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A NEW LOOK AT DECOMPOSITION OF TURBULENCE FORCING FIELD AND
THE STRUCTURAL RESPONSE

Y. K. Lin and 8. Mackawa

University of Illinois at Urbana-Champaign, Urbana, Illinois
Abstract

Measured cross-spectrum of a turbulence field usually shows some
decay in the statistical correlation in addition to convection at a
characteristic velocity. Under such a random excitation the computation
of structural response statistics becomes much more tedious than that
which would be the case 1f the turbulence were convected without decay; i.e.
convected as a frozen-pattern. IIt is shown in this paper that a decaying
turbulence can be decomposed into frozen-pattern components thus permitting
a simpler way to cnlculate.the structural respbnse. The procedure so de-
vised also provides a relationship whereby the measured input spectra can
be incorporated.' For illustrétion the thoory is appliéd to an infinite
beam which is backed on one side by a fluid-filled cavity and is eaposed
on the othéf side by the turbulence excitation. The éffect of the free

stream velocity is also taken into consideration,
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A NEW LOOK AT DECOMPOSITION OF TURBULENCE FORCING FIELD AND
THE STRUCTURAL RESPONSE

Y, K. Lin* and S. Maekawal

University of Illinois at Urbana-Champaign, Urbana, Illinois

Introduction

From the standpoint of structural response calculation the simplest
mathematical model for an atmospheric or boundary-layer turbulence is one
that.is statistically'homogeneous in space and is convected in a givuu
direction as a frozen pattern. The second part of the assumption is known
as Taylor's hypothesis which often results in tremendous computational
savings. In some cases it may be the key assumption making the problems
solvable, |

However, experimental measurements of real turbulences invariably show
that spatial decays do exist in the cross-spectra or cross correlation func-
tions. Such decays are indicative of the change in turbulence patterns as
they move down-stream. Thorefore, results obtained from a frozen-pattern
analysis are.just crude estimates which stand to be improved when a better
method becomes available,

The primary objective of this paper is to show that a decaying turbulence
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can be constructed by superposing infinitely many frozen-puattern components
with random amplitudes and convected at different velocities, Then the
structural response can also be similarly superposed with each component
corresponding to one frozen-pattern component in the foreing fioeld,

To focus attention on the essentials, the discussion in this paper
will be restricted to one-dimensional space coordinate. We shall bogin by

reviewing some basic relations for the frozen-pattern case as building blocks

-for the later superposition. Then the proposed superposition will be devel-

oped. Finally, as an example, the theory will be applied to an infinite

beam under the excitation of a supersonic boundary-layer turbulence. '

Frozen-Pattern Turbulence

An exémple of one~dimensional structure exposed to the excitation of a
turbulent pressure field is depicted in Fig. 1. The x coordinate frame is
stationary with respect to the undeformed structure, and it will be referred
to as the fixed frame in the sequel. If the pressure is truly of a frozen
type and is convected at a constant velocity Uc in the positive x-direction,
then it is a random function of x - Uct' Such a random function can be ex-

pressed as a Fourier-Stieltjes integral as follows:

Gi (UJ‘L - RX) dF(k) . (1)

Cplx - Uct)-=.[

where the frequency t and wave number k arc related to the convection speed

U, as w/k = Uer It is known from the random process theory that

- -

E {dF(k;) dF*(k,) } = Sp(kl)_ §(k; = k) dky dk, (2)



Sp(k) as follows:

where E{ } represents the ensemble average, an asterisk denotes the complex
conjugate, and Sp[k) is the wave-nunbor spectrum in a coordinate frame moving
at the velocity U, {(referred to as the moving frame in the sequel).

The cross-correlation function E {p(xl - Uctl) p(x2 - Uctz)} of the pres-
sure, referred to the fixed fraums, can be calculated simply by use of Eqs. (1)

and (2). This function, denoted by Rp’ depends only on § - UCT where £ = X) - X,

and T = t, -ty and it is related to the moving-frame wave-number spectrum

eik(UcT - &) Sp(k) dk S (3)

=00

Rp(g - Uc'c) =.J

If a Riemann-Fourier transform is taken of Eq. (3) we obtain the fixed-Fframe

. frequency cross-spectrum of p:

! R(E - U 1) e % gr
¢p(§,_w) = g {”m P c
I Wy -iw/U) E : 4
l”cl Sp( Uc) ) o

Equation (4) shows that the fixed-frame frequency cross-spectrum of a frozen-
pattern turbulence has a special form where  appears only in the imaginary

exponent. This equation also provides a simple formula to convert from Sp(k)

e .._‘I?P(-‘;, w).

Conversely, to convert from @P(E, w) to Sp(k):
(S, (k) = U8, (0, kU) B €
Bvaluated at £ = 0 the cross-spectrum @p(&, w) reduces, of course, to the
usual spectrum. o B

We emphasize that Eqs. (4) and (5) are valid only if the turbulence is
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strictly of a Ffrozen pattern, and is convected at speed U,

Equation (1) suggests that structural response to au frozen-pattern

turbulence can be constructed from a fundamental solution where the excita-

tion is just a convected sinusoidial pattern of unit amplitude.

H(x; K) exp(iwt) be the steady-state solution for

c{: { H(x, k) oxp(iwt) } = exp [i(wt - kx)]

Thus, let

(6)

where, symbolically,G(hreprescnts a lincar operator in x and t, pertaining

to the dynamic problem at hand. Of course, this solution must satisfy all

the necessary boundary conditions. Then the solution to

C(:{ wix, t) } = p(x - u_t)

" after reaching stochastic stationarity, may be expressed as

wix, t) = [ H(x, k) 'e_'xp(iwt) dF (k)

-0

i

J H(x, k) exp(iU_kt) dF(k)

o

(7

(8)

It follows that the cross-correlation function of the structural response

is

B{ w(x ti) w(xz, t2)}

l,

L

J
-0

rm

H[xl, k) HE(x,, K) e iU, k(ty - ty) 5,(k) dk

J-co

As expectcd this correlation function is depcndent only on tl - t2.

. : o iU (k. t, - k,t.) i )
J Hixp, k) W¥(x,, k) e e 11T F2720 8 (kg) 8Ky - k) dk, dk,

(9

If it is

desxrcd to calculate thls correlatlon functlon 1n the frequency domaln, we may

substltute Eq._(S) into Eq. (9) and change U k to w:



E{ wix), t)) wixy, tz)}
® . iw(t, - t,),
i} J HCx,, W/UQ) 1 (x,, w/U) @21 7 F200 (0, w) du (10)

In terms of the input and output spectra the relations are extremely simple
and illuminative; they arc:

in the wave number domain:
Sw(xl, X, k) = H(xl, k) H*(xz, k) Sp(k) (11

in the frequency domain:

¢w(xl, Xy w) = H(xl, w/Uc) H*(xz, w/Uc) @PCO, w) (12)

When'xl = X, these formulas reduce to those for the usual spectra, and they
have the same form as the well-known result for a single degree of freedom
system in the random vibration tﬁeory. The simplicity is a dircet consequence

of the frozen-pattern assumption.

Decaying Turbulence

Measured frequency cross-spectra for real turbulences with respect to a
fixed frame of reference have the general form of

T @ =T 0, W) ¥ (6) exp(-iLE/U) (13)

where U is an even non-negative definite function of &, having an absolute

maximum equal to one at & = 0 and approaching to zero at large absolute values

of £. This form is sometines attributed to Corcosl.‘ A number of researchers

have reported curve-fitted results for 5?(0, w) and ¥ (£)." For representative
works we cite the papers by Bullz, Willmarth and Wéoldridgcs, and Maestrello, ect.al.

‘Implicit in Eq. (13) is that a real turbulence is net a frozen one.
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To obtain a theoretical spectrum consistent with Lq. (13) we propose

the following representation for a general turbulence pressure

p(x, t} = J f(x - ut) dG(u) (14)

-t

Equation (14) implies that p(x, t) is a superposition of infinitecly many
frozen~pattern components, each having a random amplitude dG(u) and @ con-
vection velocity u. Such velocities can assume cither positive or negative
values, OFf course, cach frozen-pattern component can, again, be decomposed

into sinusoids. Thus,

=<}

plx, t) = [f oL lubt - B*) dF (B, u) dG(u) (15)

-
and its fixed-frame correlation is

E{ p(xys ty) p(xz,.tz)}

o
= [[{f o(uyByty = upByty) - H(Byx; - By¥y)
e _
E{ dF(B,, u,) dF*(B,, u,) dG(u;) dG*(u,)} (16)
In order that this correlation function may depend only on £ = Xy - xé and
T = tl - t2, which we shall assume to be true, the ensemble average under the

integral sign in Eq. (16) must have the form

E{ dF(B;, u;) dF*(B,, u,) dG(u;) dG*(uy))

Substitution of (17) into (16) results in
RCE, T = [J R N IO R T as)

We now apply a Fourier transformation to obtain the fixed-frame frequency

spectrum
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~100T dt

n

w
1
q’p(g: M) "2".'&' [-mRPC.EJ TJ e

1l

t 8
8—.
£

oriwk/u g [m
PG

- u] du (19)

Clearly Eq. (19) is a genemlization of Eq. (4).

To compare Eqs. (19) and 13}, the latter is Fourier-transformed

to yield o

1 T io

> [ dp(w, E) e dg

= E‘p(o, w) ¥ (o - w/U) | (20)
where ©
-1 iEv

¥ (v) '2"1?[ (&) =Y dg (21)

Therefore, o
' ry _ 5 ~icg
¢p(£, w) = ¢p(o, w) [_Z (o - w/UCJ e da (22)

Letting o = w/u we obtain

{x4]
I, w) =73 fol ¢ @ @, -iwg/u -
¢p(£, w) = QP(O, w) f 2 y (u 3 ) e du (23)
- c
Then equating-rbp and Ep we find a fo_rmu]_,a. to compute Sp (w/u,; u)

as follows:

s, (/u, w = fuful ¥ /e - 0/0) B0, 0

00

=i5%3.65(0, w)[_i(&)léxp[ iE(w/u - w/u)] dE . (241

The frequency cross-spectrum for the structural respoﬁse can be ob-

 tained by a similar superposition. Thus by a generalization of Eq. (12),



sound speed a

B
Jas)
¢ (tl, Xy W) = { |ulll(xl, w/u) H*(xz, w/u) 8§ (w/u, u) du (25)
Or, letting k = w/u,
¢w(x1, X} w) = fm IMll(ml, k) H*(xz, k) S (k, w/k) dk {206)

Now since
Sp(k, w/k) =|kl¢p(0, w)y ¥ (k- w/Uc)
we obtain a very simple result

¢W(x1, X3 w} = 55(0, w) [i;l(xl, k) H*(xz, Ky ¥ (k - w/Uc) dk (27)

An Exampio

As an example, the theory will now be applied to an infinite beam shown
in Fig., 1. The beam is backed on the lower side by a space of depth d which
is filled ﬁiﬁh an initially quiescent fluid of density P and sound speed ay
On the upper side the beam is exposed to the excitation of a supersonic
boundary-layer turbulent prossure p. The fluid on the upper side of the beam
which carries the turbulence has a froe stream velocity U, density Py and
1’

As the beam responds to the excitation its motion will generate additional
pressures in the fluid media on the upper and lowef sides. Denoting these
generated pressures by Py and Pys respectively, the governing equation of the

beam motion is given by

4 2 .
L 2% ¢ ndSap (pl P,) (28)
o eX Coat? 250 - e '

For the purpose of determining the "wave-number response function"

H(x, k) the turbulent pressure p should be replaced by exp[ i(wt - kx)] and



the structural response w cquated by H{x, k) exp(iwt) = A(k) exp(-ikx)
exp(iwt)., Furthermore, we shall make the usual approximation that p; can
be calculated without régard to the prescnce of the turbulence., Then Py

is governed by the equation

2 2
9 9 2 2 .8 d
( Usae) Py = 8" (=) p) =0 (29)
ot “ax Y171 Y2t 7R

and subject to the conditions that p; can propagate only in the positive 2z

direction, and that

LA (5% )
1 2 P
The solution for Pys when evaluated at z=0, is known to be
2
k{w/k - Uw)

-ikx 1wt (30)

(#)) oo =-1P13) et ACK) e

[(w/K Uw)
The pressure generated on the lower side of the beam is governed hy

the equation

9 p 2 2

2 2 .3 3
—E ot 3 p. =0 (31)
at? 2 Tpx? g% T2 .

and subject to the conditions

Bp '
52_ =0 at z= -d
and
'sz_ |
E— = p2 w at z=0
The solution for Pys when cvaluatgd at z=0, is giyen by
(pz)zaa - pzwz cotyd A(K) e -ikx oiWt (32)

Y
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whore

Equations (30) and (32) can now be substituted into Eq. (28) to find

A(k), rccalling that p must be replaced by exp[ i(wt - kx)] and w by A(k)

c"lkx elwt. The result may be expresscd as

A(k) = 1/Q
where
. . . 2
Q = B1k* - ma?op. apja, KO/E - U 1
[k - u)? - %17
+ p (cotyd)/y (33)
- Thus, _ _
H{x, k) = exp(-ikx)/Q (34) '

We are now ready to compute the structural response spectrum due to the:
excitation of a convected decaying turbulence. For the input spectrum of

the turbulent pressure, Eq. (13), we shall usc a form proposed by Maestrollo4,

~for which

we) = exp( -LEL)
wvhere § is the boundary-layer thickness and ¢ is an experimentally determined

quantity. Corresponding to this ¥ function we have

¥ (k- w/U) = {mas [@8)7F+ (k- w/u )Pt

Having determined H{x, k) and ¥ (k - w/Uc) the cross-spectrum of the structural

response may be computed using Eq. (27). The integration over k must be

carried out, however, on a digital compiter.
Figure 2 shows the computed results for the frequency spectrum (i.c.,

when iJ'= xz) of the structural response using the-following physical'dataf'
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properties of the beam
EI (bending rigidity) = 3.945 x 107 N-
m (mass per unit length) = 9.746 kg/m
properties of gho surrounding fiuid media

Py = P (donsity) = 0.11015 kg/m3

©
—
u

=
H]

9

d{eavity depth) = 0.1178 m

properties of the turbulent pressure

Y(£) = decay factor = exp ( __&gl )
§

_— _ o . .. 6 4
@p(o,w) = spectral density =3y ) A e

w =l

§ (boundary-layer thickness) = 0.279 m

and experimentally determined constants

o =3
A ~'4 4 x 10'2 K
1 T 1

— - -2 4

Ay = 7.5 x 10 K,
. -2

A3 = .9.3 x 10 ks

A, = -2.5 x 1072 Ky

2
n

< 1 (speed of sound) 261.6 m/scc

n

1

i

n

U, (free stroam velocity on upper side of beam) = 575.6 m/sec

U_. (convection velocity of the turbulence) = 0.75 U,

-k (@8/U,)

5.78 x 1072

2.43 x 107%
1.12

11.57

en—
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Concluding Remarks

The theory developed herein is applicable to any turbulence forcing
field which has a cross-spectral density of the form of Eq. (13). It is
particularly useful in dealing with boundary-layer turbulence for which
the decay in correlation is much more significant than that of the
atmospheric turbulence as far as structural response is concerned. TFor
this reason we havé chosen an example to illustrate the_application of
the theory which includes the effect of a cavity and the effect of the
free stream velocity. These arc main features in the problem of fuselage
panel vibration under the excitation of boundary-layer turbulence. The
;infinite unsupported beam is perhaps the simplest structural model possible
which still allows consideration of these features. 7The advantage of a
simple model is to avoid the burdensone mqthemﬁtical details and concentrate
on basic principles.

A hetter representation of fuselage panels éan be obtained by adding
evénly spaced elastic supports to the infinite beam, The model then be-
comes a periodic structure; i.e., a structure which is composed of identical
sub-units and for which analyticallstudies have been carried out exten-

6,7,8,9,10,11.

sively The elastic. supports give rise to multiple reflections

and the solution becamas considerable more complicated. Details of this

 solution will be reported in another paperlz}

Further extensions to the two-dimensional casc are obvious. With
small modifications the solution for the periodic beam can be chinged to suit
the case of a row of panels simply supported along two parallel edges. In

the sense of Levy's series solution to plate problems involving two simply
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supported parallel edges, the solution is still mathematically exact.
llowever, if the structural model has more than onc row of panels then
only approximate solutions are possible since the spatiul variables now
cannot be separated. Although new concepts are not required in treating
the two dimensional problems the wachine computation time can increase

astronautically and such studies may best be carried out in the industry.
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List of Figure Captions

Figure 1, An infinite beam under the excitation of boundary-layer turbulence,

Figure 2. Spectral density of structural response,
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