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FREE-VIBRATION CHARACTERISTICS OF A LARGE SPLIT-BLANKET
SOLAR ARRAY IN A 1-g FIELD
by Francis J. Shaker

Lewis Research Center

SUMMARY

Two methods for studying the free-vibration characteristics of a large split-blanket
solar array in both a 0-g and a 1-g cantilevered configuration are presented. The 0-g
configuration corresponds to an in-orbit configuration of the array; the 1-g configuration
is a typical ground-test configuration. The first method applies the equations of con~
tinuum mechanics to determine the mode shapes and frequencies of the array; the sec-
ond method uses the Rayleigh-Ritz approach. In the Rayleigh-Ritz method the array
displacements are represented by string modes and cantilevered beam modes. The re-
sults of this investigation are summarized by a series of graphs illustrating the effects
of various array parameters on the mode shapes and frequencies of the system. The
results of the two methods are also compared in tabular form.

INTRODUCTION

To predict the dynamic behavior of a spacecraft with large, flexible solar arrays,
it is first necessary to describe the structural dynamic characteristics of the array.
These characteristics can be determined once the cantilevered modes and frequencies
of the flexible solar array in a 0-g environment are known (refs. 1 and 2).

In addition to the 0-g modes and frequencies, it sometimes becomes necessary to
predict the dynamic behavior of the array while it is suspended vertically in a 1-g field.
This is the usual ground-test configuration for studying the dynamic behavior of large
solar arrays (refs. 3 and 4). In this configuration the blanket weight has a significant
effect on the dynamics of the array and must be included when predicting the behavior of
the system.

The cantilevered modes and frequencies of a split-blanket solar array have been
studied by several investigators in recent years. As shown in figure 1 a split-blanket
solar array consists of a central support boom, a two-piece blanket substrate with solar



cells mounted on one side, and a leading-edge member that transfers a tension load to
the blanket from the boom. For this type of array the boom centerline lies in the plane
of the blanket. In reference 5 the cantilevered modes and frequencies of a split-blanket
array in a 0-g field were investigated by solving the differential equations governing the
motion, This method results in transcendental equations that can be solved numerically
for the frequencies. In reference 6 the finite element method was used to find the canti-
levered modes and frequencies of this type of array. Beam-column elements were used
to describe the array boom, and membrane elements to describe the blanket. Seventeen
and 26 degrees of freedom were used to determine the fundamental antisymmetric (tor-
sional) and symmetric (bending) modes and frequencies, respectively. Using the finite
element method to determine higher modes and frequencies would require a large num-
ber of degrees of freedom to obtain the same accuracy. In reference 7 the modes and
frequencies of a solar array in which the blanket is ofiset from the centerline of the
boom are investigated by using a Rayleigh-Ritz approach. The assumed modes used to
construct the Rayleigh-Ritz solutions were polynomials to the fourth order.

The purpose of the present report is twofold. First, it presents the exact solution
for the modes and frequencies of a split-blanket solar array in a 1-g field and compares
this solution with a Rayleigh-Ritz approximate solution. Second, by using these solu-
tions it investigates the effects of various solar array parameters (mass, blanket ten-
sion, boom stiffness, etc.) on the modes and frequencies of large solar arrays in both
a 0-g and a 1-g configuration. In developing the Rayleigh-Ritz solution, cantilevered
beam modes and string modes are used to represent the boom and blanket displacements,
respectively. Using these modes will ensure convergence for a relatively small number
of modes or degrees of freedom. The effects of solar array parameters on the modes
and frequencies are illustrated by a series of graphs, and comparisons between exact
and approximate solutions are shown in tabular form.

THEORETICAL DEVELOPMENT OF NORMAL MODES AND FREQUENCIES

OF LARGE SPLIT-BLANKET SOLAR ARRAY
Continuum Mechanics Approach

Basic assumptions. - For purposes of analysis a large split-blanket solar array is
idealized, as shown in figure 1. This figure shows the array consisting of three compo-
nents: a center boom that supports the array; a membrane substrate with solar cells
attached to one side (hereinafter referred to as the blanket); and a bar at the tip of the
boom that transfers a tension load P from the boom to the substrate. The displace-
ments of the boom and blanket, normal to the plane of the blanket, are denoted by V(x,t)
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and W(x,y,t), respectively. In developing the equations of motion for the array the fol-
lowing assumptions were made:

(1) The bending stiffness of the blanket, normal to its plane, is negligible so that
the blanket behaves like a membrane in this direction.

(2) The tension distribution is uniform across the width of the blanket (i.e., the
tip piece is perfectly rigid).

(3) Displacements are small, so that small-displacement theory is valid.

(4) Boom weight is negligible and the shear center coincides with the neutral axis of
the boom.
Based on these assumptions the equations describing the motion of the array were de-
veloped. (All symbols are defined in appendix A.)

Equations of motion. - The forces acting on an element of the blanket displaced an
amount W(x,y,t) from its static equilibrium configuration are shown in figure 2(a).
Applying Newton's second law of motion to this element yields the following equation:

p 2
T_a_(aw>+aw dT _ "m 9°W 1)

sx\ox/) ox d& b .2

ot

where b is the blanket width and Py, is the mass per unit length of blanket. It can
readily be seen that an alternative form of equation (1) is given by

p 2
2 (T ﬂ) _Pm o*w @
0x 0x b atz

Now for a blanket hanging vertically the tension at any point x will be a superposition of
the preload P transferred to the blanket from the boom and the weight of the blanket
below the point x. That is,

w P8

T(x):E-1+-—rP-——ln-—x (3)
b P P

where Wm is the total blanket weight. In view of equation (3), equation (1) is trans-

formed by making the following change of variables:

w P8
= 9—. T(X) = 1 + m - —m X (4)
P P P
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From equations (1) and (4) then
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Equation (5) represents the desired form for the equation of motion of the blanket.

The equation of motion of the boom can be developed by applying Newton's second
law of motion to the beam element shown in figure 2(b) and by using the following force -
displacement relations from elementary beam theory:

3
Qx) = -EIf&Y , BV (62)
8X3 EI 0x
2%y
M, () - B1 2¥ (6b)
0xX

In this manner it can be shown (ref. 8) that the equation governing the bending motion of
the boom is given by

4 32 32

I A S Ak AP M
ax4 El XZ EI 2

In addition to the bending motion described by equation (7), the boom can also experience
a rotational motion about its centerline. The equation governing this motion is developed
in numerous texts on vibration theory (e.g., ref. 9) and is given by

9
976 b 970 _ (8)

where 6 is the rotational angle of the boom cross section, Ib is the mass polar moment
of inertia per unit length, and JG is the torsional stiffness of the boom. The relation
between the torsional moment Mx and the angular rotation 9 used in developing equa-

tion (8) is

M, (x) = 3G &2 (9)
0X

Equations (6) to (9) represent the required relations for the boom.
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The final set of equations are the equations of motion for the tip piece. The forces
acting on the tip piece are shown in figure 3. Applying Newton's second law of motion
for forces in the z-direction and moments about an axis parallel to the x-axis and pass-
ing through the center of gravity of the tip piece yields the following two equations:

b /2
2
QE,Y + BMdy+Mt IVELY g (10)
b 0X p atz
/2
b,/2 9
M, (,1) + Py aWl,y,9 gx .1 92 (11)
p
b 0x dt2
-b/2

where M, = is the mass of the tip piece and Itp is the mass moment of inertia about its
center of gravity. Eliminating the force and moment in equations (10) and (11) by using
equations (6a) and (9) and changing the variables in W from x to { by using equa-
tion (4) transforms equations (10) and (11) into the following equations:

aX3 EI ox 2lb \EI ot EI 2

3 b /2 M 9
o3v(,y, P ovi,n , 1 (3)(me)/ W(1,y,0 g MipVE0 g )
b2 at

W b /2 I 9
9oLt _ 1 (_E) m g IW(,y,9 g, tp 70 _ g (13)
ox 2lb \JG/\ P b/2 at JG dtz

Equations (12) and (13) represent the final form of the equations of motion of the tip
piece. These equations together with equations (5), (7), and (8) represent the motion
equations for the complete solar array. The displacement variables in these equations
must satisfy certain boundary and compatibility relations. These conditions are given
next.

Boundary conditions and compatibility relations. - At the fixed end of the array the
displacements and rotations of the array elements are all zero. At thisend, x=0 and
it follows from equation (4) that € = Co = Vl + (Wm/P). Thus, the boundary conditions
at the fixed end will be as follows:




\

V(0,t) = 0

V(0,8 =0

0x } (14)
9(0,) = 0

W(CO,Y:t) = 0)

At the free end of the array the displacements and rotations of the components must be

compatible. At this end x =; and from equation (4), £ = 1. In addition, the moment

at the tip of the boom (given by eq. (6b)) is zero. Thus, the boundary and compatibility
relations at the free end are as follows:

6(2,t) = a h

W(1,0,t) = V(Z,1)
(15)

v

W(,y,t) = W(1,0,t) + yo

0x J

Equations (12) to (15) represent the complete set of relations that must be satisfied by
the solutions to equations (5), (7), and (8).

Separation of variables. - The first step in the solution of the motion equations is
to eliminate the y and t variables by assuming a harmonic solution of the following

form:
V(x,t) = v(x)eiwt
W(E,y,8 = [(®) + yo(e)e!" (16)
o(x,t) = 6(x)el®t
From equations (16) and (5), (7), (8), and (12) to (15), two independent sets of equations

and corresponding boundary conditions are obtained. These equations can be nondimen-
sionalized by making the following substitutions:



l l T oow Ef -,
l m
2 2 M, 23 M
2 Pl T2 _Pb” 74 b 2 = _m
k2P 2 Ph Wi M =1
EI JG El Mb
— M - _ I - I
M, =t p=b 7 __tn T __b_
tp M ’ Z’ tp * b 9
b Mmb pmb
— =2
9 MmP
K1=
-2
k

(17)

where Mm is the total mass of the blanket and Mb is the total mass of the beam. The

first nondimensional set of equations is designated as the bending equations and is given
by

2__ —
d'w  1dw k6 , 274—
—-;+ EEC—T 4KIB w=20
ag
4— 2= _,_
dv 2 dv 345
ax? dz4
V(l) +T{2 dV(l) + _1_&_(1 (1) + M —B
— = ) p
ax3 dx 2 P dg
with boundary conditions
v(0) =0
dv(0) -0
dx
W(CO) =0

(18a)

(18b)

(19)

(20a)

(20b)

(20c)
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w(1) = v(1)
5 (21)
dv(1) _ 0
x>
The second set of equations is called the torsion equations and is given by
2o 1dp 252
+ = + 48, P7¢ =0 (22a)
a2 Lat
4°6 . 7 1252 - o 22b
5 T htthT = (22b)
dx
i{"2
QQLL)_L:tM_It 12?5?9(1) =0 (23)
dx 24P d¢ p
with boundary conditions
8(0) = 0 (24a)
o(gy) = 0 (24b)
6(1) = ¢(1) (24c)

Equations (18) and (19) and boundary conditions (20) and (21) define the bending or sym-
metric motions of the array in which the blanket displacements are independent of y.
This type of displacement field is illustrated in figure 4(a). Similarly, equations (22)
and (23) and boundary conditions (24) define the torsional or antisymmetric motions of
the array, in which the blanket displacements vary linearly with y. Figure 4(b) illus-
trates this type of displacement field.

Solution to bending equations. - To obtain a solution to the bending equations, a
solution to equations (18) that satisfies equations (19) to (21) must be determined. Now,
equation (18a) is Bessel's equation of zero order, and its solution satisfying boundary
condition (20c¢) is (ref. 10)

W(0) = C[Y (26, B )T o(26,20) - To(20, B2 )Y (2K BC)] (25)




where JO and Y0 are Bessel functions of the first and second kind, respectively, of

zero order and C is an unknown constant., Also, it can be shown by direct substitution

that the solution to equation (18b), satisfying boundary conditions (20a) and (20b), is

v(x) = A(aq cosh al}_( - ag cos az)_{) + B(az sinh a1§ -y sin az;{)

(26)
where
j
I
ay=\-—+\y—+ B
2 4
> (27)
2 )
az = — —_— B
2 4 p
and A and B are unknown constants. Now equations (25) and (26) contain three un-
known constants that can be evaluated from the three remaining conditions given by
equations (19) and (21). Utilizing equations (25) and (26) changes equations (21) to
A(oz2 cosh @y - ag cos az) + B(az sinh @y - ay sin 0‘2) - CFI(E) =0 (28)
A(zcosh + 2cos >+B(2sinhoz + a0 sinoz)—O (29)
o1 o T oy %3 1 17 %1% 2/~
where
= =2 =2 =2 =2 .
Fy () = Yo(20 2030 (2, 5) - Jo(2w,P §0>Yo(2“13 ) (30)
The third equation is obtained from equation (19) by using equations (25) and (26). After

some manipulation with Bessel functions, this equation can be written as
A[(zsinh - sin >+1\—/I _2( cosh - o cosoz)]
g SIPh @y —ajap SIag) + Mypf lap €oSh oy - oy 2
+ B[(ag cosh ag + a% cos al) + Mtpéz(az sinh @y - oy sin az)]

-9
k —.

(31)
P



where Fz(E) is defined in terms of Bessel functions of the zero and first orders as

FolB) = —;—["152‘1 1(2“152)171@ o1 J0(‘2"152%)] (32)
Jn(2k Ez 4
0(21

Equations (28), (29), and (31) represent three equations in three unknowns, A, B, and
and C. For a nontrivial solution the determinant of the coefficients of the unknowns
must be zero. Expanding this determinant and simplifying yield the following equation:

—_— —2 .
[FI(B)Mth4 - %FZ(B)][(a% + a%)(az sinh 0y COS ag - g cosh @, sin az)]

+ Fl(E) [223_6 +_62(2E4 +T{4)cosh aq coS ay -6—41;2 sinh o sin az] 0 (33)

Equation (33) is the characteristic equation for the bending vibrational frequencies of a
split-blanket solar array in a _1 -g field. When the mass parameters Mtp_and Mb and
the load parameters P and k are specified, the frequency parameters g can be de-
termined numerically. Note that equation (33) is valid, provided the boom does not
buckle. That is, the load P must be less than the critical buckling load of the array.
Development of this critical buckling load is presented in appendix A. For P equal to
P, it can be shown that equation (33) yields E =0.

Solution to torsion equations. - The torsion equations can be solved in a manner
similar to that used for the bending equations. It can be verified by direct substitution

that the solution to equations (22) satisfying the boundary conditions (24a) and (24b) is

given by
8= A1 sin< 1/2 —tEt—)
(34)
¢ =By [YO(ZKZCO)JO(ZKZC) - JO(ZKZCO)YO(2K2C)]

where kg = —B-tﬁ. The constants A1 and B1 are such that conditions given by equa-
tions (23) and (24c) must be satisfied. By using equations (34) these equations become

A Si“(fé/zﬁt@ - B;F3(B) =0
_2 (35)

1[_1/ KBy °°s(—1/2 t3t> _tpE‘t?Etz Sin(i%/zr{tgt)] +By kr?t Fy(Bp) =0
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! where

F3(Et) = Y0(2K2§0)J0(2K2) - JO(2K2§O)YO(2K2)

(36)
- 1 -
F4(Bt) == [K2J1(2K2)F3(Bt) + ']; J0(2K2C):|
I (2ks) T
0\""2
Equating the determinant of the coefficients of the unknowns A1 and B1 in equa-
tions (35) to zero yields
/2 Ry /

1 /2 7\ T 7 ownf7l/2 7 ) -

——F 4(Bt)s1n(1b K5, ) + Fo(B)| 2 cos(T KB ) - T B, sin(T5/%kB, )| = 0 -
P . t

Equation (37) is the characteristic equation for the torsional frequencies of the array in
a 1-g field. Once the inertia parameters Ib and Itp and the load parameters k and
P are specified, the frequency parameters B, can be found by solving this equat10n

numerically. If the mass of the boom is negligible such that sm(Ill)/ ¢ ﬁt) —1/2-t-3—t
and cos<'fk1)/ 2_ t6t> ~ 1, then equation (37) simplifies somewhat to
F (B,

k2 k¢ By

Equation (38) is applicable to current large solar array designs.

Degenerate case - 0-g configuration. - For the case of a solar array in a 0-g field
(i.e., an in-orbit configuration) the characteristic equations for the bending and tor-
sional frequencies can be determined from equations (33) and (38) by taking the limit of
the functions in these equations as the blanket weight Wm approaches zero. It is shown
in appendix B that as Wm approaches 0 the following relations hold:

Fl(_é) =1 &in og (39a)

USRS

2(_) =
”KIB CO

7 cos ag (39b)
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1

sin Et (40a)
K90

1

F,(B) = - cos B, (40Db)

where

_"m Z2 (41)

C)l3—--——_—

k

Substituting equations (39) into equation (33) yields the following characteristic equation
for the bending frequencies of the array in a 0-g configuration:

(Mtp?l sin og - l_<-2a3 cos a3> [(a% + ag)(az sinh 0y COS ag - ay cosh ay sin ozz)]

+sin ag [2;_36 + EZ(ZE4 + E¥cosh @y COS og - §4E2 sinh o sin "‘2] =0 (42)

Similarly, the characteristic equation for torsion is obtained by substituting equa-
tions (40) into equation (38), which yields

cos By + 12 i "—I—tpEt sin B, = 0 (43)
KBy

It can be shown that equations (42) and (43) are analogous to the frequency equations in
reference 3, which were developed in a straightforward manner for the 0-g configura-
tion.

Mode shapes and orthogonality conditions. - To determine the bending mode shapes
of the solar array, assume that the frequency parameter for the 2 mode B, , is known.
Corresponding to En there will be an oqn and Ogp- Starting with equations (25)
and (26) the boom and blanket displacements in the n h 1hode will be

v (x) = An(a2n cosh a; X -a, cos aan) + Bn(oz2n sinh oy X -y, sin aznx)
(44)

12



WH(C) = Cn[YQ<2K1§0§?1)J0<2K15121§) - J0(2K1E§CO)YO(2KIE?I§)] (49)

The mode shapes can be determined from equations (44) and (45) by expressing Bn and

Cn in terms of A n» using the boundary conditions expressed by equations (28) and (29).

From these equations then

2 2
-(a‘ cosh @, + ag COS ¢« )
B =R T TIn 20 7 20 (46)
a]_zn sinh oy, + 0p 09, SIn 09,
C, = 1 agplcosh oy - cos a, )
F,(8y)

(oz%n cosh ay, + agn c_?f_qﬂl?)(_azn sinh oy, 'Valn sin azn)

An (47)

2 . .
qn sinh Aqp + ¥qpQop Sin g,
If equations (46) and (47) are substituted into equations (44) and (45), the nth
for an array in a 1-g field can be determined to within an arbitrary factor An' For the
0-g field the boom equation given by equations (44) and (46) remains unchanged. The
blanket equation for this case becomes

mode shape

Wn(x) = Dn sin ag X (48)

In addition, for the 0-g field the boundary condition given by equation (28) yields the fol-
lowing result for D:

o 1B -
sin oz,

Thus, equations (44), (46), (48), and (49) determine the nt! mode for an array in a 0-g
field. The mode shapes for the torsional cases can be developed in an analogous man-
ner.

The orthogonality relations for the solar array can be developed in a straightforward
manner. Because of the length of this development it is given in appendix C.

Summary of continuum mechanics approach. - In the previous sections the mode
shapes and frequencies of a split-blanket solar array were determined by solving the

13



differential equations governing the motion of the system. The results showed that the
array will exhibit symmetric or bending modes and antisymmetric or torsional modes of
vibration. The frequencies of the bending modes can be found by solving equation (33)
or (42) for an array in a 1-g or a 0-g field, respectively. Similarly, the torsional mode
frequencies can be determined from equation (37), (38), or (43) depending on the partic-
ular case of interest. In all of these cases a highly transcendental equation involving
Bessel functions and/or trigonometric and hyperbolic functions must be solved numer-
ically to obtain a solution. In the following section an alternative approach is developed
that uses the Rayleigh-Ritz method. This approach can readily be extended to include
more complex arrays for which exact solutions cannot be found.

Rayleigh-Ritz Approach

In the Rayleigh-Ritz method (ref. 9) the strain energy and kinetic energy of the sys-
tem are expressed in terms of (1) assumed modes that are functions of the spatial co-
ordinates and (2) unknown generalized coordinates that are functions of time. By using
Lagrange's equation and these energy expressions a set of second-order, linear, differ-
ential equations in terms of the generalized coordinates can be obtained. This set of
equations is then reduced to an eigenvalue problem from which the modes and frequencies
can be determined.

The success of the method is highly dependent on choosing a proper finite set of as-
sumed modes that will ensure accurate results. The method, as applied to a large solar
array, is now developed for the array bending vibrations and the results compared with
the exact results of the previous section.

Strain energy of system in bending. - Let N}(io) be the uniform stress resultant in
the blanket when it is in its static equilibrium configuration. During the motion of the
blanket about this equilibrium configuration the resultant stress will change to Nx' As-

sume that the stress induced by motion is small relative to NE({O) so that NX ~ N§{0) .
Under these conditions it can be shown (ref. 11) that for small displacements the change
in strain energy in the blanket U m is given by

f f N(O i‘l dx dy (50)
“b/2

For an array hanging vertically in a 1-g field the resultant stress is given by equa-
tion (3) as

N[)—A
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From equations (50) and (51) the blanket strain energy in nondimensional form is
Pl 1 _E\(0W)\2 —
u_=E (1 r - =)<—_) ax (52)
P P

where W = W/l. Similarly, it can be shown (ref. 12) that the strain energy in the boom
Ub is given by

Ub =

DO |

EI 27\~ o A
EL OV) & -k <___> dx (53)
l =2 ox

where V =V/L. The total strain energy in the array is then

U=U_+U (54)

Kinetic energy of system in bending. - The kinetic energy of the array consists of
the kinetic energy of the boom, blanket, and tip piece. The kinetic energy of the blanket

Tm is

'/ 9 1 9
1 oW 1 2 oW =
m- o ™A 5t 2 ™ at
0

Similarly, the kinetic energy of the boom T, is
T, = b (2‘.’.) ax (56)

Lastly, the kinetic energy of the tip piece Tt p is

15



2
1y 2V
Typ = > My [at (l,t)] (57)

The total kinetic energy of the array is then given by

T +T, +T (58)

T =T+ Tp + Ty

Energy expressions in terms of generalized coordinates. - To express the strain
and kinetic energies in terms of generalized coordinates, the displacements W and V
are assumed to be represented by the following series:

N
VED = ) 0, (07,® (502)
1
_ N M
WX, 1) = X Z q, (O (1) + 2 dy, 4 (t) Sin n7E (59b)
1 1

In equations (59), n, represents a set of specified functions that are linearly independent
over the range 0 =X =1 and satisfy, at least, the geometric boundary conditions for
the boom. Also, the time-dependent functions q, represent the unknown generalized
coordinates. Note that equations (59) satisfy the compatibility of displacement at the tip.
Using the assumed solution given by equations (59) in the expression given for strain
energy by equation (54) yields, after evaluating the resulting integrals, the following
equation for strain energy:

N N N M
2 m
_EI E § 2k § 1-(-)"|=
T K mn%ndm * P [—T] (04,9, m
1 1 n=1 m=1

M M 5
=2 T 1
+k E § mn [_2 <1 + ﬁ) Gmn + bmn]qN+nqN+m (60)
1 1

where K b and émn (Kronecker delta function) are defined as follows:

mn’ “mn’
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1 1
ooty J% =2 n ont odx
K__ = / TRl dF - K / o dF - <1+2—) 7 (07, (1) (61)
0 0

(
0 for m=n
_ 62
bmn =9 ) 2 (62)
[1 - (_1)m+nJ m- +n for m#n
fo? <%
L m- -n
0 for m #n
Omn = (63)
1 for m=n

Similarly, from equations (59) and (58) the expression for kinetic energy becomes

— N M M
oM (ym+l M 9
T= _M mn ndm * =—q qN+m 9 AN+n

n=1 m=1 1

where

1
- — — 1 =— — \— —
Gy = [ Ny, X + (}5 M, + Mtp> n, (U, (1) (65)

Equations (60) and (64) represent the strain and kinetic energies in terms of N + M

generalized coordinates q; - The equations of motion can now be written in terms of

the generalized coordinates by a direct application of Lagrange's equation.
Equations of motion. - Lagrange's equation is given by

4 —EE + U9 for r=1,2,. . ., N,N+1,N+2, N+M (66)
a4,/ 94,

From equations (60) and (64), equation (66) yields for 1 =r <N the following set of
equations:

17



3 N — M
EI rnn 7 m
1
N M

z : K2, (l)z : m
r 1-(-1) - -
K ,d, + = [—_—]qN+ =0 for r=1,2,...,N (67)
1 1

Similarly, for N+ 1 =<r = N + M these equations yield

3|57 N — N
Mpl® M, gyl - i+ My i L. K ( 1) 7.(1)q
EI T r T n 9 N+r Ty

1 1

M
2 772 1 brn
+k rn?1+§6rn+—qu+n =0 for r=1,2,. . ..M (68)

1

Equations (67) and (68) represent the equations of motion in terms of generalized coor-
dinates. In matrix notation these equations can be expressed as

;3
L M]{d} + [K]{a} = (69)

where [M] and [K] are (N + M) X (N + M) symmetric, nondimensional mass and stiff-
ness matrices, respectively, and {q} is a (N + M) x 1 vector of the generalized coor-
dinates. Equation (69) can be expressed in partitioned form as

18



e h )
(e N q1
9
N ay 0
- - | % -
—_ | — — | —_— :
mito g2 |- [ g1 ! g2 ,
- I )
M, 1% [N xN) T (N x M) JEY (N xN) + (N x M) |y 0
Erell e N I e gl BT e e r T S (V)
Bl | a2l 1 22 | g R2l | 22
: Iy 1 | Ny 1 0
(MxN):(MxM) . (MxN)l(MxMZj :
L J1: A |
AM+N .
- < M4 N 0
- o “ ./

where the elements of the submatrices [an] and [I—{mn], m, n= 1, 2 are given, using
equations (67) and (68), by the following:

ﬁ%jl =Gy for 4,j=1,2,. . N (71a)
=22 ﬁm
M22-_ M5 for i,j=1,2,... M (71b)
ij 9 i
. — M _ j+1
Mi2 -2l o Tm iz (q) (D) for i=1,2,. . .,N;j=1,2,. ..M (7l
ij ji ! i
kil -k for i,j=1,2 N (714)
ij - 1] ,]_ L B |
— 212 2
KiszJ k <1+i._)1251j+15_bij for i,j=1,2,. ..M (T1e)
2 2P P
— — e - (1)
R12 g2l _ 2k” 7 (q) Lo (1) for i=1,2,...,N;j=1,2,... M (719
H n o Lp |t 2j

When the set of N assumed modes of the boom ﬁn(x) are specified, equation (71) can be
used to generate the mass and stiffness matrices for any value of M. Equation (69)
represents a set of linear, second-order differential equations whose solution is given by

{a} = -o*{a) (12)
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where w is the angular natural frequency of the system. Substituting equation (72) into
equation (69) and multiplying through by [K]"l yield

(BRI Y™l{a} = L {a) (73)
'B-4

Equation (73) represents an eigenvalue problem whose solution is discussed in numerous
texts on vibration theory (see e.g., ref. 9 or ref. 13).

Mass and stiffness matrices using cantilevered beam mode shapes. - As previously
stated, the success of equation (73) in predicting the mode shapes and frequencies of the
array depends primarily on the choice of assumed modes n. n(x) . An obviously good
choice for this generating set that satisfies all the required geometric boundary condi-
tions would be the modal functions of a uniform cantilevered beam. In this section the
mass and stiffness matrices given by equation (70) will be developed based on these as-
sumed modes. The mode shapes for a uniform cantilevered beam are given by refer-

ence 14
1,3 = cosh(B, ) - cos(By® - oy [sinh(B ) - sin(B,, )] (74)
where Ec o is the frequency parameter for a cantilevered beam and « cn is a function
of Ec n It Wep 18 the nth angular natural frequency of the beam,
3 A
—4 _Mpt” 2
cn FI cn
L (75)
B sinh Ben = sin Ben
%cn P

+ cos
coshﬁcn (¢ Bcn

Values for Ecn and ®., as given in reference 14 are included in this report in table I.

From equation (74) and the well-known orthogonality conditions for uniform beams, the

following relations exist:

(76)
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It can also be shown after a considerable amount of manipulation that the following rela-
tions are valid for the assumed mode shape:

- )

- (-pypFmy

Bem® CI]J

From equations (61), (65), (71), (76), and (77) the elements of the mass and stiffness
submatrices are given by the following:

_“7[1131 %;j 4(% M, + ﬁtp>(-1)i+j (782)
w2 - 2! - Zm () (781
ij ji - i
=11 = —2 1
Kii =Bei - [ ci%i * Bc1 i) - <1 + 2?)] (78¢c)
_ 4(-1)1*ig _ i
Kyl =& Pere [Beieg - (0" B0q,] - 4(-1>”]<1 +i—> (i#]) (18)
1] - i ci~cj ci%es 2P
Sei ™ (D78
—12 _21 ZEZ 1)1+1 .
Kij = [ -(-1)3] (78¢)

1] ]1 TP j

From equations (78), (71b), and (71e) the mass and stiffness matrices can be determined
when the mass ratios Mrn and M and the load parameters k and P are specified.
Note that these matrices are valid for both the 1-g and 0-g configurations. For the 0-g
case, 1/P is set equal to zero in equations (78c), (78d), and (78e).

Two-mode approximation using preloaded cantilevered beam mode. - For the 0-g
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configuration a good approximation for the first two lowest bending frequencies can be
obtained by using an assumed mode corresponding to the first mode of a uniform canti-
levered beam under directed axial load (ref. 8). It can be expected that this type of as-
sumed mode will give more accurate results than the results of the previous section for
a two-mode approximation, since it more nearly approximates the condition of the boom
in the array. Nowfor N =1 and M =1 the solution to equation (70) becomes

<K —_40) -"4M—m_(1) -0
11 = A Gyy)% - BT ——mdy =

— (719)
—4Mn - 1/2-2 -4
-8 __..171(1)q1 + 5(77 k™ -8 Mm)q2 =0
m
Equating the determinant of the coefficients of the unknowns in equations (79) to zero
yields the characteristic equation given by
=8 -4
AyB° =By~ +Cy =0 (80)
where
I i
A, = Glle -2 Tnl(l) (81a)
_ 272
BZ = 7%k G11 + MmK11 (81b)
2 =2

Equation (80) is a quadratic equation in §4 that can be solved once the coefficients Az,
By, and C, are known. These coefficients, which are given by equations (81), can be
written in terms of the beam mode by using equations (61) and (65) for G11 and K.
From equation (65)

1
) L
GH_/ nldx+<§Mm+Mtp) (82)
0

Next from equation (61) and the orthogonality relations for a cantilevered beam under
directed axial load,
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Kll = Ba1 b M dx (83)

where Edl is the frequency parameter. Substituting equations (82) and (83) into equa-
tions (81) and noting that k= 72P/P cr o Yield

1
_ 2 = |= 1_2\.% |
0 s

1
= = - 1= = \=2
By = | (% —2—+M_BY, n? ax +nt 2 (—Mm+Mtp)n1(]) (84b)
P P 3
0

Bdl/ ”1 dx (84c)

crO

Equations (84) describe the coefficients in equation (80) in terms of the parameters
Ba1s 771(1) and / dX for a cantilevered beam under directed axial load. As shown

in reference 8 these parameters are a function of k or P/Pcr,O’ Table II, which was
developed from the results of reference 8, gives the values for these parameters as a
function of P/Pcr o- Thus, from this table the coefficients Ay, By, and C2 can be
determined for the various values of P/Pcr 0’ and the first and second lowest fre-
guencies can subsequently be determined from equation (80).

RESULTS AND DISCUSSION
Continuum Mechanics Approach

To determine the effect of the various parameters on the frequencies of a split~
blanket solar array in both a 0-g and a 1-g cantilevered configuration, equations (33),
(38), (42), and (43) were solved numerically by the method of bisection (ref. 15). The
results for the first three bending frequencies for the 0-g case are shown in figures 5,
6, and 7. These figures show the variation in frequencies as a function of the axial load
ratio _P/P ,0 and the mass parameters Mt and M . The tip-piece mass param-
eter Mt was varied between 0 and 40 and the blanket mass parameter M was varied
between 1 and 6. This should cover the useful range of these parameters. The axial
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load ratio P/P cr,0 represents the ratio of boom load to buckling load of the array in a

0-g c0nflgurat10n, that is, P, r,0° =7 EI/Z2 Thus, when P/P r,0° = 0 (blanket tension
of zero) and when P/P r,0- 1 the frequency parameter El 1s zero. It follows then
that at some point between Oand1, 31 reaches a maximum. This implies that for a
given array (M m and M, fixed) there is an optimum preload P that will yield a max-
imum fundamental frequency. This, of course, may not correspond to the minimum
frequency of the array since the fundamental torsional frequency must also be con-
sidered. However, it does appear that this optimum preload may be significant in de-
signing a lightweight solar array.

Similarly, figures 8 and 9 illustrate the variation in the fundamental and second
bending frequencies of a solar array suspended vertically in a 1-g field. In addition to
the parameters used for the 0-g case, an additional parameter must be specified for the
l-g configuration namely, Pcr 0/ . For the graphs shown in these figures,

cr 0/W Note from flgure 8 that when P/Pcr o ~1.52, [31 = 0. This implies
that the buckhng load of the array is given by P ~1.52 P r,0° This result has been
checked by solving the buckling equation for the array given 1n appendlx A by equa-
tion (A14). This equation has also been solved for various values of W /Pcr 0 and
the results are presented in figure 10. This figure gives the buckling load of an array
suspended vertically in a 1-g field as a function of blanket weight.

Figures 11 and 12 show the effects of both tip-piece mass inertia and torsional beam
stiffness on the fundamental and second torsional frequencies of an array in a 0-g and a
1-g configuration, respectively. As in the bending case, the torsional frequencies of an
array in a 1-g field are illustrated by taking P cr,0 /W

Finally, figure 13 illustrates the effect of ax1a1 load on the mode shapes of a solar
array in a 0-g field. The mode shapes were determined from equations (44) and (48) for
values of _1\7fn =3 and K/I—t = 1. These figures show that the mode shapes can be very
dependent on the axial load. For small loads (figs. 13(a) to (c)), the first three modes
are predominately blanket modes. For the point where the fundamental bending fre-
quency is a maximum (figs. 13(d) to (f)), both blanket and boom participate equally in the
modal displacement. For larger loads (figs. 13(g) to (i)), the first mode is predomi-
nately a beam mode, but the second and third modes show a coupling effect.

Rayleigh-Ritz Approach

The Rayleigh~Ritz method presents an alternate and somewhat simpler approach for
determining the modes and frequencies of a split-blanket solar array. The accuracy of
this method depends primarily on the type and number of assumed functions used to gen-
erate the required mass and stiffness matrices given in equation (70). The accuracy of
this method, which uses cantilevered beam modes for the boom and string modes for the
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blanket, was investigated by solving the eigenvalue problem given in equation (73). This
equation was solved for various mass ratios Mtp and _ﬁm and axial load ratios
P/P cr,0° Both 0~g and 1-g configurations were investigated.

The eigenvalue problem was solved by matrix iteration to find the lowest, or domi-
nant, frequency parameter of the system. The higher modes and frequencies were de-
termined by the technique known as ''deflation'' of a matrix. This method uses the
orthogonality conditions that exist between the modes to sweep out the known, lower
modes from the dynamic matrix given by K'lM. This technique is well described in
references 9 and 13.

Typical results and comparisons with exact results for the 0-g and 1-g configura-
tions are shown in tables III and IV. These tables indicate that good results, at least for
the first three frequencies, can be obtained in most cases by taking three beam modes
for the boom and three string modes for the blanket. These tables also illustrate the
improvement in accuracy achieved by increasing the number of assumed modes.

In addition to the solutions for equation (73), table III also gives the solution to
equation (80). This equation is based on a two-mode approximation that uses the first
mode of a cantilevered beam under a directed axial load and the first string mode. Pa-
rameters required in the solution of equation (80) relating to the modal characteristics
of a beam under directed axial loads were developed from the equations presented in
reference 8 and are given in table III. The exact results are compared with the two-
mode approximate results in table III and there is good agreement, for the fundamental
frequency, for all values of P/Pcr 0 Also, for the second frequency the error is less

’

than 1 percent, provided that P/PCr o> 0.08.
H

CONCLUDING REMARKS

Two methods have been presented for calculating the modes and frequencies of a
large split-blanket solar array in both a 0-g and a 1-g cantilevered configuration. The
first method is based on the equations of continuum mechanics; the second method is
based on the Rayleigh-Ritz, or assumed mode, approach.

The continuum mechanics approach results in a highly transcendental equation that
must be solved by numerical techniques. This has been done for a wide range of solar
array parameters, and the results have been presented in graphical form.

The Rayleigh-Ritz approach uses cantilevered beam modes to represent the boom
displacement and string modes to represent the blanket displacement. Based on these
assumed modes the mass and stiffness matrices of the array were developed for an
arbitrary number of assumed modes. The resulting eigenvalue problem was then solved
by matrix iteration for an increasing number of assumed modes. The results were then
compared with the exact results of the first method. This comparison disclosed that
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good results are obtained for the lower bending frequencies by using a relatively small
number of assumed modes.

Lastly, a two-mode approximation for an array in a 0-g configuration was pre-
sented. The assumed modes used for this case consisted of the first cantilevered mode
for a uniform beam under directed axial load and the first string modes. The charac-
teristic equation for this case is a quadratic equation that can be solved in closed form
for the first and second bending frequencies. These results compared well with the
exact solution for all the cases investigated. This type of solution can be used to deter-
mine the first two lowest bending frequencies of a solar array very rapidly without the

aid of a computer.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, July 22, 1976,
506-22.
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APPENDIX A

BUCKLING LOAD FOR A SOLAR ARRAY IN A 1-g FIELD

The buckling load for a solar array in a 1-g field can be determined from the equa-
tions of motion with the acceleration terms set equal to zero. From equations (2), (6b),

(7), and (11) these equations in nondimensional form are

4 (‘T' 9‘¥> =0 (AD)
dx dx
4 _, 42
izt &2
a%5(1) | 2 dv(D) 2 6WQ) _ (A3)
&3 dx dx

where k = Pl2 /EI and T is the nondimensional blanket tension given by equation (4) as

_ T -
T=—£=1+é-§ (A4)
p P P
The boundary conditions and compatibility relation for this case are
w(0) = 0 (A5)
v(0) = 0
dv(_(_)) -0
dx (46)
2_
dv(l) _ 0
dx2
w(1) = v(1) (A7)

The buckling load can be determined by solving equations (A1) and (A2) subject to condi-
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tions (A3) and (A5) to (AT). Thus, from equations (Al) and (A4)

dw__ € (A8)
dx 4. é X
P P
Integrating this equation and applying the boundary condition given by equation (A5)
W) = CP 1n<_1_+=£-=> (A9)
1+P-x
Next the solution to equation (A2) is
v(x) =Asinkx + Bcoskx + Dx + E (A10)
Using the boundary conditions given by equations (A6) gives the following relations:
h
A=-D
k
B=2tank § (A11)
k
E=- 2 tan E
k W,
Substituting equations (A11) into (A10) yields
v(x = D [tan k(cos k - 1) - sin kx + kx] (A12)
k

Equations (A9) and (A12) now contain two unknowns, C and D, which can be evaluated by
using the two remaining conditions given by equations (A3) and (A%7). The condition
given by equation (A3) yields

C=D (A13)

and using (A13) in addition to (A9) and (A12) in equation (A7) yields
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tanE:E[l -Fln(1 +%)] (A14)

Equation (A14) is the characteristic equation from which the critical buckling load Pcr
can be determined. Note that when P - < (i.e., Wm- 0) the right side of equation
(A14) becomes zero and the solution to (Al14) yields

2

_n"El
Pcr,O" 12 (A15)

which is the critical buckling load of the array in a 0-g field. Expression k and P in
terms of P cr.0 gives the following relations:

P-_PF _ P cr,0
Wi Pcr,O Wi
2
— 2 p l
L ( P cr,0 R (A16)
EI Pcr,O EI Pcr,O

By using (A16) in (A14), Pcr/P can be determined as a function of Wm/P

cr,0 cr,0°
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APPENDIX B

ASYMPTOTIC FORMULAS FOR F,(8), Fo(B), F4(8), AND F 48

The characteristic equations for bending and torsion of a solar array in a 1-g field
contain certain functions that can be evaluated more simply for large values of their
arguments. This will be the case when the blanket weight Wm approaches zero. To
simplify the writing of these equations, let

2 = K B (B1)
where
M_gn/ 25
Ky = —= (B2)
k

In terms of z,, equations (30) and (32) become

Fy(8) = 35(22))Y(22,8) - Y(22,)3,(22, &) (B3)

= 1 =, 1

FyB) = (47,2, @ « £ 32,5 (B4)
JO(2Z1) T

Now, as Wm approaches 0, Z4 approaches <« and the arguments of the Bessel func-

tions in equations (B3) and (B4) become large. Thus, the asymptotic formulas for these
functions can be used. For large values of z; these formulas as given by reference 10

are

(B5)

Y0(2z1) = J1(2z1) = V—l— sin(Zz1 - 1>
mZy 4

Similar expressions exist for J0(2z1§0) and Y(2z1§0). From equations (B5) and (B3),

Fl(B) reduces to
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FyB) = — - sinl2, (¢ - 1] (B6)
2180

Now for small values of Wm or large values of f, equation (B2) yields for the term in
brackets in equation (B6)

22,(8y - 1) = 26,B4(¢g - 1)

zﬁl /2

m =23 1 2
B BP[<1+_—_) -1]za3 (B7)
k P
where
il /2'52
k
From equations (B6) and (B7)
= 1 .
FI(B) = —————sinag (B9)
”KIB CO

Next consider equation (B4) for large values of z,. From equations (B5) this equation
becomes, after a little manipulation,

Fo(B) = —— cos[2z, (£, - 1] (B10)
TrCO

The terms in brackets is again given by equation (B7). Noting that KIEZ = cv3f (from
egs. (B2) and (B8)), equation (B10) can be written as

F,(B) %P (B11)
9(B) = ————cos a4
n§(1)/2x1§2

In a similar straightforward manner it can also be shown that F3(Et) and F 4(Et) as given
by equations (36) become for large values of P
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32

F 3(B-t) = sin Et

%350

F.(3) = L1 r)
4(31:) NCO cos B

-

J

(B12)



APPENDIX C

ORTHOGONALITY CONDITIONS

The orthogonality relations for the bending modes of a solar array in a 1-g field can
be developed by starting with equations (18) and (19) and the corresponding boundary con-

ditions given by equations (20) and (21). For an array vibrating in its ith

equations become

Wi(*;’o) =0

Wi(l) = Vi(l)

a7 (1)
=0
B

mode these

(C1)

(C2)

(C3)

(C4a)

(C4b)

(C4c)

(C4d)

(C4e)

First operate on equation (C1) by multiplying it by Ww,, where j corresponds to the jth
mode of vibration, and integrate over the length. This yields, after an integration by

parts and applying conditions given by (C4c) and (C4d),
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(CH)

_ 1 1
aw.(1 dw. dw,
1 w0 € Wl—vildx+4x13.4 ¢
dg d¢ dt ! /

Next, multiply equation (C2) by v, and integrate over the length to obtain
1
_ a%y,
— — ._4 —_— —
d + k j - B; viv.dx =0
A g

Integrating the first two integrals by parts and applying the boundary conditions given by

equations (C4a) to (C4c) yield

3- 2= 427 R
v.(1) d%, d%. _ dv. dv. _
70| ——+ Ay, Sl P .
0 0
4 [l
- B; / ViV dx=0 (C6)
0
Subtracting equation (C3) from (C6) yields

=2 dw (1 \7 dv, V dv.

-1 1-{: ) — L gx- — Jax

2P g X dx dx dx

1 -
- ;3';1 [ ‘{ Vivj dx + MtpVi(l)Tr].(l)] -0

The final step is to multiply equation (C5) by
to equation (C7). The result, after noting that k K3 /P M, P,
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/2P and then add the resulting equation



%) 3

0 ' 2— .2 1
=2 dw. dw, d, d%, _ _ dv, d&v. _
K g—t—lag+ —d _ldx - F? — Ldx
2P d¢ at 2 a2
1

-4 1_ . §0 — —_ - —
- By 4 viv].dx+2MmP [ Cwiwj dC+Mtpvi(1)v].(1) =0

(C8)

If i and j are interchanged in equation (C8), a second equation is obtained that is simi-

lar to (C8) except that E:l is replaced by E;l Thus,

CO 1 1
2 dw. dw, a%y a%y, _ av, a7, _
— ¢ —L_dde+ 1 __Jlix -k —L_ldx
2P d¢ d¢ d}—(z d}?z dx
0 0 0

=

—4 | - fCO —— — -, -
- Bj A Vivj dx + 2M_ P / Cwiwj d¢ + Mtpvi(l)vj(l):l =0

Subtracting equation (C9) from (C8) and defining the generalized mass as
M. = /lvzd:‘c+zﬁ P/COC— de + M, v2(1)
i~ i m* Wi tp'i
yields

piOV;(D) = 6;M;

(C9)

(C10)

(C11)

Equation (C11) is the first orthogonality condition for the bending modes of a solar array
ina 1-g field. A second orthogonality condition can be obtained by dividing equations
(C10) and (C9) by BE and _B?, respectively, and subtracting the resulting equations.

The result is !
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So 1
dw, dw, d
2 / c _w}_l]_dg + / v V i B2 /
2P ag dg
0

To obtain the orthogonality conditions for the array in a 0-g field, { is transformed to

(C12)

X by using equation (4) and the limit is taken as Wm approaches zero. The results
yield the first and second orthogonality conditions in the following form:
1 1_
4 viv]. d&x + M [ Win ax + Mtpvi(l)vj(l) = 5ijM'1 (C13)
1
dw dw. — dv, dv, _
i gz - i L _lax -5 FM
dx dx dx dx 1
0 (C14)
where Mi for this case is given by
M—flvzdx i Y e W v2(1) (C15)
i~ 0 i 0 i tp'i

The orthogonality conditions for the torsional modes can be developed in a manner simi-
lar to that used for the bending modes. For the ith mode of vibration, equations (22)
to (24) yield the following set of equations and boundary conditions:

(p. —
A fe 75}, 4[32t1P§<p1 =0 (C16)
de\ dt
%0, T R2%26. - 0 (€17)
9 b tPti% =
ax
e, (1) k2 de.(1)
i 17t 77 = 2-2 _
— - == —— - kB0, = (C18)
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QD(Co) =0
(C19)

6.(1) = @,(1)

6(0) =0 (C20)

Multiplying equation (C16) by ¢., integrating over the length, and applying the boundary

conditions given by equations (C19) yield

1 1
) o do; do,
i +4Bt21P/ Coy0; At - / c&i&ldc 0 (C21)
¢

%o 0

d
6;(1)

Similarly, multiplying equation (C17) by 9 , integrating over the length, and using equa-

tions (C18) and (C20) give

= 1 1
K do. (1) ds. do, . o
Lty . . A 6.0, X +T, 0. (1)6.(1)| =0
P I de 4% dx ] it (€22)
0 0

Now multiply equation (C21) by E? /24P and subtract from equation (C22) to obtain

1 q
6. do, K2 O dp. d
- 1 _Jagx -1 1_ld§

dx 24D g dt

1

1
ya
0

o
-

&

(C23)

22|~ - 5 /%o -
1

Interchanging i and j in equation (C23) yields



1 ¢

_2
do. do. k do. do.
- A gz L _ﬁ_q_oldg
dx dx 24P d¢ dc¢
0 1
1 5/t
_2 -_— — pu—
+'8tjE’? % { 6,65 dx--é—’- / °c<pi<,oj dg +T, 0,(D6(1)] =0 (C29)

Subtracting equation (24) from equation (23) yields the first orthogonality condition for
the torsional modes of the solar array in a 1-g field. Thus,

- 1 _ 7 %o 1
T { o0 %+ 2 { Coy0; A6 + T 0,(06,(D) = 0T, (C25)

where Ti is the generalized mass defined by
T, = Y2z B[P0k e T a2 (C26)
i~ b / i 5 J, ?5 tp'i

Similarly, the second orthogonality condition for this case is obtained by dividing equa-
tions (C24) and (C23) by EEJ and E?i’ respectively, and subtracting the resulting equa-
tions, The results can be expressed as

1 T €
de. de, 2 0 do. do. .
gL ¢ — 4z - 6, K2BLT, (€27
/ dx dX 24P 4 d¢ de ]

Finally, the orthogonality relations for the 0-g configuration can be obtained by equa-
tions (C25) and (C26) by using equation (4) to transform € into X and taking the limit
as Wm approaches zero (i.e., f-w) . The results are

1 1
- - 1 = B
I K 0;6, df + = / o5 dF + T 6,(1)6,(1) = 6T, (C28)
)
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_2
da. dé. k do. de. _ 0
L g, t — X = o K2R2T, (C29)
dx dx 12 dX dx prrua
0

where Ti in equations (C28) and (C29) is given by

1 1
_ 2 ;- 1 2 = .7 42
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APPENDIX D

SYMBOLS

arbitrary constants of integration

constants defined by eq. (81) or (84)

blanket width

nondimensional blanket width, b/l

elements of stiffness matrix defined by eq. (62)

boom bending stiffness

element of mass matrix defined by eq. (65)

mass polar moment of inertia per unit length of boom

mass moment of inertia of tip piece about its center of gravity
boom inertia ratio, Ib/Pmb2

tip-piece inertia ratio, Itp/ Mmb2
boom torsional stiffness
element of stiffness matrix defined by eq. (61)
nondimensional stiffness matrix

ith, jth submatrix of the stiffness matrix K

axial load parameter for bending, VPlz/EI
torsional stiffness factor, JPbZ/JG

blanket and boom length

total mass of boom, p;

ith generalized mass of solar array for bending
total blanket mass, pml

mass of tip piece

torsional moment distribution along boom
bending moment distribution along boom

mass ratio, Mm/Mb

mass ratio, Mtp/Mb



Pcr,O

Q(x)
q,(t)

{a}

s T’

8

~

a H 4 43 3 43 93
- :
kel

c

nondimensional mass matrix

it 5t submatrix of mass matrix M

>
uniform stress resultant in blanket at rest
compressive preload in boom

ratio of axial load to blanket weight, P/Wm

critical buckling load of array

critical buckling load of array in 0-g configuration
shear distribution along boom

nth generalized coordinate

column matrix of generalized coordinates

blanket tension per unit width

kinetic energy function of boom

ith generalized mass of solar array for torsion
kinetic energy function of blanket

total kinetic energy of array

kinetic energy of tip piece

total strain of array

strain energy function for boom

strain energy function for blanket

boom displacement

nondimensional boom displacement, V/I and v/l
total blanket weight, p mgl

blanket displacement

nondimensional blanket displacement, W/Z and w/l
longitudinal coordinate of blanket and boom
nondimensional longitudinal coordinate

lateral coordinate of blanket

nth modal parameter for uniform cantilevered beam
characteristic values, eqs. (27) and (41)

bending frequency parameter, #(Mbl 3/EI)w2
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Subscripts:

t

42

nth natural frequency for uniform cantilevered beam

first natural bending frequency parameter for uniform beam under directed
axial load

nth natural bending frequency parameter

torsional frequency parameter

nth natural torsional frequency parameter

Kronecker delta function

transformed coordinate defined by eq. (4)

transformed coordinate at point x =0

nth assumed function for boom

rotation of boom cross section

bending parameter, -ﬁ/ﬁ{l\;ll—r;

torsion parameter, Etl?

mass per unit length of boom

mass per unit length of blanket

torsional displacement function

circular frequency of vibration

nth natural circular frequency of uniform cantilevered beam

first natural frequency of uniform cantilevered beam under directed axial
load

nth natural circular frequency of vibration

differentiation with respect to x

differentiation with respect to time t
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TABLE 1. -STRUCTURAL DYNAMIC CHARACTERISTICS

OF CANTILEVERED BEAM UNDER AXIAL

TABLE I. - VALUES OF F,_ AND a__ LOAD DIRECTED THROUGH ROOT
FROM REFERENCE 14 Axial load { Tip displace - Generalized Frequency
ratio, ment, mass, parameter,
o natural ath modal pa- Remarks P/Pcr 0 ?;'1(1) 1 5 Edl
torsional fre~ | rameter for ’ ,{ 771(0dt
quency para- | uniform beam,
meter, Uop 0 2.00 1.00 1.875104069
Ben .001 | 2.000687704 1.000542243 (1.874861498
.01 2.007105600 1.005646573 ’1.872665819
1| 1.87510407 1 0.7340955 For n>5 02 | 2.014727517 |  1.011801344 |1.870199290
2| 4.60509113 | 1.01846644 s, ~ (2n-1)(3) .04 | 2.031574652 |  1.025702328 |1.865178790
| i lz'gzgi;‘;i 1'?)?)?)22;223 a1 .06 2.050653505 1.041844802 |1.860037145
; ' : .08 2.072081985 1.060384811 !1.854768565
i 2 14'11317(%‘)5839 1'9999985501 t 10 2.095984442 1.081494411 [1.849366860
| .20 2.257519322 1.233025493 1.820112101
7. 13(%) ' i .30 2.505117303 1.488716586 '1.786295523 |
| 8] 15@ i ; .40 2.870244314 |  1.910797481 1.746376307
g ' 17<1) ; .50 3.407887443 2.624651093 '1.697963692
2 ‘ .60 4,2217974273 3.919604287 1.637089120
10 19(—”2-) ( .70 5. 588861642 6.609907291 1.556494718
| .80 8.269873146 | 13.874364178 1.440685832
.90 |16.176957259 | 50.465329261 1.244925094
.93 |22.906582764 | 99.461655188 |1.148904957 |
.96  [39.687051208 | 293.170363886 1.008218686
.98 |78.7905575842 | 1140.85733402 | .853258066
1.00 o % 0 I
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TABLE III. - COMPARISON BETWEEN EXACT SOLUTION AND RAYLEIGH-RITZ
SOLUTION FOR BENDING FREQUENCIES OF SOLAR ARRAY IN 0-g FIELD

[Ratio of blanket mass to total boom mass, Mm, 3.0, ratio of tip-piece mass to

total boom mass, Mtp’ 1.0.]

(a) Fundamental bending frequency

Axial load | Exact- Rayleigh-Ritz solution using cantilevered Two-mode
ratio, solution beam modes Rayleigh-Ritz
P/Pcr ,0 equation N=3, |Error,| N=4, }Error,; N=5, |Error, (z:l‘u:::)x)l)
M=3 per- M=4 per- M=5 per-

cent cent cent N=1, |Error,

i M=1 per-

' cent

0.001 0.42378 | 0.42378, 0 10.42378| 0 0.42378 . 0 0.42380| 0.005
.01 ."714051 .740541 .004 . .74053| .003 * .74052| .001 .74105| .073
.02 . 85891 .85906i .012 | .85901| .006 .85899| .003 .86063| .195
.04 ! .96058 .96085 .028 ' .96070| .012 \ .96064| .006 .96495 455 |
.06 ¢ .99854 | .99893 .039 .99871| .017 | .99863| .009 | 1.0045 - 597
.08 11.0149 | 1.0153 .039 1.0151 .020 ! 1.0150 .010 | 1.0214 .640
.10 1.0224 1.0229 ° .049 1.0226 .020 '1.0225 © .010 | 1.0291 1 .655
.20 ,1.0225 '1.0231 © .059 11,0227 /020 ‘1.0226 . .010 | 1.0289 .626
.30 '1.0052 1.00607' .087 1.0055 .030 !1.0054 = .020 '1,0112 .597
.40 .98085  .98206 .123 .98125 .041 | .98110 .025  .98631" .557
.50 ' ,95009 | .95179] .179 ' .95066] .060 ) .95044! .037 } .95496' 513
.60 .91133 © .91380 .271 .91216 .091 .91184 .056 .91550 .458
.70 . 86086 .86462  .437 .86217 .152 ° .86166 .093  .86419 .387
.80 ¢ .79049 .79670 .786 .79274° .285 ' .79183 .170 .79280 .292
.90 .67648 .68909 1.86 .68132 .715  .67929 .415 .67760 .166
.93 ©.62223 .63954 2.78 .62905 1.10 .62616 .632 .62298 .121
.96 .54412 .57128 4.99 .55520 2.04 .55049 1.17 .54451  .072
.98 .45935  .50382 9.68 .47842 4.15 .47038 2.40 .45952  .037




Ly

(b) Second bending frequency

0.001 0.59928 |0.59928 | 0 0.59928 | 0 0.59928 | 0 1.1730 (95.7
.01 1.0349 1.0353 .039 | 1.0351 .019 | 1.0350 .010 | 1.1912 |15.1
.02 1.1559 1.1573 .121 | 1.1565 .052 | 1.1562 .026 | 1.2178 | 5.35
.04 1.2606 1.2619 .103 | 1.2612 .048 | 1.2609 .024 11,2873 | 2.12
.06 1.3463 1.3472 .067 | 1.3467 .030 | 1.3465 .015 | 1.3639 | 1.31
.08 1.4225 1.4233 .056 | 1.4228 .021 | 1.4227 .014 | 1.4363 .970
.10 1.4900 1.4907 .047 | 1.4903 .020 | 1.4902 .013 | 1.5019 .799
.20 1.7424 1.7430 .034 | 1.7427 .017 | 1.7426 .011 | 1.7516 .528
.30 1.9188 1.9194 .031 |1.9191 .016 | 1.9190 .010 | 1.9278 . 469
.40 2.0571 2.0576 .024 | 2.0573 .010 | 2.0572 .005 | 2.0664 . 452
.50 2.1721 2.1727 .028 | 2.1724 .014 | 2.1722 .005 | 2.1819 .451
.60 2.2713 2,2719 .026 | 2.2716 .013 | 2.2715 .009 | 2.2817 .458
.70 2.3590 |2.3596 .025 | 2.3593 .013 | 2.3591 .004 |2.3702 . 475
.80 2.4378 |2.4385 .029 | 2.4381 .012 | 2.4380 .008 | 2.4500 .500
.90 2.5097 2.5103 .024 | 2.5100 .012 | 2.5098 .004 | 2.5229 .526
.93 2.5300 2.5307 .028 | 2.5304 .016 | 2.5302 .008 | 2.5436 .538
.96 2.5499 2.5506 .027 | 2.5503 .016 | 2.5501 .008 | 2.5639 .549
.98 2.5629 2.5636 .027 [ 2.5633 .016 | 2.5631 .008 | 2.5772 .558

(c) Third bending frequency

0.001 0.73387 |0,73388|0.001 | 0.73387|0 0.73387|0 | —memmem|mmmaan
.01 1.2127 1.2177 .412 | 1.2146 .157 11,2137 L082 | —mmeemm|emee
.02 1.3489 1.3517 .208 | 1.3501 .089 | 1.3495 044 | —memeem|eonma-
.04 1.5681 1.5696 .096 | 1.5687 .038 | 1.5684 019 | —emeee e
.06 1.7267 1.7279 .069 | 1.7272 .029 | 1.7270 0 B
.08 1.8515 1.8526 .059 | 1.8520 .027 |1.8518 016 | mememm|mmmme-
.10 1.9554 1.9565 .056 | 1.9559 .026 |1.9556 010 | —cmemee |-
.20 2.,3202 2.3213 .047 | 2.3206 .017 | 2.3204 009 | —eemem e
.30 2.5656 2.5668 .047 | 2.5661 .019 | 2.5659 N e e
.40 2.7555 2.7568 .047 | 2.7560 .018 |2.7558 011 | mmemmem|mmmmee
.50 2.9122 2.9136 .048 | 2.9128 .021 |2.9125 010 | meeemmmmfemaeee
.60 3.0462 3.0477 .049 | 3.0468 .020 | 3.0465 010 | memmemn|mmmeee
.70 3.1630 3.1647 .054 | 3.1638 .025 | 3.1634 013 | memmme e
.80 3.2643 3.2665 .067 | 3.2654 .034 | 3.2648 015 | meccmem |mmmeea |
.90 3.3411 3.3464 .159 | 3.3441 .090 |3.3424 039 | ~e-mmm |-
.93 3.3525 |3.3606 .242 | 3.3573 .143 | 3.3547 066 | mmmmmm=|mm————
.96 3.3542 3.3661 .355 | 3.3613 .212 | 3.3573 092 | - e
.98 3.3498 3.3641 .427 |1 3.3583 .254 13.3535 110 | m-mmmmm frmmam - |
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TABLE IV. - COMPARISON BETWEEN EXACT SOLUTION AND

RAYLEIGH-RITZ SOLUTION FOR BENDING FREQUENCIES

OF SOLAR ARRAY IN A 1-g FIELD

[Ratio of blanket mass to total boom mass, l\_dm, 3.0; ratio of tip-

piece mass to total boom mass, 1\_4t , 1.0; ratio of array 0-g
critical buckling load to total blanket weight, P er 0/Wm, 1.0.]
b

(a) Fundamental bending frequency

Axial-load | Exact- __ﬁayleigh-ﬁifz solution
ratio, solution T - 1T
P/Pcr o |eauation N=3, |Error,| N=5, |Error,| N=10, |Error,
’ M=3 per- M=5 per- M=10 per-
cent cent cent
0.001 1.3261 1.3445 1.387| 1.3416 1.169 ] 1.3379 (0.890
.050 1.3433 1.3453 .149 | 1.3442 .067 | 1.3436 .022
.10 1.3431 1.3439 .060 | 1.3433 .015] 1.3431 |0
.20 1.3376 1.3380 .030{ 1.3378 L0151 1.3377 .007
.40 1.3196 1.3201 .038] 1.3197 .008 | 1.3196 |0
.60 1.2944 1.2952 .062 | 1.2946 .015}1.2944 |0
.80 1.2599 1.2613 L1111 1.2602 .02411.2599 (0O
1.00 1.2096 1.2124 .231( 1.2103 .058 | 1.2007 .008
1.20 1.1264 1.1327 .559 11,1279 .133]1.1266 .018
1.40 . 94022 .96197| 2.313 .94584 . 598 .94102]| .085
1.517 .35~994J¥ .613:10J 70.4 .47149 3~1>.0 .38301(6.41
(b) Second bending frequency
0.001 1.6858 1.9045 12.97 [ 1.8534 | 9.94 | 1.8002 |6.79
.050 1.9662 2.0073 | 2.09 | 1.9840 .905 | 1.9706 .224
.10 2.0755 2.0926 .824 ) 2.0810 .265]2.0764 | .043
.20 2.2236 2.2281 .202 ] 2.2246 .045 | 2.2237 .004
.40 2.4263 2.4269 .025 ] 2.4264 .004 1 2.4263 |0
.60 2.5776 2.5778 .008 | 2.5776 | O 2.5776 |0
.80 2.7021 2.7023 .007 ] 2.7022 .004 ] 2.7021 |0
1.00 2.8088 2.8093 .018 | 2.8090 .007 | 2.8089 .004
1.20 2.9008 2.9020 .041 ] 2.9012 .014 ] 2.9009 .003
1.40 2.9349 2.9524 .596 | 2,9400 .174 1 2.9357 .027
1.517 2.8131 2.8477 | 1.230 | 2,8225 334 | 2.8146 .053
(c) Third bending frequency
0.001 2.3892 2,7145 |13.6 2.6037 | 8.98 |2.5172 }5.36
.050 2.6878 2.8050 | 4.36 [ 2.7305 | 1.59 |[2.6964 | .320
.10 2.8219 2.8896 | 2.40 {2.8390 .606 | 2.8240 074
.20 3.0104 3.0390 .950 | 3.0145 .136 | 3.0107 .010
.40 3.2729 3.2803 .226 | 3.2733 .012 1 3.2729 |0
.60 3.4606 3.4649 .124 | 3.4612 .017 | 3.4607 .003
.80 3.5027 3.5190 .465 | 3.5066 .111 1 3.5033 .017
1.00 3.3704 3.3910 .611 | 3.3756 .154 | 3.3712 .024
1.20 3.1983 3.2221 .744 | 3.2045 .194 | 3.1992 | .028
1.40 3.0358 3.0492 .441 | 3.0390 .105 | 3.0362 | .013
1.517 3.0540 3.0656 .052 | 3.0545 .016 { 3.0541 JOS ]

|
f
|
|
i
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Figure 1. -
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(a) Blanket element showing forces and displacements.
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(b) Beam element showing forces, moments, and displacements.

Figure 2. - Forces acting on blanket and beam.
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(a) Sofar array in a symmetric (bending) mode of vibration.

(a) Forces and displacement of tip piece in x-z plane.
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{b) Forces and displacements of tip piece in y-z plane. (For clarity . . . . o
the uniform load (PIb) OW/X (L bl is not shown, ) {b) Solar array in an antisymmetric (torsional) mode of vibration.

Figure 3. - Forces and displacements of tip piece. Figure 4. - Bending and torsional modes of vibration.
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Figure 5._- Fundamental bending frequency as function of axial load for solar array in 0-g field, for various ratios of total blanket mass to total boom

mass M,
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Third bending frequency parameter, B3
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