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PREFACE

This report describes part of a comprehensive and continuing pro--

gram of research in multispectral remote sensing of the environment

from aircraft and satellites and the supporting effort of ground-based

researchers in recording, coordinating, and analyzing the data gathered

by these means. The basic objective of this program is to improve the

utility of remote sensing as a tool for providing decision makers with

timely and economical information from urge geographical areas.

The feasibility of using remote sensing techniques to detect and

discriminate between objects or conditions at or near the surface of

the earth has been demonstrated. Applications in agriculture, urban

planning, water quality control, forest management, and other areas

have been developed. The thrust of this program is directed toward

the development and improvement of advanced remote sensing systems and

includes assisting in data collection, processing and analysis, and

ground truth verification.

The research covered in this report was performed under NASA Con-

tract NAS9-14123. The program was directed by R. R. Legault, Director

of ERIM's Infrared and Optics Division and an Institute Vice-President,

J. D. Erickson, Head of the Information Systems and Analysis Department

and Project Director, and R. F. Nalepka, Head of the Multispectral

Analysis Section (MAS) and Principal Investigator. The Institute

number for this report is 109600-70-F.

The authors wish to acknowledge the administrative direction pro-

vided by Mr. R. R. Legault, Dr. J. D. Erickson, and Mr. R. F. Nalepka

and the technical assistance given by Mr. R. F. Nalepka and Dr. R. G.

Henderson. The prototype classification and mensuration sys.:em

(PROCAMS) described in Section 6 was developed with the assistance of

the entire MAS staff. Mr. R. Kauth is especially to be thanked for his

contribution of the theory and formulation for the external effects cor-

rection algorithm presented in Section 7. Ms. D. Dickerson, E. Rugg,

and J. Sol.osky are thanked for their secretarial assistance.,,
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SUMMY

The general form of the transfer equation, representing the

recorded MSS signal level in each spectral band for a given material

indicates that differences in recording conditions between a training

scene and a recognition scene cause multiplicative and additive changes

in the signal levels observed. Although changes in bidirectional

reflectance are unique for each material, it is reasonable to develop

signature extension algorithms which compare statistics from training

and recognition scenes and which determine from this comparison coeffi-

cients for a multiplicative and additive transformation of training

signature statistics. This signature transformation can then be used

to change the training statistics to suit conditions in the recognition

scene.

Two cluster Thatching algorithms, CROP-A and CROWN, which attempt

to derive such a signature transformation have recently been developed

at BRIM. The CROP-A algorithm imposes a linear ordering constraint on

the cluster matches, while the CROWN algorithm, currently under develop-

ment as an improvement upon CROP-A, takes a less stringent and more

powerful approach to the cluster matching problem. Both algorithms

use iterated regressions to eliminate poorly matched clusters from

their computations, but still are partly limited in their application

by occurrences of major dissimilarities between materials present in

different scenes. Partitioning techniques (which aid in selecting

optimum training and recognition scenes) offer hope for relieving this

limitation.

Some supplementary procedures have been developed which can

improve the performance of cluster matching algorithms. Gradient

filtered clustering generates recognition clusters representing nearly

pure materials, rather than recognition clusters which would include

mixed materials. Reverse transform labeling inverts the signature

1
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transformation to apply it to recognition clusters which can then be

assigned labels (wheal or non-wheat) according to their classification

of known materials within the training scene. This allows final classi-

fication of the recognition scene using clusters derived from that

scene. The linear tasselled cap transformation (which transforms

Landsat MSS data) may help to isolate the effects of soil variations,

and can aid in reducing the dimensionality of the MSS data used for

unitemporal or multitemporal signature extension applications.

An algorithm (CLUSTM) has been developed which aids in the defini-

tion of training and test field boundaries for use with multitemporal

data. The algorithm produces a data image for locating the fields,

which averages local misregistrations between time periods of the data

set. The field definitions obtained are also practical for use with

any subset of the time periods.

A signature extension operating system (PROCAMS), using the sig-

nature extension techniques currently available at ERIM, has been imple-

mented. Testing is currently underway to gain information from this

system regarding the partitioning requirements for these techniques.

A mathematical formulation for an external effects correction,

which utilizes known physical parameters, has been defined. Incorpora-

tion of known physical information into signature extension techniques

is a desirable improvement.

Current progress indicates that signature extension through the

use of cluster matching algorithms appears to be a practical technique

for economical and timely wheat surveys, using Landsat data, provided

that the reasonable limits to its use (partitions) can be adequately

determined. All aspects of the signature extension problem are con-

tinually undergoing examination, testing, and development toward the

goal of attaining a prac • ,;^Lcal and fully operational implementation of

a signature extension capability. In particular, further improvements

in dynamic partitioning, multitemporal applications, and dreprocessing

techniques are recorim-feuded .

2



I	 _	 I _	 l	 l

Gam'	 FORMERLY WILLOW RUN LABORATORIES, THE 	 MiGHIGA

2

INTRODUCTION

Signature extension is a process intended to increase the spatial--

temporal range over which a set of training statistics can be used to

classify data without significant loss of recognition accuracy. The

training statistics which are required are extracted from multispectral

scanner (MSS) data with the aid of training information (ground truth)

obtained from localized surveys on the ground or from interpretation of

aerial photographs or MSS data images by trained analyst interpreters

(AI's), Either of these procedures for acquiring ground truth infor-

mation becomes costly and time consuming even for data processing over

land areas of moderate size.

The goal of signature extension is to minimize the requirements

for collecting ground truth and for extracting training statistics,

thus reducing the associated costs and time delays. Signature exten-

sion would then help to provide timely and cost-effective classifica-

tion over extensive land areas, including remote areas for which

ground truth information may not be readily available. This present

signature extension effort has been primarily concerned with the prob-

lem of performing large area agricultural surveys to estimate wheat

production, using MSS data from the Landsat satellites.

Many current signature extension techniques are based on a trans--

formation of training statistics to compensate for changes in sun

angle, atmospheric condition, etc., between a training area and a

recognition area. Although preprocessing techniques [1,2,3] which

minimize or eliminate the need for altering training statistics are

also potential solutions to the problem of signature extension, the

fallowing presentation is principally concerned with those algorithms

which define signature transformations based on associations between

training and recognition area statistics. Specific topics to be dis-

cussed include:

3
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1. The underlying theory for the signature transformation

2. The algorithms used to determine and to apply the trans-

formation

3. Improvements in signature extension which can be effected

through procedures which are peripheral to the transforma-

tion itself

4. Methods used to test and Lvaluate signature extension per-

formance

5. A prototype signature extension operating system (PROCAMS)

6. An external effects correction algorithm.

4
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The general form of the transfer equation representing the recorded

MSS signal level within a specific spectral band when viewing a given

material a is expressed by

Sa =GET pa +GLp +S
	

(l)

G and d represent gain and offset changes, respectively, in the response

of the multispectral scanner instrument. E represents the irradiance

through the atmosphere on the material, T rep ,7esents the transmittance

of the atmosphere over the path from the material to the scanner aper-

ture, and L  represents the path radiance along this viewing path due

to atmospheric scattering. The bidirectional reflectance of the

material a is given by pa . All these variables are directly dependent

on the wavelength of the signal being recorded, hence there is no sig-

nificant interaction between signals at different wavelengths, in

principle, and each spectral band can be treated separately from the

others.

Note that whenever the bidirectional reflectance of each material

remains constant, the signals recorded are related to the reflectance

of each material by a simple multiplicative and additive relationship,

although to determine these multiplicative and additive factors by

trying to estimate values for each variable in the transfer equation

is by no means simple. If one postulates a reference condition in

which the above multiplicative factors all equal unity and the additive

factors all equal zero, and if one realizes that the inverse of a

multiplicative and additive transformation (MAT) is itself multiplica-

tive and additive and that the concatenation of two MAT's is likewise,

overall, multiplicative and additive, one can conclude that the data

transformation needed to compensate for any or all of the effects above

(with bidirectional reflectance held constant) will also be multiplicative

5
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and additive. Furthermore, since there is no significant interaction

between signals for different wavelengths, the required transformation

may be determined separately for each spectral band.

One should be aware, however, that bidirectional reflectance does

not, in general, remain constant for each material throughout a scene.

Rather, reflectance is to be expected to vary differently for each

material according to changes in illumination conditions (sun angle,

relative intensities of direct and diffuse illumination), viewing

angle, topography, crop or soil conditions (health of crop, density

of ground cover, soil type, soil. moisture content), crop orientation

(due to wind), and cropping practice (methods of planting or harvest-

ing). These effects, having a unique influence on the reflectance of

each material, and varying sometimes from field to field or other times

from county to county, cannot be fully compensated by a transformation

applied indifferently to data from any and all materials in a scene.

At best one can devise a general transformation or means for data

manipulation which treats these disparate effects only in an average

way, or which takes advantage of some salient characteristic of the

major materials of interest. (An example of the latter approach would

be a classifier which takes advantage of multitemporal information and

a knowledge of the characteristic growth cycle of a particular crop,

e.g., winter w'neat (21.) Variations in bidirectional reflectance

should be recognized as one of the major potential stumbling blocks

for signature extension. Other potential. stumbling blocks are enumer-

ated in the following discussion.

6
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4
SIGNATURE TRANSFORMATIONS

4.1 DERIVATION

Scanner data from a given material is usually assumed to be repre-

sented by the multivariate Gaussian probability density function

exp[- 2 
(x-

^ a) T 8a
o1 (x- Ij

P -
	 (2v )n/2 

!e 
11/2

a

Pa is the probability that a given signal x corresponds to the material

a, exclusive of any competing probabilities associated with other

materials. The data vector x represents the recorded signal levels

in each spectral band of the MSS for a single measurement. The vector

of mean values for the signature of material a is p a , and 6 a is the

variance-covariance matrix; together they form the "signature" of mate-

rial a. All the vectors have n omponents and the matrix has nxn com-

ponents, with n being the number of spectral bands used in signature.

As a means to compensate for changes in bidirectional reflectance

in an average way and to compensate for the multiplicative and additive

effects arising from changes in the other variables of the transfer

equation (Eq. (1)), a signature transformation may be proposed which al-

ters signatures derived from one scene to match, at least approximately,

the conditions present within, a second scene. If one assumes that the

differences between observed signal levels in the two scenes are purely

multiplicative and additive, then the signals are related by

X' =Ax+ p,	 (3)

in which x' represents the observed signal from the second scene,

while x represents a corresponding signal from the first scene. The

quantity A is a diagonal n xn matrix whose non-zero components represent

the multiplicative changes to the signals in each spectral band, and

(2)

7
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B is a vector with n components, representing the additive changes.

The signature transformation corresponding to this multiplicative and

additive change in signal levels is given by

pa = A u a + B	 (4)

and

a I	 AT r,a A	 {5}
CL

One should note that Equation (5) applies for data which excludes

measurement noise inherent in the scanner instrument. When a signature

is extracted from a scene, this measurement noise becomes a part of

the variance--covariance statistics for the signature, changing thuse

statistics from their purely scenic values in a strictly additive

fashion. Ordinarily signature extension is attemrted between scenes

recorded with the same MSS instrument, hence the measurement noise for

each scene should be nearly the same, regardless of any changes in the

variables of Equation (1). Equation (5) should only apply to that

portion of the variance-covariance statistics which excludes measure-

ment noise. Depending on the source of the measurement noise, some

other form of transformation may or may not be appropriate for the

noise statistics. Since the nature of the measurement noise for Landsat

data is uncertain, and since, to date, we have found that transforming

the variance-covariance matrix produces little change in the results

of signature extension applications, the approach at ERIM so far has

been not to use Equation (5), leaving the variance-covariance statis-

tics unchanged, and to use only Equation (4) for signature transforma-

tions.

4.2 IMPLEMENTATION

Given that a signature transformation is desired to compensate

for multiplicative and additive differences between two scenes, the

task is next to determine the appropriate coefficients, A and B, for
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Equation (4). In general one needs for this purpose some effective

way to compare the data from the two scenes. One method for accom-

plishing this is to compare cluster statistics for the scenes.

Clusters are usually represented by multivariate Gaussian proba-

bility density functions which, when weighted according to the amount

of data in a scene which generated the statistics of each cluster, and
f

'	 when summed together, approximate the multivariate histogram distri-

bution for the scene. Clusters are generally assumed to be equivalent 	 !

to signatures for more or less unknown but spectrally distinct mate-

rials, which represent modes of the data distribution from which the

clusters were generated. The extent to which clusterF actually repre-

sent modes of the data distribution depends to a great extent on the

nature of the clustering algorithm which is used, however, regardless

of the algorithm used, the clusters xanen taken together generally do

represent adequately the variability to be found in the scene. The

advantage in using cluster statistics for comparing data from scenes

recorded under different conditions is that distinct materials by their

presence give rise to representative clusters, and the cluster statistics

4	
(mean values, variance, or covariance) are not particularly sensitive

to the frequency of occurrence of the materials within the scene.

1
Hence, a valid comparison of recording conditions for two scenes

requires only that clusters for similar materials be compared, rather
i

than that the frequency of occurrence of the materials compared between

scenes also be similar.
i	 t

Once one has obtained a valid association between pairs of clus-

ters from two scenes, a least squares estimate may be determined for

the coefficients A and B of Equation (4) by solving the following two

equations once for each spectral band to be used, 	
5

aA
i

A	 B)2 ] - 0	 (7)
aB
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The index i identifies each cluster pair. The summations are over all

cluster pairs. The mean value for the ith training scene cluster in

the spectral band being considered is represented by sa i , while ;1'Y
represents the mean value for the ith recognition scene cluster in the

same spectral band. These equations lead to a pair of simultaneous

linear equations which can be solved for the coefficients A and B in

each spectral band, yielding

N
''iu i r ^ui i

A	

Nut
	 2

	

rU2 LW Y	 Lea Cu z 7^

B= 2N ^ p^ _ (^^) 

in which N is the total number of cluster pairs used in the regression.

Again it should be realized that Equations (8) and (9) produce scalar

values for A and B which are appropriate for the specific spectral

band chosen. These equations need to be solved again for each addi-

tional spectral band used, to obtain the final A and B coefficient

matrix and vector, respectively, indicated in Equation (4).

Since the clusters which are paired in the regression to calcu-

late A and B must be finite in number, there is a practical limit to

the accuracy with which the A and B coefficients can be determined,

even with all cluster pairs being valid. Of course the multiplicative

and additive transformation sought cannot compensate perfectly for all

the real physical causes of the difference between the training scene

and the recognition scene anyway, however in principle it is best to

try to use as many valid cluster pairs in the regression as possible.

Current signature extension tests at ERIM have tended to use between

LE I

(8)

(9)

}

d
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10 and 20 cluster pairs for obtaining the A and B coefficients, out 

of a maximum of from 15 to 30 cluster pairs which were possible. 

The first basic cluster matching algorithm, called MASC (for ~ulti

plicative and Additive Signature Correction) [11, Was developed at 

ERIM to test the cluster regression approach to determining the A and 

B coefficients. While this algorithm achieved Seme occasional successes 

at signatule extension, it did not include a means to adequately select 

only valid cluster pairs, a serious requirement for achieving practical 

results. The task was then to automate a procedure for selecting those 

few valid cluster pairs which might exist among the great many arbi

trary pairs which were possible. 

The difficulty involved in identifying valid cluster pairs may be 

appreciated by considering Fig. I, which shows one set of cluster pairings 

from a matrix representing all 100 possible cluster pairs between a set 

of 10 training scene clusters and a set of 10 recognition scene clusters. 

Training Scenf, Clusters 

1 2 3 4 5 6 7 8 9 10 

1 
2 0 
3 0 

Recognition 4 0 
Scene 5 0 

Clusters 6 
7 0 
8 0 
9 0 

10 0 

FIGURE 1. POTENTIAL CLUSTER PAIRS 

For the purpose of better illustrating a point to be brought up later, 

an equal number of training clusters and recognition clusters has been 

assumed, although the number of cluster~ obtained from each scene in 

11 
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practice turns out to be equal only occasionally. Also, for sim-

plicity, a smaller than usual number of clusters has been assumed.

The 0's in the matrix represent a hypothetical set of valid cluster

pairs for this illustration. By ordering the sequence of the training

scene and recognition scene clusters appropriately, these valid pairs

may be made to fall close to the diagonal of the matrix, about as

shown. If one tries to examine all possible sets of 10 cluster pairs

to find which is best, one finds that there are 10: ( =3,628,$00) sets

of pairs to be considered, assuming that there are no multiple pair-

ings with the same cluster.

Obviously there are two basic difficulties to be dealt with in

finding the valid cluster pairs from which to derive the required

signature transformation. The first is to reduce the number of differ-

ent sets of cluster pairs which need to be examined, and the second is

to determine which among those several candidate sets of cluster pairs

are most likely to be valid. The first attempt at BRIM toward solving

the first of these two difficulties was to sort the training scene and

recognition scene clusters according to their mean values in some

designated spectral band, then to consider only those sets of cluster

pairs which preserved that linear ordering. This procedure occasionally

led to situations such as that shown in Figure 2. The X's indicate

the one set of 10 cluster pairs that is permitted, subject to the

cluster ordering constraint, when there is an equal number of training

and recognition clusters from which to choose. The 0's again indicate

the hypothetical set of valid cluster pairs specified in Figure 1.

When the number of clusters in the training set differs from the number

in the recognition set, the linear ordering constraint becomes less

restrictive, as will be shown below. Note that of the 8 valid cluster

pairs available, only two are within the candidate match indicated in

Figure 2.

12
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Training Scene Clusters

1	 2	 3	 4	 5	 6	 7	 8	 9	 10

I	 X
2	 0	 X	 ^",•

3	 X	 0
Recognition	 4	 0	 X

j Scene	 5	 X	 0
I Clusters	 6	 X

7
Fi 8	 X	 0

9	 0	 X

10

FIGURE 2.	 LIMITED POTENTIAL CLUSTER PAIRS
AFTER LINEAR ORDERING CONSTRAINT (EXAMPLE)

r An improved cluster matching algorithm, called CROP--A (for Cluster

Regression Ordered on Principal-Axis), was developed at ERIM and has

evolved to include a partial remedy for the linear ordering constraint

difficulty indicated in Figure 2. 	 The name for this algorithm comes

from its choice of the principal ei.genvector of the covariance of the
4

training signature means as the linear direction for the cluster order-
.;

ing constraint.	 Cluster positions along this ordering axis are deter-
.

mined from an apparent mean value for each cluster, given by a dot

product between the cluster mean vector and a unit vector aligned with

the principal eigenvector. 	 Improvements in signature extension per-

formance due to using this cluster ordering direction instead of using

a particular spectral band appear to be mostly inconsequential, how-

ever the other new features contained in the algorithm appear to reap

substantial benefits. 	 In particular, the algorithm contains a pro-

vision to force a difference to occur in the number of training clus-

tersand recognition clusters which are to be paired. 	 For this purpose

• the algorithm keeps track of the number of data values used to generate

each cluster.	 first, clusters generated from less than 1% of the data

13
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used to generate all clusters in the same set are excluded from being

paired at all. This eliminates some of the "false alarm" clusters

derived from minority constituents of a scene, which may be less

likely to have counterparts in another scene. The percentage thres-

hold for excluding clusters is then increased above 1% for one of the
two sets of clusters (whichever requires the least number of addi-

tional exclusions) until a desired difference in the.number of clus-

ters remaining in the two sets is reached. Ordinarily the increased

threshold is less than 2% when this condition is obtained. For cluster

sets of between 15 and 30 clusters, a forced difference of 4 in the

number of clusters is currently used, producing between 1000 and 30,000

candidate sets of cluster pairs. This situation is simulated in minia-

ture in figure 3.

Training Scene Clusters

lE
2
3

Recognition 4E
Scene	 5

Clusters	 6E
7
8
9

10

1 2 3 4 5 6 7 8 9 10

EL X X X
X X X N

0
X X X a

X x X a
X x x x 0

X X a X
X X X N

FIGURE 3. LESS LIMITED POTENTIAL CLUSTER PAIRS
AFTER CROP--A FORCED DIFFERENCE

Recognition clusters eliminated by the requirement for a forced

difference of 3 in the number of clusters in . the two sets are desig-

nated (hypothetically) by the letter "E". The candidate cluster

matches available from Figure 3, subject to the cluster ordering con-

straint, consist of sets of pairs designated by X's, one from each row,

14
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such that the chosen X's can be joined in sequence by a monotonic

broken line segment. This requirement is equivalent to matching all

possible subsets of 7 training clusters with the 7 retained recognition

clusters, in sequence. In this simple case one obtains 120 (10:/7:/3'.]

candidate sets of 7 cluster pairs, rather than the single candidate

(with 10 pairs) indicated in figure 2. Also, one of the available

candidates (in this case, with 7 pairs) now contains 5 valid cluster

pairs, compared to only 2 for the candidate (with 10 pairs) in Figure 2.

This new candidate is shoc rn in Figure 4.

'Draining Scene Clusters

1 2 3 4 5 6 7 8 9 10

1E
2	 M
3	 M

Recognition 4E	 0
Scene.	 5

Clusters	 6E
7
8	 X 0
9	 0 X

10

FIGURE 4. OPTIMUM CANDIDATE CLUSTER MATCH
AFTER CROP-A FORCED DIFFERENCE

h

i

j

{

Note that the pairing of recognition cluster #9 with training cluster

#8, although potentially allowed by the CROP--A forced difference

(Figure 3), would by its choice in a candidate exclude from that candi- 	
i

date, due to the ordering constraint, the valid pairings with recog-

nition clusters X63, #5, and V. Hence, at best this alternate candi-	 `i

date could only contain 3 valid pairs. This sort of limitation is not

uncommon when a linear ordering constraint is used. The result is that

not all of the valid cluster pairs can be selected by the algorithm at
a

one time.

15
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As a potential solution to the somewhat severe restrictions

occasionally imposed by the CROP-A linear o.-dering constraint, another

cluster matching algorithm, called CROWK (for Cluster Regression

Ordered With N channels), is currently undergoing development and

testing at BRIM. This algorithm uses a matrix of merit figures, one

figure for each possible cluster pair, to allow apparent optimum clus-

ter associations to be chosen one by one until a specified number of

candidate sets of a fixed number of cluster pairs become available.

The merit figures for the matrix are determined on the basis of simi-

larities in the location of each training and recognition cluster

within its respective overall cluster distribution. This technique

appears to be satisfactory for reducing the complexity of the cluster

matching problem without excluding any significant: number of valid

pairs from consideration.

Having devised a means to select a practical number of candidate

cluster matches, one next needs to find the best candidate among those

chosen and to determine which of the cluster pairs from that candidate

are most likely to be valid. Both CROP-A and CROWN use the regression

procedure itself to perform this selection. Presuming that invalid

cluster pairs will tend not to match as closely as the valid pairs,

these algorithms delete from the regressions performed for each candi-

date match those cluster pairs which appear to match the most poorly.

This is accomplished by comparing the transformed training cluster

mean values to the untransformed recognition cluster mean values for

each cluster pair. The mean values are first compared within the

individual spectral bands as each separate regression is performed

(Equations (S) and (9)), since this is computationally the earliest

opportunity to delete a cluster pair from the subsequent calculations.

The cluster pair deleted after each iteration through the regression

is the one among those with a difference in mean values in excess of

a specified threshold (currently 4.0 counts), which has the largest

....

16
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difference in mean values. This iterative procedure continues until

a stable situation is reached, with the regression in each spectral

band updated to reflect deletions caused by the thresholding in any of

the spectral bands. The RMS distance between the remaining cluster

mean values is then tested, using an average over all spectral, bands. 	 .....

If the greatest RMS distance is more than a second threshold (currently

6.0 counts), all cluster pairs with RMS distances greater than the

average of the greatest RMS distance with this second threshold are

deleted. The regressions are then updated accordingly and the test

is repeated until once again the situation becomes stable. If at this

point any of the deleted pairs now matches with an RMS distance less

than a third threshold (currently 6.0 counts), the pair is restored

and the regressions are updated gust once more. This procedure has

seemed to be quite effective. Candidate matches, with poorly matching

cluster pairs deleted, are then compared to select the final result.

The final result selected is that which has the minimum RMS mismatch

between clusters, comparing averages over a specific fixed number of

the "best" pairs from each candidate. Typically for CROP-A this final

selection is based on the best 676 of the cluster pairs in each snatch

(whether deleted or not), while for CROWN it is based on the best 90%.

Note, however, that the CROWN algorithm contains a provision to auto-

matically select the number of cluster pairs which are reasonable to

constitute a candidate, and that this number may sometimes be less

than the number of pairs required for a CROP--A candidate, although the

CROWN algorithm generally retains numerically more cluster pairs in

its final result than does CROP--A.

Although the above candidate selection procedures and the sub--

sequent iterated regressions with step by step deletions of poorly

matched cluster pairs have seemed to be quite effective, it has for

some time been apparent that the performance of cluster matching

algorithms is limited by a fundamental difficulty somewhat allied with

17
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the problems caused by variations in bidirectional reflectance, men-

tioned earlier. This limitation occurs when there are an insufficient

number of valid cluster pairs to be found, as happens when scenes con-

tain dissimilar major constituents. Such major differences between

scenes may arise simply from differences in crop varieties grown

(different rates of growth), or from differences in crop treatment

(fertilization or irrigation), as well as from more fundamental differ-

ences (different crops). Major differences between scenes constitute

another potential stumbling block for signature extension. A method

(partitioning) for partially alleviating this problem will be briefly

discussed later (in Section 5.5).

f
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5

PERIPHERAL PROCEDURES

The manner in which a signature extension module, such as CROP-A

or CROWN, is embedded in an overall signature extension system has

been identified as an important consideration in determining its per-

formance and value as a signature extension tool. In this regard,

research is currently underway at ERIM to define an optimum signature

extension system, utilizing the current state of the art. Some partic-

ular techniques being tested Rre discussed below.

5.1 BOUNDARY PREFROCESSING FOR CLUSTERING
if

The effectiveness of many signature extension techniques, as well

as the quality of recognition, depends on the manner in which clusters

are produced. This section describes ways in which clustering can be

improved by restricting pixels used in forming clusters to those which
I

are very likely to be field center pixels.

Since Landsat data is made up of many pixels, each representing

}	
an instantaneous field of view of approximately 79 meters square,

1	 these pixels often contain a mixture of signals from more than one

'	 material. For typical scenes in the Great Plains, often 50% or wore

of the Landsat pixels straddle field boundaries and hence contain

mixed signals. Since such mixture pixels can have adverse effects on

cluster statistics, which ideally should describe the true ground

cover classes that occur in a scene, we seek to generate the statis-

tics us i ng pixels which represent only pure materials. Within a

training scene, where the training field boundaries are known, one

can cluster over pixels within field boundaries and obtain relatively

clean statistics. However, within a recognition scene, information

on field boundaries is not available.

Any edge detecting technique can be of value in eliminating

boundary pixels from clustering. In this section, the use of a

gradient edge detector (GRAD) will be discussed. Another possible
f
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edge detecting technique is a spectral-spatial cluster technique,

wherein pixels consist not only of spectral bands, but also of bands

containing line-and point information (4).

The technique called GRAD works as follows. For each pixel,

differences between opposing pairs of its eight neighbors are formed

-to give an estimate of the spatial rate of change in signal value, or

gradient. The gradient value is a measure of the nonuniformity, and

thus of the likelihood that the pixel is a mixture pixel.

Consider E, pixel E from line n, with point number m, and its

eight neighbors A,B.... as shown below.

Point

Line	 m-1	 m	 m+1

n- 1	 A	 B	 C

n	 D	 E	 F

n+ 1	 G	 H	 I

The calculation of gradient measure g for pixel E is

g = Y	 I Qil + 1p i l	 ( 10)
i

where i is the channel number, and the line rate of change Z  is

2i - 2(Gi - Ai) + 3(Hi - Bi ) + 2( 1i - C0 	 (11)

and the point rate of change p i is

pi = 2(Ci - Ai) + 3(Fi - Di) + 2(Ii - Gi).	 (12)

(There are other possible gradient estimators, such as the largest

difference between pixel E and any of its neighbors.)

20
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Once gradient values are established, a threshold is used to

:	 reject a specified fraction of pixels as being probable boundary

pixels. 'Typically 75% is used as a compromise between accepting too

many pixels, some of which will be mixtures, and accepting too few

pixels so as to run the risk of rejecting high texture, field center

pixels, or of using insufficient data to get sound statistics. Rejected

pixels are coded so that they will not be used in clustering.

The question of evaluating the performance of a boundary pixel

detector is an interesting one. In the first place, it is difficult

to define which pixels should be called pure, even with full informa-

tion. For example, if two similar wheat fields adjoin each other,

pixels on the field boundary are boundary pixels, but are not mixtures

of different materials. A gradient method would call them field cen-

ters. If the two wheat fields differ somewhat, but not radically, it

is not clear whether a " perfect" algorithm should flag the pixels along

their boundary as mixtures. How one should detect and flag almost pure

pixels is a difficult question.

Aside from the conceptual problem of defining which pixels should

be called mixtures, one can still get some indication of performance

by examining the fraction of pixels, known to be well inside field

boundaries, which GRAD detects as being pure, using a variety of detec-

tion thresholds. For one scene, this information is shown in Figure 5.

To compare the gradient technique to the procedure of accepting

the given percentage of pixels from the scene at random, we mark the

dashed 45 degree line on the figure. The results from GRAD are visi-

bly better than random.

In order to assess performance more quantitatively, we consider

the two kinds of error --- type I error, where field center pixels are

mistakenly called probable mixture pixels; and type II error, where

pixels called probable pure pixels are in fact mixture pixels. Type I

error is not believed to be serious unless so many pixels are rejected

21
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that the variability of the important pure classes in the scene is not

adequately represented. Type II error is contrary to the purpose of

gradient filtering in that mixtures of pure classes may be present in

unwanted abundance.

For various gradient thresholds, type I error can be inferred

directly from Figure 5. In the scene illustrated, the threshold which

accepts 25% of the pixels in a scene (a number less than the number of

actual field center pixels, which is estimated variously around 50%

of the scene), accepts a full 60% of the field center pixels whose

centers are conservatively within a 1.5 pixel diameter inset from the

field boundaries. This inset is sufficient to ensure that the eight

neighbor pixels used in the gradient computation are generally within

the same field. As the inset is decreased to the value 0.5, which does

not assure that the eight neighbors are all in the same field, but still

assures that the pixel is within the field, only 35% of this larger

class of field centers are accepted by the same 25% gradient threshold.

This latter percentage is of little concern, since we prefer to handle

only pixels conservatively inset from actual field boundaries.

Type II error concerns us somewhat more. To determine the number

of pixels which are called pure by the gradient threshold when they in

fact fall on a boundary, we tabulate gradient accepted pixels falling

inside a field boundary inset by 0.5. Because this inset at least

approximately distinguishes field center pixels from boundary pixels,

gradient accepted pixels not tabulated are considered to have fallen

on boundaries. In the scene used for Figure 5, one in three gradient

accepted pixels falls on a boundary for the linear, low threshold (up

to approximately 30% of scene accepted) portion of the curve. This is

an upper bound on the type Ii error, since many of the, boundaries

separate fields with the same type of crop, in which case the technique

is not expected to find the boundary. The actual type II error is

believed to be much less, maybe 10 or 20 percent, but it has not been

measured at this time.
23
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Figure 6 shows the other scene tested. Here results are better

than the first scene. Over 65% of conservative (1.5 pixel inset) field

centers are accepted with a 25% scene threshold, and approximately one

gradient accepted pixel in five is on a boundary, even though the second

scene has a slightly smaller average field size and an estimated slightly

larger percentage of boundary pixels in the scene.

From the above analysis, it seems likely that for typical scenes

pixels passed to the clustering algorithm would be concentrated so as

to produce a proportion of pure pixels on the order of 80-90%, a sub-

stantial improvement from a typical proportion of 40--60%.

Next we turn to the effect gradient filtering has on clustering.

By virtue of clustering primarily non-mixture pixels, modes of impure

classes should be somewhat suppressed. This effect is illustrated in

Figure 7. Here, a smoothed histogram of Landsat Band 6 was formed over

the scene, tabulating only pixels with a Landsat Band 5 value of 26.

This was done first for the full scene, and second for the gradient

filtered scene, with 75% of the pixels excluded by the gradient

threshold. The latter curve was scaled upward by a factor of 4'so

that the curves have approximately the same area beneath them. Each

curve then represents one strip out of a smoothed, two dimensional

histogram, and the particular strip was chosen to pass through one

major mode. (Band 6 value near 33), corresponding to wheat, and to fall

on or near another mode (Band 6 value near 50), corresponding to pas-

ture. The wheat mode was clearly accentuated by the technique, the

pasture mode was sharpened, and the region between modes was depressed.

The effect of this on clustering is twofold. First, clusters

which occur between modes would have a relatively smaller number of

pixels, so that they can be given proportionately small consideration

r
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which are near other clusters that are forming. Thus, there is a

tendency for clusters, once started, to grow away from each other, and

to more or Less uniformly cover the populated regions of signal space.

By depopulating the regions which do not correspond to pure classes,

we expect to limit the growth of clusters toward such regions, and

concentrate the final clusters nearer true modes.

5.2 REVERSE TRANSFORM LABELING

Still more improvement in signature extension performance might

be expected to result from optimizing the way in which the transformed

and untransformed clusters are used. With this in mind, ERIM has

developed a technique called reverse transform labeling. This tech-

nique, rather than transforming training scene clusters to match the

recognition scene, transforms the recognition scene clusters to match

the training scene. The local classification of the training scene by

the training clusters is then compared, pixel by pixel, to the classi-

fication of the training scene by the transformed recognition clusters.

The number of pixels classified locally as wheat or non-wheat and also

classified by each transformed recognition cluster are tabulated to be

used as votes for labeling the clusters as wheat, non-wheat, or unde-

cided. A cluster is labeled undecided whenever fewer than 10 votes

are obtained, or whenever fewer than two thirds of the votes favor the

majority. The untransformed recognition clusters, with these labels,

but with undecided clusters excluded, can then be used to classify the

recognition scene. This technique depends only on determining a sig-

nature transformation accurate enough to produce proper recognition

cluster labels from the training scene information, and may be espe-

cially effective if, due to gradient filtering, the recognition scene

clusters can be made to represent mostly pure materials. Thus, this

approach is less sensitive to minor inaccuracies in the signature trans--

formation coefficients and to minor variations in bidirectional reflec-

tance between training and recognition scenes than the transformation

27
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of training signatures to classify the recognition scene.

5.3 MULTITEMPORAL TECHNIQUES

Some other improvements in signature extension performance should

result from using additional sources of information. A generalized

mathematical technique which can, in principle, utilize virtually any

form of additional information, provided that appropriate mathematical

relationships are known, is discussed in Section 8. A more restricted

technique is to use MSS data from additional time periods as supple-

mentary sources of information. Such a use of multitemporal data is

an especially reasonable means to augment current unitemporal tech-

niques, since analyst interpreters attempting to define training fields

by examining Landsat imagery routinely use not only the most recently

acquired data, but preceding data as well, in order to ensure the best
choice of training fields. Since signature extension is intended to

reduce the requirements for extensive interpretation of imagery (or

ground based surveys), without significant loss of classification

accuracy, it is reasonable that signature extension techniques incorpo-

rate the same information that is used by the analyst interpreters.

Since clouds often obscure training or recognition scenes during Landsat

data acquisitions, multiple or alternate training scenes are required

in order to most effectively implement multitemporal signature exten-

sion techniques. The details of a multitemporal training procedure

(which incorporates the reverse transform labeling technique) are dis-

cussed in Sections 7.5 and 7.6. Of course multiple training scenes may

also be used for unitemporal signature extension applications, as dis-

cussed in Section 7.6. Multitemporal signature extension carries with

it the requirement for multitemporally registered data. Although

proper registration of the data from separate time periods to form

single multitemporal data sets adds to the processing time for multi-

temporal signature extension, the benefits obtained through this pro-

cedure should still warrant the additional processing effort.

I
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Another use of multitemporal data is in signature extension from 	 j

one year to the same time period(s) in a following year. In such cases,

when signature extension is attempted from one area to the same area

a year later, it is probable that the cropping practices and types of
t

materials present in that scene will not have changed substantially.
1

Thus, the chances for signature extension success are improved. Since

extensive training data has been generated for past years, when signa-

ture extension was less well developed, much of the large data base

required for such year to year applications already exists.

5. 4 THE TASSELLED CAP DATA TRANSFORMATION [5]

Feature extraction techniques are also useful in signature exten-

sion. Extensive work at ERIM with cluster statistics from numerous

Landsat scenes has led to the identification of a basic four dimen-

sional region in the Landsat data space, shaped somewhat like a tasselled

cap, which delimits data distributions for typical agricultural scenes.

Specific portions of this tasselled cap distribution correlate with

meaningful features within these scenes: the base of the cap repre-

senting variations in scene brightness or soil type and color, the

,.

	

	 peak of the cap representing mature green vegetation, and the tassels

tracing the process of senescence in the various crops. This visuali-

zation of the Landsat data space has been used to devise transformations

which change the four standard bands of Landsat data into new data

channels more closely associated with meaningful features of agricul-

tural scenes. Although the optimum data transformation of this type

would be nonlinear, and would need to be derived separately for each

scene, a fixed linear representation of the data transformation (essen-

tially a four dimensional rotation matrix applied to the four Landsat

i

	

	 bands) has been derived which is expected to be quite satisfactory for

most scenes. (The coefficients for this transformation are specified

f

	

	 in Section 7.2.) This transformation is useful in concentrating the

most meaningful, and the least useful or most confusing, information

29
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from the original Landsat bands into separate data channels. This

enables exclusion of the least useful. or most confusing channels from

processing and the retention of only the most useful channels, pro-

ducing a potential for improved signature extension performance and a

simultaneous saving in the processing efforts which follow the data

transformation. This saving applies especially to multitemporal appli-

cationG, since processing effort for some of the signature extension

procedures -acreases in an accelerated manner with an increase in the

number of data channels.

5.5 PARTITIONING

Another potential improvement in signature extension performance

can be derived from developing the wisdom to know when and when not to

try to use signature extension techniques. Earlier, the problem of

training and recognition scenes with dissimilar major constituents was

mentioned. An obvious attempted solution to this problem is to use

only training and recognition scenes which are sufficiently similar so

that the signature extension algorithms used can handle them. The act

of selecting appropriate associations of training and recognition scenes

for signature extension is called partitioning. To effect this parti-

tioning procedure, one may first define spatial--temporal domains, based

IDn knowledge of physiographic information (soil class, type, and color,

climate, topography, or past history of rainfall, cropping practice,

etc.), which have nearly uniform physiographic characteristics. These

spatial-temporal domains would be called strata. Subsequently, these

domains could be further subdivided, based on knowledge gained from the
^	 1

j	 MSS data itself, into smaller spatial-temporal domains called partitions. 	 {

IE	 If this procedure were done appropriately, the final partitions obtained

would determine the training scene to recognition scene associations

that would be reasonable to nse for signature extension. Note that the

strata, defined according to information on long term effects, would

tend to be fixed, or "static", for appreciable periods of time, although
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they may change slowly as a function of time throughout the crop grow-

ing season. The partitions, however, would be more variable, or

"dynamic", since in principle they would change with each data acqui-

sition (according to where rain fell recently, or to where atmospheric

haze might be especially dense). The partitioning problem at present

is highly complex and of course can vary substantially, depending on

the signature extension techniques which are to be employed. Research

is currently underway to determine to what extent the signature exten-

sion algorithms themselves can help to identify the spatial-temporal

boundaries of a partition.
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EVALUATION OF PERFORMANCE

The development of signature extension techniques has been slowed

by the requirement for a great amount of data preparation and testing

in order to properly judge signature extension performance. The follow-

ing discussion outlines the basic test and evaluation procedures cur-

rently in use at ERIM, and describes some of the results which have

been obtained.

6.1 DATA PREPARATION

The first requirement for testing practical applications of a

signature extension technique is for ground truth information. This

information is needed not only to generate training statistics, but

to evaluate classification accuracy in the recognition areas as well.

The training and test fields identified and used for the current sig-

nature extension effort have come from detailed ground surveys con-

ducted by the U.S. Department of Agriculture. The training or test

areas identified have been of two types: (1) Intensive Test Sites

(ITS's), which generally cover between 20 and 80 square kilometers

and (2) Statistical Reporting Service (SRS) sites, which usually cover

between 1/2 and 10 square kilometers. Sin-.e the SRS sites are in

general too small to provide adequate training information (e.g., the

Stafford SRS site in Kansas contains no wheat fields), the SRS ground

truth has been used only for testing classification accuracy within

recognition areas. Training statistics have been extracted only from

ITS's. To date, ground truth information determined by analyst inter-

preters, looking at MSS data images, has not been available to ERIM,

although an effort is currently underway to enlarge the ground truth

coverage for the SRS sites through such assistance.

The original field definitions for each ITS or SRS site, when

received, are designated by outlines drawn 
on a clear plastic overlay
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which matches an aerial photograph. One then needs to generate equi-

valent field definitions (specified as polygons) which match the Landsat

data for each date of interest for each site. The conversion from x,y

coordinates measured on the plastic overlay to L,P (line and point)

coordinates which match each Landsat scene is performed using a mapping

transformation of the form

L=a0 +al x+a2 y+a3 x2 +a4 y 2 +a5 xy	 (13)

P = b 0 + b 
1 

x + b 
2 

y + b 3 x
2 +b4 y 2 + b 

5 
x 	 (14)

The coefficients a0 ,...,a5 and b0 ,...,b5 are determined by a least

squares procedure which minimizes the mean square error of matching

transformed x,y control points to corresponding L,P control points

measured from a lineprinter map of the Landsat scene. The control

points chosen are usually either field corners or road intersections

which show up clearly in the MSS image, and which are selected at

more or Less equal intervals throughout the area covered by the.over-

lay. Typically, for an SRS ,site between 10 and 20 control points are

selected, while for ITS's between 16 and 42 control points are used.

The regressions to determine the mapping transformation coefficients

are iterated so that control points which appear to have been measured

in error can be detected by the regression algorithm and can be deleted

from subsequent iterations. A procedure somewhat like the iterated

regressions in CROP-A and CRO14N is followed, with control points

deleted which misregister by more than one line or point after the

transformation, and with control paints restored which subsequently

misregister by less than one line or point. After this deletion and

restoration process stabilizes, and if the RMS misregistrations

averaged over all control points retained is greater than one half

line or one half point, the control point with the largest misregis-

tration in lines or points is deleted, and the procedure is repeated
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until stability is obtained once again. For regressions using as many

as 42 control points it is sometimes nearly impossible to obtain both

a maximum misregistration less than one line or point and an average

RMS misregistration less than one half line or one half point using

all control points. In such a case one or two deletions, if they

appear to be distributed randomly throughout the scene, may be toler-

ated. For scenes with fewer control points, deleted points are remea-

sured, and the regressions are rerun until all the control points are

acceptable. The mapping transformation is then applied to the x,v

coordinate representation of the polygon field definitions to produce

the corresponding field definitions in the line and point coordinate

system.

The task of locating each 1/2 to 10 square kilometer SRS site

and each 20 to 80 square kilometer ITS ir_ each 185 x 185 kilometer

Landsat frame, and of ~hen determining appropriate control points for

obtaining the polygon mapping transformations, is both arduous and 	
i

time consuming. Since there is a need for polygon field definitions

for each potential multitemporal signature extension application as
I

well as for each unitemporal application, recent efforts toward genera-	 j

Ling field definitions have concentrated on obtaining transformed

polygons which can satisfy both multitempor.al and unitemporal needs.

This effort saving approach has become possible with the availability

of multitemporally registered Landsat data for the ITS's and SRS sites,

which generally covers an area between 13 kilometers square (for SRS

sites) and 39 kilometers square (for ITS's), making the sites easier 	
,j

to locate as well. However, the data is multitemporally registered

only to the nearest pixel, hence one finds that a set of field defini-

tions which optimally match one time period will sometimes differ from

some of the field definitions needed to match another time period by

almost as much as two pixels. What is needed then is a means to esti-

mate the mapping transformation which produces the best overall set of
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field definitions, averaging the misregistr'atio;s between the separate

time periods in each multitemporal data set.

6.2 THE CLUSTM ALGORITHM

For a time, multitemporal Field mapping transformations had been

estimated by simply averaging the transformation coefficients derived

for each unitemporal time period in the data set. Since a multi-

temporal classification map is probably one of the best estimators

for field boundaries which would be applicable both multitemporally

and unitemporally for the time periods in a multitemporal data set,

an unsupervised classification algorithm, called CLUSTM, has been

developed. Prior to running CLUSTM, a subset of time periods is

taken, comprising all times of interest, multitemporally or unitempo-

rally (e.g., October through mid June), and discarding the others

(e.g., late June through August, which are after winter Cheat has

been harvested in Kansas). Next, the linear tasselled cap transfor-

mation is applied to the data. This is done to allow a minimum number

of channels to be used for the succeeding steps, while retaining as

much scenic information as possible. The gradient filtering algorithm

is then run on the data set, using all channels except the non-such

channel from each time period, to identify probable multitemporal

field center pixels. CLUSTM then generates clusters in the normal

ERIM manner, using only the brightness and green stuff channels from

each time period, and using only gradient filter accepted pixels for

input to the clustering. However, CLUSTM classifies all pixels

throughout the scene, whether or not they were identified as input by

the gradient filtering algorithm. Each pixel data value from the input
i

data tape is then replaced on the output data tape by the vector of 	 j

mean values for the cluster which was its least Euclidean distance

neighbor (using mean and variance statistics, but excluding the

covariance statistics). Two additional channels are also added to

the output tape, recording the cluster identification number and the
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K 2 value for the cluster which classified each pixel. Specific

channels or combinations of channels can then be displayed from the

output tape, e.g., as lineprinter graymaps. One then uses the map

showing the best definition of features to locate the required control

points for the regression procedure.

A single channel map from the CLUSTM algorithm, according to its

current use, depicts a brightness or green stuff channel from the

selected time period, but with the displayed gray level for each pixel

representing the mean value, in the chosen channel, of the gradient

filtered cluster which classified that pixel. By using a threshold

on the v 2 output channel to edit the display of the map, one can blank

out the mapping of pixels which were distant from the cluster mean

values and hence are likely to represent mixtures. Thus the CLUSTM

map tends to show blank areas which trace the road network and some

of the field boundaries in the scene, and to indicate fairly clearly,

with uniform gray levels, the larger fields that are present. Using

the CLUSTM map, training or test sites with large fields, and which

are surrounded by a recognizable road network, can be located quite

satisfactorily. Sites with many small fields, because there are mis-

registrations of up to plus or minus one pixel between time periods,

are often quite difficult to locate by any method. Using field defini-

tions derived with the aid of the CLUSTM procedure, and restricting

training or testing to pixels whose centers are inset more than 1.5

lines or points from the field boundaries, one can generally be

assured of having a good correlation between the training or test

pixels and the available ground truth.

6.3 TEST PROCEDURES

The goal for the present signature extension effort has been to

generate reasonably accurate proportion estimates for wheat acreage

vs. non-wheat acreage. However, wheat proportion estimates alone

cannot give a clear indication of success or failure for signature
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extension procedures, nor are they fully adequate for determining the

causes whenever success or failure can be ascertained. Some additional

insight can be gained by examining performance matrices, indicating

the classification accuracy for different ground truth categories.

For instance, sometimes it is found that when a good proportion esti-

mate is obtained, the performance matrix indicates that the apparently

good result was only fortuitous, since the classification accuracy for

some ground truth categories was poor. Other times the performance

matrix may look encouraging, but the proportion estimate may be poor,

possibly due to having too few pixels within the portion of the recog-

nition scene for which ground truth was known. In general it is assumed

that a reasonable proportion estimate, together with a good performance

matrix, is a sufficient indicator of signature extension success,

although it may still be an insufficient indicator of the reasons for

that success.

When reverse transform labeling is used, some additional insight

can be gained by comparing the recognition cluster labels obtained

through signature extension from the training scene to the labels that

would have been obtained from ground truth in the recognition scene.

Many times, however, there is insufficient ground truth within the

recognition scene even to perform local training, hence in such cases

the comparison of reverse transform labels to locally derived labels

cannot be made.

Another technique for interpreting signature extension performance

is to compare the cluster distributions for the training and recognition

scenes. If labels are assigned to the clusters, the reasons for classi-

fication errors or successes can become quite apparent, especially when

clusters from one scene, after being transformed to match another scene,
1

are compared to the untransformed clusters from the other scene. This

technique is especially useful for interpreting the performance of

signature transformation algorithms. The recent practice at FRIM has
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been to display the clusters as two dimensional ellipse plots, after

first transforming both sets of clusters according to the linear

tasselled cap transformation, so that the brightness and green stuff

channels can be plotted. This provides as much useful information as

possible in a single ellipse plot. The ellipses, centered about the

mean value of each cluster, indicate the variance--covariance statistics

for the clusters in the two channels plotted. Analyses of these

ellipse plots have lead to two conclusions: (1) cluster matching

algorithms are rapidly approaching the limit of how accurately one

cluster distribution can be transformed to overlay and match another

cluster distribution, excluding consideration of the physical signifi-

cance or reality of the transformation obtained, as is indicated by

generally good performance under carefully controlled test conditions

(e.g., simulated data, or extension from one scene to the same scene

on a consecutive day), and (2) the partitioning problem is more diffi-

cult than had at first been expected, as is indicated by the discour-

agingly few instances in which cluster distributions from different

scenes actually appear to be closely similar.

As an aid to the partitioning problem, attention is beginning to

be focussed on performance measures which are available within the

cluster matching algorithms themselves, which may indicate whether a

particular signature extension attempt is reasonable. Since all clus-

ter matching algorithms use some sort of merit figure to select the

apparent best set of cluster pairs, this figure of merit (e.g., the

RMS mismatch between the paired clusters after one set has been trans-

formed) is one potential indicator of the validity of a particular

cluster association. Within algorithms such as CROWN, which assign a

merit figure to each possible cluster pair, the nature and distribution

of these merit figures may provide some useful feedback. Also, it has

been common practice to examine and compare the multiplicative and	 3

additive coefficients of the cluster transformation in the separate
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spectral bands in order to gain a general impression of the validity

of a result. Such information may also be a useful source of feedback.

Feedback of this sort could lead to a means for cluster matching algo-

rithms to specify an approximate dynamic partitioning on their own.

6.4 RESULTS

A partially controlled test of signature extension has been run,

comparing the performance of two cluster matching algorithms, CROP-A

and ROOSTER [6] (Rank Order 2ptimal Signature Transformation Estimation

Routine). The CROP-A algorithm has been described in Section 4.2, and

uses a linear ordering constraint and an iterated regression procedure.

The ROOSTER algorithm (developed by the Lockheed Electronics Company,

Inc.) uses merit figures associated with all possible cluster pairs,

derived from the cluster rank orderings in each spectral band, and

picks one candidate with 10 pairs, from which the best 5 pairs are

selected to perform the final regression. As tested, the ROOSTER

algorithm was in its original form, as documented in Reference [6].

Training data for the test was derived from the Ellis, Kansas

ITS, using Landsat-1 data for 13 .Tune 1974. Training statistics were

extracted by three separate clustering operations, one using the five

largest wheat fields, one using the five largest grass or pasture

fields, and one using the five largest summer fallow fields. These

three major crop categories included all the significant materials

within the ITS boundaries. All pixels whose centers fell more than
1.5 pixel diameters within a polygon boundary were clustered. (This

inset guarantees that pixels near field boundaries, which may have
mixed signals from the neighboring fields due to slight boundary mis--

locations, along scan oversampling, or other effects, will be avoided.)

This clustering procedure produced six clusters from,each of the cate-

gories, giving a total of 18 training clusters. The clusters were then

labeled according to their training field designations. An ellipse

plot of these training clusters, plotting channels 2 and 3 (Landsat
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Sands 5 and 6), is shown in Figure 8. The clusters plotted are identi-

fied by two numbers separated by a hyphen, the first of which is a

cluster identification number (1 through 18), and the second of which

indicates the percentage of pixels within the training scene (com-

prising 7770 pixels) classified by each cluster. Clusters 1 through 6

are wheat (indicated with shading), clusters 7 through 12 are grass

or pasture, and clusters 13 through 18 are summer fallow. When applied

to classify the entire ITS, these clusters achieved 92.5% correct

,i
classification of wheat as wheat (tabulated over known fields using

a 1.5 pixel inset) and 97.1% correct classification of non-wheat as

non-wheat (tabulated over known fields with the same inset). The

wheat proportion estimate was 43.0%, compared to 44.2% based on the

ground truth information. Note that the 13 June time period is at or

near the time of wheat harvest in this area, a time at which the three

major crop categories (wheat, grass or pasture, and summer fallow)

occupy separate corners of the triangular data distribution depicted

in Figure 8.

The recognition scenes for this test were chosen from the central
A

and southwest regions of Kansas. Information from a Lockheed Elec-

tronics Company, Inc., Interdepartmental Communication [7] which

grouped Kansas ITS's and SRS sites according to similarities in rain-

;!	 fall, physiographic features, major crops planted, crop production,

and soil type, texture, and color was used to partition the recogni-

tion scenes. This led to one group of three scenes (the Ellis ITS,

the Ellis SRS site, and the Barton SRS site for 12 June 1974) which
i

was judged to be in the same stratum as the training scene. Another

group of three scenes (the Haskell SRS site, the Grant SRS site, and	 i

he Kearny SRS i for	 J	 d	 e	 separatet	 e n	 site o 14 June 1974) was judged to b in a se 	 i^

	

y	 3	 p

stratum from the training scene. An additional scene (the Rush SRS

site for 12 June 1974) was not described in the Interdepartmental

Communication, although it was geographically close to the training
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O
^	 N

f1U

QQ	 10.00	 20.00	 30.00	 hQ.IIQ	 ';U.^lO

C1^fat•!!v^L	 :^

FIGURE 8. ELLIPSE PLOT OF TRAINING CLUSTERS U SED

TO GENERATE RESULTS FOR 'CABLE I

UO.EfO	 70.00	 (30.00	 p6.o0

LE ll



'f

Mind	 FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

site and to the recognition areas ,fudged to be in the same stratum.

Ellipse plots for each of the chosen scenes were then examined, after

labeling the wheat and non-wheat clusters with the aid of available

ground truth information, to verify that at least some chancre for

successful signature extensions existed for each of the proposed tests.

This partitioning procedure may have been more elaborate than what is

presently practical for fully operational signature extension applica-

tions.

The results of these tests are tabulated in Table 1. Gradient

filtered clustering and reverse transform labeling were not used in

generating these results, hence the clustering for each recognition

scene was performed using all pixels, representing pure materia l ,- or

mixtures, within the rectangular data region specified for the cluster-

ing. The areas clustered within the recognition scenes were small,

varying in size from 1000 to 8000 pixels. The local classification

results tabulated in Table I were derived by using the unsupervised

recognition clusters to classify each recognition scene after assign-

ing optimum labels to the clusters, based on the available ground

truth within the scene (with 1.5 pixel insets from field boundaries).

Consequently, these results may be somewhat pessimistic compared to

local classification using training within known fields, which would

generate clusters representing only pure materials. The RMS errors

quoted for the proportion estimates in Table 1 are KIS values of the

difference between each proportion estimate and the actual proportion.

The actual proportions were calculated from the field acreages given

in the ground truth information, and hence should not be assumed to be

exact values but only close estimates of the actual wheat proportions.

The performance matrix terms tabulated in Table 1 were derived from

pixels within known fields, using a 1.5 pixel inset from the polygon

field boundaries. The RMS errors quoted for the performance matrices

are RMS values of the difference between each tabulated matrix value

i

3
S

i
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Recognition
Scene	 Comments

Actual
Proportion

Local
Result

Untrans€ormed
Result

ROOSTER
Result

CROP-A
Result

Ellis ITS 12JUN74	 Consecutive 44.2 43.9 93.1 23.9 58.5 33.1 71.2 40.8 85.
Day Data Set 99.7 100.0 97.4 97.4

Ellis SRS 12JUN74	 Within 40.4 35.2 100.0 19.2 86.7 11.6 0.0 29.5 100.0
Stratum 100.0 100.0 80.0 100.0

Barton SRS 12JUN74	 Within 60.5 65.5 99.5 54.4 91.4 57.1 89.8 59.7 96.8
Stratum 83.8 91.2 79.4 82.4

Rush SRS 12JUN74	 Stratum 20.0 27.9 100.0 21.6 100.0 38.4 64.7 45.3 82.4
Unknown 58.8 67.7 29.4 23.5

Haskell SRS 14JUN74	 Across 29.7 30.2 91.1 6.3 11.5 42.2 61.7 15.9 28.1
Strata 90.8 95.8 64.9 92.1

Grant SRS 14JUN74	 Across 32.1 29.9 71.0 0.1 0.0 33.9 19.8 38.8 67.9
Strata 86.3 99.8 51.8 64.9

Kearny SRS 14JUN74	 Across 33.9 46.2 90.9 1.1 0.0 34.4 60.6 41.9 75.8
Strata 91.2 100.0 76.5 88.2

RMS Error	 Overall 6.2 12.3 22.5 65.3 12.8 55.6 12.4 32.3
18.2 12.8 37.7 33.0

RMS Error	 Within 4.2 4.0 17.3 25.6 14.8 60.4 6.6 8.7
Stratum 9.4 5.1 16.6 10.3

0
amaFs

azM

Only the diagonal terms of the performance matrix are given, specifying percentage
of wheat classified as wheat, and percentage of non-wheat classified as non-wheat.
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(i.e., the diagonal terms) and 1001, which is equivalent to an RMS

value for the off diagonal term of each matrix, calculated within the

same row. (A row of the performance matrix represents one ground

truth category, while the elements within the row represent the per-

centage of pixels within that category which were classified as each

recognition class, i.e., wheat or non-wheat.)

Note that the first recognition scene tauul.ated in Table 1 is

the same as the training scene, but for the preceding day. Current

cluster matching signature extension algorithms tend to do reasonably

well with extensions of this sort, which guarantee that the materials

present within the two scenes are in fact similar. Analyst inter-

preters, looking at the pertinent Landsat MSS imagery, have indicated

that it appears to have rained in the Ellis, Kansas area between the

12 June and the 13 .Tune data acquisitions, hence this first test

attempts to compensate for differences in soil moisture, as well as

for any atmospheric, illumination, or viewing angle differences which

occurred. The Ellis SRS site and the Rush SRS site are both especially

small. The Ellis SRS site covers about 1.9 square kilometers (385

pixels) and has small fields, so that a total of only 20 pixels were

available from which to compute the performance matrices for the site

(after applying the 1.5 pixel inset). Of these 20 pixels, 15 were

wheat and only 5 were non-wheat. The Rush SRS site covers about 1.3

square kilometers (305 pixels) but has larger fields than the Ellis

SRS site, hence a total of 51 pixels (only 17 wheat and 34 non-wheat)

were available to compute the performance matrices for the site (after

applying the inset). Similarly, the Kearny SRS site covers about 3.9

square kilometers (907 pixels), but has many small fields so that only

67 pixels (33 wheat and 34 non--wheat) were available for the performance

matrix computations. The other sites, however, each had a few hundred

pixels available from which to generate performance matrices. All of

the scenes contained at least the three basic materials -- wheat, grass
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or pasture, and summer fallow --- with the exception of the Barton SRS

site (no summer fallow) and the Haskell SRS site (no grass or pasture).

Some of the scenes contained additional materials as well: sorghum

(in the Barton SRS site and the Grant SRS site), corn (in the Haskell,

d:
	 Grant, and Kearny SRS sites), alfalfa (in the Grant and Kearny SRS

sites), and hay and rye (in the Kearny SRS site), Those sites in the

southwest region of Kansas (the Haskell, Grant, and Kearny SRS sites)

would also be expected to have drier growing conditions than the other

sites.

Note that the RMS errors for signature extension within a stratum

for the CROP--A results (Table 1) are very encouraging. The ROOSTER

results within this stratrum would have been somewhat encouraging as

well, although still not as good as the CROP-A results, had it not

been for the result for extension to the Ellis SRS site. As noted

above, the Ellis SRS site was one of the smallest available, hence it

may not be a very accurate indicator of signature extension performance.

Similarly, the Rush SRS site, being small and containing considerably

less variety of wheat than the training site, led to difficulties for

both algorithms. The results for the recognition scenes which were

in the separate stratum are surprisingly good, considering the differ-

ences in major crops present in the scenes, which are indicated above.

The signature extension results in Table 1 indicate that within

an adequate partitioning scheme current signature extension algorithms

(specifically CROP--A) can achieve reasonable and useful results, how-

ever there is growing evidence that not all of the necessary partition-

ing techniques have as yet been recognized and developed. In addition,

the partitioning requirement is complicated by another potential scum-

bling block for signature extension, namely limited data acquisitions

caused by clouds covering the scenes needed for processing. With the

present Landsat satellites, clouds obscure preselected training or

recognition areas roughly 50% of the time. Consequently, Landsat data

y	 k	
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for the 'Ellis, Kansas ITS training area for the 1973 to 1974 growing

season is only available for the late October, late May, mid June, and

mid July time periods. At other times an alternate training site

would have to be available (at least for up to date unitemporal signa-

ture extension). Also, since the partitioning scheme may have to

change for different portions of the growing season, still other

training areas might be needed. Future developments in signature

extension will require some remedies for these problems and for the

other problems mentioned earlier.
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7

A PROTOTYPE SIGNATURE EXTENSION OPERATING SYSTEM

7.1 OVERVIEW

A signature extension operating system, called PROCAMS (Prototype

Classification and Mensuration System), has been developed at BRIM to

provide a capability for crop recognition and area estimation. PROCAMS

is capable of performing local recognition and signature extension,

using multitemporal or unitemporal data, and can use multiple training

scenes. In this respect PROCAMS is designed to operate within the

constraints of the LACIE while simultaneously taking advantage of all

the information which may be available to Dptimize wheat proportion

estimation accuracy.

A major feature of the system is the way in which signature exten-

sion is accomplished. For reasons of economy 80 percent of the opera-

tional LACIE sites are planned to have no field identifications availa-

ble, therefore, a viable means to extend training information to these

sites is important. PROCAMS features a cluster matching algorithm

(CROP--A), used with a reverse labeling approach, which can use infor-

mation from more than one training scene to assist non-local recognition.

The ability to handle multitemporal data is another means incorpo-

rated in PROCAMS for bringing additional information to bear on the dis-

crimination and identification process. Crop proportion estimates

based on multitemporal data can be expected to show lower variance

than similar estimates based on unitemporal data. However, as stated

earlier, the system is also capable of operating more conventionally

on unitemporal data.

Another feature of the system is the ability to operate either in i

observation space or in a space transformed by a linear data trans-

formation. The purpose of the transformation is to extract just the

spectral information which is relevant for crop discrimination.
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In Figure 9, the overall organization of the system is shown.

Both local (training) and non-local (recognition) scenes undergo the

steps in preprocessing, clustering, and recognition. Non-local pro-

cessing differs from local processing only in that labeled field center

clusters are obtained from the local scene, while the non-local clus-

ters are obtained in an unsupervised and unlabeled manner and obtain

the requisite labels from the signature extension procedure. The use,

in non-local recognition, of clusters from the recognition scene rather

than modified clusters from a training scene is seen as an advantage

in that the effect is very similar to local recognition.

7.2 PREPROCESSING STEPS

The preprocessing steps consist of data quality checks to iden-

tify, flag, and remove cloud, cloud shadow, and bad line pixels from

processing, an external effects correction, a linear (tasselled cap)

data transformation, and a means for taking subsets of time periods

from multitemporal data.

Clouds

Cloud pixels are identified by comparing a specific linear com-

bination of the four original Landsat bands to a threshold which is

scaled according to the cosine of the sun's zenith angle. Specifi-

cally, a pixel is identified and flagged as cloud if

(1.26201 P 4 + . 11004 P 5 + .62471 PG + .07028 P 7 ) > 145 co---= — 
(Z)

- (15)
cos (2Q )

where P i is the pixel value in the i th Landsat band, and Z is the

sun's zenith angle at frame center.

In the language of the tasselled cap transformation (see below)

the linear combination represents the "brightness" (soil) direction,

minus the "yellow stuff" (senescent vegetation) direction. Thus

clouds are "bright", but not "yellow".
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FIGURE 9.	 OVERVIEW OF THE PROCAMS DATA PROCESSING SYSTEM
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Cloud Shadows

A pixel that has a Landsat Band 7 value of 10 or less is identi-

fied as being either water or cloud shadow. Since water is a definite

class, while a cloud shadow might hide either wheat cr non-wheat, one

must distinguish between the two. If Landsat Band 5 exceeds Band 6,

or if the bands are equal and Band 6 exceeds the value 14, then the

pixel is identified and flagged as cloud shadow.

Bad Lines

These are detected by a two pass process. On the first pass, an

overall data set signature is computed by sampling the entire data set.

On the second pass, pixels are compared to this signature distribution,

and a count is made of those pixels rejected by a chi-squared threshold

which would accept 90% of all points if the distribution were Gaussian.

If over 50% of the pixels in any scan line are rejected, all pixels in

the line are flagged as being bad. Otherwise, no pixels are flagged.

All three data quality checks are made independently for each time

period, so as not to unnecessarily discard data bad in one time period

in processing steps which use only the other time periods.

External Effects Correction Algorithm (EXTECI)

This algorithm is designed to remove the effects of different sun

position, different viewing angles, and atmospheric differences. This

is done by forming an affine transformation of the form

P' = A P + B

where	 A is a diagonal matrix,

B is a column vector,

P is the original pixel, a column vector, and

P' is the corrected pixel,

so as to normalize each data set to a data set with standardized geo-

metric and atmospheric conditions. Thi method for determining the

transformation is covered in Appendix A. Implementation of this step

has not been completed.

LE I
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Tasst tlled Cap Linear Transformation

The optional transformation now in use is the fixed linear

tasselled cap transformation which has nearly orthogonal axes. Each

pixel P is multiplied by a matrix R T , and the result is added to a

constant vector r to ensure positive values, as shown in Eq. (16).

	

P' = R T P + r	 (16)

where
P = original pixel (4-component column vector)

F' = new pixel

r = 32
32.
32.
32.

RT =	 .43258	 .63248	 .58572	 .26414

	

-.28972 -.56199	 .59953	 .49070

	

.82943	 .52244 - . 03899	 .19386

	

.22303	 .01170 -.54250	 .80982

Each row of the matrix represents a linear combination or feature

of data, each with an interpretation which will now be described.

Row 1 identifies the linear combination "brightness". Larger

values of this feature represent generally brighter signals

from the scene, and in particular, it is the direction of the

major axis of soil variation.

Row 2 identifies "green stuff". Larger values in this new

channel are related to greater presence of green vegetation.

- Row 3 identifies "yellow stuff". Values in this feature corre-

spond to the amount of senescent material in the pixels.

- Row 4 is called "non--such". Given the above three nearly

orthogonal directions, this is a fourth direction orthogonal

to the others. As such, it contains everything else not
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accounted for by the other features. Often, banding or other

data quality artifacts show up in this channel.

Normally, this step also serves as a data reduction step by using

only a specific subset of the four features for the new pixels, so as

to leave out information which does not aid crop discrimination or

which might be confusing.

For multitemporal data, the transformation is applied independently

to the set of four channels from each time period.

Subset of Time Periods

A subset of data channels may be taken, so that only channels from

specified time periods are retained. This procedural step is performed

for either of the following reasons:

1. To process a desi ed specific set of time periods with the

system.
i

2. To select a matching set of time periods for training and

recognition scenes to be used in performing signature exten-

sion. A time period in one data set matches a time period in
i

	another data set if the time periods represent similar states 	
7

of crop development.

7.3 CLUSTERING STEPS

As an enhancement to the cluster routine, the boundary pixel. 	 =`

excluder GRAD is used to increase the proportion of field center pixels

used for clustering, as described in Section 5.1. This step tends to

improve the quality of the recognition clusters, as well as their	 a
_.	 e

effectiveness for signature extension. Another advantage is that fewer 	 i

pixels are used in clustering, so that the cost of processing is reduced.

The step is optional.
3

Clustering can be done in either of two modes. For the training

scene, clusters are formed within known field boundaries in such a

manner as to label each cluster as representing either wheat or non-wheat

52



(supervised clustering). For the recognition scene, no training field

boundaries are defined. The procedure in this case is to cluster all

gradient accepted pixels in the recognition scene (unsupervised cluster-

ing). The resulting clusters are not labeled. Unsupervised clustering

requires only the preprocessed multispectral data. Supervised cluster-

ing also requires polygon designations of training fields.

7.4 RECOGNITION STEPS

Recognition is performed on the data using the likelihood ratio

rule to determine wheat versus non-wheat proportions. The decision

rule is the same as that used in the LACIE CAMS system. Required

inputs are the data (after preprocessing), and either labeled clusters

(for local recognition), or unlabeled clusters plus labels determined

by the signature extension procedure (for non-local recognition).

When the recognition results are tabulated, cloud, cloud shadow,

and ',sad line pixels are not counted. Thresholded points are counted

as non-wheat. The threshold is a chi-squared level chosen for a .001

probability of false rejection.

7.5 SIGNATURE EXTENSION STEPS

The heart of the signature extension procedure is CROP--A. This

routine takes as input one set of clusters representing the training

scene and one set representing the recognition scene. CROP-A then

forms a transformation which will be applied to recognition scene

clusters so that they will match training scene statistics, as dis-

cussed in Section 4.

It is necessary for the training and recognition clusters input

to CROP-A to match in the number and order of time periods and in the

"	 number of channels. The corresponding time periods should be suffi-

ciently similar with regard to the crop calendar (or have matching

biophases), so that wheat is at a similar state of development in both

scenes. To accomplish this, one may need to take a subset of channels

in one or both scenes such that the subset represents those channels
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from the compatible time periods. If such a subset is required for

either the training or recognition scene, unsupervised (gradient

assisted) clusters for input to CROP-A must be generated for the sub--

_	 !	 set, rather than the respective local, or non-local recognition clusters.

Furthermore, if a subset of the recognition scene time periods is
-	 t

required, the transformation obtained must be applied, not to clusters
i

from the temporally subsetted scene, but rather to clusters which are

an identical temporal subset of statistics from the clusters that will

be used for recognition. This is required because the latter clusters

are the ones which need to be labeled by signature extension. Figures

lO and 11 will help to clarify the required steps. Once CROP-A has pro-

duced recognition clusters transformed to match the training scene, the

clusters are used to classify the training scene, using the standard

quadratic rule classifier, with one recognition code for each cluster.

The reverse labeling program, RLAB, takes the classification results

just produced, and the local scene recognition results as inputs. The

local recognition results are treated as ground truth. For each clus-

ter class in the classification ,just performed, this "ground truth"

is consulted for every pixel class.fied into the class. The number of

wheat versus the number of non-wheat votes is tabulated. If there are

more wheat than non-wheat votes, a cluster is labeled wheat, and vice

versa. If the vote is close, or there were not many votes, the cluster

is labeled ambiguous (see Section 5.2).

The labels determined for each cluster are then input to the non--

local recognition steps.

7.6 SIGNATURE EXTENSION FROM MULTIPLE TRAINING SCENES

The use of multiple training scenes is motivated by the desire to

train on more information than may be available from one training scene;

for example, when one training scene has a limited number of biophases

available or may be missing some of the scene components that are pre-

sent in the recognition scene.
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The system is used as follows: For each (of an arbitrary number)

of the training scenes, the signature extension steps described in

Section 7.5 are performed for the same recognition scene, through the

CRAP-A and quadratic rule classification steps. The set of signatures

used in each classification is obtained from the CROP-A transformation

of the original recognition scene clusters (with subset of time periods,

as appropriate), a common source. Thus for every classification the

Nth class refers to the same N th recognition class, i.e., to the same

Nth original recognition scene cluster.

This quadratic rule classification (and the local recognition

result) for each training scene, are then input to BLAB. RLAB then

tabulates for each recognition cluster the number of wheat and non-

wheat recognitions from the corresponding local recognition result,

summing these votes for all local scenes. The labels for the recog-

nition clusters are determined exactly as for single scene signature

extension. The only difference is that there are 2 or more times as

many votes added into the final tally.
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CONCLUSIONS

The preceding discussion has generally followed the historical

development of cluster matching techniques for signature extension at

ERIM. An attempt has been made to indicate the theoretical boundaries

which circumscribe signature extension efforts, and to indicate the

step by step progress which has been achieved in cluster matching

algorithms and in their use toward realizing the potential for timely,

lower cost surveys over large areas, which the theory seems to offer.

At this stage of its development, signature extension through the use

of cluster matching algorithms, specifically the CROP-A algorithm,

appears to be a practical technique for contributing to more economical

and timely wheat surveys, using Landsat data, and for other uses as

well, provided that the reasonable limits to its use (partitions) can

be adequately determined. All. aspects of the signature extension prob-

lem are of course continually undergoing examination, testing, and

development toward the goal of attaining a practical and fully opera-

tional implementation of a robust signature extension capability.

Three major stumbling blocks for signature extension have been

mentioned:

1. Variations in bidirectional reflectance (including variations

due to changes in soil type or color)

2. Differences between major constituents in the training and

recognition scenes

3. limited data acquisitions due to cloud cover during critical

time periods.

Further development in signature extension requires improved remedies

for these basic problems. Some suggestions for how these remedies

might be found are discussed below.
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Although the need for detailed partitioning can and should be

alleviated through further improvements in signature extension tech-

niques, it is apparent that partitioning techniques themselves must

be augmented and improved, particularly with respect to satisfying

the needs of existing signature extension algorithms as they develop.

In particular, dynamic partitioning procedures based on information

available within the signature extension algorithms themselves should

be investigated. Preprocessing techniques could help to enlarge the

extent of partitions and hence should also be developed and tested.

Additional information should be utilized, when it is available,

through techniques such as the external effects correction (Appendix I),

through the use of multitemporal data, or by using multiple training

sites. Techniques such as the Delta Classifier [21, which show promise
for generating training information without access to any ground

truth, provided that a suitable mul.titemporal data set is available,

should be actively pursued. Also, year to year signature extension

techniques, which reduce partitioning requirements, should be developed.

Finally, to aid in testing and evaluating signature extension results,

the available data and associated ground truth should be expanded in

coverage.
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APPENDIX I

EXTERNAL EFFECTS CORRECTION ALGORITHM (EXTECI)

I.1 INTRODUCTION

While signature extension algorithms which derive coefficients for

multiplicative and additive transformations to data or to signatures

have generally not, to date, used as input any direct physical measure-

ments (other than information inherent in the re:orded MSS signals),

techniques can be devised to incorporate direct physical measurements,

or knowledge of empirical relationships between MSS data characteristics

and physical effects, into the signature extension process as physical

constraints on the transformation which is derived. As a result, the

signature extension techniques may be made to correlate more closely

with the real physical effects responsible for changes in recording

conditions between scenes. Two particular physical causes for chaug es

in recording conditions, i.e., atmospheric effects such as haze and

geometric effects such as sun angle and viewing angle, are particularly

amenable to being incorporated in a signature extension technique as

physical. constraints. The EXTECI algorithm is a first order attempt to

transform data sets so that the signals match a standard, possibly

hypothetical, scene with a typical, set of atmospheric and geometric

conditions, in order to largely eliminate data set differences due to

those causes, and to do so without the use of atmospheric measurements,

which are usually not readily available for large area surveys.

This algorithm serves as one of the preprocessing options called

for by PROCAMS (see Suction 7). If successful, possibly after future

development, the concurrent use of other signature extension techniques

may not be required in many cases.

A present limitation to EXTECI is that the data set being processcd

must contain a sufficient number of pixels representing key features of

green crop development (in the sense of the tasselled cap). The algo-

rithm may not do well if the scene is so small that those features are
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not represented in sufficient detail, or if the data were gathered too

early or late in the growing season. As a data normalizer, however,

it may still succeed in matching two data sets, if they are both simi-

larly devoid of, say, fields with minimum vegetative ground cover.

The basic idea embodied in the algorithm is to form a transforma-

tion which is multiplicative and additive in each of the four Landsat

bands and which normalizes data of a scene to simulate what would have

been observed under the conditions of a reference scene. This is done

by using a physical atmosphere and canopy model [8,4,101 to first find

a transformation for the geometric effects of solar zenith angle and

nadir viewing angle, and second, to correct for atmospheric state after

matching a set of features (namely a specific position in the tasselled

cap transformed signal space) from the scene in question to a corre-

sponding set of features, transformed for geometric effects, from the

reference scene.

The reference scene we choose is hopefully a scene which has

typical values for geometric parameters and for atmospheric conditions.

This will improve the chances that the basic model assumptions in the

following presentation will hold up well enough to make acceptable

corrections.

The EXTEC1 algorithm can be thought of as:

- a haze correction algorithm.

- a general external effects correction technique.

- a scene co scene normalizer (since each scene can be

normalized to the same standard).

- a signature extension technique which incorporates supple-

mentary physical information.

- a step toward universal training (if successful in handling

most data sets of interest).

-- a physical model accepting some empirical inputs.

i
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1.2 GENERAL PROCEDURE

The g.,ometric parameters for the EXTECI algorithm can be calculated

as accurately as required, while the atmospheric variables must bo esti-

mated indirectly from the structure of the data itself. Therefore the

estimation procedure is accomplished in several discrete steps:

1. An imaginary scene: is defined which is at an intermediate

stage, such that the scene has the same standard atmospheric

properties as the reference scene, but has the same geometric

parameters (e.g., nadir viewing angle) as the recognition

scene (see Figure 1-1). Specific diagnostic features in the

reference scene ar.. transformed to the values they would have

if observed under the same geometric conditions that occur in

the intermediate scene.

2. These transformed diagnostic features are then compared to

the measured features in the recognition data set, and an

estimate is made of the deviation of the atmospheric state

in the recognition scene from the atmospheric state in the

intermediate scene (reference atmospheric state).

3. An atmospheric effects correction is determined which would

transform data from the intermediate scene to match the con-

d'tions of the recognition scene.

4. Finally, the geometric effects correction (Step 1) is combined

with the atmospheric effects correction to determine the re-

quired transformation of the reference scene to match the con-

ditions of the recognition scene.

1.3 DEVELOPMENT OF MODEL

In developing the model, we consider the signal XT from a hypo-

thetical pixel in the recognition data set. Let the signal correspond-

ing to that pixel that would have been measured under the conditions of

the intermediate scene (standard haze, but recognition segment geometry)
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be called Xm . Also, let the signal corresponding to that same pixel,

under the reference scene conditions, be denoted Xo . Then X  can be

expressed in terms of X  as follows:

X =A X + B

	

n	 m

= A (A' X  + B') + B

(A A') X  + (A B' + B)

A X + B
	

(I-1)
n o	 n

The purpose of the algorithm is to determine An and Bn , and then, for

example, to apply them to the recognition scene inversely:

	

Xo	n
-1

= A	
(Xn - Bn)
	

(I-2)

so that the recognition scene data is transformed to match the con-

ditions in the reference scene. In these equations, A is a 4x4 diagonal

matrix and B is a 4xl vector. The fact that A is diagonal allows us to

interpret, whenever it is convenient, the operation A -1 as component by

component division.

In Equation (I-1) the terms A' and B' are functions only of the

illumination and viewing geometric parameters, and we know these as

accurately as we please. We have an atmosphere and canopy model [10]

which predicts A and B' as a function of geometric parameters for a

standard haze condition, and we use it to calculate the functions A'

and B'.

In general A' and B' may be nonlinear functions of the geometric

parameters, but for this correction we simply expand about the reference

condition and take the first order terms. If 0 is the solar zenith

angle and if 4 is the nadir viewing angle,
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A' = I + {8 - 6 0 ) al +	 0) a 2	 (I- 3)

B' 0) f I +	 00) 
$2	 (I-4)

where x l and a2 are 4x4 diagonal matrices, 1 and S are 4xl vectors,

and (6-9 0 ) and (¢- 0) are scalars.

We now need to calculate or estimate A and B in order to use

Equation (I-1). These are functions only of the haze and other atmos-

pheric conditions for the (fixed) recognition scene geometry.

Let h be the vector describing the atmospheric condition, such

that it is a vector containing k parameters. As a first trial, there

will be only one parameter (k = 1), namely the mass of haze material.

Further, let y = h - ho be the deviation from the reference atmospheric

condition h .
0

Since we have no direct observatio=L of y available, we estimate

it by observing certain features extracted from the structure of the

Landsat data. The features we can observe are the components of the

fixed linear transformed feature vector of a certain special point in

or near the line of soils [11].

We will return to the topic of extracting and using these features

later. First we develop the model for A and B in terms of y. We

expand A and B about ho and retain the first order terms of h -- h o = Y.

A = I + a y	 (I-5)

B = b y	 (1-6)

i

Here, I is the 4x4 identity matrix, y is a column vector of length k,

aad the quantity a is a known 4x4.-k array. The multiplication means
4

that term i,j of the product ay is

1
k
Y ai,, y,	 (1--7)

It=1
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The 4x4 product matrix must be diagonal. Also, b is a 4xk array so 

that the product by is a vector of length 4. 

The functions a and b depend on the recognition scene geometry, 

and are expanded around (8 • ~ ), keeping only first order terms, as 
o 0 

follows: 

(1-8) 

b = b + (8 - 8 ) b l 
+ (~ - ¢ ) b 2 o 0 o· 

(1-9) 

All the a's have dimension 4x4xk, and each layer (specific value of 

the third subscript) must be diagonal. 

We return now to the extractian af data features. The features 

we wish to use are the tasselled cap fixed linear transform (i.~., 

brightness, green stuff, yellaw stuff, nan-such) reprp.sentatian of 

some special point in or near the line af sails. Let uS call this 

special point y , Ym' or Y , depending upon the candition in which we 
n 0 

observe itt i.e., recognition scene, intermediate scene, or reference 

scene. The transformed feature vector for the recagnition scene is, 

(1-10) 

where RT is an orthonormal transfarmatian such that the components af 

v are the tasselled cap components referred to above, and r is an 
n 

offset vector used to keep all data values positive (see Section 7.2). 

The vector v in the tasselled cap transfarmed spa<ee is what we 
n 

actually measure. For the first trial of the EXTECI algorithm, we use 

the average of "brightness" 

the qth percentile of "green stuff" 
v = (1-11) 

n the qth percentile of "yellow stuff" 

the median of "non-such" 

where q is a low percentage such as 5%. 
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We will need the inverse transformation y = R(v - r) for the
n	 n

recognition scene in order to have the measured point in the required

signal space. (Since RT is orthonormal, (R T )
 
	R.)

Equation (I--1) can be rewritten in terms of the special diagnostic

feature, y, as
i

yn = A y  + B	 (1-12)

Using Equations (1-5) and (1-6) we can write

y- y	 + a y y	 + b y	 (1-13)
n	 m	 m

The middle term on the right represents a 4-component vector resulting

from the following double summation (with the m on y m removed for

clarity).
i

4	 k
a Y y = 	S	 ai .

Q y	 y•	 ( 1-14)
}j =1	 Q=1

Because the summations can be interchanged, this can be written 	
i
j

krr 
	 ^

E aY y -	 G	 aijQyj	 'y	 - ay -f	 (1-15)
Q=1	 j=1

The quantity ay represents an array multiplication summed over the

I second subscript of a.	 Therefore, Equation (1-13) can be written

' y	 =y	 + (a y	 +b) y = y	 + G y	 (1-16)
n	 m	 m	 m	 l

F

i

where G is the 4xk array (a ym + b)

t Equation (1--16) is the final form of the physical model describing

the effects of atmospheric conditions on the feature vector y.	 In	 i

order to solve for y we need to form y n - ym = Gy.	 But we also know

that there will be noise in our observation of y n .	 All we obtain is

an estimate y	 = y	 + noise.	 Hence we will be working with the
n	 n
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reduced observation,

z=y -y =y +noise - y
n m	 n	 m

G , + noise	 (I-17)

The vector yn must be estimated. In the recognition scene we measure

v = v + F	 (I-18)
n	 n

and calculate,

y 
n 
=R(v 

n 
-r)

(1-19)

W R 	 +R e - -R r
n

where E is the noise of measurement. In order to obtain y  we use

ym = A' yo + p,'	 (I-26)

from Equation (I-1), with A' and B' determined from Equations (I-3)

and (I-4). In order to obtain y o we measure v  and calculate

yo = R (vo - r)	 (I-21)

The elector v is measured and y is calculated once and for all when
D	 D

we choose the reference scene.

We now form a reduced observation vector z

z = y  - ym	(1-22)

Using Equation (I-19) we obtain

z = Rvn +R e - Rr - ym	(I-23)
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From Equation (I-10) we obtain

z = R (RT y +r) +R._-Rr-y
n	 m

y -y + R E	 (I-24)
n	 m

But from Equation (I-16) we can substitute for y n 
and obtain

z = G Y+ R c	 (I-25)

Thus, we have obtained an expression for the reduced observation vector

z in terms of the underlying atmospheric state Y and the noise of mea-

surement of the observation vector.

We assume e is distributed as a multivariate normal density with

mean and covariance,

C = E(e) = 0	 (I-26)

and

C(e) = E(ecT} W diagonal with known values for the (1-27)
diagonal terms.

Here E means "expectation of".

The maximum likelihood estimate of Y is obtained by maximizing

the normal density

— z Q(ZaY)

with respect to Y, This is equivalent to minimizing the quadratic

form

Q(z,Y) _ (z - 
z)T C-1 (z)(z - z)	 (I-29)

Taking the expectation of Equation (I-25) we have

z	 Gy	 (I-30)
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Also from Equation (I-25), the covariance of z is given by

C(z) = R C(c) R 	 (I-31)

Bence we maximize the quadratic form

Q(z,Y) = (z - G r) T R C-I (r) RT (z - GO	 (1-32)

Taking the derivative with respect to yT,

-2 G  R C -1 (,) Rf (z -- Gy) = 0	 (I--33)

(This is a standard maximum likelihood procedure, and is described, e.g.,

in Reference [13]. Equation (1-33) indicates that the derivative of the

scalar Q(7,-f) with respect to each component of r is separately set

equal to zero.) Solving for y,

[ GT R C -1 (`=) G] Y = GT R C-1 ( ) I1T z	 ( T-34)

y	 [GT R C-1 (L) R  G] -1 (GT R C-1 (,)
 

R T ) z	 (1--35)

Now, having obtained the estimate for y, we use Equations

(1-5) and (I-6) to calculate A and B. Therefore, we have from Equa-

tion (I-1)

An = A A`	 (1-36)

B	 A B' + B	 (1-37)
n

and since these are the quantities we had set out to obtain, we are

done.
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