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The linearized equations describing the propagation of sound 

in variable area ducts containing flow are shown to be singular 

when the duct mean flow is sonic. The singularity is removed when 

previously ignored nonlinear terms are retained. 

The results of a numerical study, for the case of plane waves 
propagating in a one-dimensional converging-diverging duct, show 

that the sound field is adequately described by the linearized 

equationsonly when the axial mean flow Mach number at the duct 

throat Mth<0.6. For Mth>P.6, the numerical results showed that 

acoustic energy flux was not conserved. An attempt was made to 
extend t:.e study to include the nonlinear behavior of the sound 

field. Meaningful results were not obtained due, primarily, to 

numerical difficulties. 



DEFINITION OF SYMBOLS 

Symbol 

A(x) 

c(x) 

fsg 

Definition 

duct cross-sectional area at location x 

speed of sound at location x 

non-dimensionalized acoustic density and velocity 
functions respectively defined by Eqn. (40) 

imaginary number fl 
sound source wave number (=os/co) 

duct converging-diverging length 

duct mean Mach number (=Vx/c) 

acoustic Mach number (=ux1/c) 

mean and acoustic pressure respectively 

duct vector velocity (=V+ut) - - 

sound energy reflection coefficient defined by 
Eq. (69) 

cylindrical radial coordinate 

sound energy transmission coefficient defined 
by Eq. (69) 

time 

acoustic velocity 

duct mean velocity 

duct axial coordinate 

see Eq. (24); also E q .  (62) 

see Eq. (25), also (62) 

defined by Eq. (62) 

a cylindrical azimuthal coordinate 



Symbol D e f i n i t i o n  

'I' 
(0 

S u b s c r i p t s  

r,e,x 

S u p e r s c r i p t s  

(-1 

mean and a c o u s t i c  d e n s i t y  

sound r a d i a n  f requency  

d e f i n e d  by Eq. (62)  

phase a n g l e  

column m a t r i x  d e f i n e d  by Eqn. (21) 

deno te s  r a d i a l ,  a z imu tha l ,  o r  a x i a l  c y l i n d r i c a l  
c o o r d i n a t e s  

d e n o t e s  d u c t  s e c t i o n  a t  x  = 0 

deno te s  nondimens iona l ized  d u c t  s e c t i o n  a t  x  = 2 

d e n o t e s  sound r e f l e c t i o n  and t r a n s m i s s i o n  
r e s p e c t i v e l y  
d e n o t e s  a c o u s t i c  p r e s s u r e  and v e l o c i t y  r e s p e c t i v e l y  
deno te s  sound sou rce  

d e n o t e s  d u c t  t h r o a t  

deno te s  t o t a l  o r  s t a g n a t i o n  v a l u e s  

deno te s  v e c t o r  q u a n t i t y  

deno te s  r e a l  and imaginary p a r t s  r e s p e c t i v e l y  

deno te s  m a t r i x  q u a n t i t y  

deno te s  mean v a l u e  



1.0 INTRODUCTION 

Jet engine inlet whine is a particularly troublesome and 
persistent source of community noise pollution. A promising new 
technique to reduce or eliminate this noise is the use of variable 
area inlets to choke the flow. The idea here is that the choked 
flow acts as an effective barrier to sound transmission through the 
inlet. Recent experimental sonic inlet noise suppression studies'r2 
demonstrate the feasibility of this concept. The success of these 
studies have prompted a number of theoretical studies dealing with 
sound propagation through variable area ducts containing flow3*. 
All of these studies, however, share a common deficiency - they 
assume that the usual linearized convected wave equations adequately 
describe the bahavior of sound waves in an accelerating flow. 

The principal objective of this study is to show that the 
linearized sound propagation equations are not valid for sonic or 
near sonic mean flows. The linearized sound propagation equations 
are singular when the mean r'low is sonic. The singularity 
is removed only when nonlinear term previously ignored are 
retained. A second objective is to understsnd the details of how 
the sonic inlet reduces the transmission of sound through the inlet. 
As we understand it, there are two effects that act to reduce the 
sound transmission. One is related to the fluid mean velocity at 
the throat (called convection) and the other to flow inhomogeneities 
(i.e., mean velocity and density gradients). 

The reduction of inlet sound transmission by convection is 
explained as follows. The rate at which sound energy propagates 
through a duct containing inhomogeneous media is called the group 
velocity V . For simplicity consider a highly idealized sonic inlet 
consistinggof a constant area duct containing a uniform flow. For 
this case, the group velocity simplifies to 

v = c-v 
g 

where c is the local speed of sound and V is the duct mean flow. 
It is clear that the r a t e  at which acoustic energy is transmitted 
out of the inlet decreases  with increasing speed. When V=c, 
there will be no transmission of sound out the inlet; all the inter- 
nally generated sound will be reflected back into the sound generat- 
ing interior region of the duct. A physical explanation of the 
breakdown of the linearized sound propagation equation when the duct 
mean flow is sonic can be made in terms of group velocity. 
The reductio,~ of the rate at which the sound energy is transmitted 
out the duct inlet can be thought of as a piling-up of the sound 
at the throat. When the duct flow is choked, all of the sound piles- 
up; thus the sound pressure and density increase at the throat 
violating the original linearized assumptions of small disturbances. 



It follows that under these circumstanccs nonlinear terms, previously 
ignored, must be retained. 

When the flow contains inhomogeneities in the form of mean 
velocity and density gradients, the situation becomes very complicatcd. 
It is no longer easy to describe analytically the group velocity. 
Thc distinction is made here between gradients that cause refraction 
and gradients that cause reflection (or scattering). Gradients 
perpendicular to the wave vector refract or bend the wave and grad- 
ients that are in the same direction as the wave vector reflect or 
scatter the wave. In this study, only scattering by mean axial grad- 
ients will be considered. 

The report is organized as follows. The behavior of sound 
waves propagating in a converging-diverging choked duct are described 
in Section 2. The Mach number range within ~ h i c h  the linearized sound 
propagation equations are valid is explored numerically in Section 3. 
The report closes with a summary of the results of the study and 
describes aspects of the behavior of sound fields in accelerating 
duct flows requiring further study. 

2.0 GOLERNING SOUND PROPAGATION EQUATIONS 

The equations describing the propagation of sound in a variable 
area duct containing a mean flow will be derived in its most general 
form. The objective here is to show that the linearized sound propa- 
gation equations are singular when the duct mean flow is sonic. The 
(variable area) duct mean flow V is assumed to contain cylindrical 
compcnents (V ,V V ) where the-subscripts (r ,8 ,x)  represent the 
radial, aziaufhaf: gnd axial directions respectively as defined in 
Figure 1. In general, V is a function of all three components. The 
flow is assumed to be izviscid and nonheat-conducting so that the fluid 
pressure and density are adiabatically related. Further, the mean 
flow is assumed to be independent of the sound field. In the follow- 
ing derivation the quantities (p,p ,c) represent mean fluid pressure, 
density and sound speed and (p',pl,ul) - represent acoustic pressure, 
density, and velocity respectively. Vector quantities will be denoted 
by a single horizontal bar located below the symbol ( ) and matrix 
quantities by a double horizontal bar located above tFe symbol (=) .  

The equations describing the conservation of mass and momentum 
are respectively 

and, in component form, 



where 

i s  the  t o t a l  f low v e l o c i t y .  In Eqns. (3)-(S), the var ia t ions  of 
pressure was replaced by the ad iabat i c  condit ion that  

where c i s  the f l u i d  l o c a l  sound speed. Now assume that  the flow 
f i e l d  can be wr i t t en  as  the  sum of the  mean and f luc tuat ing  q u a n t i t i e s  
s o  that  

I: i s  further assumed that  the time-averages 
- - - 

I I = u =0 



T 
where (-1 = 11 ( ) d t  and T i s  t h e  sound wave p e r i o d .  S u b s t i t u t i n g  
Eqns. (7-9) Tand r e t a i n i n g  a l l  t e r n s  y i e l d s  

and 

where t h e  operator  V e q u a l s  

The n o t a t i o n  used t o  e x p r e s s  Eqns.  ( 1 1 - 1 4 )  i s  c o n s i d e r a b l y  s i m p l i f i e d  
u s i n g  matrix  n o t a t i o n .  L e t t i n g  





and 

S u b s t i t u t i n g  t h e  m a t r i c e s  d e f i n e d  by Eqns. (16-19)  i n t o  Eqns.  ( 1 1 - 1 4 ) ,  
t h e  g o v e r n i n g  e q u a t i o n s  become 

- 
v h e r e  f i s  t h e  i d e n t i t y  m a t r i x  and 5 i s  t h e  column m a t r i x  r e n r e s e n t  in. 
t h e  a c o u s t i c  f i e l d  d e f i n e d  below a s  

E q u a t i a n  ( 2 0 )  may be r e w r i t t c n  a s  

L 
where t h e  i n v e r s e  m a t r i x  ( ~ 4 ) "  can  be  shown t o  eqxa l  



Here thc quantities a and B are defined as 

I a =V, +u, 

We are now in a position to demonstrate a principal ccnclusion 
of this report - namely, that the well known linearized wave propaga- 
tion equations that are often used to model the behavior of sound 
waves in choked duct& become singular when the duct mean flow is 
sonic. The matrix (M,).' in Eqn. (24) contains the terms [a2 (a2-c2B)r ' .  
Substituting from Eqns. ( 2 4 )  G (25) for the quantities a and B yields 
the term 

t %-I 

where Mx = v x / F  2nd mt = u '!C. NOI recall that in the derivation 
of E q .  ( 2 3 ) .  all ternk w e d  retained including the nonlinear terms. 
If the nonlinear terms were ignored, there the above expression 
simp1 i f ies to 

C , -1 

which is clearly singular at Mx = 1. It is also clear that the 



nonlinear terms must be retained at \ = 1 to remove the singularity. 
This conclusion is quite general because the flow fielc within the 
duct is fully three-dimensional and unsteady. 

3.0 NUMERICAL EXAMPLE 

A numerical study has been undertaken to map out, for a particu- 
lar duct geometry, the Mach number range for which the l i n e a ~ i a c 9  
sound propagation equations are valid. To simplify the analysis, 
only plane waves propagating in a one-dimensional duct are considered. 
The duct geometry, showr~ in Figure 2, consists of two infinitely long 
ducts of equal area connected by a contraction-expansion (constriction) 
region. The use of infinitely long ducts avoids the complexities 
associated with end reflections. Mean flow is introduced into the 
duct as shown and is accelerated to sonic or near sonic spseds in the 
throat. Sound propagating in the direction of the mean flok 
Fig. 2a) is called the downstream case and sound propagating against 
the mean flow (see Fig. 2b) is the upstream case. 

The dcct mean flow properties are assumed to be steady, one- 
dintensional and isentropic. They are described by known functions 
of the duct axial coordinate x, the origin of which is chosen as 
shown in Fig. 2. The constriction region is specified to be symmetri- 
cal about the throat, the area change occurring over the distance 2L. 
The duct cross-sectional area is described by the expression 

where v = A(L)/A(O) is the ratio of the due t constriction throat area 
(at x = L) to inlet area (at x = 0). 

Derivation of Governing Equations 

The governing linearized sound propagation equations describing 
the behavior of the sound field in t h e  duct are derived below starting 
from the basic mass and momentum conservation equations. Although 
they could be derived starting from the more general form given by 
Eqn. (22), the highly simplifying assumptions of a one-dimensional 
duct and plane sound waves motivates the rederivation of the governing 
equations. 



The derivation starts from the equations describing the con- 
servation of mass and momentum in a one-dimensional variable area 
duct 

and 

where p, p and Q rre the one-dimensional counterparts of the three- 
dimensional flow field described in Section 2. Assuming that the 
flow field can be described by a steady state and a fluctuating part, 
the equations describing the conservation of mass and momentum simplify 
to 

and 

Implicit in this derivation is that  the steady state terms satisfy 
independently of the acoustic terms the time-average conservation 
of mass and momentum. Equations (29) and (SO)  are further sim~lified 
by incorporating the following 



and 

where the subscript T denotes fluid stagnation or total values. Equa- 
tion (31) represents the adiabatic relationship be~ween the sound 
pressure and density while Equations (32), ( 3 5 )  and (34) follow from 
one-dimensional steady state, isentropic flow. Substituting Eqns. 
(31-34) into Eqns. (29) and (30) yields 

and 

Equations (35) and (36) are non-dimensionalized by scaling 
p ' ,  u', x and t as follows. Let 

where pS and us represent the magnitude of the known acoustic source 
density and velocity introduced into the duct far upstream of the 
constriction, KS is the acoustic wave number (Ks = ws/Fo) where us is 
the sound radian frequency and is the local speed of sound at x = 0. 
Substituting Eqn. (37) into Eqns. (35) and (36) yields 



ax* 

and 

2-Y 2-Y 
(r-1) 1  MI *+(2j(m)~* +[c+,-,, l - P ax* =o 

To solve Eqns. (38) and ( 3 9 ) ,  the following form of the solutions are 
assumed, 

Substituting Eqn. (40) into Eqns. (38) and (39) yields 

G dx* (41) 
I 

and 



The non-dimensional functions f and g (the ( ) *  notation is deleted 
for convenient-e) are complex and are written 

f (x) = f ,(x) + i fI(x) 

and 

Substituting Eqns. (43) and (44) into Eqns. (41) and (42) yields 
for the derivatives 

dM where A='./=, c ~ I + ( ~ ) M ~ ( x ) ,  CC+= I + ( * ) M ~ ( O ) O , ~ ~ ~ & = +  E. 
Here again, Eqn. (45) is singular at M = 1. 

3.2 Boundary Conditions 

The boundary conditions are particular1 simple because the duct 
cross-section and mean flow are uniform for 1 x 1  > L. The boundary 
conditions are different for the cases of upstream-and downstream sound 
propagation. 

3.2.1 Downstream Propagation 

At x = 0 (see Fig. Za), both incident and reflected waves exist. 
The incident wave is assumed known and generated far upstream of the 
constriction. The reflected wave, generated by the mean flow inhomo- 
geneities in the duct constriction is unknown. At x = 2, only 



transmitted waves propagating to the right (i.e., right running waves) 
are assumed. 

For values of x 5 0 ,  both the duct cross-sectional area and the 
mean flow velocity are constant. Thus the sound pi-opagstion equations 
reduce to the well-known (dimensional) solutions 

and 

Here P; and US are the assumed known source strengths of the incident 
acoustic density p '  and velocity u' respectively, p; and u+ are the 
unknown strengths of the reflected sound wave, and $, is the unknown 
phase of the reflected wave relative to the incident wave. 

Equations (46) and (47) may be suitably non-dimensionalized 
using Eqn. (37) yielding for the (non-dimensional) functions f and g, 

i x -- i x 
I + M  + ,,+it f (x) = e r. e c 4 8 

and 

i x  - i x +i Po 
I +M - f. e I-M 

where 

Equation (50) follows by substituting the solution given by Eqns. (48) 
and (49) into Eqn. (29) (the linearized continuity Eqn.) . Thus the 
boundary conditions at x = 0 are 



and 

For values of x 2 ZL, (see Fig. 2b), only transmitted (right 
running waves) are permitted. They are described by the solution 

and 

where p i ,  U; are constants (it can be shown that p i =  u'f by 
substituting Eqn. (53) and (54) into Eqn. (29)) and is a unknown 
phase shift due to nonhomogeneitiesgenerated by the duct constriction. 
Non-dimensionalizing Eqns. (53) and (54) using Eqn. (37) yields the 
boundary condition at x = 2L (or x*  = 2K,L) 

where 

3.2.2 Upstream Propagation 

The boundary conditions for upstream sound propagation are very 
similar to the downstream case. Here, the sound approaches the con- 
striction as shown in Fig. 2b. At x = 2L, it is straight-forward to 
show that the incident and reflected wave may be written 



at s = 0, the transmitted wave is 

Thus therc are four equations g , g ~ ,  f R ,  f and four unknowns 
( : . 3  ,;: , : : J ~  ;:I- . , the solution o! uhlch comp ctely describes the 
prob 1 em. 

i 

3.3 -- Numerical Integration Scheme 

The solution to the four simultaneous differential equations 
described by Eqn. ( 4 5 )  requires that four (4) constants (of integra- 
t ion) be spcci f icd. The  four unknowns (roJa * %, qe ) w i l l  be 
solved for directly by taking full advantage of the linearity of 
the solutian. The solution starts by observing that the four unknown 
functions (gR, g I ,  fR, f I )  may be written 

[Isins lincnrity, the starting v a l u c s  defined by the colunin matrix 
3t X = 0, 

Consider first the downstream case. Combining Eqn. (60) with 
t h e  1~nknok.n initial conditions dcscrihcd by T'qns. ( 5 1 )  , ( 5 2 )  and ( 5 5 1 ,  
the solution to Eqn. (45) may hc written 



a -pa, + (~+a)a, + pa, = -8 

(I-+, -pa, + ( ~ + d ) a ,  + pa, = r 

!~-&)aa - pa42 + (l*a)a4, + pa, - - -6 

where the quantities a, 8,  y and 6 are defined as 

The solution to the four unknowns a, 8 ,  y, 6 follows immediately by 
rewriting Eqn. (61) as 

This approach is very efficient. It avoids the shooting approach 
used by Davis and Johnson3and the particularly restrictive approach 
used by Eisenberg and Kao". It is also more accurate that the char- 
acteristic method used by King and Karamchetis. The work of Eisenberg 
and Kao consists of transforming the coupled acoustic equations 
governing the propagation of sound in a variable area, one dimensional 
duct into two separate equations containing variable coefficients. By 
an appropriate choice of duct shape, the variable coefficients are 
made constant permitting relatively easy solutions of the separate 
equations for particular duct shapes. Physical variables (such as 
pressure and velocity perturbations) are found by tracing back all 
functional transformations. A serious draw back to their approach is 
the severe restriction in duct shape. King and Karamcheti also adopted 
the quasi-one-dimensional assumptions in their solution of the behavior 
of sound in flow. They used the method of characteristics to solve for 
the sound field. Because of the variation of mean flow quantities in 



the duct, the characteristics are curved. An iterative scheme of 
second order accuracy in mesh spacing is used to account for curva- 
ture when determining the intersection of characteristics of differ- 
ent families from adjacent mesh points. This scheme encounters 
difficulty in maintaining reasonablq accuracy. 

To verify that the solutions given by Eqn. (63) are correct, the 
conservatioc of acoustic energy flux will be i n d e p e n d e n t l y  evaluated 
at x = 0 and 2(KsLl. Using the form for the energy flux W given by 
Cantrell and Hart. 

L 8 J 
where C ! ,  anti 0, represent the phase of the acoustic pressure an3 
velocity respectively. 

+ Evaluati2g Eqn. (64) at x = 0 and x = 2(KsL) and denoting by 
Wi ,wrl and Wt the incident energy flux (at x = 0) the reflected 
energy flux (at x = 0) and the transmitted energy flux (at x = 2(bL) 
respectively (for the downstream case), then these quantities may 
be witten as 

where Mo = M(x=O) = M(x=2KSL) by symmetry. 

Conservation of acoustic energy requires that 

Upon substitution of the various quantities into Eqn. (68), the 
desired form of the solution is 



Ref let-t J Energy Transmm&ed Energy 
GeGiht (R) b e e i e i e  ~t (1) 

where from Eqn. ( 6 2 ) ,  1 r e  = a + p a  and \T , I ' =  *'+a2 
The solution of the upstream case is quite similar to that of 

the downstream case. By combining Eqn. ( 6 0 )  with the boundary condi- 
tions for the upstream case defined by Eqns. 157;, (58) and (59), 
the solution is 

- 

- COS 

- sin 

cos 

sin 

k 

Again using the definition of Cantrell and Hart, the conser- 
vation of acoustic energy flux may be written as 

- - 
T R 

3.4 Results 

Numerical results for selected duct configurations having throat 
to inlet area ratios (v) equal to 0.305, 0.420, 0.558 and 0.746 and 
for the case of KSL = 1 are summarized in Figures 3 - 6 .  The mean flow 



v e l o c i t y  d i s t r i b u t i o n  th rough  t h e  ~ U L L  is s p e c i f i e d  by Eqn. ( 2 6 ) .  
Figu re  3  s u ~ ~ u n a r i z e s  t h e  ups t ream sound p r o p a g a t i o n  s o l u t i o n s  and 
Fig.  4 ,  t h e  downstream s o l u t i o n s .  The s o l u t i o n s  a r e  p r e s e n t e d  i n  
terms of  t h e  sound energy  r e f l e c t i a n  c o e f f i c i e n t  R and t h e  t o t a l  non- 
d imens iona l i zed  a c o u s t i c  energy  f l u x  R + T. I n  F igs .  3  and 4 ,  energy  
i s  conse rved  ( i . e . ,  T  + R = 1 )  f o r  t h r o a t  Mach numbers less t h a n  about  
M t h  < 0 . 6 ;  t h i s  i s  t r u e  f o r  a l l  duc t  a r e a  r a t i o s  c o n s i d e r e d .  However, 
f o r  Mth > 0 . 6 ,  it i s  c l e a r  t h a t  a c o u s t i c  energy  f l u x  T + R i s  n o t  
conserved ,  t h e  d e p a r t u r e  o f  T + R from u n i t y  i n c r e a s i n g  a s  t h e  t h r o a t  
Mach number approaches  u n i t y .  

The d e p a r t u r e  o f  T + R from u n i t y  f o r  M t h  > 0 .6  is due t o  t h e  
s i n g u l a r  behav io r  o f  t h e  l i n e a r i z e d  sound p ropaga t ion  e q u a t i o n s .  For 
v a l u e s  o f  blth n e a r  u n i t y ,  t h e  l i n e a r i z l - '  sound p ropaga t ion  e q u a t i o n s  
a r e  i nadequa t e  t o  account  f o r  t h e  conse .  a t i o n  c f  a c o u s t i c  mass and 
momentum. 

F i g u r e s  3  and 4  a l s o  show t h a t  t h e  sound energy  r e f l e c t i o n  
c o e f f i c i e n t  (and hence t h c  t r a n s m i s s i o n  c o e f f i c i e n t )  i s  v e r y  s e n s i t i v e  
t o  t h e  duc t  t h r o a t  t o  i n l e t  a r e a  r a t i o  v .  For a  f i x e d  v a l u e  o f  Mt  , 
t h e  i n c r e a s e  o f  R ( d e c r e a s e  o f  T)  w i t h  t h e  d e c r e a s e  o f  v i s  r e l a t e b  
t o  sound r e f l e c t i o n  o r  s c a t t e r i n g  g e n e r a t e d  by t h e  a x i a l  v e l o c i t y  
g r a d i e n t s  o f  t h e  d u c t  mean f low.  T h i s  i s  e a s i l y  shown by r e s t r i c t i n g  
t h e  duc t  mean Mach number a t  t h e  t h r o a t  t o  v a l u e s  l e s s  t h a n  0 . 6  s o  
t h a t  t h e  e f f e c t s  o f  c o m p r e s s i b i l i t y  can be  i gno red .  I t  i s  s t r a i g h t  
forward t o  show t h a t  t h e  d u c t  mean f low v e l o c i t y  g r a d i e n t  d e f i n e d  
below a s  

depends o n l -  upon t h e  parameter  v f o r  a  f i x e d  duc t  geometry and t h r o a t  
speed.  The l a r g e  i n c r e a s e  i n  R observed  f o r  bo th  t h e  upstream ( F i g .  3) 
and downstream (F ig .  4) c a s e s  o f  sound p r o p a g a t i o n  s u g g e s t s  t h a t  t h e  
r e d u c t i o n  i n  sound t r a n s m i s s i o n  a r i s e s  p r i m a r i l y  because  o f  s c a t t e r i n g  
e f f e c t s  g e n e r a t e d  by t h e  d u c t  mean f low v e l o c i t y  g r a d i e n t s .  Th i s  i s  
more c l e a r l y  shown i n  F ig .  5 which combines t h e  r e f l e c t i o n  c c e f f i c i e n t  
R from F i g s .  3 and 4.  F igu re  5 shows t h a t  f o r  v a l u e s  of M t h  < 0 . 0 ,  
t h e r e  a r e  l a r g e  and s i g n i f i c a n t  d i f f e r e n c e s  f o r  t h e  v a r i o u s  d u c t  t h r o a t -  
t o - i n l e t  a r e a  r a t i o s  shown. The e f f e c t ,  however, on R o f  upstream o r  
downstream sound p ropaga t ion  i s  sma l l .  These r e s u l t s  112-7- impor tan t  
a p p l i c a t i o n  t o  ou r  unde r s t and ing  o f  t h e  manner i n  which .c: s o n i c  
i n l e t  a c t s  a s  an e f f e c t i v e  b a r r i e r  t o  i n t e r n a l l y  g e n e ~ a t e d  sound. The 
c o n t r i b u t i o n  o f  t h e  mean flow v e l o c i t y  g r a d i e n t s  w i t h t n  the  duc t  may 
c o n t r i b u t e  more t o  r e d u c t i o n  of  sound t r a n s m i s s i o n  t i ~ z n  was p r e v i o u s l y  
t hough t .  

F igu re  6  i s  a  r a t h e r  d r ama t i c  example o f  t h e  e f f e c t  o f  t h e  d u c t  
mean f low on t h e  sound f i e l d .  The d i s t r i b u t i o n  a long  t h e  duc t  o f  t h e  
g r a d i e n t  o f  t h ~  imaginary p a r t  o f  t h e  d e n s i t y  f I '  i s  p l o t t e d  f o r  t h r e e  
d i f f e r e n t  t h r o a t  Mach numbers. The s i n g u l a r  n a t u r e  o f  t h e  sound f i e l d  
i s  e v i d e n t .  



4.0 NONLINEAR NUMERICAL EXAMPLE 

The numerical  s t u d y  under taken  i n  S e c t i o n  3 showed t h a t  t h e  
s o l u t i o n  o f  t h e  l i n e a r i z e d  sound p ropaga t ion  e q u a t i o n s  f a i l e d  t o  
ccnse rve  a c o u s t i c  energy f l u x  ( T  + R) f o r  t h r o a t  Mach numbers 
M t t  > 0 . 6 .  The l i n e a r i z e d  s o l u t i o n  i s  extended below t o  i n c l u d e  
t h e  p r e v i o u s l y  ignored  n o n l i n e a r  te rms .  The purpose h e r e  i s  t o  
de te rmine  numer i ca l ly ,  f o r  t h e  t e s t  c a s e  t l e a t e d  i n  S e c t i o n  3 ,  i f  
t h e  accuracy  of t h e  sol?et ion can  he  extended up t o  o r  nea r  = 1 
by i n c l u d i n g  n o n l i n e a r  te rms .  

4 . 1  D e r i v a t i o n  o f  Governing Equa2ions 

The d e r i v a t i o n  assumes t h a t  t h e  mean flow i s  independent  o f  
t h e  sound f i e l d  so  t h a t  

and 

With t h i s  unde r s t and ing ,  t h e  nondimensional sound p ropaga t ion  equa-  
t i o n s  a r e  

and 



where € =%(PS/p,) represents approximately the ratio of the ampli- 
tude of the incident source sound pressure to the mean flow static 
pressure at x = 0 .  Equations (72) and (73) have been written with 
the nonlinear terms on the RHS. To solve these equations, we seek 
solutions of the form 

and 

The idea behind the assumed form of the solutions is that 
given a sosnd wave with radian frequency w, nonlinear effects will 
generated higher and lower harmonics of frequencies ranging from 
-Nu, - (  N-l)~, ... -2w, - w ,  o, w, 2w, ... (N-l)w, Nw for fixed N. Since 
we are interested only in determining the importance of retaining 
the nonlinear terms, we select N = 2. Thus we will have to solve 
five simultaneous differential eqns. with variable coefficients. 

To demonstrate the details of the proposed approach, we will 
consider the first terms on the LHS and RHS of Eqn. (72). 

Substituting Eqns. (74) and (75) yields 

Multiplying both sides by e - imt and integrating over a period T yields 
- 

All terms on the LHS vanish except the terr~ n - m and similarily all 
combinations of terms on the RHS vanish xcep- those summing to m 
(i.e., j + k = m). Thus Eqn. (76) may . ~ e  wrlEten 



To compare directly with the linear case, we select m = 1 so that the 
contribution of the nonlinear term to the fundamental solution is 

Thus to correct the linear solution for nonlinear effects requires 
the solution to the functions fn and g, for all n up to - +2. 

The functions fo and go require special comment. They correspond 
to time independent or steady state solutions (the so-called acousti- 
cal steaming solutions). We believe that these solutions require 
at least two-dimensionality to exist because the streamlines are 
closed (i.e., there is no mass addition). Thus they vanish in the 
present one-dimensional application. 

Incorporating the nonlinear terms, the governing differential 
equation becomes 

where the matrix [ML] is the same as the linear matrix defined by 
Eqn. ( 4 5 ) ,  6(n-1) is the kroncker delta, and the quantities S and T 
are nonlinear source terms defined as 



Subscripts m and k denote respectively the m-th and k-th mode of the 
sound wave. The subscript n ranges from -2 to +2. It is important 
to realize that the solution to Eqn. (79) requires that the functions 
fn and gn be known for al.1 n (in the present application n = +2). 

4.2 Soundary Conditions 

The boundary conditions specified in Section 3.2 for the linear- 
ized sound propagation equations can be extended, in a straight-forward 
manner, to apply to the nonlinear equation described by Eqn. (79). 
The boundary conditions are different for the cases of downstream and 
upstream sound propagation. 

4.2.1 Downstream Propagation 

At x=O, both incident and reflected waves exist. The incident 
wave is assumed known, of frequency corresponding to n = 1, and 
generated far upstream of the constricted. Reflected waves having 
[complex) frequencies corresponding to n = -2, -1, 2 are generated by 
the constriction. Also, transmitted daves are generated at x = 2KsL 
corresponding to values of n = -2, -1, 1, 2. The corresponding func- 
tions fn(0) and gn(0) are 

Incident Wave Reflected Wave 

and 

Incident Wave Reflected Wave 

where 6(n-1) is used to specify the non-dimensional source sound in- 
troduced far upstream of the duct constricted. The corresponding 
functions fn (2 K,L) and g, (2 K,L) are 



where 

The equation describing the conservation of energy flux for 
the downstream propagation case is, 

M 

(86) 

n=-N 7 - 
Reflected Transmitted 

4 . 2 . 2  Upstream Propagation 

Analogous to the downstream sound propagation, the upstream 
boundary conditions are 

2; KsL it 

f,(r~,~) = 8(n-l)e + r z,n e ' c s n  

T---- (87) 
V 

Incident Wave Reflected Wave 

and 

Incident Wave Reflected Wave 

where 

The equation describing the conservation of energy flux, for the 
upstream sound propagation case, is 

n= -N Reflected Transmitted 

4.3 Integration Scheme 

The value of N is restricted to N = 2. Consider first the 
downstream case. There are a total of 1 0  unknowns 



corresponding to values of N of (-2, -1, 1, 2). From Eqn. (79) ,  
there are 16 equations to be solved. To solve these equations, the 
nonlinear source terms are assumed known. Thus the governing 
equations are linear and the general solution is a linear combination 
of the homogeneous and particular solutions for each value of n. The 
solution proceeds much like that described in Section 3 except that the 
contribution to the particular solution must be included. For the 
downstream case, the nth solution may be written 

where 

and 

The solution to the upstream sound propagation case is similar 
t o  that derived above and is written below as 

3 ,  3 ,  , d ' represent the particular solutions of g and f. 
The solution to Eqn. (91) for values of n = - 2 ,  -1, 1 ,  2  yields the 
values of the 16 unknowns. The solution may be written as 

r i' n 
a -  (+a;) -I 0 [ s b 9 ( a , 3 a 3 + 3 R p  

- 
(+a,.) (,,?-a3 0 I 

- a )  (a:- a:) -I 0 

(aa-d=l) ( d - a 2 )  o I 
L i 

C t 

I 

Kn 

Pn 

Yn 
an 

- - 

= - 



In order for this scheme to be successful, the various source 
terms for Sn and Tn must be known for each value of n. The following 
approach is used to solve for Sn and Tn: 

(1) Initially, the homogeneous solution n = 1 is solved. From Eqns. 
(80) and (81), the source terms for n = 2 is seen to depend only upon 
the n = 1 solutions. This follows because fo and go are identically 
zero leaving only the terms m = k = 1 summing to m = k = 2). Thus 
the n = 1 homogeneous solution is used to estimate the f z  and gz 
solutions. 

(2) With the homogeneous n = 1 and the nonhomogeneous solutions known, 
the n = -2 and n = -1 solutions remain to be estimated. The nonlinear 
n = -2 solution is estimated directly from the nonlinear n = 2 solution 
by assuming that Re(fn) = Re(f-,) and Im(fn) = Im(f-,) with similar 
expressions for gn. This assumption follows from the physical con- 
straint that the solutions for fn and gn must be real. Thus knowing 
the solution for n = +2, the solution for n = -2 is also known. 

(3) The solution for n = -1 can be estimated from the n = -2 and 
n = 1 solutions. This follows from Eqn. (79) where now m + k = -1; 
the only combination permitted is m = -2 and j = 1. 

(4) With the solutions for the cases n = -1, 2 and -2 known, the 
correction to the linear :i.e., homogeneous) n = 1 solution is obtained 
from Eqn. (79) where here the various combinations summing to m + j = 1 
are m = 2, j = -1, and m = -1, j = 2. 

(5) .Steps (1) through (4) above should be repeated until satisfactory 
convergence is obtained. 

4.4 Results 

The results of this approach are summarized in Figures 7 and 8 
for the cases ksL = 1 and v = 0.746. Figure 7 represents the down- 
stream sound propagation solution and Figure 8, the upstream solution. 



The results are discouraging in the sense that none of the solutions 
adequately conserved acoustic energy flux. 

Figures 7 and 8 represents the results of only a single integra- 
tion pass. No iterations were attempted because of contract cost 
limitations. Thus convergence was not explored, the accuracy of the 
proposed solution has not been adequately pursued. For this reason, 
there will be no further interpretation of the nonlinear solution. 
This does not mean that the approach is invalid - -  it only means that 
more than one iteration is required before satisfactory convergence 
is achieved. 

5.0 CONCLUDING REMARKS 

The Z i r e a r i z e d  equations describing the propagation of sound 
in variable area ducts have been shown to be singular when the duct 
mean axial flow component is sonic. The singularity is removed when 
previously ignored nonlinear terms are retained. This conclusion is 
quite general because the flow field within the duct is fully three- 
dimensional (both mean and fluctuating parts) and tinsteady. The only 
assumptions made are that the fluid is inviscid and non-heat conduct- 
ing. 

A numerical study was conducted to map out, for the case of a 
plane wave propagating in a one-dimensional converging-diverging duct, 
the axial mean flow Mach number range at the throat Mth for which the 
l i n e a r i z e d  sound propagation equations are valid. The results of the 
study showed, in terms of the conservation of acoustic energy flux, 
that the linearized sound propagation equations are valid only when 
the mean flow Mach number Mth < 0.6 at the duct throat. For values of 
Mth > 0.6, the acoustic energy flux is not conserved. Since consider- 
able care has been taken to minimize numerical errors by varying in- 
tegration step size, integration algorithm, etc., it is concluded 
(at least for this example) that for blth > 0 . 6 ,  the linearized sound 
propagation equations do not adequately model the conservation of 
acoustic mass and momentum within the duct. 

The numerical study also suggested for Mth < 0.6, that sound 
transmission within a converging-diverging duct is reduced primarily 
by scattering due to the duct mean velocity gradients. This does not 
preclude the possibility that other velocity gradients, say in the 
radial direction, may also significantly reduce sound transmission. 
Recall that this study considers only plane waves propagating in a 
one- dimens ional mean flow. 

These conclusions have an important bearing on our present under- 
standing of how the sonic inlet acts as an effective noise barrier to 
internally generated sound. The large observed decreases of the sound 
transmission in a sonic inlet may arise in large meccure because of 
scattering due to mean flow gradients within the inlet. Previously, 
it was believed that most of the sound transmission reduction was due 
to the mean sonic flow at the throat opposing, thereby preventing, 
the propagation of sound through the throat. 



An a t tempt  was made t o  s tudy t h e  non l inea r  behavior  of  sound 
waves propagat ing  i n  v a r i a b l e  a r e a  d u c t s  c o n t a i n i n g  son ic  o r  near  
s o n i c  flow. Meaningful r e s u l t s  were n o t  obta ined.  This  does not 
n e c e s s a r i l y  mean t h a t  our  approach i s  i n v a l i d ,  but  r a t h e r  t h a t  more 
e f f o r t  is r e q u i r e d  t o  a s s e s s  i t s  v a l i d i t y .  I t  would be o f  immense 
va lue  t o  cont inue  t h e  non l inea r  s o l u t i o n  desc r ibed  he re in .  This  
would provide a  p re l iminary  understanding of  t h e  a c o u s t i c  behavior  
o f  t h e  s o n i c  i n l e t .  



REFERENCES 

1. F. Klujber, "Development of Sonic Inlets for Turbofan Engines", 
Journ. of Aircraft, Vol. 10, no. 10, October 1973, pp. 579-586. 

2. D. Chestnut, "Noise Reduction by Means of Inlet-Guide-Vane 
Choking in an Axial-Flow Compressor", NASA TN D-4682, July, 1968. 

3 .  Davis,S,S,snd Johns~n,M,L, "Propagation of Plane Waves in a 
Variable Area Duct Carr ing a Compressible Subsonic Flow". 
presented at the 87th A 5 A meeting,Aprii,l974, N.Y.,N.Y. 

4. Eisenberg, N.A. and Kao, T.W., "Propagation of Sound Through 
a Variable-Area Duct with a Steady Co;.~pressible Flow", Jour. 
Acous. Soc. Am., Vol. 49, No. 1, 1971, pp. 169-175. 

5. King, L.S. and Karamcheti, K., "Propagation of Plane Waves in 
the Flow Through a Variable Area Duct", AIAA Paper No. 73-1009. 

6. Cantrell, R.H. and Hart, R.N., "Interaction Between Sound and 
Flow in Acoustic Cavities: Mass, Momentum and Energy Considerations, 
J. Acoust. Soc. Amer. V. 36, No. 4, 697-706, (April 1964). 



FIGURE 1. CYLINDRICAL COORDINATE SYSTEM DEFINITION 
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FIGURE 2(a) DOWNSTREAM SOUND PROPAGATION 

FIGURE 2 ( b )  UPSTREAM SOUND PgOPAGATION 
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