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Abstract. Amn expression is derived for the time transformation t- 7, where
t is coordinate time in the solar system barycentric space-time frame of
reference and 7 is preper time obtained from a fixed atemic cleck on earth.
This transformation is suitable for use in the computation of high-precision
earth-based range and doppler observables of a spacecraft or celestial bedy
located anywhere in the soelar system; it can alse be used in obtaining com-
puted values of Very Long Baseline Interferometry data types. The formula-
tion for computing range and doppler ebservables, which is an explicit func-

tion of the transformation t- 7, is described briefly.
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1. Intreduction

This paper derives an expression for the time transformation t- 7,
where t is coordinate time in the selar system barycentric space-time frame
of reference and T is proper time obtained from a fixed atemic clock on the
surface of the ea,rth.l The expression is obtained using general relativity;
however, to the accuracy of the retained terms, it is consistent with all i
viable relativistic theories of gravitation. The expression for t- 7 is suitable
for use in the computation of high-precision earth-based range and doppler
observables of a spacecraft or celestial bedy located anywhere in the solar
system. It can also be used in obtaining computed values of Very Long Base-
line Interferometry data types. The expression for t=7 can be used in orbit
determination pregrams in which the motion of bodies and light is repre-
sented in the selar system barycentric space-time frame of reference with
ceordinate time t as an independent variable. The errors in computed range
and doppler observables due to neglected terms in the expressieon for t - 7 will
not exceed approximately 0.62 m aad 2.4 X 10'6 m/s, respectively, per
astronemical unit of range te the spacecraft. These figures apply specifically
for twe-way tracking data (transmitted and received at the same tracking

statien on earth).

An expression for t' - 7, where t'is coordinate time in the heliocentric
space-~time frame of reference, was previeusly obtained by Meoyer (1971).
However, a term affecting three-way tracking data (transmitted at ene station
on earth and received at a second station) was inadvertently omitted. This
previous expression for t'- 7 was obtained by a straightforward integration of
the differential equation for dr/dt. Thomas (1975) has shown that the use of
integration by parts and a first-order expansion of the gravitational petential
simplifies the derivation and provides a clearer understanding of the physical
origins of the various terms. The present derivation for t - 7, where t is
coordinate time in the selar system barycentric space-time frame of refer-
ence, uses the method of Thomas (1975) and produces an expression that

includes all of the terms previously obtained by Moeyer (1971), with minoer

ICoordi.-nate time t is proportienal te proper time that would be read by an
atemic clock at infinite distance from the selar system and at rest relative
to the solar system barycenter.
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changes in the coefficients, and the above-mentioned three-way term. The
coefficients obtained in this paper are slightly more accurate than those pre-
viously obtained. The differences are due te different truncation errors for
the two methods. In additien, six new periodic terms are obtained. Two of
these are due to long-peried variatiens in the gravitational petential at the
earth due to Jupiter and Saturn. The remaining four terims are due te the
offset of the solar system barycenter from the center of the sun. Without
these four terms, the new expression for t - T applies (with slightly reduced
acruracy) for cooerdinate time t'in the heliocentric space-time frame of

reference.

The differential equation for d7/dt is developed in Sections 2 and 3. It
is integrated to give an intermediate expression for t- 7 in Sections 4 and 5.
The periedic terms of this intermediate expression, which are integrals or
dot products of pesition and velocity vectors, are converted te sums of
siruseidal functions in Section 6. These terms are cellected in Seciion 7 to
give the final expression for t - 7. Auxiliary equations for computing the
arguments of the periodic terms of t - 7 are also given.” The final expression
for t - 7 and the auxiliary equations give t- 7 as a function of time and the
earth-fixed coordinates of the atemic cleck. Sectien 8 gives estimates for
errers in computed range and doppler observables due to terms neglected
in the final expression fer t - 7. The effects of the retained terms ef t - 7 an

these ebservables are also given.

Section 9 gives an alternate expression for t - 7 which is a function of
the position and velocity vectors of the atemiec clock and the major boedies of
the selar system. This expressien is the intermediate expression for t-7
given in Section 5 with the three terms which are expressed as integrals
replaced by functions of position and veloecity vectors. In certain circum-
stances, it may be desirable to compute t - 7 from poesition and velecity
vecters using the eguation given in Section 9 instead of computing it as a

function of time using the formmulation of Sectien 7.

The notation used is defined in the text. However, the definitions of
the symbols used globally throughout this paper are repeated in Appendix A.
Numerical valaes are given for those parameters which appear in the final

expression for t - 7. Appendix B gives equations for computing range and
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doppler observables. These equations are explicit functions of the time

transformationt- 7.

2. Differential Equation for dr/dt

The invariant interval ds between twoe events with differences in their

space and time coordinates of dxl, dxz, dx , and d-x4 is given by
as? = gijdxl dx’ (1)

where the repeated indices are summed over the integers ! through 4. The
matrix of coefficients gij is the metric tensor, obtained by solving Einstein's
field eguations. A solution for the case of n slowly moving bodies in the
weak field approximation is the n-body metric tensor of Eddington and Clark
(1‘938).2 This solution can be applied to the solar system. Feor this applica-
tion, the coerdinates xl, xz, and x3 of this seluticon are nonrotating rectan-
gular components x, vy, and z, respectively, of pesition relative te the

solar system barycenter; the coerdinate x4 = ¢t, where ¢ is the speed of
light and t is ¢coerdinate time. In order to distinguish it from coordinate
times of other solutions of the field equations, it will be referred to as
coordinate time in the solar system barycentric space-time frame of ref-
erence. An interval of proper titne d7 recorded on an atemic clock is

related to the interval ds aleng its world line by

ds (2)

Hence, (1) and (2) relate an observed interval of proper time to the changes

in the space and time coordinates of the atomic clock.

For the purpese of obtaining an expression for t- 7, where 7 is proper
time recorded en a fixed atomic clock on earth, and t is coordinate time in

the solar system barycentric frame of reference, the n-bedy metric tenser

ZThis is the solution previecusly obtained by de Sitter (1916) except for a cor-
rection te one of his terms. The n-bedy metric tensor corresponds to the
n-body Lagrangian given by Eq. 3.3.37 of Infeld and Plebadski {1960). The
n-bedy metric tensor (with reversed sign convention) may alse be found in
Eq. 39.63 of Misner, Thorne, and Wheeler (1973).
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is substituted inte (1) and terms are retained te order (l/c)o, giving

as® = (1 -21‘1) cCar® - (ax® + dy? + dz%) (3)

[od
where U is the Newtonian gravitatienal potential at the atomic cleck, com-
puted using the positive sign convention (i.e., U = - ¢ ). Let the velocity of

the atemic clock relative to the solar system barycenter be denoted by S,
which is defined by

2 2 2
-2 fdx d dz
s = (d.t) * (EE\L) +(dit) (4)

Expanding and retaining terms te order l/«’:2 gives

2

) (6)

The neglected terms of t - 7 due to the neglected l/c4 terms of (6}3 have a
maxitmum magnitude of about 10~ lzs. They affect computed range and dop-
-10

|ens

- =

0

ér _ ) Y |1
gLy
c

pler ebservables by a maximum of about 10 m and 10 m/s, respectiveiy.
Equatien (3) is the "Newtonian' appreximation te the n-body metric (see
paragraph 39.7 of Misner, Thotne, and Wheeler, 1973).4 All viable

relativistic theories of gravitation have the same metric to this level of

B_Due to terms neglected in (3) and in expanding (5).
Equation (3) implies the spacelike sections of simultaneity t = constant te be
flat Euclidean spaces to first order: the coordinates %, y, and z in them
can preperly be thought of as Euclidean coordinates, and all of the results
of classical Euclidean geometry may be used, e. g., triangle theorems and
vecter addition laws for slowly moving objects.
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approximation. Hence, the expressien for t - T obtained from (6) is consistent

with all viable relativistic theories of gravitation.

Eguation (6) is the basic differential equation relating observed atomic
time r to coordinate time t in the selar system barycentric frame of refer-
ence. The rate dr/dt of an atemic clock relative to uniferm coeordinate time
is a function of the Newtonian gravitational petential U at the cloeck and the

selar system barycentric velocity § of the clock.

Eguation (6) will be used to obtain an expression for ¢oordinate time t
minus proper time obtained froem a fixed atomic clock or earth. In the
expression to be obtained, the proper time will be specifically International
Atemic Time TAI disseminated by the Bureau International de 1'Heure (BIH).
The TAI second is the SI second (International System of Units), which is the
duration of 9 192 631 770 periods of the radiation corresponding to the transi-
tion between the two hyperfine levels of the ground state of the cesium-~133
atom (Mechtly, 1969). This is the observationally determined average length
of the second of ¢oordinate time t. 5 Referring to Equation (6}, periodic
variations of U and 'sz from their average values produce periedic terms in
t-7. However, the average values of U and éz for a fixed atomiec clock on
earth are positive, and the average length of an interval of proper time d7
is less than the correspending interval of coordinate time dt. Thus, the
average length of the second of proper time 7 is greater than th'e length of
the second of ceordinate time t. Proper time 7 in (6) does not cerrespond
to TAI because the average length of the TAI second is egual to the length
of the second of coordinate time t. Let TAI be denoted by 7%, which differs
from 7 in the length of the atomic second. A modified form of (6) will be
obtained which applies for atomic time 7%, The average length of the 7%

second must equal the length of the second of coordinate time t. Hence, the

Slmterpe‘latien of the lunar ephemeris with an observed longitude of thr. moon
gives an ''observed' value of the independr.nt variable, ceordinate tiume t,
The average number of cycles obtained from a cesium atemic clock per
second of coeordinate tirme t was eobtained by counting cycles of a cesium
atomic clock between two observations of the moon and dividing the observed
number of cycles by the difference of the two "observed'' values e? coordi-
nate time t.

JPL Technical Memeoerandum 33-786



differential equation relating 7% and t must satisfy the conditien that the

average value of d7% equals dt.

In (6), d7 is obtained as

dr = — (7)

where dN is an observed number of cycles obtained from an atemie clock
and n (in units of cycles per second) is a conversion factor from cycles te
seconds of atemic time. The value of n corresponding to (6) is that value
which results in the length of the second of proper time equalling the length
of the second of coordinate time when the atomic clock is an infinite distance
from the solar system and fixed relative to the selar system baryceuater.

Equation (6) can be rewritten as

._d_T = 1 i éﬁ_U—E i __—-éz — éz 8)
- 1 T2 72 3 "2 P (
C [od C C

where U is the time average value of U at the atemic clocké and éa is the
time average value of éz for the cleck. Ignoring l/e4 terms, this may be

written as

AT Uu-°T _ 1 $2 _3°
dt (1 NI S_,.) c c
' 2 2 2
c c

drx = SN (10)
n
The time average value of U is
~T
— 1 _
= 11 e dst
U = lm oy v
o
-T
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where the conversion factor n* is given by

) T 15
n* = n (1 i i 2) ()
fal c
Then (9) is given by
drs 1 - u-g 1 éz“é—z (12)
dt - 2 "2 2
c <

The average value of d7 equals dt and hence atomic time 7% is the mathe-

matical representation of International Atemic Time TAI.

Perioedic variations of U and 5’2 frem their average values fesult in
periedic variations in atemic time 7% relative to coordinate time t in the
solar system barycentric frame of reference. Some of the periodic terms of
t - 7% for atomic clecks at various locations on earth are not in phase. Thus,
one is tempted to conclude that it is net pessible te synchrenize a world-wide
network of atemic clecks which fead atomie time 7%. However, Section 3
shows that such a system of atomic clocks can be synchronized with light

signals.

In the conversien facter n* given by Equatien (11), the average value
U varies with the location of the atomic clock on earth. However, the enly
term of U which varies significantly is the gravitational petential U(E) due
to the earth. Similarly, the average value 5° varies with the location of the
atemie clock en earth only because of the variation in the square of the geo-
centric velocity v due te the earth's rotation (v = uw, where u is the distance
of the atomic clock from the earth's spin axis and w is the inertial rotation
rate of the earth). The enly significant variable part of n* is thus
-n [U(E)+(l/2)vz] /cz. The quantity U(E) +(l/2)v2, the sum of the earth's
gravitational and centrifugal potentials, is constant on the geoid (mean sea
level). The cenversion facter n* thus varies with altitude above the geoid;
it increases at the approximate rate of 1.00 x 10'_3 cycles per second per
kilemeter. If the defined length of the TAI second (9 192 631 770 cyeles
from a cesium atemic clock) is taken te apply at mean sea level, the

conversion factor n* (cycles from a cesium atomic clock per second of TAI)
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is given approximately by
n¥ = 9 192 631 770 + 0.001 00 h (13)

where h is altitude abeve the geoid in kilometers.

TAI is obteined in practice as a weighted average of times obtained from
atemic clocks located at various altitudes. All of the clocks have the same
conversien factor frem cyecles to seconds of atemic time. Prier to comput-
ing the weighted average, time obtained frem each clock is corrected in
value and rate (Bureau International de 1'Heure, 1975). The rate corrections
remove the variations im the clock rates due to the differing altitudes above
mean sea level and ether causes. Hence, in the determination of TAI, the

altitude-dependent conversion factor a¥ is used implicitly, but net explicitly.

In (12), the average lengths of the TAI and coordinate time seconds are
the same and are equal to the "observed" length of the coordinate time secend.
Hence, by using (12), the estimated length of the second of coordinate time
becomes its adopted length. This dees not produce any errors in observed
minus computed residuals for trackinf data obtained froem a spacecraft, if
the n-body ephemeris (for the planets, sun, ahd moon) is fit to observations
using the expression for t - 7% obtained from Eguation (12). Alse, the observed

minus computed residuals for the planets, sun, and moon are not degraded.

3. Synchronization of TAI Atomiec Clocks

This section shows that a world-wide network of atemic clocks which
use the conversion facter n¥ given by (11) and read atomiec tirhe 7% = TAI
can be synchronized by light signals. This conclusion is reached by con-
sidering the follewing expression for the interval ds which applies in a lecal

region of the geocentric inertial (i.e., nonrotating) frame of reference:

ds® = [1 . QUZE] Cat® - (ax + ay® + azd) (14)

where U(E) is the gravitational potential due to the earth, t is coordinate time
in the geocentric inertial frame of reference, and ¥, y, and z are rectangular

components of position in this frame. Eguation (14) is a medified form of (3)

2 EPRODUCIBILITY OF THE

“LNAT, PAGE IS POOR JPL Technical Memerandum 33-786




applied to a local region of the geecentric inertial frame of reference. The
medification consists of replacing the total gravitational potential by the
potential due to the earth only. From the Principle of Equivalence, the
accelerating earth produces a gravitational field which cancels (in a small
region surrounding the earth) the gravitatienal field due to the sun, moon, and
other bedies which accelerate the earth. Thus, in the local geocentric line
element {14), the gravitational potential due te all bedies other than the earth

dees not appear.

Substituting (2) inte {14) and retaining terms te order 1/(:2 gives

. 2
dr _ UE) 15 ,
™ 1'”;2—“2‘(e) (15)

where & is the velocity of the atomic clock relative to the geocentric inertial
frame of reference. The surn of the gravitational and centrifugal petentials,
U(E)-i-('l/Z)s".Z, is constant on the geoid and thus the rate of proper time 7 varies

with altitude above the geeid, The interval d7 is obtained as

512

dr = (16)

The value of the conversion factor m (cycles per second of atomic time) which
corresponds te Equatien (15) is that value which results in the length of the
second of proper time 7 equalling the length of the secend of coordinate time

t for a fixed atemic clock at infinite distance from the earth. If the length of

the atemic second is changed se that

dr¥ = ;?k (17)
where
.2
c [
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eguation (15) reduces to

ars
dt

=1 (19)

Thus, using the altitude-dependent conversion facter m¥* results in atemic
time 7%, which runs at the rate of coordinate time t in the geocentric inertial
frame of reference. The constant m in (18) can be selected so that m%=n¥*
given by (11) at mean sea level. However, the altitude-dependent terms in
(18) and (11) are propertional te m and n, respectively, which differ by terrms
ef erder l/cz. Thus the factor 1.00 X 10"3 in (13) will agree with the corre-
sponding factor obtained from (18) to about 7 digits. The maximum fractienal
difference between m* and n* is about 10-21, which is negligible in relatien

to the current stabilities of atomie clocks. Thus, to sufficient accuracy,

atemic timie 7% in {19) is the same time scale as 7% in {12).

From (19), atomic clocks at varying altitudes which read 7% have the
same length for the second of atomic time (in seconds of coordinate time t).
These clocks could be synchronized with a master clock by using light signals
transmiitted by way of an egquatorial synchronous satellite. The Newtonian
light time (calculated in the geocentric inertial frame of reference) from the
master station te any other station is constant. The relativistic contribution
to the light time is due to the mass of the earth only; it is less than 0.2 ns and
constant. Hence, idtervals of reception at the various stations will be
idertical te inte¥rvals of transmissioen at the master station. Since the various
clocks have the sarhe length fer the atomiec second, the transmission intervals
can be synchronized with the seconds pulses of the master cleck, and the
reception intervals will be synchronized with (but out of phase with) the seconds
pulses of the cleck at the receiving station. In practice, oaly ene signal is
required to synchronize each clock with the master clock. Upon reception of
the signal, the clock at the receiving station is set equal to the known trans-
missien time plus the light time calculated in the geocentrie inertial frame of
reference. The signal can be transmitted by way of any spacecraft in the
earth's vicinity or by lunar beunce. For other methods of synchrenizing

atomic cloecks en earth, see Thoemas (1975).
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4. Integration of Differential Equation

Equation (12) relates an infinitesimal interval of atomie time 7%
obtained from a fixed atomie clock on earth te the corresponding interval of
coerdinate time t in the solar system barycentric frame of reference, the
Newtonian gravitational petential U at the cleck, its time average value .t_T,
the square of the selar system barycentrie velocity of the clock éz, and its

. -2
time average value s

This section integrates Equation (12) teo obtain an intermediate
expression for t - 7%, The terms of this expression, which are integrals or
dot products of position and velecity vectors, are converted to sums of

sinusoidal functions in Section 6.

This section gives the magnitades of several discarded terms of t- 7
and their maximum effects on computed range and doppler observables.
The effects that are range-dependent were evaluated at a range of 50 astro-
nomical units, The most significant of these errors are included in the error

summary in Section'8.

In the derivatiomn of the expression for t - 7%, the effects of selid earth
tides, polar motion, and nutation are ignored, The maximum effects of
these phenomena on two-way or three-way range and doppler observables,

due to changes in t - 7%, are given in Table I:

TABLE I

Effects on range and doppler observables due to changes in t- 7%

Phen@me_mqn Rang_e_, m o Doppler, m/s
Solid earth tides 1093 1077
Polar moetien 10_2' 10_7

i 10--6

Nwutation 10

In the evaluation of the terms of t - 7% in Section 6, the effects of precession
are accounted for. In the final expression for t - 7%, the coefficients of seme
of the terms are explicit functions of the earth-fixed coordinates of the
atemic cleck, Continental drift will result in a slow drift in the values of

these coeordinates,
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In (12), U - T excludes the constant potential due to the earth and can

be expressed as

Uu-¥ = (U, -U

P

where Uy and UE are the gravitational potentials due to all bodies except
the earth, evaluated at the location of the atomic cleck and at the center of
the earth, respectively, The subsecript p indicates that only the periedic
terms of the guantity are to be retained,

In the following, ;:.1 ;Jl, and ;'_Jl will refer to the pesition, velocity,

and acceleration vectors, respectively, of point i relative ic point j. The
quantity s:i is the velocity of point i relative to poir * j. The compoenents of
ri are space coordinates in the selar systein bary_entri¢c space-time frame

of reference., The dots denote differentiation with respect te coordinate

time t in this frame of reference, In (12), éz can be expressed as
.2 _{:E  .C E.C

where A, E, and C refer to the locations of the atomic clock, the center of

the earth, and the selar system barycenter, respectively. Then

.2 2 [ (.EN2,,.¢c .E,{.c\2 .
§° - & —[(SA) +2,;_E._1:_A+(5E) ]p (22)

Substituting (20) and (22) inte (12), denecting 7> by 7, and integrating

frem an initial epoch (subscript o) to the current time t gives

t -7 = (t-T)o
t 2 2
+ ~2 [ [ZUE + (SA) + (SE) J dt (23)
2e 't : ip
@
t
1 ) c E
vz [(UA Ug t1ig "I;A) p o
6]
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In the first integral of (23), SA

variations in the sguare of this gquantity can be ignered. In the second

is nearly constant and periodic

integral, the potential difference UA - UE may be expanded te first order:

¢

t
__;12 '[':(UA i UE)p dt = ? [to[(vu) E- ;i] o dt (24)

where the gradient (VU)E is evaluated at the center of the earth. The

neglected higher-order terms in this expansion preduce terms of t- 7 with

11

magnitudes of 10 " “s or less, They affect computed range and deppler
observables by less than 10“31’-1'-1 and lO_Sm/s, respectively. In the second
integral of (23), the dot product of the twe velocity vectors is integrated by

parts:

-t t -t
¢t (zE 'I'A)pdt' -T2 (EE “Ea - T3 (.ILA rE) dt (25)
*o ¢ ts € t

Since terms of order 1/c:4 are ignored, the acceleration of the earth

can be approximated by its Newtonian value:

ig = (V)

-E (26)

E

and the second term o (25) cancels (24). This cancellation of the petential

variation UA-U by the earth's acceleration is in acecordance with the

Principle of qu:t:ivalence. According te that principle, in a small region
surrounding the freely falling earth, the sum of the gravitatienal potential
due to the bodies accelerating the earth and the inertial potential due to

the accelerated earth is comstant te a high degree of accuracy, Substituting

(24) through (26) into (23) and discarding the term (si)2 gives

JPL Technical Memorandum 33-786
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~tr -
, L 1 (.C\2 ) )
+-—2~/ [UE+ Z(SE) ] dt (27)
c 1P
t
©
I -AY A
TTZ\fE"£a
[
t
o

The derivatioen of {27), starting frem (23), is due te Thomas (197%), His
Eguation (13) corresponds te (27) above.

In the integral in (27), the gravitatiomal potential at the earth due to
the moon can be ignored. The neglected periedic terms of t - 7 are smaller
than 3 ns and affect computed range and doppler observables by less than
0.1 mand 0,2 x 10_'6111/5, respectively, The potential Up in (27) can be

expressed as

Uy = (UE - UB) +Ug (28)

where UE and UB are gravitational petentials at the ecarth and earth-moon

barycenter B, respectively, excluding the terms due to the earth and

maoeon, The potential difference Up - Ug may be expanded to first order:

Up - Ug

I
4
=

where the gradient is evaluated at the earth-moon barycenter. The
neglected terms in this expansion produce terms in t - 7 which are smaller
than 10-125 and .ffect computed range and deppler observables by less
than 10_4m and lﬂ_gm/s, respectively. In (27), the square of the solar

system barycentric velocity of the earth can be expressed as
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.B\2 , _,.C .B  {.C\2 |
(SE) *lry '£E+(SB) (30)

The periodic terms of (sg )2 can be neglected, They produce terms
of t - 7 srnaller than 10-;105 which affect computed range and doppler
observables by less than 10_3m and lO-gm/s, respectively, The dot prod-

uct in (30) can be expressed as

.C .B _ df.C IB) B . .C (31)

Ignoring relativistic terms and assuming the earth and moon are located

at their barycenter gives
ezc -— L 2
E0 = (VU (32)
ot epts _ : T _{.B\2 . , .
Substituting (28) - (32) except the term (SE) of (30) into (27) gives

t-7 = (t=7),

€ )2 ]pdt (33)

+

ONI"_‘
rt-\‘
[

| —

(|

b

‘_
DIf—
“tne”
WO
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where UB excludes the potential due to the earth and moon, The cancel-
lation of the terms of t-7 due to (29) and the second term of (31)is in
accordance with the Principle of Equivalence. This cancellation is
associated with the earth-moon barycentric frame of reference and is
analogous to the previously described cancellation in the geocentrie frame
of refererice.

In (33), the second term of the integral can be expressed as

t 0

t : . £ .
Lt rneyel . oA (frlf:s\2 .C .S
2_[ 2 [(SB) J de = 2[ [Z(SB) tig . Ig
c . P c & .
(o]

+ (S \21 at (34)
. ) e
where S refers to the center of the sun, The last term of the integral is
negligible, The second term is integrated by parts:
t t t .
L .C 18 3. - .1__ C ) S !l 1_. S 0 "
zf (‘I-s -IB)pd't =73 (Is : x) - z[ (-3’-3- Is")p a (35)
c (4 c
t t <t
e © o}

Since terms of erder 1/(-:4 are ignored, the integral in (35) can be

evaluated using Newtonian accelerations. Also, the earth and moon can

be considered to be located at the earth-moon barycenter, The result is

t g, [ . .
1 s -C L 2*‘1 1 B S\| .

- — & ol dl' e — e—— . b ¥
2] (—-1-1}3' £-s)p t zf [3 (ls ) )] dt (36)
[od i [ ' I’i p

t t
[a)

REPRODUCIBILITY OF THE
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where the summatien over i includes eight planets and the earth -~ moon
barycenter. The quantity ES,_ is the heliocentriec position vector of planet i,
r, is its magnitude, and y is the gravitational constant of the planet (see
Appendix A), When i refers to the earth - moon barycenter, By is the sum
of the gravitational constants of the earth and moon. Assuming that the

planets move in the ecliptic plane, (36) is given by

t byt L - ,
~_%f (E% - f-&?) gt = Z 12f r cos (£ ﬂi)] gt (37)
¢ A P M 73 J

1p
e} ©
where r is the magnitude of r SI? , § is the true longitude of the sun measured
at the earth - moon barycenter, and {Z.l is the heliocentric true longitude of
planet i, Both of these angles are referred to the mean equinox and ecliptic
of date, When i refers to the earth - moon barycenter, r,=r and

B-Qi=1180°.

The first term of the integral in (33) can be written as

-t
1 . 1
* -/ BP e «[ [ } [ ]

where Ug -(8) and U (') are the contributions to the gravitatienal potential at

the earth - moon baryce-ifente'r due to the sun § and a planet i, respectively,
The summation over i includes all planets except the earth and excludes

the moon, For an outer planet i,

JPL Technical Memorandum 33-786
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-t . t{,
1—2] [UB(i}] dt = H—:é- / {%—- [1-({,—) cos ({-£.)
c t - P c t 1 1

o o
3 2
- %(%1) cos (£-1,) +%(§—1) cos 2 (£~1£,)
1l /r 2 5/(r 3
-:{-.,.4._(?‘) -E-(-r—) cos 3 (E-Bi)]} dt (39)
i 1 4)Pp

3 ) ..
where all terms to order (r/ri) have been retained, and the planet i is
assumed to move in the ecliptic plane. When i refers to an inner planet, r,

and r are intérchanged in (39).

For an outer planet, the second term of (39) cancels the term of (37) for
that planet. The first term of (39) is retained for Jupiter and Saturn omly,
The remaining terms of (39) are ignored for all outer planets. For an inner
planet, there is no cancelilation between (39), after interchanging r and .
and the term of (37) for that planet, All terms of (39) are ignored for
Mercury and for Venus. The terms of (37) for Mercury, Venus, and the
earth - moon barycenter are also ignored. Substituting the surviving terms
of (34), (35), (38) and (39) into (33) and replacing solar system barycentric

velocity vectors with heliocentrie veloecity vectors plus 3 S gives

teT1 = (t-"r)o
t 2 t
1 o . L (:8 .l (:S, B
+ L [ [UB(S)+—Z—.(SB):Idt+ Z(rB 5_)
e P .
o] o
- it t n
1 (8  _E\ 1 B
vz (E;E £A) i / ('I'J)pd't
t@ to
o/t t t
1 SA 1 (.C, 8 1 {.c _E
T3 / (r, )d'” z (is )| ¢ 3 (&5 - =i) (¢0)
c + SA/p c t c ¢
®] @ o]

18 JPL Technical Mermorandum 33-786



where By and Hgp are gravitational constants for Jupiter and Saturn,
respectively, and Ty and Tgp are the heliocentric distances of these bodies.
The term

is negligible and has been omitted from (40), The neglected terms in
Eguations (37) and (39) result in a maximum error in t- 7 of about 1.3 us;
the corresponding errors in computed range and doppler observables can

beupto l,1 mand 0.3 x 10—6 m/s, respectively,

For an outer planet, the {irst term of (39) is the gravitational potential
at the sun due to the planet (divided by ez). The remaining terms are thus
the petential at the earth - moon barycenter UB(i) minus the potential at
the sun US(i). The second term of (39) is the dot preoduct of the gradient
of the potential due to the planet (evaluated at the center of the sun) and
the heliocentric position vector of the earth - mooen baryecenter. The
cancellation of this term with the term of (37) due to the same planet is in
accordance with the Principle of Equivalence, In a small region
surrounding the sun, the variation in the gravitational potential due to a
planet is cancelled to high acecuracy by the inertial petential arising from
the sun's acceleration due to that planet. However, the cancellation of the
potential difference UB(i) - Us(i) due to an outer planet i is omly
approximate as evidenced by the higher-order terms in (39). For an inner
planet, the cancellation of this potential difference is not even approximate;
the term of (37) for an inner planet does not cancel any term of (39) when

r and r, are interchanged in (39).
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5, Initial Values

The purpose of this section is to determine the value of (t - ‘r)o in
Equation (40). The subscript o indicates that this guantity is to be evaluated
at the initial epoch to. The value of (t- T)O is station-dependent; that is, it
depends upon the location of the atomic ecleck on earth. However, it will be
seen that (t - 7, minus the initial values of all of the periodie terms of (40)
has the same value for all stations; it is denoted by ATA.

The conclusion that the constant ATA dees not vary with the location
of the atomic clock on earth follows from a consideration of the Lorentz

transformation., One of the four equations of this transfermation is:

1 .

-
¢ o= = (t' % SC;; ) (41)
JAREE

In this application, t and t' refer to coordinate time in the solar system

barycentric and geocentrie inertial frames of reference, respectively.
The coordinate x' is the compoenent of the geocentric position vecter of the
atemie cleck along the instantaneous direction of the earth's velocity
vector relative to the solar system barycenter. The magnitude of this
vector is §.

Section 3 showed that atomic clecks on earth which read International
Atomie Time 7% (denoted as 7 starting in Sectiom 4) can be synchronized.
It was alse shown that this time scale is identical with ¢cordinate time in

the geocentric inertial frame of reference. Hence, for two such
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synchronized clocks, the interval At' between corresponding ticks is zero,

and (41) gives the interval of coordinate time t between the two 'synchronized"

ticks:
1 sAx' sAx'
1.8 c c
2
c

where Ax' is the difference of the x' coordinates of the two atormic clocks,
Thus, fixed observers in the solar system barycentric frame of reference
do not agree that the two atomic clocks on earth are synchronized, The
difference in the definitions of simultaneity in these two frames of reference

is due to their relative velocity §.

The transformation t ~ 7 given by (40) must be consistent with (42),
This allows the relation between values of AT, for different stations to be

determined, Let {t=-7), and {t -~ 1), refer to values of t- 7for two different

2 1
stations on earth at a given epoech 7. Since the atemic clecks at these
stations {which read 7) are synchronized, the difference (t- 7)2 - {t- 'r)1 is

the interval of coerdinate time t in the solar system barycentrie frame of
reference between corresponding ticks of the two atemic clocks on earth.
This interval must be equal to At given by (42). The sum T of terms
four and eight of (40) excluding the values of the functions at the initial

epoch to is

1 (,C .E _
et (e G2l (43)

The value of T for station 2 minus the value for station 1 is equal to the
approximate form of {(42). In order for (k- T)2 - {t- T‘)l to be equal to this
same gquantity, the term (t- T)O of (40) minus the initial values of terms
four and eight must be the same comstant for all stations. The initial
values of the femaining terms of (40) are not station-dependent; they can
be subtracted from this constant to give a second constant which is the

same for all stations. This second constant is AT 4 ., previously defined
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as (t- r)o minus the values of all periedic terms of (40) at the initial epech
o Using this notation in (40) and expressing term four as the sum of two

terms gives

t-7 = AT

1 f{¥sa) 4 L1 /:C s\ .l (.C _E
+'_2"f(r; )pdt 7 (:-s . 3"-13) vz (Es ' EA) (44)

where the comstants of integration for the three indefinite integrals are

zero,

All terms of (44) except the first term are periodie. Terms four, five,
and nine represent periodiec variations in the rate of a specific clock on earth
relative to uniform coordinmate time t in the solar system barycentric frame
of reference. The remaining terms represent periedic variations in the
rates of all clocks on earth, At a given epoch, the difference in the sums of
terms four, five, and nine for two different stations on earth represents the
differ=nce in the definitions of simultaneity for ebservers on earth and
observers fixed in the selar system barycentric frame of reference,

The expressions for t - 7 given in this report apply for ideal International
Atomie Time 7, which in general differs from actual International Atomic
Time 7{A). I an expression is desired for t- 7{A), terms representing
7 - T(A} must be added to the expressions for t- 7 given in this report.

It was anncunced at the 16th General Assembly of the International

Astronomical Union (held in Grenoble in August 1976) that the second of TAI

RE?RODUCIEE,ITY OF THE
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is shorter than the SI second at mean sea level by 1.0 £ 0.2 x lO'lzs. A
reselution was adopted7 to increase the length of the TAI second by

1.0 x 10125 at January }, 1977, 0" TAIL, Using 7 = 7 (A) at this epoch,
the approximate expression for 7« 7(A) which applies from January 1, 1972,
ob TAI (when the TATI tirne scale was officially adopted) te January 1, 1977,
oh TAI is:

r-1A) = -1 x 1@"12 t

where t (a negative number) is seconds past January 1, 1977, of TAI, The

a priori estimate for 7-7(A) which applies after this epoch is zero.

The International Astronomical Union has adopted7 an atomic time
scale which uses the SI second at mean sea level and has the value TAI
+ 0.0003725 days exactly (32,184 s exactly) at January 1, 1977, 0B TAI It
has further stated that there be only periodic variatiens between this time
scale and coordinate time in the solar-system barycentric space-time frame
of reference. Hence, for 7 = 7 (A) at January 1, 1977 0oh TAI, the Inter-
national Astronomical Union has adopted 32.184 s (exactly) for the value of
the constant AT A

The value of AT, does not affect observed minus computed residuals
for tracking data obtained frem a spaceecraft if the n-body ephemeris used
was fit to observations using the sameé value for ATA. The value of ATA
is an adopted constant used in the expression for t - 7; there is no error in

ATA which contributes te errors in computed range and deoppler observables.

TSee Transactions of the International As_tr@um@migal Union, Vel. XVIB (1977).
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6. Evaluation of Periodic Terms

This section converts the periodic terms in Equation (44) for t- 7 to
sums of sinusoidal functions. The various assumptions made and the terms
which are discarded are stated but are not justified in this section. Hewever,
the resulting errors in computed range and doppler observables are given in
Section § along with the effects of the retained terms of t - 7. The final
expression for t - 7 and the equations for evaluating the arguments of its

periodic terms are given in Section 7.

Several of the periodic terms in (44) centain det products of position and
velocity vectors. All of the velecity vectors are lnertial velocity vectors:
the inertial velocity vector _gi gives the velecity vector of point i relative to
a nonrotating coordinate system centered at point j. In evaluating the dot-
product terms, the components of each of the two vectors are referred to a
nonrotating coordinate system which is aligned with the instantaneous positien
of a rotating coordinate system. It should be noted that the velocity vectors
do not give velocity components relative to the rotating coordinate systems.
The two vectors required for the evaluation of a particular term are referred
to either the mean earth eguator and eguinox of date er the mean equinox and
ecliptic of date. By using these coordinate systems, th: final expression for

t - 7 accounts for the precession of the earth's eguator.

6.1 ANNUAL TERM

The second term of Eguation (44) is

B B G 2
(t-7), = ;l'i [[UB('S) +% (é%) ]p dt (45)

where the constant of integration is zere. This term is evaluated assuming
that the heliocentric orbit of the earth-moon baryeenter is an ellipse with
semi-major axis a, eccentricity e, radial coordinate r, and eccentric
anomaly E. The gravitational potential at the earth-moon baryecenter due to

the sun is
T, (8) = = (46)
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where kg is the gravitational constant of the sun. The square of the heliocentric

velocity of the earth-meon barycenter is

B3) = wgtugtey) (3-3) = wsl3-3) (47)

where b and p, o are the gravitational constants of the earth and moon,

respectively. The inverse of r is given by

11,2 oskE (48)
Tr a r

Substituting (46), the approximate form of (47), and (48) into the integrand of
(45} and retaining only the periodic terms as specified by the subscript p

gives

: . 2 2p.e
[UB (8) +—21-(ss) ]p = rs cos E (49)

The derivative of E with respect to t is

. kg F g Ty ™
E:i\/ﬁ E M _1,/38 (50)
r a r a

Substituting (49) inte (45), multiplying the integrand by d E/dt and dividing it

by the approximate form of (50) gives

2 e .
(-t_.r)z = —C_Z msa e sin E (51)

Substituting nimerical values from Appendix A gives, in units of seconds,

(t‘-T)2 = 1.658 x 10-3 sin E (52)
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The coefficient is given to four digits because e is constant to about that many
digits frem 1950 to 2000. The error due to this approximatien is included in
the error summary in Section 8. The approximation of the facter FLS+§;LE+].-LM

by b in (47) and (50) is valid since these two guantities agree to six digits.

The term (51) was obtained by Moyer (1965}). It was also obtained using
an alternate derivation by J. D. Anderson (unpublished) in 1964. The deriva-
tion of (51) dees not invelve an expansion in pewers of e. Clemence and
Szebehely (1967) used such an expansion and obtained a series of terms, the
first of which is (51) with E replaced by the mean anemaly M. Their com=
plete series does convert to the form (51), The annual variation in the rate
of atomic clecks on earth corresponding te the term (51) of t ~ T was obtained
by Aoki (1964).

6.2 MONTHLY TERM

The third term of Equation (44) is

o _ 1 - 8 B
€-n3 =3 (;B : xE) (53)
which can be written as
14 - B E
(t-7), = = (E - r ) (54)
3 C2(1+|.u,) S M
whexre EM is the geccentric pesition vector of the moon ana
FL.
P 2 (55)
M

Both vectors in (54) are evaluated assuming circular orbits, and the 5° inclina-
tion of the lunar orbit to the ecliptic is ignored. With rectangular components

referred to the mean equinox and ecliptic of date, these vectors are given by
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. -sin L
e = cos I, éc (56)

and

" cos ¢ )
IM S slv(; q JaM (57)

where

s = circular orbit velocity of earth-meon barycenter relative

to the sun (see Appendix A)

L = earth-moon-barycentric mean longitude of the sun, referred

te the mean eguinex and ecliptic of date

ayy = semi-major axis of geocentric orbit of the moon

q = geocentric mean longitude of the moon, referred to the

mean equinex and ecliptic of date
Substituting (56) and (57) inte (54) gives
$ a

(t-7), =—=—M b (58)

3 )
where D, the mean elongation of the moon from the sun, is given by
D = ¢C-L (59)

Substituting numerical values from Appendix A gives

{t-7); = 1.548 x 1070 sin D (60)
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The error sumimary in Section 8 gives the errors in computed range and

doppler observables due te truncating the coefficients of the periedic terms

of t =T,

6.3 DAILY TERM DUE TO MONTHLY MOTION OF EARTH

The fourth term of Equation (44) is

which can be expressed as

-7, =23 (ig - £4) (61)
c
1 B E
t-7, = - —F5— (2 -;‘-.) (62)
¢ C2(1+p.) M A

The orbit of the moon is assurmed to be circular and in the ecliptic plane. The

vectors in (62), with rectangular components referred to the mean equinex

and ecliptic of date, are given by

where

E -sin (” )
-£M = [c%s(] Sy (63)

" u ees (@M+ A)

r = u sin (6, +A) cos € + v sin ¢ (64)

M

+X) sin € + v cos €

:-u sin (@M

circular orbit velocity of the moon relative to earth (see

Appendix A)
mean obliquity of the ecliptic

inclination of the ecliptic plane to mean carth equater of

date
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6 = mean sidereal time = Greenwich hour angle of mean

equinox of date

and u, v, and \ are earth-fixed coordinates of the atomic cleck. The
coordinate u is the distance frem the carth's spin axis in kiletneters, v is
the distance north of the earth's eguatorial plane in kilometers, and \ is the
east longitude. Substituting (63) and (64) into (62) and using trigonemetric

identities gives

5 :
(6 - r)4 = - —z—ﬁi—- ‘-% [(I-H:os €} sin (QMH\-(()
c“(1+u) ( 4

(65}

-« {l-cos €) sin (@M-in-([)] + v sin ¢ cos ([}

$

The second and third terms of this expression are neglected.

From pages 73-74 of the Explanatery Supplement to the Ephemeris

(1961), the relation between mean sidereal time @M and universal time UT is

5. = UT + R, - 12" (66)

M U

where UT refers specifically to universal time UT1, hours past midnight,
and RU is the right ascension, measured from the mean equinox of date, of a
fietitious point on the eguator. The adopted expression for RU, with units
changed from hours to degrees, is

2

R, =279°41'27'54 + 129 602 768" 13 TU + 17393 5 TU (67)

U

where TU is the number of Julian centuries of 36 525 days of UT1 elapsed
since Janwary 0, 1900, 121-'1 UT1l. From page 98 of the above reference, the
mean longitude L of the sun, referred to the mean equinox and ecliptic of

date, is given by
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L = 279°41'48V04 + 129 602 768713 T + 17089 T2 {68)

where T is the number of Julian centuries of 36 525 days of ephemeris time
(coordinate time t) elapsed since Januwary 0, 1900, 1zh ephemeris time. The
constant term of RU is 205 smaller than the corresponding term of L because
RU is corrected for stellar aberration. The difference between RU and L
varies from about 21" at 1950 to about 23" at 2000. Because of this small and

nearly constant difference, R_ in (66) is approximated by L which gives, in

U
radians,

8y = UTl+ L -m (69)

If UTI1 is given in seconds past January 1, 1950, Oh UTI1, the angle UT! in

radians is computed from

UT! (seconds) )
86400

UT! (radians) = 27 (l:

decimal part ‘

The calendar date for the reference epoch for UT1 (seconds) in (70) is
arbitrary, but the time of day must be o UT1. The cifects of the approxi-

matien in (69) are included in the error summary given in Section 8.
Substituting (69) inte the first term of (65) and using (59) gives

éM(H-ces )
(t - 7), = —4 ——  u sin (UT1+A-D) (71)

3
4 2e” (1+)

Substituting numerical values from Appendix A gives

(t-7), = 1.33 x 107" 4 sin (UT14A-D) (72)
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6.4 DAILY TERMS AND SMALL ANNUAL TERM DUE TO ANNUAL MOTION
OF EARTH

The fifth term of Equation (44) is

. B E

The vectors in (73), with rectangular components referred to the mean earth

equator and equinox of date, are given by

- -sin (2 -Y)
B _ .
Ig = cos (£ ~Y) cos ¢ Sg (74)
cos (£ -Y) sin €
. u cos (8y+ M) '
r, = v sin (@MH\) (75)
v
where
éS = velocity of earth-moon barycenter relative to sun
4 = earth-moon-barycentric true longitude of the sun, referred
teo the mean eguinox and ecliptic of date
Y = elevation angle of heliocentrie velecity vecter of earth-

moott barycenter, measured from the transverse direction

{nermal to radius)

From Broucke (1974),

: . 1 2 3 2 -
5g T S_ (l~ze +e cos M+Ze cos 2M) {(76)

where all terms to erder e2 have been retained, and M is the mean anemaly
of the heliocentric orbit of the earth-moon barycenter. The angle £ -Y

can be expressed as
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£ =Y = L+ (f-M)-v (77)

where f is the true anemaly of the heliocentric orbit of the earth-moon bary-

center, From Herrick (1971),

- e sin E
Y = tan ——1 = e sin E (78)

Vv l-ez

where the approximate form is correct te order ez. From Smart (1960),

sin E = sinM+%:esin2M+... (79)
and
. 5 2 . .
f—M=ZESLHM+Z‘e sin 2M + ... (80)

Substituting (78) - (80} inte (77) gives

£ -Y = L+esiml\zﬂ[%—%e2 sin 2M {81)

which includes all terms to order ez. Substituting (74) and (75) inte (73},
using trigonometric identities, and then substituvting (69), (81), and (76)

gives

8 (ltcos ¢ )Ju : ‘
(t - T)S = —=£ ) (l-:]i-e2+e cos M+§z-ez cos 2M)
' 2¢

x sin (UT1+h-e sin M - %ez sin 2M)

$ (l-cos e )u

- ——— {lte cos M) sin (HWT1+Ax+2L+e sin M)
2c

$ {(sim e v
S os L
- ————
2
c

(82)
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2 1 . .
where all terms to order ez, e , and e(D have been retained in terms one,
two, and three, respectively. Expanding and retaining terms to the same

order of e gives

§ (l+cos ¢ Ju 12
(¢ - 1-)5 = £ ~ [(l-ze ) sin (UT1+X\)
: 2c” '

e sin (UT14A-M) - éez sin (UT14+\+2M)

+2e? sin (UT1+?\-2M)]

T

s {l-cos e
N [si_n (UT1+\+2L)
2¢

+ e sin (UT1+)~+2L+M)]

s (sin ¢ )v
- > cos L (83)
C

Substituting numerical values from Appendix A gives

(6 -7 = 3.17679 x 10710 u sin (UT141)

+ 5.312 x 10_12 u sin (UT1+X-~M)
-14 . ,

- 1.1 x 10 u sin (UT1+N+2M)
-13 . -

+ 1.00 x 10 u sin (UT1+A-2M)

- 1.3677x 107 u sin (UT1+A+2L)

‘ ‘ -13 , _
-2.29x%x 10 u sin (UTL1+ N+21L+M)

-1.3184 x107 19 ¢ cos 1 (84)
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The term of {83) and (84) with argument (UT1+\) was first obtained by
Andersen (1968); the expression for the coefficient of his term differs slightly
from that given in (83). The term with argument UT1 + » + 2M is net included
in the final expression for t-7; the effects of deleting this term are included

in the error summary in Section 8.

6.5 LONG-PERIOD TERMS DUE TO JUPITER AND SATURN

The sixth term of Equation (44} is

i;L
(t - 1) =l—2 [(;T. dt (85)

where By is the gravitational constant of Jupiter and ry is the heliocentric
radial coordinate of Jupiter. The constant of integration is zero. The seventh
term of (44) is (85), with each subscript J replaced by the subscript 5A,

which refers to Saturn.

The inverse of rs is given by (48), with a subscript J added to each

variable. Substituting l/rJ. into (85) and discarding the constant term gives

1 M1%g
k-7, = _C_Z-f l;J: cos E ; dt (86)

Multiplying the integrand by dEJ./cilt and dividing it by EJ given by

g * b
2 (87)

. I
EJﬁ-Iff\/ a

J J
gives
e
-7, =—5L sinE; (88)
c 8
J
2EPRODUCIBILITY OF THE JPL Technical Memorandum 33-786
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where s is the circular orbit velocity of Jupiter relative to the sun given by

J
Pt
. [FgTks
ST —\/ = (89)

Substituting neumerical values from Appenrndix A into (89) and (88) gives

(t —-1')6 = 5.21 x IO—b sin EJ. (90)

The correspending term for Saturn is

_ -6
(£ - 7)7 = 2.45 x 10 ~ sin ESA (91)

6.6 TERMS WITH PERIODS EQUAL TO SYNODIC PERIODS FOR JUPITER
AND SATURN

The eighth term of Eguation {44) is

_1 (.c sy _1 (.8 B .
(£ - g = =3 (Es '-£E) -T2 (—rec 'is) (92)

Terms will be obtained for Jupiter and Saturn due to their contribution te _I;SC’

The contribution to £C due to planet i with gravitational censtant b is

where “S is the gravitational comnstant of the sun augmented by the gravitational
constants of the planets and moon. It is asswumed that the heliccentric orbits
of the earth-moon barycenter and planet i are circular and that the latter lies
in the ecliptic plane. With these assumptions, the vectors _1;? and ESB' with
rectangular components referred to the mean eguinox and ecliptic of date, are

*JP1. Technical Memeorandum 33-786
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-sin L. '}
.S IR B
I = cos L, 5 (94)
0 N
ces 1. T
B . |
r. = sin L, a (95)

where éi is the circular erbit velocity of planet i relative to the sun (computed
from Fgquation 89 with subscript J replaced by i), and L. is the heliocentric
mean longitude of planet i, referred to the mean equinox and ecliptic of date.

Substituting (93) to (95) inte (92) gives the contribution to (t- T)8 due to planet i:

{t-Tg, = 2 S osin (k=L o)

Substituting numerical values from Appendix A for i = Jupiter gives

(-7l = 20.73 x 1077 sin (L-L) (97)

For i = Saturn,

(¢~ T7) = 4,58 x 10""EJ sin (L-L

85A sa) (98)

6.7 DAILY TERMS DUE TO MOTION OF SUN RELATIVE TO SOLAR

SYSTEM BARYCENTER

The ninth term of Equation (44) is

-7y = —c%(‘l:g 2y) = ;17 (ﬁg 2y (99)

JPL Technical Memorandun 33-786



Terms will be obtained for Jupiter and Saturn due to their coentributien to -I:C
The contribution to (t- 7 )(9 due to a planet i is obtained by substituting (93),
{94), and (64) into (99) and using trigenometric identities:

FLiéi u : .
-—2—-—-:-;‘: —'2-—[ (1 + C@'SE) sin (QM‘{' )‘-Li)

(£- 7)oy =
g

- {(l-cos ¢ ) sin (QM+)‘+L1) ] + v sin ¢ cos Li (100)

The second and third terms of this expression are neglected. Substituting (69)

inte the first term of (100) gives

pié.(l-l—c@s €)
(t- 1), = LS - w sin (UTi+A+L-L.) (101)
H 2.(:2 !
s
Substituting numerical values from Appendix A for i = Jupiter gives
. -13 - - ;
(t - 'r)ﬁ}\T = 1.33 x 10 w sin (UTI+N+L-Ly) (102}
Foer i = Saturn,
(103)

2.9 % 10714 u sin (‘UT1+7\+L-LSA)

(b~ Thoga =

JPL Technical Memorandum 33-786
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7. Final Expression and Arguments

The periodic terms of t - 7, with analytical expressions for the
coefficients, are given by Equations (51), (58), {(71), (83), (88) (which applies
for Jupiter) and the corresponding term for Saturn, and (96) and (101}, each
evaluated for Jupiter and for Saturn. Substituting t-hes-e‘terms, except the
term of (83) with argument UT1 + X + 2M, into {44) gives

. L 2 Lo . ée M .

t- 7= ATA +;§J@e51nE +T—SLnD

€ c (L+m

§ (l4cose)u
+ £ , 1- l ea) sin (UTI+X)
2c2 z

2

+ e sin (UT1+ X - M) +—g- e sin (UT1+ X - 21\/1)]

§ (l-cose)u
_.E 7 Lsim (UT1+ X + 2L
2¢e

+ e sin (UT1+\ + 2L + M)]

éM (l+cos ¢) ée: {sin € }v _
L E— usin (UT1+ X - D) - ——3 —— cos L (104)
2¢ {l1+p) c
booe. M e
P R SA "SA . .
+ 5 sin EJ L : sin ESA
e $; € Sgp
Ko s.a Ben Sap 2
+ Sl sin(L-Lp) + 252 in(L-L,)
c FLS c f_d.S
By s'J {l+cos ¢)
T s R wsin (UT1+X + L-L)
2e By
Bor 5o (l+cos €}
+ B4 84 uwsin (UT14 A + L-Lg,)
2 2 " SA

Substituting nwmerical values for the coefficients of the periodic terms,
obtained from Eguations (52), (60), (72), (84), {90}, (91), (97), (98), (102),
and (103), gives

38 JPL, Technical Memorandum 33-786
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t-7r1= ATA + 1,658 X 10'3 sin E 4 1,548 X 10'6 sin D

+3.17679 X 10710 ygin (UT14N) + 5,312 X 10-12 wsin (UT14\-M)

+ 1,00 x 10713 usin (UT1#A-2M) - 1.3677 x 10-11 ysin(UTL14A42L)
- 2.29 x 16-13 ysin (UT14M42L4M)

+1.33 X 1013 ysin (UTI+\-D) - 1.3184 X 1010y cos L (105)

+5.21 X100 sin E_ + 2.45 X 1070 sin E

J SA

+20.73 X 1076 sip (L-Lj) + 4.58 X 107© sin (L-Lg,)

+1.33 x 10-13 ysin (UTL#ML-L)

+ 2.9 x 10714 ygin (UTL4ML-Lyg, )

where the coordinates u and v of the atomie eclock which reads International
Atomic Time 7 are in kilometers and t - 7 is in seconds. The coefficients of
the daily terms of (105) are proportional te u. For a clock at the egquator
where u = 6378 km, the magnitude of the coefficients of the daily terms
varies from a maximum of 2.026 X 10 s to a minimum of 1, 85 X 10-105.
The annual term with argument L, has a coefficient preportional te v; its max-

6

imum value is 0,838 x 10 " s,

The last four terms of (105} are due to the offset of the seolar
system baryecenter from the sun. If these terms are deleted in (105), coordi-
nate time t in the selar system barycentric frame of reférence is replaced in
this equation by coordinate time t’ in the heliocentric frame of reference, and
the aceuracy of the equation is reduced slightly, The previously derived ex-
pression for t - 7is Equation (65) of Meyer (1971)., In this previous expression,
the leng-period potential terms due te Jupiter and Saturn (the terms of 105

with arguments E_ and Es A) were omitted along with the term with argument

J
L, which has a significant effect on computed three-way range and doppler
observables, The previous expression for t' -~ 7 consisted of the first nine

terms of (105) with minor differences in the coefficients of the periodic terms.
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From Smart (1960), the relation between the eccentric and mean

anomalies is:
_ . 1 2 .
E = M+es:L-nM+?e sin 2M + ,,, (106)

The three eccentric anomalies in {105) can be computed to sufficient aceuracy

from the following approeximations to (106):

E = M+esinM {107)
EJ‘ = MJ' (108)
ESA = MSA (109)

The errors due to the approximations in (107} - (109} are included in the error
summary in Section 8. Expressions are given below for the arguments L, M,
D, (L -LJ)!, (L “L'SA)” MJ_. and MSA’ which are funections of coordinate time t,
The angle UT1 in radians is computed from universal time UTI in seconds

using Equatien (70),

The Explanatory Supplement to the Ephemeris (1961) gives poly-
nomials for the mean orbital elements L, M, and D (pp. 98 and 107), The

argument for these expressiens (quadratics or cubics) is Julian centuries of
36 525 days of ephemeris time ET (coordinate time t) from January 0, 1900,
1zh ET. Linear expressions have been obtained which are tangent te the

polynemials at Janwary 1, 1975, 6h ET (0.75 Julian centuries past the above

epoch), In units of radians, the linear expressions are

7

L = 4,888 339 +1,991 063 83 x10 ¢ (110)
M = 6.248 291 +1.990 968 71 x 10” t (111)
D = 2,518 411 +2,462 600 818 x 10" ¢ (112)

b g,

where t is seconds of ephemeris time past January 1, 1950, 0
Seidelmann et al (1974) give quadratic expressions for the helio-

centric mean longitudes of the earth, Jupiter, and Saturn (LE, LJ_, and LSA

respectively) and for the longitudes of perihelion for Jupiter and Saturn

JPL Technical Memorandum 33-786



&. and &g, respectively), referred to the mean equinox and ecliptic of
SA P Y

J
1950, 0. Linear expressions were obtained which are tangent to the guadratic

expressions for these mean orbital elements at Januwary 1, 1975, 6" ET. The

argument was changed from tropical centuries of 36 524, 219 88 ephemeris

days past 1950, 0 to ephemeris seconds past January 1, 1950, (Dh ET. The

expressions for the arguments L-LJ, L-LSA. MJ, and MSA were obtained from ‘

the following combinations of the linear expressions for LE’ LJ, LSA’ Y g

and @ SA®

L - LJ = Lg - LJ * T (113)
L”L"SA= LE.-LSA:T:TT (114)

YA (116)

The resulting expressions, in radians, are

7

L - L; = 5,652593+1.823 136 37 X 107 ¢ (117)
L= Lg, = 2,125 474 % 1,923 399 23 le"7t (118)
M; = 5.286 877 + 1.678 506 3 x 107" ¢ (119)
Mg, = 1,165 341 +0,675 855 § x 1078 ¢ (120)
The mean longitudes on the left-hand side of (113) and (114) are referred to

the mean equinox and ecliptic of date., The mean longitudes on the right-hand
side of these equations are those of Seidelmann et al which are referred to
the mean equinex and ecliptie of 1950, 0. The equinox difference does not

7 and L-LS A
the reference planes does produce errors in Equations (117) and (118); how-

affect the computed longitude differences L-L The difference in

and Saturn te the ecliptic of 1950, 0, the errors are negligible,
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The errors in computed range and doppler observables due to the
errors in the linear approximations (110) - (112) and (117) - (120) are

completely negligible for the time period 1950 - 2000.
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8. Effect of Retained and Neglected Terms of t- T

The primary purpose of this section is to give estimates for errors in
computed range and doppler observables due to errors in Eguation (105), the
final expressien for t - 7. The secondary purpese is te give the effect of the

retained terms of t -~ v on these observables.

Periodic terms of t - 7 have a direct and an indirect effect on computed
range observables. These two effects can be understood by considering the
general procedure for computing a range observable. The light time solution
produces solar system barycentric position vectors of the transmitting station
on earth at the transmission time tl’ the spacecraft at the reflection time 1:2,
and the receiving statien on earth at the reception time by The reception tirme
is knewn in atemiec time r; addition of t - 7 frem (105) converts it te coordinate
time t (in the solar system barycentric space-time frame of reference). The
light time solutien yields the epochs ts and t in ceordinate time. The epoch
ty in coordinate time is directly affected by the magnitude of the periedic
terms of t - 7 evalunated at t3; the epochs tz and tl in coerdinate time are affected
by the same amount te an accuracy of 3 or 4 digits (depending upoen the range
rate of the spacecraft).

The values of t

3 anhd tl

former is not affected by the terms of t - 7; the latter is affected but not sig-

in the UT1 time scale are also ebtained. The

nificantly. The indirect effect of a periodic term of t - 7 on a computed range
observable is due to the effect of the term on the epochs sty and ty and
hence on the positien vectors computed at these epochs. The direct effect is
due to the values of the term at ty and t which appear explicitly in the equa-~
tiou for computing range observatles (Appendix B, Equation B4). Doppler
observables are computed from the difference of twe cemputed range observ-
ables divided by the difference in the two reception times. The direct and
indirect effects of a term of t - 7 on these two range observables produce a

corresponding direct and indirect effect en the doppler observable.
Appendix B gives the formulation for computing tweo-way or three-way
raage and doppler observables. An analysis of these equations produced the

approximate equations given below for the maximum direct effect of a term of
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t - T on range and doppler observables. The direct effect of a termof t~ 7
depends upon the form of the term. All of the retained terms and almost all
of the neglected terms have one of the following forms. The terms can be
divided into daily terms (period P = | day) and long-period terms (P ranging
frem roughly half a month te several years). The daily terms contain the
longitude of the atomic clock in the argument; the long-period terms do not.
The coefficients of the daily terms are propoertienal to the spin-axis distance
u of the atomic clock. The coefficients of some of the long-peried terms are
propertional to the distance v of tk. atemic cloeck north of the earth's equa-
torial plane. The only neglected terms of t - 7 which de not fit into these
categories are some of the terms due to nutation, pelar metion, and solid-

earth tides.

Let 5P and 68 refer to the maximum pessible value of the direct effect
of a term of t _ 7 on range and doppler observables, expressed as the tracking
station to spacecraft range and range-rate, respectively. The effects of a

daily term of t - 7 on two-way or three-way data are:
8P = Me (121)

5P = M(—)c (122)

where M is the magnitude of the coefficient of the term and c is the speed of
light. Fer three-way data, the spacecraft range p at which these maximum
effects occur depends upon the separation in longitude of the transmitting and
receiving stations; the separation can be adjusted so that the maximum occurs
at any range. For two-way data, the maximum effects at a given range are
given by Eguations (121) and (122) multiplied by sin (2—;- . —f—) . Hence, the
maximum two-way effects increase with range, reaching a peak at a range of

43.2 astronemical units,
The following equations give the effects of a long-period term of t - 7 on

two-way data. They also give the effect of a long-period term on three-way

data if the coeefficient of the term is not proeportional to v.
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5P= M ( =, (123)
- 2m \2
6P = M (.?, p (124)

If the coefficient of a long-peried term is proportienal te v, the effects
of the term on three-way data are given by (121) and (122), where M is the
maximum pessible magnitude of the coefficient of the term. These maximum

effects are independent of the range to the spacecraft.

The indirect effects of a term of t - T on two-way or three-way range and

doppler ebservables will not exceed the following approximate values:

6p. = PM (125)
5P = aM (126)

where p is the tracking station to spacecraft range rate, and a is the inertial

acceleration of the spacecraft. The highest spacecraft acceleration likely to

be encountered is 25 /sz, which occurs near the surface of Jupiter. Higher
accelerations occur closer than 3.3 selar radii from the center of the sun,

but it is unlikely that a spacecraft would enter this region.

An extensive error analysis has been performed to determine estimates
for the maximum poessible errors in computed range and doppler observables
due te errors in Equation (104) or (105) (which contain analytical and numeri-
cal coefficients, respectively) for t - 7. The results of this analysis are pre-
sented in Table II. The second ceolumn lists the errors committed in the
derivation of Equation (105)., If an error is associated with a term of {104)
er (105), that term is identified in column 1. The magnitudes of the coefficients
of the error terms are given in column 3. The maximum values of the direct
effects of the error terms on computed range and doppler observables are
given in colamns 4 and 5, respectively. When one figure is given for the
effect of an error, it applies for two-way or three-way data. When two
figures are given, the figure in parentheses is the error for three-way data

and the other figure applies for two-way data. For daily terms, the maximum
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TABLE 1II

Error summary

88l-¢¢ TWHAPUBIOUIB Te21UY I3 J, TArl

Magnitude of Direct effect on Direct effect on
error term, range, range rate,
Term Source of error 08 m pm /s
Argume nt Assuming e constamnt 1.0 1.5 0.3
E from 1950 te 2000
Argument Neglected e2 term 0.3 0.7 a. 3
B in BEquation (107)
Argument Ignoring periodic variations 1z. 0 15.0 4.0
E in heliocentric orbital
elements of earth-moon
barycenter
Argument Ilghoring e,  and e 0.2 2.3 10, 0
‘ M
D
Coefficients lgnoring -83 te rmis 0. 00 0.0l 0.8
with factor
éc (l+cos €}
Coefficients Ignering ez terms 0. 09 0. 62 1.2
with facter
s {l-cos e)
¢
All with Approximation in 0. 00 0.08 5.5
UTl + X\ in Eguation (69)
argume mnt



TABLE 1II

Error summary {(contd)

Magnitude of Direct effect on Direct effect on

98L-CE WIMPUR IO [e2Tuld2], TdAl

Ly

error term, range, range rate,
Term Source of errer s m pm/s
Argument Deleting this term from 0. 00 0. 02 1.5
UTI +% + 2M Equation (84)
All with Ignoring periodic variatiors 0. 00 0.4 30.0
factor Scu in helioscentric orbital (0. 6)
or Sev in elements of earth-moon
coefficient barycenter
Argument Ignoring epq and 0. 00 0.63 1.9
UTl + x- D second term of
BEaguation (65)
Argument Ignoring third term 0. 00 0. 01 0. 02
UTL +x-D in Equation {65) (0.11) (0.3)
Argument Ignoring e 0.02 0. 04 0, 02
(4.2) (1.7)
Arguments Neglected e terms in 0.2 0. 04 0. 00
EI and E'SA BEguations (108) and (109)
Neglected terms in 1.3 1.1 0.3
Equations (37) and (39)
Neglected gravitational 0. 00 0.1 8.2

potential at earth due to
moon in BEquation (27)
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TABLE 1II

Error summary (contd)

98L-CE WNPUBIOWSW TRIMUYII T, Tl

Magnitude of Direct effect on Direct effect on
error term, range, range rate,
Term Source of errer s m pum/s
Arguments Ignoring e, e, and eg 2.1 2.3 @.5
J SA
L, - LJ and
L - Lga
Argument Ignoring terms for 1.3 1.8 0.4
T, - Li Mercury, Venus, Mars,
Uranus, Neptune, and
Pluto, including effects
due to eccentricities
Omitting the term 0. 00 0. 02 0. 05
L3 : B in
Equation {40)
Argument Ignoring second and third 0. 00 0. 06 3.6
UTF + X+ L, - terms of Equation (100) for (0.2)
L all planets, the first term
i3

for all planets except
Jupiter and Sataurn, and
ignoring eccentricities of
planetary orbits for retained
and neglected terms



TABLE I

Errer summary (contd)

Magnitude of

Direct effect on

Direct effect on

98/ - ¢ ¢ WNPURIOWIAN [RITUY23 ] Tl

error term, range, range rate,
Term Source of error 2.5 m um/s
Arguments Ignering inclination of 8. 02 0.2 k.5
D, UTIl + x - D, orbits of moon, Jupiter,
L - Ly L - Lgp, andSaturn to ecliptic plane
UTl + x+ L -
L.J, and UTI +X
+ L - Lga
Coefficients Assuming ¢ and e are 0. 00 0. 02 1.4
with factor constant from 1950 te (0. 06)
1 + cosce, 2000
l - cosce
or sine
Ignoring nutation, polar 0. 00 0.1 3.9
motien, and solid-
earth tides
All Roundoff of coefficients 0.2 0.3 e.7
Miscellaneous 4.3 3.8 7.8
{see text)
Totals 23,0 30.0 75.0
(34. 6) {77.0)

6%
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values of the errors are listed. This is also true for three-way errors due
to long-period terms which have coefficients propertienal to v. The errors
in two-way data due to long-period terms and in three-way data due to long-
period terms whose coefficients are noet proportional te v were computed for

a spacecraft range of 50 astrenemical units.

A large number of the errors listed in Table II are due to terms
neglected in (104) and (105). Amnother large group of errors is due to
ignoring eccentricities of elliptical orbits or ignoring terms above a certain
pewer of the eccentricity. Serme of the largest errors are due to ighoring
periodic variations in the heliecentric orbital elements of the earth-moon
barycenter. These variations, in the form of lengitudinal and radial per-
turbatiens, were obtained from Newcomb (1898)., The effects of perieodic
variations in the geocentric orbital elements of the moon and in the helio-
centric orbital elements of Jupiter and Saturnm have not been analyzed. The
miscellaneous errer listed at the end of Table II is an allowance for these

errors and other minor uwnanalyzed errors,

Estimates have been obtained for the maxirnum possible direct errors
in computed range and doppler observables as a function of the range to the

spacecraft. For two-way data, these upper limits are

5P, ={0.62 m) AU (127)
@éz = (2.4 x 10" m/s) AU (12 8)

where AU is the range to the spacecraft in astronemical units. These figures
are based upon the constant derivatives of long-period errers with respect to
range and the derivatives of the daily errors with respect to range evaluated
at a range of zero. Since daily errors are provortional te the sine of a
multiple of the spacecraft range, these upper limits are high at large space-

craft ranges. For three-way data, the upper limits are

6P, = (0.59m) AU + 5.5 m (129)

REPRODUCH:IT Y OF HJ.
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5P, = (0.49 x 10" m/s) AU + 53 x 107% m/s (130)

From Table II, the estimate of the maximum error in the magnitude of
t - 7is 23us. Using this figure and a spacecraft range rate of 30 km/s,
Equation (125) gives a maximum indirect error in computed range observables
of 0.69 m. For a spacecraft inertial acceleration of 25 r—n/sz, (126) gives an
upper limit te the indirect error in com.puted doppler ebservables of 575 X
10" m/s. This error is almost eight times as large as the maximum value

of the direct erraor.

Te an accuracy of 0.01 us, the error in the magnitude of £ - 7 is due
entirely to long-period terms. This error could be represented by a curve
which is a function of a small number of parameters. When fitting to tracking
data ebtained from a spacecraft which is near a planet, the values of these
parameters could be estimated, thereby eliminating mest of the indirect

errers in computed observables due to neglected terms of t -7,

Table III gives the same information for the retained terms of t-7 as given
in Table II for the neglected terms. It is seen that the maximum value of the
direct error in a computed range observable due to neglected terms of t - 7 is
about 1% of the maximum value of the direct effect of the retained terms of
t -~ 7. The corresponding figure for a doppler observable is 0, 16%, The maxi-
mum error in the magnitude of t - 7 is about 1, 36% of the maximum value of
the sum of the periedic terms of t - r. Hence, the maximum value of the
indirect error in a computed observable is about 1.36% of the maximum value

of the indirect effect of the retained terms.

Approximate maximum values for the direct effects of the retained
terms of t = T, as a function of the spacecraft range AU (in astronomical units),

are

[=2]
el
1l

(74.3m) AU (131)

on
ko)
It

(1.72 x 10‘3m/s)AU (132)
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TABLE III

Maximum effect of retained terms

Argument Magnitude Direct effect Direct effect

of term of term en range, on range rate,
s m p.LEf]/S
E 1658. 2476, 493,
D 1,548 28.6 70, 4
UT1l + A 2,026 607. 4 44173,
UT] + A- M 0.0339 10.2 739.
UTl + A-2M 0.000 64 0.19 13.9
UT1 + A+ 2L 0.0872 26.2 1902.
UTl +A+ 2L + M 0, 0015 0. 44 31.8
UTl +A-D 0.000 85 . 0.26 18.5
L 0.838 1.25 0.25
(251.) (50.0)
EJ 5.21 0.66 0.01
ESA 2.45 0.13 0. 00
L - J‘-‘;; 20.73 28,4 5.17
L-LSA 4.58 6.61 1.27
UTl +A+ L - LJ 0,000 85 0.26 18.5
UTI + A+ L - Lga 0.000 19 0.06 4.03
Totals 1696. 3187. 47 471.
(3437.) (47 521.)
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6P

(51m) AU + 896 m (133)

1

5P (0.012 X 10'3m/s) AU + 47.0 x 10'3 m/s (134)

3

For a spacecraft range rate of 30 km/s and inertial acceleration of 25 m/sz,
the maximum values of the indirect effects of the retained terms nf t- 7 on

3

computed range and doppler observables are 51 m and 42 x 10~ m/s,

respectively.
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9. Alternate Expression for t- 71

This section gives an alternate equation for t- 7 which is a function of
position and veloeity vectors of the atomic clock and the major bodies of the
solar system. The equation is obtained from Equation (44) by replacing
the secend, sixth, and seventh terms, which are expressed as integrals,

with functions of position and velecity vectors derived in this section.

The second term of Equation (44) is given by Egquation (51). For the

heliecentric elliptical orbit of the earth-moon barycenter,

.-S S i - - . ;
Fr = LIp o Xp = \/ (\[;LS+|;LE‘§'FLM) aesinE

i

\/.FLSA e sin E (135)

Substituting the approximate form of (135) inte (51) gives the desired form

for the second term of Equation (44):
g

(G- 1), = —c% (;’; . rs) (136)

The sixth term of Eguation (44) is given by Equation (88). The equation

analogous to (135) which applies for the heliocentric orbit of Jupiter is:

ey W
)

GpSﬂiJ) ajye;sin Ej {137)

I+ -

Substituting e sin E_ frem (137) inte (88) and using (89) gives

7 T
Bk i
J , G 3
(te1), = (5 . £ (138)
[ 2 -TJ =T
e (pgheg)

The corresponding term for Saturn (SA) is the seventh term of Equation (44):
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Replacing terms two

» Six, and seven of Equation (44)
(136), (138), and (139)

with Eguations

» combining the three terms which contain gﬁ, and
reordering the terms gives the alternate expression for t- r:
- .2 S5 8 1 .cC E 1 .s B
t-7 = ATA +?(I.B .;B)+ Z(rE J-:A)+ Z(EB'xE)
1 .C 8 Py S s Psa g S
c c (}J.S‘H.}LJ—) c (MS-}-'FLSA)
(140)
1 .c B |t
If the term = (i's . };E) » which was omitted in Egquation (40), was
e i £
reinstated, £B in the fourth term of (140) would be replaced by Eg
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Appendix A: Neotation and Numerical

Values for Parameters
This appendix gives the definitions for the parameters used globally
throughout the text. Numerical values are given for those parameters which

appear in the final expression for t- 7,

Subscripts and Superscripts

A = location of atemic cleck on earth w' . ‘h reads Internatienal
Atomic Time 7

E = earth

B = earth-moon barycenter

M = moon

5 = sun

C = solar system barycenter

J = Jupiter

SA = Saturn

P This subseript indicates that periodiec terms of the guantity are

te be retained and constant terms are to be discarded

© This subseript indicates the quantity is evaluated at the initial

epoch t@

A bar over a quantity indicates the time average value of the guantity.

Position, Velecity, and Acceleration

_I‘.-';_], ;i. 5:11 = position, velocity, and acceleration vectors of point i
relative te peint j. The dots denote differentiation with

respect to coordinate time t

ég = velocity of point i relative to point j
$ = velocity of fixed atomic clock en earth relative to solar system
barycenter

REPRODUCIBILITY OF T4
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Time

T = proper time obtained froem an atemic clock on earth

T3 = Interwnational Atomic Time (TAI) obtained frem an atemic clock

on earth. Starting in Section 4, 7% is denoted by 7

t = coordinate time in selar system baryecentric space-time frame

of reference

n = conversion facter frem cycles obtained frem an atemic clock

te secouds of atemic time 7

0k = conversion facter from cycles obtained from a cesium atomic

clock to seconds ef Internaticnal Atemiec Time

AT, = constant term in expression fer t- 7%

UT1 = observed universal time, corrected for polar metion. Egua-

tion (70) converts UT1 from seconds te radians.

Physical Constants

The physical constants were obtained from S$Standish et al (1976) or were

computed froem guantities obtained from this reference.

¢ = speed of light = 299 792,458 km/s

A = the number of kilometers per astronomical unit (AT)

= 149 597 871.410 56 kmm /AU
L, = gravitational constant of bedy i, km3/52

= Gmi, where G is the universal constant of gravitation and m,

is the mass of body i.

The gravitational constant of the sun is computed from AE using Equation (104)
of Moyer (1371):

= 1.32712442 xlOll km3/52

_ szé
2
(864 00)
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where

the Gaussian gravitational censtant

3/2

0.017 202 098 95 AU /day (exactly)

Using kg and mass ratios obtained from Standish et al (1976) gives

>
Hg
k7

Fsa

ar
ki3

398 600. 5 km> /5"
4902.79 km>/s°
1.267 120%10° km> /5%
3.793 410x10" kem /s°
up/ty, = 81.3007

gravitational ceonstant of the sun augmented by the gravitational
constants of the planets and the moon

1.328 986x10°) km® /82

Gravitational Potential

(8]

(VvU),

il

1]

1l

Newtonian gravitational potential, using the positive sign con-

vention (i.e., U = -¢)

U at location i

U due to body j

U at location 1 due to body j

gradient of U at lecation i

Station Leocation

The earth-fixed coordinates u, v, and A of the atemice clock which reads

International Atemic Time are:

58

distance from earth's spin axis, km
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v = distance north of earth's equatotrial plane, km
A = gast longitude
QM = mean sidereal time = Greenwich hour angle of mean equinex of

date

Heliocentric Orbit of Earth-Moeon Barycenter

Numerical values were obtained from page 98 of the Explanatory Sup-

plement to the Ephemeris (1961).

a = semi-major axis = 1.000 000 23 AU
= 149 597 906 ko (obtained using -AE given above)
e = eccentricity = 0.0167 2. From 1950 to 2000, the last digit
changes frem 3 to 1.
r = radial coordinate
és = velecity
s'c = cireular eorbit velecity
g i
=\ 2= - 29.784734 km/s
= rmean anemaly
E = eccentric anemaly
i = true anomaly
L,{ = mean and true longitudes, respectively, of the sun, measured
at the earth-meoon barycenter. These dangles are referred to
the mean equinox and ecliptic of date.
Y = elevation angle of velecity vector, measured from the transverse
direction (nermal to radius)
€ =

mean obliquity of the ecliptic

inclination of ecliptic plane to mean earth equator of date
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cos € = 0.917 46 (from 1950 te 2000, the last digit changes from 4 te 8)

sin €

0.397 83 (from 1950 to 2000, the last two digits change frem
88 to 78)

Heliocentric Orbit of Planet i

a; = semi-major axis. From Seidelmann et al {1974},
ay = 5.202 833 481 AU = 7.783 328:~<108 km
ag, = 9.538762 055 AU = 1.426 978x10° km
e, = eccentricity. From Seidelmann et al (1974), evaluated at 1975.0,
ey = 0.048 284
Cep 0.056 038
These figures are constant to three significant digits from 1950 te
2000.
r, = radial coordinate
éi = circular orbit velocity
éJ = 13,064 13 km/s
éSA = 9.645 16 km/s
Mi = mean anemaly
Ei = ecceniriec anomaly
Li’ IZ.1 = heliocentric mean and true longitudes, respectively, of

60

planet i, referred to the mean equinex and ecliptic of date.
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Geocentric Orbit of Moon

ay s = semi-major axis = 384 399.1 km

This value is obtained from the above values of T and T, and the observed

mean motion of the moon using Eguation (106) of Moyer (1971), which is a

modified version of Kepler's third law.

eMm S eccentricity = 0.054 9 {(used in errer analysis only)
éM = circular erbit velecity
Mg T8
= ) ——2% = 1.024 548 ken/s
M
= geocentric mean longitude of the meoon, referred to the mean
equinex and ecliptic of date
D = € - L = mean elongation of the moon from the sun
Miscellaneous

(t- 7}, = term i of Equation (44)
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Appendix B: Computation of Range and Doppler Observables

This appendix gives a brief description of simplified versions of the
formulas used to obtain the computed values of range and doppler observables
eobtained by the Deep Space Network of the Jet Propulsion Laboratory. The purpose
is to show how the time transformation t- 7 is used in the computation of these
observables. The simplifications made te the formulation de not change the

effecis of t -7, For further details of the formulation, see Moyer (1971),

The computation of two-way er three-way range observables is des-~
cribed first. A signal is transmitted from a tracking station on earth at
time tys received and retransmitted at the spacecraft at time ts, and received
at the same tracking station on earth (two-way data) er at a different station

(three-way data) at time kg The definition of the range observable R is

R=t3

(TAT) - t (TAI) (B1)
where t3 (TAI) and tl (TAIL) are the reception and transmission times, respec-
tively, in Internatienal Atomic Time TAI. The 'time tag’ associated with

each range observable is the known reception time t3 (TAI).

The first step in computing a range observable is to obtain the light
time solution. The epoch t; (TAI) is converted to coordinate time in the solar
system barycentric space-time frame of reference (denoted here as ephemeris

time ET) using

t5(ET) = t; (TAI) + (ET-TAI), (B2)
' | 3

where (E'I‘~-'T;‘AI)t is (t-T7) given by Equatien (105), evaluated at t3. The light

time solution givc%s the epochs ty (ET) and £ (ET) and the position vectors

C C e C 1 e | . ¢ bositior
T3 (t3), T, (tz), and L {tl), these are the solar system barycentric position

vectors of the receiving station at t3, the spacecraft at tz, and the transmit-

ting statienm at t., respectively. The epochs t3 and t, are also obtained in the

1,
UTI1 time scale; they are used along with the ET values of these epochs to

compute the geocentric position vectors of the receiving and transmitting

UCIBILITY OF THE
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stations at t; and t,, respectively. These vectors are used in forming the
above solar system barycentric vectors. The following vector magnitudes

are computed:

r. = |2C ) | i=1,2, and 3
1 i | 1
: - .C -
12 zF () - 2y |
_ | .Cy
Pa3 = | 23 (t3) - |

The epochs ty, &, and ty satisfy the following equations:

r A r.+r_+r
23 g 2737723 32
tL(ET) - t,(ET) = —=2 + {n (————-——) =
3 2 e 3 Ttr3-ry, z—~1

The first term on the right-hard side is the Newtonian light time; the second

term is an approximate expression for the contribution to the light time

from general relativity.
Given the light time solution, the range observable is computed from

5 2P r ¥, +r 2 +r+r
R - 12 an(IZIZ)J_Cg.} an(2323)

2] ‘n—-

+ 3 +r ., -1

c 2 73 723

- (E.T-—TAI)t + (ET-’I‘AI)t + A (B4)

3 1

The sum of the first four terms is the round-trip light time in ET (see

Equation B3)}). The next two terms convert this interval to an interval of TAI.

The last term includes corrections for the effects of the troposphere and

charged particles. If the light time seolution has a tolerance 8t for the deter-

mination of I:2 and tl, observables cemputed from (B4) will have a corres-

ponding errer of roughly (il'12+33‘23)-(51:/c. If range observables were computed

from (Bl) using tl(TAI) obtained frem the light time solution, tke errox

would ke about 6t, which is approximately four orders of magnitude larger.
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It is seen that the time tranfermation (t - 7) affects range observable
directly through terms 5 and 6 of (B4). It alse affects the epochs t3(ET),
tZ(E'J_'_‘), and Ll(EJT) and hence the quantities r r Ty, and Ty in (B4);

12, F23 T1

this is the indirect effect of (t - 7).

Doppler observables are derived from a signal being continuwously
transmitted frem the transmitting station en earth to the receiving station via
the spacecraft. A particular observable is associated with an interval of
reception TC' (in seconds of TAI) at the receiving statioen. Typical values of
Tc are 60 s and 600 s, It can be shown that the value of a doppler observable
obtained by the Deep Space Network is equal te

fI
F = T (RB—RS) (B5)
e
where fT is the frequency of the transmitted signal, and Re and Rs are pseude

round~trip range observables, defined by (Bl)}, with reception times equal to
the end (e) and start (s), respectively, of the reception interval Tc' Com-
puted values of two-way or three-way doppler observables are obtained from
(B5) using pseudo two-way or three-way range observables computed from
(B4). The computed doppler observables are in error only because of errors

in the computed pseudo range observables.

When (B4) is used to obtain the computed value of a true range observ-
able, the contribution to A due toe charged particles is pesitive because the
ranging signal travels at the groeup velecity (<c). When pseude range observ-
ables are computed (which are differerced te form doppler ocbservables), the
sign of the charged particle correction is negative because the doppler signal
travels at the phase velocity (»c). These two corrections, which have opposite

signs, have the same magnitude.
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