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PREFACE

The work described in this report was performed by the
Information Systems Division of the Jet Propulsion Laboratory. s
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Abstract
Definite integrals are evaluated for the cardinal

functions of an “nterpolation method which provides
C1 continuity over a triangular grid.
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1. Introduction

In Ref. 1, algorithms are given fo1 Cl-compatible in-
terpolation over a plane triangle given values of f, fx’ and f
at the vertices of the triangle. In particular on p. 30 of
Refl 1, functions ai’éi’ and ;i are defined such that with
Bi=Bi/2 and yi=§i/2 the interpolated value w can be ex-
pressed as

1 .
(D w i 3 (0548, 85+, 5v5)

In this note we derive expressions for the definite
integrals of the cardinal functions ai’Bi’ and Yio i=1,2,3
over the triangle. These integrals are needed, for example,
if a surface representation problem includes conditions on
volumes to be encompassed under the surface.

2. Preliminary integration formulas

From Ref. 2, we obtain the following formulas for in-
tegration of polynomials over a triangle:

_ 114
(2) Jpp = Aplz33]

1 1
(3) Iy = 3A(D,[3,3,014p,(7,0,51+p, (0,5, 5]}

1 311 131 113 111
(4) fp3 = ?@A{ZSPS[§’§’§]+25p3[§’§’§]+25p3[§'§'§]'27?3[3-3'31}
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In the above formulas the integration is over a triangle in the
Xy plane. The :integrand P; denotes a polynomial of degree at

most i in x and y. The symbol A denctes the area of the triangle.

The notation pi[rl,rz,rs] denotes the value of the polynomial
p; at the point in the triangle whose barycentric coordinates
are T, T,, and Ty. For discussion of the affine invariance of
quadrature formulas stated in terms of barycentric coordinates
see Ref. 2.

The above formulas can be used to obtain the following
integrals for the fundamental linear, quadratic, and cubic func-
tions used in Ref. 1.

(5) fri = A/3

(6 f¢i = fri"'lri-l = A/12

() gy = 5017505497300 = O

In the following two sections we determine fpi for
the two different definitions of Py given in Ref. 1. Formulas
for the integrals of the cardinal functions are then derived
in Section 5.

3. Determining fpi for the rational function Py

In Section 7, pp. 22-23, of Ref. 1 Py is defined
as thte Zienkiewicz rational function

= 2 Z - ) - 1=
Py riri+1ri_1/[(1 ri+1)(1 ri_l)] i=1,2,3
Consider the particular triangle T0 having vertices V1 = (0,0),

V2 = (1,0), V3 = (0,1). In this triangle we can relate car-
tesian xy coordinates to barycentric coordinates as follows:

r; = 1l-x-y
r, = x
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Then

P1

Expand the
sum of the

I

Evaluating

= x%y?(1-x-y)/ [(1-x) (1-y)]

term (1-x-y) as (1-x)+(1-y)-i. Then [ Py is the
following threc integrals: T0

2
P 1Yx%ax ay
0 Y o

2
s andey

A

(#2014 o

1 61(y2_2y3+y4) dy

1 2 1. _ 1
3-7*¢1 =390

=

The integral I2 has the same value as Il' The inner integral

of 13 is

fl-x
0

2 2
oy & = 8 s 20y - ey

1.2 1
-7x + 2x -~ fn x + 5 - 2

-%(x2-4x+3) - £n x

-%(x-l)(x-S) - &n x
3
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Thus
1 .1 2
I, = -5 /2 1 x®&nx
3 70)(()('3) dx+.6' ﬁ—dx
_ o3, 1 lemx g
8 0 1-x
= g-* fl f" X dx - fl £n x dx - fl xfnx dx
0 =X 0 0
2 2 2 1
= % - %— - [x&nx-x + %— nx - %—]0
S35 . (39-4r2)/28
8 [ 7
Combining results we obtain:
1 .1, 39-4n° 2
( 8) { Py = I1 + I2 + I3 =57 *95* 7 = (593-60m°)/360
0

Since the area of triangle To is 1/2, the mean value of Py

over TO, and thus over any arbitrary triangle, is (539-60n2)/180.

Furthermore, since the integrals of P12Pys and pg are the same
we may drop the subscripts and simply write the mean value of
any of these three functions as

(9) ° = (59360m%)/180

0.00457 63107 47992

The author thanks Dr. E.W. Ng for doing the analytic in-
tegrations of this section. The result given in Eq.(9) has
been corroborated by a numerical integration of py over the
triangle T0 which gave agreement in the first seven significant

digits, See Section 8 for more details on thz numerical integration.
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4. Determining fpi for the piecewise cubic function Py

In Section 8, pp. 24-26, of Ref. 1 , Py is defined
for 1i=1 as the Clough-Tocher piecewise cubic function

r1[6r2r3+r1(5r1—3)]/6 if ry = min{rl,rz,rs}
Py = r%(-r2+3r3)/6 if r, = min{rl,rz,rs}
rg(-r3+3r2)/6 if ry = min{rl,rz,rs}

Thus Py is defined as a different cubic polynomial in each of
the three subtriangles indicated in Fig. 1.

Figure 1

\'

2

The common intersection point of the three subtriangles has bary-
centric coordinates (%'%v%).

Within each subtriangle the integration formula, Eq. ( 4

can be applied. The evaluation points for this formula in sub-
triangles T1 and T2 are indicated in Fig. 2.

V'

1

Figure 2
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Table 1. Integration of Py over T,. p, = gr1[6r2r3+r1(5r1 3)]
Barycentric Multiplier
Point| Coordinates | Value of p1 {See Eq.( 4)] Product
1 2 2 7
1 10 4 4
b 15, 15, 15 31T 25 100/(81-5)
1 4 10 4
c Tg’ T—, 5 ﬁ-‘—S- 25 100/(81 '5)
1 4 4 37
d 3,79, 9 8177 -27 -185/(81-5)
Sum: 204/(81-5)=68/(27"5)
. 1.2
Table. 2. Integration of p; over TZ‘ Py = grz(-r2+3r3)
Barycentric Multiplier
Point| Coordinates | Value of p1 [(See Eq. (4 )] Product
2 1 2 1
4 1 10 29
10 1 4 11
& |15, 15, T5 | 72781175 25 11/(2 -81-5)
4 1 4 11 . - .81 -
h 3,9, 9 7 27 55/(2-:81-5)
23
Sum: 120/(2-815)= 3=




The arithmetic involved in applying Eq. (4) to Py in sub-
triangles T, and T2 is summarized in Tables 1 and 2. The
integral over T, will be the same as that over TZ'

Let A denote the area of the whole triangle. Then
cach subtriangle Ti has area A/3. It follows that

A [es . 2:4]. A
foy = 3773 [27-5+ 27] 180

The integrals fpz and fp3 have the same value as fpl. Thusz
the mean value of any one of these functions 05 is given by

(10) P = 1/180 = 0.0055555555...

The result given in Eq. (10) has been corroborated by a num-
erical integration of Py which gave agreement in the first
seven significant digits. See Section 8 for more details on the
numerical integration.

5. Integral, of the cardinal functions a;s B, and vy,

Referring to p. 30 of Ref. 1, introduce B = %é

~

and vy % so that the final equation for w <can be written

simply as

=

]

™M

"
Hh
Q

+
las)
™

Yil

. 0. .B. + £ .v.
1 i7i X,i 1 y,i'i

Use a bar over the symbols Pis Q50 Oy Bi, and Y5
to denote the average value of each of these functions over the
triangle. For example, Ei = % Jp;. In the case of the functions

- the integral over the triangle is independent of i. Thus

we simply write p = %fpi for 1i=1,2,3. From Eq.(9)and(10) respectively

we have p = (593-60m2)/180 if P3 is the Zienkiewicz rational
function and p = 1/180 if Py is the Clough and Tocher piecewise
cubic function.
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Let

2

) 2 2
Moo= By - 2 1Y

1

Then, using the notation and equations of Ref. 1, p. 30, and
Eqs. (5-7) of the present paper, we obtain

fgi = 3\ fp; = 3AiBA

- — 1

P; = 3Me 17

q: = 3x.p - 1

— 1 -

a; = 3 * 300 - M) e

B. = 1B (u, P Us, 1qs.q]
i ZA 7 U3-1Pi-1 i+19i+1

Y = L. .5 V. 1Q:, 1)
i 7 Wi-1Pi1 i+19i+1

Finally we have

3
(11) fw= A B iRt By
3 —
Note, as a matter of interest, that .E a, = 1, independent
of the value of p . i=1
6. Example: An isosceles right triangle

Consider the isosceles right triangle of Fig. 3.
whose essential geometric parameters are given in Table 3. This
triangle has area A = a2/2.

V3 (0,a)

Figuve 3

V2 (a,0)
Vl(0,0)
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Table 3. Parameters of the triangle of Fig. 3.
i uy £ £i Ag
1 -a a 21/23 0
|
2 0 -a a -1
3 a 0 a 1

Choosing the functions p; to be the Clough-Tocher
piecewise cubic functions we have p = 1/180. Using the form-

ulas of Section 5, we obtain the values in Table 4.

Table 4. Mean values of auxiliary and cardinal functions

1 5/60 -5/60 22/60 6a/120 6a/120
2 4/60 -6/60 19/60 |-9a/120 5a/120
3 6/60 -4/60 19/60 5a/120 | -9a/120

These coefficients shoulid provide exact quadrature for
any quadratic function. As a specific example let a=120 and
consider the function f(x,y) = xz.

By the formula of Eq.(3) the integral of f over
the triangle in question is given by

2
(12) I = % 1%_0_ {60% + 60%} = 10-.1203

9



Alternatively, using Table 4, we note that only two

2

of the nodal values are non-zero, namely £(120,0) = 120" and
£,(120,0) = 240. Thus using Eq.(11) and 62 and §2 from

Table 4, we compute the integral

_ 1202 [1202-19

3 60

10-120°

9’240]

which is in agreement with ‘c.(12).

7. Example:

An equilateral triangle

Table 5.

Consider the equilateral triangle of Fig. 4, whose

essential geometric parameters are given in Taple 5. This
triangle has area A = 31/232/4.
‘Vq(a/z, 3%/%a2)
Figure 4
v, (0,0) V,(a,0)
Parameters of the triangle of Fig. 4.
i uy vy Ai
1 -a/2 312472 0
2 -a/z | -3Y%ay2 0
3 a 0 0

10
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Since all Ai are zero the functions P will not
enter into the problem. Using the formulas of Section 5, we
obtain the values in Table 6.

Table 6. Mean values of auxiliary and cardinal functions

1 5i al Ei E.1 ?1

i 1/12 -1/12 1/3 a/16 31/2,/48

2 | 1/12 -1/12 1/3 -a/16 31/2,/48

3] 1/12 -1/12 1/3 0 -2-31/2,/48

These coefficients should provide exact quadrature for
any quadratic function. As a specific example let a = 16 and
consider the function f(x,y) = yz.

By the formula of Eq.(3 ) the integral of f over
the triangle in question is given by

(13) 1= 4 (@3t @5y

11 1/2

32A = 2 © 3
Alternatively, using Table 6, we note that only two of
the nodal values are non-zero, namely f(8,8-31/2) = 364 and

fy(8,8-31/2) = 16-31/2,

Thus using Eq.(11) and 53 and 73 from Table 6, we
compute the integral

11
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16-31/2.5.31/2.

- 3:64 _ 16

328 = 211 . 31/2

which is in agreement with Eq.(13).
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8. Corroboration of results by numerical integration

As a check against possible blunders in the determination
of values of p in Sections 3 and 4, direct numerical integration
Was used to obtain estimates of p for the two different definitions
of »p.

The quadrature subroutine used was the JPL Univac 1108
library subroutine RMB1/RMB2 (Ref. 3). This subroutine effects
quadrature over a two-dimensional region (a triangle in the present
case) by making an appropriate sequence of calls to the library's
one-dimensional quadrature subroutine ROMBS/ROM2. This system of
subroutines was developed by W. R. Bunton and M. R. Diethelm of
JPL using an adaptive algorithm based on Romberg quadrature.

Results of these numerical integrations are summarized
in Tables 7 and 8. For each of the two functions being studied,
the analytically determined value of p is known. For each of the
two functions the numerical integration was done five times with
five different values of the accuracy tolerance parameter.
Letting p denote the value obtained from the ith numerical inte-
gration, values of the difference Bi - p are given in Tables 7 § 8.

The results of these numerical integrations are consistent
with the analytically determined values of p.

13
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Table 7. Numerical integration of the Zienkiewicz rational
function.
b = (593-601%)/180 £ 0.00457 63107 47992
Absolute Number of - _
accuracy evaluations Py - P
i requested of integrand
1 1073 113 -0.00000 14834
2 10”% 113 -0.00000 14834
3 10°° 215 +0.00000 01164
4 10°° 263 +0.00000 00059
5 107 1413 +0.00000 00007
Table 8. Numerical integration of the Clough-Tocher piecewise
cubic function.
p=1/180 = 0.00555 55555 ..
Absolute Number of _
accuracy evaluations Py - P
i requested of integrand
1073 133 -0.00000 31391
2 10°% 141 -0.00000 59111
3 1072 231 -0.00000 00555
4 10°° 681 +0.00000 01064
5 10/ 895 -0.00000 00055

14
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