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CONSIDERATIONS FOR THE APPLICATION OF FINITE-ELEMENT BEAM MODELING

TO VIBRATION ANALYSIS OF FLIGHT VEHICLE STRUCTURES*

Raymond G, Kvaternik

Langley Research Center

SUMMARY

The manner of representing a flight vehitle structure as an assembly of
beam, spring, and rigid-body components for vibration enalysis is described.
The development is couched in terms of a substructures methodology which is
based on the finite-element stitfness method. The particular manner of employ-
ing beam, spring, and rigid-body components to model such items as wing struc-
tures, external stores, pylons supporting engines or external stores, and
sprung masses associated with launch vehicle fuel slosh is described by means
of several simple qualitative examples. A detailed numerical example consist-
ing of a tilt-retor VIOL aircraft is included to provide a unified illustration
of the procedure for representing a structure as an equivalent system of beams,
springs, and rigid bodies, the manner of forming the substructure mass and
stiffness matrices, and the mechanics of writing the equations of constraint
which enforce deflection compatibility at the junctions of the substructures,
Since many structures, or selected components of structures, can be represented
in-this manner for vibration analysis, the modeling cencepts described and their
application'in the numericel exanmple shown should prove generally useful to the

,dynamicist.

¥The information presented herein is based on a portion of a thesis
entitled "Studies in Tilt-Rotor VTOL Aircraft Aercelasticity," which was sub~
mitted to Case Western Reserve University, Cleveland, Ohio, in partial fulfill-
ment of the requirements for the degree of Doctor in Philosophy in Engineering
Mechanics, June 1973.
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INTRODUCTION

Customary engineering practice in dynamic analyses of complex aerospace
structures consists of introducing some type of physical idealization to
simplify the structure, establishing a finite-element mathematical model of
the idealized system, and solving the resuitant equations of motion. Finite-
element models required for static analyses are usually quite complex in order
to predict the stresses satisfactorily. TFor dynamic analyses, however, simpler
models based on the‘use of (one-dimensional) beam elements to represent éither
the entire structure or selected components are often adequate (refs. 1 to ll).

A self-contained treatment of the practical aspects of applying finite-
element beam modeling‘techniques in dynami~ analyses is, for the most part,
either lacking in the literature or of a fragmentary nature. The purpose of
this report is to present a unified treatment of several aspects of finite-
element beam modeling as might be applied to vibration analyses of flight
venhicle structures. Herein, beam modeling is used in the general sense to
include the use of beam, spring, and rigid-body components. The discussion is
couched in terms of the substructures approach to vibration analysis as devel-
oped in reference 12. Several simpie gqualitative examples illustrating the
manner of employing beams, springs, and rigid bodies to model such items as
wing structures, external stores, pylons supéorting engines or stores, and
sprung masses associated with launch vehicle‘fuel slosh are given. A detailed
numerical example consisting of a tilt-rotor VTOL airecraft structure is employed
to illustraté the manner of répresenting s structure as an equivalent system of
beam, spring, and rigid—bodyVSubstructures, the formabion of the substructure

mass and stiffness matrices, and the mechanics of writing the eguations of



constraint which enforce deflection compatibility at the juncticns of the sub-
structures. The direct method of vibration analysis as described in refer-
ence 12 and implemented in a special-purpose computer program designated SUDAN
(SUbstructuring in Direct ANalyses) is used to solve for the modes and
frequencies.

The present report relies on referencé 12 for a compleﬁe understanding of
the theoretical basis of the procedures implemented in the SUDAN program. For
this reason it is recommended that reference 12 be used in conjunction with

this report.



SYMBOLS

submatrices of [K]B
extensional rigidity of ith beam element

submatrix of [K].; also matrix of coefficients of constraint
equations expressed in discrete physical coordinates

offset of ith mass from beam elastic axis

flexural rigidity of ith beam element

torsional rigidity of ith beam element

lumped torsional inertia at 1th beam station

components of rigid body inertia tensor (See eq. 15.)
composite matrix containing free-body stiffness matrices of
substructures as submatrices on the principal diagonal

stiffness matrix for beam bending

stiffness matrix for beam-spring

stiffness matrix for beam torsion

matrix of additional spring stiffness terms

stiffness matrix for beam extension

corposite matrix containing the free-body modal stiffness
matrices of substructures as submatrices on the principal
diagonal

stiffness matrix of ith substructure regarded as a free-body

longitudinal and lateral hub flapping spring rates

lengths; length of ith beam element

mass of rigid body component

composite matrix containing free-body mass matrices  of substruc- -
tures as submatrices on the principal diagonal :
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lumped mass at ith beam station

mass matrix for beam bending

mass matrix for beam torsion

mass matrix for beam extension

composite matrix containing the free-body modal mass matrices of
substructures as submatrices on the principal diagonal
beam + rigid body mass matrix

coupled bending-torsion mass matrix

mass matrix of wing carry-through structure

mass matrix of rotor

mass matrix of pylon

mass matrix of rigid body

mass matrix of ith substructure regarded as a free body

column matrix of discrete, physical coordinates for ith sub-
structure regarded as a free body

generalized coordinate

- jth.-nodal degree of freedom

column matrix containing the discrete, physical coordinates of
all the substructures

connection coordinate transformation matrices
lumped rotary inertia at ith beam station
rotary inertia of rigid body about its center of gravity

kinetic energy




T, kinetic energy of ith wing section

[U] uncoupled system modal expansion matrix containing substructure
modal subsets on principal diagonal

u extensional displacement of beam

u; extensional displacement of beam at ith station

v potential energy

w bending displacement of beam

v, bending displacement of beam at ith station

{x} column vector of junction coordinates, r = 1, 2, , . ., 15
r

{x}®° column vector of auxiliary coordinates, s = i, ii, . . ., vii

X,¥ 52 displacements

X.3¥ 02, connection coordinate displacements

OyB,Y rotations

ar’Br’Yr connection coordinate rotations

{X}r proprotor disc coordinate vector

6 bending slope of peam

Gc 'pylon tilt angle forward from vertical position

Gi ‘ angles; bending slope of beam at ith station

{g} column matrix containing all substructure modal coordinates

o twist of beam at ith station

Physical quantities in this report'are given in the International System of

Units (SI). The calculations were made in Customary Units.

()Y



-

SUBSTRUCTURES APPROACH TO DYNAMIC ANALYSIS

Three distinct steps may be identified with dynamic analyses based on a
substructures approach: partitioning into substructures, discretization of the
substructures, and assembly of the mathematical models of the substructures,
Structural partitioning consists of dividing the structure into a collection of
smaller components or substrucﬁures vhich can be more easily handled. An illus-
tration of such a partitioning is depicted in Figure 1. Discretization involves
establishing a finite-element mathematical model of each isolated substructure
based on the known inertial and elastic properties of the substructures. Detailed
considerations relating to finite-element modeling are available in several
books. (See, for example, references 13 to 17.) Application of the finite-
element stiffness matrix method to each substructure regarded as g free body
leads to a discrete mass matrix

[m], a discrete stiffness matrix [k], and a’

vector of discrete coordinates# {p} for each substructure. The free vibration
equations of motion corresponding to each substructure can be collected into one

partitioned diagonal matrix equation having the uncoupled form

' = ~ r = N ~
[m](l) ( {p}l [k](l) ({‘p}(l) r{o}(l)
[n] () 12 [x¢2) (p) ()f®
(1)
< + = ‘
(ns) +1(NS) Ik (ns) { }(NS) {0}(Ns)

*Discrete coordinates define the translations and rotations at & set of
discrete points. ‘ '



where NS is equal to the number of substructures into which the structure has
been divided. For notational convenience equation 1 is written in the compact

form
[M] {Z} + [X] {z} = {0} (2)

For the substructures shown in Figure 1, for example, the composite matrices
[M] and [K] appearing in equation 2 each would have the form given diagram-
matically in Figure 2. ZEach block in Figure 2 represents the mass or stiffness
matrix appropriate to a substructure. The ordering of the submatrices within
[4] and [K], though required to be consistent, is arbitrary. For component

mode synthesig the modal equivalent of equation 2 is
[H] {E} + [K1 {£} = {0} (3)

where [M] and [$K] are the composite matrices containing the substructure
modal mass and stiffness matrices as submatrices on the principal diagonal.

A consequence of any subsfructuring procedure is the introduction of coor-
dinates which are not generalized coordinates but are’felated by equations of
‘constraint which must be imposed to restore geometric compatibility at the
interfaces of the substructures. Since the matrices {M] and [K] in equa-
tion 2 and [UM] and [$K] in equation 3 are established on the basis of such
a substfucturing proéedure, neithef the coordinates forming the vector {z} nor
'thosé forming tﬁe vector {&} are independent. kThe dependency eqpatibns relat-

ing the various discrete coordinates in {z} can be put into the matrix form

[c] {z} = {0} DR R (k)



and those relating the various modal coordinates in {&} can be put into the

form
[c] [u] {&} = {0} (5)

where [C] is a constant matrix depending solely on the geometric cenfiguration
of the interfaces and [U] is the uncoupled system modal expansion matrix. A
set of independent coordinates consistent with the appropriste equations of con~-
straint must be established. Usual practice when dealing with equations of

constraint (see ref. 18, for example) is to select certain of the coordinates

straint equations as simultaneous equations., A different approach to establish-
ing independent coordinates in the presence of equations of constraint is an
algorithm (ref. 19) which is based on solving an eigenvalue problem associated
with a symmetric matrix formed from the coefficients of the constraint equations.

The basis of these procedures is summarized in reference 12,
BEAM MODELING OF SUBSTRUCTURES

General Considerations

Since the substructures are treated as distinct and separate components in
& substructuring methodology, their structural Properties are most converniently
défined relative to axes local to each component. The specification of the
mass and étiffness matrices corresponding to each of the three types of struc-~
tural membefs employed in the beam modeling of a structure is the subject of

the following subsections..



Substructures treated as beams.- The elastic properties of substructures

treated as beams are taken to be defined in terms of the distribution of
flexural, torsional, and extensional stiffness (EI, GJ, and AE, respectively)
along a theoretically defined elastic axis. The continuous distortion of the
beam in extension, torsion, and bending in two perpendicular planes is approxi-
mated by specifying appropriate deflections and rotations at a number of dis-
crete points or stations along the elastic axis of the beam. A beam segment or
element is defined to be the length between two such stations, The stiffness
of each element is assumed to be constant and given by the average value of the
stiffnesses at the two adjacent stations. The distributed mass of the beam is
discretized by replacing the distributed mass within mean locations on either
side of the stations established by statically equivalent concentrated masses
at each of the stations along the beam. In general, each mass has three com-
ponents of translational inertia and three components of rotational inertia.
Mass stabic unbalance about the local elastic axis is also preserved.

The mass and stiffness matfices of an unrestrained, arbitrarily oriented
beam element are each of order 12 % 12, three translational and three rotational
degrees of freedom being associated with each of its two ends., If the local
coordinate axes are chosen to coincide with the principal axes of the cross
section, the 12 X 12 stiffness matrix can be expressed in terms of uncoupled
L x 4 and 2 X 2 submatrices located on the principal diagonal (ref. 13). A
similar partitioning is possible for the mass matrix if‘the centers of gravity
of the sectional masses are located on tﬁe elastic axis of the beam. In general,
however, the sectional centers of gravity of the original component will not lie
along its elastic axis, This will lead to additional, off-diagonal , mass terms

which will couple bending and torsion and/or bending and extensional motion.

10
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It will be assumed that the sectional centerg of gravity lie on the elastic
axis for the present and later in the report it will be shown how to account
for any mass coupling terms. kThe form of these submatrices for a beam sub-
structure is shown below for the two-element beam shown in figure 3. |

Beam bending.- The stiffness matrix for vertical bending is put into the

partitioned form:

w 3]
[A] [B] W
[x]; = -—- (6)
317 | [a] i 9

where, for a beam modeled using two elements,

Wl we W3
12E1 12ET
1 1
- u W
13 13 1
1 1
12BI, 12EI, 12BI 12ET (1)
1 1 2 2
(Al = - ——t — - Vi
13 L3 L2 L3 e
1 1 2 2
_ lemn 1281, . s
o 3 3 3 e
; 2 2
S vnasnmaind
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[B] =

(cl=

The beﬁding displacements and slopes have each been
in the order shown in equation 6 for convenience in
Extension to additional elements is apparent in the

[E], and [C]. The corresponding inertia matrix is

grouped together and placed
their computer implementation.

distinctive forms of



—— - ——— =] |- (10)

RI 63

lw

where the matrix elements not shown are zero. Similar matrix expressions des-
cribe lateral bending.

Beam torsion: The torsional stiffness matrix is giyen by

¢ 4 4
pr-~ ) ‘
GJ GJ ]
- IS 0 ¢
Ll Ll 1
o (11)
T Ll ,Ll L2 L2 2
L2 . ,LE 3
- p—

and the torsional inertia matrix by

43
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Extension to more elements is obvious.

Beam extension: The stiffness matrix describing extensional (axial)

deformation has the form

ul \12 u3
— :
- i 0
Ll Ll
T I U0 S
B L L L L,
0 T T T
2 2
and the corresponding inertisa matrix is
n
Y Y T3
e —
M !
D{]E= M, u,
4 fu
M3 3

Again, the extension to additional elements is obvious.

1)

(12)

(14)



Substructures treated as springs.- In many instances actual springs may

comprise some of the components of a structure or members may be treated as
one- or two-degree-of-freedom springs depending on whether they have one end
tied to ground or both ends free. These springs are defined vy 1 X 1 or 2 X 2
stiffness matrices having spring constants as matrix elements and associated
1 X1 or 2 X 2 inertia matrices which are null (zero).

When modeling short structural components as beams it is sometimes con-
venient to account for their elastic characteristics in the definition of the
substructure but to inclﬁde their inertial properties with adjacent components.
A massless, uniform beam segment is employed for this purpose, Since only the
elastic properties of this beam segment are considered it has the character of
a’spring and it seems appropriate to include its déspription'here. For descrip-
tive purposes this massless beanm segﬁent‘will be referred to as a "beam~spring"
" herein. The 12 X 12 stiffness matrix for the beam-spring having the coordinate
ordering shown in figure 4 has the form given in figufe 5. The corresponding

inertia matrix is taken to be null.

Substructures treated as rigid beodies.- Components such as ordnance,
external fuel tanks, engine/nacelle combinastions, etc., can often be trecated as
rigid in dynamic analyses. The inertia matrices of such rigid bodies with

respect to local body axes at the center of gravity have the general form

15



x Y z a B Y
~ - i ~
M ' b.d
. L
b
M i y
[}
M Z
[M]RB = --.--op--.-----.1.-9----'—..-..---.- (15)
v I I I a
'V Txx Txy xz
HE I I B
Pyx Ty Ty
[ ]
I
o v: ZX Izy Iz%‘ Y

where the elements not shown are zero. The corresponding stiffness matrices
are null since a rigid body has no st;ain energy associated with,its motion.

Oftentimes, while it may be necessary to account for the translational or
rotational rigid-body motion of a beam substructure‘in some direction, the cor~
responding deformation can be neglected. This situation is easily accommodated
by this rigid-body component.

Once the mass and_stiffness'matricgs fer the substructureskhaveibeen
determined, the mass and stiffness maﬁricéswaQIfhe complete stfucture are given
by the composite matrices formed by locating the substructure matrices along the
pfincipal diagonal. These composite matrices are denoted [M] and [KI,
respectively. For the ﬁstick"’model'shown in figure 6, for example, [M] and
[E] would have the form shown in figure T. It should be noted that the stick
model of figure 6 and the particular freedoms indicated in figureiT are appropri-—
ate to’a symmetric vibration analysis. = Each block in figure T corresponds to a
submatrix, The ordering of these submatrices within the larger substructurek'

submatrices (indicated by braces) and the ordering of substructure submatrices

16



within [M] and [K] must be compatible but is otherwise arbitrary. Since the
mass and stiffness matrices for each substructure are generated independently,
no inter-substructure coupling exists in [M] or [K]. However, intra-
substructure coupling (i.e., coupling between submatrices within a substructure
submatrix through off-diagonal terms) can exist. Situations in which such

coupling arises will now be discussed.

'Specific Considerations

If the sectional centers of gravity of the lumped masses for the beam sub-

- struetures do nct fall on the elastiq axis, there will arise mass static unbal-
ance terms which will couple two or more of the blocks in the mags matrix for
the beam substructure. For example, if the sectipnal centers of gravity of the
wing or tail surfaces of the airplane in figure 6 were displaced from their
elastic axes in the plane of the'gufface the mass static unbalance terms would
appear outside the block_diagonal areas indicated in figure 7 and couple the
vertical bending and torsion submatrices in the matrices for the wing or tail
substructures in [M]. Mass coupling terms of this typerwill also occur if a
rigid body component is not treated as & unique substructure (as discussed
earlier) but has its nass matrix‘combined with the mass matrix of the beam com-
ponent to which it is attached, If, for example, the main landing gear éssembly
of the’aircraft shown in figure 6’were tfeated as a rigid mass and its inertial
properties combined with the forward~fuselége beam, the vertical bending and

axial rigid body submatrices of the forward fuselage beam substructure

v p—rr——

in [ﬁj‘ would be coupled.* Coupling terms would also arise within the vertical

¥Por an anti-symmetric analysis the lateral bending and torsion blocks of
the substructure would be coupled.

17



bending block, leading to a non-diagonal mass matrix for beam bending. Inter-
and intra-substructure coupling terms arise in the stiffness matrix of the
partitioned structure, [Ej, when the stiffness characteristics of springs
which are not treated as substructures are combined with the stiffness matrices
of members to which they are attached rather than treated as separate substruc-
tures. Thése aspects, as well as others, are elucidated below in several

simple qualitative examples.

Treatment of mass static unbalance,- Consider the sectionalized wing plan~
form shown in figure 8. The section (lumped) masses, bending inertias, and
torsional inertias (about the c.g.) are denoted by M., RI,, and I respec~
tively. The perpendicular distance between the section c.g. locations (assumed
to be in the wing chord plane) and the Qihg elastié axis are denoted by e, .
The kinetic energy of each section, Ti’ expressed in terms of displacements
and rotations of the elastic axis station, has the form indicated at the bottom

of figure 8, Substituting this expression into Lagrange's equation

a [sT\  av _
dt(5§> T 9q 0 (16)

and pérforming the éppropriate differentiavions lesads to the coupled bending-
torsion mass matrix shown in figure 9. Assuming figure 8 is appropriate to the
wing of the aircraft in figure 6, then [M] has the form shown in figure 7.

Tﬁe first two blocks of substructure #4 would be given by twice the mass matrix
of figure 9; ’If the sectionazl center 6fygravities were alsc displaced vertically
ffom the wing elastic axis (i.e., ﬁot'in'the'wing chord plane),additional cbupl~
‘ing terms would arise and‘the‘vertical bending;'torsion, and fore-and-aft

bending blocks of substructure #4 would be coupled.

18



Alternative treatment of rigid bodies.~ As an alternative to treating =

rigid body as a substructure, the inertial properties of the rigid body (total
mass lumped at the c.g. and moments and products of inertia relative to axes
fixed in the body at the c.g.) can be combined with the inertia matrix of the
elastic component to which it is attached. This treatment has the advantage of
not ékplicitly introducing the degrees of freedom associated with the rigid
body into the problem.

Rigid attachment: If the rigid body is rigidly attached to an elastic sub-
structure, the procedure consists in>modifying the kinetic energy expression for
the substructure to include the effects Qf the concentrated mass, inertia, and
static unbalance about its point of attachment. For example, consider the
situation depicted in figure 10. Suppose one wishes to combine the inertial
properties of the center-line fuel tank, regarded as a rigid body, with the
inertia matrix of the fuselage beam by regarding the tank as rigidly connected
to the nth fuselage beam station. Assume that each fuselage mass has both
vertical bending and longitudinal degrees of freedom. If the principal inertia
axes of the fuel tank are parallel to the principél geonetric axes of the fuse-
lage beam the kinetic energy of the tank expressed in terms of the motion at
the ’nth mass station on the beam has the form given at the bottom of figure 10.
Substituting this expression into Lagrange's equation gives the matrix of addi-
tional terms which must be added to the méss matrix (assumed to be diagonal) for
the fuselage beam. The final mass matrix is given in figure 11,

Flexible attachment: If the fuel tank of figure 10 were attached to the
fuselage beam through a flexible member which could be treated as a spring sub-

structure the inertia properties of the tank could be combined with'thé (null)

19



inertia matrix of the spring substructure using a procedure similar to that
described directly above.

Alternative treatment of springs.- For convenience, springs can be divided

into those which have one end tied to ground (one-degree~of-freedom springs)
and those which have boﬁh ends "free" (two-degree-of-freedom springs) in the
sense that while both ends are attached to some component, neither end is tied
to ground.

Springs having one end tied to ground: If the spring attachment point on
the structure is on the elastic éxis at a point identified as a degree of free—
dom, the spring coustgnt(s) can be simply added to the appropriate diagonal
term(s) of the stiffness matrix of the component, If the point of attachment is
on the elastic axis but not at a peint jdentified as a degree of freedom, coupling
will occur. In the latter case it is sometimes convenient to introduce an aux-
iliary massless station at the spring attachment point. Similar considerations
apply to the case where the spring is connectéd to the elastic axis through a

’rigid offset, These situations are depicted in figure 12a. The general form of
the additional stiffness terms due to springs attached to the elastic axis at a
station identified as a degree of freedom is indicacedkin‘figure i3a.

Free-free springs: The spring constants of springs which have neither end
tied to ground, such as given in figure 12b, can be combined with the stiffness
matrices of the substructures‘to which they are attached by writing the pdtential
energy of the springs in terms of coordinates at the points of attachment. The
general form of‘the additional stiffness ﬁerms due to the spring coupling of
figure 12b is shown in figure 13b, A specific illustration of the use of this
expedient in the realm of launch vehicle dyﬁamics may be given with the aid of

figure 1h.
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In dynamic analyses of launch vehicles the dynamic effects of sloshing
propellants are usually included by introducing a dynamically equivalent mechani-
cal analogy, composed of fixed and oscillating masses connected to the tank by
springs or pendulums, to account for each importantkvibration mode of the liquid
~ as a degree of freedom (ref. 20). This equivalent lumped~-parameter mathematical
model can then be combined with appropriate discrete-element representations for
other components cof the vehicle. A spring-mass analogy is shown in figure 1k.
One such spring-mass assembly is provided to represent the dynamic effects of
sloshing accompanying verbical bending (translation and rotation) and longitudi-
nél oscillation. TFor illustrative simplicity, all three sloshing masses are
‘taken to be attached to the szme (nth) besm station. The non-sloshing portion
of the fluid would simply be combined with the beam mass at the nth station
of the beam.  The potential energy of the springs, expressed in terms of the

deflections of the nth beanm station (wn, 8

" un> and the deflections of the
slosh masses (w, 9, u), is given by V in the figure. Substituting this
expression into Lagrange's equation leads to the matrix [AK] shown in fig-

ure 15. [AK] is the matrix of spring stiffness terms which must te added to

the stiffness matrix for the beam.
TLLUSTRATIVE EXAMPLE

An example illustrating the manner of modeling an aircraft structuré using
beam, spring, and rigid body components, the manner of formingkthe substructure
mass and stiffness matrides, and the mechaﬁics of writing the equations of con-
straint for a structural configuration of some engineering complexity is.
pfesented in this section., The subject COnfiguration is the tilt-rotor VIOL

aircraft design shown in figure 16, It should be emphasized that the
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idealization of a complete aircraft as a simple "stick" model using & beam~type
representation for all the structural components should be applied with engle-
neering judgement., Such a éimplification may be inadequate to account for the
influence of such things as large structural cutouts in the airframe (e.g.,
doorways) and highly redundant structural components (e.g., wing carry-through
box). The intent of the following example is solely to provide an illustration
of the practical aspects of the application of beam modeling which can be

readily adapted to other configurations.

Beam Model Representation of Aircraft

- The subject aircraft is depicted in silhouette form in figure 17 along with
the idealized model established using the Beam, spring, and rigid-body compo-
nents described above. The fuselage, wing, and empennage structures are
replaced by non~uniform beams lying aslong the theoretical elastic axes of the
respective components. Since the fuselage elastic axis has two changes in slope,
three beams are used to represent the fuselage structure. The root ends of the
wing and vertical tail beams are located at the periphery of fuselage cross-
section. The wing carry—thfough structure joining the root ends of the wings
is idealized as a beam-spring, its (rigid-body) inertial properties being com-
bined with the inertia matrix of the second fuselage beam. The geometric offset
between the second fuselage beam ahd the wing carry-through beam-spring repre—
gents the fusel&ge depth between the;fuselagekelastic axis and the carry-through
elastic axis, The transition from the fﬁsélage beam to the wing carry-through
beam is made by equations of constraint to express g rigid connection. A
similar treatment is employed for the geometric offset between the aft fuselage

beam and the vertical tail beam. The pylon structure, consisting of the
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transmission/engine assembly, is treated as a rigid body while the mast (the
portion of the drive shaft extending forward from the transmission) on which
each proprotor is mounted is treated as a beam-spring. The geometric offset
between the wing elastic axis at the wing tip and the position on the trans-
mission centerline through which the conversion axis about which the pylon tilts
passes is specified to be rigid via equations of constraint. The proprotor
blades are assumed to be rigid. Since the blades are rigidly attached to the
hub in a gimbaled proprotor design (such as the design depicted in fig. 16) the
proprotors (assumed to be non-rotating) are treated as rigid discs in the
analysis.  The hub is initially teken to be rigidly attached to the mast. How-
‘ever, for illustrative purposes, the manner of treating a hub which is spring-
connected to the mast will also be described.

Since the substructures are treated as independent components, their
structural properties and deflection characteristics are most conveniently
defined relative to axes local to each component. The existence‘of such local
axes for the definition of these quantities is assumed herein. The local com-
ponent axis systems are also employed to establish the deflection compatibility
equations at the junctions of the substructures. The set of right-handed local
Junction coordinate axes used in writing the equations of constraint is identi-
fiable by subscripts in figure 18. Each of the directions so indicated is taken
to be éositive.‘ Vectors representing positive rotations ar, Br, Yr (not
shown ) about X Y Z respectively, are taken in the‘same direction as

“vectors representing positive x5 yf,' z;. A shorthand notation for a column

vector of these Junction, or connection, coordinates is given by {X}r where

23



~ CoN

er x

yr Y

3 CE N (17)
{X}r = < o 5 = ﬁ g >

r

6. B

Y Y

N L Jr

Several suxiliary right-handed coordinate systems (which are not associated with
degrees of freedom) are employed to facilitate writing the constraint equations.
These auxiliary coordinate systems are also shown in figure 18 and are distin-

guished by Roman numeral superscripts. A shorthand notation for a column vector

of these auxiliary coordinates is given by {x}® where

rxsw r}ﬂs'
S
NE ‘ N
s _ Zs B Z (8
x}S = ﬁ _h=¢ 5 18)
o o
g® 8
Ljs Y
W, \.

s = i,id,...,vil

The structural data for the fuselage, wing, and empennage of this design
‘were available (ref. 21) in the form of bar graphs showing the distribution of
mass, rotary inertia, and mass static unbalance and curves showing the variation
of EI and GJ along the calculémed elastic axis of each member. The wing and
2k
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tail inertial data were based on cuts perpendicular to the elastic axis. Data
for the proprotor and pylon consisted of lumped mass properties and selected
EI/GJ characteristics. Employing these data, lumped-mass/stiffness discretiza-
tions were established for the fuselage, wing, and empennage beams. These are
sumnarized in Tables 1 to 3. Inertial properties of components treated as rigid
bodies and beam-springs are given in Table 4 while the elastic properties of
beam~-spring components are listed in Table 5, A summary of the pertinent geo-
metric quantities is contained in Table 6. Utilizing aircraft symmetry about a
vertical plane through the center of the fuselage, explicit consideraticn need
be given to oniy one~half of the aireraft., A consequence of this separate
treatment of the symmetric and anti-symmetric problems is the ident;fication of
displacements and rotations in each formulation which can be set to zero. It

is convenient to distinguish the coordinates constituting the vectors {X}r

from the actual nodal degrees of freedom.  The nodal degrees of freedom are
denoted by q, herein. The column vector containing all these freedoms, {a},

J

may be directly identified with the vector {z} in equations 2 and b.

Symmetric Formulation

For the symmetric analysis the airframe motions considered are pitch bend-
ing of the fuselage, bending and torsion of the wing and horizgntal tail, and
fore and aft bending of the vertical tail. The aircraft was divided into 10 sub-
structures having a total of 1uk degrees of freedom.. The substructures employed
and the corresponding degrees of freedom are identified in figure 19 and Table T,
respectively. | ’

Constraint equations.- Connection of the various substructures is achieved

through the use of equations of constraint which mathematically enforce
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deflection compatibility at the.interfaces of the substructures. The deflection
vectors of adjacent substructures at their point of attachment must be equal
when expressed in a common local coordinate system. The common systems con~
sidered here are coincident with the local coordinate systems of the contiguous
substructures. The deflection vectors of adjacent substructures at their point
of attachment are related by a diagonally partitioned rotational transformation
matrix [R]. Since small rotations can be treated as vechors the rotations at
attachment points are related by the same matrix as the displacements. The two
submetrices.comprising [R] are thus identical and are denoted by [T]. For
the general thréendimensional problem with six degrees of freedom associatéd
with each station, [T] is of order 3 X 3 and [R] is of order 6 x 6.

In the remainder of this section figure 18 will be used in conjunction with
auxiliary sketches, interspersed.throughouﬁ the text, showing the substructure
junctions and associated coordinate systems in order to aid in writing the

equations of constraint.

Beam #2

Sketeh 1,~ Junction of fuselage beam #1 and fuselage beam #2.



The expression relating the equality of the deflections at the left end of
beam #2 and the right end of beam #1 relative to coordinates local to beam #2

has the form

Y T 0 T
SERAREORIE
Z ! A

R e B RELS
8 [0] ! [T,] B

LYJ » L : - \YJ 1

where the vectors {X}l and {X}2 are identified with degrees of freedom

according to

W

and the coordinate rotation matrix [Tl] is given by
r~ -
coSs 61 0 =gin 81

Bl=f> > o
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Since there are no displacements or rotations out of the vertical plane of
symmetry in a symmetric formulation ¥y ul, Yl’ Yoo ug, and Y2 are zero.
The negative signs associated with 48 and 40 in equations 20 have been
introduced in order to have the usual definition of positive slope. This has
been done here merely for convenience. Several sign changes of this type will
be introduced during the course of this development for similar reasons.
Expanding equation 19 using equations 20 and 21, the resultant constraint equa-

tions at this junction are given by
dp) = 99 COS 61 - q5 sin 61
Gyp = g5 sin 61 + a5 cos 61 (22)

"8 T "4g

For brevity, the remaining constraint equations to be developed will not be
written out piecemeal in the expanded form analogous to egquation 22. A summary

of 'all the constraint equations in expanded form will be given in an appendix.

Beam #2

Sketch 2.~ Junction of fuselage beam #2 and fuselage beam #3.
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At the Junction of fuselage beams #2 and #3

M T

o | o
B [o] : [,] | |8
Y. L | . CYJ N
where
) (1) (*) (4,
¥ 0 Yi 1
4Z>=<q17$ <z$=<q25? (o)
o 0 o 0
Bl [ %s B ~d33
LYJ3 .0 J \"Y‘Ju .0 J
and

sin 82 0 cos 62
- .
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Sketch 3.~ Geometric offset between fuselage and wing carry-through.

A rigid link is used to model the geometric offset between fuselage beam #2 and
the wing carry-through beam-spring. The equations relating the deflections at
the aft end of fuselage beam #2 to the deflections of the inboard end of the

wing carry-through beam-épring are then

. oL — _ '- _-1
(). 0 -1 0 ;-L, 0 0 x)
v 1" 0 olo - o y
l 1
z 0 0 1 | 0 0 0 z
4 sl e —— ¢ (26)
a 0 0 0,0 -1 0 o
B o o ol1 o o B
|
vJs Lo o ojo0 o 1 YA g

where ) . r.o N
v q‘1+2
SRR
A > , 2
o[ "y, | (27)
B ‘1)45
L.'Y.JS \QA6J
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Cketch 4.~ Wing carry-through structure.

Twisting of the wing carry-through structure was judged to be negligible in a
symmetric mode of oscillation. Hence, the wing carry-through structure is

taken to be rigid. This condition may be specified by the constraint

- = a0\
G5g = qy = 0 , (29)

Extensional deformations of this menber are also assumed tc¢ be negligible.

Since x5 = 0 (cf. eq. 27) this implies the additional constraint

Ur =9 (30)
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Cketeh Y.- Fuselage-wing junction.

At the wing elastic axis/wing carry-through elastic axis junction:

Je Lo J W,

(31)




where

™) (1) (™) [ %)
¥ U8 y %67
. 2 ng ‘ 2 q
DY PO S 0 35 P
o g0 o 481
Y./ 6 \qng gYJ 5 \ Q-mJ
and
cos 93 ~sin 63 0
[T3] = sin 64 cos 93 0 | ’(33)
0 0 1

Wing elastic axis

‘ Ly ?yl
ii |
X ; .
S e 111

Lh (Cqnversion: axis)

Sketch 6.~ Geometry of wing/pylon junction.

33



The conversion exis is the centerline of the pylon conversion spindle which
provides for tilting of the pylon. The geometric offset between the points of
intersection of the wing elast&c‘axis and thefconversi@ﬁ axis with the wing tip
ribt (distance L3 . in the ske£cﬁf#6) is takenjtdybe rigid. The conversion axis,
represented by the distaﬂce Lh in sketch #6,.is glso assumed tqg be rigid.
These rigidities are introduced by writing equations of constraint which relate
coordinates {X}iii to coordinéées {X}G’ The sequence of steps in establish-
ing these equations follow. |

An expression relating the coordinates at the last wing elastic axis

station, {X}S, to the intermediate (auxiliary) coordinates (X} is given by

el
¥ %] : (] y
: - z T .
4-{.2;'_?=...__+.;._-4___? = (R, 1{x} (34)
o ' o :
B [] : (AR E
(Y g L | J v/
where {X}B and [Th] are given by
() (s
4 73
z q
2 > = { & (35)
6 q_87
g 966



and

cos 0 sin 63
[Ih] =] -sin 6 cos 93 (36)
0 o}

As pointed out earlier, the auxiliary coordinates {X}l are not degrees of
freedom but are introduced for convenience in arriving at the equations of con-
straint. From sketch #6 above, the intermediate coordingte vectors {X}l

and {X}** are seen to be related as

. - - ii
fxwl 1 o ol o o -L 3
N 3

¥ o 1 o0oj3 0 o0 O ¥
{""L —— i P — =] ﬁ'--g = (L, 1{x} (37)

a o 0 0 : 1 0 0 o

B 6 0 O : o 1 O 8

LYJ I_Q 0 0o}l 0 o© 1 4 \Uvyo

If the conversion axis (length Ly in the sketch #6) is taken to be flex-

ible and treated as a bean-spring

i1 an
{x} = {Q}CAI (38;

where {Q}CA is a column vector centaining the degrees of freedom associated
I :
with the inboard end of the conversion exis beam-spring. The appropriate con-

straint equations would then have the matyrix form
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{X}g = [Rh] [L3] {Q}CAI (39}

Similarly, at the oubboaid end of the beam~-gpring representing the ccnversion

aXis

SRR

alg, (v0)

0]

vhere {Q}CA is a column vector containing the degrees of freedem for the out-
0

board end. If the conversion axis is taken as rigid {¥}*% anda {X}***

would
not be identified with degrees of freedom but would be auxiliary coordinates

related according to

ijii 1 o ol o o o] (x)i
. ‘ .
v 0 1 ol o 0 -L, y
|
Z 0 0 1 c L 0 z ‘o
(- _$ N : ————— - (- -—} = [, Mxp (L1)
o 0 0 0, 1 0 0 a ' '
R o 0 0 o 10 B
| J
Ly o o o} o0o- 0o . 31| \y

Herein, the conversion axis is assumed to be rigid sc that equation Ll is

applicable.

Sketch 7.~ Junction of rotor shaft axis and c¢onversion axics.
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The pylon structure, consisting of the transmission/engine assembly, is treated

as rigid. The intermediate coordinate vector {X}ill at the outboard end of
the conversion axis is related to the coordinate vector {X}lv situated on the

proprotor shaft axis according to
- |
(5] | [o] iy

(] | [z,]

where

-i 0 0

T = 6 -5i 6

[ 5] 0 cos b sin % , (43)
L? sin eh cos eh

The intermediate coordinate vector {X}iv is related to the pylon center-of-

gravity coordinate vector {X}9 by

(T [ e e e e
y o 1 0 I =Lg 0 0 ¥y
|
( ‘ g I RO TR Il Bt { ’ Y= (L o 1{x) (4l)
o 0o o0 o0 1" 0 o o 2,6 ?
B 0 o0 o0 : 0 1 o B
. L0 © 0 : o 0 1J\v/
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where
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On the basis of considerations in the preceding subsection and directly above,

{x}g and {X}9 are thus related according to

g = [ry] [L,] (1) [R) (L (] (g (46)

The coordinate vectors ,{X}9 and {X}io are related as

- | ’
) 0o -1 o ;—L6 o L] ()
Y 1 0 0 | 0] _L6 0 vy
2 o o 110 1, o 2
{ % ————— e it g (u7)
\oa o o olo -1 O }a
l .
B o o o441 o Q0 g
| L
(YJ9 LO Q Olo 0 l__ 'Y/lo
where {X} contdining the degrees of freedom associsted with the aft end of

10°

the beam-spring representing the mast, is given by
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and {X}9 has already been given in equation 45.

V1] - : — Proprotor attachment point
L8 A X0 Mast
le P — : Conversion actuator
w attachment point
L7

. &Transmission/engine assembly
iv

PR Conversion axis

Sketch 8.- Geometry of pylon structure.

The pylon structure, consisting of the transmission and an underslung engine,

is supported by the conversion axis and the conversion actuator which attaches
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to the forward end of the transmission case. This is assumed to be rigid. The
flexibility of the mast, the portion of the drive shaft extending forward of
the transmission case on which the proprotor is mounted, is represented as a
beam-spring. However, the only elastic déformations of the mast which will be
considered are vertical and lateral bendiﬁg, motion in the other two directions

being solely of the rigid body type. At the forward end of the mast:

(X f'qloﬂ
y %02
HR
@ “4104 ? ()
B ~4105
(1, ayp6d

To suppress the longitudinal and torsional deformations of the mast while allow-

ing rigid-body motions in these directions write

Qo1 " %5 = 0
(50)

Aoy = g = O

These equations stipulate that the relative extensional and torsional deforma-
tions between the ends of the mast are zero.
The coordinates describing the proprotor disc, {X}R, are taken in the same

sense as {X}ll. Hence
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Assuming that the proprotor/hub combination is rigidly fastened to the mast, the

constraint equations are given by

{X}ll = {X}R (52)

cam #3

Sketech 9.~ Attachment of vertical tail to fuselage beam #3.
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At the aft end of fuselage beam #3

) - | A"
|| L E o] s
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Since the geometric offset between the fuselage and vertical tail elastic axes
(distance L_) is taken to be rigid the intermediate coordinate vectors xy’

9

and {X}'% are related according to
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At the base of the vertical tail elastic axis, {X} - and {X}l3 are related

as
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Assembling the series of transformation matrices indicated above the constraint

equation is given by

ey, = [Rg] [5g] [R,] (X}

Sketch 10.~ Attachment of horizontal tail to vertical tail.
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At the junction of the vertical and horizontal tail elastic axes, {X}lh and

{(x}'*?  are related as

where

and
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while {X}'*" and. {X}l5 are related according to

vii
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with {X}15 and [Tg] being given by
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Equations 61 and Bl imply the metrix relation
{3}, = [Rg] [1'{9] {x}15 ‘ (67)
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This completes the derivation of the equations of constraint for the sym-
metric formulation. For easy reference these equations are summarized in
Table 8. Since there are 49 constraint equations and 1kl degrees of freedom,
the matrix of coefficients of the constraint equations ([C] of eqs. 4 and 5)
will be of order 49 x 144,

It should be noted that one of the constraint equations involving th is
redundant. (Compare egs. 8 and 10 in Table 8.) In practice, such redundancies
caﬁﬁot be avoided and inadvertently appear in the equations of constraint,
resulting in equations which are noct linearly independent. Since such redun-
dancies are not usually identifiable by inspection, épecial consideration must

“be accorded the constraint equations (ref. 22), The method advanced in refer-
ence 19 obviates the need to treat such redundant equations of constraint in
any special maaner. Since this method is employed in the computational proced-
ure implemented in the SUDAN ﬁrogram whiéh is used in the numerical example, the
redundant equation will not (and need not) be deleted.

Structural propertiés of beam components.~ The mass and stiffness matrices

for the beams employed to'représent the fuselage, wing, and empennage‘structures
are established by substituting the data contained in Tables 1 to 3 into the
appropriate matrix expressions developed earlier. The bending and torsion stiff-
ness matrices follow from equations 6 and 11, respecti#ely, while the lumped-
mass Iinertia matrices, ihcluding wing and tail static unbalance, assume the form
given in figure 9. Bince the generation of these matrices using the data of
Tables 1 to 3. is straight feyward, the final numerical results are not shown.

Structural properities of vigic hody components, -

Wing carry~through: Although the elasficity of the wing carry-through

structure is included, its inertial properties are treated as though it were
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rigid and combined with the inertia matrix of fuselage beam #2 by treating the
center of gravity of the carry-through structure as rigidly attached to the last
(right=hand) station of that beam. Assuming that the principal body axes at the
center of gravity of the carry-through structure are parallel to axes x3, ¥3»
and 23, the kinetic energy of the carry-through structure in terms of the

motion of its poinut of attachment is given by

o L fs2 s . 1 21 ¢2 '
T = §M(x3 + ZB) + MLlB3x3 + 5 EI + ML;] 33 (68)

where use has been made of the development shown in figure 10, Substituting
equation 68 into Lagrenge's equation and then meking use of the appropriate data

in Tables b and 6 and equation 24 yields

47 %3 Lo
[ 154.1 0 o] %7
Mg | 0 2.93x10° -1.81x20%| [de3] (69)
o -1.81x10*  1s54.1 | [%eb

as the matrix of additional terms to be added to the diegonal inertia matrix of
fugelage béam #2.

Pylon: As indiceted earlier, the rigidhbody inertial properties of the
pylon are defined relative to & coordinate axis system at the center-of-grav1ty.

Hence, the pylon inertis matrix follows directly from Table 4 and has the form
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1269,7 59

1269,7 g

(10)

- 1769, 7 Y1
W]E*y} oo ¢

7.85x100 4,

%4.,29x10

#,91x10° Ay,

where the minus sign associgted with q93 (cf. eq. 45) has been absorbed into
the inertia matrix. The corresponding stiffness matrix is null.

Proprotor: The proprotor iz treated as a rigid circular disc. Since the
coordiﬁéte axes at the center of gravity of the proprotor disc are oriented
such that they are principal axes the inertia matrix is diegonal and can be

constructed directly from the data supplied in Table k:

907 308 . %o - %o Yy 9112

637.4 ) v Qo7
637.4 ; 9308

637.4 %109 (71)

[M] Rotor 7

3.22x10 %49

1.61x207 4331

1.61x10° | |1z

The matrix elements not shown sre zero. The minus signs associated with 410
and Q91 (cf. eqg. 51) uave besnu absorbed into the inertia matrix. The com-

panion stiffness matrix is null since the proprotor hub is taken to be rigidly



attached to the mast. This matrix would not be null if the hub were spring-
connected to the mast, as will be demonstrated below.

Structural properties of spring components.-

Wing carry-through: Since g has been set to zero (cf. eq. 27) the beam-
spring stiffness matrix is of order 11 X 11 and is given by that in figure S
with the first row and column deleted. This matrix is shown in figure 20 along
with the ordering of the degrees of freedom. Tables 5 and 6 contain the ﬁeces-
sary data to evaluate the terms of the matrix. Constraint equations 29 and 30
in conjunction with the 11 X 11 stiffness matrix given in figure 20 imply that
twisting and both the elastic and rigid-body axial motions of the beam~spring
representing the wing carry-through structure are removed as degrees of freedom,
in accordance with earlier discussions.

Pylon mast: The stiffness matrix of the pylon mast beam-spring is given
in figure 21 along with the ordering of the degrees of freedom. Again, Tables 5
and 6 contain the data required to evaluate the individual terms of the matrix.

Some comments are included here to indicate the manner of treating a
proprotor/hub assembly which is connected to the mast by springs.. For illustra-
tive purposes assume that the proprotor/hub combination is allowed to flap
ldngitudinally and laterally with respect to the mast, the flapping motion being
restrained by rotational springs Kal “and Kbl, respectiiely. Since longi-
tudinal and lateral angular motions of the proprotor disc relative to the mast
are permitted constraint equations 39 and 40 in Table 8 must be deleted. Recall-
ing the treatment of springs in the spring—mass ahalogy employed earlier to
- illustrate the manner of indluding fuel slosh in a launch vehicle vibration

analysis, an expression for the strain energy stored in the springs is required.

The appropriate expression here is given by
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=& - 2,1 -
V=3 Kal (‘1105 q113.) *3 Kbl (qloé “1112) (12)
Substituting equation T2 into Lagrange's equation then leads to
305 Lo 1 e
] q :
&) al 1 105
0 K'bl 0 “Kbl %106
[6K] = : (73)
-K 0 K ] qQ
&l al 111
0 - 0 , -
. K-gl K‘bl 112
- -

as the matrix of spring terms to be added to the partitioned system stiffness
matrix, [E]. For the coordinate numbering shown in figure 19, it is to be
noted that the off-diagonal terms in equation T3 will couple the stiffness

matrices for the pylon mast and proprotor substructures.

Anti-Symmetric Formulation

The considerations related to the symmetric formulation have illustrated
the manner of establishing substructure masg and stiffness matrices and the
mechanics of setting down equations of congtraint. A corresponding derivation
for the anti-symmetric case would, for the most part, be repetitious. For this
reason & summary-type treatment, listing only final results which are different

from the symmetric case, is given here.
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For the anti-symmetric analysis the airframe motions considered are side
bending and torsion of the fuselage and verfical tail and bending and torsion
of the wing and horizontal tail. _The same substructures and stations used in
the symmetric analysis are employed here, leading to a problem having 165 degrees
of freedom. The substructures are identified in figure 22 and the pertinent
degrees of freedom in Table 9, |

Constraint equations.- For anti-symmetric motions of the airframe the twist

of the wing carry~through structure was judged to be important and the beam-
spring representing it now also being permitted freedom in twist. Although
extensional deformations o£ the wing cérryrthrough are still negligible the
ébility to translate axially as rigid body must be provided for. The final
constraint equations, 48 ii number, are summarized in Table 10. The matrix of
coefficients of the constraint equations ([C] of egs. 4 and 5) is thus of
order 48 x 165.

Structural properfies of beam components.- As in the symmetric case the

mass and sﬁiffness“matrices‘forvthe beams employéd to represent the fuselage,
wing, andlempennage structures are esﬁablished by'substituting the data in
Tables 1 to 3 into the appropriaté'matfix ekprcssions developed earlicr. Again,
because the generation of these matrices is straightforward the final numerical

results are not shown.

Structural properties of rigid body components.-

Wing carry-through: Here the vector {X}3 is given by

52



0
L
0
i (7%)
X}y = < )
433
0
%27
so that
%1 %7 %3
™ )]
154.1 0 =1.81x10 %,
| ] , (75)
M, g = 0 0 0 o7 !
-1.81x10% 0 2.11x10° Q35

Pylon: The pylon inertia matrix is identical to that given by equation 70
for the symmetric case, with the degrees of freedom shown there, q89 through
q9h’ replaced by 9 06 through 997 respectively.

Proprotor: The proprotor inertia metrix is identical to that given by
equation Tl for the symmetric case, with iﬁé dégrees of freedom shown there,
quT' through q112’ replaced by qiek through q129, respectively.

Structural prgperties of spring components.-

Wing carry-through: Since axial rigid-body motion of the carry-through is

>3



included in the_anti-symmetric formulation the beam-spring representing it has
a stiffness matrix of order 12 X 12, Its form is the same as that given in
figure 21. However, the degrees of freedom shown there, q95 through 9 0g°
are replaced by q58 through q69, respectively, Tables 5 and 6 contain the
data needed to evaluate the indiﬁidugl ﬁerms of the matrix.

; Pylon mast: The pylon mast beam—spring stiffness matrix is also given by
figure 21 if q95 through %96 Bre repleced by ’qll8 through 4038 respecs
tively. Again Tables 5 and 6 provide the data required to evaluate the indi-

vidual terms of the matrix.

Numerical Results

The direct method of anai&sis ésbembédied in the SUDAN program was used to
calculate the symmetricvahd éntiwsymmetric freé~free modes and freguencies for
several pylon tilt angleé. A suﬁmary of these frequencies for the first five
elastic modes is given in Table 11. The first five symmetric modes for the case
in which the pylons are tilted fuliy forward (8, = 90°) are sketched in fig-
ure 23. For reasons of both pictorial clarity and convenience, the changes in
slope of the fuselage elastic axis and the offsets of the wing and vertical tail
elastic axes from the fuselage élastic axis are not shown in'the'sketches. It
should also be noted that whilé all degrees of freedom contribute to a coupled
mode shape the‘shape is oftentimes dictated by the motion in a relatively few
of the degrees of freedom. Such is the case hére and only the prédominant

motion is'indicaﬁed in the mode Shape sketches given in figure 23.
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CONCLUSIONS

The manner of representing a flight vehicle structure as an assembly of
beam, spring, and rigid-body components for vibration analysis has been desg-
crited. The development was couched in terms of a substructures methodology
which is based on the finite~element étiffness method. Basic concepts were
first introduced through several specific qualitative examples which inbluded
the modeling of wing structures, external stores, pylons supporting engines or
external stores, aﬁd éprung messes asSociatéd with launch vehicle fuel slosh.

A detailed numerical example consisting of a tilt-rotor VTOL aircraft was also
given to pro#ide an illustration of the procedures for modeling a structure, the
manner of forming the substructure mass and stiffness matrices, and the mechanics
of writing the equations of constraint which enforce deflection compatibility at
the junctions of the substructures, Since many structures, or selected compo-
nents, can be represented in this manner for vibration analysis, the modeling
concepts described and their applications in the numerical example shown should

brove generally useful to the dynamicist.
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TABLE 1.~ FUSELAGE DISCRETIZATION

Local .
Station Coordinate Mass Tor51o?al EI. ?I GJ
. Inertia Vertical Side
Position . e P —
(cm) (kg) (kg—cmg) (kN—-cm®) (kN-cm? ) (kN-cm?)
Beam #1 )
1 0.0 18.2 5.65 x 10° 9.75 x 107 8.61 x 107 10.33 x 107
2 88.9 21.0 11.30 ‘ 22.96 21.52 24,11
3 152.4 52.5 45,19 Ls,92 43.05 57.40
L 215.9 2520,2 282.L46 91.83 80.35 114,79
-5 304.8 378.3 175.12 | emeee e e
Beam #2
1 0.0 378.3 175.12 % 10° 229,58 x 107 129.1h x 107 200,89 x 107
2 101.6 92h,7 420.30 390.29 218.10 246.80
3 190.5 357.2 271.16 459,17 269.76 252,54
L 254 .0 42,0 12k, 28 476.39 286.98 252,54
5 30L4.8 168.1 259.86 482,13 298.46 254,54
6 . 355.6 1h7.1 175.12 S SO PR
Beam #3 A
1 0.0 147.1 175.12 x 10° | 482.13x 10 | 299.89 x 10" | 252.54 x 107 |
2 88.9 328.9 k12,39 476,39 298. 46 252,54
3 160.0 507.9 L2g, 34 L18.99 252,54 252.54
I 266.7 1849.3 463,24 258.28 172.19 232,45
5 381.0 Lh7.6 463,24 129.1k 114,79 172.19
6 Y77.5 126.1 101.68 86.09 80.35 114,79
T 596.9 61.3 67.79 51.66 51.08 Th.61
£ 729.C 105.1 45,19 | mmmmme e b
Zotal Mass: Beam #1 = 722,2 kg, Beam #2 = 2017.4 kg, Beam #3 = 3573.3 kg
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TABLE 2.- WING DISCRETIZATION

Local Static Torsional ET ET
Station Coor@igate Mass Unbalance® Inertia | Vertical Chord GJ
Position Abouﬁfe.a.w_‘v‘u' B
{(cm) (kg) (kg~cm) (kg~cm2) | (kN~cm?) (KN-cm®) (kN-cm®)
0.0 154.3 -230k, 5,40 x 10° | 4.30 x 108 10.04 x 10° 3.53 x 10
2 86.4 123.5 -2882. L.68 3.56 8.60 2.98
3 190.5 90.7 -2188, 2.78 2.6k 6.89 2.35
b 317.5 113.5 -2478. 2.61 1.72 5.16 1.72
5 L39.4 62.5 -2882. 2.84 1.32° k.30 1.32
6 530.9 259.2 -h1k6, 5.94 1.19 4,08 1.20
T 563f9> 0.0 0. O'Ook.h.“_Jm:j::_ﬁ._._“_n__-_ —

Total Mass = 803.6 kg

*Negative static unbalance indicates that section center of gravity is aft of section
elastic axis.
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TABLE 3.- EMPENNAGE DISCRETIZATION

Local Torsional
a .
Station 1Cccrdinate | Mass Statie % Inertia ?I EI GT
. Unbalance Side Chord
Position About e.s,
{cm) (kg) (kg~cm) (kg~cm2) (kN—cm? ) (kN—cme) (k¥ -cme)
Vertical
Tail
5 . 71 8 .
1 .0 15.1 T5L.7 1.58 x 107 | 5.02 x 10" | 4,36 x 10 3.73 % 1C
z 9z . b 22.9 622.8 1.23 1.86 2.3C 2.27
3 181.6 21.8 564.9 .98 .57 .98 1.15
4 274.3 20.4 L4eT.1 .72 .29 .52 .52
5 328.3 1k.6 353.6 b9 —— —— —
Total Mass = 94,9 kg
Horizontal
Tail
| ( 8 LoT
1 0.0 0.0 0.0 0.0 1.29 x 10 .86 x 10 1.15 x 1¢
2 88.9 0.0 0.0 0.0 - 5T A3 .79
3 165.1 63.0 0.C .25 x 107 | .34 .21 .29
by 254.0 0.0 0.0 0.0 ——— —— ——
Total Mass = £63.0 kg

¥Positive static unmbalance indicates that section center of gravity is forward of section
elastic axis,




TABLE L4.- INERTTAL PROPERTIES OF COMPONENTS TREATED AS RIGID

PROPROTOR
Mass 637.4 kg
Flapping Inertia
Longitudinal 1.6087 x 107 kg-cm®
Lateral 1.6087 x 107 kg-cm2
; T 2
Polar Inertia 3.217h x 10! kg-cm
PYLON
Mass 1269.7 ke
C. G. Inertia
Pitch 7.8524 x 106 kg-—cm2
Roll b.293k x 10° Kkgecn?
Yaw 6.9146 x 106 kg—cme

WING CARRY-THROUGH *

Mass 15h.1 kg
C. G. Inertia
[ ng
Pitch 8.1936 x 107 kg—cm2
Roll Not available
Yaw Not available

*
Treated as rigid inertially but not elastically



TABLE 5,.- STIFFNESS PROPERTIES OF COMPONENTS TREATED AS SPRINGS

Wing Carry-Through¥*

4.5056 x 100 Kieom®

'Ivertical =

\ _ R 8 2
LIlateral = 10.5898 x 10~ kN-cm
GJ = 3,6733 X 108 kN—cm2

leon Ma.st+
L 7.1745 % 107 kNe-cu®
2

EIvertical
7.1755 X 107 KN-cm

]

EIlateral

¥AR is taken to be infinite

TBoth AE and GJ are taken to be infinite
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TABLE 6.- GEOMETRIC QUANTITIES EMPLOYED IN VIBRATION ANALYSIS

ANGLES
0, 9.5° (.1658 Radians)
8, 5.6° (,097Th Redians)
o 4.5° (.07854 Radians)
E)u Varied
65 25° (.4363 Radians)
8¢ 15° (.2618 Radians)
LENGTHS
Ll 117.1L em
L, 106.7 cm
L3 43.2 em
L, k3.2 em
L 79.2 cm
L6 48.3 cm
L7 60.4 em
Lg 71.1 em
L9 38.1 em
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TABLE T.- IDENTIFICATION OF DEGREES OF FREEDOM FOR

SYMMETRIC VIBRATION AWALYSIS

FUSELAGE
Beam #1

Beam #2
G2 7 Y7
%he 7 Y3
4oy
Beam #3
9o5 = 932
933 ~ o
91

Wing Carry-Through Structure

o ~ 950
WING
453 = 959
qéo - g6
%67 ~ 9413
97 T Hgc
481 ~ 47
488

Displs.,

Slopes

!

j

Axial rigid body

Displs.

Slopes

)

Axial rigid body

Displs.

Slopes

j

Axial rigid body

Displs.
Slopes
Displs.

Slopes

Torsion

%
|

Axial rigid body

SLL :

Vertical Bending

Vertical Bending

Vertical Bending

Vertical Rending

Fore and Aft Bending



TABLE 7.~ Concluded.

PYLON
Transmission/Engine Assembly
q89 - q9h Rigid Body Translations and Rotations
Mast
995 = %06
PROPROTOR
Qo7 = 910 Rigid Body Translations and Rotations
1
EMPENNAGE
Vertical Tail
q. - q Displs
11
113 T } Fore and Aft Bending
418 7 %0 Slopes
q123 Axial rigid body

Horizontal Tail

qQ - q Displs.

124 127 } Vertical Bending
%08 = Y31 Slopes
q - q Displs.

1.32 135 } Fore and Aft Bending
936 7 439 Alopes
qlho - q1h3 Torsion
‘ a4 Axial rigid body
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TABLE 8.

1. 9y, COs Bl - qs sin 61

9, sin 61 + q5 cos 61

1
(o]

© T4t g

3
L, q,, cos 6? - Qe sin 92 -

©Q sin 62 + q25 cos 62

ey * a3 =0

12, Qg = 0]

13. a5y - qy =0

1k, Q=0

15. Qgg cos 63 - q67 sin 63
16. 4gg Sin 83 + qgy cos 63
1T, Qgy = g =0

18. qgy €08 63 * ag gin 9
19, a1 sin 63 - Qgq ©Os 63
20. q7h - q52 =0

21. q89 cos 63 + qgg sin 6;3

CONSTRAINT EQUATIONS FOR SYMMETRIC VIBRATION ANALYS1S

- q2)+ = 0
- q12 =0

gy = O
" 47 =0
- q').].? = 0
- quB = 0
s ‘3‘57‘ = 0
B

208 6& - q91~sin 83 sin 6h + q92[?5 sin 63 sin eh

3 3

- L6 sin 93 ces O j - q931i6 cos’83 - gin eh(Lh sin 0, + L. cos 63H

k

8. -~
ot qgh[ts cos 3 co

] Qh(Lh sin 93 + L3 cos Qﬁ] - Qgg = 0

Y
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TABLE 8.~ Continued

22. ~Qgg sin 63 + 450 cos 83 cos eu = Qg cos 63 sin Gh + g0 L5 sin Gh cos 83
- L6 cos 63 cos 64 - q93[}L6 sin 63 + sin GMCLB sin 63 Lh cos GBﬂ

+ q9h[}L5 sin 63 + cos GM(L3 sin 63 - Lh cos QQ] - q73 =0
sin 83 cos eh - q9h sin 93 sin Gh - q87 =0

23. cos B

37 %3
2k, q90 sin Sh + q9l cos Bh + QQQ[%B - L5 cos Bh -~ L6 sin 64

- q93 Lh cos Gh - q9h Lh sin eh - q59 =0

Cl92

25, q92 sin 63 + q93 cos 63 cos Gu + q9h cos 63 sin eh - Qg = 0
26 ~dg3 sin eh + agy, cos Gh - 9gp = 0
2. -9gg * Ly 9140 ~ 9gg * Tg %98 = O
28. a5 = 9gg * Lg 299 = O

9. 997 = Ly Y59 = 99 = O

30, qgg = dgp = O

31, -q98 + q93 =0

32. Q159 " gy = O

33. Qo T q95 =0

34, Qo ~ 98 = 0

35+ o7 7 Y1 7O

36. 4108 = Ygp = O

3T. 9309 = 9103 = O

3. =Gy30 % Qg = O

39. =Qy33 F g5 = 0

40,

4970 " Yo = °

b1, qliB[}cos 82 cos 95 + sin 82 sin 65] + q123{}os 92 sin 85

+ sin 62 cos 85} + 4998 L9 cos 62 -y T 0
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42,

43,
Ly,

TABLE 8.~ Concluded

943 Eln 92 cos 85 + sin 65 cos 62] + q123[}s1n 62 sin 65

+ cos 62 cos GSJ - qll8 L9 sin 82 -~ q32 =0

“438 * Yo =0

~Qy),), €S 65 sin 66 + Uy 3, COB 85 cos 96 + Ay o, sin 65 - qllS =
i si { - 3in 03 - ==

qp)), sin 65 sin 16 9 zp B1E 65 cos 66 + 4yp), COS 65 993

Ynp 08 O = qypp'sin B + gy, =0

=Q1) €08 85 sin 96 ~ Qypg €OS 65 cos 66 + 9 36 sin 65 = 0

94)p Sin 65 gin 56 + 4yng “in 65 cos 66 - 4y ¢ COS 65 =0
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TABLE 9.~ IDENTIFICATION OF DEGREES OF FREEDOM FOR

ANTI-SYMMETRIC VIBRATION ANALYSIS

FUSELAGE
Beam #1
q - g
9% T %0
41 T Y5
Beam #2
46 " 94
Gop = %7
9pg " 433
Beam #3
A3y = Gy
G2 T g
50 7 %57
- Wing Carry-Through Structure
958 ~ 969
WING
U0 = g
477 7 83
48y ~ Y90
491 ~ o7
998 T Yoy
%05

Displs.
Slopes

Torsion

Displs.
Slopes

Torsion

Displs. }
Slopes

Torsion

Displs. }
Slopes
Displs.
Slopes }

Torsion

Axial rigid body

69

S8ide Bending

Side Bending

Side Bending

Vertical Bending

Fore and Aft Bending



TABLE 9.~ Concluded

PYLON
Transmission/Engine Assembly

quS - qlll : Rigid Body Translations and Rotations

Mast

9112 7 %2j

PROPROTOR

Qo) ™ q129 Rigid Body Translations and Rotations

EMPENNAGE
Vertical Tail
a -q Displs.
130 © *13k } Side Bending
- S
q135 q139 lopes
qlho - qlhh , : Torsion
Horizontal Tail
q - q Displs.
145 148 § ‘ Vertical Bending
- g
Yo ~ Y50 Lopes
a - q , Displs. ;
153 156 Fore and Aft Bending
— (‘ =S
q157 q160 ulopeq
qul L ql6h Torsion
U5 ; Axial rigid body
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10,
11,
12,
13.
1L,
15.
16.
17.
18.
19.

20.

TABLE 10.- CONSTRAINT EQUATIONS FOR ANTI-SYMVMETRIC VIBRATION ANALYSIS

95 = % = O
95 cos 61 - G, sin 6l - Qg = 0
%5 sin 61 + q;, cos 61 -Gy, T 0
By =9 =0

=0

g C€OS 62 - qy, sin 62 - Q35

50 Sin 85 + q)p

Q
]
[&]
<
o
t
-
i
o

Q59 * Ly 96; = 0

Asg = Iy Qg — a5 7 O

Gg3 = 97 = O
Gy = 958 = O
9105 ©08 O3 = qg), sin B3 ~ g4 =

N
o

Qg5 Sin 85 + ag) cos 83 - g5 = 0

70 = 96 = O
Ggg COS 63 + Urr sin 83 - q67 =0

qgg sin 63 = Qgq COS 93 - q68k

i
o

1 = %9 = 0
Q) gg ¢O8 63 + % o7 sin 63 cos Bh - quBVSin 63 sin 6h
+ q109[?5 sin 93 sin Gh - L6 sin 63.cos Gh] - qilO[?6 cos 63
- sin eh(Lh sin 63 + L3 cos 63)]‘+ q_lll[L5 cos 63 - cos eh(Lh sin 63

+ L3 cos 83>] - quS =0

11



21.

22.

23.

2k,
25.
26,
27,
28.
29.
30.
31.
32,
33.
3k.
35.
36.
37.
38.
39.
Lo,

TABLE 10.- Continued

=06 sin 63 + Qg7 oS 6., cos eh = Qg €08 63 sin ebr

+ q109[5 sin 6)+ cos O, - L6 cos 63 cos Gh]

3
3
+ sin Gh(L sin 6 Lh cos 63)] + 9411 [—LS
- Lh cos 63)] =4 = 0

9y gg ©OS 63 = 4790 sin 93 cos eu - 99 sin 63

9 o7 sin eh + Qg COS 6)4 + quQ[LB - L5 cos 6h - L6 sin eu]

- Q30 by cos eL -4y by sin 8 - a0 7 0
—q109 sin 93 = 9779 ©0S 63 cos Bh -
9330 SIR 8) * qy; €08 B - qep = O
“9913 * Iy 937 = Y06 * L Y15 = 0

930~ Yo7 * L6 U166 = ©

911

914 = L7 9116 = Y8 = O
%16 = %09 = ©
“%15 * Y30 = 0
Qa7 - %1 = O
918 7 %12 =0
iy ~ q-115k= 0
9ok ~ 938 = 0
G1p5 = 911 = O
Q06 =~ Yoo = 0
“Qp7 *tGp =0
~%08 * 9pp = O
G199 = %p3 = 0

qlBO - q135‘ L9 cos 65 + 410 L9 sin 65 = Q)

72

" %30
sin 63 + cos eh(L3 sin 63

sin ebr ad qu)+ =

cos 63 sin eu + q83 =

=0

["Ls sin 8



L1,
)420

43,
Ly,
Ls,
L6.
4r.
8.

TABLE 10.~ Concluded

q135[}cos 62 cos 95 + sin 62 sin 65] + qlhol%os 62 sin 65
+ sin 62 cos 95] - q57 =0 :
9 35 [sin 62 cos 65 + cos 62 sin 65] + 940 [-sin 62 sin 65
+ cos 62 cos 65] - Qg T 0
465 COS 66 + 953 sin 66 - que =0 |
=% g5 COS 65 sin 66 + 953 COS 65 cos 66 + 95 sin 65 =0
%45 sin 65 sin 66' - 9453 sin 65 cos 66 + Q)5 cOos 65 =0
967 COS 66 - qlh9 sin 66 =0
-Q;¢1 COS 65 sin 66 - qlh9 cos 65 cos 66 + ql57 sin 65 - ql37 =

Q¢ 5in 65 sin 64 + 4y)g sin 95 ¢os B¢ + 9 5q €08 B = 93y, = 0

T3

0
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TABLE 11.- FREE-FREE ELASTIC MODE FREQUENCIES OF MODEL 266 TILT-ROTOR (Hz)

Symmetric Mode Frequencies

o o 0 0 o .0 o

Mod 0 15 30 k5 60 75 90
1 2.114 2,138 2,168 2.199 2,224 2.235 2,229
2 3.473 3.488 3.487 3.470 3.304 3.399 3.360
3 5.727 5.698 5.661 5.628 5.610 5.617 5.64L
k T7.235 7.378 7,646 8.021 8.694 8.895 9.016
5 11.k490 11.509 11.522 11.523 10.802 11.0k6 10.661

Anti-symmetric Mode Frequencies

o]} (o] O (0] (s} (o] (o]

Mod 0 15 30 45 60 75 90
1 3.882 3.882 3.884 3,883 3.875 - 3.856 3.825
2 L, 602 4,699 4.801 4,891 4,936 4.906 4,818
3 5.702 5.645 5.569 5.492 5.446 5,464 5.528
L 7.256 7.347 7.373 7.339 T.294 7.251 T.214
5 T.633 7.624 7.775 8.073 8.456 8.860 9.136




bFigure 1.- Partitioning an aircraft structure into substructures.,
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Figure 2.- Block diagonal composition of [M] and [K] for aircraft of figure 1.
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Figure 3.- A two-element beam substructure,

Figure 4.~ Sign convention for end deflectipns of massless uniform
beam segment (beam~-spring).
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Figure 5.~ Stiffness matrix of massless uniform beam segment
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Figure 6.~ "Stick" model of transport aircraft for symmetric
vibration analysis.
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[X] for “he beam model of Figure 6,
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Figure 8.- Identification of mass coupling terms arising from wing static unbalance.
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Figure 9.~ Coupled bending-torsion mass matrix corresponding to the wing of figure 8.
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beam,
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(b) Springs having both ends free to move.

Figure 12.- Some posible beam/spring arrangements which can arise from
: a structural idealization.
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Figure 13.- Form of stiffness matrices corresponding to the spring components
in several of the beam/spring arrangements of figure 12,
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Figure 14.- Use of the spring-mass analogy to simulate the dynamies of sloshing

propellant in a natural mode analysis.
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Figure 16.,- Artist's conception of Bell Model 266 tilt-rotor VTOL aireraft.
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Figure 17.- Beam model of Bell Model 266 tilt-rotor airecraft.



Figure 18.-

(a) Side view

Coordinate systems used to write the equations of deflection compatibility
between adjacent substructures.
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Figure 23.- First five symmetric elastic modes of Model 266 tilt-rotor (Gc = 90°).
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