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SUMMARY

The linearized equations describing the propagation of sound
in variable area ducts containing flow are shown to be singular
when the duct mean flow is sonic. The singularity is removed when
rreviously ignored nonlinear terms are retained.

The results of a numerical study, for the case of plane waves
propagating in a one-dimensional converging-diverging duct, show
that the sound field is adequately described by the linearized
equationsonly when the axial mean flow Mach number at the duct
throat Mth
acoustic energy flux was not conserved. An attempt was made to
extend t.e study to include the nonlinear behavior of the sound
field. Meaningful results were not obtained due, primarily, to

<0.6. For Mth>0'6’ the numerical results showed that

numerical difficulties.



Symbol
A(x)

c(x)

f,g

DEFINITION OF SYMBOLS
Definition
duct cross-sectional area at location x

speed of sound at location x

non-dimensionalized acoustic density and velocity

functions respectively defined by Eqgn. (40)

imaginary number JTT—

sound source wave number (=m5/co)

duct converging-diverging length

duct mean Mach number (=Vx/c)

acoustic Mach number (=ux'/c)

mean and acoustic pressure respectively
duct vector velocity (=V+u')

sound energy reflection coefficient defined by
Eq. (69)

cylindrical radial coordinate

sound energy transmission coefficient defined
by Eq. (69)

time

acoustic velocity

duct mean velocity

duct axial coordinate

see Eq. (24); also Eq. (62)

see Eq. (25), also (62)

defined by Eq. (62)

a cylindrical azimuthal coordinate
G (x=0)~G(x)
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L
4
0

Subscripts

()
R,I

Superscripts

)
(M)

Definition
Ath/Ao
mean and acoustic density
sound radian frequency
defined by Eq. (62)

phase angle
column matrix defined by Eqn. (21)

denotes radial, azimuthal, or axial cylindrical
coordinates

denotes duct section at x = 0

denotes nondimensionalized duct section at x = 2
denotes sound reflection and transmission
respectively

denotes acoustic pressure and velocity respectively
denotes sound source

denotes duct throat

denotes total or stagnation values

denotes vector quantity
denotes real and imaginary parts respectively

denotes matrix quantity

denotes mean value
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1.0 INTRODUCTION

Jet engine inlet whine is a particularly troublesome and
persistent source of community noise pollution. A promising new
technique to reduce or eliminate this noise is the use of variable
area inlets to choke the flow. The idea here is that the choked
flow acts as an effective barrier to sound transmission through the
inlet. Recent experimental sonic inlet noise suppression studies?
demonstrate the feasibility of this concept. The success of these
studies have prompted a number of theoretical studies dealing with
sound propagation through variable area ducts containing flow?®.
All of these studies, however, share a common deficiency - they
assume that the usual linearized convected wave equations adequately
describe the bahavior of sound waves in an accelerating flow.

The principal objective of this study is to show that the
linearized sound propagation equations are not valid for sonic or
near sonic mean flows. The linearized sound propagation equations
are singular when the mean rflow is sonic. The singularity
is removed only wiien nonlinear terms previously ignored are
retained. A second objective is to understand the details of how
the sonic inlet reduces the transmission of sound through the inlet.
As we understand it, there are two effects that act to reduce the
sound transmission. One is related to the fluid mean velocity at
the throat (called convection) and the other to flow inhomogeneities
(i.e., mean velocity and density gradients).

The reduction of inlet sound transmission by convection is
explained as follows. The rate at which sound energy propagates
through a duct containing inhomogeneous media is called the group
velocity V_. For simplicity consider a highly idealized sonic inlet
consisting®of a constant area duct containing a uniform flow. For
this case, the group velocity simplifies to

V. = ¢-V
g

where ¢ is the local speed of sound and V is the duct mean flow.

It is clear that the rate at which acoustic energy is transmitted
out of the inlet decreases with increasing speed. When V=c,

there will be no transmission of sound out the inlet; all the inter-
nally generated sound will be reflected back into the sound generat-
ing interior region of the duct. A physical explanation of the
breakdown of the linearized sound propagation equation when the duct
mean flow i< sonic can be made in terms of group velocity.

The reductioa of the rate at which the sound energy is transmitted
out the duct inlet can be thought of as a piling-up of the sound

at the throat. When the duct flow is choked, all of the sound piles-
up; thus the sound pressure and density increase at the throat
violating the original linearized assumptions of small disturbances.



It follows that under these circumstances nonlinear terms, previously
ignored, must be retained.

When the flow contains inhomogeneities in the form of mean
velocity and density gradients, the situation becomes very complicated.
It 1s no longer easy to describe analytically the group velocity.

The distinction is made here between gradients that cause refraction
and gradients that cause reflection (or scattering). Gradients
perpendicular to the wave vector refract or bend the wave and grad-
ients that are in the same direction as the wave vector reflect or
scatter the wave. In this study, only scattering by mean axial grad-
ients will be considered.

The report is organized as follows. The behavior of sound
waves propagating in a converging-diverging choked duct are described
in Section 2. The Mach number range within which the linearized sound
propagation equations are valid is explored numerically in Section 3.
The report closes with a summary of the results of the study and
describes aspects of the behavior of sound fields in accelerating
duct flows requiring further study.

2.0 GOVERNING SOUND PROPAGATION LEQUATIONS

The equations describing the propagation of sound in a variable
area duct containing a mean flow will be derived in its most general
form. The objective here is to show that the linearized sound propa-
gation equations are singular when the duct mean flow is sonic. The
(variable area) duct mean flow V is assumed to contain cylindrical
compcnents (V_,V,,V_) where the subscripts (r,6,x) represent the
radial, azimufha , %nd axial directions respectively as defined in
Figure 1. In general, V is a function of all three components. The
flow is assumed to be inviscid and nonheat-conducting so that the fluid
pressure and density are adiabatically related. Further, the mean
flow is assumed to be independent of the sound field. In the follow-
ing derivation the quantities (p,p,c) represent mean fluid pressure,
density and sound speed and (p',p',u') represent acoustic pressure,
density, and velocity respectively. Vector quantities will be denoted
by a single horizontal bar located below the symbol ( ) and matrix
quantities by a double horizontal bar located above the symbol (7).

The equations describing the conservation of mass and momentum
are respectively

® ,o.(9)-
YA (e@) 0 (N

and, in component form,

Q¢ Q 0Qr ., Qo aGr__Q_; Q 9Q cz_aﬂ_
e(&t+rar+r53 r+x5;.r+ a,."o (2)




e(.LQe + QriQe +Q9_ Q.Q_eﬁ- Qf‘QQ +QXAQ6)+.EiéE. =0 (3)
r

ot or r or r ox 08
0% L @90+ Q0 dQx o @ b@) 29
o5 + g re f0 + 20+ =g “
where
Q=(Qr,Qe,Qx)=V+«’ (5

is the total flow velocity. In Eqns. (3)-(5), the variations of
pressure was replaced by the adiabatic condition that

ap/ae = c? (6)

where ¢ is the fluid local sound speed. Now assume that the flow
field can be written as the sum of the mean and fluctuating quantities

so that
p(rent) =plnex)+ p (hoxt) @
()(re xt) e( ex)+ ’(r,e,x,{:) (8)

(r;e))(,f): \_/(r;e,x)+ g’(r,e, X,'t} (9)

It is further assumed that the time-averages

PI=(>'=U',=O (10)



T
where () =-1J£ ( )dt and T is the sound wave period. Substituting

Eqns. (7-9) "and retaining all terms yields
% A o
2+ (TY)p+(F4p) (-4 ) (W9 ) ) (1) =0
and

ey (W) Ve s oL V) - L (2Vo4 e o

N
@2 f> Ox
where the operator V equals
> 19 9
V(=2 L g =
or 'r de ’ Jx )

(11)

(12)

(13)

(14)

(15)

The notation used to express Eqns. (11-14) is considerably simplified

using matrix notation. Letting
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and (Vx+u;) 0 0 0
0 (M+uy) o 0
ﬁ4_= / EZ Pl
0 0 (Va+u) ?("/(3)
0 0 p (Vir )
- ] (19)
Substituting the matrices defined by Eqns. (16-19) into Eqns. (11-14),
the governing equations become
= 9 = = p) = , 9 = b} =
— + + — + —_ — + - 0 20
Ty PM T M0+ My ot My 51 0 (20)

o—
3

where
the acoustic field defined below as

[ u).
Ue
Ux
/
L

Equation (20) may be rewritten as

3C,l
[

2% _ _Y I__ Mo, 0 M2 |3
P (%) FM Mo 51 0

-
where the inverse matrix (Ms)? can be shown to equal

I is the identity matrix and ¢ is the column matrix

renresenting

(21)

(22)



[- -
a@=¥p o 0 0
0 afxie’Y o 0
= =l
A |
M T —
(%) oCE=Tp) | 0 0 o Lap
P \
0 0 'sz o?
(23)
Here the quantities a and B are defined as
0L=Vx +ux' (24)

p= "‘fy(; (25)

We are now in a position to demonstrate a principal ccnclusion
of this report - namely, that the well known linearized wave propaga-
tion equations that are often used to model the behavior of socund
waves in choked ductg become singular when the duct mean flow is
sonic. The matrix (Ms)? in Eqn. (24) contains the terms [a?(a%-c28)]1.
Substituting from Eqns. (24) & (25) for the quantities a and B yields
the term

e (Mytm ) [( M 1) +(2Mm '+ ("/P +m,’ 2)] )

where M_ = Vx/E and m', = u_ '/c. Now recall that in the derivation
of Eqr." (25), all ters wer® retained including the nonlinear terms.
If the nonlinear terms were ignored, there the above expression

simplifies to .

which is clearly singular at M =1. It is also clear that the



nonlinear terms must be retained at My = 1 to remove the singularity.
This conclusion is quite general because the flow fiell within the
duct is fully three-dimensional and unsteady.

3.0 NUMERICAL EXAMPLE

A numerical study has been undertaken to map out, for a particu-
lar duct geometry, the Mach number range for which the linearized
sound propagation equations are valid. To simplify the analysis,
only plane waves propagating in a cne-dimensional duct are considered.
The duct geometry, shown in Figure 2, consists of two infinitely long
ducts of equal area connected by a contraction-expansion (constriction)
region. The use of infinitely long ducts avoids the complexities
associated with end reflections. Mean flow is introduced into the
duct as shown and is accelerated to sonic or near sonic spzeds in the
throat. Sound propagating in the direction of the mean flow [ ¢:

Fig. 2a) is called the downstream case and sound propagating against
the mean flow (see Fig. 2b) is the upstream case.

The duct mean flow properties are assumed to be steady, one-
dimensional and isentropic. They are described by known functions
of the duct axial coordinate x, the origin of which is chosen as
shown in Fig. 2. The constriction region is specified to be symmetri-
cal about the throat, the area change occurring over the distance 2L.
The duct cross-sectional area is described by the expression

([ (<o
o _ | I o)<

2@ T s -9 2] anis)e

(X YN>
()22 (26)
\
where v = A(L)/A(0) is the ratio of the du't constriction throat area
(at x = L) to inlet area (at x = 0).

3.1 Derivation of Governing Equations

The governing linearized sound propagation equations describing
the behavior of the sound field in the duct are derived below starting
from the basic mass and momentum conservation equations. Although
they could be derived starting from the more general form given by
Eqn. (22), the highly simplifying assumptions of a one-dimensional
duct and plane sound waves motivates the rederivation of the governing
equations.



The derivation starts from the equations describing the con-
servation of mass and momentum in 2 one-dimensional variable area
duct

g{_ﬁ_ + -ll\_ Sb;(.((,QA)=o (27)

and
oQ 0 , op _
0 ST +PR Gt ar =0 (28)

where p, p and Q zre the one-dimensional counterparts of the three-
dimensional flow field described in Section 2. Assuming that the

flow field can be described by a steady state and a fluctuating part,
the equations describing the conservation of mass and momentum simplify
to

@V L E G p) 0w

and
‘_a_l:i_’_,,‘_‘ﬂ/_ u,+V§L/ I+-V_Al,+éE-I=O 30
Pac *Pax: x 0 % Yo (30

Implicit in this derivation is that the steady state terms satisfy
independently of the acoustic terms the time-average conservation

of mass and momentum. Equations (29) and (30) are further simplified
by incorporating the following

aP'/a(), = (X)) —> F'= Cz(")(" (31)

-(557) -(3
(T(x)-.- (31. [l...():g_')M’(x)] = ()T [G(x)] (32)



. _ -/
\/(X): CT MG 2 (33)

and

L dA _ (1-M?) 4m
A dx GM  dx

(34)

where the subscript T denotes fluid stagnation or total values. Equa-
tion (31) represents the adiabatic relationship between the sound
pressure and density while Equations (32), (32) and (34) follow from
one-dimensional steady state, isentropic flow. Substituting Eqns.
(51-34) into Eans. (29) and (30) vields

o, [er Joe [er am 1 To, [ver 0 fesMiad g
ot gD |dx | M dx g¥=! G2 |ox | g% ox ¢ (3%
and
3-2¥ 2-¥
r e [du e o2 G5 (EDe_2]y, !
§u+ 1:/2 i‘u{_ -;/- dMl . |11 ¢ %ﬂ ’+[G T 9P =0(36)
t |6 X |G7* dx er x | PT  Jox

Equations (35) and (36) are non-dimensionalized by scaling
p', u', x and t as follows. Let

, - -1, %
e'= e’(’*" w=u u*, x:K,'x*-, t:w,'t (37)

where pg and ug represent the magnitude of the known acoustic source
density and velocity introduced into the duct far upstream of the

constriction, K5 is the acoustic wave number (Kg = wg/Cy) where wg is
the sound radian frequency and cy is the local speed of sound at x = 0.
Substituting Eqn. (37) into Eqns. (35) and (36) yields

10



<"=L)§£ )4 du* [6 = a'v’\&]u* )

GM dx
+M(6 )’2 [ G.)"l\él j';“] -0

and

€38 [ 52 e

2—r 2—-\') *
[ . ) lG dM] (G) 9 =0 (39)

To solve Eqns. (38) and (39), the tollowing form of the solutions are

assumed,
- p *
¢(47) = 4507 W) = F )

Substituting Eqn. (40) into Egns. (38) and (39) yields

%2 * 1#? %
[(K L)+(G.) dx*] . M(e,) jx* [(% L 321]4? -

r-l d-F*

+

[(K ‘-)+(G')’}. ::“‘] M(G 416* [(_) r)é. j:‘] (42)

(55

11



The non-dimensional functions f and g (the ( )* notation is deleted
for convenien.e) are complex and are written

‘F(x) = ‘FR(X) + ' 'Fl(x) (43)

and

ﬂ(x) = 9o (x)+! I (x) (44)

Substituting Eqns. (43) and (44) into Eqns. (41) and (42) yields
for the derivatives

e, | i 2 -% GE% 1 ]
990 —aM(1-M) -M2A ~2a A 9r
dx
=X
dgr M % -t M(1-M?) —A(*") -24MA 9
dx
i
= 1 b
-gi& 1-m* 0 X'(vﬂ) ak@_*'wt) -hA)ﬁé 4;
&
- (=L -
df =A =y o Ml," a(l+M’) f
d | Ll es

where A=5/g, G=I+(‘L")M ), Go= l+("r)M (), and a=% Tx d
Here again, Eqn (45) is s1ngular at M =1,

3.2 Boundary Conditions

The boundary conditions are particularly simple because the duct
cross-section and mean flow are uniform for 1x > L. The boundary
conditions are different for the cases of upstream and downstream sound

propagation.

3.2.1 Downstream Propagation

At x = 0 (see Fig. 2a), both incident and reflected waves exist.
The incident wave is assumed known and generated far upstream of the
constriction. The reflected wave, generated by the mean flow inhomo-

geneities in the duct constriction is unknown. At x = 2, only

12



transmitted waves propagating to the right (i.e., right running waves)
are assumed.

For values of x < 0, both the duct cross-sectional area and the
mean flow velocity are constant. Thus the sound propagation equations
reduce to the well-known (dimensional) solutions

iw(t"&‘\?) R, ciw(‘k-&-E&)i-iq), (46)

e'(x,‘l:) =es' e (,'_
and

| 1w (‘l:— c-:_V)

- -—x .
wx,t) = us e ‘e o (£ 4 C-V) +it, (47)
H - S

+ u,

Here o5 and us are the assumed known source strengths of the incident
acoustic density p' and velocity u' respectively, p} and ur are the
unknown strengths of the reflected sound wave, and y, is the unknown
phase of the reflected wave relative to the incident wave.

Equations (46) and (47) may be suitably non-dimensionalized
using Eqn. (37) yielding for the (non-dimensional) functions f and g,

__ix_ X
f&=z=e™ 4+ [, e™ ik (48)
and
Y. X
9(x) = e e ML (49)
where

[ = "y =-fi

ol o (50)

Equation (50) follows by substituting the solution given by Eqns. (48)
and (49) into Eqn. (29) (the linearized continuity Eqn.). Thus the
boundary conditions at x = 0 are

-F(o) =1+ I ei% = [ L+ [, cosq’.] +'|[.|._'° sin‘PJ (51)

13



and

(o) =1 -I eiq)° = 1= cos®. | -] [, sin¥, (52)
: L cost] o[ e

For values of x > 2L, (see Fig. 2b), only transmitted (right
running waves) are permitted. They are described by the solution

. X .
f"(x,Jc) = f’( e‘“’(" -55)+id, (53)

and

wlt-2=)+1 9
w'(x,t) = u; e wl °+V)+' N (54)

where p%, utp are constants (it can be shown that p¢= u} by
substituting Eqn. (53) and (54) into Eqn. (29))and ¥ 1is a unknown
phase shift due to nonhomogeneities generated by the duct constriction.
Non-dimensionalizing Eqns. (53) and (54) using Eqn. (37) yields the
boundary condition at x = 2L (or x* = 2KqL)

-F(ZK,L) = 'S(ZKSL) = Pz eiq,‘ = Fz cos‘l):+ 1 .[‘zsin"l): (55)

where
* 2KgbL
Y= % - Sove (56)

3.2.2 Upstream Propagation

The boundary conditions for upstream sound propagation are very
similar to the downstream case. Here, the sound approaches the con-
striction as shown in Fig. 2b. At x = 2L, it is straight-forward to
show that the incident and reflected wave may be written

: i 2K L
f(2KsL) = e'% + Pze ((Pz- l-M.)

[ s - »w
v w

(57)

INnciDENT WAVE ReFLecTed Wave

14



and

i 2K,L i (9, - 2KsL
3(z|<,|.)= -e =M, + [, e I-Mo
(58)
~— — v — > J
IncioENT WavE RerLECTED WAVE
at x = 0, the transmitted wave is

f(o)= - o= ([, cos?,) +1 (F, sin ¢,) (59>

Thus there are four equations gp, gy» fp, fy and four unknowns
(Ta,iz,bo,u0), the solution o¥ which comp{etely describes the
problem.

-

3.5 Numcrical Integration Scheme

The solution to the four simultaneous differential equations
described by Eqn. (45) requires that four (4) constants (of integra-
tion) be specified. The four unknowns (Lo fe,%,¥We ) will be
solved for directly by taking full advantage of the linearity of
the solution. The solution starts by observing that the four unknown
functions (SR> 87> fR’ f;) may be written

[ 7 8 7 B 7] [ 7 B 7]
3“ | 0 0 (0]
Bl = 9% | O] +g| " |+t O]+t | 0| o0
fR fo) o 1 0
; 0 0 0 |
- N L d L 4 L d L J
Using lincarity, the starting valucs defined by the column matrix
at x = 0
[ 1] [ 2]
o ) a,,
o nteqrates to the valve s at x= 2KsL
al
Y 3,

Consider first the downstrcam case. Combining Eqn. (60) with
the unknown initial conditions described by Eqns. (51), (52) and (55),
the solution to Eqn. (45) may be written

15



(-a)a, -poa + (1+a)a, + Pow =¥
(1-)a,, ~pan + (1+%)a,, + p3 = -3
(l-oc)a,, —Pan + (1+&)a,, + pase = ¥ o)
(1-t)ay, -~ paa (1+k)aes + pa, = -4

where the quantities a, B, Yy and § are defined as

oo =1, cos ¥, ; P = [, sing, 5 vy=1I, C°5(P:5 3=F35.‘“‘P: (62)

The solution to the four unknowns a, B, Y, 6§ follows immediately by
rewriting Eqn. (61) as

- . ( . -l ~ W

o (aa-ay) (aM -3y - 0 (au '*‘aua)

P (azs - aat) 624 - an) o | (a,. +a,_,)|

@En-an) (Ba—3n) - o (33, +32)]

) (343‘ au) (a“ - a4:.) o | (a4l +6‘,)i

-l e -

(63)

This approach is very efficient. It avoids the shooting approach
used by Davis and Johnson® and the particularly restrictive approach
used by Eisenberg and Kao". It is also more accurate that the char-
acteristic method used by King and Karamcheti® The work of Eisenberg
and Kao consists of transforming the coupled acoustic equations
governing the propagation of sound in a variable area, one dimensional
duct into two separate equations containing variable coefficients. By
an appropriate choice of duct shape, the variable coefficients are
made constant permitting relatively easy solutions of the separate
equations for particular duct shapes. Physical variables (such as
pressure and velocity perturbations) are found by tracing back all
functional transformations. A serious draw back to their approach is
the severe restriction in duct shape. King and Karamcheti also adopted
the quasi-one-dimensional assumptions in their solution of the behavior
of sound in flow. They used the method of characteristics to solve for
the sound field. Because of the variation of mean flow quantities in
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the duct, the characteristics are curved. An iterative scheme of
second order accuracy in mesh spacing is used to account for curva-
ture when determining the intersection of characteristics of differ-
ent families from adjacent mesh points. This scheme encounters
difficulty in maintaining reasonable accuracy.

To verify that the solutions given by Eqn. (63) are correct, the
conservatior of acoustic energy flux will be independently evaluated
at x = 0 and 2(KgL). Using the form for the energy flux W given by
Cantrell and Hart.®

2

i 2 ’ ' 'Fﬁ)l +'@Eﬁ%uﬁﬂz
W)=z A)|(1+™m (x))lp(x)”u(x)lcos(ep-euA)+M(X)( TEL P (64)
where €, and U, represent the phase of the acoustic pressure and
velocity respectively.

+ Evaluating Eqn. (64) at x = 0 and x = 2(KsL) and denoting by
Wi ,Wr! and Wt the incident energy flux (at x = 0) the reflected
energy flux (at x = 0) and the transmitted energy flux (at x = 2(KgL)
respectively (for the downstream case), then these quantities may
be written as

+

Wi = T A,C2 |(>£”u“(|+M°)z (65)
wo = TA CHpr gl (- M) (66)
wy = TAL lf’“‘“t'l (|+M,)z (67)

where M0 = M(x=0) = M(x=2KsL) by symmetry.
Conservation of acoustic energy requires that

+

W= W e Wy (68)

Upon substitution of the various quantities into Eqn. (68), the
desired form of the solution is
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(HM)II‘I Ll =

N \ - 7 ( 6 9)
Reﬂer.-ked Energy Transmitted Energy
Coefficient (R) Coefficie 1t (T)

2
where from Ecn. (62), |F.‘ = o'+ Pz and l['zlz.-. yi+d?

The solution of the upstream case is quite similar to that of
the downstream case. By combining Eqn. (60) with the boundary condi-
tions for the upstream case defined by Eqns. (57}, (58) and (59),
the solution is

R 1T ‘

2Kl
o @a-2au) (eu-34) - o -cos (omie

. [2KsL 70
p (323*-32,) @,4-an o - —sin m) (70)

2KsL
y @53-23) (Bsa-23) -1 © cos (Tom )

5 (a‘,;" aq,') (a" - a.") o) -1 Sin (_Zl'if;\_l:—)
L . L J L .

Again using the definition of Cantrell and Hart, the conser-
vation of acoustic energy flux may be written as

| + M, 71)
ot . (e ):pn (
T R

3.4 Results
Numerical results for selected duct configurations having throat

to inlet area ratios (v) equal to 0.305, 0.420, 0.558 and 0.746 and
for the case of K L = 1 are summarized in Figures 3-6. The mean flow
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velocity distribution through the du.. is specified by Eqn. (26).
Figure 3 summarizes the upstream sound propagation solutions and

Fig. 4, the downstream solutions. The solutions are presented in
terms of the sound energy reflection cnefficient R and the total non-
dimensionalized acoustic energy flux R + T. In Figs. 3 and 4, energy
is conserved (i.e., T + R = 1) for throat Mach numbers less than about
Mth < 0.6; this is true for all duct area ratios considered. However,
for M¢p > 0.6, it is clear that acoustic energy flux T + R is not
conserved, the departure of T + R from unity increasing as the throat
Mach number approaches unity.

The departure of T + R from unity for My > 0.6 is due to the
singular behavior of the linearized sound propagation equations. For
values of My ; near unity, the lineariz.? sound propagation equations
are inadequate to account tor the conse. ation cf acoustic mass and
momentum.

Figures 3 and 4 also show that the sound energy reflection
coefficient (and hence the transmission coefficient) is very sensitive
to the duct throat to inlet area ratio v. For a fixed value of Mt R
the increase of R (decrease of T) with the decrease of v is relatea
to sound reflection or scattering generated by the axial velocity
gradients of the duct mean flow. This is easily shown by restricting
the duct mean Mach number at the throat to values less than 0.6 so
that the effects of compressibility can be ignored. It is straight
forward to show that the duct mean flow velocity gradient defined
below as

\’thi:vm = VT{h (| _v>

depends onl- upon the parameter v for a fixed duct geometry and throat
speed. The large increase in R observed for both the upstream (Fig. 3)
and downstream (Fig. 4) cases of sound propagation suggests that the
reduction in sound transmission arises primarily because of scattering
effects generated by the duct mean flow velocity gradients. This is
more clearly shown in Fig. 5 which combines the reflection ccefficient
R from Figs. 3 and 4. Figure 5 shows that for values of Mgy < 0.6,
there are large and significant differences for the various duct throat-
to-inlet area ratios shown. The effect, however, on R of upstream or
downstream sound propagation is small. These resuits hov- important
application to our understanding of the manner in which .¢ sonic

inlet acts as an effective barrier to internally genevauted sound. The
contribution of the mean flow velocity gradients within the duct may
contribute more to reduction of sound transmission thcn was previously
thought.

Figure 6 is a rather dramatic example of the effect of the duct
mean flow on the sound field. The distribution along the duct of the
gradient of the imaginary part of the density fy' is plotted for three
different throat Mach numbers. The singular nature of the sound field
is evident.
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4.0 NONLINEAR NUMERICAL EXAMPLE

The numerical study undertaken in Section 3 showed that the
solution of the linearized sound propagation equations failed to
ccnserve acoustic energy fiux (T + R) for throat Mach numbers
Mtl. > 0.6. The linearized solution is extended below to include
the previously ignored nonlinear terms. The purpose here is to
determine numerically, for the test case tieated in Section 3, if
the accuracy of the solution can be extended up to or near Myp = 1
by including nonlinear terms.

4.1 Derivation of Governing Equations

The derivation assumes that the mean flow is independent of
the sound field so that

S(evA) =0
and

deV+_P-=O

With this understanding, the nondimensional sound propagation equa-
tions are

, \ o*r;—ld_f:(ﬂ_ Go'/za
(ksL)_sf_ ( __- (%) GdM}u,+M<G> 3’5

/6, \% mM* dM| _ _ > d In
_a_) —'FJ‘O" € 12 (fu>+Fu_l A (72)

and

] - (32X -
0 G.\? G, y‘ldM s G\ aM
gl ) 3+ [ @es| - |(3) ¥
2-)
= :
G Jde _ _ J A N .
3) Ee-s e @ ey o
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where €:=3§(ﬂV?L) represents approximately the ratio of the ampli-
tude of the incident source sound pressure to the mean flow static
pressure at x = 0. Equations (72) and (73) have been written with
the nonlinear terms on the RHS. To solve these equativons, we seek
solutions of the form N

(J(x,{:) = jn(x)ei"* (74)
N

Ne-

and
N i
w(e, t) = E £.(x)e™ (75)
N

The idea behind the assumed form of the solutions is that
given a sound wave with radian frequency w, nonlinear effects will
generated higher and lower harmonics of frequencies ranging from
-Nw, -(N-D&,... -20, -w, 0, w, 2w,... (N-1)w, Nw for fixed N. Since
we are interested only in determining the importance of retaining
the nonlinear terms, we select N = 2. Thus we will have to solve
five simultaneous differential eqns. with variable coefficients.

To demonstrate the details of the proposed approach, we will
consider the first terms on the LHS and RHS of Eqn. (72).

O R CLA (D

Substituting Eqns. (74) and (75) yields

i(K,L) i r\j,.(x)e"‘* _ ¢ é_éx_ i ifp(x)ﬁ(x)e;(ju()t

K=-2 J:-Z
Multiplying both sides by e'imt and integrating over a period T yields
Zz " et s o
Wn-m o j+K-m
1(Kst Lle d—_ed N\ E , 1le'V
'( s ) “31\(") T I/ 3)(‘)'& ) T € dt
n=-2 o Ks-2 j=-2 o (76)

All terms on the LHS vanish except the tern n - m and similarily all
combinations of terms on the RHS vanish -xcep- those summing to m
(i.e., j + k = m). Thus Eqn. (76) may .e wricten
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2
i(&,n.)mjm(x)= - € j‘_x. Z sj(x)ﬁmj(x) (77)

=

To compare directly with the linear case, we select m = 1 so that the
contribution of the nonlinear term to the fundamental solution is

'(Ks'-)j )= -€ [3;(*){.(*) +9, OO +3.(K)f (x)+ 3-.(x)f (x)] (78)

Thus to correct the linear solution for nonlinear effects requires
the solution to the functions fn and g, for all n up to +2.

The functions fo and go require special comment. They correspond
to time independent or steady state solutions (the so-called acousti-
cal steaming solutions). We believe that these solutions require
at least two-dimensionality to exist because the streamlines are
closed (i.e., there is no mass addition). Thus they vanish in the
present one-dimensional application.

Incorporating the nonlinear terms, the governing differential
equation becomes

I~
3rn 9r, MA Srn‘)‘ Ten
3-¥
3|l,n 3: n M)‘&S\n - A(Fr)t n
S (V\*l) M ' e '
L
\“Mz 1- M2 { )
“y-1
'Fri,n 'Fr‘,n ™M T"'" - A ’ sr-"
) A
'Fi:n 'F,"n MTin- A“(w.‘)si,r\
L d L i} L §

(79)

where the matrix [Mp] is the same as the linear matrix defined by
Eqn. (45), 6(n-1) is the kroncker delta, and the quantities S and T
are nonlinear source terms defined as

o Seprine ) Higerfog - ()2 0eg]

wwlum
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To=T i, = ; ; (ki) K g +(-§)?:itm{"

%
+m (%) gt + % Yy %‘)&3.“& (81)

Subscripts m and k denote respectively the m-th and k-th mode of the
sound wave. The subscript n ranges from -2 to +2. It is important
to realize that the solution to Eqn. (79) requires that the functions
fn and gp be known for all n (in the present application n = +2).

4.2 Boundary Conditions

The boundary conditions specified in Section 3.2 for the linear-
ized sound propagation equations can be extended, in a straight-forward
manner, to apply to the nonlinear equation described by Eqn. (79).

The boundary conditions are different for the cases of downstream and
upstream sound propagation.

4.2.1 Downstream Propagation

At x=0, both incident and reflected waves exist. The incident
wave is assumed known, of frequency corresponding to n = 1, and
generated far upstream of the constricted. Reflected waves having

(complex) frequencies corresponding ton = -2, -1, 2 are generated by
the constriction. Also, transmitted ~aves are generated at x = 2KgL
corresponding to values of n = -2, -1, 1, 2. The corresponding func-

tions fL(0) and gn(0) are

'

¢

faf) = 80, Lane®or g
Incident Wave Reflected Wave

and

3 n-| e;q)a,n
3n@) = (v ) o= Lo — — (83)

Incident Wave Reflected Wave

where 8§(n-1) is used to specify the non-dimensional source sound in-
troduced far upstream of the duct constricted. The corresponding
functions f, (2KsL) and 9n (2KsL) are

s
e"p;,n

‘Fn(ZKSLB = jn(z'(s'-) = Pz,n

(84)
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where

‘P:n - q)zn -_— ZV\KSL (85)
' ' l+M,

The equation describing the conservation of energy flux for
the downstream propagation case is,

N
[-M 2 2 2
z ( |+M:) | R:.n | + “_;,,l = | (86)
n=-N — " J D —
Reflected Transmitted

4.2.2 Upstream Propagation

Analogous to the downstream sound propagation, the upstream
boundary conditions are

2 Kglo *
fa(2k,L) = S(h-e "™ [, e'fan
(2K, 8( L g L€ en
Incident Wave Reflected Wave
and
3“ (2KSL> = - S(Y\_')e I-M, + F2'V\ e zn (88]
- J
" Mﬁr——-——)
Incident Wave Reflected Wave
where
2
— Kol
q)2,"\ - 4)2,5'\ - 2_(n-|\7s_- (89)

The equation describing the conservation of energy flux, for the
upstream sound propagation case, is

N

B [ RN SR

n=-N Reflected Transmitted
4.3 Integration Scheme

The value of N is restricted to N = 2. Consider first the
downstream case, There are a total of 1€ unknowns
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corresponding to values of N of (-2, -1, 1, 2). From Eqn. (79),

there are 16 equations to be solved. To solve these equations, the
nonlinear source terms are assumed known. Thus the governing

equations are linear and the general solution is a linear combination
of the homogeneous and particular solutions for each value of n. The
solution proceeds much like that described in Section 3 except that the

contribution to the particular solution must be included. For the
downstream case, the nth solution may be written

3y 3 an 3 | |9up | | ¥n
[é(n-l)-acn] % ~Pn % + [S(n-u)mn] * B 3 + Ixr = o
a, ag; 3y as | [far | | ¥n
Ay 34;' 34 344 ﬂ; -3n (91)
where
on 05 Ton '6,. on sin?, ", zrn— ncos‘P* 3n=-f;.nsinq):'n (92)
and
9&',3gp,¥mp, fep represent the particular solutions of g and f.

The solution to Eqn. (91) for values of n = -2, -1, 1, 2 yields the
values of the 16 unknowns. The solution may be written as

- i o) .
%n @3-as) (84-3R) -1 o | 3N (an+2n)+ grp
Bn @3-35) (ep-3n) o S(n-)(@:+213)+ 41
ol | ea-ad) n-al) 4 o | [|se-deseam)d
3, (Ba-~an) (3es-3a) O | | J(r-Neairagn) b J(QS)

The solution to the upstream sound propagation case is similar
to that derived above and is written below as
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F - .
Ay (a; -ay (512 -3 u'z') -1 (o] 3('\4) cos (2—"‘_5&'5 + 3:,
Pn (a;; - al'l‘) (a z'q‘» - G;D o] [ 5(n-l)sin (2:'_.:’;:)+ SI::'
Y, (Gn -3 (ye - 8 ,:) -l 0 —S(n-)c,os( )*ﬁz ,
On G -8 @fw-aa) o -3(n-l)sm(.|_5_)+f "
. L JL
(94)

In order for this scheme to be successful, the various source
terms for Sp and Tp must be known for each value of n. The following
approach is used to solve for Sp and Tj,:

(1) Initially, the homogeneous solution n = 1 is solved. From Eqns.
(80) and (81), the source terms for n = 2 is seen to depend only upon
the n = 1 solutions. This follows because fo and g, are identically
zero leaving only the terms m = k = 1 summing to m = = 2). Thus
the n = 1 homogeneous solution is used to estimate the f» and g,
solutions.

(2) With the homogeneous n = 1 and the nonhomogeneous solutions known,
the n = -2 and n = -1 solutions remain to bhe estimated. The nonlinear

n = -2 solution is estimated directly from the nonlinear n = 2 solution
by assuming that Re(fp) = Re(f_;) and Ip(f,) = In(f_p) with similar
expressions for gn. This assumpt1on follows from the physical con-
straint that the solutions for f;; and gpn must be real. Thus knowing
the solution for n = +2, the solution for n = -2 is also known.

(3) The solution for n = -1 can be estimated from the n = -2 and
n = 1 solutions. This follows from Eqn. (79) where nowm + k = -1;
the only combination permitted is m = -2 and j = 1.

(4) With the solutions for the cases n = -1, 2 and -2 known, the
correction to the linear [i.e., homogeneous) n = 1 solution is obtained
from Eqn. (79) where here “the various combinations summing tom + j = 1
are m= 2, j = -1, andm= -1, j = 2.

(5) Steps (1) through (4) above should be repeated until satisfactory
convergence is obtained.

4.4 Results
The results of this approach are summarized in Figures 7 and 8

for the cases kgL =1 and v = 0.746. Figure 7 represents the down-
stream sound propagation solution and Figure 8, the upstream solution.
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The results are discouraging in the sense that none of the solutions
adequately conserved acoustic energy flux.

Figures 7 and 8 represents the results of only a single integra-
tion pass. No iterations were attempted because of contract cost
limitations. Thus convergence was not explored, the accuracy of the
proposed solution has not been adequately pursued. For this reason,
there will be no further interpretation of the nonlinear solution.
This does not mean that the approach is invalid -- it only means that
more than one iteration is required before satisfactory convergence
is achieved.

5.0 CONCLUDING REMARKS

The li+1earized equations describing the propagation of sound
in variable area ducts have been shown to be singular when the duct
mean axial flow component is sonic. The singularity is removed when
previously ignored nonlinear terms are retained. This conclusion is
quite general because the flow field within the duct is fully three-
dimensional (both mean and fluctuating parts) and unsteady. The only
assumptions made are that the fluid is inviscid and non-heat conduct-
ing.

A numerical study was conducted to map out, for the case of a
plane wave propagating in a one-dimensional converging-diverging duct,
the axial mean flow Mach number range at the throat Mg; for which the
tinearized sound propagation equations are valid. The results of the
study showed, in terms of the conservation of acoustic energy flux,
that the linearized sound propagation equations are valid only when
the mean flow Mach number Mi, < 0.6 at the duct throat. For values of
Mth > 0.6, the acoustic energy flux is not conserved. Since consider-
able care has been taken to minimize numerical errors by varying in-
tegration step size, integration algorithm, etc., it 1is concluded
(at least for this example) that for My} > 0.6, the linearized sound
propagation equations do not adequately model the conservation of
acoustic mass and momentum within the duct.

The numerical study also suggested for Mth < 0.6, that sound
transmission within a converging-diverging duct is reduced primarily
by scattering due to the duct mean velocity gradients. This does not
preclude the possibility that other velocity gradients, say in the
radial direction, may also significantly reduce sound transmission.
Recall that this study considers only plane waves propagating in a
one-dimensional mean flow.

These conclusions have an important bearing on our present under-
standing of how the sonic inlet acts as an effective noise barrier to
internally generated sound. The large observed decreases of the sound
transmission in a sonic inlet may arise in large mezsure because of
scattering due to mean flow gradients within the inlct. Previously,
it was believed that most of the sound transmission reduction was due
to the mean sonic flow at the throat opposing, thereby preventing,
the propagation of sound through the throat.



An attempt was made to study the nonlinear behavior of sound
waves propagating in variable area ducts containing sonic or near
sonic flow. Meaningful results were not obtained. This does not
necessarily mean that our approach is invalid, but rather that more
effort is required to assess its validity. It would be of immense
value to continue the nonlinear solution described herein. This

would provide a preliminary understanding of the acoustic behavior
of the sonic inlet.
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