. The new theoretical work on multiple scattering (Reith and Swinney,
1975; Bray and Chang, 1975) will be helpful in the analysis of low g scattering
data.

It is clear that for studies close to the critical point one needs to
reduce the observed turbidity. This can be done with the choice of A or choice
of fluid with a small defractive index. Since the turbidity varies as X-Q, the

turbidity at a given AT* could be greatly decreased by using longer wavelengths.

Small continuous He - Ne lasers exist at 1,152um and 3.391um. Photomultipliers
still work at lum so this choice would be favored for spectral measurements and
would decrease the tubidity by 10,9x and the r bound by 7.5x., At 3um photoconductive
detectors would be required. The quantum efficiency may be so low that beating

spectra of the critical fluctuations may not be possible. Also the choise of window

materials becomes more restricted. The following table shows the turbidity
bounds of AT*, Ap* in xenon: for electromagnetic radiation with a wavelength of

3um,
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Table 2.4.3

Turbidity approach bounds at A = 3,391y in Xenon

2 (m) r = AT* Bp*

(30 * =0) (at* =0)
1072 4 8x10"7 6.0x10~3
w3 7.0::10'8 3.0x10~>
1074 1,0x10°8 1.5x1073

-3
Table 2.4.3 indicates that at 3.391um we could exploit the 10 “g environment

8 2

with 100um path cells, cver a new range of AT* = 10-5 to 10~

to 2x10_3. With 63284 we could only go in to AT* = 10-6.

and Ap* = 2x10°

Alternatively we can consider going to a fluid wi.a lower dielectric
constant, € = n2. The best choice (lowest €) would be the rare isotope of
helium, HeJ. Here Neagg = & 1,0108 in the fluid near T (We have taken n, for
He4 from the data of Edwards and Woodbury [1963] and scaled it for He3 using the
Clausius- Mosotti relation with the critical densities from Appendix D). Thus at

63284 we expect 1, /1, = (eue—l)zl(exe-l)2 = 1/153. One could further reduce T

He Xe by

He
moving out to lum or 3pm. Thus, the use of helium would help overcome the
increase in turbidity encountered upon approaching the critical point at the
cost of doing experiments at cryogenic temperatures (3.3 K),

The angle dependence of scattering intensity and linewidth closer to the .,
critical point are of interest because of questions concerning the theory of
the fluctuations in the non-hydrodynamic region. The angle dependence of
intensity is written in scaled form in (2.4.4). At a fixed AT*, Ap* the angle

dependence arises from the function y(x) with x = ki and k = 2 ko sin 6/2,

Similarly, the scattering angle dependence of the decay rate rb is given
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by (2.4,6) and comes from x in the function wr(x). If the measurements are

tc be used to determine £ or to test the form of Y(x) or wr(x) it is essential
that we know x precisely. If £ varies over the sample or specifically over the
diameter of the probing beam in the sample due to gravity gradients then x is
correspondingly poorly defined. Assuming for the moment that k is well
defined through suitable collimation of the incident and scattered beams, the
measurement precision of x = ki will be limited by the uniformity of §.

We ask that £ be constant to a precision p over a height h = 10'“m £ 100um
or

(%%)T hsp¢ (2.4.15)

Using the results o: Appendix C for (%%)T one can use (2.4.15) to give

r(6) and then transfer to &T*, Ap*, We have done this for xenon with p = 0.1,
h = 10-4m giving the lower bound AT*, Ap* contours shown in Fig., 2.10 for

3 and 10-6. Comparing the figure to Table 2,4.3 shows that even

gk =1, 10
if the turbpidity 1limit is lowered by changing to 3um wavelengths we will
begin to be limited for g* = 1.0.3 by the correlation length gradient,
There is a further effect of turbidity in determining x. This occurs
because k Zs well defined only for non-attenuated incident and scattered

waves., Attenuated waves give a spread to k, To have k defined to 1% we

need k > 10t. Since k = x/{, we require

e dd o (2.4.16)
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Experimente with a 100um diameter beam in the region below and to the right
of each contour are severely affected hy averaging over correlation lengths

at the values of g* i{ndicated.
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This is least restrictive for large x. The condition (2.4,16) gives a lower
bound for r which is converted into AT* for Ap™ = 0 and Ap* for AT* = 0,
Table 2,4.4 gives the results for A = 63284 and A = 3,391um for the case x = 1.

Note they are independent of g,

Table 2.4.4

Scattering vector approach bounds

A r = AT* Ap*
(dp* = 0) (AT* = 0)
. -7 -3
63284 6.3x10 6.6x10
3um 1.6x10°8 1.8x10°°

The results in Table 2.4.4 indicate that the change in wavelength from
6328 to 3um would keep the smearing of k to an acceptable limit down to the
turbidity/multiple scattering limit for £ of the order of 107 mor 107% m.

We can summarize the results rgported here by stating that with the most favorable
geometry of 100um path cells and 3um radiat’ 'n light scattering experiments conld
approach closer to the critical point by 103 in r corresponding to 103 in AT*
and 101 in Ap* in a 10-33 environment. At present, experimental limitacions
would prevent us from fully utilizing the minimum accelerations of 10-63. Even
at 3um & requirements remains from %53 to achieve the minimum r allowed by
density and turbidity we muet fill the cell accurately to p. o within .02%,

This is certainly possible but requi%ea more care than does sample loading for

earth bound experiments.
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3. Limitutions in critical-region experiments due to modificationc of

fluid properties by a gravitational field.

In the preceding sections we have commented on the technical complicatioms
that are encountered in various experimental methods near the critical
point of a fluid in a gravitational field. However, in additionm,
intrinsic limitations in earth-bound experiments exist due to the fact ’
that the gravitational field modifies the fluid properties in the immediate
vicinity of the critical point.

As mentioned in Section 2.4, upon approaching the critical point the
increase of the compressibility is accompanied by an increase in the
size of the fluctuations that extend over a correlation length &, If
the system were homogeneous and in true thermodynamic equilibrium the
compressibility and, bence, the correlation length would actually diverge
at the critical point. However, the presence of the gravitational ficld
prevents the fluctuations from growing indefinitely and compressibility
and correlation length will in fact remain finite. Thus the presence of
the gravitational field causes round off effects which change the
nature of the thermodynamic behavior in the immediate vicinity of the
critical point. It is the purpose of this Section to estimate the range
in temperature and density where experiments will be affected by these
round off phenomena and to elucidate how this range depends on the
magnitude of the gravitational field.

As explained in Szction 2.2 the gravitational field induces a
density gradient in a fluid near the critical point. When the density

does not change too rapidly as a function of height, one may assume that
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the local thermodynamic properties >f the fluid at a given Jevel are the
same as that of & macroscopic homogeneous system with the sare values of
density and temperature. Under these conditivns the density profi.e 1is
determined by the equations given in Appendix B and measurements of the
local fluid properties in a gravitational field does provide information
on the thermodynamic behavior of a homogeneous fluid in the absence of

a gravitational field.

The assumption of local thermodynamic equilibrium is justified when
the fluid is locally homogeneous over distances of the order of the
corralation length, but will break down when the fluid properties begia
to vary over distances of the order of the correlation length. 1In
Fig. 3.1 we show calcalated density profiles for xenon in the earth's

gravitational field at three reduced temperatures, namery AT* = 10_4,

10_6 and 10-8. The existence of a density gradient implies that also the
correlation lc.gth £ varies as a function of the height. In Fig. 3.2 we
show the correlation length £ as a function of the height for xenon in
the earth's gravitational field. The curves are calculated in the
approximation that the assumption of local thermodynamic equilibrium
remains valid. However, in the dashed part of the curves the correlation
length varies so rapidly that the sys*tem can no longer assume local
equilibrium states that are homogeneous over the range of f. Under
these conditions the laws of thermodynamics no longer suffice tu specify
the nature of the equilibrium states. The complications that arise when
the macroscopic thermodynamic relations can no longer be applied at the
local level, will be referred to as uon local effects.

Such effects will enter when the correlation length ¢ starts to
vary over its own height h = £, It thus follows from (C.19) that for
measurements conducted with precision p non locel effects will be encountered

when 53

- ——



Height (mm)

Ap‘ in %

Fig. 3.1 Calculated density profiles for xenon in the earth's gravitational
fieid and assuming local thermodynamic equilibrium. In the dashed
part of the curves the density varies so rapidly that the assumption

of local thermodynami~ equilibrium no longer applies.
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(3.1)

In terms of the parameters r and O of the restricted cuhic model

equation of state, it follows from (C.16) that non local effects can be

avoided only if

P88 (g Z(OS_:OX:_EO_) [_ 2,262
Ho/\ao ZBébzzez(l-ez)*(]-392)(T-b2262) ] .

Using the xenon parameters given in Appendix E, we conclude that at the

critical temperature, AT* = 0 (6 = !bz_l), non local effects will be

encountered unless
2.
x\ VRS 0.163
|a0*| 2 0.007 (93) = 0.007 (g-'i) (3.3)

In Fig. 3.3 we indicate the region in the AT* - Ap* plane where the
behavior of the fluid is modified by non local effects and, hence, where

its properties will be fundamentally different from a fluid in the

absence of gravity.

Near the cricical isochore, Ap* = 0, condition (3.1) becomes

unrealistic because of the rapid variation of 3£/3z and we should,

instead, consider the integrated form

(3.5)

&
(A
©

The distance &zp over which the change in £ is smaller than p |is

In particular we reguire

56

derived in Appendix C.
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Fig. 3.3
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0 0.01 0.02 0.03
(P-Pg )/ Pg

Region in the temperature-density plane where the fluid properties

are modified by non local effects for g* = 1 (earth's gravitational

3 The curves refer to experiments for xenon

2.

field) and ¢* = 10°
with a precision at the 1% level (p = 10
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£ - :O!AT*!"' < 2.';zp (3.6)

where Azp is defined in (C.13). For xenon we obtain

]
8T*] 2 0.4x1078 (L5788 g 4,076 (a%)0.46 (3
% 7 7)

This equation determines the intercept of the contourc in Fig. 3.3 with
the AT* axis.
It follows from (C.lla) and (3.2) that the system will only satisfy

the conditions for local thermodynamic equilibrium when

\Y

- .2
¢ < 1.5x10°° (%,,)"*“ m = 1.5x107° (Pg-;)0 9 (3.8)

When the critical point is approached more closely, the increase of the
range of the fluctuations will be suppressed by non local effects. It
seems plausible to assume that the correlation length £ in a fluid in
a gravitational field cannot grow any further when (ag/az)T I 11ir the
local equilibrium approximation. Hence, in a fluid in a gravitational
field, the correlation length will always remain finite and of the order

of

6 »-0.29 m

£< Epay = 1.5x107° g* (3.9)
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It should be noted that the maximum correlation length attainable will
only increase inversely proportional to the cube root of the gravitational
field.

In this section we have considered the intrinsic limitations of
thermodynamic experiments near the critical point of a fluid in a
gravitational field. At present, more stringent limitations are imposed
by the complications associated with the state of the art of the various
available experimental methods. Nevertheless, current experimental
techniques have developed to the point that they are on the verge of

reaching the region of these intrinsic limitations ia earth-bound experiments.
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4. Conclusions

In this report we have shown that gravity causes experiments to
become inaccurate when the critical point is approached sufficiently
clusely. We have considered the ranges in A4T* and Ap* which are inaccessible
in a variety of earthbound experiments and how these ranges shrink when
gravity is reduced. Some of our conclusions are summarized numerically
in Table 4.1.

The criiical peint is a focal point of anomalous behavior of many
physical properties. In order to understand the nature of these anomalies
it is degsirable to approach the critical point as closely as possible.

In fact, the most recent experiments (Hocken and Moldover, 1976; Balzarini
and Ohrr, 1972) indicate that at temperatures as close a 1 mK from che
critical temperature the ancmalous behavior near the critical point of
fluids, although appearing to approach Ising mode® behavior still

differs from the behavior predicted by some theories for that model. A
disappearance of this difference at the critical point would have
considerable theoretical signif{icance.

Experiments in a low-g environment will provide opportunities to
study the nature of the anomalies in a range of temperatures near the
critical temperature inaccessible in earthbound experiments. To
discuss which anomalies are best suited for study in space, it is
convenient to classify aromalies as "strong" and "weak" (Griffiths and
Wheeler, 1970). In this rough classification, quantities which behave
like (T--'l‘c)-p on the critical isochore are called strongly anomalous 1if
p 1s greater than, perhaps, 0.5. Thus the isothermal compressibility,
the constant pressure specific heat, the thermal diffusivity, and the

correlation length exhibit strong anomalies in pure fluids. In contrast,
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properties for which p is less than 0.5 (or even negative) exhibit weak
anomalies. Examples in pure fluids are: the velocity of sound, the constant
volume specific heat, the dielectric constant, and the shear viascosity.

In general, strongly anomalous quantities can be studied sufficiently
well on earth (particularly with refinements of optical techniques
mentioned in Chapter 2) so that low-g experiments do not seem desirable at
present. If the technology advances to the point where the non local
effects of Chapter 3 are encountered, this statement would have to be
revised. On the other hand, those prcperties which exhibit weak anomalies
and which must be studied in bulk samples are excellent candidates for
scientifically valuable low-g experiments. The study of these weak
anomalies in pure fluids is hampered by the strong variation of fluid
density with height on earth.

The weak anomaly in the index of refraction is a particularly
important onme for low-g studiea. Thorough understanding of the index of
refraction anomaly is of interest in itself; however, it is of even
greater interest in its impact upon the interpretation of equation of
state data obtained by optical techniques. Other good candidates for
study in a low-g environment are the Cv and viscosity anomalies which,
with present technology, must be studied in bulk samples at least several
tenths of a millimeter high.

In the areas of phase transition phenomena in fluids, low-g studies
of spinodal decomposition, nucleation, and macroscopic phase separation
all seem appropriate., At this time, it iz hard to present a detailed
justification of low-g studies because the phenomenology is not as well

developed in these areas as it is for the thermophysical properties. We
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believe exploratory experiments which exploit the long sedimentation
times available in spacelab are appropriate. We agrea with the Overstudy
Committee (Dodge et al., 1975) that very simple experiments will be
extremely important. The Overstudy Committee described one such experiment
(Dodge et al., p.9) which we heartily endorse:
Take a set of samples of a one-component fluid with different
densities. Included should be a sample at subcritical density, a
sample at the critical density and a sample at supercritical
density. Let the temperature vary either continuously or dis-
continuously through the transition tcmpersture and take photo-
graphs at regular temperature intervals. Compare these photographs
with those obtained at earth under the same instrumental conditionms.
Conduct similar experiments for a set of samples of a binary mixture
at concentrations smaller than, equal to and larger than the

critical concentrstion.
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Appendix A. Parametric equations of state for fluids near the critical

point.

A.1 Introduction

Let p be the density, V the volume, P the pressure, T the temperature,
¢ the chemical potential, KT = 0_1(30/3P)T the isothermal compressibility
and Cv the heat capacity at constant volume. It will also be convenient

to introduce a "symmetrized" compressibility

X1 *© (30/3U)T = szT (A.1)

The thermodynamic properties are made dimensionless by expressing them
in units of appropriate combinations of the critical temperature Tc, tha
critical density e and the critical pressure Pc' Specifically, we

define

T* = T/T., o* = olo., P* = P/P.

(A.2)

*
p* = “pC/PC’ X? = XTPC/D(Z:’ CV = CVTC/VPC

Note that the reduced specific heat Cg is taken per unit volume. In

addition we define the differences

su* = {u(p,T) - u(pC,T)}pC/Pc (A.3a)
AT* = (T-TC)ITC (A.3b)
so* = (o-p o, (A.3c)
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The behavior of various thermodynamic prorerties is described by
power lass when the critical point is approached along specific paths ian
the AT* - Ap* plane. One customarily defines four critical exponents
a, B, vy, and § associated with the thermodynamic behavior of - luids near
the critical point. (Rowlinson, 1969). The exponent o describes the

divergence of Cv along thz critical isochore.

(TaT, =5 WALEREE{I UM IE (A.42)

the exponent B characterizes the shape of the coexistence curve
T<T,o=0_.) =13 |aTrf
the exponent y describes the divergence of the compressibility

(T2T. 0 =0p.) ¢ =T (aT)™ (A.4c)

and the exponent &8 specifies the behavior of Ap along the critical

isotherm

(T=T7) tu* = 0 (ap%)ap*] ] (A.4d)

The description of the thermodynamic behavior 1s based on a scaling
hypothesis (Widom, 1965; Fisher, 1967; Levelt Sengers, 1974, 1975). This
scaling hypothesis suggests that the equation of state upon approaching

the critical point will be asymptotically of the form (Griffiths, 1967)
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au* = ao* [o*| 8 Mh(x) (A.5)

x = aT%/|ao*| /8 (A.6)

The scaling hypothesls i{mplies that the thermodynamic critical exponents

introduced in (A.4) satisfy the relations

B(&+1)
B(5-1)

~n
'

[~
]

(A.7)

-
n

so that only two exponents can be chosen independently.

The function h(x) in (A.5) must satisfy a number of stability and
analyticity conditions (Griffiths, 1967-. However, it turns out to be
very difficult to formulate an explicit mathematical expression for the
function of h(x) that would satisfy all required analyticity conditions
and which would be analytically integrable to calculate the specific
heat (Vicentini-Missoni et al., 1969; Schmidt, 1971; Levelt Sengers
et _al., 1976).

These problems are solved By using parametric equations of state
(Josephson, 1969; Schofield, 1969). 1In the parametric equations of
state the relationship between the physical variables Au*, AT* and Ap*
is given implicitly via two parametric variables r and 6. The constraint

that the scaling law (A.5) is satisfied is met by the fcllowing choice
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au* = B8 (o)

AT*

r T(e) (A.8)
rB M(e)

bp*

The variable r is meant, in some sense, to describe a distance from the
critical point and the izimuthal variable ¢ a location on a contcur of
constant r. The crir‘cal isochore, the critical isotherm and the
coexistence curve are all curves of constaﬁt angle 9. 1In Fig. Al we
shos th: location of these curves in the Ap* - AT* plane and indicate
the meaning of the parametric variables r awnd 6.

Parametric equations of state with various choices for the functions
H(g), T(g) and M(8) have been used successfully to represent experimental
equation of state data in the critical region of fluids. The parametric
equations of state used in this report are the restricted linear model,

the restricted cubic model and the Wilcox-Estlaer equation of state.
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A.2 Restricted linear model.

The restricted linear model equation of state corresponds to the

choice (Schofield, 1969; Schofield, Litster and Ho, 1969)

du* = 3 r“e(l-ez) (A.9%a)

AT* = r(l-blzez) (A.9)

dp* = k] rfe (A.9¢)
with

b2 = §-3 (A.9d)

\6-1)(1-28)

where a1 and kl are adjustable constants. In this formulation 5 = 0 on

the critical isochore g = 2 1/b1 on the critical isctherm and 6 = = 1 on

the coexistence curve. The sign of 3 corresponds to the sign of 2p*.

The restricted linear model yields for the compressibility

- a -
K (E-:-)r” [1 + (12-9{,39-) ez] (A.10)

and for the singular contribution to the specific heat

*

ch,:ing - a2k, (1;2?)_%&(&1." o (A.17)
a(s-

so that a contour of constant r may be interpreted as a contour of
constant anomalous specific heat ‘Schofield, Litster and Ho, 1369).
The restricted linear model has been used to fit experimental data

fcr magnets (Schofield, Litster and Ho, 1969) and fluids (Hohenberg and
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Barmatz, 1972; Huang and Ho, 1973; Thoen and Garland, 1974; White and
Maccabee, 1975; Levelt Sengers and Sengers, 1975; Levelt Sengers et _al.,
1976). It can be integrated and also be fitted tc the pressure (Murphy
et al., 1973, 1975).

Restricted linear model parameters for a variety of fluids are
presented in Appendix D.

A.3 Restricted cubic model.

The restricted cubic model equation of state corresponds to the

choice (Ho and Litster, 1970; Huang and Ho, 1973)

au* = a, r°° o(1-02) (A.12a)
aT* = r(1-b,? 62) (A.12b)
Bo* = k, rB 6(1+c o2) (A.12¢)
with
b2 = —3—, c= 288-3 (A.12d)
3-28 3-28

where a, and k2 are adjustable constants. Just a8 in the linenr model,
6= 0 on the critical isochore, 6= 2 1/b2 on the critical isotherm and
8§ = t] on the coexistence curv..

The restricted cubic model yie ds for the compressibility the

simple form

* ko .
X1 v;-:- FY (A.13)

so that a contour of constant r corresponds to a contour of constant

compressibility,
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When the restricted cubic model is fitted to experimental data the
quality of the representation is comparable to that of the restricted
linear model. Restricte? cubic model parameters for a variety of fluids
are presented in Appendix D.

A.4 Wilcox-Estler model.

The parametric equation introduced by Wilcox and Estler {1971} has
been usad to analyze density gradient profiles in the extreme vicinity
of the critical point (Estler et al., 1975; Hocken and Moldover, 1976).

It 1s defined through the equations

N .14
Bu* = g r' Y&(r,8)H(0) (A.14a)
AT*=re (A.14b)
po* = ¥8(r.0) [1 + £ W(e)] (A.14c)
with
1-8/8
N(e) = X (A.]4d)
1 - o/e0
Y(r.0) = Y_r (1-8/6 )" (A.18e)
- 0 c
=1 - (A.14f)
a=1 eo/ex
This equation of state is designed such that
=Y (A.15)

* 1
so that a contour of constant r = (1/xT ) /Ycorresponds to a contour of
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constant compressibility as in the restricted cubic model. It has the
additional feature that AT* is a linear function of both r and 4.

In this formulation lines of constant 9§ are straight lines as indicated
in Fig. A2. 1In this model 8§ = o corresponds to the critical isotherm, while
6= eo on the critical isochore and ¢ = 8, on the coexistence boundary.

For the special choice BA = 3/2 the Wilcox-Estler model reduces to the

restricted cubic model (Estler et al., 1975).
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Fig. A2. Coexistence curve, critical isochore and critical isotherms in the

* 1
plane with coordinate axis r = (1/xT ) Al and t = oT*,
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Appendix B. Calculation of density profile.

We assume that at each level z the local chemical potential
u(p(z),T) equals tne chemical potential of a system with uniform density
p = p (z) at temperature T in the absence of gravity. The conditions
under which this assumption is valid are discussed in Section 3 of this
report. Since in the presence of gravity the total chemical potential
is the sum of the local chemical potential u(p(z),T) and the gravitational

potential mgz, we have

clo(2),T) - u(o(zo),T) = - mgAz (B.1)

where m is the molecular mass, if the chemical potential is taken per
particle and where 4z = z - z . Fpr convenience we take the reference
level z_ as the level where p = L In terms of dimensionless quantities
we write

(B.2)

Az = - H Au*

with

H = Pc/(pc mg) (B.3)

The quantity &u* is defined in (A.3a) and the product p, m e the mass

density at the critical point. The quantity H represents a scale height
for the chemical potential of a fluid in a field of gravity g. Ho
represents the scale height for the chemical potential in the earth's
gravitational field where g = By In Appendix D we present the scale

factors for the critical isotherm for a number of fluids in the earth's

gravitational field, where
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D Ho - Dpclpc g, (B.4)
(These scale factors for the critical isotherm differ from Ho by a
numerical factor, D, which varies between 1.2 and 3.2 among various

fluids). Introducing a gravity ratio

g* = g/g, (B.5)

we mav rewrite (B.2) as

H
Az = - (-é) Au* (B.6)
9

Substitution of the scaled equation of state (A.5) into (B.6)
yields the relationship between height and density at a given temperature.
In practice we either use the restricted linear model (A.9), the restricted
cubic model (A.12), or the Wilcox-Estler model (A.14).

It follows from (A.1) and (B.6) that the density gradient

(ap*/BZ)T is given by

4

9p _ * ae* *
(Bz - ﬂ" ( *) = - H—H x; (B.7)
0 du T 0

In practice the density can be determined as a function of height
using a float densimeter (Greer et al., 1974) or by measuri. ~ the capacitances
between a stack of horizontal conduction plates (Weber, 1970). The
density resolution in such experiments is limited by the variation of
the density over the height h of the float or the distance h bhetween the
two capacitor plates. If the local density is to be obtained with a

precision p we must require that
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lo*(s2+h/2) - o*(bz-/2)}= h|2) < p (8.8)

It thus follows from(B.7) that errors due to gravity in determining

densities are avoided 1if

T * (8.9)

or in terms of the cubic model parameters, using (A.13),

h /vy
r z(m 2 (8.10)
Hop 2.

For xenon this condition reads

r 2 6.2x10°% (Qgﬂ)°-84 (8.11)

where the height h is to be expressed in m. In particular at the critical

isochore p = pc

AT* > 6.2x10'4(9§ﬁ)°'84 (B.12)
and at the critical isotherm T = Tc

do* 2 0.076 (ﬂ%ﬂ)“3 (8.13)
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Appendix C. Calculation of correlation length.

C.1. Definition of correlation lengih.

When a fluid approaches the gas-liquid critical point, its thermodynamic
state is accompanied by large fluctuations in the density. The magnitude
and spatial character of these fluctuations are described in terms of a

correlation function defined as (Stanley, 1971)

p2G(|R-R'|) = < p(R)p(R') > - p? (c.1)

where p(E) is the local (number) density at position R and

p the average equilibrium density which is independent of the p;sition
1 (not considering the presence of external forces such as gravity).
The zeroth order moment of the correlation function is related to the

isothermal compressibility by the fluctuation theorem '

= ~274R c.2
kBT Xp p?fdR G(R) (c.2)

The correlation function G(R) = G(Ap*,AT*;R) 1is a function
+ >
0p* and AT* as well as of R (where R = |R - R'|).
The spatial extent of the fluctuations is characterized by a correlation

length £. It is defined as (Fisher, 1964, 1967)

— (€.3)

The correlation length § diverges at the critical point. In particular

along the critical isochore it follows the power law

(T2 T, p=p) £ =g (a7 €.4)
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Another exponent n is introduced to specify the nature of the
dependence of the correlation function on the distance R. It is defined

such that at the critical point Ap* = 0, AT* = (

1
G(o,0;R) «
Rl+n

The expeonent is zero in the classical theory of Ornstein and Zernike
(Fisher, 1964). In current theories n is small, but finite.

The correlation function exponents v and n are related to the
thermodynamic critical exponents a, B, y,§ introduced in Appendix A by

the relations (Fisher, 1967; Widom, 1974)

v = 3(2-n) (C.6)
v = 2-a (c.7)
Eal (c.8)

The* relations (C.7) and (C.8) are sometimes referred to as hyperscaling

relations (Levelt Sengers and Sengers, 1975).
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C.2 Correlation length as a function of density eand temperature.

The correlation length ¢ = g(ap*, sT*) is a function of density and
temperature, The hypothesis of scaling for the thermodynamic behavior
can be extended to the correlatipn function G(Ap*, AT*;R) as a function
of Ap*, AT* and R {Kadanoff, 1966). The scaling hypothesis implies that
the correlation length ¢ can be written in the form (Sengers and Levelt
Sengers, 1976)

1

A R =
£ = £y ROvx) (171 g (c.9)

where x = AT*/|AD*|1/Bis the thermodynamic scaling variable introduced
in (A.6) and X, = - AT*/IAD:XCII/B- B-I/B, where B 18 the amplitude of
the power law (A.4b) for the coexistence curve. The function ﬁ(x/xo) is
a universal function such that ﬁ(“) = 1 at the critical isochore x = =,
The amplitude Eo a2 be deduced from light scattering data (Chu, 1972).

In this report we have calculated the correlation length in the
approximation that ﬁ(x/xo) = ] independent of x

]
- -1 * Zn
E=6, (I xp)

(C.10)
This approximation, though not strictly valid, is adequate for the
purpose of this report (Senger and Levelt Sengers, 1976). In this
approximation a contour of constant compressibility x¥ coincides with a
contour of constant correlation length £ For this reason we found it

convenient to calculate £ using the restricted cubic model equation of

state (A.12) for which
79



with b

2

AT* = r(l-b% 82)

be* = ky rf o1+ ¢ 82)

and ¢ again given by (A.12d).
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C.3 Correlation length as a functiou cf height.

Once the density profile and density gradient profile has been
calculated from (B.f) and (B.7), the correlation length as a function of
height follows fr-. (C.10). In terms of the parameters of the restricted
cvbic model the relationship between the correlation length £ and the

height z at a given temperature gT* is determined by

g =gy [aT*™V 1 - b3 67| (C.12a)

H )
bz = - -2 a, (aT*|®8 1 - b3 & |7 6(1-62)  (C.120)
9

The correlation length assumes its maxiwum value at the level
Az = 0 (6 = 0) corresponding to the critical density. The height Azp at
which the correlation lengt* will be reduced by a factecr l-p is determined

by the conditions

o = -.: 'l’- | Z il :
IS U AT VS R S TR Y
so that
2
H a vb, - p
be = -2 2R L (c.14)
g bz \Jbz-bz Bﬁp
H, a ! oA
-3 g By
g P2

The rate at wnich the correlation length ¢ at arbitrary lev:le wii'

vary as a function of height is Jetermined by
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In terms of the parameters of the :restricted cublc model this equation

pecomes
() (L) (35 hr ] el (.16)
2y \Hy S\, {255 bz2 ~<(1-32)+(1 -3&2)(1-b2?e2) ’
in particuiar at the critical temperature 3T*% = ¢, (5 = 2 bz—l) this
gradient will wvary as
. b2
[i2) NS W AR L G =15 B
ey = s A=l Por —
N Zl T=T: Yzr / ‘\5? / 5:’!-,22_]) (c-]7a)
Slvaoolaax delsrmined b
Z 7 N 3
sk = “In v s s C]7b
— Kz r \uz C)/bz ( )

The correlation length 15 the fund.mental length scale which t...a
dztermines the anomalous hehavior of thermodynamic ard transpoit properties
uear the critical pofnt. 1In actual experiments these properties are
measured as averages over a finite height h. Such experiments will be
reliable when the correlation lenerh over this height does not vary
within the precision p desired. Thus in crder to avoid errors due to

gravity we reguire that
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'e(t\z + h/2) - (az - h/2)|s p £(az) (C.18)

which we approximate as

|

13€N . o=t
\a— s E (\C.19)
Upon substituting (C.1la) and (C.16) into (C.19) we conclude that the
errors due to gravity will become appreciable unless

2b22?

w3 * .
r"¢(u):%) —— - —
HP %2 [285 bye (1-nZ)+(1-3¢7)(1-by% =)

(C.20)
When combined with (C.11lb) and (C.llc) this equation defines a range in
rhe ¢T* - Lo* plane where the measurements become inaccurate due to
gravity effects. In particular at the critical tewmperature &T* = O,

this cond.tion becomes

. QYE ,
R A ___) {C.21]
pHQD 38

where D is the amplitude of the critical isotherm defined in (A.4d). In

+ ‘rticular for xenon
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N R CRU (c.22)
where h is to be expressed in meters.

At the critical isochore ac* = O at T # Tc, (35/31)T = 0 and (C.19)
is not a good approxim-+tion to (C.18). The distance Azp over which the
correlation length is reduced ty a factor 1-p is given by (C.14). In
ord~r to avoid gravity effect., we must require that this distance bde
larger than the height (strictly h/2) over which the properties are

measured

[ENY B 4

(C.23)

sl

It thus follows from (C.l4} and (£.23) that at the critical isochore

1/cd
b,
jar » o 22 (1)1/2 (c.24
L?Ho ¢ B (C.24)
In particular for xenon
18T*| & 1.85¢1073 (ﬂ\o.ss (c.25)
P ) '

wvhere h 18 to be expressed in meters.
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Table C.1. Critical Region Parsmeters for a Number of

Fluids Agsuming Universal Effective Exponents

Critical Point Parameters Restricted Restricted DH, *

P o . T L:near Mocel | Cubic Model b

Wwa  kg/m K 1y k n
3e 0.11678 41.45  3.309 | 0.92¢ 4.58| 0.818 4.05 | 906
%o 022742 69.6 51895 | 1.021 6.40| c.904 5.66 | 946
Ar 4.865 535 150,725 | 1.309 16.1 | 1.16014.2 | 2260
Kr 5.4931 908  209.286 | 1.309 16.1 | 1.16C 8.2 | 1500
Xe 5.8400 1110 289.73 | 1.309 16.1 | 1.16014.2 | 1310
p-H, 1.285 31,39 32.935 | 1.15 9.6 | 1.024 85 |10410
N, 3.398 339 126.24 | 1361 18.2 | 1.206 161 | 2560
0, 5.43 436.2  154.560 | 1.309 15.6 | 1.16015.9 | 2790
M0 22.06 322.2 647.i3 | 1.622 21.6 | 1.43819.1 | 8o
DO 21.66 357 643.89 | 1.622 21.6 | 1.43819.1 | 7950
Co, 7.3753 467.8 304127 | 1.436 2.3 | 1.27318.9 | 3470
M, 11.303 235 405.4 1.573 1.4 | 1398191 | n3e
SFg  3.7605 730 38.687 | 1.327 23.9 | 1985212 | 1730
i, 4.595 162.7  190.555 | 1.361 17.0 | 1.206 15.1 | 6260
CH, 5.0390 215 282,388 | 1.350 17.5 | 1.19715.5 | ss40
CMg 4.8718 206.5  30.33 | 1416 20.2 | 1.25510.9 | ss20
CHg 4207 221 369.82 | 1.451 20.2 | 1.26617.9 | 339
Notes: a = 0.100 8 = 0,355 b, = 1.3100

y = 1.190 &= 4,352 b,Y = 1.3909 | ¢ = 0.0393

ve=0,633 n=0,12

The last quantity tabulated, DH = D P /o, mg,) 1s the scale factor f~r the density
e .
vs height profile at the critical temperature.

- -6, 6-3,2
D 'lkl b
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1 (b1 - 1), which is taken from Sengers et al. [1576].
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Appendix D. Physical constants for varicus fluids.

In this Appendix we present critical parameters and critical region
parameters Zor a number of fluids, taken from & survey prepared by
Sengers and Levelt Sengers [1977]. The restricted linear model and
cubic model parameters in this table represent informed estimates assuming

universal effective critical experiments corresponding to the range

5x10°% <jaT#| < 3x1072, Ino*| = 0.25 (D.1)
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Appendix E. Parameters used for xenmon in this report.

Critical point parameters (Levelt Sengers et al., '1976)

Pc = 5.8400 MPa

1110 kg/m>

8

289.734 K

~3
(]

=~
]

Pc/pcgo = 536 m

Restricted linear model (Levelt Sengers et al., 1976)

a = 0.100 A=1.71 ky, = 1.309
B = 0.355 B = 1.827 a, = 16.1
y = 1.19 I = 0.0813 bl2 = 1.3909
8§ = 4,352 D = 2.44
Restricted cubic mode” (Sengers and Levelt Sengers, 1976)
a = 0,100 A=1.68 ky = 1.160
8 = 0.355 B = 1.827 a, = 14.2
vy = 1.19 I = 0.0817 b, 1.3100
§ = 4,352 D= 2,44 c = 0.0393
Wilcox-Estler model (Hocken and Moldover, 1976)
n = 1.1379 8 = 0.3293 6, = 0.1076
n_'= 0.14 y = 1.229 Y5 = 0.323

A =44

Correlation length (Swinney and Henry, 1973)

v = 0.633 g - 2.0x1010%.
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Nomenclature
A = amplitude of power law for specific heat Cv

a - parameter of linear model

1
a, = parameter of cubic model
B = amplitude of power law for coexistence curve
bl = parameter of linear model
b2 = parameter of cubic model
Cv = constant-volume heat capacity
C* = CT/vP
v ve ce
c - parameter of cubic wodel

D = amplitude of power law for chemical potential along critical
isotherm

d = sample thickness

g(R) = correlation function as a function of distance

g = gravitational acceleration

g, = 9.80 m/s2 = earth's gravitational acceleration (units)

gt = g/go = gravitation acceleration relative to its value at the

earth’s surface

h = sampie height

H = Pc/pcmg = gcale height for chemical potential
Ho = Pclpcmgo + gcale height for chemical potential on earth
k = wave ve. [

- p-l(aplaP)T = jgothermal compressibility

Boltzmann's constant

of

kl = parameter of linear model
k2 = parameter of cubic model
m = molecular mass

n x refractive index
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P*x

Ap*

oy

>

T*

AT*

Az

refractive index at critical point
(Bn/ap*)T

n‘_1 = value of n, at critical point
Pressure

critical pressure

P/PC

(P-PC)/PC

desired precision

parametric variable

spatial coordinate

magnitude of spatial coordinate

scaling function for correlation length (Appendix C.2)
structure factor

temperature in Kelvin

critical temperature

T/Tc

(T-T /T,

AT*

volume

scaled thermodynamic variable A’l""/}t\p*lllB or scaled wave vector k¢
g-1/8

parameter of Wilcox-Estler model

height

height at which p = Pe

z-z
o]
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Greek letters

a = exponent of power lai' for specific heat Cv
] - exponent of power law for coexistence curve
Y - exponent of power law for compressibility Xt

r = amplitude of power law for compressibility X

Fs = decay rate of entropy fluctuations

é = exponent of power law for chemical potential along critical
isotherm

€ = dielectric constant

A= 1 - SO/EX = parameter cf Wilcux~Estler model
n = exponent for spatial dependence of correlation function

at the critical point

8 = parametric variable

eo = value of 8 on critical isochore in Wilcox-Estler model
ex = value of 9 on coexistence curve in Wilcox-Estler model
2 = correlation length

Eo = amplitude of power law for correlation length

A = wave length

u - chemical potential per particle

uk = uDC/Pc

bk = (o, T) = ulp  T)}p /P,

v = exponent of power law for correlation length
o = number density

P = critical density (particles/volume)

o = average density

pr = olp

C

Aok = (o ~ oc)/oc

91

B LTV S



S

CXcC

density of vapor or liquid at ccexistence

o
OCXC/‘C

(pcxc- oc)/pC

cross section area

turbidity

2 r
(30/3U)T = 0" K,

2
(3p*/au*) = Xp Pc/°c

frequency
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