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SINGULARITY COMPUTATIONS

J. L. Swedlow
Carnegie-Mellon University

One of the intriguing - and sometimes perplexing - classes of problems in

mechanics involves singularities in otherwise smooth fiel.1s. Examples abound

from the Joukovsky airfoil to Kelvin's problem and hardly need recounting

here. Where an analytical solution is available, numerics may be sim-

plified or avoided altogether. In other instances, numerical analysis is

necessary, and properties of the singularity are then inferred from tab-

ular information.	 These data are typically sparse or inaccurate in the

immediate region of the singularity, or the numerical technique affords poor

resolution, or some other impediment is encountered in establishing fully

the result required.

Needed is an approach inherently untroubled by such shortcomings, one

that indicates the structure of a singularity directly. In particular, it

would be useful to have both:che radial and angular (polar or spherical)

distributions of the field quantities delineated as explicitly as is prac-

ticable, together with some measure(s) of the intensity of the singularity.

In this paper, we suggest such an approach, based on recent development of

numerical methods for elasto-plastic flow. This approach is patently appli-

cable to other problems in solid mechanics and, without much effort, lends

itself to certain types of heat flow, fluid motion, and the like.

Analytic solutions to classical problems in mechanics where a singularity

occurs are divided, for our purposes, into two classes. In the first, one

variable or set of variables is finite at the origin of the si.,;i?arity, but
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a second set - typically gradients - is not. Prime examples are displace-

ments and strains at re-entrant corners, temperature and heat flux at an

abrupt change in surface insulation. The second class involves singularities

where none of the quantities is everywhere finite as, for example, in

Kelvin's problem. This type of solution has proven essential to development

of numerical procedures such as the boundary integral method and it thereby

deserves close attention; because concern here rests with finite element

methods in solid mechanics, where boundedness of displacements is necessary,

we limit attention to just the first class of problem.

PLANAR ELASTICITY

Singular behavior at re-entrant corners in classical planar elasticity

(plane stress, plane strain) was fully articulated by Professor M. L. Williams [1]

long before the widespread use of finite elements. His basic result in 1952

can be interpreted as the sum of two series, one of which provides the singu-

larity in strain and stress, if such behavior exists for the geometry and

boundary conditions prescribed. The second series gives regular results

which, in the finite element sense, provide the components of rigid motion,

"linear" displacements or "constant" strains,, and increasingly higher order

terms. This latter component of Williams's solution may be shown to be

equivalent to the interpolation functions used commonly in regular finite

elements.	 •

There have been many developments reported in the literature to incor-

porate the first part of Williams's solution into finite elements for the

specific case of a crack; see, e.g., [2,3]. Professor P. M. Quinlan has

also used these functions to enhance an edge-function form of analysis [4],
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and Dr. B. Gross and his colleagues have published a variety of solutions

using collocation methods [5]. In all these instances, and in others where

extraction of a stress intensity is the objective [6], it is essential to

have at the outset a certain foreknowledge of the structure of the singularity.

That is, were it not known from Williams - or an equivalent source - what to

expect, none of these procedures could have been implemented. 	
^- J

Where information as to local behavior is desired, it is obvious that

the details must be properly characterized either in advance or as an. integral

part of the (numerical) analysis. The case of planar elasticity is well in

hand and no further primary findings are to be anticipated. For the purpose

of our discussion, however, we make the supposition that the structure of

the singularity - if, indeed; one were to exist - is not known and then

enquire what steps might be taken to reveal that information. Knowing the

basis of Williams's work as well as his results should then provide guidance

for devising a numerical procedure.

Let us presume that, in some specific problem of interest, displacements

in the vicinity of a suspected singularity behave in the following manner.

In addition to rigid motion and linear variations in the displacement field

which produce the familiar "constant" strain, the displacements along a

ray from the origin (i.e., the point of singularity) behave as

U ti 
P	

0	 (1)

where p is a (linear) radial coordinate, and q is an undetermined exponent.

Let us furthermore focus on the case where 0 < q < 1 to provide the type of

problem in which we are interested, i.e., singular gradient(s) of u. It is

noted that no regular element will produce the response shown in (1); while

for some range of p there may be a correspondence of regular element behavior

and (1), the similarity is fortuitous and :annot be relied upon.
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Our task now becomes that of finding q in (1), pertinent to some specific

problem. In fact, the approach employed here addresses this task and is con-

ceptually no different than that used in finite element analysis - we simply

go a step further. 	 An element is defined and its displacement field pre-

sumed as is usual, with terms of the form (1) included. Strains are com-

puted, and the potential energy is defined and minimized with respect to

nodal displacements; the result is the familiar stiffness equation. In a

particular problem, however, solution strategy extends beyond solving the

stiffness equation: potential energy is simultaneously minimized with

respect to the exponent in (1) to achieve the full result.

To be more specific, we assume the re-entrant corner to be surrounded

by an array of sectors which together comprise a special element, as in

Figure 1. Arbitrarily here, each sector has five nodes as sketched and we

assume the cartesian components of displacement take the form

u = uo + A1 x + C ly + (E+F6)pq cos e - (G+He)pg sin e
(2a)

v = v  + D 
1 
x + B 

1 
y + (E+F6)pq sin 6 + (G+He)p q cos e

Accordingly, the polar components of displacement are

u = uo cos 9 + v  sin 6 + 2
(A1

+B 1 )p + 2(A1-B1)p cos 26

+ 2(C l+D1 )p sin 26 + (E+Fe)pa	
(2b)

ve = -uo sin 6 + vo cos 6 - 2(C1 -D1 )p + 2(C 1+ D 1 )p cos 26

2 (A1-Bl)p sin 26 + (G+H6)pq

Clearly, uo ,vo , and (D 1 -C 1 ) are rigid motions; further, uo ,vo ,Al ,,,H are

coefficients to be determined (in terms of nodal displacements). The process

of relating these coefficients to the nodal values, although tedious, is

straightforward and the result is easily tabulated [7].
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The "special" aspect of the element thus outlined is evident in the p 

terms in (2). This simple representation is not more than an extension of

the well-known constant strain element (CSE) and is thus but one of many

possible configurations that one might contemplate for use in a given situ-

ation. For the present purpose, we take the element in Figure 1 to be em-

bedded in an array of "regular" or unmodified CSEs which make up the struc-

ture to be analyzed as, for example, is shown in Figure 2. Some other

possibilities are outlined in the Appendix.

The result of having evaluated the coefficients in (2) in terms of

nodal displacements may be written

{u} = [a(p,8)]{u}	 (3)

where {u} represents the two components in (2a) and {u} is a vector of

nodal displacement components. The matrix [a] is the set of interpolation

functions; note that q appears only in [a]. Following standard procedure,

we next compute from (3) the strains

E
x

E  = { E} = [ 6(P,e)1{u}	 (4)

Yxy

as a precursor to computing the potential energy of the entire element

assembly. In this context, note that (3) and (4) pertain to a typical

sector of the special element, so that the potential energy will involve

a summation of the contributions from each sector.

Since

a
X

ay 	 = {a} = [M] {E}

T xy

4
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we have the potential energy for the typical sector as

e2 2p 
Us = 2{u } Tf f [a] T[M][B]pdpde{u}

8 1 0

- {u}T f [a]T{t WS
S
v

where {t} is the traction vector specified on some part S  of the sector's

boundary S. Summing terms of the form (5) over the sectors, we arrive at

the special element's potential energy

U =Z U
e	 s

s

in which many of the traction terms obviously cancel. We next add the poten-

tial energies of each of the regular elements Ur to arrive at the total value

for the system:

U=U+E Ue	 r
r

To the extent that the surfaces of the re-entrant corner are traction-free

or, alternatively, that their nodal displacement components are specified,

the only uncancelled contributions to the overall system's traction are

precisely where tractions are specified, normally far from the re-entrant

corner.

We are now prepared to minimize the functional U with respect to nodal

displacements, arriving at the familiar stiffness equation. In the present

development, the entries in the stiffness matrix take the same form for

regular (CSE) elements as has been shown in many places. The contribution

from each sector of the special element derives from the first integral in (5)

and, together, a stiffness for the special element may readily be identified.

Even with this relation, however, it is clear that no constraint on the expo-

6

(5)

(6)
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nent q has obtained; indeed, solving the stiffness equation could go forward

with virtually any value for q. Were q somehow known, however, the computation

at this stage is unremarkable except for (what appears to be) some negligible

incompatabilities between the special and regular elements.

The constraint on q, so far lacking, is obtained by minimizing the func-

tional U with respect to the exponent itself. Were we to set 8U / aq = 0, how-

ever, the result would be an hideously non-linear equation to be handled along

with the stiffness equation. It is apparent from (6) that minimization of U

with respect to q is equivalent to minimization of U e , since Ur is not func-

tionally dependent upon q. Hence, if the result of minimizing U with respect

to all nodal displacements {u) is the familiar stiffness equation

[K]{ u } = {T}

we have the simultaneous statement

U  = minimum with respect to q	 (7b)

Together, (7a) and (7b) pose the problem fully for prescribed nodal forces {T}.

It is well at this point to comment on the connection between this formu-

lation and that employed by Williams [1], so that the equivalence emerges. It

will be recalled that Williams employed the Airy stress function X(p,e) in

the form

X(p . e) = PX+1F(9;A)
	

(8)

and required X(p,e) to be, a biharmonic function. This led to an ordinary

differential equation for F(e;a) whose solution gave the proper dependence

on e, with four constants of integration, but left a unspecified. Williams

argued that 1 > 0 is necessary to provide finite displacements as p - 0

(since the displacement components were demonstrably 0(p
X
)), and that

0 < a < 1 would lead to singularities in strain and stress. To determine

X, Williams invoked sets of boundary conditions at e = eo and e = -e o (see

7

4
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Figure 1); these sets of conditions were limited to the surfaces of the re-

entrant corner being clamped (zero displacements) or free (zero tractions).

The four conditions (two at 8o two at -eo ) for the four constants of integra-

tion are thus homogeneous; the necessary condition for their solution yields

an eigenequation for X. The result, especially for a crack (8 0 = n), has

been used repeatedly in mechanics as noted above.

If, alternatively, Williams had begun by writing displacements in the form

up = P Xf M x)	 (9)

v e = P
X
g(e; a)

and required the stresses derived from (9) to satisfy the equations of equili-

brium, the eventual result would be identical to his published findings. What

is done here, of course, follows an alternate procedure which results in one

significant difference. The representation (2) is not required to satisfy

equilibrium at an arbitrary point (p,e) but is forced to do so over a finite

region, here, the sector. That is, the result of minimizing U imposes

equilibrium element-(or sector-) wise and not point-wise.

As to the boundary conditons, there is no difference. Were (2) inserted

into an analytic development based on minimum potential energy, the same boundary

conditions as used by Williams would obtain. Thus the exponent q in (2) is

subject to precisely the same constraint Williams obtained for a in (8), or

would have obtained for X in (9).

What the present formulation then provides is an approximate statement

of interior equilibrium and an effectively exact boundary condition. The

interior approximation is perforce tailored to the form of the assumed dis-

placement components, whether they be (2) or (9) or forms suggested in the

Appendix. The boundary constraint, however, is identical to that in Williams's

eigenequation. It may be noted further that Wi11iams I s argument for the

finiteness of displacement as p a 0 is here replaced by boundedness of
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of the potential energy, a condition familiar to numerical analysts and, in

certain respects, more easily treated.

Returning to the problem statement (7), we comment on a solution tactic.

Both (7a) and (7b) must be satisfied, and it appears straightforward to pro-

ceed on an iterative basis. Let us assume a reasonable starting value for q and

solve the linear equations in (7a) in the same manner as used in dealing with

standard finite element problems. Arriving at a set of nodal displacements,

the function U  is minimized with respect to the exponent q. Note that since

nodal displacements are fixed, S. in (S) is null and the minimization pro-

ceeds on the first integral in (5),summed over all sectors of the special

element. A new value of q is found and (7a) is solved again. The process

continues until both (7a) and (7b) are satisfied to whatever degree of pre-

cision is appropriate to the computation and the computer involved. Having

thus converged, the solution, in terms of {u} and q, is in hand. Straight-

forward data reduction will provide both the full structure of the singularity,

at least within the precision of (2), and the intensity of the singularity

for the problem of interest.

SOME SIMPLE EXTENSIONS

The formulation outlined above may be extended to allied problems. The

inclusion of body forces due, for example, to gravitational or centrifugal

loading (as in a spinning disc) is effected merely through adding appropriate

terms to the potential energy in ($) and (6). Thermal excitation is included

in an analogous manner. Dynamic behavior is modeled by replacing the theorem

of minimum potential energy by Hamilton's principle. Such extensions in

ordinary planar elasticity are theoretically well founded [8] and operational

in a number of existing codes.

r•. A



Another type of extension to the foregoing development is equally ob-

vious. Material anisotropy is incorporated via simple changes in the matrix

[M]. Spatial variation in material properties may also be incorporated by

appropriate alterations to [M], although the analyst should take note of the

spatial gradients in [M] when designing an element map. With due caution,

then, problems of the sort considered by Hein and Erdogan [9], for example,

may be treated by finite elements.

NON-LINEARITIES

To this point, we h&ve done little more that show an alternate technique

for replicating the basic information contained in Williams's eigenanalyses.

While his findings give a basis for demonstrating and substantiating the

present approach, its utility derives from circumstances where an eigen-

analyses njes not exist or is available solely through highly idealized

modeling.

Non-linear behavior is a case in point. If we consider first material

non-linearity due to yield, we observe that the only analytic result available

is the so-called HRR model [10]. This situation pertains to planar behavior,

as dues Williams's work, but is limited in certain respects. It admits plastic

deformations only, it idealizes the material, and results presently available

pertain only to a crack and not to the general re-entrant corner. Since in

large measure the effe-.t of yielding (or plastic flow, or non-linear material

response) is to alter the initial singularity, it would be most useful to

know how the change proceeds from the outset. That is, there may be signi-

ficant technological interest in the process (as well as its rate of progress)

wher..by the material goes from the one limiting case described by Williams

to the other limit characterized b y the HRR model.



11

We have given considerable attention to this issue, and results are

just now coming to hand. A preliminary discussion appears elsewhere [11],

and further documentation is anticipated, e.g., [12]. For the present dis-

cussion a brief outline of the formulation is in order. Tate steps described

above are followed except that (3) is replaced by

{au} = [a(P,6)]{3u}

where the b signifies an increment in each of the various displacement compo-

nents. Then (4) becomes

{80 - [6(P,e)]{6u}

and since the flow rule for elasto- p lastic flow is written

{60 } - [M]{dc}

one needs only an analogue to (5) to carry the analysis through. The re-

quired theorem -5 in fact available [1:;,] and we write for (7)

rK]{bu} _ {6TI
	

(10a)

U  = minimum with respect to q
	

(IOb)

The problem (10) is to be solved successively fer the incremental values of

the displacement components, not their accumulated or cur:-ent values. This

problem is linear in the increment - in the sense that (7) is linear - and

the procedure for its solution is established [14].

Certain matters relating to implementation are to be noted. One mu3t

choose the radial extent of the special element, the number of sectors used,

and the refinement within each sector needed to effect proper quadrature. To

investigate tht-e matters, extensive evaluation of the code was performed using

elementary soluti3ns (as in [11) as a basis. No clear criteria for sizing

the element, i.e., fixing p e , emerged except where a relationship could be

established a priory by a given set of loading conditions. Circumferential
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behavior, on the other hand, could easily be seen to improve wi

numbers of sectors, at least for the simple formulation (2). It does appear

from work in progress [15] that a more refined representation behaves in the

same manner, reaching acceptable performance with a modest number of sectors

(ti 10). For the element described in (2), however, we chose 48 sectors for

-n < 0 < a as the best trade-off between angular resolution and s •orage require-

ments*. Quadrature was evaluated using a number of techniques; while the first

integral in (5) is always bounded, it cou.ains non-analytic function of p

which impede a formal prediction of the behavior of various methods. In

the event, we chose Gaussian quadrature with three angular positions in

e l < e < e2 and seven in 0 < p < 2p e' Good accuracy was obtained for

various values of q in (2); other combinations may become preferred in other

models, e.g., as described in the Appendix.

The residual issue of sizing the radial extent of the special element

was rtisolved empirically. For the center-cracked configuration of [11],

we examined the elastic potential energy of the test specimen as , e was

reduced, finding that a stationary value obtained for p  ti 0 (crack lengt',/100).

While surely this result reflects both the modeling in (2) and numerical pre-

cision of the computation itself, it also provides confidence in the element

mapping. Having thus arrived at a suitable element array, an elasto-plastic

analysis for a configuration reported :arlier [16] proceeded; in this manner

distinct results for the same problem were available to ensure that the special

element computations could be corzoborated. Other problems have since been

considered and results are to be reported shortly [12,15]. It is of interest

here, however, to note one or two aspects of the solution in [11].	 Data

*Actually, analyses were performed for a symmetric configuration so that 24
sectors were employed for the half specimen.



were presented for four load levels:

purely elastic response;

yield detected just beyond the special element,
denoted as load step 38;

yield extended through the cross-section,
denoted as load step 73; and

average applied stress exceeded the yield point,
denoted as load step 93.

The radial variation of the octahedral or an effective stress, normalized

on the respective value of yield, is shown in Figure 3 for one angular posi-

tion. Radial variation of u - uo and v, normalized on the uniform far-field

extension A,is shown in Figure 4*. Angular distributions of the same quan-

tities appear in Figures 5 and 6. Note that the elastic results which exhibit

high gradients are smoothly described; at high yield levels, roughness develops

in some of the data. Nonetheless, one is able even with a crude representation

of the type given in (2) to infer a fair sense of the structure of the crack

tip's singularity as yield proceeds. Incidentally, it may also be remarked

that the analysis compares favorably to the experimentally observed specimen

behavior for which a companion analysis was performed earlier [16].

As a second item, geometric non-linearity may be incorporated in the

analysis. While the one ai ►alytic solution [17] to the problem confirms a

localized singularity, it is necessarily confined to a specialized material

representation. The obviotis issues then become, for a more arbitrary material

characterization, the degree to which the sharp corner blunts and the size

scale over which this event occurs as loading proceeds. Dr. J. R. Osias has

investigated this matter using conventional elements in his original Eulerian

fozmulation [18]. More recently, he has reformulated the problem for a special

*Nomenclature is the same as that used in (2a); for reasons of symmetry v o = 0.

13



element of the type considered here, necessarily using a Lagrangian coor-

dinate frame [19]. In this manner, the radial coordinate whose exponent is

to be determined is readily identified.

It is useful to touch briefly on the field problem. The initial domain

Bo is bounded by So and, as above, tractions are specified on S a . Using

conventional indicial notation, coordinates, displacements, and velocities

in Bo are described by X I , UI , an V 	 coordinates in the de-

formed domain B are x l . Large strain elasto-plastic behavior is governed

by quasi-static rate equations of the form

SIJ _ pIJKLE
KL

where S IJ is the convected Kirchhoff stress rate and 
EIJ 

is the material

derivative of Green's strain, viz.,

1	 K	 K
E iJ 

= Z(VI;J + V
J;I 

+ U;IVK;J + UK

Finally, 
pIJKL 

is a constitutive tensor which is created to coincide with

Hooke's law for small elastic deformations but subsequently accommodates

arbitrary work-hardening material behavior, including provision for unloading

and reloading. The stationary princ?.ple developed by Osias [19] is then

II =	 {PIJKLEIJEKL + SKLVIKVI•L}dB -
	 TIVIdS

Bo	 ^	 S	 (11)

an=0

where T I are the traction ratrb specified on S a . With (11) one needs only to

design an element and its interpolation functions, as above, to arrive at the

analogue to (7) or (10).

Osias, however, adds a ` rther refinement which may surely be adapted

to t.h.e pis ments discussed elsewhere. Because of the need to identify the

size scale of the event*, the effective range of terms of the form (1) is also

*This matter may be visualized as the relation between the effective radius of
the blunted corner and that of the special element, which alters as excitation
progresses: This radius should remain somewhat smaller than that of the element.

14
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considered to be a variable. Hence the approach is to define first the

base element to be used in the host program, and then to overlay the appropriate

counterpart of Figure 2 with special functions. For example, Figure 2 could

be supposed to represent six-noded triangles. The sectors comprising the

special element contain as a part* of their total interpolation functions

displacement distributions given by

UI (R,0) = R I (R/RS ,O)191 (0-0)(no sum on I)	 (12)

where RS < Re is the relation between the range RS over which (12) is

operative and the (Langrangian) radius measure of the sector; 0 1 < 0 < 02

is the angular coordinate, with 0 = (01 + 02)/2; and the functional forms

RI and 01 remain to be specified. Clearly (12) is operative only for R/RS < 1

and will contain (R/RS ) q ; Osias observes that U  and its gradients must vanish

smoothly as R/RS -'1. An example is suggested but not implemented in [19]; the

point of interest here is not so much the detail as the fact that computation

of a singularity may proceed in the context of geometric non-linearity. It

is moreover evident that material and geometric non-linearities may be treated

together [18,19] as a . more physically realistic model than the more

familiar linear elastic case.

It may also be remarked that the present approach admits a feature in

modeling not elsewhere considered. We know from a variety of sources that

plastic flow and blunting occur at a sharp, re-entrant corner, but that these

events tend to have a directional character. That is, for example, the degree

of yield varies with e(or 0). It is therefore not obvious that the exponent

q in (1) or (2) should be invariant with respect to the angular coordinate.

The present formulation allows the exponent to vary so that, for a crack, the

relatively inactive zones tending to lie ahead of the crack and along its flanks

*See Appendix 1 for one means for overlaying regular behavior with a special
distribution.

...



may more realistically be modeled. Osias accounts for this situation [19], as

did we originally [7], but there is some computational cost involved in having

a larger number of variables in the statement (7b). Nonetheless, the analyst

retains the option to examine directionality of non-linear behavior which,

for some circumstances, may prove useful [15].

AXISYMNETRY

The very familiarity of linear elasticity has the virtue of facilitating

consideration of more complex circumstances. So far the discussion has been

in the context of planar problems owing largely to Williams's original find-

ings. It is known that non-planar crack problems have been solved [20], and

the question naturally arises whether the structure of this singularity re-

lates to the planar form. While correspondence has been demonstrated for

a crack, there is evidence 'o suggest that the intensity may depend on far-

field ;eometry or other features not immediate to the crack's tip or edge [21].

An analogue to Williams's planar eigenanalyses would be the obvious step

for the axisymmetric case. Consideration ought not to be limited to cracks,

however, as there are other configurations of technical interest. These in-

clude piping flanges, step changes in shaft diameter, and sudden thickness

variations in thick shells. Unfortunately, the Williams type of analysis

does not go forward as in the case of planar behavior, because the governing

equations do not admit a product solution [22]. These equations, for the

configuration shown in Figure 7, derive from the simple transformation

r = R + p cos ('V+^), z = Z + p sin (^ + ^0)	 (13)

in the (p,8,^) coordinates, displacements are (&,n,p); the strains are

16
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eP = WaP

Ee 
= (an/ae + &rP + ^r*/P)/r

E* = M/av + O/P

Ye* 
= ( a n/a^) /P + (a^/ae - nr*/P)/r 	(14)

Y*P = WaP + 0&/4-0/P

ype = an/ aP + (a^/ae-nrP)/r

and equilibrium is written as

30P/3P 
+ (aP-ae) r

P/r + ( aP - a*)/P + (aTPe/ae)/r

+ (aTP ^/ M /P + TP^(r^/P)/r = 0

aTPe/aP + (1/ P + 2rP /r)TPe + (aae /ae)/r + (BT e*/ M /P
(15)

+ 2Te^(r^/P) /r = 0

aTP*/aP + (rP /r + 2/P)TP^ + OT e^
/W /r  + (aa*/ W /P

+ (a*-ae)(r^ /P) /r = 0

In (14) and (15) we use the notation

rP = cos (Ip+^o) , r^/P = - sin ( ^+^ 0)

For axisymmetry, a/ae is a null operator and (14) (15) decouple to two sets,

one for extension and one for torsion in which

E = E(P,O, n =0, ^ = ^(P,V) and E = 0, n = n(PM, C=0

For extension, functions of the Neuber-Papkovich type may be introduced

after consideration of the coordinate transformation [22]; denoting these

as w and 0, we find

1



2P& _ -3w/3p + (3-4v)d - [p+R cos( ,+, 0) ]aa /ap

21A; _ -( 1 / p )aw/ 4 - [1+(R/p)cos(^+V0)] aa/a^ + [(R/p)sin( ,+^0 ]d

The corresponding differential equations are decoupled but awkward so that

we introduce

A = ( 3r)w

0 = ( 3r)#

to find

a2A/ap 2 + ( 1 / p)W ap + ( 1 /P 2 ) a2A/42 + (1/4r2 )A = 0

a2 0/ap 2 + ( 1 /0a0/a p + (1/p2)a20/3^2
	

(16)

+ [(1/4-rp2 )/r2 -1/p 2 ]0 = 0

as the equations of interest. (Forms similar to the first of (16) obtain

for torsion.) The presence of both p and r in the denominators of the

coefficient in the various terms of (14), (15), and (16) precludes the "sep-

aration of variables" approach inherent in %'8) or (9), and the template for

solution provided by Williams fails*. It is, of course, possible to assume

p << R and integrate (16) in terms of Bessel functions, seeking asymptotic

forms for small p . Such an approach, howev;r, is objectionable for two

reasons. The solution is approximate and equilibrium is not fully satisfied.

Further, the degree of approximation remains unestablished and there may be

errors at the boundary itself. Second, such a solution is not useful in

procedures already developed for such problems including ordinary special

elements, e.g., [2,3],edge functions [4], and collocation [5]; one is left

with finite elements as in [21].

*We have also examined formulations including the Galerkin vector and its
special form, Love's strain function; Southwell functions, both as originally
stated L231 and as modified by Zak [24]; and the Maxwell-Morera functions.
Of these, the procedure shown is the most promising.

18
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If we must settle for approximate solutions, it seems sensible to

adjust the approximation to the particular problem. Thus we prefer an

approach which is patterned after that outlined in this paper. The analogue

to (2) becomes simply

u  = u  + A 
1 
r + C 1 z + ( E+F V) pq cos (* + V 0) - (C+H^) pq sin ( ^ +,yo)	

(17a)

w z = w  + D 
1 
r + B 1 z + (E+F*)p q sin ( ^+, 0) + (C+H^) pq cos (*+* 0)

and

= uo cos (^ +yo) + wo sin (^ +,yo) + 2 (A1 +B 1 ) p + 2 (A1 -B1) p cos [2 ( *+%)

+ 2(C 1+Dl ) p sin [ 2 (V + V^o)J + (E+D*)pq
	

(17b)

T1 = -ua sin	 o) + wo cos	 o) - 2(C 1-D 1 )p + 2(C1+D1)p	 cos [2(^+* )

2(A l - B 1 ) p sin [2(^+%) ] + (C+ft)pq

Using (14), the strains are found and the procedure of computing and mini-

mizing potential energy is followed, directly in analogue to the foregoing

discussion.

As has been observed by many authors, probably first by Irwin [25],

the singularity for a crack geometry is expected to be the familiar value

q = 1/2. What is not known, however, is the result for geometries associated

with a flange, a change of section, layered materials, and so on. That is,

what is q(R,a,^o)? To the extent that such information is of technical

interest, either for use in other computations (e.g., [3,4]) or for specific

applications, the foregoing development appears to be the first direct means

available for establishing the structure of an elastic singularity at a

re-entrant corner in an axisymmetric geometry.

Moreover, it is evident from the work now in progress (which deals with

non-linearities in planar situations) that the procedure carries over directly
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to non-linearities in the axisymmetric case. In the same sense that finite

elements are used in both planar and axisymmetric analyses, extension of the

formulation in (17) is appropriate to elasto-plastic flow [14] and to large

deformations [18,19]. For these situations, the nature of the singularity

may be established numerically and perhaps in no other manner.

THREE DIMENSIONS

The numerical approach described here is fully pertinent to three-

dimensional problems. The context is a vertex formed by intersection of

three surfaces, and two simple examples are sketched in Figure 8. Further

examples may be drawn from the literature in crack problems, where a crack

intersects a free surface. The crack front may be straight or curved, and

the intersection need not be normal to the free surface. Some possibilities

were outlined earlier [21], and Dr. B. K. Neale has recently reported a

series of such observations [26]. From experimental sources, the inference

of a singularity peculiar to the vertex itself is not uncommon, and Prof-

essor E. S. Folias has made an initial analytic extraction of such behavior [27].

The highly resolved numerical results developed by Dr. T. A. Cruse are also

supportitve of the notion of a vertex singularity [28].

Such information is appropriate to the computational approach outlined

here. It is easy to envisage the shapes sketched in Figure 8 filled with

polygonal cones whose apices all coincide at the vertex of the corner. A

radial coordinate from that point becomes p in (1). The question then becomes

how the displacements vary with this radial coordinate. There will of course

be rigid motion, and one must also allow for constant strains in the usual

manner. Obviously, however, behavior of the sort suggested by (1) can intrude

as well; information of the sort outlined above suggests that inclusion of



terms of the form (1) is most appropriate. As a result, one may infer a

process of modeling which will explicitly account for a vertex singularity.

Furthermore, one may study behavior along an edge (intersection of two sur-

faces) by the same means and examine, among other points, structure of the

singularity as a function of the shape of the edge.

It would be tedious here to write the equations of elasticity in spher-

ical coordinates centered at the vertex, and to expand them for elementary

interpolation functions for, say, a tetrahedron or a pyramid*. Obviously

enough, such development is straightforward if lengthy to carry out, and it

could be imp:emented in terms of code. We prefer instead to emphasize that

the discussion following (9) is immediately applicable. Minimization of

the potential energy yields an approximate statement of equilibrium (sector-

wise as opposed to point-wise) and effectively exact boundary conditions.

To the extent that the exponent on the radial coordinate is an artifact of

these boundary conditions and not the field equations, the analyst may

anticipate determination of the vertex singularity to a considerable degree

of accuracy. Moreover, the singularity computation is direct and explicit,

and it should reveal the structure of the singularity without need for

extensive data reduction.

CONCLUDING REMARKS

We have sought to describe an approach for singularity computations

which is based on a primary concept in mechanics. The procedure replicates

the conditions used for the same purpose in more formal analysis, as applied

to planar configurations, but is in no manner limited to linear or elastic

or small strain or two-dimensional situations. Rather, the range of cir-

*That is to say, a triangular cone or a rectangular cone.

21
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cumstances for which the approach may be used appears to be unlimited, and

it evidently carries over to other classes of problems such as heat flow.

As a result, there is now an opportunity to attack problems which so far

have proven difficult in the sense that details of the singularity's

structure are not yet well articulated. While this approach requires more

extensive preparation prior to implementation and additional computation

costs are encountered, the direct-less of obtaining results needed for

certain research objectives would appear to make this approach worthy of

use in serious singular-Cy computations.
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APPENDIX - ADDITIONAL INTERPOLATION FUNCTIONS

The element formulation in (2) exemplifies the basic approach needed

to exploit (1) in the sense of an undetermined exponent. By no means, how-

ever, is the procedure limited to the primitive form in (2). Much more sub-

stance can be incorporated in the interpolation functions, but there are

evident constraints to be observed. Noting that (1) derives from a certain

physical sense of the solution's behavior, one must guard against the use of

coordinates whose physical interpretation is not clearly understood. Thus,

for example, use of isoparametric elements is problematic unless the internal

coordinate(s) can be directly identified with the radial coordinate of interest.

Indeed, Freese and Tracey [29] recently noted the sensitivity of elastic be-

havior in crack problems to overall element shape.

It appears therefore advisable to work with physical coordinates when

formulating an element, or to use an isoparametric form in which the physical

coordinates are manifest. Marino, in work soon to be documented, employs

the latter method with evident. success [15]. An example of the former is

suggested in Figure 9 and a more complex version of (2) as follows:

u = u  + Al x + A2 x2 + C ly + C 2y2 + Exy

+ [Go + G1 (e-e) + G2 (e-e) 2 ] pp cos 6

- [Ho + Hl ( e -6) + H2 (6-6) 2 ]p q sin e

v = v  + D 
I x + D 2 

x 2 + g ly + B2y2 + Fxy

+ [Go + G l (6-8) + G2 (6-6) 2 ] pp sin 6

+ [Ho + H l ( 6 -6) + H2 (6-6) 2 ] pq cos 8

where e = ( 8 1 +8 2 )/2. It follows that

(18a)
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up - uo cos 8 + vo sin 8 + 2(A j+ 41 ) P + Z(A 1 -B1)p cos 28

• 2(C1+D1)P sin 2C + 2( A2
+C2

+F)p2 cos 8

• 2(A2-CZ-F)p 2 cos 8 cos 28 + 2( B2
+D2

+E)p2 sin 8

• Z(B2 -D2 -E)p 2 sin a cos 28 + [Go ,. G 1 (e-e) + G2(8-8)2]pp
(18b)

ve	 -uo sin 8 + vo cos 8 - 2(Cl - D 1 )p + Z(C 1+ D l )p cos 28

2(A1 - Bl )P sin 28 -Z(A2+C2-F)p2 
sin 8

- .2t-(A2 - C
2 - 

F)P 2 
 sin 8 cos 28 + Z(B2 +D2 -E)p2 cos 8

;(B2 -D2-E)p 2 cos 8 cos 28 + [Ho+H 1 (0-8) + H2(8-e)21pq
..

Note that two exponents are allowed in this representation, one for each of

the polar components of displacement. The remainder of the expression is

based on the notion of a linear strain element (LSE). In that context, note

that an eight-noded element obtains by omitting the G 2 and H2 terms in (18b)

or perhaps the E and F terms in (18a). We could, in addition, let th_ expo-

nents vary in the angular direction, i.e., p,q - p(e),q(e), but care must

be exercised to avoid intersector incompatabilities.

A feature of re-entrant corner and crack problems, sometimes overlooked,

is that circumferential gradients of strain and stress can be greater than

radial gradients. This may be observed most simply by plotting contours of

selected field quantities, as in [30], and noting behavior in the respective

directions. One may also rise this as a basis for sizing the special element,

or its effective radial range. Alternatively, an energy basis may be used

as described in the main part r. the paper.

Other formulations may be generated in this intuitive manner, each of

which should be evaluated for its efficacy with respect to the problem type

anticipated. It is not so much our purpose here to devise an optimal element -

that } 4ition appears to be problem dependent - but we do note that formulation



^	 t	 J

may proceed indepe ndently of the overall conceptual framework. In that con-

text, we should note the procedure termed "singularity programming" devised

by Emery and his colleagues [ 31]. This formulation involves superposing

special or irregular behavior on an established element by writing

(u) - [RI (A) + k{S)
	

(19)

Here, {u} has the same meaning as in (3); [R] is a matrix of regular, typ-

ically analytic, interpolation functions as in the CSE, LSE, or isopara-

metric representation; {A) is a vector of constants; k is a scale factor;

and (S) is a vector of interpolation functions which contain the exponent q

and represent the special aspects of the element. Evaluating {u} at the

nodes leads to the vector {u}; (19) is solved for {A} and rewritten as

{u} - [N]{u} + k{S)

where

[N ] - [R ] [R]-1

{S} - {S) - [N]{S}

Clearly {S} vanishes at the nL	 it does, however, interact with the nodal

excitation as may be seen-by carrying through development of the stiffness

equation. The formulation is interesting in that, cl ile it allows determina-

tion of the exponent(s) in {S), the magnitude of the special behavior is

scaled by the single factor k. Hence one must either be more specific as

to the angular variation, relative to what is permitted in (18), or settle

for possibly a stiffer element. In addition, since the potential energy is

minimized with respect to k, there are entries in the stiffness equation

beyond the usual terms, whereas the formulations (2) and (18) do not present

such an inconsistency. Whatever admissible formulation is used (see also

[321), the option of adjusting the singular structure remains available and

the analyst must choose ultimately in terms of the problem class he faces.
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Figure 1, showing a special element comprising twenty sectors and
A typical sector with details of coordinates, displacement components,

and dimensions.
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Figure 2, showing a special element embedded in regular elements,
CSE formulation.
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Figure 7, showing coordinates p,t cantered at notch vertex in
an axisymmetric coordinate system r,z. Note that origin for p
is at R,Z and that ^ = 0 bisects (interior) notch angle 2a.

Figure 8, showing cusp-like and re-entrant vertices in three
dimensions, formed by intersection of three smooth surfaces.
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Figure 9, showing an example of a sector in a more refined
special element. Details are presumed to follow the pattern

shown in Figure 1.
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