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In t roduct ion  

A l l  s t r u c t u r a l  components  of the   so l id   rocke t   motor  case of   the space 

s h u t t l e  are cons ide red   t o  be f r a c t u r e   c r i t i c a l .  It is  a l s o   t h e   p r e s e n t  

p l an   t o   r euse   t he   so l id   rocke t   mo to r   ca se   fo r  a designated number of 

missions.  The expected number of missions  and  operations  such as the 

tests on t h e  case between the  missions are accounted   in   the   p ro jec ted  

d e s i g n   l i f e  of t h e   s t r u c t u r e .  A f r a c t u r e   c o n t r o l   p l a n  i s  necessary 

b e c a u s e   f r a c t u r e   c r i t i c a l  components are being  reused. 

I n   p a r t i c u l a r ,   t h i s   r e p o r t  is  concerned   wi th   the   f rac ture   cont ro l  of 

t h e  membrane of  the s i x  c y l i n d r i c a l  segments t h a t  are cons idered   to  be the  

most c r i t i c a l  of a l l  s t r u c t u r a l  components  of the   case .  The de.veloped 

procedure  can,  however,  be  used  for a l l  s imi la r   s t ruc tures .   Dur ing   each  

miss ion ,   s ign i f icant   loads  are appl ied  to t hese   s ix   cy l ind r i ca l   s egmen t s  

during the f l igh t   and   "s lap  down" operat ions.  The appl ied  stresses from 

a l l  o ther   events   dur ing   the   miss ion  are cons idered   no t   s ign i f icant  enough 

t o  result  in   cycl ic   or   t ime  dependent   crack growth :- I f   t h e  tes t  o r   a n a l y s i s  

i n d i c a t e   t h e   p o s s i b i l i t y  of o the r   c r i t i ca l   l oad ing   even t s   t hey   can  be  in- 

c l u d e d   i n   t h e   f r a c t u r e   c o n t r o l   p l a n  by ex tending   the   repor ted   ana lys i s .  

Before  each  mission,  the  cylindrical   segments are a l s o   s u b j e c t e d   t o  a 

proof tes t .  The loads  applied  during  the  proof tests c a n   r e s u l t   i n   s i g -  

n i f i c a n t  amount of crack  growth. A s  a preventive  measure t o  reduce  the 

e f f ec t ive   dep th  of c racks ,   the   th ickness  of t h e  membrane is reduced by a 

s e l e c t e d  amount between two missions.   While   the  effect ive  depth of crack 

is reduced,   the   operat ion  has   the  effect   of   increasing  the  appl ied 



stresses. Th i s   necess i t a t e s  a l a r g e r   i n i t i a l   t h i c k n e s s   o f   t h e  membranes 

than   tha t   would   be   des igned   wi thout   th i s   par t icu lar   p lan   for   f rac ture  

cont ro l .  

Therefore,  any  design  of  the membrane of  the six cyl indrical   segments  

of   the  ID l id  r0cke.t   motor  case  must arrive a t  a n   i n i t i a l   w a l l t h i c k n e s s  r l t l l ,  

the thickness  ' A t '  t h a t  will be  decreased  between  each  mission  and  the 

proof   load  factor  'K '. For  example, a l a r g e   v a l u e   o f   i n i t i a l  w a l l  t h i c k  

n e s s   r e s u l t s   i n   i n c r e a s e d   r e l i a b i l i t y ,   b u t   r e s u l t s   i n   t h e   n e e d   f o r   i n c r e a s e d  

p rope l l an t ,   i nc reased   cos t   o f   ope ra t ion  and reduced  pay  load  capability. 

On the  other   hand,  a small i n i t i a l  w a l l  thickness  increases  the  probabi- 

l i t y   o f   f a i l u r e  and the   r e su l t i ng   l o s s   o f   t he   shu t t l e   veh ic l e   and   t he   pay  

load.   Therefore ,   there  i s  a need fo r   op t imiz ing   t he   i n i t i a l  w a l l  thick- 

ness.   SiriGlar  arguments  can  be  presented  to  explain  the  need  for  selecting 

the   o ther   des ign   var iab les   such   as  'AL' and 'K ' by opt imizing  the  desired 

ob jec t ive   func t ion  of c o s t  and weight. 

P 

P 

In   genera l ,   these   des ign   var iab les 'depend on the   p robab i l i t y   d i s t r ibu -  

t i o n   f o r  t l e  i n i t i a l   f l a w   s i z e s   p r e s e n t   i n   t h e  membrane, app l i ed   s t r e s ses  

during  the  use  of   the   vehicle ,   crack  growth  character is t ics   of   the  

m a t e r i a l ,   f r a c t u r e   c o n t r o l   p l a n s ,   s p e c i f i e d   r e l i a b i l i t y  bounds,  weight 

and cos t   cons ide ra t ions .  The r epor t   desc r ibes  a re l iab i l i ty -based   pro-  

cedure   tha t   can   be   used   to   se lec t   the   des ign   var iab les   o f  SRM by  using 

probabi l i s t ic   f rac ture   mechanics  and cos t   o r   weight   cons idera t ions .  

Method of Approach 

As d i scussed   i n   r e f e rence  1, c a r e f u l  NDD 

i n i t i a l  cracks greater   than  the  surface  length 

2 

techniques  can  detect  

of c = 0.1  inch and sur face  
0. ' 



depth  of a = 0.5 C with 100% success.  It has  been  claimed  that   cracks 

corresponding  to   surface  length c = 0.1  inch  can  be  ident i f ied 100% of 

t h e  tine. I f   t he   co r re spond ing  m a x i m u m  depth i s  0.05 inch '   there  i s  no. 

p o s s i b i l i t y   o f  any i n i t i a l   c r a c k s  of depth  larger   than 0.05 inch.  Such 

a n   i n i t i a l   c r a c k   d e p t h   d i s t r i b u t i o n   c a n   b e   a n a l y t i c a l l y   r e p r e s e n t e d  by 

Johnson Sb d i s t r i b u t i o n .  The dens i ty   func t ion   fo r   t he   p robab i l i s t i c  

model i s  w r i t t e n  as follows 

0 0 

0 

2 

The four   pzrameters   of   the   dis t r ibut ion  are  11, A ,  c and y. 

This   p robabi l i ty   d i s t r ibu t ion   for   in i t ia l   c rack   depth   changes   a f te r  

each  mission,  proof tes t  and the  material   removal from the  wal l   th ickness .  

The change in dis t r ibu t ion   a f te r   each   miss ion  and  proof test i s  due to  

the   c r ack  growth r e s u l t i n g  from the  appl ied  s t resses .   This   crack  growth 

also  depends on the   lengths  of the  crack  that   are   a l ready  present   and 

the   ma te r i a l   p rope r t i e s   t ha t   a r e   r e spons ib l e  for the  crack  growth.  In 

th i s   ana lys i s ,   t he   app l i ed   s t r e s ses  and ma te r i a l   p rope r t i e s   a r e  assumed t o  

be knoxw- d e t e r m i n i s t i c a l l y .   I f   t h e   i n i t i a l   c r a c k   l e n g t h  were a l s o  known 

determinis t ica l ly   the   c rack   length   a f te r   each   use   can  be  determined  from 

equat ions  such  as   Par is '   equat ion , Foreman's   equat ion  or   Col l ipr ies ts  5 

equat ions .   Because   in i t ia l   c rack   lengths   a re   no t  known de te rmin i s t i ca l ly ,  

c rack   length   a f te r   each   use   o f   the   vehic le  i s  again  another   probabi l is-  

t i c  d i s t r i b u t i o n   t h a t   h a s  t o  be determined. 

3 4 

3 



The cumula t ive   dens i ty   func t ion   for   c rack   length   a f te r  I n '  uses  is  

denoted  by  F(an) . This r e p r e s e n t s   t h e   p r o b a b i l i t y   t h a t  a A a f t e r  n 

uses .  Each u s e  i s  def ined as one f l i g h t ,  s l a p  down, proof test  and 

ma te r i a l   r emova l .   I n   t h i s   ana lys i s   " s l ap  down" effects   have  not   been 

considered. The crack  growth  due  to  "slap down" e f f e c t s  can be  considered 

i n  a similar way. Also,   crack  growth  due  to  ' t ime  related  effects  such as 

stress corrosion  have  a lso  been  neglected.  

n 

I f   F ( a  ) i s  known t h e   p r o b a b i l i t y   d i s t r i b u t i o n   f o r   t h e  stress in-  n 

t e n s i t y   f a c t o r  (K) can  be  obtained from the  knowledge  of the   appl ied  

stresses. The p r o b a b i l i t y   d i s t r i b u t i o n  F(K ) f o r  stress i n t e n s i t y   f a c t o r  

can   be  used t o  estimate t h e   p r o b a b i l i t y   f a i l u r e  (P ) which i s  the  pro- 

b a b i l i t y  o f  stress i n t e n s i t y   f a c t o r  K g rea t e r   t han   o r   equa l   t o   t he  criti- n 

cal  stress i a t e n s o t y   f a c t o r   d u r i n g   t h e   p r o j e c t e d   d e s i g n   l i f e   o f   t h e  

n 

f 

s t r u c t u r e .  The c r i t i c a l  stress i n t e n s i t y   f a c t o r  i s  denoted  by KL. In 

t h i s   a n a l y s i s ,   s t r e s s e s  and the   ma te r i a l   p rope r t i e s   a r e  assumed to   be  

known d e t e n i n i s t i c a l l y .  However; the   appl ied   s t ress   changes   a f te r   each  

use  due  to material removal.   Therefore,   the  probabili ty of f a i l u r e   c a n  

be  expressed as the   p robab i l i t y  of  a > a . I n   t h i s   e x p r e s s i o n  a i s  

the   c r f t i ca l   c r ack   dep th   t ha t   can  be  obtained from t h e   c r i t i c a l  stress 

i n t e n s i t y   f a c t o r  and the  appl ied stress. This r e l a t i o n s h i p  between the  

stress i n t e n s i t y  and the appl ied  stress i s  discussed i n  the next   sec t ion .  

C C 

n -  

S t r e s s   I n t e n s i t y   F a c t o r  

For   the  analysis  of t h e   s t r e s s   i n t e n s i t y   f a c t o r   i n   t h e  membrane, 

an i n f i n i t e   p l a t e  model w i t h   e l l i p t i c a l   s u r f a c e   f l a w s   t h a t   a r e   o r i e n t e d  

perpendicular   to   the  appl ied  s t ress   has   been assumed.  The r e l a t i o n s h i p  

4 



be tween   t he   s t r e s s   i n t ens i ty ,   t he   app l i ed   t ens i l e  stress and crack  depth 

is given  by 

where 

2 

OY Q {f ) = $2 - 0.212 % 

I n   t h i s   e q u a t i o n ,  0Y is  the   y i e ld  stress and !?I i s  a funct ion of 

t h e   r a t i o  of crack  depth  to   crack  length  (a /c) .   Variat ion p with  (a/c) 

is g i v e n   i n   r e f e r e n c e  I. 

f 

Because  the  crack  depth (aj i s  a random va r i ab le   t he  stress i n t e n s i t y  

f a c t o r  K 2s a l s o  a random var iab le .   In   genera l ,   bo th   c rack   depth  a and 

crack   length  c are random va r i ab le s  and the re  i s  a need  for a j o i n t   d i s -  

t r i b u t i o n   f o r  a and c. In   t h i s   ana lys i s ,   on ly   t he   c r ack   dep th  i s  con- 

s idered  2s the  random var iab le .  It i s  a l s o  assumed tha t   t he   p robab i l i t y  

d i s t r ibu t ion   fo r   c r ack   dep th  ' a r  i s  known i n i t i a l l y  and i s  given by a 

Johnson Sb d i s t r i b u t i o n .  The dens i ty   func t ion   fo r   t he   d i s t r ibu t ion  i s  

given in   equa t ion   (1 ) .  This p robab i l i t y   d i s t r ibu t ion   fo r   c r ack   dep th  

changes  with  use. The n e x t   s t e p  w i l l  be to determine  the  change and 

the  new p r o b a b i l i t y   d i s t r i b u t i o n   a f t e r   e a c h   f l i g h t  and proof   t es t .  

Probabi l i ty   Distr ibut ions  for   Crack  Depth  After  Use 

The following  symbols  are  used  to  properly  account for the  changes 

i n   p r o b a b i l i t y   d i s t r i b u t i o n s .  

5 



f ( ao ) :   P robab i l i t y   dens i ty   func t ion   fo r   t he   i n i t i a l   c r ack   dep th  

F(ao) . :   Cumula t ive   d i s t r ibu t ion   func t ion   for   in i t ia l   c rack   depth  

F(a ): Cumula t ive   d i s t r ibu t ion   func t ion   fo r   i n i t i a l   c r ack   dep th  
OP 

a f t e r   t h e   f i r s t   p r o o f  t es t  

p(an>:   Cumula t ive   d i s t r ibu t ion   func t ion   a f te r  N f l i g h t s   a n d  (N+1) 

tests 

F(a ): Cumula t ive   d i s t r ibu t ion   func t ion   a f te r  N f l i g h t s   a n d  N proof 
nP - 

proof   t es t s  , 

F(an):   Cumulat ive  dis t r ibut ion  funct ion  af ter  material removal  from 

the  w a l l  th ickness .  

Similar ly ,   densi ty   funct ions  are   denoted by  lower c a s e   ' f ' .  A s  

discussed   before ,   ' s lap  down' e f f e c t s   a r e   n o t   c o n s i d e r e d   i n   t h e   a n a l y s i s  

but  can  be  included by following a simik procedure. 

The ra te  a t  which crack  depth  increases  i s  assumed to   be  given by 

Pa r i s '   eqza t ion .  Then 

da - = c  (AK) n 
dn 

where C and n are empir ical   constants .   Al ternately,   the  rate of   crack 

growth  can  be  assumed to   be   g iven  by  Foreman's  equation  of  Collipries t 's 

e q u a t i o n   i f   t h e y   a r e  found to   r ep resen t   t he   s i t ua t ion  more accurately.  

For  example, Col l ipr ies t ' s   equa t ion   can   be   wr i t ten   as   fo l lows:  

I 

Rn K c ( l  - R) + Rn AKo 

2 da 
dn Rn Kc(l - H) - Rn KO 

Rn Kc - Rn AKo Rn AK - 
- =  a rc   t an  h ( 

2 
I I 

( 4 )  

where n i s  an empirical   constant.   These  equations  can  be  used  to  obtain 

6 



c rack   dep th   a f t e r  N+1 u s e s   i f   t h e   c r a c k   d e p t h   a f t e r  N uses  and N proof 

tests are known d e t e r m i n i s t i c a l l y ,  i.e., 

S imi l a r ly ,   c r ack   dep th   a f t e r  the proof test can  be  determined from equat ion 

(3) o r  ( 4 )  i f   t h e  crack depth  before  the  proof test  is known determinis- 

t i c a l l y ,  i.e., 

These  functions  represented by equations (5) o r  ( 6 )  can  be  determined 

a n a l y t i c a l l y   o r   i n   t h e  form  of  quadratures  from  equation (3) o r  ( 4 ) .  

From equation ( 5 ) ,  a canzbe  obtained  for  every known value  of  a 

Simi la r ly ,  a can  be  obtained  for   every known value  of a from equat ion 

( 6 ) .  However, both a and a are random v a r i a b l e s   i n   t h e   p r e s e n t  

a n a l y s i s .   I n   t h i s  case equation (5) can be used to   ob ta in   t he   p roba -  

b i l i t y   d i s t r i b u t i o n   f o r  a i f   t h e   p r o b a b i l i t y   d i s t r i b u t i o n   f o r  a is 

known by us ing   the   p r inc ip leof   t ransformat ion   of  random va r i ab le s .  It 

should be noted   tha t  a l l  equations similar t o  (5) o r  ( 6 )  involving  crack 

N+1 NP * 

NP N 

NP N 

n+l *P 

depths are increasing  funct ions.   This   property is usefu l   in   t ransforming  

t h e  random va r i ab le s .  

For   example,   the   probabi l i ty   densi ty   funct ion  for  a can  be n+l 

w r i t t e n  as follows 

7 



simrilarly 

Equations (7) and ( 8 )  can be wr i t t en   fo r   eve ry   va lue  of n from 

z e r o   t o  the pro jec ted  number of uses.  

Details of   ob ta in ing   these   equat ions   for   the  membrane o f   t he  SRM 

with   the   express ion   for  stress in t ens i ty   g iven  by equat ion  ( 2 j  and Par i s '  

equat ion  for   crack  growth is d i scussed   i n  Appendix I. 

The nex t   s t ep  is t o   o b t a i n  a too l   fo r   change   o f   p robab i l i t y   d i s t r i -  

but ion due t o   t h e  material removal  from the  wall th ickness .  

Ysterial Removal and  the Change o f   P robab i l i t y   D i s t r ibu t ion  

Due t o  material removal a f t e r  each use  t h e   e f f e c t i v e   c r a c k  dep'th 

is reduced by k t  I .  Thus new crack  depth i s  

a = a  - A t  
- 
n n 

It is assumed that  dt i s  a constant.  Thus, - b y  u s i n g   t h e   p r i n c i p l e s  

of transformation  of random va r i ab le s  (2'), the   p robabi l i ty   dens i ty   func-  

t i o n   f o r  a. can be w r i t t e n  as follows. n 

In   th i s   equa t ion ,   p (a  1 r ep resen t s   t he   dens i ty   func t ion   fo r  a and f 

represents   the   func t iona l  form  of t he   p robab i l i t y   dens i ty   func t ion   fo r  

a .  n 

n n 

8 
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Probab i l i t y   o f   Fa i lu re  

By fol lowing the method d iscussed   in   the   p receding  two sec t ions ,  

p r o b a b i l i t y   d e n s i t y   f u n c t i o n   f o r   c r a c k   d e p t h   c a n   b e   o b t a i n e d   a f t e r   e v e r y  

f l i gh t ,   p roo f  test and material removal. From the   dens i ty   func t ion ,  

cumulat ive  probabi l i t ies   can  be  obtained.by  integrat ion.   Integrat ion 

a f t e r   t h e   t r a n s f o r m a t i o n  of va r i ab le s  as d iscussed   in   equa t ions  (7), 

( 8 )  and  (10)   needs  the  determinat ion  of   appropriate   l imits  of in tegra-  

t i on   cons i s t en t   w i th   t he   t r ans fo rma t ion   o f   va r i ab le s .   Th i s .  is a l s o  

d i s c u s s e d   i n   t h e  Appendix I. If   F(a  ) r e p r e s e n t s   t h e  CDF a f t e r  n f l i g h t s  n 

and  *proof tests the   p robab i l i t y   o f   f a i lu re  i s  given by the p r o b a b i l i t y  

o f a  > , a .  n C 

It is t o  be   no ted   tha t   the   p robabi l i ty   o f   fa i lure   changes  w i t h  

d i f f e r e n t   s e l e c t i o n s  of t h e   i n i t i a l  wall thickness  t ,  increased  loading 

due t o  proof test ,  t h e  material removed A t  and  the number of  designated 

missions.  The increased  loading due t o  proof tests i s  denoted by a f a c t o r  

R . A c o s t   f u n c t i o n   o r  a weight  function  can  be  formulated from t h i s  

knowledge of p r o b a b i l i t y  of f a i l u r e  and o t h e r   r e l a t e d   u n i t - c o s t   o r  

weight. Such a cost   or  weight  function  depends  on t ,  K A t  and. number 

of missions N . It is p o s s i b l e   t o   s e l e c t   t h e s e   d e s i g n   v a r i a b l e s  by 

P 

P’ 

minimiz ing   the   cos t   o r   weight   func t ion   subjec t   to   appropr ia te   re l iab i l i ty  

bounds. The e f f e c t  of NDI is i n d i r e c t l y   r e l a t e d   t o   i n i t i a l   f l a w   d i s t r i -  

but ion.   Addit ional  NDI ef fec ts   such  as t h e   r e j e c t i o n   o f   s t r u c t u r e s  are 

not   cons idered   in   the   ana lys i s .  However, they  can be included as c o s t  

u n i t s   r e l a t e d   t o  the p r o b a b i l i t y   o f   f a i l u r e .  A numerical  example is 

I 



i l l u s t r a t e d   i n   t h e   n e x t   s e c t i o n   t o   i l l u s t r a t e  the developments of the 

repor t .  

Numerical Example and  the Computer  Program 

For  the  numerical  example, it is assumed t h a t  the 'Johnson S b 
d i s t r i b u t i o n  fo r  t h e   i n i t i a l   c r a c k   d e p t h  i s  s u c h   t h a t   t h e  minimum crack 

depth is zero  and  the maxinum crack  depth i s  0.1 inch.   Different   possible  

r a t i o s   ( a / c )  are cons idered .   Par i s   equa t ion   for   c rack   growth  is assumed 

w'ith'.c = 0.847 x 10''' and  exponent  equal t o  3 . 0 .  The va r i a t ion   o f  fJ 2 

with   (a /c )  is approximated by a q u a d r a t i c   r e l a t i o n .  

The pr imary  object ive of reus ing   the  SRM case is t o  reduce  the 

c o s t  of ope ra t ion   o f   t he   shu t t l e .  However, as the number of uses   (or  

cyc les )  is  inc reased   p robab i l i t y  of f a i lu re   i nc reases   because  of l a r g e  

crack  depths   associated  with more use. The p r o b a b i l i t y  of f a i l u r e   a l s o  

increases   s i th   h igher   p roof   fac tors   because   o f   h igher   s t resses .   Thus ,  

smaller nmber  of cyc le s  and small p r o o f   f a c t o r s ,   r e s u l t   i n   h i g h e r  

r e l i a b i l i t y .  However, small number of cyc les   increase   the   cos t  of  t h e  SRM 

case  because it h a s   t o  be r e p l a c e d   a f t e r   r e l a t i v e l y  smaller number of uses .  

Then t h e   t o t a l   c o s t   f u n c t i o n   c o n s i s t s  of  (a)  the  cost  due t o  number of 

uses  and  proof  factor  and (b) the   expec ted   cos t   o f   fa i lure ,  i .e.,  

' t o t a l  = c ( N , K ~ >  + c3pf 

I n   t h e  equationC(N,K ) is the   cos t  due t o  number of  uses X, and 

proof f a c t o r  K . The cos t   o f   f a i lu re   o f  SRM case  is- denoced by C and 

t h e   p r o b a b i l i t y  of f a i l u r e  by Pf. The c o s t  C(N,K ) can be expressed as 

P 

P 3 
P 

\ 
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C(N,K P ) = CIN $. c2(K ) 
a P b  

It is t o  be  noted that the expression is only  for   the  purpose of 
I .  

i l l u s t r a t i o n   i n   t h i s   r e p o r t   a n d   c a n   b e   c h a n g e d   t o   r e f l e c t   t h e   f i g u r e s  

more accurately.  

The power 'a '  is  n e g a t i v e   t o   r e f l e c t   t h e   f a c t   t h a t   t h e   e f f e c t i v e  

investment  cost  is lower i f  more number of  uses can be  obtained  from the 

same vehic le .   S imi la r ly  the power ' b '  is a l s o  negative..  This i s  t o  

r e f l e c t   t h e   f a c t   t h a t  the c a p a b i l i t y  of vehic le   to   wi ths tand   h igher   p roof  

load  usual ly   indicates   &ger   avai lable   margin  of   safety  and  increased 

confidence  in   the  success   of   the   next   mission.   This   a lso  includes  intan-  

g i b l e   c o s t  due to   confidence.  It is ' . to  be  noted  that  t and 'h t  ' are not  

v a r r i e d  irr the  numerical  example. Therefore ,   there  is  no cos t   a s soc ia t ed  

d i r e c t l y  w t t h  t o r  A t . 
kitial  thickness   of   the  case is assumed t o  be 0.686 inch  and it 

is  assumed t h a t  1% of the  thickness  i s  reduced  af ter   each  use.  The f l i g h t  

loading is  assumed t o  be 936 psi .   For   the  purposes  of t h e   i l l u s t r a t i v e  

> 

. .. . - 

example, the  problem  posed i s  t o   s e l e c t   t h e  number of use  cycles  and 

proof   fac tor   for  minimum expected  cost .  A r e l i a b i l i t y   r e s t r a i n t   c a n   b e  

imposed.  However, the  numerical  example has  not  been  considered  such a 

res t ra in t .   Arbi t ra r i ly ,   the   fo l lowing   va lues   have   been   used   for  C 

and C3, c = c = 1000.00 u n i t s ,   c 2  = 180 u n i t s ,  a = -0.3 and b = 4.0 3 1 

have  been  used. 

1, c2 

The general  procedure  can  be  summarized in   t he   fo l lowing   s t eps .  

A computer  program  has  been  writ ten  to  carry  out  the  needed  computations.  

11 



1. 

2. 

3 .  

4. 

5. 

6 .  

7. 

8 .  

9. 

10. 

Obtain  the  parameters  of  the  Johnson S d i s t r i b u t i o n   f o r   t h e  

i n i t i a l   f l a w   s i z e .  

O b t a i n   t h e   s t r e s s   i n   t h e  membrane from t h e  known geometry  of 

t he  case and wall thickness  

b 

c J =  Kp 
t 

In   t he   equa t ion  K is  the  proof stress factor .   During  f l ight  

K i s  equal  to’one.  Pressure P i s  the  MEOP pressure  and R 

is the  radius   of   the  SRM case   equa l   t o  72.5 inches. 

Obtain  the new  CDF and  densi ty   funct ion  for   the  cfrack  depth 

a f t e r   t h e   p r o o f  test .  A value  of K c lose  1.0 i s  assumed t o  

start the   ca lcu la t ion .  

Obtain  the new  CDF for   the   c rack   depth   dur ing   the   f l igh t  

following  the  proof test. 

Estimate the   p robab i l i t y   o f   f a i lu re .  

Compute the  cost   funct ion  parameters .  

Obtain  the new  CDF a f t e r   t h e  material removal. 

Repeat s t eps  2 t o  7 f o r   t h e  new thickness  and  the  next mission 

u n t i l   t h e   t o t a l  number of  missions are- complete. 

Change A t  I ,  t ,  , N and   repea t   the   ca lcu la t ions  as necessary. 

Se lec t   the   des ign   var iab les   for   the  minimum value  of  the ob- 

j e c t i v e   f u n c t i o n   s u b j e c t   t o   r e l i a b i l i t y   c o n s t r a i n t s .  

P 
P 

P 

A computer  program  has  been  written t o   c a r r y   o u t   t h e s e  steps. Only 

N is  v a r i e d   i n   s t e p  number 9.  The program is l i s t e d  i n  Appendix 11. 



Figure '1 i l l u s t r a t e s   t h e   v a r i a t i o n  of cos t   wi th  number of cycles  

and  proof   factor   in   the  range 1.02 t o  1.20. From the  assumed a r b i t r a r y  

cos t   f i gu res  minimum expected  cost   occurs   for  16 cycles   and  proof   factor  

of 1.12. The co r re spond ing   r e l i ab i l i t y  is only 0.9. Lower proof   fac tor  

n e e d   t o  be   u sed   fo r   h ighe r   r e l i ab i l i t y .  In the  numerical  example  pre- 

s e n t e d   i n   t h i s   r e p o r t ,  t andAt  have  not   been  var ied.  

13 



Conc.lusions  and  Recommendations 

Th i s   r epor t   has   demons t r a t ed   t ha t   t he   r e l i ab i l i t y   ana lys i s   based  on 

probabi l i s t ic   f rac ture   mechanics   can   be   used   to   op t imize   the   se lec t ion  of 

the   des ign   var iab les   o f   the  SRM case.  I n  pa r t i cu la r ,   bas i c   des ign  

var iab les   such  as the   th ickness   and   pro jec ted   des ign   l i fe  as w e l l  a s  the  

f r ac tu re   con t ro l   va r i ab le s   such  as the   p roof   fac tor  and material e ros ion  

can  be  included.  Accuracy i n   e s t i m a t i o n   o f   t h e   i n i t i a l   f l a w   s i z e   d i s t r i -  

bu t ion - i s   r e f l ec t ed   i n   t he   a s ses smen t   o f   t he   r i sks   i nvo lved   i n   t he   des ign .  

By knowing the  r isks   involved  in   the  design,   weight  and cos t   can   be  

reduced  from  those  obtained by de te rmin i s t i c   ana lys i s  and use  of a r b i t r a r y  

safety  margins .  

This r e p o r t  i s  only a f i r s t   s t e p   i n   t h e  development  of  procedures 

based   probabi l i s t ic   f rac ture   mechanics .   Addi t iona l  work t h a t  i s  necessary 

can   be   l i s t ed  as follows: 

1. A more accurate   analysis   can  be  obtained by considering  the’ 

j o i n t   d i s t r i b u t i o n   f o r   t h e   c r a c k   d e p t h  and crack  length  along 

the  surf   ace.  

2. Accurate  methods  of  estimating  the-probability  distribu- 

t i o n  f o r  t he   i n i t i a l   f l aw   s i ze   d i s t r ibu t ion   shou ld   be   deve loped .  

3 .  I n   p a r t i c u l a r ,   e f f e c t s   o f   s l a p  down and t i m e  dependent  crack 

growth  including stress corrosion  should  be  considered  in   the 

SRp.1 ana lys i s  . 
4 .  Uncer t a in t i e s   i n   ex t e rna l   l oads  and mater ia l   p roper t ies   should  

be  considered. 

14 



5. Accuracy  of  the  different  models  for  crack  growth  (in  the  point 

of  view of  probabi l i s t ic   f rac ture   mechanics)   should   be   eva lua ted .  

6 .  Al te rna te   f r ac tu re   con t ro l   p l ans  and  more accurate  stress inten-  

s i t y  measures  based on c y l i n d r i c a l  geometry  can  be  considered. 

7. Cost of  NDI e f f o r t s   i n   r e l a t i o n   t o   t h e   c o s t   t h a t  will be  

incur red  by add i t iona l   s a fe ty   f ac to r   shou ld   be   eva lua ted   i n  

the   po in t  o f  view of improved r e l i a b i l i t y .  

15 



APPENDIX I 

E s t k a t i o n  of t h e  new CDF of c r a c k   d e p t h   a f t e r   u s e  from a 

knowltdge of the   o ld  CDF and  probabi l i ty   densi ty   before   use.  

16 



Crack Growth Rate 

The rate a t  which the  crack depth  increases  is  given  by  Par is  

equat ion as follows. 

= C(AK)n,=-0.847(AK)n x 10 
da - 16 
dN ' i  . , . . - .: 

For  subsequent  convenience  in  algebra,   the  value  of 'n' i s  t aken   t o   be  

3.0. The suggested  value from c u r r e n t   s t a t e  of art is 2.48 (C = 0.847 

x Xow s u b s t i t u t i n g   f o r  AK 

SimpliZ-;Ting t h i s   f u r t h e r ,  

where 3 
C = 0.847 x (C4) x 10 - 18 6 

In t eg ra t ion  of (-) da 
dN 

Separa t ing   the   var iab les  a and N i n  -, it fol lows  that  da 
dN 

1,. 5 
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In t e s ra t ing   bo th   s ides  between state (1) a n d   s t a t e  (2) 

In  order  t o  eva lua te   t he   i n t eg ra l  on 

necessary   to  expand the  numerator of 

t h e   r i g h t  hand s i d e ,  it i s  found 

the   in tegrant   b inomia l ly  . 
Sow consider  the  numerator of the  integrand  with C - 1. Neglecting 5 

t e r n  of higher   order   . than (;) , . i t  fol lows  that  
a 3  

a 
1 + C2(;) + 

= 1.0 + 1.5 c2(:),+ 

i ) 1.5(0.5) C C - 0.25(0.5)2 C; (:)3 
2. 3 

L e t t b g  

1 
P1 = - 

C 
1.5 C2 

P = 1.1.5 c + 1.5(0.25) C2 2 c 2  3 I 

and 

p3 1.5(0.5) C2C3 - (0 .25)  C23 / 2 

C 
3 

it follows that 

18 



S u b s t i t u t i n g  i n  t h e   i n t e g r a l  

a 
2 

'3 2.5 ] + 2.5 (a) 

al 

Solut ion of a as a func t ion  of a 
" 

1 2 

S u b s t i t u t i n g   t h e  limits 

C6(X2 - N1) = -2(a ) 2 p2(a211s5 + - 2 P (a 2 -0.5 + 2 p (a )0.5 + - 
2 1 2  3 5 3 2  

Rearrzcging  and  neglecting terms of order   h igher   than   th ree ,  i t  reduces 

t o  the following 

3 2 
(a,) + P(a,) + q al +- r = o 

where 

1.0  

p = [ s  1' 
2 8  

L-4 p1 - 5 P21 
" P P  "P 3 1 2  5 3 
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and 

r =  4 

Now, the   th ree   roo ts  of th i s   cubic   equat ion ,  (a,) are given by the  

following [CRC t ab l e s   17 th   ed i t i 0n .P .  1051 

i 

A + B  A - B  a (3) "" P 
1 2 2 " 7  

where 

- 1  
3 

a = -  (3q - P2) 

20 



Trans  formation 

P robab i l i t y   dens i ty  of a i s  given by 2 

CDF of a2 i s  then - 
a 

2 

1 0 

where ‘a (a ) is t h e  CDF of Johnson S ’d i s t r ibu t ion .  1 1  B 

blow, it is needed t o   o b t a i n  a as a func t ion  of a No. of 1 2’ 

cycles  etc. This can  be  done  by  solving  the  polynomial  equation 

obtz5ned  previously  in terms of a and   t rea t ing  a N and N as 1 2’ 1 2 

constants .  The infinite  degree  polynomial  equation is t runca ted  a t  

the  3rd  degree  for   convenience.  

Of t he   t h ree   roo t s   on ly  one w i l l  be   the  real rooh because of  

the   phys ica l   na ture  of t h e  problem,  say 2 (a ) 1 2  

Then, subs t i t u t ing   i n   t he   exp res s ion  for the  CDF of a 2 

o r   i f   t h e  CDF of a i s  known, 1 



Thus F ,. (a ) i s  a funct ion of the  parameters of t h e   i n i t i a l   f l a w  

d i s t r i b u t i o n  i.e. a E Y and rl , the   proof  tes t  f a c t o r  R and 
a 2  2 

P 

t h e  number of  uses (N2 - Nl). 
I .. 

The e f f e c t  of each of these  parameters  can  be  studied by calcu- 

l a t i n g  F . (a ) fo r   va r ious  cases, by means  of a computer- 
a 2  2 

P a r a b o l i c   F i t   t o  0 (;) 2 a  

Consider  the  range $<(:I 5 1.0. I n   t h i s   r a n g e  it is attempted 

t o  fit  a parabol ic   curve f o r  g2(:>. such a s  follows. 

2 a  2 
!d (;) = c1 -I- c * (-) i c (S )  a 

2 c  3 c  

In   o rde r   t o   de t e rmine   t he   t h ree   cons t an t s  C C2 and C t h r e e   p o i n t s  
1' 3 

are considered  on  the  given  curve. 

(i) - = 0 
a 
C 62( t )  = 1.0 

(ii) (-) = 0.5 
a 2 a  
C > 

(fii) (--) = 1.0 
a 

, 8 = 1.5 

@ (--) = 2.5 
2 a  

Subs t i t u t ing   t he   va lues   fo r   po in t  (i), 

c1 = 1.0 

Subs t i tu t ing   the   va lues   for   po in t   ( i i )  

1 .0  + C2(0.5) f C3(0.25) = 1.5 

o r  
2c2 4- c3 = 2 .0  
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Subs t i tu t ing   the   va lues   for   po in t  (iii) 

1.0 + c2 + c = 2.5 3 '  

o r  

C + C3 = 1.5 2 

Solving  equations (2) and (3) simultaneously 

and 

C2 = 0.5 

c3 = 1.0 

Thus the   chosen   pa rabo l i c   f i t  is as follows 

2 a  2 
@ (;) = 1.0 + 0.5(:) + <:) 

L i m i t s  o f   In t eg ra t ion   fo r   t he  CDF of 'a I' 
2 

By h y p o t h e s i s ,   t h e   i n i t i a l  f las  'a ' has a Johnson - S d i s t r i -  1 B 
butiorr. Also ,  t he re  is  a func t iona l   r e l a t ionsh ip  between t h e   i n i t i a l  

f l a w   s l z e  'a ' and  the  subsequent  f law  size 'a ' a f t e r  N cycles .   This  

re la t ionship   renders  'a ' a random variable  because 'a ' is  a random 

v a r i a b l e  by hypothesis.  Having known the  range  space  of 'a ' the   range 

space of 'a ' can  be  derived  from  the  functional  relationship  between 

'a ' and 'a '. Thus, i f   t h e  lower  l imit  of 'a ' is  zero,  it follows 

from the   func t iona l   r e l a t ionsh ip  between ' and 'a ' that   the   lower 

limit of a is also zero. Next , i f  the upper l i m i t  of 'a ' is a t h e  

1 2 

2 1 

1 

2 

1 2 1 

al 2 

2 1 1 

corresponding  upper limit f o r  'a ' can  be  obtained by so lv ing   the   cubic  2 

r e l a t i o n  between a and a as a funct ion  of   the number of cyc le s  1 2 '  
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