General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR-14483!

(NASA-CR-144831) FEASIBILITY STUDY OF THE

FEASIBILITY STUDY OF THE DESIGN OF BI RA SYGTLMS,ING. MODEL 5301, 5101, AND 3222 CAMAC MODULES FOR SPACE USE.

LAVON BISWELL, ROBERT MCELDERRY
BI RA SYSTEMS, INC.
3520 D PAN AMERICAN N.E. ALBUQUERQUE, NM 87107

APRIL 9, 1976
TYPE III FIVAL RBPORT-FEBRUARY/MARCH 1976

PREPARED FOR
GODDARD SPACE FLIGHT CENTER
GREENBELIT, MARYLAND 20771

TECHNICAL REPORT STANDARD TITLE PAGE

Objective:
The object of this contract is to conduct a feasibility study of the design of Bi Ra Systems Model 5301, 32 Channel Analog Data System, Model 510132 Channel Expender Module, and Model 3222 Dual 24 Bit TTL Output Register.

Scope Of Work:
The intent of the study is not to fabricate completely redesigned modules but to estimate the cost of redesigned modules. The study is conducted with respect to incorporation of NASA approved components, component screening and documentation as well as toward reducing power consumption while maintaining performance as much as possible. Conclusions:

The study results show that redesigned modules will function reliably in a space environment of $50^{\circ} \mathrm{C}$ and withstand greater than $15 \mathrm{G}^{\prime} \mathrm{s}$ of random vibration between 40 Hz and 400 Hz .

Some problems relating to +15 V power and the signal interconnections between the 5301 and 5101 modules are not completely resolved. This is discussed in the Technical section.

Introduction

This third and final report contains a summary of the results of the feasibility study. Included is a discussion of the rear panel interconnections for the $5301 / 5101$, mechcanical design, power consumption steady-state operating temperature, parts list, schematics, and pricing for 10 and 100 each space-worthy 5301, 5101, and 3222 modules.

A meeting was held at NASA, Greenbelt, March 3, 1976. Those present were Dr. J. H. Trainor and Mr. T. Comenski of NASA and Mr. R. McElderry of Bi Ra . Several questions which have arisen during the investigation were nswered by NASA. A copy of the items discussed has been forwarded to Dr. Trainor.

Copies of the rough draft Heat Transfer and Vibration analysis were presented to Dr. Trainor at the March 3, 1976 meeting. By instruction of Dr. Trainor, no other copies are required and are not included in this report. It is noted that the Resonant Frequency Analysis Calculations for the Model 5101 were used to predict the mechanical stresses of all redesigned modules; separate calculations were not made for the 5301 and 3222.

The March 3, 1976 meeting authorized removal of the series +6 V to +5 dropping diodes and $\pm 24 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ regulators where applicable. The +5 will be available at the dataway; the $\pm 15 \mathrm{~V}$ will be supplied by a NASA furnished DC to $D C$ converter. The $\pm 15 \mathrm{~V}$ shall be coupled to the 5301 module by a rear panel connector. Signal interconnections between the 5301 and 5101 modules shall also be coupled by a rear panel connector. The type of connector for signal and power shall be a Royal D or $D D$.

Froblem Area:

Some mechanical complications are created due to the size of the Royal D or DD connectors and the available space for mounting at the module rear panel. The smallest connector of this type is a nine (9) pin which is used for power. Signal interconnects require the next smallest which is a fifteen (15) pin. These connectors must be mounted side-by-side on the 5301 which removes considerable metal from the back plate for mounting. The 5101 is a single-wide module. Therefore, all interconnections, signal and $\pm 15 \mathrm{~V}$, must be contained in the single rear connector selected for this module. Distribution of signals and power must be daisy-chained to the next 5101 module.

It is requested that NASA investigate the rear panel interconnects using the Royal D or DD connectors. A solution may be a smaller type connector.

Power Consumption:

With the removal of the +6 V to 5 V dropping diodes and the $\pm 24 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ regulators where applicable and redesigning the logic of the Micro Networks INA 7000 Data Acquisition Unit, the power dissipated by each module is as follows:

5301 Module

Commercial

Vin Power Vin
+6 4.87W +5
-24 2.06W -15
$+24 \quad 1.58 \mathrm{~W}+15$
Total 8.51W Total
*Typical (Max. 2.1W)

Redesign

Board 1 Pwr.	Board 2 Pwr.
0.440 W	0.371 W
0.678 W	0.000 W
0.630 W	0.000 W
1.748 W	0.371 W

5101 Module

Commercial	396 MH	Total
Redesign	144 MN	Total

3222 Module

Commercial 5.5W
Redesign 2.2W*
*5406 buffers dissipate 1.45 W
Design Changes:
5301 Nodule
The commercial design utilizes A15, provides a separate additional OVP circiuts for inputs, provides range select by X1 or X2 amplifier gain, allows adjustment for 10.24 or 10.00 V full scale and has strap selection for offset binary, one's complinent, two's complement, and unipolar binary.

The redesigned module replaces A15 with A2, OVP provided by specifications of HI-506 A multiplexer, provides range select by X 1 or X0.5 amplifier gain, has full scale of 10.00 V , and has offset binary code. 5101 Module

Commercial version provides separate addition OVP circuits; redesign utilizes OVP circuits within HI-506 A multiplexer.

3222 Module
Redesign has deleted F8 A15 to test LAFi, deleted low or high-true output option; redesign has low-true only.

The redesigned modules have no indicators and operate directly from +5 V and ± 15 where applicable. Enviromental

No recalculations have been made to determine the reduction of steady-state operating temperatures of the modules after the removal of the dropping diodes and regulators from the boards where applicable. With these elements on the boards, the original Thermal Analysis and

Resonant Frequency calculations indicate that the modules will function reliably in a space environment of $50^{\circ} \mathrm{C}$ with a random vibration from 40400 Hz . The worse-case temperature of each board is as follows:

530151013222

Board 1	$80^{\circ} \mathrm{C}$	$58.4^{\circ} \mathrm{C}$
$5^{\circ} \mathrm{C}$		

Board $275.2^{\circ} \mathrm{C}$

Mechanical Design
The 3222 and 5101 are single-wide modules; the 5301 is dual-wide. Pictorials of the modules are shown in Figures 1, 2A, and 2B.

A five (5) point mounting system mechanically links the top and bottom aluminum covers to the PC board through spacers. The top and bottom cover edges are secured to the PC board guide rails with five (5) each 4-40 screws. Spacers located in the plane of the PC board and on the top and bottom surfaces are compressively loaded from the aluminum covers with $4-40$ screws torqued to a minimum of 8 inch-lbs.

The 5301 contains three aluminum covers; the 5101 and 3222 utilize two covers. In addition to stiffening, the covers provide heat transfer paths from the PC board through the spacers to the guide rails. Schematics and Parts Lists

The 5301, 5101, and 3222 drawings are enclosed. The type of circuit isspecified. The designs are subject to change as the result of PC board layout which may result in circuit addition for ease of conductor routing.

Fabrication Costs
Estimates of NASA quality 5301, 5101, and 3222 modules in quantities of 10 and 100 are presented. The pricing includes Category I recurring cost which includes costs related to all modules. This category includes special equipment, training, procedure preparation and definition, etc.

Category II non-recurring costs for each module includes one-time
costs such as PC board layout for the specific module. Reocurring costs for each module include parts, board fabrication, assembly, checkout, etc.

Parts List 5301
Note: All 54LSXX IC's class B

Part	Description	Quantity
54LS00W	Quad 2 input pos NAIJD	2
02W	Quad 2 input pos NOR	1
04W	Hex inverters	4
08W	Quad 2 input pos AND	2
20W	Dual 4 input pos NAND	1
30:1	8 input pos NAiid	1
32W	Quad 2 input pos OR	2
38*	Quad 2 input pos NAND open col.	5
42W	BCD to Decimal Decoder	3
73W	Dual J-K Flip-Flop	2
74:4	Dual D Flip-Flop	1
85W	4-Bit Comparator	1
93:	4-Bit Binary Counter	1
122W	Retriggerable Monostable Multivibration	1
158W	Quad 2 line to 1 line Multiplexer	1
197W	Presettable Binary Counter	1
1200 pf	GCuv6 1%	1
. 01 uf	CKR11 50v	10
4.7 uf	CSR13 50v	3
10 uf	CSiz13 50v	1
1 K	RCRO5 solid core	5
5 K	RRR12 trimmer	1
20 K	RLRO5 2% solid core	1
HI 506 A8	16 Channel Analog Mux Mil 883 class B	2
DG 508-2	8 Channel Analog Mux Mil 883 class B	1
DG 509-2	4 Channel Diff Analog Kux Mil 883 class B	1
MiN $343 \mathrm{H}-\mathrm{B}$	Micro Networks S/H Mil 883 class B	1
MN $368 \mathrm{H}-\mathrm{B}$	" Amp " " "	1
MN5212H-B	" " ADC " " "	1
124308/2-4*	Cinch Royal D Mark III 37 pin connector	2
1124308/2-2*	" " " " " 15 pin connector	1
1124308/4-1*	" " " " " 9 pin connector	1
275001	1. Amp Picofuse per $204 \mathrm{~A} / \mathrm{D}$	4
E-26	Wire Mil-W-16878	AR

Parts List 5101

Part	Description	Quantity
HI-506-A8	16Channel Analog Mux, Mi. 883 class B	2
123408/2-4	Cinch Royal D Mark III 37 pin conn. ${ }^{*}$	2
1123408/2-2	" " " " 15 pin conn.*	1
1 K	RCO5 solid core	1
275001	1 Amp Picofuse per $204 \mathrm{~A} / \mathrm{D}$	2
. 01 uf	CKR11 50v 20\%	2
E-26	Wire Mil-N-16878	AR

* per GSFC S311-P-4/9,10

Parts List 3222
Note: All IC's Mil-883 Class B

Part	Description	Quantity
54LSOON	Quad 2 input pos NAND	1
02W	" " " " NOR	1
04W	Hex Inverters	7
5406\%	Hex Buffer Open Collector	8
00.1	Quad 2 input pos NAND	1
30\%	8 input pos NAND	2
32N	Quad 2 input pos OR	2
38.4	Quad 2 input pos NAND open col.	1
42W	$B C D$ to Decimal Decoder	2
73 W	Dual J-K Flip-Flop	1
74:\%	Dual D Flip-Flop	2
174:	Hex D-Type Flip-Flop	8
1 K	RCRO5 solid core	1
. 01 uf	CKR11 50v	1
4.7 uf	CSR13 25v	1
275001	1 Amp picofuse per $204 \mathrm{~A} / \mathrm{D}$	1
E-26	Wire Mil-W-16878	AR
N23408/3-5*	Royal D Mark III 50 pin Conn.	2
* per GFSC S3	/9,10	

*per GFSC S311-P-4/9,10

1. Direct Material
ist. CostTotal
a. Subcontract-Glean area$\$ 1500.00$$\$ 1500.00$
2. Direct Labor
a. Trainning-Assy/Insp. 500.00
b. Liaison-Engineer at NAJA1200.00
1700.00
3. Labor Overhead 1020.00 1020.00
4. Special Equipment
a. Oven/Fixture 2000.00 2000.00
5. Travel
a. Air-Training/Liaison 1325.00
5 round trips, Albu. to Greenbelt
b. Per Diem540.00
c. Auto 195.002060.00
6. 'Total Direct Costs and Overhead 8280.00
7. G and A 2584.00
8. Total Estimated Cost 10864.00
9. Fee 1086.00
10. Total Estimated Cost and Fee \$11940.00Cost Estinates-Category II, Non recurring, Model 5301
11. Direct Material
a. Purchased Parts
Est. Cost
Total
$\$ 1840.00$ \$1840.00
12. Direct Labor
a. PC Circuit Layout 1200.00
b. Design, Breadboard, Schem., Dif. 3000.00
c. Assembly300.00
d. Testing 500.00
5000.00
13. Labor Overhead 3000.003000.00
14. Total Direct Cost and Overhead 9840.00
15. G and A 2952.00
16. Total Estimated Costs 12792.00
17. Fee 1279.00
18. Total Estimated Costs and Fee \$14,071.00
19. Direct Material
a. Purchased Parts
b. Subcontract
20. Direct Labor

a. Assembly

1500.00
b. Testing
c. Silk Screen/Hachining
3. Labor Overhead
Est. Cost
Total
$\$ 24254.00$
1200.00
$\$ 25454.00$
4. Other Direct Costs
a. Manuals/Schematics 100.00
a. Manuals/Schematics 100.00
b. Shipping
50.00
150.00
5. Total Direct Cost and Overhead
6. G and A
1500.00
200.00
3200.00
1920.00
30724.00
7. Total Estimated Cost 39941.00
8. Fee
3994.00
9. Total Estimated Cost and Fee $\$ 43,935.00$

1. Direct Material
a. Purchased Parts
b. Subcontract
2. Direct Labor
a. Assembly/Inspection
b. Testing
c. Silk Screen/Machining
3. Labor Overhead
4. Other Costs
a. Manuals/Schematics 900.00
a. Manuals/Schematics 900.00
b. Shipping
500.00
$1,400.00$
5. Total Direct Cost and Overhead
$11,800.00$
8,000.00
800.00 20,600.00
$\$ 160,000.00$
Est. Cost
\$150,000.00
$10,000.00$
Total
12,360.00
194,360.00
6. G and A
7. Total Estimated Cost 58,308.00 252,668.00
8. Fee 25,267.00
9. Total Estimated Cost and Fee

Cost Estimated-Single Unit Costs for 10 and 100 Quantities of Model 5301

Total Non recurring Costs

Category I	$\$ 11,940.00$
Category II	$\$ 14,071.00$
Total	$\$ 26,011.00$

10 Unit Quan.
100 Unit Quan.
Cat. I, II \$26,011.00 \$26,011.00

Recurring $\$ 43,935.00$ \$277,935.00

Total $\$ 69,946.00$ $\$ 303,946.00$

Per Unit $\$ 6,995.00$
$\$ 3,039.00$

Cost Estimates-Category II, Non Recurring, Model 5101

1. Direct MaterialEst. CostTotal
a. PC Layout $\$ 150.00$ $\$ 150.00$
2. Direct Labor
a. Schematics, Def 200.00 200.00
3. Labor Overhead 120.00 120.00
4. Total Direct Costs and Overhead 470.00
5. G and A 141.00
6. Total Estimated Costs 611.00
7. Fee 61.00
8. Total Estimated Cost and Fee $\$ 672.00$
9. Direct Material
a. Purchased Parts
b. Subcontract
10. Direct Labor
a. Assembly/Inspection 240.00
a. Assembly/Inspection 240.00
b. Testing
c. Silk Screen/Machining
b. Testing
c. Silk Screen/Machining
11. Other Direct Costs
a. Manuals 80.00
b. Shipping
50.00
130.00
12. Total Direct Costs and Overhead
300.00
100.00 640.00
13. G and A
Est. Cost
Total

$\$ 7.333 .00$	$\$ 7,333.00$
400.00	400.00

7. Total Estimated Costs
8. Fee
9. Total Estimated Cost and Fee

8,487.00
2,546.00
$11,033.00$
1,103.00
$\$ 12,136.00$

1. Direct Material
a. Purchased Parts
b. Subcontract
2. Direct Labor
a. Assembly/Inspection

$$
2,200.00
$$

b. Testing
c. Silk Screen/Machining

2,800.00
3. Labor Overhead 985.00

$$
5,985.00
$$4. Other Direct Costs

a. Manuals 700.00
b. Shipping 500.001.200 .00
5. Total Direct Cost and Overhead 63.441 .00
6. G and A 19,032.00
7. Total Estimated Costs $82,473.00$
8,247.008. Fee
9. Total Estimated Cost and Fee $\$ 90,720.00$

Cost Estimates-Single Unit Costs for 10 and 100 Quantities of Model 5101

Total Non Recurring Costs

Category I	$\$ 11,940.00$
Category II	672.00
Total	$\$ 12,612.00$

	10 Unit Quan.	100 Unit Quan.
Category I, II	$\$ 12,612.00$	$\$ 12,612.00$
Recurring	$12,136.00$	$90,720.00$
Total	$\$ 24,748.00$	$\$ 103,332.00$
Per Unit	$\$ 2,475.00$	$\$ 1,033.00$

Cost Estimates-Category II, Non-Recurring, Model 3222

1. Direct Material
a. Subcontract
2. Direct Lavor
a. Schematics, Def.
3. Labor Overhead
4. Total Direct Costs and Overhead
5. G and A
6. Total Estimated Costs
7. Fee
8. Total Estimated Costs and Fee

Est. Cost Total
$\$ 750.00 \quad \$ 750.00$
$\$ 800.00 \quad \$ 800.00$
$\$ 480.00 \quad \$ 480.00$
\$2,030.00
609.00

2,639.00
264.00
\$2,903.00

1. Direct Material
a. Purchased Parts
b. Subcontract
Est. Cost Total
$\$ 6,226.00$ 500.00 850.00
a. Assembly/Inspection
500.00
b. Testing
c. Silk Screen/Machining
2. Labor Overhead
100.00
$1,450.00$
870.00 870.00
3. Other Direct Costs
a. Manuals/Schematics .. 100.00
b. Shipping
50.00
150.00
4. Total Direct Costs and Overhead $9,196.00$
5. G and A
2,758.00
6. Total Estimated Cost 11,954.00
7. Fee
1,195.00
8. Total Estimated Cost and Fee
9. Direct Material
a. Purchased Parts
b. SubcontractIst. CostTotal
$\$ 43,659.00$

$$
4,500.00
$$

$$
\$ 48,159.00
$$

2. Direct Labor
a. Assembly/Inspection

$$
8,000.00
$$b. Testing

$$
4,500.00
$$

c. Silk Screen/Machining
3. Labor Overhead800.0013,300.003. Labor Overhead7,980.007,980.00
4. Other Direct Costs
a. Manuals/Schematics 800.00
b. Shipping 500.001,300.00
5. Total Direct Costs and Overhead 70,739.00
6. G and A21,222.00
7. Total Estimated Cost 91,961.00
8. Fee
9. Total Estimated Cost and Fee\$101, 157.00

Cost Estimates-Single Unit Costs for 10 and 100 Quantities of Model 3222

Total Non Recurring Costs	
Category I	$\$ 11,940.00$
Category II	$2,903.00$
Total	$\$ 14,843.00$

10 Unit Quan. 100 Unit Quan.

Category I, II
$\$ 14,843.00$
13,149.00
\$27,992.00
Per Unit
$\$ 2,799.00$

116,000.00
$\$ 14,843.00$
101,157.00
$\$ 1,160.00$

Board INTERCONNECTS BOARD 2 AUX. CONVECTOR

$10-1$

38 \square

-38

$\overline{\mathrm{HOLD}}>$

MN 343 SHH
DIG ANALOG
SH GNDGND IN
$-\quad$
(AND)

CONNECTOR O

SYMBOLS
\square dataway

$A \cup X \cdot C O N$

- PROG. POINTS

REGISTER O

S5174
CSI74

coses)

REGISTER I

