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FOREWORD

This report was prepared for the National Aeronautics and
Space Administration, Lewis Research Center, under Contract
NAS3-18535 to present the results of the analysis of circumfer-
ential inlet distortion data for the TF30-P-3 afterburning turbo-
fan engine Mr. D. G Evans was the NASA Project Manager for
this effort, assisted by Dr. A Kurkovand Mr W M Braithwaite,
and Mr R S Mazzawy was the P&KWA Program Manager This
report was prepared by R § Mazzawy and G A Banks, with
assistance from R J Heckman and other P&AWA con-
tnbutors
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SUMMARY

This report documents the results of modeling the TF30-P-3 compression system operating
with circumferential inlet pressure and temperature distortions with the P&WA developed
multiple-segment parallel compressor model. The model predictions of imiting distortion
amplitudes and flow distnbutions within the compression system are compared with the ex-
perimental results obtained from distartion testing the engine at the NASA-Lewis Research
Center Included are the vanous 180° extent pressure and temperature distortions run sep-
arately and 1n several combinations of alignment, reduced extents of pressure distortion, and
vanous combinations of the compressor bleed system activated In additi0a, several hypo-
thetical 1nlet distortions were modeled to investigate trends and to prowide further insight
mnto the distortion tolerance of the TF30-P-3 engine

The multiple segment parallel compressor model provides a detailled blade row by blade row
descnption of the distorted flow field for the TF30-P-3 compression system The required
pressure and temperature nise charactenstics for each blade row were denved from P&WA
compressor ng testing, and have been venfied by a previous companson with NASA unmiform
mlet engine test data for a low rotor speed range of 7300 to 8700 RPM (approx 76 to 90%
of design) The engine operating conditions over this range of low rotor speeds were deter-
mined from a previous analysis of NASA engine data

The relative influence of the different features of the model descnibing the distorted flow
field phenomena were explored in some detail It was determined that circumferential cross-
flow and unsteady rotor loss effects were the principle modifiers of the classic parallel com-
pressor concept. The predicted effects of circumferential extents of inlet pressure distortion
of less than 180° were venfied with P&WA and NASA engine data The influence of com-
pressor overboard bleed was also predicted and vernified with hmited P& WA data

The P&WA model predictions agreed reasonably well with the expennmentally observed trends.
Small differences for individual points were attnbutable to uncertainty in engine operating
condition, and extrapolation of blade row performance charactenistics The low pressure
compressor was predicted to be the component which imtialized the stalls, which was 1n
agreement with the data
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INTRODUCTION

NASA Lewis Research Center (NASA LeRC) testing of the P&AWA TF30-P-3 afterburning
turbofan engine has provided measurements of the circumferential distortion attenuation and
tolerance of the compressor system Pratt & Whitney Aircraft has modeled these data at the
coaditions tested using 1ts multiple segment parallel compressor model and 1ts extensive back-
ground of information on this engine The model predictions are compared to the expen-
mental results P&WA has also predicted the response to various extents and combinations
of inlet circumferential pressure and temperature distortion for which hittle or no data exasts.

The mnitial effort under this contract has been reported 1n reference 1 which provides details
of the testing procedure and describes the multiple segment distortion model It also detailed
the results of modeling 180° pressure distortion attenuation data using the multiple segment
model, the lmiting distortion levels predicted by the classic parallel compressor theory, the
stalling cnitena used, and comparisons of the model predicted results with the data

In this report the distortion tolerance to 180° pressure distortion has been predicted and com-
pared with data at four low rotor speeds (7300, 7800, 8200 and 8700 RPM) using an expanded
multiple segment model which includes unsteady rotor losses Additional calculations were
done at 8200 RPM to demonstrate the relative influence of the individual distorted flow field
pheaomena accounted for in tie model These flow phenomena include 1) mertial effects,

2) fluid particle circumferential displacement, 3) inlet flow angle vanation, 4) circumferential
crossflow, and 5) unsteady rotor losses Additionally, che effect of bleeding air from the low
pressure and/or high pressure compressor on distortion tolerance were predicted at 8200 RPM

The extent of the distortion was vaned to include 60° and 120° defects in 1nlet total pressure
Sensitivity calculations were compared with data at 7400 and 8200 RPM for the 120° dis-
tortion The 60° distortion calculation was performed for a rotor speed of 8200 RPM No
NASA LeRC data were available to check this latter calculation, but a general trend was
established for circumferential distortion extent

Circumferential temperature distortion was modeled at 7680 and 7740 RPM At 7740 RPM
a distortion level less than critical was used to evaluate distortion attenuation and compare
it with mited data At 7680 RPM the cntical distortion 1atensity was predicted and com-
pared with NASA LeRC data Cntical levels of pressure distortion in combination with tem-
perature distortion were also evaluated and compared with data at 7800 RPM with two rela-
tive alignments differing by 180°. A general evaluation of combined pressure and tempera-
ture distortion sensitivity was performed at 8600 RPM for a series of alignments each differ-
ing by 90° These results provide an insight into the manner in which pressure and tempera-
ture distortions interact to affect engine stability

Detailed performance maps for each component of the compression system are shown 1n
Appendix A. These maps show the average operating condition of each component used for
the model predictions of distortion sensitivity

The work reported herein was done using the U S Customary system of units. The informa-
tion 1n this report 1s provided n those units as well as the International System of Units (SI)




NASA LeRC ENGINE DATA

The Pratt & Whitney Aircraft TF30-P-3 turbofan engine was tested with circumferential dis-
tortion 1n an altitude test chamber at an inlet Reynolds Index of 0 5 An engine cross-section
with the instrumentation station locations 1s shown in Figure I Two engine builds were run.
Engine Build A (ref 2) were tested with 180° and 120° circumferential pressure distortion.
Engine Build B was tested with 180° circumferential temperature distortion (ref. 3) using a
gaseous hydrogen fueled burner upstream of the engine to produce the temperature distor-
tions. Build B was also tested with 180° combined temperature and pressure distortion. The
pressure and combined pressure and temperature distortions were generated using the NASA-
developed air-jet device (ref 4) The combined pressure and temperature distortions were
generated by using pnmary air temperatures to the engine that were above or below the tem-
perature of the air supplied to the air jet

With the exception of one 180° temperature distortion case, all distortions were at the cnitical
level required to stall the engine. For the less than cntical temperature distortion, data were
recorded with steady state instrumentation and engine bleeds closed. For the cnitical distor-
tion cases, the distortion amplitude was increased at constant low rotor speed until an engine
stall was recorded using high response instrumentation. The engine was then decelerated with
the distortion generating device held in 1ts pre-surge position The high pressure compressor
12th stage overboard bleeds were then held open and the engine was accelerated back to the
ongnal low rotor speed. Steady state data were then recorded to document the distortion
level, distortion attenuation within the compression system, and engine operating condition,

P&WA MULTIPLE SEGMENT MODEL

The distortion modeling was done using an expanded form of Pratt & Whitney Aircraft’s
multiple segment parallel compressor model used in Ref. 1. The model, described in reference
1 Appendix, incorporates the options of ssmple parallel compressor theory, fluid inertial ac-
celeration, fluid particle swirl, inlet flow angle vanation, and circumferential cross flow through
cavities shown 1n Figure 2. It provides an individual blade row by blade row description of

the TF30-P-3 compression system Two additional features of the model not included 1n

Ref 1 or previously exercised 1n the TF30 analysis, concern the addition of rotor blade losses
1 a non-steady flow field and the method of determining critical distortion amphitude They
are descnbed as follows

Non-Steady Rotor Loss

Incorporation of this feature into the multiple segment model 1s simply recogmzing the fact
that rotor blade boundary layers do not separate or re-attach instantaneously as they move
mto or out of a circumferential flow distortion. A finite time, consistent with fluid velocity,
1s required as 1s evident from Figure 3 Thus figure shows rotor blade losses measured on a
single stage low speed P&WA compressor ng using high response instrumentation The mea-
surements were made both with a steady uniform inlet and a 180° circumferential distortion
screen The umiform inlet data was obtained by measuning the rotor blade wakes at different
values of rotor inlet angle The air angle was reduced (incidence angle increased) by throttling
the compressor discharge until the compressor stalled. The circumferential distortion data




was obtained at one throttle position by measuring the inlet air angles and rotor blade wakes
at different positions around the circumference In this way, one full cycle of rotor blade
loss for a single revolution was obtained Starting at a high inlet air angle (away from the
distortion screen) the rotor moves belind the screen (in direction of arrows) and inlet air
angle 1s reduced. The measured blade loss, however, lags behind the uniform inlet data Be-
fore emerging from behind the screen, the rotor blade experiences air angles lower than the
values at the uniform inlet stall point, but does not stall The rotor finally emerges from be-
hind the screen, again lagging behind the uniform inlet loss until the cycle has been completed

This expenmental evidence makes 1t clear that a time unsteady flow analysis which relies on
the quasi-steady blade row performance 1s necessanilly limited in the accuracy of its results.
The complexity of the non-steady separation process 1s not amenable to purely analytical
treatment. Consequently, 1t 1s necessary to correlate the non-steady loss and turning through
a combined expenmental/analytical procedure

On the basis of the expenmental observations of the boundary layer separation process, a
simple model (ref. 5) was proposed which related the non-steady blade loss to quasi-steady
blade loss 1n the following manner

d Loss _ 1
dt T

(Loss Q S - Loss) e

Thas relation, stated simply, says that the rate at which loss changes with time 1s governed by
how much 1t lags the quasi-steady counterpart (for the same value of inlet air angle) The
term 71s an empincal time constant which 1s to be evaluated on the basis of blade row cascade
geometry and pertinent flow vanables. The expenmental evidence suggests that

7 = K(b/U) 2)

The application of this model to the data using a proportionality constant (K = 1 0) yields
a reasonably good approximation as shown in Figure 3 In addition, a number of compressor
configurations were investigated with the multiple segment model to evaluate the general
validity of this calculation (ref 6). It was determined that the proportionality constant of
unity repeatedly gave good agreement with test data for a wide range of compressor blade
designs Consequently this value has been used in the TF30-P-3 distortion analys:s.

A significant point to note from Figure 3 1s that the blade loss does reach the quasi-steady
loss curve (or an extension of 1t) before the rotor leaves the low flow (low air angle) region
The loss level is above that which can be associated with a stall instability with uniform inlet
flow. Since the blade expeniences high losses over only a portion of its circumferential path,
it apparently can sustain stable flow at this high loss condition Eventually the loss level be-
comes excessive (e g for a higher inlet distortion) or, alternately the circumferential extent
of the regon which exceeds the uniform stall Joss level increases, and the compressor becomes
unstable.




If either of these above conditions occurs, the relative loss in stall margin will depend 1n part
on the average compressor mass flow rate. The mass flow rate in each segment depends upon
the boundary conditions and segment performance as discussed in the following section. If
blade losses are low 1n a particular segment, the boundary conditions can be satisfied at a
higher mass flow rate than 1f the blade losses are high The time required for stall or separa-
tion to occur is dependent (Equation 1) on flow velocity Initially, this velocity 1s hagh,
Figure 3, while the flow velocity at the start of unstalling or reattachment 1s low Hence, 1t

1s to be expected that the separation pennod duning which losses are farthest below normal
levels will be shorter than the reattachment period with the largest higher-than-normal losses.
Thus will bias a greater extent of the circumference toward lower flow Furthermore, the
non-lhineanty of the quasi-steady blade loss curve, Figure 3, results in a greater departure from
the uniform 1nlet loss level duning the reattachment process Consequently, the unsteady
rotor loss enables the engine to run at a lower average mass flow rate at a given distorted stall
condition. More importantly, 1n terms of engine operation at a given average mass flow rate
(e g on the normal operating line), the unsteady rotor loss effect enables the engine to operate
with a higher inlet distortion level before stall than if this effect were not included.

Cnitical Inlet Distortion Level

In reference 1, predictions of cntical distortion level were based upon classic parallel com-
pressor theory The stalling distortion was determined to be that which had the low velocity
region coincident with the uniform inlet stall ine No attempt was made to use the multiple
segment model since 1t was realized that the unsteady rotor loss effects were important for
an accurate evaluation of near stall performance. With the improved modehng capability for
unsteady rotor loss effects comes an improved stall cniterion

The procedure used was to determine the distortion level required to stall the NASA TF30-
P-3 engine on 1ts expenmentally determined operating line. In order to do this the critical
distortion amplitude was assumed and the model was run with increased levels of compressor
exit static pressure up to the stall kit This mat, simply stated, 1s a predicted maximum
exat static pressure at which the compressor can operate at the given rotor speed and distor-
tion level The maximum exit static pressure 1s determined 1n the following manner The
inlet mass flow 1s distnibuted about the circumference to the vanous segments consistent with
the segment performance and boundary conditions. In general, segments with high inlet total
pressure (or low inlet total temperature) have high inlet mass flows while segments with low
inlet total pressure (or high inlet temperature) have low mass flows. The crux of the problem
1s that, while there are normaily only two levels of inlet total pressure (or temperature), there
must be a continuous distnibution of mass flow from the high to the low level. The higher
the exit static pressure 1s for a given level of inlet distortion, the greater will be the difference
between the high and the low mass flow level At some point, the transition between the
high and the low level cannot be made with a continuous distribution of mass flow This 1s
illustrated 1n Figure 4 for a distorted sector located circumferentially between 90 and 270
degrees

The exit static pressure for the discontinuous solution 1n this figure 1s only 0 1% higher than
the continuous solution The stall point performance is calculated to be the numernical average
of the pressure ratio and mass flow of the individual segments for the continuous solution




The average total pressure ratio and airflow rate at the peak exit static pressure point were
then compared to the expenmentally determined operating line values for each compressor
component If the operating point was above or below the operating hne, the distortion amp-
htude was increased or decreased, respectively, until the predicted operating point at stall coin-
cided with the NASA operating line.

An example of this procedure 1s 1llustrated in Figure 5. The average compressor performance
at 8200 RPM 1s shown for two levels of inlet total pressure distortion For a distortion amph-
tude (P AX'PTMIN)/PT AVG ©f 0.13, the peak exit pressure point 15 above the NASA
operating hine, When the distortion amplitude s raised to 0.16, however, the peak pressure
point 1s nearly coincident with the operating ine Hence 0 16 would be the predicted cntical
distortion amplitude. Note that the low pressure compressor performance map 1s shown 1n
this figure. In all cases the low pressure compressor was found to imtiate stall in the TF30-
P-3. Since this result was suspected from previous work (ref. 1), the inlet distortion amplitude
required to stall the low pressure compressor (station 2.0 to 3 0) on the NASA operating line
was determined first. This same distortion amphtude was then input into the fan (station

2.0 to 2.6F). The pressure and temperature distortion exating the low pressure compressor

at this condition was also mnput into the high pressure compressor (station 3.0 to 4.). For
each component, the exit static pressure (station 3.0, 2 6F and 4.0) were assumed to be uni-
form. This assumption was consistent with NASA test data as well as data from numerous
TF30 engine distortion tests conducted by P&WA.

At the LPC cntical distortion level the fan was on 1ts operating line and exhibited an exit
static pressure below 1ts maximum exit static pressure Similarly, the pressure distortions
exiting the low pressure compressor were insufficient to *“stall’” the high pressure compressor
Furthermore, high response pressure measurements made by NASA LeRC verified the low
pressure compressor as the imtiator of the stall event for all cases but one. In this instance,
the number of operational high response pressure transducers was inadequate for i1solating
the location of the stall. It is unlikely, however, that stall was initiated anywhere but in the
low pressure compressor.

In the above predictions, 1t was necessary to introduce a Reynolds number correction to the
model predictions because the predictions were based on blade row performance character-
1stics obtained at a Reynolds number index of 1 0 whereas a vaiue of 0.5 was used during
the NASA LeRC tests. A history of independent engine measurements of pressure distortion
sensitivity made by P&WA (ref. 1) and NASA Lewis (ref. 3) at different Reynolds numbers
provided the correction necessary to adjust the predicted cntical distortion amplhtudes to
the NASA Reynolds number index before making a companson with data

Blade Row Performance Characteristics

In the previous section, the calculated exit static pressure was determined pnmanly from the
blade row performance charactenstics on the basis of local flow velocity, and secondarily,
from non-steady flow effects on the basis of local flow velocity gradients and rotational
speed. At the predicted stall conditions, 1t was found that the mmmum local flow velocity

1s significantly lower than the flow velocity at stall with a uniform inlet because non-steady
flow effects 1n the rotor allow the compressor to operate at local flow rates below the uniform




mlet stall point. Because the blade performance charactenstics were denived from uniform
test results, they were necessarily extrapolated below the data range for tthus applhication Cor-
relations based on extensive P&WA two-dimensional cascade testing were used to make these
extrapolations. Further, the predicted distorted mass flow at stall 1s sensitive to the extra-
polations because the curve of overall pressure ratio with flow rate has a shallow slope 1n the
extrapolated region, as shown 1n Figure 5 Therefore, the absolute maximum exit static pres-
sure 15 subject to thus extrapolation

Model Accuracy

The accuracy of the cntical distortion amplitude prediction 1s dependent on how well the
model descnbes the various phenomena associated with the distorted flow field. Other signi-
ficant sources of error include the model tolerances for determining the maximum exit static
pressure, errors 1n the determination of the engine operating conditions, and extrapolations
of the blade row performance charactenstics. Model tolerances have been set to assure that
predicted cnitical distortion levels are known to within 01 on a max-min/avg basis for either
pressure or temperature distortion.

In order to mmimize errors associated with engine match point, a set of engine operating
parameter relations were utilized which were functions of low rotor corrected speed. These
relations were derived from a detailed analysis of 180° pressure distortion stall point data.

The vanables of pnmary importance were total corrected airflow, bypass ratio, and high rotor
corrected speed. These parameters are shown 1n Figures 6 through 8, respectively, as functions
of low rotor corrected speed Although they were denved for NASA LeRC engine Build A,
the same relations have been applied to engine Build B Separate measurements made by
NASA have shown that total airflow was within 1%, and the ratio between high and low rotor
speed was the same for the two engine builds. Bypass ratio, however, 1s a calculated rather than
a measured parameter. No comparison in the calculated values between the two engine builds
was possible due to an error 1n the station 7 probes duning Build B testing




DATA ANALYSIS
180° Circumferential Pressure Distortion

As reported 1n reference 1, the classic (two segment) parallel compressor calculation pre-
dicted a cntical distortion level which was .02 to 04 lower (on a max-min/avg basis) than the
measured data The multiple segment model predictions made in the present work use the
same data at low rotor corrected speeds of 7300, 7900, 8200 and 8700 RPM. A compan-
son of the present results with the data 1s shown on Figure 9. Very good agreement has been
obtained at the lowest rotor speed with progressively increasing differences at higher speeds
These differences were attributed to uncertainty in the engine match and to the extrapola-
tions of the blade row performance charactenstics noted previously. The predicted distort-
ed stall airflow 1s sensitive to the extrapolations because the overall pressure ratio vs. flow
rate curve has a shallow slope 1n the extrapolated region. Thus is to be expected because the
absolute maximum exit static pressure for the limiting solution corresponds to a zero slope
condition. Consequently, a small error 1n the extrapolation for pressure nise can result 1n a
significant error in mass flow at stall No attempt was made to alter the extrapolations to
mmprove stall pomnt predictions when differences were found between the model and data.,
Such an attempt was precluded by the large number of blade rows 1n the TF30 compression
system and the realization that “arbitrary’ changes to extrapolations provided no firm basis
for accurate modeling of the distortion problem It was therefore assumed that any error 1n
the extrapolations based upon cascade data were systematic in nature The model predic-
tions could thus be evaluated on the basis of the points which could be checked with NASA
leRC data

The distorted flow field phenomena (model options) mentioned previously account for the
differences between the classic 2 segment parallel compressor, which 1s based only on uni-
form flow performance 1n each segment, and the multiple segment parallel compressor pre-
dictions It 1s of interest to understand the relative contrnibution that each of these pheno-
mena have toward these differences. Towards this end the multiple segment model was
exercised for a 180° pressure distortion by incorporating the various options in the follow-
ing succession

Case 1) Parallel Compressor (Using 36 segments for comparnison purposes)

Case 2) Case | Plus Inertial Acceleration

Case 3) Case 2 Plus Fluid Particle Swirl

Case 4) Case 3 Plus Inlet Flow Angle Vanation

Case 5) Case 4 Plus Circumferential Cross Flow

Case 6) Case 5 Plus Unsteady Rotor Loss



These calculations were performed for a corrected low rotor speed of 8200 RPM using the
stalling distortion level measured by NASA LeRC Since the predicted cntical level of distor-
tion was lower than the level measured by NASA for a number of these cases, 1t was necessary
to relax the constraint of the NASA operating line A lower operating hine was used so that

a companson could be made with the only vanable being the model calculation optioa The
results of these calculations for the circumferential vanatioa 1n inlet corrected airflow, static
and total pressures, and total temperature at the NASA measurement locations are shown 1n
Figure 10 The distorted sector was located circumferential between 90° and 270° on the
figure The effect of each option 1s noted as follows

Parallel Compressor (Case 1)

The parallel compressor essentially sets two levels of mass flow, Figure 10a, consistent with
compressor boundary conditions and quasi-steady compressor performance It 1s the dominant
factor in determining levels of pressure distortion attenuation and resultant temperature dis-
tortion amplitude, Figures 10e to 10bb

Inertial Acceleration (Case 2)

Near the edges of the distortion the fluid 1n the rotors expenence significant accelerations
consistent with non-steady 1nertial forces The pressure and temperature changes due to these
forces alter the compressor performance and change the circumferential mass flow distnbution
from that dictated by parallel compressor theory (Figure 10a) For the TF30, however, the
quasi-steady performance dominates, and only mimor changes occur 1n attenuation The

mass flow distnibution 1s affected pnmanly as a more gradual transition between the two levels
set by parallel compressor

Fluid Particle Swirl (Case 3)

The domunant influence of particle swirl 1s to cause a “rotation” of the temperature distortion
relative to the pressure distortion This starts 11 the form of “‘spikes” near the edges of the
distortion region (Figures 19g and 10m) near the front of the engine This 1s due to the inlet
differences in fluid particle entropy level at the edges In the front of the engine there 1s very
httle “parallel compressor’” temperature distortion due to total pressure distortion attenuation
As the air progresses through the compressor, a combination of the circumferential movement
of the “‘spike” region and an increase in the “parallel compressor’ distortion 1s evident (Fig-
ures 10s, 10v, and 10y) In the rear stages the “spike” has a smaller effect relative to the
“parallel compressor” so that at the exit plane (Figure 10bb), 1t 1s barely noticeable. Since
the temperature distortion 1s altered by particle swirl there 1s a change 1n the front to rear
stage match which dramatically alters the mass flow distribution (Figure 10a) The overall
total pressure attenuation, (Figure 10z), however, 1s still pnmanly set by parallel compressor

Inlet Flow Angle Varation (Case 4)

The non-uniform inlet static pressure (Figure 10c) which the compression system imposes on
the flow, causes the inlet flow angle to vary in front of the inlet guide vane The inlet gumide

vane, however, 1s assumed to re-align the flow into the first rotor Consequently, there 1s no
significant effect on flow distnbution or distortion attenuation (Figures 10a, 102)
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Circumferential Cross Flow (Case 5)

Flow redistnbution within the fan and compressor (through cavities shown in Figure 2)
changes the front to rear stage match and has a pronounced effect on the inlet mass flow dis-
tnbution (Figure 10a) The mass flow vanation from maximum to mirumum 1s increased
which results 1n more attenuation 1n the front stages of the compressor Additionally, the
lower minimum mass flow 1s indicative of operation with reduced stall margin for the imposed
distortion.

Unsteady Rotor Loss (Case 6)

Recognition of the fact that blade boundary layers do not separate or re-attach instantaneously
alters blade row performance, particularly in regions where blade loss 1s increasing rapidly

with incidence The effect on blade row performance changes the inlet mass flow variation
required to meet boundary conditions (Figure 10a) The differences between Case 5 and

Case 6 are relatively small because of the lower operating line used for this series of calculations

In order to better demonstrate the influence of unsteady rotor loss on compressor stability,
additional calculations were made to predict critical distortion amplhitude on the NASA oper-
ating hine. This was done 1n two steps The model was first run with all distorted flow effects
except the non-steady rotor loss (comparable to Case 5) The second step included the non-
steady rotor loss (comparable to Case 6). Cntical distortion levels were predicted at several
rotor speeds and compared with simple 2-segment classic parallel compressor predictions
from Reference 1 and NASA LeRC data in Figure 11. It should be noted that the parallel
compressor prediction at 8600 RPM 1s high due to a problem with the data used in Reference
1. The data used at that rotor speed were recorded with the distortion located 180° out of
phase with the distortion position used at 7400, 7800 and 8200 RPM Thus resulted in an
error 1n calculated bypass ratio This problem was corrected for the present work by using
new data at 8600 RPM supplied by NASA LeRC with the same relative distortion position

as the other data The predictions were corrected to the same RNI as the data as noted pre-
viously. Circumferential crossflows are pnmanly responsible for the change between the
classic parallel compressor prediction and the multiple segment model prediction from the
first step. A significant proportion of the crossflow occurs behind the front and middle stages
of the low pressure compressor. Consequently, these stages experience a larger circumferential
vanation 1n incidence and blade loading, and are predicted to be much more sensitive to dis-
tortion. The non-steady rotor loss effect, however, more than compensates for the cross-
flows and the final prediction 1s an increased tolerance relative to classic parallel compressor
which, at the lower speeds investigated, 1s closer to the actual test results.

From Figure 11 it can be noted that the model results without unsteady rotor loss are ap-
proximately at a fixed increment below the NASA test data The effect of unsteady rotor
loss was apparently stronger at increased rotor speed Thus latter observation was somewhat
unexpected because the governing equations for unsteady rotor loss, equations 1 and 2, de-
pend only upon rotor chord length, and the product of the fluid velocity relative to the rotor
and the time period which the rotor expeniences the distortion (related to the inverse of rotor
wheel speed). The first parameter 1s invanant and the second 1s nearly constant over the in-
vestigated range of rotor speed Consequently, the details of the model results were explored
at 8200 RPM, as shown 1n Figure 12
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Ths figure depicts the inlet mass flow distnbution for three separate stall point calculations.
multiple segment model, multiple segment model without unsteady rotor losses, and classic
parallel compressor theory. The very low minimum airflow for the multiple segment model
relative to the other two calculations demonstrates the requirement for extrapolating com-
pressor performance, as stated earlier, to flow rates below the uniform flow stall limit. More
significant 1s the fact that the average flow rate is also considerably lower for the multiple
segment model calculation (38.4 Kg/sec, 83 5 Ibs/sec vs 39 4 Kg/sec, 86.8 Ibs/sec for the case
without unsteady rotor loss and 39.2 Kg/sec, 86 4 Ibs/sec for the classic parallel compressor).
This implies that the engine match will change because the reduced low pressure compressor
average pumping capacity will raise bypass ratio

This change 1n bypass ratio 1s evident from a companson between NASA engine data with a
uniform nlet and with a 180° pressure distortion of sufficient amphtude to stall the engine
shown in Figure 13. In this figure the uniform inlet datais shown as a sold hine. The 180°
data 1s shown as individual points to demonstrate data scatter. The line shown earlier 1n
Figure 7, which was the basis for the model calculations, 1s a best fit of the individual 180°
distortion data points. As seen 1n Figure 13, the effect 1s strongest at the higher rotor speeds
which showed the largest discrepancy between model prediction and data. Furthermore,

the TF30-P-3 low pressure compressor flow capacity 1s dependent upon engine bypass ratio
as 1llustrated in Figure 14 Ths figure was denved from uniform inlet compressor ng testing
at P&WA and also demonstrates increased effects at hugher rotor speeds.

A review of the NASA engine 180° distortion data points used to determine bypass ratio for
the model calculation was subsequently made to estimate the possible error range Figure 15
shows the distorted engine bypass ratio vs speed vanation which corresponds to an uncer-
tainty in engine core airflow of £1% An uncertainty in core airflow of this magmtude would
result in a vanation in predicted cntical distortion amplitude of £.02 to .03 as shown on
Figure 16 From Figure 16, 1t 1s evident that the uncertainty in the engine operating match
with circumferential distortion 1s very significant to the model calculation. This fact, coupled
with the increased bypass ratio effects on engine core flow capacity at higher speed, make 1t
the most probable explanation of the prediction error If this is true, then the parallel com-
pressor calculation (ref. 1) would also be subject to the same uncertainty in engine operating
conditions

Circumferential Distortion Extent

The sensitivity of the TF30-P-3 engine to circumferential distortion extent was investigated
at approximately 7400 and 8200 RPM low rotor speed Thus included distortion extents of
60° and 120° A limited amount of NASA LeRC data was available with 120° pressure
distortion for companson with the model predictions. These were supplemented by a PAWA
distortion sensitivity correlation based upon a number of engine distortion tests. Engine
match points for the different circumferential extents were assumed to be determined solely
by low rotor speed and not influenced by the distortion extent This assumption was made
because the fixed instrumentation in the NASA LeRC engine was not sufficient to accurately
calculate engine match point. For this reason, the same engine match shown in Figures 6,

7, and 8, which was denived from 180° distortion data, was also used for the other distortion
extents
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Results of the model calculation are shown in comparison with NASA data and the P& WA
K@ correlation at a corrected low rotor speed of 8200 RPM 1n Figure 17a For a distortion
extent of 180°, the NASA data and the correlation are in good agreement, while the model
prediction for cntical distortion amphitude 1s hugh by approximately 03 As distortion ex-
tent 1s reduced, the model predicts a trend which 1s less steep than the correlation However,
the model trend agrees well with the imited NASA data The change between 180° and 120°
1s, 1n any case, quite small. The discrepancy between the model and the correlation at 60°
may be due to an inadequacy in the correlation or the model If the model 1s suspect, the
discrepancy 1s most hkely due to circumferential crossflow or unsteady rotor loss effects
which have an increasingly greater effect on stability at lower extents of distortion The
crossflow tends to reduce the critical distortion level while the unsteady rotor blade loss 1n-
creases it. Since both of these calculations are somewhat approximate, 1t 1s most hikely a
combination of errors 1n modeling both phenomena that causes the discrepancy Another
source of error 1s the possibility of a change 1n engine match with circumferential distortion
extent which, as already mentioned, was assumed to be negligible because of a lack of defini-
tive data. In any case the multiple segment model prediction is significantly better than
classic parallel compressor which predicts the wrong trend with distortion extent

Results at a low rotor corrected speed of 7400 RPM as shown 1n Figure 17b At this lower
rotor speed there again was very httle difference between the cntical 120 degree and 180
degree distortion amphtudes The agreement between model and expenment 1s within the
prediction accuracy set by model tolerances

The 1ncrease 1n critical distortion amplitude at 60°, as mentioned, 1s attributable to unsteady
rotor loss effects In order to illustrate this, the engine inlet corrected airflow distribution
has been plotted at 8200 RPM for three different distortion extents in Figure 18 The signi-
ficant feature in this figure 1s the extent of the circumference over which the flow rate 1s
lower than the uniform inlet stall flow (~ 37.5 Kg/sec, 83 0 lbs/sec) at this rotor speed Al-
though the pressure distortion extents differ by as much as 120° there 1s close agreement 1n
the “‘less-than-stall” flow extent. In fact, this low flow extent 1s approximately 150° for
each pressure distortion extent at its respective critical distortion amplitude This implies
that conditions must be favorable for stall over almost half of the circumference regardless
of distortion extent As the pressure distortion extent 1s reduced 1t 1s necessary to increase
the distortion amplitude to achieve the required circumferential flow extent. When viewed
from this perspective, 1t 1s understandable that the cntical 120° pressure distortion (nearly
150°) amphtude 1s only shghtly greater than the stalling 180° pressure distortion amphtude.
Stmularly, since the 60° pressure distortion extent 1s much less than 150°, the required dis-
tortion amplitude 1s sigmficantly higher

180° Circumferential Temperature Distortion

Engine sensitivity to circumferential inlet total temperature distortion was also investigated
expenimentally at NASA LeRC As previously mentioned, these expennments were conducted
using a different engine build (Build B) than that used for inlet pressure distortion testing
(Build A). Engine operating conditions were assumed to be the same as engine Build A for
the same low rotor speed The temperature distortion amplitude was varied at a corrected
low rotor speed of approximately 7700 RPM, and data were recorded at two levels the
cntical level to induce stall and a lower level at approximately 75% of the cntical level
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For the “less than critical” distortion case, the engine was operating with the interstage bleed
systems closed and a distortion amplitude (T 1, x — Tpyn) /Ty ©f 0.11. The multiple seg-
ment model was run at these conditions, and the results of the calculated circumferential
vanation of temperature, total pressure and static pressure 1n the fan, low and high compres-
sor are compared with data 1in Figures 19 (a-1). The distorted sector 1s located circumferen-
tially between 90° and 270° on the figures. While there 1s only a minimum of data to com-
pare, the model predictions are 1n good agreement with the distortion levels measured
throughout the compression system. The predicted results in these figures are qualitatively
the same as for an 1nlet total pressure distortion (reference 1). There 1s an attenuation of
the total temperature distortion and the creation of a total pressure distortion due to the un-
equal work done by the distorted and undistorted sides of the compression system The ro-
tation of the distortion 1s governed by the same principles as pressure distortion (fluid and
sonic velocity, rotor speed, and rotor chord) and 1s therefore identical at ssmilar engine oper-
ating points.

The model prediction for critical distortion amplitude at 7700 RPM was0 18 The measured
amphtude was 0 15 At this point the relative accuracy of this prediction cannot be ascer-
tained because of possible differences between the two engine builds and a difference 1n RNI
between the measured and predicted examples used However, this matter may be resolved
by referring to the following senes of data points taken with the two engine builds for which
various amplitudes of pressure and/or temperature distortions were applied in order to pre-
cipitate an engine stall

Combined Pressure and Temperature Distortion

In all cases 180° distortions were imposed on the engine. The low temperature and low
pressure regions were either aligned or opposed The data points are presented along with
model predictions at the same rotor speeds in Figure 20 On this figure, aligned conditions
(low pressure - low temperature) are defined as having positive amphtudes while opposed
conditions have negative amplhitudes The corrected low rotor speeds are indicated for each
data point and 1its corresponding model prediction point It 1s obvious from this figure that
the alignment of low inlet total pressure and temperature results 1n increased distortion tol-
erance This 1s consistent with the requirement of a umiform exit static pressure. For a given
distortion amplitude, the low 1nlet pressure side can achieve the same exit static pressure as
the high 1nlet pressure side further from stall because it has a higher inlet corrected speed.
The alignment of the low inlet total temperature with the low inlet pressure provides the de-
sirable increase 1n corrected rotor speed Consequently, the cnitical pressure distortion ampli-
tude 1s higher than when there 1s no temperature distortion When the low pressure and low
temperature regions are opposed, the opposite effect of reduced inlet corrected rotor speed
reduces distortion tolerance and the cntical amplitude for stall It 1s to be expected, then,
that an engine will have a base level critical pressure distortion amphitude with no tempera-
ture distortion, and this level will increase or decrease as temperature distortion 1s imposed
depending on the relative alignment
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From Figure 20 1t 1s apparent that less pressure distortion was required to stall Engine Build
B than Build A This could be due to any number of things which contnbute to variations
in the engine operating line or stall line 1t 1s not possible here to speculate the cause of the
differences so they will only be noted for purposes of evaluating the model

It should also be noted that no corrections for Reynolds number index were made to the
model predictions for critical temperature distortion amplitude At the low rotor speeds
shown on Figure 20, the Reynolds number correction to the predicted critical pressure dis-
tortion amphtude was approximately —.01 Since the cntical temperature distortion am-
phtude with no pressure distortion (measured at RNI = 0.5) was approximately one and one-
half times the measured cnitical pressure distortion with no temperature distortion, 1t may
be that the predicted values of temperature distortion (predicted for RNI = 1 0) should be
altered by at least the same correction With no experimental justification to make a cor-
rectton from a RNI of 1 0 to a RNI of 0 5, however, none was made to the model predic-
tions

Influence of Relative Distortion Orientation

The NASA LeRC engine data with combined pressure and temperature distortion provided
some 1nsight into the manner in which these two types of distortions can complement or
offset one another However, 1t was of interest to explore this facet of distorted flow be-
yond the available data For this reason the multiple segment model was exercised for a
series of arbitrary combinations of 180° pressure and temperature distortions These calcu-
lations were all performed at a low rotor corrected speed of 8600 RPM  Engine matching
conditions were assumed to be 1dentical to those defined from 180° pressure distortion data
analyzed 1n reference 1 and presented 1n Figures 6, 7 and 8

For the first series of calculations the low pressure and low temperature regions were erther
aligned or opposed by 180° Alignment again imphies low 1nlet total pressure and low mlet
total temperature occupy the same circumferential position Temperature distortion am-
plitudes (max-mn)/avg of 04, 08 and 12 were imposed for each onentation, and the
model calculated the critical pressure distortion amplitude required for engine stall Results
are shown 1n Figure 21 From thus figure 1t can be seen that for each increment of 04 in
temperature distortion, the critical pressure distortion amplitude changes by approximately
0.025 when the low pressure and low temperature are opposed, but 1s altered by smaller
increments for increasing temperature distortions when low pressure and low temperature
have the same relative alignment

Other relative distortion orientations were also investigated at a low rotor speed of 8600
RPM. For this analysis the temperature distortion amphitude (T ax - TTmm)/TTavg was
held constant at a value of .08 The cntical pressure distortion amplitude was determined
for a total of four onentations differing by 90 degrees circumferentially Results are shown
in Figure 22 The worst case investigated, on the basis of distortion sensitivity, had the low
temperature and low pressure regions opposed. This was expected, as explained earlier, but
the asymmetry of the figure requires some additional explanation. When the leading edge
of the low inlet pressure and high temperature regions are separated by 90°, the engine sen-
sitivity depends upon the order in which the rotor encounters the high temperature and the
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low pressure regions If the rotor meets the high temperature region 90° ahead of the low
pressure region the predicted critical pressure distortion amplitude is lower than when the
low pressure region leads the high temperature region by 90° Classic parallel compressor
theory would not predict any difference for these two cases The present model’s recogmtion
of the distorted flow field effects makes the distinction possible These effeects alter the
local and average pumping characteristics of the compressor so that the stall condition 1s
altered for a given distortion level depending on onentation

Classic parallel compressor theory would have the same average mass flow and mass flow dis-
tnbution at the same inlet distortion amplitude From Figure 23, 1t can be seen that simi-

lar average mass flows and mass flow distributions are predicted at stall by the multiple seg-
ment model, but the pressure distortion amplitudes differ by 04 (Figure 22) Whether 1t

15 a critical minimum flow or a critical mimmum circumferential extent of mass flow below
the umiform inlet stall mass flow (approximately 42 2 kg/sec, 93 1bs/sec) that must be reached
to have a stall, 1t 1s clear that the order of the distortions influences the critical distortion am-
plitude It should be noted that a fixed engine operating line was assumed mn all of these
calculations for critical distortion amplitude The different compressor pumping character-
1stics demonstrated with different onentation may have a secondary effect due to induced
changes 1n bypass ratio and engine operating line

Influence of Compressor Bleeds

The TF30 P-3 engine 1s equipped with overboard bleed systems at the seventh and the
twelfth compressor stages Use of these bleeds alters the engine operating match pomnt and
provides additional distortion stall margin The multiple segment model was exercised with
the seventh alone, twelfth alone and both bleeds together For the seventh stage bleed 6 3%
of local mass flow rate was removed from each segment Six percent of local mass flow was
removed to represent the twelfth stage bleed These amounts are consistent with TF30 P-3
engine specifications The change in the engine operating match point due to the bleeds was
analytically determined using a P&WA engine matching computer program A summary of
pertinent engine parameters for bleeds closed and for the various combinations of bleeds
open on the 180° 1nlet critical pressure distortion level 1s provided in Table |




TABLE I — EFFECT OF BLEEDS ON CRITICAL INLET PRESSURE DISTORTION

Distortion Level

at Stall
PTmax - PTmin
Bleed Engine Total Corrected PTavg
Condition Bypass N1A/ 0T2 N2A/ 0T3 Airflow Model
Tth 12th  Ratio RPM RPM kg/sec (Ib/sec) Prediction Data
Closed Closed 137 8200 10100 92.5 204 0147 0.115*
Open Closed 1.28 8200 10200 92.5 204 024 0 22%*
Closed Open 1.30 8200 10300 925 204 024 021**
Open Open 1.23 8200 10500 925 204 037 N/A

*NASA LeRC Data (8190 RPM)

**P&WA Data

The increased distortion tolerance 1s attributed to the large shift in engine operating point
indicated by the bypass ratioc No NASA LeRC data was available to venfy the bleeds open
predictions, but P&WA engine data was available for the cases where the two bleeds were
opened independently Note that the model consistently overpredicts the critical distortion
level by approximately 0.03 This error may be due to either the uncertainty 1n the original
base engine match point determined from the NASA data, or to the extrapolated blade row
performance characternstics, or both The important point 1s that the trend due to the effect

of bleeds on distortion tolerance has been accurately modeled

Table 11 documents the results of similar model predictions for the influence of compressor
bleeds on temperature distortion sensitivity

TABLE Il — EFFECT OF BLEEDS ON CRITICAL INLET TEMPERATURE DISTORTION

Distortion Level

at Stall
TTmax'TTmm
Bleed Engine Total Corrected TTave
Condition Bypass Nl/\/éTz N2/\/0-’IT Airflow
7th 12th Ratio RPM RPM kg/sec  (Ib/sec) Prediction Data
Closed Closed 153 7700 9980 859 189 018 01s
Open  Closed 141 7700 10060 862 190 043 —
Closed Open 144 7700 10210 862 190 038 -
Open  Open 136 7700 10290 862 190 060 —
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No NASA LeRC or P&WA bleeds-open data are available to venify these calculations It s
evident, however, the compressor bleeds have a ssomlar powerful influence on temperature
distortion tolerance through the large shift in the operating point indicated by the change
in bypass ratio

Stall Sites

High response pressure records supplied by NASA LeRC were 1nvestigated to determine the
location of the initial instabiality As mentioned earhier, the multiple segment model predic-
tion placed the 1nitial stall in the low pressure compressor Since each component was
modeled using 1ts inlet and exit boundary conditions (fan-station 2 0 and 2 6F, LPC-station
2 0 and 3 0, HPC-station 3 0 and 4 0), 1t was not possible to predict the location with any

more precision The following Table III shows the agreement with the model

Rdg No

330
331
336
341
359
372

159
161

TABLE III — ORIGIN OF INSTABILITY

Distortion

180° Pressure

180° Pressure

180° Pressure

180° Pressure

120° Pressure

120° Pressure

180° Temperature

180° Combined (Aligned)
180° Combined (Opposed)

Location of
Initial Instability
N1A/0 Measured Predicted
7300 23-26 LPC
7900 23-26 LPC
8200 23-26 LPC
8600 LPC LPC
8167 26-30 LPC
7417 LPC LPC
7680 26-30 LPC
7766 Insufficient Data LPC
7852 LPC LPC

CONCLUSIONS AND RECOMMENDATIONS

The results of the distortion sensitivity and attenuation study performed on the TF30 P-3
engine using the P&WA multiple segment parallel compressor model compared to the ex-
pernimental performance of the engine are summarized as follows

1) Simple parallel compressor theory provided only a first order approximation of the
critical distortion amplitude and attenuation for the 180° pressure distortion cases 1n-

vestigated

2) The principle modifiers to the simple parallel compressor theory were the circumferen-

tial cross flow and unsteady rotor loss effects accounted for in the multiple segment
model Circumferential cross flow increased the distortion of inlet mass flow and the
rate of distortion attenuation through the front stages of the compression system
Cross flow decreased the tolerance of the compression system to distortion Unsteady
rotor loss effected pnmanily the distortion sensitivity, improving the compression sys-

tems’s predicted tolerance to distortion
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3)

4)

3)

6)

7)

8)

9)

The critical distortion level predictions using the multiple-segment parallel compressor
model were subject to uncertainties in the compressor blade performance characters-
tics and the assumed engine operating line

Multiple segment model predictions of tolerance to 180° pressure distortion were ac-
curate at the lower speeds investigated, but overpredicted the critical distortion ampl-
tude at the higher speeds investigated

The model predicted the correct trend of tolerance to reduced circumferential extents
of pressure distortion, showing that the compression system was less sensitive to ex-
tents less than 120° Thus 1s 1n contrast to classic parallel compressor theory which pre-
dicted the opposite trend

The model predictions for 180° temperature distortion attenuation appeared to be ac-
curate based upon limited experimental data The accuracy of the cntical distortion
prediction could not be assessed because of possible performance differences between
the 2 engine builds and 2 levels of RNI used 1n the investigation

The model was used to predict the critical amplitude for arbitrary orientations of com-
binations of pressure and temperature distortion Limited data verified the predicted
trends

Compressor overboard bleeds provided large improvements in distortion tolerance to
both pressure and temperature distortion Predicted effects of bleeds on pressure dis-
tortion sensitivity were venfied by P&WA data No data were available to venfy their
influence on temperature distortion sensitivity

For the range of low rotor speeds mvestigated (7300 - 8600 RPM) all stalls initiated in
the low pressure compressor of the TF30 P-3 This was in agreement with the multiple
segment model predictions

As a continuation of this effort toward increased understanding of engine response to cir-
cumferential distortion, the following actions are recommended

1)

2)

Since unsteady flow effects can alter the pumping charactenistics of a compressor, 1t

1s possible that operating line shifts will occur which influence distortion sensitivity
This possibility should be explored by taking detailed measurements (including distor-
tion rotation) necessary to accurately calculate engine bypass ratio under distorted flow
conditions

Alternate stability criteria should be explored which are less sensitive to extrapolation
of compressor blade row performance charactenstics
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LIST OF SYMBOLS

Unsteady Rotor Loss Time Constent
Time

Proportionality Constant

Rotor Blade Chord Length

Fluid Velocity (Relative to Rotor)
Pressure

Temperature

Corrected Low Rotor Speed
Corrected High Rotor Speed

Dynamic Pressure

Blade Loss (Entropy Rise)

Mass Flow Rate

(a) Temperature/Std Day Temp

(b) Circumferential Location
Pressure/Std Day Pressure

Low Pressure Compressor

High Pressure Compressor

Engine Bypass Ratio (Fan Duct Flow/Primary or Core Engine Flow)
Reynolds Number Index, 8/p\/

Abs Viscosity/Std Day Abs Viscosity

Superscripts

Quasi-Steady State - Average
Maximum

Minimum

Average

Air

Primary Engine Core
Fan Bypass Duct
Total

Statis

Low Pressure Spool
High Pressure Spool




1)

2)

3)

4)

5)

6)
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APPENDIX A — PERFORMANCE MAPS

Performance maps of the TF30-P-3 compression system components are contained in Figures
1 A through 9A of this appendix. Figures 1A through 3A present the average distorted oper-
ating conditions with 180° total pressure distortion. Figures 4 A through 6 A include the
temperature and the combined pressure and temperature distortions. Figures 7A through 9 A
show the 120° pressure distortion cases. The operating lines shown on these maps correspond
to nominal TF30-P-3 operation. The NASA LeRC was below the fan operating line and above

the low pressure compressor operating line because the engine was tested with a choked exit
nozzle.
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