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INTRODUCTION 

A study of the effects of earthquakes on the rotational motion of the earth has 

been conducted. The analytical developments providing the connection between 

the fault parameters and the corresponding changes in the moments and products 

of inertia are due to Rice and Chinnery (1972), the method involves the applica­

tion of the reciprocal theorem of elasticity and Volterra's formula as well as the 

displacement and stress fields for the second degree static response of the earth 

model being used. 

Two earth models have been used in the investigation, the parametric model 

due to Dziewonski, Hales and Lapwood (1975) and the M3 model of Landisman, 

Sato and Nafe (1965) as given by Israel, Ben-Menahem and Singh (1973). 

In order to obtain the displacement and stress fields it is necessary to inte­

grate numerically a system of differential equations representing the state of 

equilibrium of an elastic body. The numerical integration problem presents cer­

tain aspects which require consideration; some of these aspects are the following: 

the conditions in a neighborhood close to the origin, at which the differential 

equations become singular; and the appropriate boundary conditions between the 

solid and the liquid parts of the body. 

The numerical results of the investigation yield the magnitude and direction 

of the pole shift as well as the change in the length of the day. In addition, the 

changes in the second degree coefficients of the geopotential have been .computed. 

1
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In order to generate numerical results the source parameters corresponding 

to the Alaskan earthquake on March 28, 1964 were chosen, as given by Israel 

et al., 1973. 

1. RELATION BETWEEN MOMENT OF INERTIA, ROTATION AND FAULTING 

Consider a body of mass M rotating with angular velocityt and let the axis 

L be defined by the direction of '. 

The moment of inertia with respect to the axis L is, defined by 

= f d2 dm (1.1) 
M 

do is the perpendicular distance from the element of mass dm to the axis L. 

Assume a displacement field to be defined throughout the body due to causes other 

than rotation, i.e., as a result of faulting. The perpendicular distance from din 

to the axis L is now given by 

d = +Ad (1.2) 

where Ad denotes the component of displacement due to faulting perpendicular to 

L. The moment of inertia is now given by 

fLfd2 dm (1.3) 
M 

substituting Equation (1, 2) into Equation (1.3) yields, 

= j(doAd)dm +1 f d2dm + 2 Ad 2 dm (1.4) 

2
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Assume Ad to be small enough so that the term containing Ad 2 can be neglected-, 

then 

AlL = 2 f (doAd)dm (1.5) 
M 

where AIL stands for the increment in the moment of inertia due to faulting. 

Now, the rotational potential is given by 

(1.6T co 
2 0 

and the corresponding force by 

d- C 2 d o (1.7) 

ado 

Therefore, 

1 aT 
do - 2 ad o (1.8) 

substituting Equation (1.8) into Equation (1.5) yields 

2 
'tTAlL W2 -d d 

2. RECIPROCAL THEOREM AND VOLTERRA'S FORMULA 

The Reciprocal Theorem of elasticity is due to E. Betti, its proof can be 

found in the book by Love (1944), more recently Smylie and Mansinha (1971) and 

Rice and Chinnery (1972) have extended it to the case of self-gravitating elastic 

systems in states of large initial hydrostatic stress. The presentation which fol­

lows is due to Rice and Chinery (1972). 

3 
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Consider a body of mass M and a surface S within the body, define the 

following: 

i+ T: unit vectors normal to an element of surface dl, opposite in direc­

tion, with - pointing from dZ- to dZ+ . 

: a displacement field defined throughout M with a discontinuity, 

-, U due to slip, defined on Z, 

[a] stress field defined throughout M-, due to. 

:* a body force field, defined throughout, M, independent, oft. 

a displacement field defined throughout 1v, due to the application of 

[a] : stress field dqfined throughout M, due tQ u*. 

Assume the following conditions to hold: 

i. 	 [a], and [a*] vanish at the outer surface of the body. 

ii. 	 [a0, and!* are continuouj acrqs,. since they are produced by with 

AQ slip on E. 

iii. 	 (r• [a] )+ + [a] )- = 0, this last condition implies, equilibrium alter 

slip. 

4 
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The Reciprocal Theorem states that the work done by the body force f and 

the stress [a*] acting through the displacements u is equal to the work done by 

by the stresses [a] acting through the displacements -*. Therefore, 

f (* -)dm + f ( [*I u)++(n[*] - ')-fdz 

M 

(2. 1) 

By virtue of conditions (ii.) and (iii.) Equation (2.1) can be written as: 

4f(-*).dm f(.[a*] -A-d (2.2) 

with n = n, now let A = (Au)s, I being a unit vector in the direction of slip. 

Furthermore define 

** = [&*] " (2.3) 

Equation (2. 2) can then be written as 

J 	 (f -_')dm =fr*(Au)dZ 	 (2.4) 
M41 

Equation (2.4) is referred to as Volterra's formula. 

3. 	 RELATION BETWEEN MOMENT OF INERTIA AND VOLTERRA'S FORMULA 

Consider the integrand in the left side of Equation (2.4), let f* denote a body 

force due to rotation as given by Equation (1.7) and lett stand for the displace­

ment field due to faulting, Equations (1.9) and (2.4) then yield 

.5 

http:4f(-*).dm


2f 

AlL 2 rt (Au)dZ 	 (3.1) 

where 

rL = n - [ L'*] s (3.2) 

[a*] L being the stresses due to the rotation about the axis L. The stress tensor 

[a*] L contains a factor (j2 which will cancel the same factor appearihg in the 

denominator on the right side of Equation (3 1), this will be ih6wn below. 

4. MOMENTS AND PRODUCTS OF INERTIA 

Consider 	 the inertia dyadic,



lXX1 Ixy Il JI z



[I] = -I yy 

Note that, 

P = 'kx 

T. u 4.= iy 	 (4.2y 

k - ^ 1',z 

Definec the following unit vectors: 

i" =" 61)y&4 	 (4. 3 ) 

6?,,)t-9 
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/- + ) 	 (4.3) 
(cont.) 

Then, 

.M'[I] .mf-r' [I] .= 21xy 

Ap [I] - ' [1] 2Iyz (4.4) 

" [I] "o-q (11 = 21xzo " [-

Equations 	(3.1), (4.2) and (4.4)then yield 

lxx J- fz r*(Au)dY 

2Aly - j ry(Au)dZ 

'Izz =-4i f"t*(Au)dE 

(4.5) 

1xy r (u)d Z - 22 	 £r*(Au)dZ 

Atz = f¢ (Au)dE - 1 rfT(Au)dZ 
CJ2W 

Axz W2 0W2=_1tz -	 -'I r4(Au)dF= JT*(Au)d 

As indicated by Equation (3.2) the quantities r*, ,4, ... , r4 denote the shear 

stresses induced on Z by rotation about the axis indicated by the subscript. 

If the seismic event is assumed to be represented by a point source then 

Equations (4.5) can be written as follows. 

7 
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flxx = 2Krx 

AIyy = 2Kr 

AIzz = 2Krz 

(4.6),K(* -r7-) 

AXZ =,K(TO*--rq) 

where 

K = (/w 2 )(ux) (4.7) 

5. STRESSES 

Equations (4.5) and (3.2) require knowledge of the stresses produced on Z 

by rotation about a certain axis, this constitutes a part of a more general prob­

lem which is briefly outlined below., 

The equations of motion governing the vibrations of an elastip body are given 

by Love (1944): 

2
a
(AaA aA
(X+p) -y +pV 2 U+pVV = p - U (5.1)

t2\ax ay az )a 

(5.2)
8)x ay 8z 

U = (ux, Uy, uz)  (5.3) 

The body force potential V is given by 

V =v o +4' (5,4) 

a 



where 4 denotes the perturbation from the,undisturbed!state V0. V must obey 

Poisson's equation: 

V2 V = -4Gp (5.5) 

Let the disturbing potential be given 

Tn n (r/a)nSn(0,0) (5.6) 

where Sn denotes a surface spherical harmonic and a the radius of the earth. 

Equations (5. 1) and (5.5) can be expressed in spherical coordinates and with 

the appropriate set of boundary conditions they will admit the following eigen 

vector solutions: 

ur = y,(r)Sn 

aSn 
10 = Y3 (r) (5.7) 

Y3 (r) aSn 

sinO ao 

The stress-strain relations yield: 

arr = Y2 (r)Sn 

ay4(r) as


ae



(5.8) 
Y4 (r) asSn 

sin 0 30 

goo =[ 2 (x+ / )y 1+ i r XY3] Sn + (-+Y 3) 02 

9.





[2 ( t-) nn +U) . Y a02 
(X+g-y---Aj7 - -r- ^Y3J[ n 

(5.8) 

2p o0° saSa _) sn (cont.) 

+ s _,u inr0. Y32S n 
~ , roj1 4 

where, 

= n - +Y2 1+I I- Y 

Y 4 ~j 3
21)(5.9) 
, 3+Y4 = 3 r Y 

-~ 

The time-dependent solution eifnt has been omitted from Equations (5.7) and 

(5.8). The dots denote (d/dr). The stresses given by Equation (5.8) are those 

produced by the action of the disturbing potential Tn and do not include the initial 

hydrostatic stress. 

6. RADIAL FUNCTIONS 

The radial functions y,, y2 , y, and y 4 appearing in Equations (5.7) and (5.8) 

have to be obtained by numerical integration when working with models resem­

bling the real Earth. In addition define 

y (r)S(, )(6.1) 

Y(, =' -47r(;PJy (6.2) 

10 
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Equations (5.1) and (5.5) can then be expressed as a system of six ordinary 

differential equations (Alterman et al., 1959) 

7= [M]7 (6.3) 

y6)T  
 V= (yly 2 ,Y 3 ,Y4 ,Y, (6.4) 

The static or steady-state solution is obtained by letting the frequency f. 

be equal to zero. The elements of the matrix M are given by Sniylie and 

Mansinha (1971) and Israel et al. (1973). They are given below for the-sake of 

completeness. The symbols p0 , Mand X denote the density and the elastic param­

eters, go stands for the gravitational acceleration and n is the degree of the de­

formation, in this case n = 2. 

Let 

= 
 c I/(X + 2g) 

=
Mi1 -22c/r 

M 12= c 

M!3 = n(n + 1)c/r 

M 2 1 = 4p(3X + 2y)clr2 -4pogo/r 00 (6.5) 

M22 = -4gc/r 

M23 = -n(n + 1)[2g(3h + 2g)c/r2 - pogo/rI 

M24 = n(n + 1)/r 

M26= -P0 

M31 = -1/r 

M33 = l/r 

1 
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M34 	 = I/p 

M4 j = - 2p(3X + 2j)c/r 2 + pogo/r 

M4 2 = -Xc/r 

M43 = 4n(n + I)(X + )Cjr 2 - 2g/r 2 

4 4 = -3 

(6.5)
M45 	 = -Po/T 	 (cont.) 

M51 = 4mrGpo 

M56 = 1 

M63 	 = -4wGn(n + 1)po/r 

=M6 5 n(n + 1)1r2 

M6 6 = -2/r 

all the other elements are equal to Zero. 

Equations (6.3) and (6. 5), are appitcable to the solid re@wipxs of the,earth. 

The equations for the liquid core have been,developed. by Smyli, and 4ansinha 

(1971) and Israel et al (1973), they are given below: 

Y2 =0 

Y3= (4YS +ry 6 )/n( l + 1)go (6.,6) 

Y4 =0 

s= (4irGpoYs)/go + y6 

6= [n(n,+ l)fr2 - 167rGpb/go 'y5 - (4?rGp 0/g o + 2/r)y6 

$2 
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The following assumptions are implicit in the set of Equation (6.6): 

i. the liquid core is in a state of hydrostatic equilibrium before and after 

the deformation, this means that the tangential stresses are equal to 

zero. 

ii. the dilatation and the normal stress are equal to zero. Zero dilatation 

is consistent with constant core volume and makes the Adams-Williamson 

condition unnecessary. 

Equations (6.3) and (6.6) have to satisfy certain conditions at the boundaries be­

tween the solid and the liquid parts of the earth, there has been some debate in 

the literature concerning this issue. The conditions given below are those de­

veloped by Israel et al. (1973) and Crossley and Gubbins (1975), at least with 

respect to the condition for the variable Y6 . Let {yi} denote the jump (discon­

tinuity) in the variable yj at the boundary between the liquid and the solid parts, 

then 

{y1 } = some constant 

{y21}=opgo (y}



{Y3} = some constant (6.7)



{y4} = 0



{y5} = 0



{y 6} = -4rGpo {yI,}



18
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Note 	 that Equations.(6,7),imply the continuity-of-y'4 and"Y, 

Alterman et al. (1959) develope4 the remaining boundgry conditions to be 

imposed on the differential, equations. At the, deformed surface, of the earth the 

stresses must vanish and,the gravitational potential-and its: gradient must be 

continuous, i. e., 

y2'a) 0 

YM4 (a) 0' (6.,8) 

(n + 1) y() 
Y6 (a)'+ a Y',,a)"

a 

where a denotes the radius of the earth and b is-a, constapt with, a value depending 

on the nature, of the disturbance as shown by T.gleuchi et 41, (.19)T. In partjpu4ar, 

for the earth-tide problem: 

---(2 +0/4 (Q., 

Implicit in Equation (6.9) is the assumptipn thgtth, digrpin pptnial is gven 

by Equation (5.6). 

7. 	 THE RQTATIONAL POTENTIAL 
The rotational potena. as g.ye.imb b Eqi1 op t, e @ in the 

form of Equation (56) (Sanchez, 1974): 

T2 (rfr)--,(,.k)2 (7.1) 

where 

2
S9(O,¢) = P7( .S O)(qcqs sin p) 	 (7.2)qmoso+cu 

,(1)= 02 



qO= (a2/6)(ws + W2 2*) 

)I = -(a2 (73) 
q2 

q2 = (a2/12)(2 -C02) 

2/6)(w
u2 = -(a X Cy 

Equation (7.1) does not include a term equal to (1/3)(co2 + oC2 + Owhich pro­

duces expansion or contraction of the body as a whole, such a deformation will 

affect the moments of inertia. 

The stress tensor which appears in Equations (3.2) and (4. 5) requires the 

evaluation of the stresses given by Equation (5. 8), the stresses are produced by 

rotation about a certain axis, the components of rotation &oX, wy and w z appear­

ing in Equations (7.3) will take values corresponding to the axis: 

(WxIco, co )x = (wO,O) 

(WX, coy, COz)y = (0,Co, 0) 

(cx oy ~~ = (O,O,co) 

(cox I COz)r = (1/T)(CO, W, 0) (7.4) 

(cc,' coy' Wz)m, = (l/5)(co,-o,O) 

(Cox, W,coz)g = (I '2)(0,w,w) 

(Wxy Wy, Wz) p = (1/V7)(O, -W, C) 

(CX'Wy' cOz)o = (Il ff)(-w, O.c) 

(coX" Cy Wz)q = ( I/(W, O,cj) 

15
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8. SOURCE PARAMETERS 

The shear stresses given by Equation (3.2) contain the source parameters 

n and s"as well as the stress tensor due to rotation. The stresses given by 

Equations (5.8) are computed in a spherical system of coordinates, the source 

parameters ^ and 1 are usually given in an epicentral coordinate system, the 

necessary transformations are given below: 

r* = nrerrsr I no a60 SO.+ nqU000, S+2 (nrarOSo +.fnoO'rOSr) (8.1), 

+ 2(nruroso + nucr 4 Sr) + 2(n0 60uso + neoe04 0 ) 

The following transformations are given by Israel et al. (1973), Figure 8.1 below 

is taken from that work: 

0sxk sin Xdos a­ sin Xsin 5 -14 

0, -sin6 cos& ) (,2) 

-cos a sina 0 e6 

= sinac -Cosa 01 (8.3) 

Making use of Equations (8.2) and (8.3) yields: 

si = sin Xsin-8 

so = -cosXcos a - sin Xcos 8sina 

so = cos Xsin a - sin Xcos-cosa (8.4) 

nr = Cos's 

no = sin 8sin a 

no = sin 8cosa 

where 

16 
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6: 	 dip angle 

A: 	 slip angle 

a: 	 azimuth angle 

9. 	 OUTLINE OF PROCEDURE 

The numerical results which are ,given in the last section were obtained by 

assuming the seismic event to be represented by a point sourcea. The following 

is an outline of the procedure. 

A. 	 Given h (source depth) intqgrate the .system tof differential equatioxs 

given by Equations ,(6.,3) o- (6.6) to obtaln ,(y,, 7'2-, \y3. &Y)Dat the nor­

responding value of x. 

B. 	 Choose an axis of rotation, the corre;sponding st&(Ox, , y , oz) w tlbe 

given by Equations(,7.4)., .co anbe setequdlto 1. 

C. 	 Using the results of stepB and Equatioh,(7. 3) compute qo, q2 , au, qI., 

u2 for each axis tof rotation. 

D. 	 Given 0 and 4 (colatitude and longitude of'the sourCe) compute S2 and 

its derivatives for ,each rotation axis by means of, ation (7,Z2) and the 

'results of step ,C. 

E. 	 Using the results of steps-A and D 'and Equations.(5.8);compute arr, o'0, 

Uro, 06, o00, u0 0 -for each rotation axis. 

1~8 
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F. 	 Given'8, X, a (dip, slip and azimuth of the fault) compute s, SO, sS, 

nr, no, no as given by Equations (8.4). 

G. 	 Using the results of steps E and F and Equation (8.1) compute 7* for 

each rotation axis. 

H. 	 Given Au, Z (slip magnitude and fault area) and using the results of step 

G compute the changes in the moments and products of inertia by means 

of Equations (4.6). 

I. 	 Use the results of step H to compute the magnitude and direction of the 

pole shift as well as the change in the length of the day. It is possible 

also to compute the changes in the second degree coefficients of the 

geopotential. 

10. 	 NUMERICAL PROCEDURE 

The numerical integration of the system of differential equations given by 

Equation (6.3) - (6.6) requires the adoption of an earth model giving the radial 

distribution of density p and the elastic parameters g and X. The two earthmodels 

used in this investigation are the following: 

i. 	 the parametric earth model due to Dziewonski, Hales and Lapwood 

(1975) in which radial variations of density and elastic parameters are 

represented by piecewise continuous analytical functions of the radius. 

19 
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In particular the' model representing a-continental structure was used 

and it is referred to, as the P model.below. 

ii. 	 the model M3 of Landisman, Sato-and Nafe (1-965) as given by Israel, 

Ben-Menahem and Singh (1973)'. The density and elastic parameters for 

this model are given in table, form and a cubic spline interpolation was 

used to obtain their values as fncmtions of the radius. 

The 	 numerical integration of modbl P is perfbrmed asz follows: 

a. 	 a homogeneous earth model is used to obtain nominal. values, for the, 

radial functions (y, y2, 3 , 74• Y 5 , Y6 ) at-a' point within the inner solid 

core, . e. , r. = 6A371 x 106 em. The, system of'differential Equations 

(6.3) is numerically integratedT outwardsz to the boundary between the­

solid inner core and the ]Iquid core., Since y. vanishes fin the,liquid 

core, Equations (6.7), yield:. 

{y 2} = 

{y1 } = (:1POg0) {y2} 

{yj. = -4rGpo,{ 

The third: Eqpation (6.6)' yields,,the value oiy, within.the , liqpid; core.. 

There, remains, the condition, matching tIre values of'y 4, at the boundary;. 

i. e., 

20, 
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SC{Y4LC 0 (10.2) 

Equation (6.6) are then integrated outwards throughout the liquid core to 

the mantle boundary. 

b. the homogeneous earth model yields nominal values for the variables 

(y1 , y3 , y5 ) at the surface of the earth where Y2 and Y4 are required to 

vanish. The value of Y6 is obtained from Equations (6.8) and (6. 9), 

Equations (6.3) are then integrated inwards to the liquid core boundary. 

c. the two sets of solutions meeting at the liquid core-mantle boundary 

must satisfy the conditions given by Equations (6.7), i.e., 

LC{Y2}M -Pogo LC{YM = 0 

= 0 

LC{SIM= 0 

LC {Y6 M - 4Gp0o LC{Y}M - 0 

(10.3) 

d. a general purpose adaptive iterator for nonlinear problems (Campbell 

et al.) is used in order to satisfy the five conditions expressed by Equa­

tions (10.2) and (10.3), which play the role of dependent variables. The 

independent variables subject to variation are the values of (y, Y2 , Y3 , 

Y4 , Y5 Y6 ) at ro = 6. 371 x 106cm and the values of (Y,' Y3' Y5 ) at the 

surface of the earth. The numerical integration package consists of an 

Adams-Moulton, IRunge-Kutta fourth order. 
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The numerical integration of model M3 follows a similar procedure but there 

are some differences which are outlined below: 

a. 	 the absence of a solid inner core in this model requires that nominal 

values of (y, yo) obtained from the homogeneous solution at ro = 6.371 

x 106 cm be used in the integration of Equations (6.6) throughout the liquid 

core. 

b. the value of the gravitational force, go, is obtained from the integration 

of an additional differential equation (Pekeris and Jarosoh, 1958) i.e., 

dgo 2 -r + - go = 4TrGpo (10.4) 
dr r 

Nominal initial values of go for the integration of Equation (10.4) are ob­

tained from the homogeneous solution at ro = 6. 371 x 106 am and at the 

surface of the earth. Model P does not require this procedure since the 

density is given by polynomials, 

c. 	 the adaptive iterator uses the values of (y., y6 , go) at r o and the values 

of (y, Y3, y5 , go) at the surface of the earth as independent variables 

in order to satisfy the set of conditions expressed by Equations (10.3) and 

the condition on go at the liquid core-mantle boundary, i.e., 

0 	 (10.5)S= 

Once the adaptive iterator has converged to a set of initial conditions the so­

lutiontrajectories for the radial functions have been obtained. Figures 10. 1-10.12 
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below give the results for the P and M3 models- The units for the radial func­

tions are omitted in the figures, they are given by Equations (5.7), (5.8), (6.1) 

and (6. 2). 

11. 	 NUMERICAL RESULTS AND CONCLUSIONS 

The magnitude of the pole shift can be obtained from the following equation 

(Ben-Menahem 	 and Israel, 1970): 

MS - (ALXz (11. 1) 

Afo



where a is the radius of the earth, coE the:mean angular velocity of the diurnal 

rotation, fo0 is the angular frequency of the free Chandler wobble and A is the 

mean equatorial moment of inertia. The following values were used in the 

computation 

a 	 = 6.371x 10 8 cm 

WE 	 = 7.292 x 10 - 5 rad/sec 

-
fo = 1.69 x 10 7 rad/sec



2

x 104 4 gm cmA 	 = 8.016 

The 	 direction of the shift is given by 

AS 	 = arc tan 	 '(11.2)\AIxz/ 

The change in the length of the day is calculated by means of the following equa­

tion (Munk and MacDonald, 1975, page 98) 
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ALOD (LOD) (1l 3) 

where JLOD is the-mean length of the daiy and'Cls the mean polar mome1t of in­

ertia. The following values were used in the caliputation: 

LOD = 86,400 sec 

2

C = 8.043 t'i0 44g'eMC 

The changes in the. seconcd degree coefficiets d the gebpotential are given by well 

known relthio s which are reproduced belOwt 
AC° = (Q/a)(AI + Al - 2Ay, 

At = Q(Ak ) 

(11.4) 

AC2 = (Q/4)(A)"vvAxu 

'AS - (Q12.)(Atlky) 

Q = |a1 

where M ig the mass of the Earth, 

M t.975x10 21 gm 

In order to generate ftumdeeal resdlMs h rn0d d ant his t0 be chosen. 

The 86urce paraiheters corresponding to the Alhakat earthquake oh Maikh 28j 

1'964 are uad, as gived by Thtael let t 19j , The p&fahetets glmg t'h pb­

sition of the sOblkce at the followiUg, 
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0 = 28.90



45 = 212.40



a = 2250



where 0 denotes colatitude, 0 the longitude and a the fault azimuth. The depth of 

the source is allowed to take the values of 20, 60, 100 and 200kin, and numerical 

results are given for each case. The magnitude of the source is determined by 

the slip magnitude Au and the fault area Z, 

Au = 20 meters



r = 70,000kM2



The source mechanism is specified by the dip angle 6 and the slip angle X. Nu­

merical results are generated for the three assumptions below, 

i. vertical strike-slip: X = 0, 6 = 90' 

ii. vertical dip-slip: X = 90 ° , 8 = 90' 

iii. dip-slip on 45' plane: X = 900, 5 = 450 

Tables 11. 1-11.8 below give the results generated for the parametric earth 

model due to Dziewonski et al. denoted as model P, and the earth model M3 of 

Landisman et al. 

The results indicate that the magnitude of the pole displacement depends on 

the assumptions concerning the mechanism of the source, the same can be said 
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with respect to the direction of the shift and the change in the length of the day. 

The type of earth model used in the computations has soie bearing in the results 

as is to be expected but not nearly as much as the type of source mechanism. The 

depth of the source introduces variations in the magnitude of the displacement and 

the chaige -i the length of the day but the direction of shift is insensible to this 

parameter in the Cases corresponding to a vetieal strike-slip and a vertical dip­

slip, in these cages the direction of shift ij iso invariable togardless of the type 

of earth model. Israel et al. (19-73) used a different method to obtain the dis­

placement of the pole for model 3 , in genekal the results of this investigation 

are in agreement with those given by them. 
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Vertio l P 
 

Strike-Slip M 3 
 

Vertical P 
 

Dip-Slip 
 

Dip-Slip P 
 
O 1 . .. 
 

45' Plane 1 3 

Vertical P 

Strike-Slip m 3 

v-peical P 
 

pip-Slip N 3 

Dip=,Sip P 

450 Plane M 

. .
 


Table 11.1



Pole Shift (pm)



20km 60km 
 

7.3 17,4 

.1 17,,3 

2.0 7.3 

2.1 7.7 

19.4 4a3 
 
.. ... . . .. .. 
 

22, 6 4.7 

Table 11.2



Angle (Degrees)



20km 60km 
 

-147,6 -147,6 
 

=147.,6 -147.6 
 

91.0 91100o 
 

#1.0 91,9 

,35.6 38.,0 

-28.4 r33,0 
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100km 200km



18.8 18.4



16,6 17.8



13.1 27.7 

13.8 28.9 

46.2 45.4


.... -- , '­

43.7 44.3 

100km 2,0,0 km 

-147.6 -1447..6 

147.6 r147.6 

91..



9.,9



-43.2 52.2 

-3,5.7 -47-1 
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Vertical 


Strike-Slip 


Vertical 


Dip-Slip 


Dip-Slip 

on 


450 Plane 


Vertical 


Strike-Slip 


Vertical 


Dip-Slip 


Dip-Slip 

on 


450 Plane 


P 

M3 

P 

mV3 


P 

M 3 


P 

M 3 


P 

M 3 


P 

M 3 


Table 11.3 


ALOD (see) x 108 


20km 60 km 


127 302 


140 300 


-52 -189 


-56 -199 


741 1686 


910 1815 


Table 11.4 


AC20 x 10 10 


20 km 60 km 

-0.073 -0.174 

-0.080 -0.172 

0.030 0.109 

0.032 0.114 

-0.426 -0.971 

-0.524 -1.045 

100 km 


317 


287 


-339 


-357 


1627 


1662 


100 km 

-'0.182 

-0.165 

0.195 

0.205 

-0.937 

-0.957 

200km 


319 


308 


-718 


-748 


1404 


1482 


200ki 

-0.184 

-0.177 

0.413 

0.430 

-0.808 

-0.853 
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Table 11, 5 

Vertical P 
 

Strike-Slip M3 
 

Vertical P 
 

Dip-,Slip - 3 
 

Dip-Slip P 
 
on 

450 Plane M 3 

Vertical P 
 

Strike-Slip m3 
 

Vertical P 
 

Dip-Slip 3 
 

Dip'Slip P 
 
on ­

450 Plane ImV3 

AC 21 

20km 

-0,075 

-0.082 

-0.0004 

-0. O00,4 

.0.1190 
. . .
 


0.239 

0m xl 

60km 

-0.177 

-0.176 

-0.001 

-0. 001 

0.429 
... .



0.470 

Table 11._6



AS 21 .X16'



. .
 


100 km 

ZO. 186 

-0.168 

-0.002 

-0..003 

0.405 

0.427 

100km 

-0.t18 

-0.4107 

0.157 

0.d!66 

-0. P80 

-,Q.307 

200km 

-0.187 

-0.180 

'O.006 

-9.0,06 

:0..334 

0.362 

490km 

-0.119 

-0.114 

0.433 

,0.347 

-0.431 

-0.390 

20:km 

-0. 047 

-0.052 

0. 024 

.L0.026 

-.0.!131 
-0 
-0.129 

QO km 

-0.112 

-0.1-i1 

Q.088 

t0.092 

-0.336 
-. 
-0,.306 
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Table 11. 7 

-AC22 x lol 

20 km 60 km 100 km 200 km 

Vertical P -0.394 -0.933 -0.979 -0.987 

Strike-Slip M 3 -0.432 -0.928 -0.888 -0.952 

Vertical P 0.030 0.110 0.198 0.418 

Dip-Slip M 3 0.033 0.116 0,208 0.436 

Dip-Slip P 0.283 0.685 0.750 0.808 
on 

450 Plane M 3 0.289 0.650 0.639 0.751 

Table 11.8 

AS 2 2 x 1011 

20km 60 km 100 km 200km 

Vertical P -0. 839 -1. 984 -2.081 -2.099 

Strike-Slip M 3 -0.919 -1.972 -1.887 -2.024 

Vertical P -0.070 -0.253 -0.453 -0.958 

Dip-Slip M3 -0.075 -0.265 -0.477 -0.998 

Dip-Slip P 0.603 1.457 1.595 1.719 
on 

45' Plane M 3 0.614 1.383 1.358 1.597 

45 
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FIQURE CAPTIONS



Figure 10.1. y, vs. r, Model P 

Figure 10.2. Y2 vs. r, Model P 

Figure 10.3. Y3 vs. r, Model P 

Figure 10.4. Y4 vs. r, Model P 

Figure 10.5. Y5 vs. r, Model P 

Figure 10. 6. Y6 vs. r, Model P 

Figure 10.7. yl vs. r, Model M3 

Figure 10.8. Y2 vs. r, Model M3 

Figure 10.9. Y3 vs. r, Model M 3 

Figure 10.10. Y4 vs. r, Model M3 

Figure 10.11. y. vs. r, Model M 3 

Figure 10.12. Y6 vs. r, Model M3 


