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Abstract. An expression is derived for the time transformation t- 7, where
t is coordinate time in the solar system barycentric space-time frame of
reference and r is proper- time obtained from a fixed atomic clock on earth.
This transformation is suitable for use in the computation of high-precision
earth-based range and. dop.pler observables of a spacecraft or celestial body
located anywhere in the solar system; it can also be used in obtaining com-
puted values of Very Long Baseline Interferometry data types. The form-Ula--
tioln for computing range and d.oppler observables, which is an explicit fu.

 of the transformation t - T, is described briefly.
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I . Introduction

This paper derives an expression for the tune transformation t- r,
where t is coordinate time in the solar system barycentric space-time frame
of reference and r is proper time obtained from a fixed atomic clock on the
surface of the earth. l The expression is obtained using general relativity;
however, to the accuracy of the retained terms, it is consistent with all 	 i
viable relativistic theories of gravitation. The expression for t - T is suitable

r
for use in the computation of high-precision earth=based range and doppler
o:b.servables of a spacecraft or celestial body located anywhere in the solar
system. It can also be used in obtaining computed values of Very Long Base-
line Interferom- etry data types . The expression for t - T can be used in orbit
determination programs in which the motion of bodies and Light is repre-
sented in the solar system barycentric space -time frame of reference with
coordinate time t as an independent variable. The errors in coc . puted range
and d:oppler observables due to neglected terms in the expression for t - T will
not exceed approximately 0. 62 m and 2.4 x 10 6 m/s, respectively, per
astronomical unit of range to the spacecraft. These Agures apply specifically
for two-way tracking data (transmitted and received at the same tracking
station on earth).

An expression for t' - r, where Cis coordinate time in the heliocentric
space -time frame of reference, was previously obtained by Moyer (1971).
However, a term affecting three-way tracking data (transimi.tted at one station
on earth and received at a second station) was inadvertently omitted. This
previous expression for t'- 7- was obtained by a straightforward integration of

rthe differential equation for d7-/de. Thomas (1975) has shown that the use of
integration by parts and a first-order expansion of the gravitational potential
simplifies the derivation and provides a clearer understanding of the physical
origins of the various terms. The present derivation for t - T, where t is
coordinate time in the solar system barycentric space-time frame of refer-
ence, uses the method of Thomas (1975) and produces an expression that
includes all of the terms previously obtained by Moyer (1971), with rr-kin-or

1 Coordinate time t is proportional to proper time that would be read by an
atomic clock at infinite distance from the solar system and at rest relative
to the solar system baryceater.

JP  Technical Memorand+um 33-786
	 1



changes in the coefficients, and the above-mentioned three-way term. The
coefficients obtained in this paper are slightly more accurate than those pre-
viously obtained.. Th,: differences are due to different truncation errors for
the two methods. In addition, six new periodic terms are obtained. Two of
these are due to long-period variations in the gravitational potential at the
earth due to Jupiter and Saturn. Th.e remaining four terms are due to the
offset of the solar system-. barycenter from the center of the sun. Without
these four terms, the new expression for t - r applies (with slightly reduced
acz-1aracy) for coordinate time ei.n the heti.ocentric space-time frame of
reference.

The differential equation for dr/dt is developed in Sections 2 and 3. It
is integrated to give an intermediate expression for t - r in Sections 4 and 5.
The periodic terms of this intermediate expression, which are integrals or
dot products of position and velocity vectors, are converted to s;um.s of
sinusoidal functions in Section 6. These terms are collected in Section 7 to
give the final expression for t - z. Auxiliary equations for computing the
arguments of the periodic terms of t - r are also given.' The final expression
for t - r and the auxiliary equations give t - r as a function of time and the
earth-fixed coordinates of the atomic clock. Section 8 gives estimates for
errors in computed range and doppier- observables due to terms neglected
in the final expression for t - r. The effects of the retained terms of t - r on
these observables are also given.

Section 9 gives an alternate expression for t - r which is a function of
the position and velocity vectors of th e atomic clock and the major bodies of
the solar system-. This express ion is the inter mediate expression for t-7
given in Section 5 with the three terms which are expressed as integrals
replaced by functions of position and velocity vectors. In certain circum-
stances, it may be desirable to compute t - T from position and velocity
vectors using the equation given in Section 9 instead of computing it as a
function of time using the formulation of Section 7.

The notation used is defined in th e text. However, the definitions of
the symbols used globally throughout this paper are repeated in Appendix A.
Numerical values are given for those parameters which appear in the final
expression for t - •r. Appendix B gives equations for computing range and

r
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d.oppler observables. These equations are explicit functions of the time
transformation t - T -

2. Differential Equation for d T/dt

The invariant interval ds between two events with differences in their
space and time coordinates of dx 1 , dx2 , dx3 , and dxg is given by

ds 2 = g ij dx 1 dxj
	

(1)

where the repeated indices are summed over the integers 1 through 4. The
matrix of coefficients g ij is the m-etric tensor, obtained by solving Einstein's
field equations. A solution for the case of n slowly moving bodies in the
weak field approximation is the n-body metric tensor of E.ddi:ngton and Clark
(1938). 2 This solution can be applied to the solar system. For this applica-
tion, the coordinates x l , x2 , and x 3 of this solution are nonrotating rectan-
gular components x, y, and z, respectively, of position relative to the
solar system barycenter; the coordinate x 4 = ct, where c is the speed of
light and t is coordinate time. In order to distinguish it from coordinate
times of other solutions of the field equations, it will be referred to as
coordinate time in the solar system barycettric space-time frame of ref-
erence. An interval of proper tir-ne dT recorded on an atomic clock is
related to th-e interval ds along its world line by

d T _ dsc

Hence, (1) and (2) relate an observed interval of proper time to the changes
in the space and time coordinates of the atomic clock.

For the purpose of obtaining an expression. for t- T, where T is proper
time recorded on a fxed atomic clock oin earth, and t is coordinate time in
th-e solar system barycentric frame of reference, the n-body mietric tensor

Z	
_.

This is the solution previously obtained U: y de Sitter (1916) except for a cor-
rection to one of his terms. The n --body metric tensor corresponds to the
n-body Lagrangian given by Eq. 3. 3.37 of Infeld and Pleban::ski (1960). The
n-body metric tensor (with. reversed sign convention) may also be fou-nd in
Eq. 39.63 of Milner, Thorne, and ". 17 heeler (1973).

I

(2)
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is substituted into (1) and terms are retained to order.  (1/c) 0 , giving

ds 2 =	 1 -) c 2 c1t Z - (dx2 + dyZ + dzz)
	

(3)
c

where U is the Newtonian gravitational potential at the atomic clock, com-
puted using the positive sign convention (i. e. , U = - (^ ). Let the velocity of
the atomic clock relative to the solar system barycenter be denoted by s,
which is defined by

s2	
I

= 	 + d  (at ) 2	 (4)

Substituting (4) and (2) into (3) gives

zu	
2 1 /2

1-^c}	 (5)
c

Expanding and retaining term 	 2s to order 1 / c gives

d. T = 1- LT	 1 s 2

c

The neglected terms of t - T due to the neglected 1 /c 4 terms of (6) 3 have a
maximum magnitude of about 10 - 12 s. They affect computed range and clop-
pier observables by a maximum of about 10 -6	 10m and 10 - m /s, respectiveiy.
Equation (3) is the "Newtonian" approximatioin to the n.-body metric (see
paragraph 39. 7 of Mis-ner, Thorne, and Wheeler, 1973).1 All viable
relativistic theories of gravitation have the same me:tr. ic to this level of

3Due to terms negle c ted in ( 3) and in expanding (5).
Equation ( 3) implies the spacelike sections of simultaneity t = constant to be
flat Euclidean spaces to first order: the coordinates x, y, and z in them.
can properly be thought of as Euclid an coordinates, and all of the results
of classical Euclidean geometry may be used, e. g. , triangle theorems and
vector addition laws for slowly mooring objects.

4
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approximation. Hence, the expression for t - T obtained from (6) is consistent
with all viable relativistic theories of gravitation.

Equation (6) is the basic differential equation relating observed atomic
time T to coordinate time t in the solar system barycentric frame of refer-
ence. The rate dTldt of an atomic clock relative to uniform coordinate time
is a function of the Newtonian gravitational potential U at the clock and the
solar system barycentric velocity s of the clock.

Equation (^6) will be used to obtain an expression for coordinate time t
minus proper time obtained from a fixed atomic clock on earth. In the
expression to be obtained, the proper time will be specificaLly International
Atomic Time TAI disseminated by the Bureau International de PHeure (BIN).
The TAI second is the SI second (International System of Units), which is the
duration of 9 192 631 770 periods of the radiation corresponding to the transi-
tion between the two hyperfine levels of the ground state of the cesium-=133
atom (Mechtly, 1969). This is the observationally determined average length
of the second of coordinate time t. 5 Referring to Equation (6), periodic
variations of U and s 2 from their average values produce periodic terms in
t - T. However, the average values of U and s 2 for a fixed atomic clock on
earth are positive, and the average length of an interval of proper time dT
is less than the corresponding interval of coordinate time d.t. Thus, the
average length of the second of proper time T is greater than We length of
the second of coordinate time t. Proper time r in (6) does not correspond
to TAI because the average length of the TAI second is equal to the length
of the second of coordinate time t. Let TAI be denoted by 7'*, which differs
from T in the length of the atornic sec ond. A modified form of (6) will be
obtained which applies for atomic time 'r ='= . The average length of the T
second must equal the length of the second of coordinate time t. Hence, the

SInterpolation of the lunar ephemeris with ar, observed longitude of thF, moon
gives an "observed' value of the independr nit variable, coordinate time t.
The average number of cycles obtained from a cesium atomic clock per
second of coordinate time t was obtained by counting cycles of a cesium
atomic clock between two observations of the moon and dividing the observed
nurnber of cycles by the difference of the two "'observed.'' values c,' coordi-
nate time t.
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differential equation relating T and t must satisfy the condition that the
average value of dT* equals dt.

In (6), dr is obtained as

dT - dN
n

where dN is an observed number of cycles obtained from an ato:m.ic clock
and n (in units of cycles per second) is a conversion factor from cycles to
seconds of atomic time. The value of n corresponding to (6) is that value
which results in the length of the second of proper time equalling the length
of the second of coordinate time when the atomic clock is an infinite distance
from the solar system and fixed relative to the solar system barycenter.
Equation (6) can be rewritten as

	

dT = l _ U	 1s 2 _U-U - 1 .sZ-s2	 (S)dt	 2- Y 	 2	 2	 2

	

C	 c	 c	 c

where U is the time average value of U at the atomic clock 6 and s 2 is the
time average value of s 2 for the clock, Ignoring 1/c4 terms, this may be
written as

d.T	 -	 U- U	 1 s. 
Z s Z

l -^-	 - 1 - -.. . c
2	

- 2	 2	 (9)
dt z1 U - ---2

C	 c

Substitute (7) into (9), and let atomic time r = be obtained as

dT^= = dN	 (10)

6 The time average value of U is
T

U' = lim Ti--f-TU dt
T--

i
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where the conversion factor a* is given by

n= = n1- Z -2. s2c	 c

Then (9) is given by

cl:r 	 1	 U-U	 1 s2-.2
dt	 -	 - z -2 2c	 c

The average value of dr* equals dt and hence atomic time r = is the mathe-
matical representation of International Atomic Time TAI.

Periodic variations of U and s 2 from their average values result in
periodic variations in atomic time r ,:= relative to coordinate time t in the
solar system barycentric frame of reference. Some of the periodic terms of
t - r' for atomic clocks at various locations on earth are not in phase. Thus,
one is tempted to conclude that it is not possible to synchronize a world -wide
network of atomic clocks which read atomic time r -: However. Section 3
shows that such a system of atomic clocks can be synchronized with light
signals.

In the conversion factor n" given by Equation (11), the average value
U varies with the location of the atornic clock on earth. However, the only
term of U which varies significantly is the gravitational potential U(E) due
to the earth. Similarly, the average value s varies with the location of the
atomic clock on earth only because of the variation in the square of the geo-
centric velocity v due to th.e earth's rotation (v = uW, where u is the distance
of the atomic clock from the earth's spin axis and w is the inertial rotation
rate of the earth). The only significant variable part of n* is thus
-n lu(-E) + (1 /2)v ?'] /c ? . The quantity U(E) +(1 /2)v , the sum of the earth's
gravitational and centrifugal potentials, is constant on the geoid (mean sea
level). The conversion factor, n" thus varies with altitude above the geoid;
it increases at the approximate rate of 1. 00 X 10 -3 cycles per second per
kiloaneter. If the defined length of the TAI second (9 192 631 770 cycles
from a cesium atomic clock) is taken to apply at mean sea level, the
conversion factor n* (cycles from a cesium atomic clock per second of TAI)

r

0 1)

(12)
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(13)

is given approximately by

n* = 9 192 631 770 + 0.001 00 h

where h is altitude above the geoid in kilometers.

TAI is obtainer; in practice as a weighted average of times obtained from
atomic clocks located at various altitudes. All of the clocks have the same
conversion factor from cycles to seconds of atomic time. Prior to comput-
ing th.e weighted average, time obtained from each clock is corrected in
value and rate (Bureau Interna.tio,nal de VI3eure, 1975). The rate corrections
remove the variations in the clock rates due to thae differing altitudes above
mean sea level and other causes. Hence, in the determina.tion of TAI, the
altitude-dependent conversion factor tO is used implicitly, but not explicitly.

In (12), the average Lengths of the TAI and coordinate time seconds are
the same and are equal to the "observed'" length of the coordinate tim- e second.
Hence, by using (12), the estimated length of the second of coordinate time
becomes its adopted length. This does not p^oduce any errors in observed.
minus computed residuals for tracking data obtained from a spacecraft, if
the n-body ephemeris (for the planets, sun., and moon) is fit to observations
using the expression for t - r- obtained from Equation (12). Also, the observed
min-us computed residuals for the planets, sun, and moon are not degraded.

3. Synchronization of TAI Atomic Clocks

This section shows that a world-wide network of atomic clocks which
use the conversion factor n' given by (11) and read atomic time 7"' = TAI
can be synchronized by light signals. This conc.l.usion is reached by con-
sidering the following expression for the interval ds which applies in a local
region of the geocentric inertial (i. e. , nonrotating) fra toe of reference:

2	 2LT-	 2. 2	 2	 2	 2ds	 1 W	 :.2.	 c dt - (dx + dy + dz )	 (14)
c

where U(E) is thie gravitational potential due to th,e earth, t is coordinate time
in the geocentric inertial frame of reference, and x, y, and z are rectangular
components of position in this frame. Equatio-n (14) is a modified form of (3)

i

8	 P,,TRODUCIBILITY OF TU
N' ,, PAGE M POOR

JPL Technical Memorandum 33-786



applied to a local region of the geocentric inertial frame of reference. The
modification consists of replacing the total gravitational potential by the
potential due to the earth only. From the Principle of Equivalence, the
accelerating earth produces a gravitational field which cancels (in a small
region surrounding the earth) the gravitational field due to the sun., moon, and
other bodies which accelerate the earth. Thus, in the Local geocentric line
element (14), the gravitational potential due to all bodies other than the earth
does not appear.

Substituting (2) into (14) and retaining terms to order 1 /c 2 give s

d-Ir	 _U(E.)1(s 12
1 —7 2 lc /c

where' is the velocity of the atomic clock relative to the geocentric inertial
frame of reference. The sum of the gravitational and centrifugal potentials,
U(E)+(1/2)s , is constant on the geoid and thus the rate of proper time r varies
with altitude above the geoid. The interval dr is obtained as

dr = d^.	 (16)

The value of the conversion factor m (cycles per second of atomic, tithe) which
corresponds to Equation (15) is that value which results in the length of the
second of proper time r equalling the length of the second of coordinate time
t for a fixed atomic clock at infinite distance from the earth. If the length of
the atotni.c second is changed so that

d T'. = dN
'x	

(17)
m 

where

mom- = rn (1	 U 	 1 s 2 ,)	
(18)2 2

c	 e

(15)

JPL Technical Mem—orand:um 33-786 9 j
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equation (15) reduces to

_dTm = 1	 (19)dt

Thus, using the altitude-dependent conversion factor m* results in atomic
time T', which runs at the rate of coordinate time t in the geocentric inertial
frame of reference. The constant rn in (18) can be selected so that m r=n
given by (11) at mea.n sea level. However, the altitude-dependent terms in
(18) and (11) are proportional to m and n, respectively, which differ- by terms
of order 1/c 2 . Thus the factor 1.00 X 10 3 in (13) will agree with the corre-
sponding factor obtained from (18) to about 7 digits. The maximum fractional
difference between m—_ and n* is about 10 -21 , which is negligible in relation
to the current stabilities of atomic clocks. Thus, to sufficient accuracy,
atomic time T* in (19) is the same time scale as T" in (12).

From (19) , ato.rnic clocks at varying altitudes which. read T'ti have the
same length for the second of atomic time (in seconds of coordinate time t).
These clocks could be synchronized with a master clock by using light signals
transmitted by way of an equatorial synchronous satellite. The Newtonian
light tirn,e (calculated in the geocentric inertial frame of reference) from the
roaster station to any other station is constant. The relativistic contributi
to the light time is due to the mass of the earth only; it is less than 0. 2 as
constant. Hence, intervals of reception at the various stations will be
identical to intervals of transmission at the master station. Since the var
clocks have the same length for the atomic second, the transmission inter
can be synchronized with the seconds pulses of the master clock, and the
reception intervals will be synchronized with (but out of phase with) the se
pulses of the clock at the receiving station. In practice, only one signal L
required to synchronize each clock with the master clock. Upon recepttior,
the signal., the clock at the receiving station is set equal to the known tran
mission time plus the light time calculated in the geocentric inertial frame
reference. The signal can be transmitted by way of any spacecraft in the
earth's vicinity or by Lunar bounce. For, other methods of synchronizing
atomic clocks on earth, see Thomas (1975).

JPL Technical Memorandun10



4. Integration of Differential Equation

Equation (12) relates an infinitesimal interval of atomic time T
obtained from a fixed atomic clock on earth to the corresponding interval of
coordinate time t in the solar system baryceatric frame of reference, the
Newtonian gravitational potential U at the clock, its time average value U,
the square of time solar system barycentric velocity of the clock s 2 , and its
time average value s 2.

This section integrates Equation (12) to obtain an interm.e'diate
expression for t - T' := . The term s of this expression, which are integrals or
dot products of position and velocity vectors, are converted to sums of
sinusoidal functions in Section 6.

This section gives the magnitudes of seve ral discarded terms of t - T
and their maximurn effects on computed range and dop.pler observables.
The effects that are range-dependent were evaluated at a range of 50 astro-
nomical units. The most significant of these errors are included in the error
summary in Section'8.

In the derivation of the expression for t - 'r	 the effects of solid earth
tides, polar motion, and notation are ignored. The maxim, urn effects of
these phenomena on two-way or three-way range and dopp.ler observables,
due to changes in t - T' := , are given in Table I:

TABLE I
Effects on range and doppler observables due to changes in t - T*

Ph.en.on enon	 Range, m	 Doppler, m./s

Solid eartli tides	 103	 10-7
Polar mo-tion	 10 -Z 	10 - 7
Nuta:tion	 10 - 1	 10 6

In the evaluation of the terms of t - T": in Section 6, the effects of precession
are accounted for. In the final expression for t - r' = , the coefficients of some
of the terms are explicit functions of the earth-fixed coordinates of the
atomic clock. Continental drift will result in a slow drift in the values of
these coordinates.

-1^
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in (12), U - U excludes the cons tant potential due to the ear th and c an
be expressed as

U - tT = (LTA - UE )
P
 + 

(UE )p	 (Za )

where UA and UE are the gravitational potentials due to all bodies except	 }
the earth, evaluated at the location of the atomic clock and at the center of
the earth, respectively. The subscripit p indicates that only the periodic
terms of the quantity are to be retained.

In the following, r1, r , and r will refer to the position, velocity,
and acceleration vectors, respectively, of point i relative to point j. The
quantity 	 is the velocity of point i relative to poi- ` j. The components of

r^ are space coordinates in the solar system bary-entric space=tirne frame
of reference. The dots_ denote differentiation with respect to coordinate
time t in this frame of reference. In (12), s Z can be expressed as

s 2 = ^A r

	

+	 ) ^xA + TE1	 (21)

where A, E, and C refer,  to the locations of the atomic clock, the center of
the earth, and the solar system barycenter, respectively. Then

•2	 2(.E 1 Z	 .0	 •E	 r C 12s - s	 ` sA J + Zr E xA f `SE 1	 p	
(2222)

Sub s tituting (20) and (22) into (12), d-enoting r * by T , and .integrating
from an initial. epoch (subscript o) to the current time t gives

t - T -- (t	 T )
O

t	 2	 Z

1 2 `^ ZUE + 
L
sA^ + 

(^C)	
dt

Zc	 t	 J 	 iJP0

ft
+ z 1 (u.,- U,: + r C	?'A ^ p dt

c

t

o	
1

_3

(23)

^i
k
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In the first integral of (23)., s EA is nearly constant and periodic
variations in the square of this quantity can be ignored. In the second
integral, the potential difference UA - UE may be expanded to first order:

t
t	 l

cl2	 (UA - UE}p dt - 2 to [(VU) E . rEA
J p dt	 (24)	 r

to

where the gradient (VU) E is evaluated at the center of the earth. The
neglected higher-order terms in this expansion produce terms of t- T with
magnitudes of 10 -ll s or less. They affect computed range and dop.pl.er
observables by less than 10 T3 m and 10 -8m/s, respectively. In the second
integral of (23), the dot product of the two velocity vectors is integrated by
parts:

1 t

2 	 (^C rA)
p
 dt =	 21_rE.rA^	 - 2 J xA . :E dt (25

ct 	 c 1	 t	 c	 t^	 I
0	 0	 0

Since terms of order 1/e 4 arc; ignored, the acceleration of the earth
can be approximated by its Newtonian value:

rE = (VU) E	 (26)

and the second term o. (2'5) cancels (24). This cancellation of the potential
variation UA -UE by the earth's acceleration. is in accordance with the
Principle of Equivalence. According to that principle, in a small region
surrounding the freely falling earth, the sure of the gravitational potential
due to the bodies accelerating the earth a.nd the inertial potential due to
the accelerated earth is constant to a high degree of accuracy. Substituting
(24) through (26 ) into (23) and discarding the terra (sA) 2 gives

JPL Technical Mem-orandura 33-786	 13



t - 7 = (t - T )o

-t

+e2I LUE +2
 

gy1P
dt 	(27)

t0

1	 /•C	
E)1'

=2 l r E . r.A
e	 t

0

The derivation of (27), starting from (23), is due to 'Thomas (1975). His
Equation (13) corresponds to (27) above,

in the integral in (27), the gravitational potential at tie earth due to
the moon can be ignored. The neglected periodic terms of t - T are smaller
than 3 ns and affect computed .range and d.oppler o"bservables by less than
0. 1 m and 0. 2 x 10 6 m/s, respectively. The potential U  in (227) can be
expressed as

U  _ \ U  - UB/ + U 	 (29)

where U  and U  are gravitational potentials at the earth and earth-moon
barycenter B, respectively, excluding the terms due -co the earth and
moon. The potential difference UE - U  may be expan-ded to first order:

CTE - LT B = (V U ]B • rE
	

(29)

where the gradient is evaluated at the ear th-moon barycenter. T1. e
neglected terms in this expansion produce terms in t - r which are smaller
than 10 -12 s and _Lffect computed range and doppler observables by less
than 10

-4
m and 10 -gm/s, respectively, In (27), the square of the solar

system barycentric velocity of the earth. can be expressed as

j

14 JPL Technical Memorandum 33-786
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`
	 1sE )?-- (j13E + rB ] rE + rB 

J

- (.B)?-  F 2xB rE [ s B ] 2
	

(30)

The periodic terms of^SE 12 can be neglected. They produce term-- s
of t - r smaller than 10 -10s which affect computed range and doppler
observables by Less than 10 -3m and 10 -8m/s, respectively. The dot prod-
uct in (30) can be expressed as

•C •B	 d r_C	 B)	 B	 C	 (31)r B xE - dt rB rE J _ rE -B

Ignoring relativistic terms and assuming the earth and moon are located
at their barycenter gives

rB = ( v u)B 	(32)

Substituting (28) - (32) except the term (sB )Z of (30) into (27) gives

t - T - (t - T )o

-t

+2	 [U
	 2 0B! Z J dt	 (33)

t	 p0

t	 l	 Et
+ 1	 B1(_jCl

c2 (jCB • rE/ 
t 

+ c2E rA/
t0	 0

JPL Technical Me:morand-ucn 33-786	 15



t

where U excludes the potential due to the earth and moon. The cancel-

lation of the terms of t--r due to (29) and the second term- of (31) is in

accordance with the Principle of Equivalence. This cancellation is

associated with the earth—moon barycentric frame of reference and is

analogous to the previously described cancellation in the geocentric frarne

of reference.

In (33), the second term of the integral can be expressed as

t	 t 1 (S 2 C ts

	

 T sB + 
XS

Czf 
IT	 ^ P dt C f

t

I 
(s- 

^21 dt+ 	 (34)

where S refers to the center of the sun. The last term of the integral is

negligible. The second term is integrated by parts:

1 dt	 (35)S 
dt	 C	 S	 1.

	

zf 	 }s .
S XB p	 E)	 C2	 B --is

t	

_f

	

c 
t	

C	
t

4
Since terms of order I/c are ignored, the integral in (35) can be

evaluated using Newtonian accelerations. Also, the earth and moon can

be considered to be located at the earth-moon barycenter. The result is

t1 1	 '18	 S	 atS

	

C dt	 —"Z	 (36)
2	 (M-13 

X.	 3 –S
c	 p
f	 c f r	 P
t	 t 

0

REPRODUCIBILITY OF THP
'SAL PAGE M POOR,
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where the summation over i includes eight planets and the earth - moon
barycenter. The quantity .rS is the heliocentric position vector of planet i,
r  is its magnitude, and Nli is the gravitational constant of the planet (see
Appendix A). When i refers to the earth - moon barycenter, µ. i is the sum-
of the gravitational constants of the earth and moon.. Assuming that the
planets move in the ecliptic plane, (36) is given by

1	 t	 SC^	 .	 t	 r cos (Q-Q.}.. Z f ^ rB	r 	 dt =	 2 f	 ^. ^ dt	 (37)
c	 p	 c _f	 Pr. Z

t	 r	 t	 i
0	 0

where r is the magnitude of r S , j is the true longitude of the sun measured
at the earth - moon barycenter, and 2 i is the Heliocentric true longitude of
planet i. Both of these angles are referred to the mean equinox and ecliptic
of date. When i refers to the earth - moon barycenter, r i =r and
Q _^ . = f180 °.i

The first term of the integral in (33) can be written as

.t	 t	 t

c 2 J	 (UB )pdt = c 2 r	 U B (S) dt + I 12ft  UB (i) dt (38)_J	 [	 I	 .t 	 t0P1	 0	 P

where UB (S) and U B (i) are the contributions to the gravitational potential at
the earth - moon barycenter due to the sun S and a planet i, respectively.
The summation over i includes all planets except the earth and excludes
the moon. For an outer planet i,

r

.	 ,.^
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r

	

CUB ( i) ̂dt = —	 ^-(T) Cos

	

c2j	 P	 C 
2	 r

	

t	 t
0

3 L 
3	

+ 4(T 

2
cos y-Q cos 2 (P -

8
1 TJ	

i 

+ 5(	
cos 3 (2-f

	

4	
r	 P

id d1t	 (39)
where all terms to order (rl-ri) 

3 
have been retained, and the planet i is

assumed to move in the ecliptic plane. When i refers to an inner planet, r

and r are interchanged in (39).

For an outer planet, the second term of (39) cancels the term of (37) for

that planet. The first term of (39) is retained for Jupiter and Saturn only.

The remaining terms of (39) are ignored for all outer planets. For an inner

planet, there is no cancellation between (39), after interchanging r and ri,

and the term of (31) for that planet. All terms of (39) are ignored for

Mercury and for Venus. The terms of (37) for Mercury, Venus, and the

earth - rn-oo-n barycenter are also ignored. Substituting the surviving terms

of (34), (35), (38) and (39) into (33) and replacing solar system barycen-tric:

C'velocity vectors with heliocentric velocity vectors plus 1 S gives

t	 T	 (t	 T)

+ —
t

CUBS) + 
2̂i ^sBI

- I	 -S	 r B) I t
at + —Z r

B –E
c

t p	 c	 t

+

+ i

LA

t	
PIJ	 it

c c
-t t	

p
0 0

+
t $A	 1

dt +
2

C	 S	 t	 t

S	
r
B	

-C -	 E )	 (40)
(—	 —	 2 LS 	 1A

c
t

rSA	 c c
t	 t

0 a	 0
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t

where µJ and µSA are gravitational constants for Jupiter and Saturn,
respectively, and r 3 and r SA are the heliocentric distances of these bodies.
The term

t

111 I
t

O
r

is negligible and has been omitted from (40). The neglected terms in
Equations (37) and (39) result in a maximum error in t - r of about 1.3 µs;
the corresponding errors in computed range and doppler observables can
be up to 1, 1 m and 0. 3 x 10 -6 rn/s, respectively.

For an outer planet, the first term of (39) is the gravitational potential.
at the sun due to the planet (divided by c 2 ). The remaining terms are thus
the potential at the earth - moon barycenter U B (i) minus the potential at
the sun U S (i ). The second term of (39) is the dot product of the gradient
of the potential due to the planet (evaluated at the center of the sun) and
the heliocentric position vector of the earth - moon barycenter. The
cancellation of this term with the term of (37) due to the same planet is in
accordance with the Principle of Equivalence. 1n a small region
surrounding the sun, the variation in the gravitational potential due to a
planet is cancelled to high accuracy by the inertial potential arising from
the sun's acceleration clue to that planet. However, the cancellation of the
potential difference U B (i) - U S M dire to an outer planet i is only
approximate as evidenced by the higher-order terms in (39). For an inner
planet, the cancellation of this potential difference is not even approximate;
the term of (37) for an inner planet does not cancel any term of (39) when
r and r. are interchanged in (39).].
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1

5 , Initial. Values

The purpose of this section is to determine the value of (t - t)0 in
Equation (40). The subscript o indicates that this quantity is to be evaluated
at the initial epoch t o . The value of (t - r) o is station-dependent; that is, it
depends upon the location of the atomic clock on earth. However, it will be
seen that (t - 7) o minus the initial values of all of the periodic terms of (40)
has the same value for all stations; it is denoted by AT A*

The conclusion that the constant AT  does not vary with the location
of the atomic clock on earth follows from a consideration of the Lorentz
transformation. One of the four equations of this transformation is:

1	 ,
t =	 sZt' + c2 1	 (41)

1-	
2	

1

c

In this application, t and t' refer to coordinate time in the solar system.
barycentric and geocentric inertial frames of reference, respectively.
The coordinate x' is the component of the geocentric position vector of the
atomic clock along the instantaneous direction of the earth's velocity
vector relative to the solar system barycente.r. The magnitude of this
vector is s.

Section 3 showed that atomic clocks on earth which read International.
Atomic Time -r* (denoted as r starting in Section 4) can be synchronized.
It was also shown that this time scale is identical with coordinate time in
the geocentric inertial frame of reference. Hence, for two such

20 JPL Technical Memorandum 33-786



synchronized clocks, the interval At' between corresponding ticks is zero,
and (41) gives the interval of coordinate time t between the two "synchronized"
ticks:

1 I sAx' 1 	sOx`
^t =	

s2	
-c2 

J	 cZ	
(42)

	

1- 2
	

1

c

where Ax' is the difference of the x' coordinates of the two atornic clocks.
Thus, fixed observers in the solar system barycentric frame of reference
do not agree that the two atomic clocks on earth are synchronized. The
difference in the cl efini.tions of simultaneity in these two frames of reference
is due to their relative velocity s.

The transformation t - T given by (40) must be consistent with. (42).
This allows the relation between values of ATA for different stations to be
determined. Let (t - r) 2 and (t - T) 1 refer to values of t- 7-for two different
stations on earth at a given epoch r . Since the atomic clocks at these
stations (which read r) are synchronized, the difference (t - T) 2 - (t - T) 1 is
the interval of coordinate time t in the solar system baryc.entric frame of
reference between corresponding ticks of the two atomic clocks on earth.
This interval must be equal to At given by (42). The sum T of terms
four and eight of (40) excluding the values of the functions at the initial
epoch to is

I  A r2 r_	 r A1	 (43)

	

C
`	 1111

The value of T for station 2 minus the value for station 1 is equal to the
approximate form of (42). In order for (t - T) Z _ (t - r) 1 to be equal to this
same quantity, the term (t- r) o of (40) minus the initial values of terms
four and eight must be the same constant for all stations. The initial
values of the remaining terms of (40) are not station-dependent; they can
be subtracted Erom this constant to give a second constant which is the
same for all stations. This second constant is AT A , previously defined
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as (t- T) 0 minus the values of all periodic terms of (40) at the initial epoch
t0 , Using this notation in (40) and expressing term four as the sutra of two
terms gives

t-T = AT 

f [U (S+ 2 (sB ) I at + ^ 2 (r B it

	

c	 L	 p	 e

f	 (	
^

+ 2 (r E r A) + l 2 Lr B ' 
r 

A^ +12 	 r	
dt

	

fC	 c	 c	 ( 7 ^p

kLSA

+c Z  rSA	
dt +.02[ S r B 1 +C2 r	 r A

P	 1	 (44)

where the constants of integration for the three indefinite integrals are
zero.

All terms of (44) except the first term are periodic. Terms four, five,
and nine represent periodic variations in the rate of a specific clock on earth
relative to uniform coordinate time t in the solar system barycentric frame
of reference. The remaining terms represent periodic variations in the
rates of all clocks on earth.. At a given epoch, the difference in the sums of
terms four, five, and nine for two different stations on earth represents the
difference in the definitions of simultaneity for observers on earth and
observers fixed in the solar system barycentxic frame of reference.

The expressions for t - T given in this report apply for ideal International
Atomic Time T, which in genera] differs from actual International Atomic
Time T (A). If an expression is desired for t - T(A), terms representing
T - T (A) must be added to the expressions for t - T given in this  report.

It was anncanced at the 16th General Assembly of the International
Astronomical Union (held in Grenoble in. August 1976) that the second of TAI

22 JPL Technical Memorandum 33-786
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is shorter than the SI second at mean sea level by 1. 0 f 0. 2 x 10" t2 s. A
resolution was adopted 7 to increase the length of the TAI second by
1. 0 x 10` 12 s at January 1, 1977, O h TAI. Using T = T (A) at this epoch,
the approximate expression for T - T(A) which applies from January 1, 1972,
Oh TAI (when the TAI time scale was officially adopted) to January 1, 1977,
Oh TAI is:

T - T(A) = -1 x 10- 12 t	 I

where t (a negative number) is seconds past January 1, 1977, Oh TAI. The
a priori estimate for T-- -t(A) which applies after this epoch is zero.

The International Astronomical Union has adopted7 an atomic time
scale which uses the SI second at mean sea level and has the value TAI
f 0. 0003725 days exactly (32. 184 s exactly) at January 1, 1977, 0' h TAI. It
has further stated that there be only periodic variations between this time
scale and coordinate time in the solar-system barycentric space-time frame
of reference. Hence, for T = r (A) at January 1, 1977 O h TAI, the Inter-
natio-nal Asitroaoinichl Union has adopted 32.184 s (exactly) for the value of
the constant AT A"

The value of AT  does not affect observed minus computed residuals
for tracking data obtained from a spacecraft if the n-body ephemeris used
was fit to observations using the same value for AT A' The value of AT 
is an adopted constant used in the expression for t - T; there is no error in
ATA which contributes to errors in computed range and doppler observables.

7 See Transactioins of the International Astronomical Union,, Vol.. XVIB (1977).
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6. Evaluation of Periodic Terms

This section converts the periodic terms in Equation (44) for t - T to
sums of sinusoidal functions. The various assumptions made and the terms
which are discarded are stated but are not justified in this section. However,
the resulting errors in computed range and dop:pler observables are given in
Section 8 along with the effects of the retained terms of t - T. The final
expression for t - T and the equations for evaluating the arguments of its
periodic terms are given in Section 7.

Several of the periodic terms in (44) contain dot products of position and
velocity vectors. All of the velocity vectors are inertial velocity vectors;
the inertial velocity vector rl gives the velocity vector of point i relative to
a raonrotating coordinate system centered at point j. In evaluating the dot-
product terms, the components of each of the two vectors are referred to a
nonrotating coordinate system which. is aligned with the instantaneous position
of a rotating coordinate system. It should be noted that the velocity vectors
do not give velocity camponeat: relative to the rotating coordinate systems.
The two vectors required for the evaluation of a particular term are referred
to either the mean earth equator and equinox of date or the mean equinox and
ecliptic of date. By using these coordinate systems, tY+r final expression for
t - T accounts for the precession of the earth's equator.

6.1 ANNUAL TERM

The second term of Equation (44) is

(t - T) 2 = .1	 UB(S) + Z (sB) 
J 

dt
P

where the constant of integration is zero. This terra. is evaluated assuming
that the heliocentric orbit of the earth-moon barycenter is an ellipse with
semi - major axis a, eccentricity e, radial coordinate r, and eccentric
anomaly E. The gravitational potential at the earth=moon barycenter due to
the sun is

U$ (:S) = µSr

24
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(46)

i

r
	 L^



ti

where KS is the gravitational constant of the sun. The square of the heliocentric

velocity of the earth-moon barycenter is

	

VL	 (41)
4B	 t 'µ5 -^ ^L. + ^L. )	 S 

( 2
 r a

where pi, and µM are the gravitational constants of the earth and moon,

respectively. The inverse of r is given by

1 = I + 
e 
cos E	 (48)r	 a r

Substituting (46), the approximate form of (47), and (48) into the integrand of

(45) and retaining only the periodic terms as specified by the subscript p

give s

U
B 

(S) +	
2 1	 2.11

r 

se. 

cos E	 (49)
s B 

p

The derivative of E with respect to t is

I	
µS 

"?F + M
S 	

(50)
r	 rl FLa

Substituting (49) into (45), multiplying the int e grand by d E 	 and dividing it

by tb:e approximate form of (50) gives

(t - r)2 = - L	 } S_a e sin E	 (51)2
C

Substituting numerical values from Appendix A gives, in units of seconds,

	

(t - r)2 = 1.658 x 10 -3
 
sin E	 (52)

I
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The coefficient is given to four digits because a is constant to about that many
digits from 1950 to 2000. The error due to this approximation is included in
the error summary in Section 8. The approximation of the factor fls+ALE+µM
by V'S in (47) and (50) is valid since these two quantities agree to six digits.

The term (51) was obtained by Moyer (1965). It was also obtained using
an alternate derivation by J. D. Anderson (unpublished) in 1964. The deriva-
tion of (51) does not involve an expansion in powers of e. Clemence and
Szebeliely (1967) used such an expansion and obtained a series of terms, the
first of which is (51) with E replaced by the mean anomaly M. Their comma
plete series does convert to the form (51). The annual variation in the rate
of atomic clocks on earth corresponding to the term- (51) of t - T was obtained
by Aoki (1964).

6.2 MONTHLY TERM

The third ter m of Equation (44) is

	

(t- 7) 3 = 12 (r$ rB	 (53)

	

c	 [1	 E

which can be written as

	

(t - 7) 3 = Z 1	 (r$ rM^	 (54)
c (1+µ)

whe;: e rM is the gec :entric position vector of the -moon ana

µE
	la =	 (55)

1VI

Both vectors in (54) are evaluated assuming circular orbits, and the 5° in-clina-
tion of the lunar orbit to the ecliptic is ignored. With rectangular components
referred to the mean equinox and ecliptic of date, these vectors are given by

1
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^B	
sin L	

(5- 6)cos L s

and

cos q

EM
sin	 a

M	
(57)

where

s
c 	

circular orbit velocity of earth--moon barycenter relative

to the sun (see Appendix A)

L	 ear. th-moon-barycentric mean longitude of the sun, referred

to the mean equinox and ecliptic of date

a
M
	semi-rnajor axis of geocentric orbit of the moon

geocentric mean longitude of the moan, referred to the
mean equinox and ecliptic of date

Substituting (56) ar,.1d (57) into (54) gives

s a
(t T) 3	

sin D
C

where D, th,e mean elongation of the moon from the sun,, is given by

D = C - L	 (50)

Substituting numerical values from Appendix A gives

(t - T) 3 = 1. 548 x 10 
-6 

sin D	 (60)
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The error summary in Section 8 gives the errors in computed range and
doppler- observables due to truncating the coefficients of the periodic terms
of t - T.

6.3 DAILY TERM DUE TO MONTHLY MOTION OF EARTH

The fourth term of Equation (44) is

(t r)4 	12 jrE r }	 (61)
e	 1	 J

which can be expressed as

c (1+µ)

The orbit of tb,e moon is assumed to be circular and in the ecliptic plane. The
vectors in (62), with rectangular components referred to the mean equinox
and ecliptic of date, are given by

-sin (^
rM =	 cos	 sM	 (63)

0

u cos (9M + X)

rA =	 u si.n (9M+%) cos E + v sin E	 (64)
- u sin (9M+X) sin E + v cos E

where

	

sM -	 circular orbit velocity of fhe moon relative to earth (see
Appendix A)

E	 = mean obliquity of the ecliptic

inclination of the ecliptic pla y.Le to mean earth equator of
date

28	 JPL Technical Memorandum 33-786



i

OM -	 mean sidereal time = Greenwich hour angle of mean
equinox of date

and u, v, and A are earth-fixed coordinates of the atomic clock. The
coordinate u is the distance from the eaxth's spin axis in kilometers, v is
the distance north of the earth's equatorial plane in kilometers, and It is the
east longitude. Substituting (63) and (64) into (62) and using trigonometric
identities gives

s
(t - T) 4 = - 2 

Mµ 
J	 (l+Cos E ) sin (9M+1^

c (1+ )

(65)

- (1-cos E ) sin (9M+A,+([)1 + v sin c cos j
J 4

The second and third terms of this expression are neglected.

From pages 73-74 of the Explanatory Supp:leMent to tie Ephemeris
(1(961), the relation between mean sidereal time 9 M and universal time UT is

9 M = UT + RU. - 12h
	

(66)

where UT refers specifically to universal time UT 1, hours past midnight,
and RU is the right ascension, measured from the mean equinox of date, of a
fictitious point on the equator. The adopted expression for RU , with units
changed from hours to degrees, is

R U = 279°41'27'.`54 + 129 602 768'! 13 T U + 1'''393 5 TU	 (67)

where T  is the number of Julian centuries of 36 525 days of UT1 elapsed
since January 0, 1900, 12h UT1. From page 98 of the above reference, the
mean longitude L of the sun, referred to the mean equinox and ecliptic of
date, is given by
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L = 279 0 41'48.'04 + 1.29 602 768:` 13 T + 1:'089 T 2 	(68)

where T is the number of Julian centuries of 36 525 days of ephemeris time
(coordinate time t) elapsed since January 0, 1900, 12 h ephemeris time. Th e

constant term of RU is 20':5 smaller than the corresponding term of L because
R U. is corrected for stellar aberration. The difference between R U and L
varies from about 21"' at 1950 to about 23" at 2000. Because of this small and
nearly cornstant difference, RU in (^66) is approximated by L which gives, in
radians,

9M = UT  + L - Tr	 (69)

If UT1 is given in seconds past January 1, 1950, 0h UT1, the angle U°T'1 in
radians is computed from

UT1 (radians) = 2 Tr 1 U 1 (seco-nds) 	 (70	 }
8640-0	 )

t	 decimal part I

The calendar date for the reference epoch for UT1 (seconds) in (70) is
arbitrary, but the time of day must be O h UT 1 . The cifects of the approxi-
mation in (69) ara included in the error summary given in Section 8.

Substituting (69) into the first term of (65) and using (59) gives

s M (1-+-cos e )
(t - r) 4 =	 2	 u sin (UT1+X-D)	 (7I)

Ze (1+µ)

Substituting numerical values from Appendix A gives

(t - r) 4 = 1.33 x 10- 13 u sin (UT1+X-D)	 (72)
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6.4 DAILY TERMS AND SMALL ANNUAL TERM DUE TO ANNUAL MOTION
OF EARTH

The fifth term. of Equation (44) is

(t- T ) 5 = c2 IrB rA! _ - - (^
B  rA

l	
(73)

The vectors in (73), with rectangular components referred to the mean earth
equator and equinox of date, are given by

-sin (e -Y)

	

rB =	 Cos U -Y) cos e	 s 
	 (74)

cos (Q -'Y) si.n e

U cos (9M+k)

	rA =	 u sin (0M+k)	 (75)
v

whe r e

s S 	=	 velocity of earth-moon barycenter relative to sun

e	 = earth -m, 	true longitude of the sun, referred
to the mean equinox and ecliptic of date

Y	 -	 elevation angle of Heliocentric velocity vector of earth-
moon barycenter, measured from. the transverse direction
(normal to radius)

From Broucke (1974),

12	 3 2

	

ss = s c	 +(1- e e cos M+ e cos 2M)	 (76)

where all terms to order e 2 have been retained, and M is the mean ar amaly
of the heliocentric orbit of the earth-moon barycenter. The angle Q -Y
can be expressed as
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2 - Y = L + (f-M) - Y	 (77)

where f is the true anomaly of the heliocentric orbit of the earth-moon bar-y-
center. From Herrick (1971),

e sin E
Y = tan -1

	

	e sin E	 (78)
V 1_e2

where the approximate form- is correct to order e 2 . From Smart (1960),

sin E = sin M + 2 sin 2M + ...	 (79)

and

	

f -M = 2e sin M+e 2 sin 2M+ ...	 (80)

Substituting (78) - (80) into (77) gives

	

- Y = L + e sin M + 4 e2 sin 2M	 ($1}

which includes all terms to order e 2 . Su!bstitutin,g (74) and (75) into (73),
using trigo-nometric identities, and then substituting (69), (81), and (76)
give s

	

§C(1+cos E )u	 1 2	 3 2(t r)5 =

	

	 (1-e +e cos M+ !e cos 2M)
2c

X sin (UT1+k-e sin M - 3e2 sin 2M)

Is 1-cos e )u
(1+e cos M) sin (UT 1+ X+2 L+e sin M)

2e

	

s C (sin E )v	 82
Z	

(	 )cos L
C
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1

where all terms to order e 2 , e l , and e 0 have been retained in terms on:e,

two, and three, respectively. Expanding and retaining terms to the same

order of e gives

sc(1+cos e )u	
1(t - z} 5 =

	

	 .2.
	

( 1 - Z e
2 )sin (UT1+?^)

2c

+e sin (UT 1+X -M) -.1 e2 sin (UT1 +X +2M)

+ 8 e 2 sin (UT 1+X -2M),

s c (1-cos E 7u

-	 sin (UT1+A+2L)
2c 2 	 LI

+ e sin (UT1+%+2L+M)1

S C (sin E )V

2	 cos L
	

(83)
C

Substituting numerical values from. Appendix A gives

(t - r) 5 = 3. 17679 x 10 -10 u sin (UT1+X.)

15.312 x 10 -12 a sin (UT1-I-X-M)

- 1. 1 x 10 -14 u sin (UT1+X+2M)

+ 1.00 x 10 -13 u sin (UT1+)L-2M)

- 1.3677 x 10 -11 u sin (UT1+X+2 L)

- 2.29 x 10 -13 u sin (UT1-I %+2L+M)

1.3184x10 -10 vcos L	 (84)

i
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The term of (83) and (84) with argument (UT1+h) was first obtained by
Anderson (1968); the expression for the coefficient of his term differs slightly
from that given in (83). The term with argument UT1 + X + ZM is not included
in the final expression for t-T; the effects of deleting this term are included
in the error summary in Section S.

6.5 LONG-PERIOD TERMS DUE TO JUPITER AND SATURN

The sixth term of Equation (44) is

1	 t`J
(t - r)	 -	 dt	 (85)6 - C 2	 1f ( P

where µ J is the gravitational constant of Jupiter and r J is the helioce^itric
radial coorainate of Jupiter. The constant of integration is zero. Thr. seventh
ter m, of (44) is (85), with each subscript J replaced by the subscript SA,
which refers to Saturn.

The inverse of r  is given by (48), with a subscript J added to each
variable. Substituting 1 /r J into (85) and discarding th e constant term gives

(t - z	
1 f 

µJ` J)6 = - Z	 r	 cos E J dt	 (86)
C	 J

Multiplying the integrand by dE J /dt and dividing it by E J given by

E J 
- T..	 µ a

-,T	 (87)
J V	 ,T

gives

e

r)b - -	 sin E J	 (88)
c sJ

r
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where s  is the circular orbit velocity of Jupiter relative to the sun given by

µ µ

	

s J =	 a 

+ 
J	 (89)

J

Substituting numerical values from Appendix. A into (89) and (88) gives

(t - r ) 6 = 5.21 x 10 -b sin E J	 (9-0)

The corresponding term for Saturn is

(t - z) 7 = 2. 45 x 10 -6 sin E SA	 (91)

6.6 TERMS WITH PERIODS EQUAL TO SYNODIC PERIODS FOR JUPITER
AND SATURN

The eighth term. of Equation (44) is

	

(t - z) 8 = c2 ` r S	 r^, f = cZ (r,C	 's

	

1 r C	 S1	 1	 S	 B	
(92)

Terms will be obtained for Jupiter and Saturn due to their contribution to 'S
The contribution to rC due to planet i with gravitational constant I.L. is

r C (i) _	 -i

	

S	 Ri .S	 (93)

^LS

where µL is the gravitational constant of the sun augmented by the gravitational
constants of the planets and m-oon. It is assumed that the heliccentric orbits
of the earth-m-oon barycenter and planet i are circular and that the latter lies
i.n the ecliptic plane. With these assu:mptiotns, the vectors i S and rB, with
rectangular components referred to the mean equinox and ecliptic of elate, are
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E	
!

- sin L.

r5	 = cos L . s (94)-'i ^o

cos L

rB - sin L a (g5)
0

where s i is the circular orbit velocity of planet i relative to the stun (computed
from Equation 89 with subscript J replaced by i), and L i is the heliocentric
mean longitude of planet i, referred to the mean equinox and ecliptic of date.
Substituting (93) to (9-5) into (92) gives the contribution to (t- T) 8 due to planet i

µ,s .a

(t - T ) Si —	 1	 sin (L-L i )	 (96)

e wS

Substituting numerical values from Appendix A for i = Jupiter gives

(t- T) 8J = 20.73 X 10
-6 

sin (L-L J )	 (97)

For i = Saturn,

	

(t- T )85A	 4.58 X 10
-6 

sin (L-LSA)	 (98)

6.7 DAILY TERMS DUE TO MOTION OF SUN RELATIVE TO SOLAR
SYSTEM BARYCE.NTER

The ninth term of Equatio-n (44) is

1 .	 C	 E	 1	 •S	 E

	

(t - T ) 9 = =2 ^S xA ^ _ --^- (rC rA 	 (99)

	

c	 c	 1
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Terms will be obtained for Jupiter and Saturn due to their contribution to r 
The contribution to (t - 7*) 9  due to a planet i is obtained by substituting (93),
(94), and (64) into (99) and using trigonometric identities:

s
(t- 7) 9i = 
	 ` (I +cos e) sin (9 M+X-Li ),.	 l

c µS

- (1-cos E ) sin (9M+x+Li) 
I + 

v sin e cos Li	(100)

The second and third terms of this expression are neglected. Substituting (69)
into the first term of (100) gives

µ,6,(1+cos E )

(t- r) i - --.....-	 u sin (U'TI+X+L-I:,i} 	 (101)
2c µs

Substituting nurnerical values from Appendix A for i = Jupiter gives

(t - r) 91 = 1.33 x 10 -13 u sin (UTI+X+L-LJ)	 (102)

For i = Saturn,

(t - -r) gSA = 2.	 149 x 10-	 u sin (UT1+X+L-LSA)
	 (103)

l
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7. Final Expression and Arguments

The periodic terms of t - r, with analytical expressions for the
coefficients, are given by Equations (51), (58), (71), (83), (88) (which applies
for Jupiter) and the corresponding term for Saturn, and (96) and (101), each
evaluated for Jupiter and for Saturn. Substituting these terms, except the
term of (83) with argument UT1 + X + 2M, into (44) gives

t- r= ATA	 2 }^ Sa e sin E+	
aM	

sin D

	

C	 c (1 + ti)

S (1+COSE)t-2

	+ c 2c2	 (1 - 2 e2) sin (UIIX)

+ e sin (UT1+ h -^ M) + 8 e Z sin (UT 1+ h 2M)

S C ( 1 -COs  E )u

2c
	2 	 Lsin (UT1+ X + 2L)

+ e sin (UT1+ X + 2L + M)j

§M (1+cos E)	 9c (sin E )v
+	 -Z	 a sin (UT1+ X - D) -	 2	 cos L

2c (1+w)	 e

u,T e 	 `SA eSA+ 2	 sin E
J 

+ 2	 - s in ESA
C s J	 c sSA

lis	
µ	 as

+	 s Ia sin (L-L f) + 2 SA	 sin (L-LSA }
C f15	c [As

µJ $J (1+cos E )

	

2c 2	
a sin (UT1+ X + L-LJ)

^S-

SSA sSA ( 1+cos E )
+	

Zc	
-	 u sin (UT1+ A + L-LSA)

S

(104)

Substituti-ng numerical values for the coefficients of the periodic terms,
obtainedfrom Equations (52), (60), (72), (84), (90), (91), (97), (918), (102),
and (103), gives
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t - r = AT  + 1. 658 X 10 -3 sin E + 1. 548 X 10 -6 sin D

+ 3. 17679 X 10 -10 u sin (UT1+X) + 5. 312 X 10- 1? u sin (UT1+X-M)

+ 1.00 X 10 -13 usin (UT1+A-2M) - 1. 3 .677 X 10- 11 Li sin(UTI+X+2L)

- 2. 29 X 10- 13 u sin (UT1+X+2L+M)

+ 1.33 X 10- 1 3 u sin (UT 1+A-D) - 1.3184 X 10- 1O v cos L

5.21 X 10 -6 sin Er + 2.45 X 10- 6 sin ESA

20.73 X 10 -6 sin (L-Lf ) + 4.58 X 10- 6 sin (L-L, SA)

+ 1. 33 X 10- 13 a sin (UT1+X+L-L3.)

+ 2. 9 X 10 -14 u sin (UT1+X+L-L )
SA

(105)

where the coordinates u and v of the atomic clock which reads International
Atomic Time T are in kilometers and t - r is in seconds. The coefficients of
the daily terms of (105) are proportional to u. For a clock at the equator
where u = 6378 km., the magnitude of the coefficients of the daily terms
varies from a maxiir-lu-m of 2. 026 X 10 -6 s to a minimum- of 1. 85 X 10 -10 

S.

The annual term with argument L has a coefficient .proportional to v; its max-
imam value is 0. 838 x 10-6s.

The last four terms of (105) are due to the offset of the solar
system- barycenter from the sun. If these term- are deleted in (105)., coordi-
nate time t in the solar system barycentric frame of reference is replaced in
this  equation by coordinate time t , in the heliocentric frame of reference, and
the accuracy of the equation is reduced slightly. The previously derived ex-
pres'sion for t'- r is Egttation (65) of Moyer (1971). Tn this previous expression.,
the Long-period potential terms due to Jupiter and Saturn 0he terms of 105
with argumentsand ES were omitted along with the term with argument
L, which has a significant effect on computed. three-way range and doppier
observables. The previous expression for t'-. r consisted of the first nine
terms of (105) with minor differences in the coefficients of the periodic terms,
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From Smart (1960), the relation between the eccentric and mean
anomalies is:

E= M+ e s in M+ I e 2 sin 2M + .. .	 (106)

The three eccentric anomalies in (105) can be computed to sufficient accuracy
from the following approximations to (106),:

E = M + e sin 	 (107)
EJ = MJ	(108)

ESA	 MSA	 (109)

The errors due to the approximations in (107) - (109) are included in the error
sun-ixnary in Section S. Expressions are given below for the arguments L, M,
D, (L-LJ)„ 4L-LSA1, MJ, and MSA, which are functions of coordi-ate time t.
The angle UT1 in radians is computed from universal. time UT1 in seconds
using Equation (70).

The Explanatory Supplement to the Ephemeris (1961) gives poly-
nomials for the mean orbital elements L, M, and D (pp. 98 and 107). The
argument for these expressions (quadratics or cubic s) is Julian centuries of
36 525 days of ephemeris time ET (coordinate time t) from January 0, 1900,
12h ET. Linear expressions have been obtained which are tangent to the
polynomials at January 1, 1975, 6 h ET (0.75 Julian centuries past the above
epoch). In units of radians, the linear expressions are

L = 4. 888 339 + 1. 991 063 83 x 10 -7 t	 (110)

M = 6. 248 291 + 1. 990 968 71 x 10 -7 t	 (111)	 3

D = 2.518 411 +2.462 600 818 x 10 -6 t	 (112)

where t is secon-ds of epl em-^eri.s time past January 1, 19'50, 0h ET.

Sei•delmann et al (1974) give quadratic expressions for the helio-
centric mean longitudes of the earth, Jupiter, and Saturn (L E, LJ, and I_, SA
respectively) and for the longitudes of perihelion for Jupiter and Saturn
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(wJ and wSA , respectively), referred to the mean equ rsox and ecliptic of
1950 . 0. Linear expressions were obtained which are tangent to the quadratic
expressions for these mean orbital elements at January 1, 1975, 6 h ET. The
argument was changed from tropical centuries of 36 524. 219 88 ephemeris
days past 1950. 0 to ephemeris seconds past January 1, 1950, 0h ET. The
expressions for the arguments L-L., L-LSA' MJ., and MSA were obtained from
the following combinations of the linear expressions for LE, 

LJ' LSA' w V
and a SA:

L - LJ	 LE -LJ +Tr	 (113)

L, - LSA r LE _ LSA + -r	 (114)

MJ = Li `'J	 (115)

MSA - 'SA 'SA	 (116)

The resulting expressions, in radians, are

L - L J = 5.652 593 + 1.823 136 37 X 10 -7 t (117)

L - LSA = 2. 125 474 + 1 .923 399 23 X 
10-7 t (118)

MJ = 5. Z86 877 + 1.678 506 3 X 10 -8 t (119)

USA = 1.165341+0.6758558X10 8 t (120)

The mean longitudes on the left-hand side of (113) and (114) are referred to
the mean equunox and ecliptic of date. T'he m- ean longitudes on the right-hand
side of these equations are those of Seidelm- ann et a1 which are referred to
the mean equinox and ecliptic of 19'50. 0. The equinox difference does not
affect the computed longitude differences L- LJ and L-LSA. The difference in
the reference planes does produce errors in Equations (117) and (118); how-
ever, because of the small inclinations of the orbit planes of the earth, Jupiter,
and Saturn to the ecliptic of 1950. 0, the errors are negligible.
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The errors in computed ranige and doppler observ'ables due to the
errors in the linear approximations (110) - (112) an-f3- (117) - (120) are
completely negligible for the time period 19'50 - 2000.
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The primary purpose of this section is to give estimates for errors in
computed range and doppler observables due to errors in Equation. (105), the
final expression for t - T. The secondary purpose is to give the effect of the
retained terms of t - T on these observables.	 r

y

	

	 Periodic terms of t - T have a direct and an indirect effect on computed
range observables. These two effects can be understood by considering the
general procedure for computing a range observable. The light time solution

produces sonar system barycentric position vectors of the transmitting station
on earth at the transmission time ti, the spacecraft at the reflection time t,,
and the receiving station on earth at the reception time t 3 . The reception tirne
is known in atomic time T; addition of t - T from (105) converts it to coordinate
time t (in the solar system barycentric space-time frame of reference). The
light time solution yields the epochs t2 anal t  in coordinate time. The epoch
t3 in coordinate time is directly affected by the magnitude of the periodic
terms of t - T evaluated at t 3 ; the epochs t2 and t l in coordinate time are affected
by the sam- a amiount to an accuracy of 3 or 4 digits (depending upon the range
rate of the spacecraft),

The values of t 3 and t  in the UT1 time scale are also obtained. The
former is not affected by the terms of t - T; the latter is affected. but not sig-
nificantly. The indirect effect of a periodic term of t - Ton a computed range
observable is due to the effect of the term on the epochs t 3 , tZ , and t l and
hence on the position vectors computed at these epochs. The direct effect is
due to the values of the term- at t 3 and t  which appear explicitly in the equa-
tiou for computing range observatles (Appendix B, Equation B4). Doppler
observables are computed from the difference of two computed range observ-
ables divided by the difference in the two reception times. The direct and
indirect effects of a term of t - T on these two range observables produce a
co.i-responding direct and indirect effect on the doppler observable.

Appendi{ B gives the formulation for computing two-way or three-way
F. age and doppler observables. An analysis of these equations produced the

approximate equations given below for the maximum direct effect of a term of
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t - T on range and doppler observables . The direct effect of a term of t - T
depends upon the form of the term. All of the retained terms and almos-t all
of the neglected terms have one of the following forms. The terms can be
divided into daily terms (period P = 1 day) and long-period terms (P ranging
from roughly half a month to several years). The daily terms contain the
longitude of the atomic clock in the argument; the long-period terms do not.
The coefficients of the daily terms are proportional to the spin-axis distance
u of the atomic clock. The coefficients of some of the long-period terms are
proportional to the distance v of t1t, atomic clock north of the earth's equa-
torial plane. The only neglected term.s of t - T which do not fit into these
categories are some of the terrors due to nutatioin, polar motion, and solid-
earth tides.

Let b P and S P refer to the maximum possible value of the direct effect
of a term. of t _ T on range and doppler observables, expressed as the tracking
station to spacecraft range and range-rate, respectively. The effects of a
daily term of t - 7 on two-way or three-way data are;

6P = Mc	 (121)

60 ZTr
 = M P ^e	 (122)

where M is the magnitude of the coefficient of the term and c is the speed of
light. For three-way data, the spacecraft range p at which these maximum
effects occur depends upon the separation in longitude of th,e transmitting and
receiving stations; the separation can be adjusted so that the maximum occurs
at any range . For two-way data, the maxim-um effects at a given range are

P 11
given by Equations (1.21) and (122) multiplied ley sin ?P 	 -C

1
 . Hence, tkae

maximum two-way effects increase with range, reaching a peak at a range of
43.2 astronomical units.

The following equations give the effects of a long-period term of t - T on
two-way data. They also give the effect of a long-period term on three-way

data if the coefficient of the term is riot proportional to v.
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6P= M IZP /P	
(123)

6P = M ` Z—Pr ^?P	 (124)

If the coefficient of a long-period term. is proportional to v, the effects
of tb.e term on three-way data are given by (121) and (1222), where M is the
maximum possible magnitude of the coefficient of the term. These maximum
effects are independent of the range to the spacecraft.

The indirect effects of a term of t - T on two -way or three-way range and
doppler observables will not exceed the following approximate values-

6 P = pM	 (125)

6 P I = aM	 (126)

where p is the tracking station to spacecraft range rate, and a is the inertial
acceleration of the spacecraft. The highest spacecraft acceleration likely to
be encountered is 25 m/s Z' which occurs near the surface of Jupiter. Higher
accelerations occur closer than 3.3 solar radii from the center of the sun,
but it is unlikely that a spacecraft would enter this region.

An extensive error analysis has been performed to determine estimates
for the maximum possible errors in computed range and doppler observables
due to errors in Equation (104) or (105) (which contain analytical and numeri-
cal coefficients, respectively) for t - r. The results of this analysis are pre-
sented in Table II. The second column lists the errors commm.itted in the
derivation of Equation (105). If an error is associated with a term of (104)
or (105), that term is identified in column 1. The magnitudes of the coefficients
of the error terms are given in column 3. The maximum values of the direct
effects of the error terms on computed range and dop:pier observable$ are
given in columns 4 and 5, respectively. When one figure is given for the
effect of an error, it applies for two-way or three-way data. When two
figures are given, the figure in parentheses is the error for three-way data
and th.e other figure applies for two-way data. For daily terms, the maximum
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1.0 1.5 0.3

0.3 0.7 0.3

12. 0 15. 0 4. 0

0.Z	 2.3	 10.0

0. 01 0	 0.01	 0. 8

0. 0 1 0	 0. 02	 1,2

0. 01 0	 0. 018	 5. 5

TABLE Ii

Error summary

Magnitude of	 Direct effect on	 Direct effect on
error term,	 range,	 range rate,

Terre 	 Source of error	 µs	 m	 IL M,

Argument Assuming e constant
E from 1950 to 2000,1

A rgun--ie nt Neglectad e 2 to rm
E in Equatioln (107)

Argument Ignoring periodic variations
in heLio,centr i c orbiital
eLemeats of earth-•oon
barycenter

Argument Ignoring e	 a,n,d e
D

Coefficients Ignoring e 3 terms
with factor

(I+COIS E
C

Coefficients Ignorimg e 2 terms
with factorro
S C (I - CO'S E

P) ALL with Approximafion in
UTI + X in Equation (69)
argument



TABLE II

Error s , 3mary (contd.)

Terra Source of error

Magnitude of
error term,

µs

Direct effect on
range,

m

Direct effect on
range rate,

µm Is

Argument Deleting this terra from 0. 00 0. 02 1. 5
UT'I _t k + 2M Equatioin (84)

A.€l with i.gnori.n,g periodic variati.&rs 0. 00 0.4 M. 0
factor scu in heliocentric orbital 0.6)
or scv in elements of earth-m-oon
coefficient barycenter

Argument Ignoring eM and 0. DO 0.03 1. 9
UT I + X - 'D second term of

Equation (65)

Argo- mlent Ignorin,g third term 0.00 0. 01 0. 02
UT 	 + X - D in Equation (65) (0. 11) (0. 3)

Argument Ignoring e 0.02 0.04 0.02
(4.2) (1.7)

Arguments Neglected a terms in 0.2 0.04 0. 010
E 

IT 
and E.SA Ecjuations (108) and (10-9)

Neglected terms in 1.3 I.1 0.3
Equations (37) and (39)

Neglected gravitational 0. 0^0 0. 1 0.2
potential at earth d lue to
moon in Equation (27)

P",



r

c^a

TABLE II

Err-or summary (contd)

Ma,gnitud,e of	 Direct effect o,n	 Direct effect on
error terim,	 range,	 range rate,

Term Source of error ^Is m ^Lm f s

Arguments Ignoring e, e., and e SA 2. 1 2. 3 0. 5
L - Li and
L - LSA

Argument Ignoring terms for 1.3 1. S o.4
L - Li Mercury, Venus, Mars,

Urarnuus, Neptune,	 and
Pluto,	 including effects
d lue to eccentricities

Gmittinig the term 0.010 0. 02 0.05
1	 Bl
 (tG 

S	 rE	 in
r
y Equiatioin (.40)
Mn

Argument Ignoring second anal third 0. 00 0. 06 3. 6
UT1 + h + L - terms of E.quatian (10 10) for (0.2)

P) all planets,	 the first term 1
for all planets except
Jupiter and Saturn, and
ignoring eccentricities of
planetary orbits for retained
and neglected terms

a
€?

tow

a



r

	

CD	 TABLE 11
n

	

.	 Error summary (contd)
n

r^

	

0

0	 Magnitude of	 Direct effect on	 Direct effect on
error term,	 range,	 range rate,

	

hi
	 Term	 S,o-urce of error	 f-.s	 m	 Ilm/s

Arguments Ignoring inclination of 0. 02 0.2 1. 5
D, UTl + k - D, orbits of moon,	 Jupiter,w
L - Li , L - LSA , and Saturn to ecliptic .plane

w UT 	 -I	 X+L-
°^ LJ, and U T l+ X

+L - LSA

Coefficients Assuming	 E	 an:d e are 0. 00 0. O2 1.4
with factor constant from 1950 to (0. 06)
1=	 c o-s E, 2 0, 0 0
1	 - COS E

or sinf

Ignoring nuta.tion,	 polar 0. 0 1 0 0. 1 3. 0
motion,	 and s , o ,lid-
earth tides

All Roundloff of coefficients 0.2 0. 3 0. 7

Miscellaneous 4. 3 3.8 7.8
(see text)

Totals	 23. 0	 30, 0	 7'5.0
(34.6)	 (7-7. 0)

10
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values of the errors are listed. This is also true for three-way errors due
to long- period terms which have coefficients proportional to v. The errors
in two-way data due to Long-period terms and in three-way data due to long-
period terms whose coefficients are not proportional to v were computed for
a spacecraft range of 50 astronomical units.

A Large number of the errors Listed in Table II are due to terms
neglected in (104) and (105). Another large group of errors is due to
ignoring eccentricities of elliptical orbits or ignoring terms above a certain
power of the eccentricity. Some of the largest errors are due to ignoring
periodic variations in the heliocentric orbital elements of the earth-moon
barycenter. These variations, in the form of longitudinal and radial per-
turbations, were obtained from Newcomb (1898). The effects of periodic
variations in the geocentric orbital elements of the moon and in the helio-
centric orbital elements of Jupiter and Saturn have not been analyzed. The
miscellaneous error listed at the end of Table II is an allowance for these
errors and other minor unanalyzed errors.

Estimates have been obtained for the maximum possible direct errors
in computed range and doppler observables as a function of thfF range to the
spacecraft. For two-way data, these upper limits are

8P 2 = (0.62 m) AU	 (127)

5P 2 = (2.4 x 10 -6 m s) ACT	 (128)

where AU is the range to the spacecraft in a.stroanotni:cal units. These figures
are based upon the constant derivatives of long- period errors with respect to
range and the derivatives of the daily errors withrespect to range evaluated
at a range of zero. Since daily errors are pro portional to the sine of a
multiple of the spacecraft range, these up per limits are high at large space-
craft ranges. For three-way data, the upper limits are

6P3 = (0.59 m) AU + 5.5 trm	 (129)
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5 P 3 = (0.49 x 10 -6 m/s) AU -+- 53 x 10 -6 m/s	 (130)

From Table 11, the estimate of the maximum error in the magnitude of
t - r is 23µs. Using this figure and a spacecraft range rate of 30 km/s,
Equation (125) gives a maximum indirect error in computed range observables

2,of 0.69 m. For a spacecraft inertial acceleration of 25 m/s , (126) gives an
upper limit to the indirect error in computed doppler observables of 575 X

10 -6 m /s . This error is almost eight times as large as the maximum value
of the direct error.

To an accuracy of 0. 01 µs, the error in the magnitude of t - r is due
entirely to long-period terms. This error could be represented by a curve
which is a function of a small number of parameters . When fitting to tracking
data obtained from a spacecraft which is near a planet, the values of these
parameters could be estimated, thereby eliminating most of the indirect
errors in computed observables due to neglected terms of t - T.

Table III gives the same information for OY e retained terms of t- T as given
in Table H for the neglected terms . It is seen that the maxirr-^uum value of th,e
direct error in a computed range observable due to neglected terms of t - r is
about 1% of the maximum value of the direct effect of the retained terms of
t - T. The corresponding figure for a doppler observable is 0. 16%. The maxi-
mum error- in the magnitude of t - r is about 1. 36% of the maximum- value of
the sum of the periodic terms of t - r. Hence, the maximum- value of the
indirect error in a computed observable is about 1.36% of th ,e maximum value
of the indirect effect of the retained. terms.

Approximate -maximum values for the direct effects of the retained
terms of t - r, as a function of the spacecraft range AU (in astronomical units),
ar e

6 p 2 = (74. 3-m.) AU	 (131)

6 p 2 = (1. 72 x 10 -3 m/s) AU	 (132)
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TABLE

Maximum effect of

III

retained terms

/

A

Argument Mag nitude Direct effect Direct effect \
of term- of term on range, on range rate,

r S ¥m / ss

 \E 1658. 2476. 493. \

D 1,548 28.6 70 . 4

UT1 + X 2. 02 6 607.4 44173. )

UTI + X- M 0.0339 10. 739. /

UTI + 1-2M o. on 64 0.19 13.9

UTI + X+ 2L 0. 0-87Z 26.2 1f02'

S 2 +	 + 2L + MX 0,0015 0.44 31.8

UTI +k- D 0.900 85 0.26 18.5

L 0. 838 1.25 0.25
(251.) (50.0)

E 5.21 0.66 0.01

E 2.45 0.13 0.00SA

L - L
j

20. 73 28,4 5.17 j

L - L
SA

4,58 6.61 1.27 \

U T I + X + L	 L J 0. 00 10 85 o. z6 18.5 j

UTI + X + L	 L
SA

0. 00 10 19 0.06 4. 03 .	 \

Tota ls	 169 6 .	 3187.	 47 471.
(3437.)	 (47 521.)
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6 P 3 = (51m) AU + 896 m	 (133)

6 P 3 = (0-012 x 10 -3 m/s) AU + 47. 0 x 10 ". 3 m I s	 (134)

2For a spacecraft range rate of 30 km. Is and inertial acceleration of 25 m/s
the maximum. values of the indirect effects of th ,e retained terms of t - r on
computed range and doppler observables are 51 m a	 3nd 42 x 10 m/s,
respectively.
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9. Alternate Expression for t - r

This section gives an alternate equation for t - r which is a function of
Nositi.o.n and velocity vectors of the atomic clock and the major bodies of the
solar system. The equation is obtained from Equation (44) by rep. Lacing
the second, sixth, and seventh terms, which are expressed as integrals,
with functions of position and velocity vectors derived in this section.

The second term of Equation (44) is given by Equation (51). For the
heliocentric elliptical orbit of the earth .-moon barycenter,

,S	 S

	

rr = B `B =	 (µS+µE +µM) a e sin E

VVL

Sa e sin E	 (135)

Substituting the approximate form of (135) into (51) gives the desired form
for the second term of Equation. (44):

ZS	 Sl

	

(t - r) =	 2 rB r B	(136)
c

The sixth terra of Equation (44) is given by Equation (88) . The equation
analogous to (135) which applies for the Heliocentric orbit of Jupriter is:

	

rf r	 -	 ( 	 a J e J, sin E.	 (137)
J

Substitu±i.tlg e sin E J from (137) into (88) and using (89) gives

	

(t- r) 6 =	
Z F'

	

(LT
rJ)	 (138)

c (iµS +µ J)

The corresponding term for Saturn (SA) is the seventh term of Equation (44):
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=	 VLSA	 S	 S
7	 2	 U:SA	 SA ) 	(13 9)c (PLS +Vt SA

Replacing terms two, six, and seven of Equation (44) with Equations
(136), (138), and (139), combining the three terms which contain E

 , and

	

reordering the terms gives the alternate expression for. t	
-LA

	

t T	 AT +	 S	 S ) +	 (jC rE ) +	 S	 BA	 2 B	 B	 -E -A	 13 . r.E )

	

c	 C	 c

	

I C	 S +
	 S	 S	 ,S A	 S	 S

	

-7 S	 B	 X., ) + —

	

+ c
	

27	
c (^Ls+ 	 j	 2	 — SA	 SA

. x
PL J)	 C (^LS +Pl 

SA) 

	

If the term	 C . X, B	 h
t
	 which was Omitted in Equation (40), 	

(140)

	

c -27 (X'- S	 E	 was

Sreinstated, j B in the fourth term of (140) would be replaced by * C
LB.

i
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Appendix A: Notation and Numerical

Values for Parameters

This appendix gives the definitions for the parameters used globally
throughout the text. Numerical values are given for those parameters which
appear is th e final expression for t - r.

Subscripts and Superscripts

A	 = locatio ,n of atomic clock on earth w' •h reads Iaternational
Atomic Time r

E	 = earth

B	 = earth-moon barycenter

M = moon

S	 = sun

C	 = solar system barycenter

J	 = Jupiter

SA	 = Saturn

P	 This subscript indicates that periodic terms of the quantity are
to be retained and constant terms are to be discarded

o	 This subscript indicates the quantity is evaluated at the initial
epoch t 0

A bar over a quantity indicates the time average value of the quantity.

Position, Velocity, and Acceleration

r r^, r^ = position, velocity, and acceleration vectors of point i.3
relative to point j. The dots denote differentiation with
respect to coordinate tim-e t

si	 = velocity of point i relative to point j

s	 = velocity of fixed atomic clock on earth relative to solar system.
barycenter



Time

T	 = proper time obtained from an atomic clock on earth

T' = 	 = International Atomic Time (TAI) obtained from an atomic clock
on earth. Starting in Section 4, T* is denoted by T

t	 = coordinate time in solar system barycentric space-time frame
r

of reference

`	 n	 = conversion factor- from cycles obtained from an atomic clock
to seconds of atomic time T

n,	 = conversion factor from cycles obtained from a cesium atomic
clock to seconds of international Atomic Time

[ET A = constant term in expression for t - r*

UT 1 = observed universal time, corrected for polar motion. Equa-
tion (70) converts UT 1 from. seconds to radians.

Physical Constants

The physical constants were obtained from.. Standish et al (1976) or were
computed from quantities obtained from this reference.

c	 = speed of light = 29-9 792,458 km/s

AE = the number of kilometers per as-troinomical unit (AU)

= 149 597 871. 410 56 krn /AU

µ.	 = gravitational constant of body i, km3 /s2i
= Gm i , where G is the universal constant of gravitation and rmi

is the mass of body i.

The gravitational constant of the sun is computed from A E using Equation (104)
of Moyer (1971):

k2AL	 1.32712442x1011 km 3 /s 2^S	
(864GO)z
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where

k	 = the Gaussian gravitational constant

= 0. 017 202 098 95 AU 3 /2 /clay (exactly)
A

Using µ5 and mass ratios obtained from Standish et al (1976) gives
i

w.	 =E 398 60 ,0.5 km 3 /s2

µM	 = 4 902.79 km' /s2

µ^	 = 8	 3	 21.267 120x10	 km Is

L	 = 3. 793 410x10 7 krn 3 /s2

4	 = µE /µM = 81.300 7

4S	 = gravitational constant of the sun augmented by the gravitational
constarits of the planets and the moon

= 1.325 906x10 11 km-	 Is2

Gravitational Potential

U	 - Newtonian gravitational potential, using the positive sign con-
venton (i. e . , U	 -)

U i	= U at location i

U(j)	 = U due to body j

U i (j)	 = U at location i due to body j

MU) i = gradient of U at loca tion i

Statio,n Location

The earth-fixed coordinates u., v, and k of the atomic clock which reads
International Atomic Time are:

U	 = distance from earth's spin axis, km
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v	 = distance north of earth's equatorial plane, km

A	 = east longitude

8M = mean sidereal time = Greenwich hour angle of mean equinox of
date

Heliocentric Orbit of Earth-Moon Barycenter

Numerical values were obtained from page 98 of the Explanatory Sup-
plernent to the Ephemeris (1961).

a	 = senii-major axis = 1. 000 000 23 AU

= 149 597 906 km (obtained using A E given above)

e	 = eccentricity = 0. 0167 Z. From 1950 to 2000, the last digit
changes from- 3 to 1.

r	 = radial coordinate

s S	 = velocity

9 	 - circu-tar orbit velocity

FM	 M
a 29-784734 km,

S +4 + 

M	 = mean anor-naly

E	 eccentric anomaly

f	 = true anomaly

L, P = mean and true longitudes, respectively, of the sun, measured
at the earth-moon Barycenter. These angles are referred to
the mean equinox and ecliptic of date.

Y	 = elevation angle of velocity vector, measured from the transverse
direction (normal to radius)

e	 = mean obliquity of the ecliptic

inclination of ecliptic plane to mean earth equator of date
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cos E = 0. 917 46 (from 1950 to 2000, the last digit changes from 4 to 8)

sin E = 0.397 83 (from 1950 to 2000, th-e last two digits change from
88 to 78)

Heliocentric Orbit of Planet i

a i = semi-major axis. From Seideimann et al (1974),

a  = 5.202 833 481 AU = 7.783 328X10 8 km

aSA = 9.538 762 055 AU = 1.426 978x10 9 km

e  = eccentricity. rro:m Seidel.mann et al (1974), evaluated at 1975.0,

eJ = 0. 048 2 84

e SA = 0. 056 038

These figures are constant to three significant digits from 1950 to
2000.

r,	 = radial coordinate
L

s i	= circular orbit velocity

^S ^ µi
a

1

sJ = 13. 064 13 km / s

s SA = 9.645 16 km/s

Mi = mean anomaly

E 	 = eccentric anomaly

L i , Q i = heliocentric mean and true longitudes, respectively, of
planet is referred to the mean equinox and ecliptic of date.

r.

Y
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Geocentric Orbit of Moon

am = semi -m- ajar axis = 384 399. 1 km.

This value is obtained from the above values of µ E and µM and the observed.
mean motion of the moon using Equation (106) of Moyer (1971), which is a
modified version of Kepler's third lave.

e 	 = eccentricity = 0. 054 9 (used in error analysis only)

sM = circular orbit velocity

µE + µM 1. 024 548 km / saM

= geocentric mean longitude of the moon, referred to the mean
equinox and ecliptic of date

D	 = (C - L = mean elongation of the moon from the sun

Miscellaneous

(t - r) i = term i of .Equation (44)
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Appendix B; Computation of Range and Doppler Observables

This appendix gives a brief description of simplified versions of the
formulas used to obtain the computed values of range and doppler observables
obtai.aed by the Deep Space Network of the Jet Propulsion Laboratory. The purpose
is to show how the tirne transformation t - r is used in the computation of these
observables. The simplifications made to the formulation do not change the
effects of t - r. For further details of the f.ormulat o.n, see Moyer (1971).

The com—potation of two-way or three-way range observables is des-
cribed first. A signal is transmitted from a tracking station on earth at
time ti, received and retransmitted at the spacecraft at time t 2 , and received
at the same tracking station on earth (two-way data) or at a different station
(three-way data) at time t 3 . The definition of the range observable R is

R = t 3 (TAI) - t  (TAI)	 (B1)

where t 3 (TAI) and t  (TAI) are the reception and transmission times, respec-
tively, in International Atomic Time TAI. The "tim,e tag" associated with
each range observable is the known reception time t 3 (TAI).

The first stop in computing a range observable is to obtain the light
time solution. The epoch t3 (TAI) is converted to coordinate time in the solar
system barycentric space-time frame of reference (denoted here as ephemeris
time ET) using

t3(ET) = t 3 (TAI) + (ET-TAI)t
3

where (ET-TAI) t is (t-T) given by Equation (105), evaluated at t 3 . The light
3time solution gives the epochs t2 (ET) and t  (ET) and the position vectors

LC (t3), LC (tZ ), and rC (y; these are the solar system barycentric position
vectors of the receiving station at t 3 , the spacecraft at t 2 , and the transmit-
ting station at ti, respectively. The epochs t3 and t  are also obtainers' in the
UT 1 time scale; they are used along with the ET values of these epochs to
compute the geocentric position vectors of the receivi:rig and transmitting

(BZ )
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T

stations at t 3 and t 1 , respectively. These vectors are used in forming the
above solar system harycentric vectors. The following vector magnitudes
are computed:

r i	= I rC (ti) I	 i = 1, 2, and 3

r12	
I r

2 (t2 ) - r 1 (t 1 ) I

r23 = I r3 (t3 ) - r 2 ' ( t2 ) I

The epochs t 3 , t2 , and t 1 satisfy the following equations:

	

t 3 (E`I') - t2 (ET) = c - 
+ c3 

^n	
r2+r3-r23	 2-1

r .	2.	 r, +r +r23	 ^5	 2. .. 3 . 23	 3,2
	

(B3)

The first term on the right-hand side is the Newtonian light time; the second
term is an approximate expression for the contribution to the light time
from general relativity.

Given th-e Light time solution, the range observable is compute;! from

	

r
12 

2 µ	 r +r +r 2	r	 2	 r, -F r +r
R =	 +	 S fn	 1	 .1.	 23 + µS- Qn

	
2- 3 23

c	 c3	 r 1 +r 2 -
r 12	

e	 c3	 r2+r3-r23

- (ET-TAI) t + (-ET-TAI) t + A

	

3	 1
	 (B4)

Th e sum of the first four terms is the round-trip light time in ET (see
Equation B3). Th.e next two terms convert this interval to an interval of TAI.
The last term includes corrections for the effects of thc° troposphere and
charged particles. If the light time solution has a tolerance bt for the deter--
rnination of t2 and t 1 , observables computed from. (B4) will have a corres-
ponding error of roughly (r' 	 If range observabiles were computed.
from (131) using t 1 (TAI) obtained from the light time solution., tke error
would be about 6t-, which is appraxi:m:ateLy four orders of magnitude Larger.

i
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It is seen that the time tranform-ation (t - r') affects range observables
di ,ectly through terms 5 and 6 of (B4). it also affects the epochs t3(ET),
t2 (E 1 ;, and t I (ET) and hence the quantities r lZ r Z3 , r 1, r Z , and r 3 in (B4);
this is the indirect effect of (t - r).

Doppler observables are derived from a signal being continuously
transmitted from. the transmitting station on earth to the receiving station via
the spacecraft. A particular observable is associated with an interval of
reception T  (in seconds of TAI) at the receiving station. Typical values of
T  are 60 s and 600 s. It can be shown that the value of a doppler observable
obtained by the Deep Space Network is equal to

F = T (R e -R s }	 (B5)
c

where f  is the frequency of the transmitted signal, and R e and R s are pseudo
round-trip range observables, defined by (B1), with reception times equal to
the end (e) and start (s), respectively, of the reception interval T c . Com-
puted values of two-way or three-way doppler observables are obtained. from
(B5) using pseudo two-way or three-way range observables computed from-
(B4). The computed doppler observables are in error only because of errors
in the computed pseudo range observables.

When (B4) is used to obtain the computed value of a true range o user• v-
able, the contribution to p due to charged particles is positive because th,e
ranging signal travels at the group velocity (<c). When pseudo range observ-
ables are computed (which are differerjced to form doppler observables), the
sign of the charged particle correction is negative because th.e doppler signal
travels at the phrase velocity (mac). These two corrections, which have opposite
signs, have the same magnitude.
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