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6 Abstract 

An analysis w a s  made of the potential flow behavior for  an initially uniform flow passing over a 
single axisymmetric hill, an oval mound, and a combination of two hills. Small perturbation 
theory w a s  used, and the resulting Laplace equation for  the perturbation velocity potential w a s  
solved by using either a product solution o r  a Green's function. 
is of interest  in calculating the p re s su re  distribution around obstacles, the flow of pollutants 
car r ied  by the wind, and the augmentation of wind velocity for  windmill siting. 
tion in velocity at the top of a hill w a s  found to be proportional to the hill height relative to  a 
character is t ic  width dimension of the hill. 
less velocity increase than a two-dimensional ridge having the same  cross-sectional profile. 

The three-dimensional solution 

The augmenta- 

An axisymmetric hill produced about 20 percent 



THREE-DIMENSIONAL POTENTIAL FLOW OVER HILLS AND OVAL MOUNDS 

by Robert S iegel 

Lewis Research Center 

SUMMARY 

An analysis w a s  made of the potential flow behavior for an initially uniform flow 
passing over a single axisymmetric hill, an oval mound, and a combination of two hills. 
Small perturbation theory w a s  used, and the resulting Laplace equation for the perturba- 
tion velocity potential was  solved by using either a product solution or a Green’s function. 
The three-dimensional solution is of interest in calculating the pressure distribution 
around obstacles, the flow of pollutants carried by the wind, and the augmentation of wind 
velocity for windmill siting. 
to be praportional to the hill height relative to a characteristic width dimension of the 
hill. An axisymmetric hill produced about 20 percent less velocity increase than a two- 
dimensional ridge having the same cross-sectional profile. 

The augmentation in velocity at the top of a hill w a s  found 

INTRODUCTION 

Th behavior of t h  ee-dimensional flow over irregular terrain is of interest for de- 
termining the flow path of pollutants, the pressure distribution over obstacles, and the 
augmentation of the wind velocity for selecting windmill sites. 
pollution studies a re  given by references 1 and 2, while reference 3 is related to wind 
utilization for power production. 

mill depends on the cube of the wind velocity. Hence, in a location where there tend to 
be large steady winds, it would be of advantage to place a windmill such that the ground 
terrain wil l  provide additional localized velocity increases. Possible locations would be 
at the top of a cliff or ridge facing the wind, the top of a circular or oval hill, or in the 
notch between two hills. Except for flow across a two-dimensional cliff or ridge, the 
prediction of the wind behavior involves three-dimensional calculations which are gen- 
erally quite difficult. 

Some examples of air 

With regard to wind utilization, the maximum power that can be extracted by a wind- 

I 

I 

A simplification that wi l l  allow some analytical results to be obtained is to consider 
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the flow to be inviscid. According to Sutton (ref. 4) the main features of the wind over 
the portion of a hill facing into the wind can be found from an inviscid solution. The in- 
viscid results should provide a good indication of the relative effect on the flow of vari- 
ous types of terrain features. A small perturbation technique wi l l  be used to solve the 
inviscid relations, and this provides a limit on how steep the hills can be for the anal- 
ysis to remain valid. For a two-dimensional ridge, all the flow must pass over the 
crest  of the ridge. For a hill, however, some of the flow passes around the sides and 
thus provides what is called the three-dimensional relief effect. This effect reduces the 
maximum flow acceleration, and for the same terrain cross-sectional profile it causes 
the perturbation method to be more accurate for the three-dimensional case than for two 
dimensions (ref. 5). 

In the perturbation theory the flow is determined by solving Laplace's equation for 
the velocity perturbation potential. Since this is a linear equation, superposition tech- 
niques can be used to build up solutions. Some solutions will  be obtained by using the 
method employed by Scorer (refs. 6 and 7) wherein the flow is first  obtained for a two- 
dimensional ridge. Then, results for oval mounds and circular hills can be obtained by 
superposing the ridges at various angles to the incident flow. Some solutions are also 
obtained by using Green's functions to solve the Laplace equation for the perturbation 
potential. The use of superposition also permits determining the effect of two adjacent 
hills as long as the second hill is not in a region where flow separation would be induced 
by the first hill thereby making the inviscid solution invalid. 

! 

ANALYSIS 

Small Perturbation Equations 

The flow across irregular terrain is idealized by assuming it to be incompressible 
and inviscid. The undisturbed flow is uniform and hence is irrotational; then, as a 
consequence of the inviscid assumption, the flow field remains irrotational everywhere. 
For irrotational flow the velocity components obey the relations 

. 
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(All symbols are defined in appendix A. ) These conditions are satisfied if there is a 
potential function Q such that 

For steady incompressible flow L e  continuity equation is 

Inserting equation (2) in equation (3) yields 

a 2 Q + a2Q a2a - - + - = o  
ax2 ay2 az 2 

so that the potential function is obtained by solving Laplace's equation. 

small perturbations are produced on the incident uniform velocity. Then 
The local variations in terrain height are assumed sufficiently small so that only 

1 u = u, + u' 

i v = v' 

w = w' 

Let the velocity potential be 

@(XY Y, 4 = u,x + d X Y  Y, 4 

where q(x, y, z) is the perturbation potential such that 

(4) 

(5) 
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Substituting equation (6) into equation (4) shows that the perturbation potential also satis- 
fies the Laplace equation 

At the surface of the ground the flow streamlines are tangent to the surface; there- 
fore, at the ground 

W' - v' - u, + U' _--- 
dx/dt dy/dt dz/dt 

(9) 

If the approximations of small perturbation theory (ref. 5) a r e  used, 

az w' = u, - 
ax 

at the surface of the ground (z = h) which gives the boundary condition for 'p as 

For small perturbation theory, a Taylor expansion of quantities away from the base 
plane z = 0 shows that to a first-order approximation the boundary condition can be ap- 
plied at the base plane z = 0. Hence, the boundary condition for equation (8) becomes 

. 

ah = u, - 
ax 

where h is the local terrain height. 
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Superposition of Ridges to Obtain Velocities for Circular and Oval Hills 

Flow normal to a two-dimensional ridge. - For flow across a two-dimensional ridge 
~ 

-_ 
as shown in figure 1 a solution for SQ can be tried in the form of a product solution 

-kz 40 = u,f(x)e 

where k 2 0 as the perturbation would not increase with height above the ground. Sub- 
stituting equation (12) into equation (8) gives the equation for f(x), 

which has the general solution 

f = A sin kx + B cos kx 

Then, from equation (12) 

= U,(A sin kx + B cos kx)e-kz 

Since this is valid for any k 2 0, the solutions can be superposed to give 

SQ = u, f [A(k)sin kx + B(k)cos kx] e-kz dk 
k=O 

Then by differentiating 

u f = & =  u, l=z k[A(k)cos kx - B(k)sin kx]e -kz dk 
ax 

wf = 3 = u 03 fz (-k)[A(k)sin lor + B(k)cos kx] e-kz dk 
az 

To obtain the equations of the streamlines, equations (15) are substituted into equation (9) 
to yield 

5 



dz {I + Lo k[A(k)cos kx - B(k)sin kx] emkz dk = 1 
(-k)[A(k)sin kx + B(k)cos kx) e-kz dk &-L 

This can be integrated to  obtain along any streamline 

k(k)cos kx - B(k)sin kx]e-& dk + zo 
z = &  

where zo has a different constant value along each streamline. 

that the boundary condition at the surface of the ground can be applied at the base plane 
z = 0 is used. The perturbation theory requires that the ground contour be smooth so 
that the effect of higher harmonics (large k) is small. 
correspond to the ground streamline, equation (16) yields 

To evaluate the coefficients A(k) and B(k) the small perturbation approximation 

Then if zo = 0 is allowed to 

h(x) = [A(k)cos kx - B(k)sin kx] dk 

For a specified h(x) the A(k) and B(k) can be found by expanding h(x) in a Fourier in- 
tegral (ref. 8): 

J m 

B(k) = - 1 [ h(f)sin k( d5 
(=-" 

If the same approximation of referring the ground surface to the base plane is used, 
equations (15) yield for a distance 6 above the ground 

u = u m p +  kb(k)cos kx - B(k)sin k ~ ] e - ~ '  dk) 

6 
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w = -u, k@(k)sin kx + B(k)cos h]e-k6 dk 

Now consider a characteristic ridge contour that has been used in the literature 
(refs. 6 and 7): 

where b is the value of x at the half-height of the ridge (fig. 1). The h(x) is an even 
function, so from equation (17) B(k) = 0, and the integration for A(k) yields 

(20) 
-kb A(k) = hmb e 

Then from equation (18a) the u becomes 

which integrates to 

At the peak of the ridge 

Undisturbed flow at 
the ridge w a s  along the 

x = 0, and at height 6 above the peak the velocity is 

U hm 1 - =  1 +- 

an angle to two-dimensional ridge. - In figure 1 the centerline of 
y-axis; now let it be at an angle y to the y-axis as shown in 

figure 2. If equation (19) is used, the height of the ridge at location (r, 0) is 

7 
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hm 1 + (i)2 1 + (;)2 cos2@ + 7 )  

The undisturbed velocity u, has a component u, sin y parallel to the ridge that is un- 
changed by the ridge. The component u, cos y normal to  the ridge is influenced by the 
ridge as given by equation (21). Then at (r, e) ,  adding the components in the x-direction 
gives 4 

Substituting for 5 yields 

2 2  u(r, e) = u, sin 2 y + u, cos’y (+ hmb + 6r - (e + y, 1) 
+ 6 )  + r cos (e  + y ) ]  

which simplifies to 

* = 1 + hmb  COS^^[[(^ (b + 6)2 - r 2 2  cos (e +-2/)- ] 
u, + 6 )  + r cos ( e  + y f l  

Flow across an oval __ mound. - Consider an oval mound as in figure 3 with its major 
axis at an angle w to the y-axis as shown. As discussed in reference 7 a superposi- 
tion of solutions for two-dimensional ridges at various y angles can be used to build up 
the solution for an oval mound. The oval shape is obtained by introducing an angular 
weighting factor +(y, w )  into the superposition. The height of the mound is found by 
using equation (23) as c1 

hIn 

8 
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A typical weighting function is 

where 

a = y - w - n  " < ( y - w )  
2 

a = y - w + 7 7  ( y - w ) < - -  B 

2 

Although the velocity distribution is a function of angle w,  the contour lines of constant 
ground elevation do not depend on w .  Hence, equation (25) is most conveniently eval- 
uated for o = 0. This yields 

hm 6 - (rr2 - 8) 
2 

K 

Results for the mound height were evaluated by numerical integration for various r/b 
and 0 and wi l l  be given later. 

nent ridges used in the superposition to  build up the oval mound contour. The b must 
now be related to a characteristic dimension of the mound. The characteristic dimen- 

in figure 3. This would be a known quantity from the hill geometry. Since w = 0 in 
equation (27), the locations along section A-A a r e  along the x-axis corresponding to 
0 = 0. Then, with h = hm/2 and r = ro, equation (27) gives 

The quantity b in equation (27) is the half-width at the half-height of all the compo- 

P sion wi l l  be taken as ro7 which is in the cross section A-A of the minor axis as shown 

9 



cos(p11/3;) d Y  

l+($ 

~ --. - 'J y=-(s/2) __ 

2 :os y 

. .  
2 6(n2 - 8) 

s 

The particular value for  r@ that satisfies this equation wil l  be given when numerical 

hill geometry, and hence is used to relate the results in equation (27) to the physical 
geometry. 

To obtain the flow across a mound having the orientation shown in figure 3, the ve- 
locity distribution in equation (24) is superposed by using the same superposition proce- 
dure as was  used in equation (25). The result is 

results are presented. This numerical value fixes the b for a ro given by the specific i, 

After subst"-lting equation (26) and integrating the denominator, equation (29) becomes 

At the top of the mound r = 0 and equation (30) becomes 

10 
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The integral in equation (31) w a s  evaluated numerically for the CP given by equation (26): 
some results for the peak velocity wi l l  be given later as a function of the angle of inci- 
dence w of the flow relative to the mound major axis. 

the weighting function d? = 1 and equation (25) becomes (note h is now only a function 
of r) 

'i 

Flow across a circular hill. - For the special case of a circular hill (figs. 4 and 5), 

This is integrated to give 

At h/hm = 1/2, r = ro so 1/2 = 1 which gives b = ro/fi. Then the con- 
tour of the circular hill is expressed in terms of ro, which would be known from the hill 
cross section, as follows: 

From equation (29) if + = 1 and r = 0 there is obtained at the top of the axisym- 
metric hill 

11 
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COS y d y  U - =  1+- 

um 

Integrating and substituting b = r0/@ give 

Analysis for Circular (Axismmetric) Hil ls  by U s e  of Green's Functions 

General relations. - The perturbation potential cp is governed by the Laplace equa- 
tion (eq. (8)) in the upper half space subject to the boundary condition that the normal 
derivative of cp be specified at the boundary z = 0 as given by equation (11). This is 
known as the Neumann boundary condition, and the solution for cp can be found from 
Green's fundamental solution as (ref. 9) 

where g is the Green's function for the Neumann problem. If g (from ref. 10) is in- 
serted, equation (34) becomes 

Then u' is found by differentiating with respect to x: 

i 
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A form that is a little more convenient for analytical integration is found by integrating 
by parts to yield 

1 

Of specific interest here is the u-velocity at a distance 6 above the peak of the hill (at 
x = y = 0): 

,( 

_ _ _ _ _ ~ ~ _ _  Analytical relations for  three hil l  contours. - Solutions w i l l  now be found for three 
different hill contours. To illustrate the Green's function technique in comparison with 
the previous analysis, the hill contour that w a s  obtained by superposition of ridges wi l l  
be considered (fig. 5): 

This is differentiated twice with respect to x and then substituted into equation (37). 
The results a r e  put into polar coordinates to yield 

I 

gR2 cos20 5/2 I R m d 0  u'(o,o,A) - -- 3hm J* J' 1 1/2 [ 1 

(R2 + A2)  (1 + 3 R 2 y I 2  (1 + 3R2) 
u* 28r0 

R=O 0=O 
b 

Integrating over 0 gives 

13 



2 If 1 + 3R is the square of 
u = u- + u’ then becomes 

a new variable of integration this can be integrated; the 

This is in agreement with equation (33). 
A second circular hill contour that wi l l  be considered is 

(39) 

This is of interest because it has the same profile that w a s  used for the two-dimensional 
ridge (eq. (19)), and the results using equation (40) will  provide a comparison between 
the flow acceleration effects by a two-dimensional ridge and a circular hill having the 
same contour. 

Equation (40) is differentiated twice with respect to x, and the results a r e  substi- 
tuted into equation (37). After putting the results into polar coordinates the 
perturbation above the peak of the hill is given by 

u’(0, 0, A)  =- hm 

u, ArO L- 
Integrating over O gives 

14 
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U'(O, 0, A)  - -- hm 1- 1/2[ 2.rr - 4aR2 ]RdEt 
uco 

=rO R=O (R2 + A 2 )  (1 + R")" (1 + R2) 

2 2  If R + A 
be integrated to yield 

equals the square of a new variable of integration, the previous equation can 

4 

u, I 

As a third example to determine the effect of hill contour, the following exponential 
shape wi l l  be examined (see fig. 5): 

where p2 = In 2 = 0.693.  Substituting into equation (37) yields, after placing the results 
in dimensionless polar coordinates, 

2a 

In a similar fashion to what was  done for the previous two contours, this is integrated to 
yield 

Some results from these relations wi l l  be given later. 
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Superposition of the Effect of Two Hills 

In figure 6 two hills a r e  shown, and a quantity of interest is the velocity augmenta- 
tion at the notch between the hills. The flow direction is normal to the line between the 
hill centers. Since the Laplace equation for the perturbation potential is linear, the per- 
turbation potential for  two hills can be found by adding the potentials for each of the in- 
dividual hills: 

Within the assumptions of small perturbation theory the surface of the combination of 
two hills is taken to be at the base plane (z = 0) as w a s  the case for a single hill. Then 
to obtain the perturbation at the location of interest (point N) in figure 6, the u' is ob- 
tained at z = 0 for  a single hill at a radius m/2 in the plane normal to  the direction of 
the flow. From equation (29) with r = m/2, 0 = 8/2, and 6 = 0, this is 

b2 - (7) 2 cos2(: + .> 
[.2 + (y)2 cosy; + .)] 2 

2 
COS y dy 

Using cos[(?r/2) + y] = -sin y and adding the effect of the two perturbations give at 
point N 

For a single hill for which equation (29) is valid there w a s  obtained b = ro/fi so that 

16 
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The perturbation velocity can then be written as 

The quantity I(m/ro) w a s  calculated numerically and results for  (ut/uco)(ro/hm) wi l l  be  
given later. 

As a second example to show the effect of superposing two hills, results wil l  be 
calculated for two adjacent exponential hills as described by equation (42). At the ground, 
z = 0, equation (36) gives the velocity perturbation as 

From equation (42) 

= e  h 

hm 
---=e 

so that 

Let = ph/ro, = p</ro, etc. ; the velocity perturbation then becomes 

17 



As shown in figure 6, the locations of interest for use in the superposition of two hills 
are along the y-axis (x = 0) which gives 

Transforming to polar coordinates gives 

2 1 (1 - 2R2 cos28)e-R R dR dB 
1/2 

(R2 - 2iR sin 8 + G2) uco IT 

(47) 

If the double integral is given by aG($), this is written as 

The analytical evaluation of G ( i )  is given in appendix B. 

y= m/2 @ = @/2)(m/ro)]. Then at the notch between the two hills equation (44) yields 
To superpose the effect of two hills the location of interest is at 

An expression for G along with numerical values wi l l  be given in appendix B, and the 
velocity perturbation wil l  be plotted in the form 

18 



RESULTS AND DISCUSSION 

Flow Across a Ridge 

The contour of the ridge as given by equation (19) is plotted in figure 7 for a few dif- 
ferent values of h,/b, the ratio of maximum height to the half-width of the ridge at 
half-height. From equation (22) the surface velocity at the peak of the hil l  is 

U=1+-  hm 
b Um 

so that the most gradual of the three ridges in figure 7 w i l l  give u/u, = 1.33 at the 
peak. For the most steep ridge shown, u/u, = 2 at the peak of the ridge, and since the 
velocity perturbation is not small the accuracy is questionable. 
ably satisfactory for the two other ridges shown with hm/b = 1/2 and 1/3. 

The accuracy is prob- 

Flow Across a Circular Hill  

The contours of three different circular hills a r e  shown in figure 5 for hm/ro = 0. 5.  
From equations (39), (41), and (43) the surface velocity at the peak of these hills is 

- = l + C -  U hm 

where the coefficient C is given in the following table for various hill contours: 

I 
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I Hil l  contour, 
__ - 

Coefficient, 
C 
. 

r 

v 3  - = 0.866 
2 

1I = 0.785 
4 

djah2- 
~ - 0.736 

2 

The largest C, which provides the largest velocity increase, corresponds to the 
profile with the steepest contour near the peak. 
where hm/ro = 0.5, the velocities at the peak a r e  1.37 to 1.43 t imes the undisturbed 
free stream velocity. Since these perturbations are not small compared to 1 the ques- 
tion arises as to whether results from small perturbation theory are meaningful for 
hills with hm/ro this large. To obtain an indication of the error ,  a rough comparison 
can be made with results for flow over ellipsoids (ref. 11). These results indicate that 
the small  perturbation theory is in e r ro r  only about 5 percent for h/ro = 1/3, so the 
e r ro r  for h/ro = 1/2 is probably acceptable. For hm/ro < 1/4 the theory should be 
quite accurate. 

The second contour in the table of C values is the same as the contour of the two- 
dimensional ridge considered previously. Comparing with equation (22) shows that at 
the peak the acceleration by the hill is 78. 5 percent of that for the ridge. 
is the "three-dimensional relief effect" and results from part  of the flow going around 
the hill rather than all passing over the crest  of the ridge. 

For  the contours shown in figure 5 

This difference 

Flow Across an Oval Mound 

The local height of an oval mound is given by equation (27) as a function of a dimen- 
sionless radial coordinate r/b and angle 8 as shown in the inset of figure 8. Contours 
were obtained by numerical integration of equation (27) and a r e  shown in figure 8 for 
various angles where 8 = 0 corresponds to the cross  section across  the most narrow 
part of the mound. From equation (28) the characteristic length ro is defined as the 
radius within the cross section 8 = 0 at which the mound height is one-half the maxi- 
mum height. 

20 

From figure 8 there is obtained (at 8 = 0 and h/h, = 1/2) ro/b = 1.22 so 



that b = 0. 820 ro. From the size of the actual mound, the ro is obtained at the half- 
height of the most narrow cross section; thus, the value of b is then known. For con- 
venience a second abscissa scale of r/ro is given in figure 8. Figure 9 shows the 
shapes of contours of equal height. The mound is approximately twice as long as it is 
wide. 

From equation (31) the surface velocity at the peak of the mound is 

The quantity in square brackets, which is equal to (ro/hm)(u'/um), w a s  evaluated nu- 
merically and is plotted in figure 10 as a function of the angle w which specifies the 
wind direction. When w = 0 the wind is blowing along the short axis of the mound and 
this provides the maximum velocity enhancement: 

U' hm 

u, rO 

- (W = 0) = 0.905 - 

As the wind shifts away from the direction along the short axis, the perturbation de- 
creases and reaches a minimum for w = 90' where 

U' 0 hm 

u, rO 

- (W = 90 ) = 0.315 - 

The contour for 0 = 0 in figure 8 is very close to that for the ridge in figure 7 and 

ridge or  hil l  is in all cases equal to a constant times the maximum height of the ground 
divided by the horizontal distance to the location of the ridge or hill half-height. 
constant is 1 for the ridge, 0.905 for flow parallel to the shorter axis of the oval 
mound, and 0.785 for the circular hill. 

the l/[l + (r/ro) 2 ]hill contour in figure 5. The velocity perturbation at the peak of the 

The 

Flow In Notch Between Two Adjacent Hills 

A possible location for wind velocity enhancement is at the notch between two hills. 
This geometry is illustrated in figure 6 and the location of interest is at point N. The 
wind direction is normal to the line connecting the centers of the two hills. The coor- 
dinate 1 is along this line and extends from the symmetry plane of the combined geom- 

21 
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etry of the two hills. The cross section A-A in figure 6(b) is given in figures l l(b) 
and (c) and 12(b) for two hill contours having various spacings apart. 

Figure 11 deals with the superposition of hills having the contour 

Part (a) of the figure shows the hill contour for three values of hm/ro. As shown by 
figure 6, m is the spacing between the hills. Adding the heights of the hills for two dif- 
ferent spacings yields parts (b) and (c) of figure 11. These two parts show the cross 
section A-A as shown in figure 6. 
having the shape 

Figure 12(a) shows the contours of two single hills 

h 

The cross section when two of these hills a r e  superposed is shown in figure 12(b). 
For the hill contour in figure 11 the surface velocity perturbation at point N in the 

notch between the hills is given by @ I where I is the quantity in square brackets in 
equation (45). This has been evaluated numerically and is plotted in figure 13 as a func- 
tion of spacing between the hills. For the hills shown in figure 12 the velocity perturba- 
tion at the ground midway between the hills is given by equation (49). This has been 
evaluated in appendix B and is plotted as the dashed line in figure 13. 

Figure 13 shows how the velocity perturbation at the notch between the hills dimin- 
ishes as the spacing between the centers of the two hills is increased. In the vicinity of 
r/ro = 2 the hill height in figure 12 decreases much more rapidly than for the contour 
in figure 11. As m/ro is increased in figure 13, this accounts for the rapid drop in the 
dashed curve as compared with the solid curve. The results show that for a typical case 
of hills with hm/ro = 1 spaced at m/ro = 4 the velocity perturbation is about 20 percent 
of the undisturbed velocity. For the same spacing, if the hill height is reduced in half so 
that hm/ro = 1/2, then the perturbation is reduced to  about 10 percent. 

CONCLUSIONS 

Potential flow solutions have been obtained for wind passing over some forms of 
ground topography that can provide a localized velocity increase. 
are &symmetric hills, an oval hill, a two-dimensional ridge, and the notch between two 

The geometries studied 
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circular hills. 
ities for windmill siting. 

characteristic hill or ridge dimensions are the maximum height hm and the horizontal 
distance from the center line or center plane to the location of the half-height; this  hori- 
zontal distance is ro for a hill and b for a ridge. A quantity of interest is the velocity 
perturbation u' at the ground at the peak of the hill or ridge where the maximum veloc- 
ity increase occurs from the uniform incident velocity. The velocity perturbation w a s  
found to equal &/b for the ridge shape that was  analyzed, and it w a s  equal to about 
0. 8 hm/ro for a hill. The coefficient of 0. 8 for the hill is an average value, as it de- 
pends somewhat on the specific hill shape. A range of 0.74 to 0.87 w a s  found for some 
typical hill contours. Comparing an axisymmetric hill with a ridge having the same con- 
tour showed that the increase of velocity at the peak of the hill w a s  78.5 percent of that 
for the ridge. 
passes around the hill rather than all passing over the crest  as is the case for a two- 
dimensional ridge. 

A superposition of ridges was  used to obtain the flow over an elongated mound with 
oval shaped contours of constant height. Calculations were made showing the effect of 
the flow approaching the mound from various directions relative to  the mound major 
axis. When the flow w a s  along the short dimension of the mound the behavior w a s  close 
to that across a two-dimensional ridge. A much smaller effect w a s  produced when the 
flow w a s  along the long axis of the mound. This would be expected as the flow is unaf- 
fected when moving parallel to a two-dimensional ridge. 

Increases of 20 percent a r e  possible for hill contours of reasonable shape. Larger in- 
creases can be obtained with hills having greater slopes, but these cannot be calculated 
with the small perturbation theory used here. 

These are possible terrain features to provide locally increased veloc- 

The hills and the ridge have cross sections typical of those found naturally. The 

This is the three-dimensional relief effect wherein some of the flow 

Superposition w a s  used to obtain the velocity increase at the notch between two hills. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 1, 1976, 
506-24. 
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APPENDIX A 

SYMBOLS 

A? B 
b 

G 

g 

h 

hm 
I 

k 

2 

m 

R 

r 

rO 

t 

U? V? w 
u', v', w' 

UCO 

x, Y? 

CY 

P 2  

coefficients that a r e  functions of k 

value of x at half-height of a ridge 

integral defined by eqs. (47) and (48) 

Green's function for Neumann problem 

local height 

maximum height 

integral defined by eqs. (45) and (46) 

number 1 0 

coordinate along cross section of two hills (fig. 6) 

spacing between two hills (fig. 6) 

dim ens ionless coordinate, r/r 

radial coordinate 

radial location at which hill is at half-height 

time 

velocity components in x-, y-, z-directions 

velocity component perturbations 

undisturbed velocity approaching irregular terrain 

rectangular coordinates 

dummy variable in eq. (26) 

constant equal to In 2 = 0.693 

angle of ridge line (fig. 2) 

height above peak of hill 

dimensionless coordinate 6/ro 

angular coordinate (see figs. 2 or 3) 

coordinate normal to ridge line (fig. 2) 

dummy variables in the x-, y-, and z-directions 

velocity potential function 



cp perturbation velocity potential function 

w 

Superscript: 

angle of major axis of mound (see fig. 3) 

* variable multiplied by p/ro 
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APPENDIX B 

EVALUATION OF INTEGRAL G(f)a 

From equation (47) the integral G(f) is 

2 2 2 -R 

1/2 
dR 1 - 2R cos O)e 

(R2 - 2iR sin 0 + i2) 

In rectangular coordinates, as given by the relation preceding equation (47), this is equal 
to  

* *  
Let a new variable be y = q - y to give 

Changing to polar coordinates where r2 = z2 + y2 and q = tan-'(y/E) yields 

=i Ja 12" (1 - 2r  2 cos 2 q ) e  -r2-f2 e -2rf s i n q  dq 
IT r = O  q=o 

"This integration w a s  carried out by William F. Ford of NASA, Lewis Research 
Center. 

26 



I 

Since G(9) = G(-?), because the sin ,q is integrated over an equal range-of positive 
and negative values, the factor e -2ry sin 
+ e- 2ry sin 40) = cosh(2rG sin q) = cos(2irf sin q) so that G(f) becomes 

can be replaced by (1/2)(e 2ry sin q 

cos(2iri  sin q)dr  dq 
B 

From the definite integral tables (ref. 12, p. 143), 

2 2  
[m e - r2  cos(2iri sin q)dr = fi e$ sin q 

2 
Jr=o 

The G($) in equation (Bl) is then 

q( l  - 2 i 2  cos2q)dq 1 G(?) = - 
2 G  

The double angle formulas a r e  used that cos 2 8 = (1/2)(1 + cos p )  and sin 2 8 = 

(1/2)(1 - cos p )  where p = 28 and the G ( i )  reduces to 

ap -( 1/2)?2COS p - cos p - - 1 - 2  y (1 - cos 2p) e 1 -( 1/2)f2 

2 f i  2 
G(?) = e 

From reference 12, page 190, equation (B2) is integrated to give 

where yo = (1/2)?. Using the following identities in equation (B3) 
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gives G(:) in the final form 

Some values of G ( i )  evaluated from equation (B4) are 
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Figure 1. -Two-dimensional ridge wi th  local height h(x) in wind wi th  
un i form velocity u,. 

Centerline 
of ridge- 

'/ 

- 
Figure 2. - Coordinates looking down on two-dimensional 

ridge at an angle to the  wind. 

t 

t w  

Figure 4. - Circular hill having lma l  height h(x,y) 
in wind wi th  un i form incident velocity, u,. 

Z Y  Section A-A 

oval mound 

A 

- x  

Figure 3. - Coordinates viewing oval mound from above, and 
geometry of cross section along minor  axis of mound. 

(a) Hill contour showing geometric quantities. 

hlh, 

1.0- ----- 
.a- - 
.6- - - exp(-0.693R2) 

,E 

2.0 1.8 1.6 1.4 1.2 1.0 .8 .6 .4  . 2  0 
R = r ho  

(b) Three different hill contours, h,/ ro = 0.5. 

Figure 5. - Geometry for  c i rcu lar  hill. 
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(a) Cross section normal to flow. 

.-) Flow .8- 
.6- 
.4- 

,,-Location of interest, N 

A A 

(b) Coordinates looking down on hil ls. 

Figure 6. - Geometry for flow across two superposed hil ls. 

h,lb I 

x l  h, 
-1 

Figure 7. - Contours of two-dimensional ridge, h (x ) l  h, = [I + (xlbI2] . 
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r l  b 

3 rol b 2 
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0 

Figure 8. 

I -  
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I 
3 

I 
2 

I 
1 

rl ro 

Height contours of oval mound along radial directions at various angles from the minor  axis. 
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h3 
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L 
- 

1. O r  t-? 

Angle of major axis away from normal to direction of wind, w 

Figure 10. - Velocity perturbation above peak of oval mound for mound at various angles to wind. 

rl ro 

Figure 9. - Contours of constant height for oval 
mound. 
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1 1 i i  

I 
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I 4 
0 1 2 3 4 5 6 7 8 

r l  h, 

(a) Contours of single hills. 

llh, 

(b) Superposition of two hills, m l  ro = 4. 

I . I -1- I I 1 -_l I l l 1  I 
0 1 2 3 4 5 6 7 8 

Zlh, 

(cl Superposition of two hills, ml  ro = 8. 
2 -1/2 

Figure 11. - Superposition of two hills each having contour hl h, = [l + 3(r/r0) ] . 

J Z  E1:p&\, hm/ ro 

, , - 
.4 

I I 1  Id 
0 1 2 3 4 5 6 7 8 

r l  h, 

(a) Contours of single hills. 

llh, 

(bl Superposition of two hills, m l  ro = 4. 

Figure 12. - Superposition of two hills each having contour hlh, = exp [-(In 2Nrl r0)*]. 
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Single hill contour, 
h l  h, 

- 
.l- 
- 

.W- 

I I 
6 8 10 12 
I ‘J .02 I 

0 2 4 
m l  ro 

Figure 13. -Velocity perturbation at ground at notch midway between 
two circular hills as function of spacing between hills. 
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