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INTRODUCTI(?N

A study of the effects of earthquakes on the rotational motion of the earth has
been conducted. The analytical developments providing the connection between-
the fault parameters and the corresponding changes in the moments and products
of inertia are due to Rice and Chinnery (1972), the method involves the applica-
tion of the reciprocal theorem of elasticity and Volterra's formula as well as the
displacement and stress fields for the second degree static response of the earth

model being used,

Two earth models have been used in the investigation, the parametric model
due to Dziewonski, Hales and Lapwood (1975) and the M; model of Landisman,

Sato and Nafe (1965) as given by Israel, Ben-Menahem and Singh (1973).

In order to obtain the displacement and stress fields it is necessary to inte-
grate numerically a system of differential equations représenting the state of
equilibrium of an elastic body. The numerical integration problem presents cer-
tain aspects which require consideration; some of these aspects are the following:
the conditions in a neighborhood close to the origin, at which tﬁe differential
equations become singula:r; and the appropriate boundary conditions between the

solid and the liquid parts of the body.

The numerical results of the investigation yield the magnitude and direction
of the pole shift as well as the change in the length of the day. In addition, the

h

changes in the second degree coefficients of the geopotential have been .computed.
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In order to generate numerical results the source parameters corresponding
to the Alaskan earthquake on March 28, 1964 were chosen, as given by Israel

et al., 1973.

1. RELATION BETWEEN MOMENT OF INERTIA, ROTATION AND FAULTING
Consider a body of mass M rotating with angular velocity @ and let the axis

L be defined by the direction of &,

The moment of inertia with respect to the axis L is defined by

— 2
I = fdo dm 1.1)

M

d, is the perpendicular distance from the element of mass dm to the_ axis I,
Assume a displacement field to be defined throughout the body due to causes other
than rotation, i.e., as a vesult of faulting. The perpendicular distance from dm
to the axis L is now given by

d =d, +Ad (1.2}
where Ad denotes the component of displacement due te faulting perpendicular to
L., The moment of inertia is now given by

I = f d? dm (1. 8)
"M
substituting Equation (1, 2) into Equation (1. 3) yields,

I, = fd%dm +2 [((IOA_d)dm+fAd2di11 (L.4)

M M M



Assume Ad to be small eﬁough so that the term containing Ad? can be neglected,
then
Al =2 f (dyAd)dm (1.5)
M .-

where AL stands for the increment in the moment of inertia due to faulting,

Now, the rotational potential is given by

- 2.2
T= 3 w*dg (1.6}
and the corresponding force by
o 24 1.7
—_— - w -
2, 0 (1.7)
Therefore,
d L2 1
= — — .8
0= 75 (1.8)

2 oT
AL = — (—— Ad) dm (L.9)
M

2, RECIPROCAL THEOREM AND VOLTERRA'S FORMULA

The Reciprocal Theorem of elasticity is due to E, Betti, its prpof: can be
found in the book by Love (1944), more recently Smylie and Manginha (1971) and
Rice a;ld Chinnery (1972) have extended it to the case of self-gravitatix;g elastic

systems in states of large initial hydrostatic stress. The presentation which fol-

lows is due to Rice and Chinmery (1972).
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Consider a body of mass M and a surface ¥ within the body, define the

following:

2T, f7: unit vectors normal to an element of surface dZ, opposite in direc-

tion, with f~ pointing from dX~ to dTt,

a displacement field defined throughout M with a discontinuity,

o
AR =%t -1, due to slip, defined on =,
[e] : stress field defined throughout M, due to.
T a body force field, defined throughout M, independent, of i.

u*  : a displacement field defined throughout M, due to the application of

T,
[0%] : stress field defined throughout M, due toU*,
Assume the following conditions to hold:
i. [o] and[o*] vanish at the outer surface of the body.

ii. f[o*] and U are continuous across I since they: are produced byf"“, with

no slip on Z,

iii. (’fi + [al )+ + (@ - [0])" = 0, this last condition implies. equilibrium after

slip.



The Reciprocal Theorem states that the work done by the body force T and
the stress [0*] acting through the displacements u is equal to the work done by
by the stresses [¢] acting through the displacements W, Therefore,

f@‘ -"ﬁ‘)dm+f{(ﬁ- [6*] ~ W' + @ - [o%] -Tf)“}dz
. h "

M
(2.1)

= f {(ﬁ- 6] ~ U+ @ - [o] - 0E)pdS
)

By virtue of conditions (ii.) and (iii.} Equation (2.1) can be written as:

'/-(T’=T= s Wdm =f(ﬁ-{o*] « A0)dZ ' (2.2)
M Iz

with B=1", now let AU = (Au)S, 's?being a unit vector in the direction of slip.
Furthermore define
% = 1« [p%] % {2.3).

Equation (2. 2) can then be written as

f - )dm = f THAW)Z (2.4)
M X

Equation (2.4} is referred to as Volterra's formula,

3. RELATION BETWEEN MOMENT OF INERTIA AND VOLTERRA'S FORMULA
Consider the integrand in the left side of Equation (2.4), let T denote a body
foree due to rotation as given by Equation (1.7) and let U stand for the displace-

ment field due fo faulting, Equations (1.9) and (2.4) then yield


http:4f(-*).dm

Al

where

N A
rf =R lo%], -8

2 )
L= f 75 (Au)dZ
w" vy

(3.1}

(3.2)

[o*] ;, ‘being the stresses due to the rotation about the axis I, The stress tensor

[0*]; contains a factor w® which will cancel the saime factor appearing in the

denominator on the right side of Equation (3, 1), this will bé shown below,

4, MOMENTS AND PRODUCTS OF INERTIA

Consider the inertia dyadie,

Laf L7
m =5t L7
:_'“Ixzﬁ i —Iyzjl;?
Note that,
TomT= 1,

~D
[
s

~ .e
k * ) -
Define the following unit vecfors:

£ aHE

= (’1{/\/5)(’1?_?)
T = (/DD
v = @DE-T

& = an/2il -9

P

A f

_Iyzj k|

. Yy

(4. 2y

(4.8)



Then,

Ny

AL,

H

Al

XZ

¢ = ANVDED)

21

-

p-0-m %= 21,

“lxz

1 £ ) L '
— f 7 (Au)dZ - — f THAU)Z
w” vz w” Sy

! 1
— f EOUE - — f 7§(Awdz
w~ 5 (63 z

1 1
= —— —— &+
~ fz ST - — j‘; ri(bu)dz

As indicated by Equation (3. 2) the quantities 7§, T}";, cess Té‘ denote the shear

(4. 3)
{cont.)

(4. 4)

(4, 9)

stresses induced on % by rotation about the axis indicated by the subscript.

If the seismic event is assumed to be represented by a point source then

Equations (4.5) can be written as follows.

7



10

AL, = 2Kr}
AEyy = ZKT;‘;
AL, = 2Kk
4,6
Aly, = K(rh ~7¥) 0
AIyz = K(T;—T;{)
ALy, = K@§-73)
where
K = (1/w)Au(E) 4.7)

5. STRESSES
Equations (4. 5) and (3. 2) require knowledge of the stresses produced on X
by rotation about a certain axis, this constitutes a part of a more general prob-

lem which is briefly outlined below.,

The equations of motion governing the vibrations of an elastic body are given

by Love (1944):
aZ

dA  9A 0A
(A+u) o 'y 95l T oV patZ (5.1)
on a au
N P AP (5.2)
ox ay 0z
U = (u,, Uy u, ) . {5.3)
The body force potential V is given by
V=V, +¥ (5.4
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where{ denotes the perturbéﬁon from t‘heundisturbed* state V.. V must obey
Poisson's equation:
ViV = 47Gp (5.5)
Let the disturbing potential be given
T, = (I/«';)“ 8,0, ¢) (5.6)

where S, denotes a surface spherical harmonic and a the radius of the earth,

Equations (5,1) and (5.5) can be expressed in spherical coordinates and with
the appropriate set of boundary conditions they will admit the following eigen

vector solutions:

u =y (D8,
a5
U, =y, —
0 =0 (5.7)
¥4} 85,
u¢ = - —
. sinf 9¢

The stress~strain relations yield:
O = ¥,(08,

a5

0g = ¥, (1) —
jyil 4 20

(5. 8)
y, @) 38,

sin @ E;

Org

’ 2
2 . n(n+1) 2u 0°8
9 = [7 A Fwly, 2y - — ?\ys] Sp ¥ (T ya) aﬂf
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M2 o | N
Opp ~ “[? A F gy FFAY] = AYSJ% Sh

2 88 2 \ 928
+ (_p_ cot9y3) 2 +( - y3) i
I > af Tsin?e 3> o
) (5. 8)

_ (_ 21 coth oS, . -\ 8%s, (cont, )
%0 r sinf 73 ) rsin?? Y3 g2

2
+( Y F S y)‘ a Sﬂ s
. \rsing "3/ agas

where,
: 2 n(n+ 1) .
Ye = A [YI +T i~ " yg] +2}1y1 ,
(5.9)
: Y3 Y
Vg T M (y3~-— +-)

I ‘ r
The time-dependent solution ¢! has been omitted from Equations (5.7) and
(5.8). The dots denote (d/dr). The stresses given by Equation (b. 8) are those
produced by the action of the disturbing potential T, and do not include the initial

hydrostatic stress,

6. RADIAL FUNCTIONS
The radial functions y,, ¥,, y, and y, appearing in Equations (5, 7) and (5. 8)
have to be obtained by nummerical integration when working with models resem-

bling the real Earth. In addition define

il

¥ =y (05,0, 9) (6.1)

i

Yo = V5 =4nGpyy, (6.2)

10



13

Equations (5.1) and (5.5) can then be expressed as a system of six ordinary
differential equations (Alterman et al., 1959)
v = MY (6.3)

Y = (Y1555 Y35 Vg Vs Ye)? (6.4)

The static or steady-state solution is obtained by letting the frequency f,
be equal to zero. The elements of the matrix M are given by Smylie and
Mansinha (1971) and Israel et al. (1973). They are given below for the sake of
completeness. The symbols p_, ¢ and A denote the density and the elastic para-m—-
eters, g, stands for the gravitational acceleration and n is the degree of the de-

formation, in this case n= 2.

Let
c= 1/(7\+L21-1)
M, = ;2?\c/r
M,; = n(n+ )c/r
M, = 4p(3\+ 2/ —4p g [r (6.5)
M,, = -4ucfr

M,, = -n(n+ {20+ 2m)c/r? - p g, /1]

M,, = nn+Dfr
Mzﬁ. = Py

My, = -1/r ‘
My, = 1/r

11
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My, = Hu
My; = -200X + 21/t + pogofr |
M42 = _RC/I

My, = 4dnln+ Bph+ p)efs? - 2u/r?

M,, = -3/r

Mys = —polt (cgit?;
Mg, = 47Gp,

Mg = 1

Mgy = —4aGn(n + De,/r

Mys = n(n+ 1)/#*

M¢o = =2/r

all the other elements are equal to zero.

Equations (6. 3) and (6. 5), are applicable to the solid regions of the earth,
The equations for the liquid core have been, developed. by Smylie and Mansinha

(1971) and Israel et al, (1973), they are given below:

Yy = Vsl

v, =0

¥y = (dys Tryg)n(mt g, (6.6)
Ve =0

¥s = (4nGp yg)fe, + v,

[n(n + 1)/e? - IGWpr/gQF]f'YS_ - (47TGPQ‘/SO +2/ ﬂ)yﬁ

e
-
i

12
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The following assumptions are implicit in the set of Equation (6.6):

i, the liquid core is in a state of hydrostatic equilibrium before and affer
the deformation, this means that the tangential stresses are equal to

Zero,

ii, the dilatation and the normal stress are equal {o zero. Zero dilatation
is consistent with constant core volume and makeg the Adams-Williamson

condition unnecessary.

Equations (6.3) and (6.6) have to satisfy certain conditions at the boundaries be-
tween the solid and the liquid parts o? the earth, there has been some debate in
the literature concerning this issue. The conditions given below are those de-
veloped by Israel et al, (1973) and Crossley and Gubbins (1975), at least with
respect to the condition for the variable y,, Let {Yi} denote the jump (discon-
tinuity) in the variable y; at the boundary between the liquid and the sc;lid parts,
then

{v,} = some constant

{r2} = pog, (vi}

{y3} = some constant (6.7

{ra} = 0

{rs} =0

{ve} = ~47Go, {y,}

13
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Note that Equations.(6.7)imply the continuity of'y, andy,.~

Alterman et al. (1959) developed the remaining boundary conditions to be
imposed on the differential equations. At the deformed surface of the earth the -
stresses must vanish and the gravitational potential and its: gradient must be

coniinuous, i, e.,

y,(a) = 0
Yale) = 0 (6..8).
+1 ‘
¥ (a)+ (t1) }js,(’a), =h

where a denotes fhe_ radius of the earth and b is a. constant with 2 value depending _
on the nature, of the disturbance as shown by Takeuchi et al, (1962),. In particular,
for the earth-tide problem:

b = 2n+1)a (6.9)
hnplici;: in Equation {(6.9) is the assumption that the disturhing 'pat.ept,ial is givep

by Equation (5.6).

7. THE RQTATIONAL POTENTIAL
The rotational potential as given by Equation.(1,6) can be expressed in the
form of Equation (5.6) (Sanchez, 1974):
T, = @Wa)*S,(0.9) (7.1)
where
2
5,0,¢) = Z P71 (cos 0)(aY cas mo + ulsin me) (7.2)
m=o

14
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g = (a®/6)(w} + wy ~20])

al = —(az}s)(wxwz>

uy = —(a?[3)(wyw,) (7.3
aj = (@*/12)(w] - w})

uj = A—(a2/6)(wxwy)

2

v+ wg) which pro-

Equation (7.1) does not include a term equal to (1/ 3)((9}2{ + W
duces expansion or contraction of the body as a whole, such a deformation will

affect the moments of inertia.

The stress tensor which appears in Equations (3, 2) and (4. 5) requires the
evaluation of the stresses given by Equation (5. 8), the stresses are produced by

rotation about a certain axis, the components of rotation w,, and w, appear-

ing in Equations (7.3) will take values corresponding to the axis:
(wy, @y, @)y = (@, 0,0)

(g, 0y, @), = (0,w,0)

y)
(g, @y, @,), = (0,0, w)

(g, @y, @) = AN, 0, 0) _—
(C‘JX’ w}” wz)m, = (1/\/5)((-‘3: -, O)

]

(wx: wy: wz)g

(A0, w, w),

(wys @ys ©07)y = AADHO, -0, )

(wx:wya w?_)o = (]/\/i)(-wa 0,0)) .
(g ys @)y = IV D(@.0, w)

15
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8. SOURCE PARAMETERS

The shear stresses given by Equation (3. 2) contain the source parameters
7 and € as well as the stress tensor due to rotation., The stresses given by
Equations (5.8) are computed in a spherical system of coordinates, the source
parameters 0 and § are usually given in an epicentral coordinate system, the
necegsary transformations are giw.ren helow:

7% = N 0,8 + 1y 0ggSg + 404054 +2(n,0,98y 150,98} (‘8.‘1)'

+ Z(nror¢s¢ + n¢ar¢sr) + Z(na 0‘3¢s¢ + n40y ¢53)

The following transformations are given by Israel et al. (1973), Figure 8.1 below

is taken from that work:

{’s‘} N {coé 1y sin Acos & sin Asin 8Y,
fa 0 -gin & cosd

e —COos ¢ sin 0] tes
e2 ~gin & -cos o 0¥< 2 (8.3)
& Ry R

Making use of Equations (8.2) and (8. 3) yields:

(8.2)

s = sin Asin'8
8y = ~COSACOS & - Sin Acos dsino
S¢ = cOS Asin o ~ sin Acosdcosa
(8.4)
n. = cosd
ng = $in sin «

ng = sin Scos o

where

16
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&: dip angle
A:  slip angle

«: azimuth angle

9. OUTLINE OF PROCEDURE
The numerical resulis which are given in the last section were obtained by
assuming the seismic event to be represented by a ‘point source, The following

is an-outline of the procedure.

A. Given h (source depth) integrate the .system of differential equations
given by Equations {6.3) ~ (6.:6) to obtain (v, ¥, V3. w4) at the cor-

responding value of r,

B. -Choose an axis of rotation, the corresponding setafc,, Wys w,} will ‘be

given by Equations (7.4), «w .can be:setequal to 1,

C. Using the results of step’B and Equatioh-(7.3) compute g3, .3, s, 3,

u) for each axis-of rotation.

D. Given ¢ and ¢ (colatitude and longitude of the soureé)compute S, and
its derivatives for.-each rotation axis by means of Bquation (7.2) and the

‘results of step-C.

E. Using the results of steps-A and D and Equations:(5.8).compute o_., 6.4,

Orgs %99+ %> Pa¢ -for each rotation axis.

‘18
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F. Given-d, A, o (dip, slip and azimuth of the fault) compute s, sp, g9

np, Ny, Ny as given by Equations (8.4).

(. Using the results of sieps E and F and Equation (8.1) compute 7 for

each rotation axis.

H. Given Au, ¥ (slip magnitude and fault area) and using the resulis of step
G compute the changes in the moments and products of inertia by means

of Equations (4.6).

I. Use the results of step H to compute the magnitude and direction of the
pole shift as well as the change in the length of the day. It is possible
also to compute the changes in the second degree coefficients of the

geopotential.

10, NUMERICAL PROCEDURE

The numeriecal integration of the system of differential equations given bj}
Equation (6. 3) - (6.6) requires the adoption of an earth model giving the radial
distribution of density p and the elastic parameters p and A. The two earthmodels

used in this investigation are the following:

i, the parametric earth model due to Dziewonski, Hales and Lapwood
(1975) in which radial variations of density and elastic parameters are

represenied by piecewise continuous analytical functlions of the radius.

19
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In particular the model represlenting a- continental slructure was used

and it is referred to as the P model below.

ii. the model M, of Landisman, Sato and Nafe (1965) as given by Israel,
Ben-Menahem and Singh (1873). The density and elastic parameters for
this. model are given in table form and a cubic spline interpolation was

used to obtain their values as functions of the radius,
The numerical integration of model P is performed as: follows:

a. a ho:_:nogeneous earth model is used to obtain nominal values for the
radia."r functions (¥, ¥,» Y5> Y4» ¥s» ¥¢) at-2 point within the inner' solid
core, hue., r, =6.371L x 10% ecm, The system of differential Equatioﬂn;s.
(6..3) is numerically integrated outwards: to the boundary between the-
solid inner core and the liquid core.. Since y; vanishes in:the liquid
core, Equations (6.7) yield:.

{2} =%

{1} = Qlpogs) {v2}
‘Ey(f]! “4”6901 {yv}F
fvsf =0

The third’ Equation (6..6) yields the value of y;, withintthe liquid: core.

(205.3):

There remains the condifion matching: the values of 'y, at the boundary;,

ia Cssy.

20-
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d = 0
sC {y4}Lc (10. 2)
Equation (6.6) are then integrated outwards throughout the liquid core to

the mantle boundary.

the homogeneous earth model yields nominal values for the variables
(¥, ¥3 ¥5) at the surface of the earth where y, and y, are required to
vanish, The value of y. is obtained from Equations (6.8) and (6.9),

Equations (6,3) are then integrated inwards to the ligquid core boundary.

the two sets of solutions meeting at the liquid core-mantle boundary

must satisfy the conditions given by Equations (6.7), i.e.,

LC{yZ}M " Poko Lc{yl}m =0
Lc{y4}M =0
LC{ys}M =0

ve(Yshy ~*Co Lc{yl}m -0

10.3)

a general purpose adaptive iterator for nonlinear problems (Campbell
et al.) is used in order to satisfy the five conditions expressed by Equa~-
tions (10.2) and (10. 8), which play the role of dependent variables., The
independent variables subject to variation are the values of (y,, v,, ¥3
Y4s ¥s5» ¥g) at v, = 86,371 x 10% cm and the values of (7, Y5, ¥5) at the
surface of the earth, The numerical integration package consists of an

Adams-Moulton, Runge-Kutta fourth order,

21
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The numerical integration of model M, follows a similar procedure but there

are some differences which are outlined below:

a,

e,

the absence of a solid inner core in this model requires that nominal
values of (y,, y) obtained from the homogeneous solution at r = 6.371
x 10° cm be used in the integration of Equations (6.6) throughout the ligquid

core,

the value of the gravitational force, g , is obtained from the integration

of an additional differential equation (Pekeris and Jarosch, 1958) i.e.,

dg 2
=2 4 = g = 4nGp, (10.4)
dr r

Nominal initial values of g, for the integration of Equation (10,4} are ob-
tained from the homogeneous solution at r, =6.371 x 105 cm and at the
surface of the earth, Model P does not require this procedure since the

density is given by polynomials,

the adaptive iterator uses the values of V5» Y40 &) at r and the values
of §y,s ¥3» V5 8,) at the surface of the earth as independent variables

in order to satisfy the set of conditions expressed by Equations (10.3) and
the condition on g, at the liquid core-mantle boundary, i.e.,

LC{gO}M =0 (10. 5)

Once the adaptive iterator has converged to a set of initial conditions the so-

lutiontrajectories for the radial functions have been obtained, Figures 10,1-10.12
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below give the results for the P and M, models; The units for the radial func-
tions are omitted in the figures, they are given by Equations (5.7), (5.8), (6.1)

and (6. 2).

11, NUMERICAL RESULTS AND CONCLUSIONS
The magnitude of the pole shift can be obtained from the following ecquation
(Ben-Menahem and Israel, 1970):
Ms = %’f— ('AIf{z;AI;Z')% (11.1),
where a is the radius of the earth, w; themean angular velocity of the diurnal
rotation, f_ is the angular frequency of the free Chandler wobble and A is the

mean equatorial moment of inertia. The following values were used in the

computation
a = 6,371 x10%em
tp = 1,292 x 10™° rad/sec
f, = 1.69x 10-7 rad/sec
A = 8,016 x 10** gm cm?

The direction of the shift is given by

A z
AS = arctan - . (11.2)

AKZ

The change in the length of the day is calculaied by means of the following equa-~

tion (Munk and MacDonald, 1975, page 98)
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Izz

ALOD = (LGD) (11, 3)

where LOD is the méan length of the day and € is the mean polar moment of in-

ertia. The following valies were used in the ecfputation:

1.OD = B86,400sec

c 8.043 2 10*4 g cin?

The changes in the secotd degree coefficiexts of the geopotential are given by well
Kknown rélatiotis which are reproduced Below:
ACY = (UL, + Alyy = 241,,)
 ACY = QL)

B8] = QAL,)

_ i (11.4)
ACS = (QI4)(Dyy = Alyy)
ASS = (Q/N(Al)
Q = 1/a*M

where M is the mass of the Earth,

= 5,975 x 1027 gm
In order to generate numerical results 4 seidinie event has t6 bé chosen.
The Source pataieters correésponding to thé Alaskan earthquake on Mayreh 28,
1964 are used, as given by Israel 6t al,; 1978, The parameters givitg the po-

sition of the source are the following:
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# = 28.9°
¢ = 212, 4°
o = 225°

where 8 denotes colatitude, ¢ the longitude and « the fault azimuth. The depth of
the source is allowed to take the values of 20, 60, 100 and 200km, and numerical
results are given for each case. The magnitude of the source is determined by

the slip magnitude Au and the fault area Z,

Au

20 meters

) 70, 000 km?

]

The source mechanism is specified by the dip angle § and the slip angle A. Nu-

merical results are generated for the three assumptions below,

i. vertieal strike~slip;: A =0°, § = 90°
ii. vertical dip-slip: A = 90°, & = 90°

iii, dip-slip on 45° plane: A = 90°, § = 45°

Tables 11, 1-11, 8 below give the results generated for the parametric earth
model due to Dziewonski et al. denoted as model P, and the earth model M, of

Landisman et al.

The results indicate that the magnitude of the pole displacement depends on

the assumptions concerning the mechanism of the source, the same can be said
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with respect to the direction of the ghift and the change in the length of the day.
The type of earth model used in the computations has some bearing in the results
as is to be expected but not fiearly as miuch as the type of source mechanism. The
depth of the sdurce introduces variations in the magnitude of the displacement and
the charige in the length of the day but the diréection of shift is insensible to this
parameter in the cases corresponding to a vertical strike-slip and a vertical dip-
slip, in these cases the direction of shift i§ also'invariable regardless of the type
of earth model. Israel et al. (1973) used a different methiod to obtain the dis-
placement of the pole for inodel M,, in general the results of this investigation

are in agreement with thosé given by them.
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‘Table 11.1
Pole Shift (cm)

31

20km  60km

100km

200k

Vertieal

Strike-Slip

7.3 17,4

18.3

18.4

8.1 17.3

16,6

17.8

Vertical

Dip-Slip

18.1

£8.9

Dip-Slip
on
45° Plane

45.4

Vertical

Dip-Slip

Vertical

Dip=Slip
on
45° Plane

22,6 46,7 43,7 24,3
Table 11,2
Angle (Degrees)
20km 60 km 100km 200 km
~147,6  -147,6  -147,6  -147,6
-147,6  -147.6 ~147.6  +147.6
9.0 91.0 9.0 910
9.0 910 91,0 91.0
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Table 11.3
ALOD (sec) x 108
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20km 60 km 100 km. 200 km
Vertical 127 302 317 319
Strike-Slip 140 300 287 308
Vertical -52 -189 " _339 718
Dip-Slip -56 -199 -359 ~748
Dip-Slip 741 1686 1627 1404
on -
45° Plane 910 1815 1662 1482
Table 11.4
AC,, x 1010
20km 60 km 100km 200km
Vertical -0, 073 -0.174 -0.182 -0.184
Strike~Slip -0,080 -0.172 -0.165 -0.177
Vertical 0,030 0.109 0.195 0.413
Dip-Slip 0.032 0.114 0.205 0.430
Dip-Slip -0.428 -0.971 ~0.937 ~0.808
on
45° Plane -0.524 ~1.045 ~0.957 -0.853
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Taple 11,5
AC, x10%°
20km  60km 100km 200km
Vertical -0, 075 ) —01’5’7 '_'0-. 186 -0.187 |
Strike-Slip M, 20.082  -0.176  -0.168 -0.180
Vertical P 0.0004  ~0.001 ~0.002 -0.006
Dip-Slip - M, 0.0004  0.001  -0.003 ~0.006
Dip-Slip p 0.190  0.428 0,405 0.334
45° Plane M, ©0.239 0.470  .0.427 0.362
Table 11.6
A8, x 10"
_20:km ‘ 60km o 100"-1(11"1 200km
Vertical 0047 =0.112  -0.118 ~0.129
Strike-Slip M, o052 -0.11d 20.407  -0.114
Vertical P 0.0% 0.088  0.187 0.333
Dip-Slip MS 0,026 10,092 0.4668  .0.347
Dip-Slip P .0.136  -0.836  -0.380  -0.431
on e —— T " e
45° Plane M, -0.129  -0.306 -0.307 ~0.390
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Table 11.7
20km 60 km 100 km 200 km
Vertical -0.394 -0.933 -0.979 -0, 987
Strike-Slip -0,432 -0.928 -0,888 -0.952
Vertical 0.030 0.110 0.198 0,418
Dip-Slip 0.033 0.116 0,208 0.436
Dip-Slip 0.283 0. 685 0.750 0.808
on
45° Plane 0.289 0. 650 0.639 0.751
Table 11.8
AS,, x 101!
20km 60km 100 km 200km
Vertical -0,839 -1,984 -2,081 -2.099
Strike-Slip- -0.919 ~1.972 _1.887 2,024
Vertical -0.070 -0.253 -0.453 -0.958
Dip-Slip -0.075 -0.265 -0.477 -0,998
Dip-Slip 0.603 1,457 1.595 1,719
on
45° Plane 0.614 1.383 1.358 1.597
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