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NOMENCLATURE

The data are presented in the body axis coordinate system with the moment center located at
the base of the forebody models. Since the data were computer plotted, the corresponding plot
symbol, where used, is given together with the conventional symbol.

Conven-
_tional Plot
Symbol Symbol

Definition

Cy CA
CyF CAF
Cr CLM
Cm.R CRM
Cn CN

C, CYN
CPR CPR
Cp CPB
Cr CR
Cy CcY
ICyl ACY
d D

2 L

M MACH
p

Pp

preceding Pa

axial-force coefficient, balance 2?&1 force

axial-force coefficient adjusted for base pressure equal to free-stream static
pressure, (C gt Cp b)

pitching moment

pitching-moment coefficient, 75d

resultant-moment coefficient, (€, sin¥ + G, cos ¥)

normal force
qS
yawing moment
qSd

normal-force coefficient,

yawing-moment coefficient,

resultant-force center of pressure location, fraction of length, £, from nose

tip l————Cm’R 4

2 CR Q
Pp-p
base pressure coefficient, b

resultant-force coefficient in body axis system, /Cp? + Cy?

side-force
qS

side-force coefficient,
absolute value of Cy
base diameter, 15.24 cm
length of forebody, 53.3 cm
free-stream Mach number

free-stream static pressure

base pressure

ge Blank



Conven-
tional Plot
Symbol Symbol

Definition
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¥ PSI

free-stream dynamic pressure

Reynolds number, based on model base diameter
area of forebody base

distance beQind forebody apex along body axis
angle of attack, deg

angle of sideslip, deg

meridian angle measured from bottom center line; right side is positive
looking upstream

roll angle of model forebody about body axis of symmetry; clockwise is
positive looking upstream

roll angle of removable nose alone about axis of symmetry; clockwise is
positive looking upstream

angle between the resultant and normal forces, resultant force inclined to
o
the right is positive angle looking upstream, tan! _Y _
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Model Configuration Code
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FT1
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NB2
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afterbody attached to forebody

afterbody detached from forebody (separated by 0.16 cm gap), but -
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nose boom, length = 2.54 cm
nose boom, length = 5.08 cm
canopy

tangent-ogive forebody, BQ” =35
blunt nose, radius = 0.317 cm
blunt nose, radius = 0.635 cm
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sharp nose, radius = 0
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Plot
Symbol

Definition

NSBI
'NSTI
NST2
NST3

T2

T4

T4R

TS

T6

T7

T8
T9
T10

T11

T12

sharp nose with 0.32 by 2.54 cm nose boom
sharp nose with 0.32 cm wide strake
sharp nose with 0.64 cm wide strake
sharp nose with 1.27 cm wide strake

boundary-layer transition strip along forebody meridian, 8 = +15°,
full length

boundary-layer transition strip along forebody meridians, 6 = +30°,
full length

boundary-layer transition strip along forebody meridian on right side,
6 = 30°, full length

boundary-layer transition strip along forebody meridians, 6 = +30°,
2/3 body length

boundary-layer transition strip along forebody meridians, 6 = +30°,
1/3 body length

boundary-layer transition strip along forebody meridians, 8 = +60°,
full length

boundary-layer transition strip encircling model, % =0.05

boundary-layer transition strip encircling model, ix_ = 0.09

boundary-layer transition strip enciréling model, % =0.14

boundary-layer transition strip encircling model at junction of nose and

forebody, -!ﬁi =0.19

boundary-layer transition strip encircling model, % = 0.28



SIDE FORCES ON A TANGENT OGIVE FOREBODY WITH A FINENESS RATIO
OF 3.5 AT HIGH ANGLES-OF ATTACK AND MACH NUMBERS
FROM 0.1 TO 0.7
Earl R. Keener, Gary T. Chapman, Lee Cohen, and Jamshid Taleghani

Ames Research Center
SUMMARY

An experimental investigation was conducted in the Ames 12-Foot Wind Tunnel to determine
the subsonic aerodynamic characteristics, at high angles of attack, of a tangent ogive forebody with
a fineness ratio of 3.5. The investigation included the effects of nose bluntness, nose strakes, nose
booms, a simulated canopy, and boundary-layer trips. The forebody was also tested with a short
afterbody attached. Static longitudinal and lateral-directional stability data were obtained at
Reynolds numbers ranging from 0.3X10° to 3.8X10% (based on base diameter) at a Mach number
of 0.25, and at a Reynolds number of 0.8X10% at Mach numbers ranging from 0.1 to 0.7. Angle of
attack was varied from 0° to 88° at zero sideslip, and the sideslip angle was varied from - 10° to 30°
at angles of attack of 40°, 55°, and 70°.

The investigation was particularly concerned with the possibility of large side forces and
yawing moments at high angles of attack at zero sideslip. It was found that a side force occurs,
starting at angles of attack of about 33° and continuing to angles of attack as high as 80°. The side
force is as large as 1.5 times the maximum normal force; the side force is repeatable with increasing
and decreasing angle of attack and from test to test. The maximum side force varies considerably
with Reynolds number and decreases to near zero as the Mach number increases to 0.7. The side
force is very sensitive to the nature of the boundary layer as indicated by large changes with
boundary layer trips. The direction and magnitude of the side force is sensitive to the body
geometry near the nose. Rotating the nose tip changes the direction of the side force; nose booms
and boundary-layer trips near the nose tip significantly reduce the side force, and nose strakes and
small bluntness tend to eliminate the side force. The angle of attack at which onset of side force
occurs is not strongly influenced by either Reynolds number or Mach number. The short afterbody
reduces the angle of onset by about 5°. Maximum normal force occurs at angles of attack near 60°,
rather than at 90°.

INTRODUCTION

When bodies of revolution are pitched to high angles of attack, a side force can occur at zero
sideslip angle. This side force results when the separation induced vortex flow field on the lee side
of the body becomes asymmetric. The occurrence of asymmetric body vortex flow has been
observed for many years (refs. 1 and 2). Research on this phenomenon has increased considerably in
recent years with the advent of highly maneuverable aircraft because the side force and yawing



moment might contribute to the onset of aircraft spin (ref. 3). To date, much of the research on
asymmetric forces has been directed toward determining fixes for specific configurations and on
studies of vortex flow fields on long slender bodies (e.g., refs. 4-9). However, a recent test of three
forebody models at low Mach number and low Reynolds numbers (ref. 10) showed that large side
forces can be generated on the forebody alone at zero sideslip.

Since the configuration of the forebody might play an important role in the spin charac-
teristics of aircraft, a comprehensive wind tunnel test program has been undertaken at Ames
Research Center to obtain static aerodynamic data for forebody-alone models, covering a wide
range of forebody shapes and a wide range of Reynolds numbers and Mach numbers. The objective
was to determine the effect of forebody on the forces and moments so that design criteria could be
established for aircraft and missiles that have good aerodynamic characteristics at high angles of
attack. Reports thus far generated from this test program are listed in references 11 to 13.

As part of the forebody test program, aerodynamic force and moment characteristics were
measured at subsonic speeds over a large range of Reynolds numbers for a tangent-ogive forebody
with a fineness ratio of 3.5. Previous tests conducted on an identical forebody at low speed and low
Reynolds number (ref. 10) showed the existence of side forces and yawing moments at zero side-
slip. The objectives of the present investigation were to determine the test conditions under which
the side forces occur and the effects of hysteresis, repeatability, roll position, sideslip, boundary
layer trips, nose bluntness, nose strakes, nose booms, and a simulated canopy. In addition, to
determine the effects of the flow around the base of the forebody-alone configuration, the fore-
body was tested in the presence of an 2/d = 3.5 cylindrical afterbody. The forebody was also tested
with the afterbody attached to determine the effect on the side force of a short afterbody.

The investigation was conducted in the Ames 12-Foot Pressure Wind Tunnel; the tests covered
a Mach number range from 0.1 to 0.7 and a Reynolds number range from 0.3X10¢ to 3.8X10¢
(based on model base diameter). Six-component static forces and moments were measured at angles
of attack from 0° to 88°.

This report presents the basic data that show the effects on the aerodynamic characteristics of
the various model configurations, of Reynolds number at a Mach number of 0.25, and of Mach
number up to 0.7. Selected results from this investigation were reported in reference 11.

TEST FACILITY

The aerodynamic data presented here were obtained from wind tunnel tests conducted in the
Ames 12-Foot Pressure Wind Tunnel. This tunnel is a variable-pressure, low-turbulence facility with
a Mach number range from 0.1 to about 0.9 and a unit Reynolds number capability up to about
26X10%/m at a Mach number of 0.25. Eight fine-mesh screens in the settling chamber, together
with a contraction ratio of 25 to 1, provide an airstream of exceptionally low turbulence.



MODEL DESCRIPTION

The forebody model is a tangent ogive with a fineness ratio (2/d) of 3.5, a length of 53.3 cm,
and a base diameter of 15.24 cm. A sketch of the model and its dimensions is shown in figure 1.
Photographs of the models and tunnel installation are shown in figure 2. The forebody was designed
with removable nose sections of various nose radii up to 1.27 cm. The model also had the following
characteristics: a sharp nose with a longitudinal slot starting 1.9 cm behind the tip to accommodate
short strakes (7.9 cm long), two nose booms for the sharp and blunt noses, and a simulated canopy.
An 2/d = 3.5 afterbody was designed to be clamped to the sting but to be free of the forebody
(approximately 0.16 cm gap) so that forebody forces could be measured in the presence of the
afterbody. The afterbody could also be attached to the forebody (forebody plus afterbody force).
The junctions between the removable nose and the forebody and afterbody were carefully
machined, so that the surface discontinuity was less than 0.025 mm, and had rearward facing steps.
The removable nose sections were held by a set screw located on the leeward side and covered with
carefully smoothed dental plaster. A balance-pin-access hole, located on the leeward side, was also
covered with smoothed dental plaster. The afterbody was built in two halves; the parting surface
was oriented perpendicular to the windward side so that the retaining bolt holes were located on the
windward side. The bolt holes and the small gap on each side between the cylindrical halves were
filled with smoothed dental plaster.

TEST CONDITIONS AND PROCEDURES

The investigation was conducted at Reynolds numbers ranging from 0.3X10¢ to 3.8X10¢
(based on base diameter) at a Mach number of 0.25, and at a Reynolds number of 0.8X10% at Mach
numbers ranging from 0.1 to 0.7. The models were mounted from a floor support system that
provided a high angle of attack range. Since it was not possible to pitch the model continuously
from o = 0° to 88°, two different sting supports were used (fig. 2). The sting shown in figure 2(b)
was used for a = 0° to 45° and the sting shown in figure 2(c) was used for & = 36° to 88°. Angle of
sideslip was varied from - 10° to 30° at a = 40°, 55°, and 70°.

Aerodynamic forces and moments on the model were measured using two internal six-
component strain gage balances with two ranges. Most of the data were obtained on a balance with
a normal-force range of +8000 N; this balance was required for the large Reynolds number range,
including at least 30 percent reserve for dynamic forces. The second balance (referred to as bal-
ance B) had a lower normal-force range of *4500 N and was used to check the validity of the
results at the lower Reynolds numbers. The model base pressure was measured using one pressure
tube that was attached to the sting and opened into the balance cavity at the base of the model. For
tests of the forebody in the presence of the afterbody, the open end of the pressure tube was
located in the gap between the forebody and afterbody.

The f/d = 3.5 tangent-ogive forebody was first tested without the afterbody. Tests were made
with pointed and blunt noses, with the narrowest nose strake, and with several positions of
boundary-layer transition strips. The transition strips were 0.32 cm wide and composed of 0.021-cm
diameter glass spherules (No. 80 mesh). A sublimation test was initially made at a = 55° with
transition strips at @ = +30° with the use of 0.015-cm diameter glass spherules (No. 100 mesh).
This trip size was calculated to be correct for the lowest test Reynolds numbers, based on maximum
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body diameter. The result was that the sublimation material was scrubbed off by the flow near the
base of the model, indicating turbulent flow from the trips; however, about 2/3 of the model length
seemed uneffected by the trips. Accordingly, the trip size was increased to 0.021 cm and a second
sublimation test indicated little improvement. The trip size was not increased further because the
particles near the nose might have acted to separate rather than to trip the boundary layer. In order
to determine the effects of model asymmetries, both the forebody and its removable pointed nose
tip were tested at several fixed roll-angle positions, generally in 90° increments.

Part of the testing of the forebody was done in the presence of the afterbody (afterbody
clamped to the sting). All of the available nose configurations and the simulated canopy were tested
in this configuration. Boundary-layer transition strips were tested in the positions listed in the
figures and described in the configuration code. The effect of the £/d = 3.5 afterbody was deter-
mined by testing the forebody with the afterbody attached (fig. 2(d)).

DATA REDUCTION AND ACCURACY

The six-component force and moment data were reduced about the model moment-reference
center in the body axis system. The moment center was located on the model centerline at the base
of the forebody. Angle of attack and angle of sideslip were corrected for deflection of the sting and
balance under- aerodynamic load. Appropriate aerodynamic coefficients were corrected for model
weight tares. Stream angles as large as 2° are known to have existed in the vicinity of the model due
to the influence of the support system fairing on the tunnel floor (see fig. 2). No stream angle
corrections were applied to the data. Mean values of the forces and pressures were recorded to
electronic filtering and, in addition, three samples of all the balance and tunnel static pressure data
were averaged for each data point and then reduced to coefficient form. The model base pressure,
measured by one pressure tube, was used to compute an approximate base axial force. The base
axial force was subtracted from the total balance axial-force measurement, so that the coefficient
presented (C4 g/ is for the axial force ahead of the body base.

Data repeatability was estimated by reviewing repeat points and is as follows:

@ = $0.03° Cy = $0.04
B = +0.03° Cq = +0.02
R = £0.02X10° Cy = #0.03
M., = +0.005 | Cp = +0.04

Cpy = £0.008

PRESENTATION OF RESULTS

The experimental results are presented in figures 3 through 26. The figures show the effects of
the many configurations and of Reynolds number on the aerodynamic characteristics at M = 0.25,
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and the effects of Mach number up to 0.7 at constant Reynolds number. First, the results for the
forebody tested alone are compared in figure 3 to the results for the forebody tested in the presence
of the afterbody. This is followed by the presentation of the aerodynamic characteristics of the
forebody (figs.4 to 24) showing the effects of hysteresis, repeatability, Reynolds number, roll
position, side-slip, boundary-layer trips, bluntness, strakes, nose booms, and canopy at M = 0.25,
and the effect of Mach number up to 0.7. Finally, the aerodynamic characteristics of the forebody
with the 2/d = 3.5 cylindrical afterbody attached are presented in figures 25 and 26, which show
the effects of Reynolds number and Mach number.

The following coefficients were plotted and faired using a computerized data plotting pro-
gram:

Cy CPR and ¥
N Cp» Cm and Cpy R
ICyl/Cn and (CRr - Cpn) Cp,b and Cyp

Most of the data are plotted versus angle of attack at zero sideslip angle; however, in a few figures
the data are plotted versus angle of sideslip. Since the results for |Cyl/Cp and CPR are spurious at
low angles of attack, and undefined at a = 0, these results have been deleted for « < 10°. Also, the
results from the low-a sting support for & = 35°, 40°, and 45° were deleted in order to provide a
smooth computerized fairing of the data from the low-« and high-o support systems. It was deter-
mined that the overlapping data were usually in close agreement, so that the plotted data are a good
representation of the resulits.

Many tests, such as for the many nose configurations, were limited to the high-« sting support
and, for the most part, to R = 0.8X10¢, where the principal effect of the many configurations on
the side forces could be determined. For these tests, only Cy, Cp;, C;, Gy, and, sometimes, C4 f are
shown.

DISCUSSION

The primary purpose of this investigation was to determine the forebody configurations and
test conditions for which a side force develops at zero sideslip. The results are discussed in the
following sections, starting with the results of the investigation at low speed (M = 0.25).

Forebody Aerodynamic Characteristics

Comparison of forebody-alone to forebody-in-presence-of-afterbody results— There was some
concern that the data obtained with the forebody alone might not represent adequately the con-
tribution of the forebody to the asymmetric side force and moment on a forebody-afterbody
configuration because of possible interference between the flow around the base and the flow over
the upper surface. To investigate this effect, tests were made with the forebody mounted on the
balance and the afterbody attached to the sting but separated slightly from the forebody (forebody
forces in the presence of the afterbody). In figure 3 the results for the forebody alone and for the



forebody in the presence of the afterbody (indicated by AD, for afterbody detached) are compared
for M = 0.25 and several Reynolds numbers. The data shown are for « = 36° to 88°, obtained from
the high-« sting support, which includes most of the angle of attack range for asymmetric forces and
moments.

The side forces from the two configurations are in close agreement at angles of attack up to
65°; above this angle, however, there are small differences that can be attributed to base-flow
effects. For example, at angles between 65° and 80°, where the side forces decrease to zero, there
are differences in side forces between the two configurations; the balance outputs (not shown) were
more unsteady for the forebody alone. The normal forces are as much as 13 percent lower for the
forebody-alone data at a = 55° where peak Cp occurs; the difference is attributed to the end effect
of the base. However, at o = 88° the normal forces are almost identical. The base pressure coeffi-
cients (Cp p) show small differences below a = 60° that do not much affect the forebody axial force
coefficient (C4 ). However, at angles above a = 60° both Cp,b andd Cy F are greatly affected by
the base flow, which was expected.

Since the side forces were not greatly affected by the base flow, many tests were made with
the forebody alone because it was more convenient. Consequently, in the following sections the
forebody-alone and forebody-in-presence-of-afterbody results are used interchangeably to describe
the force and moment characteristics of the £/d = 3.5 forebody. The distinction between the two
configurations is indicated in the configuration description at the top of each plot. (AD indicates
the presence of the afterbody, detached from the forebody).

Hysteresis— Aerodynamic forces that are related to boundary-layer separation may exhibit a
hysteresis effect; that is, the variation of the forces with increasing flow angle might be different
than with decreasing angle. The possible effect of hysteresis was investigated by making many of the
test runs with both increasing and decreasing flow angle. The results in figure 4 for several Reynolds
numbers at M = 0.25 show that the side force is generally repeatable with increasing and decreasing
angle of attack, indicating little or no hysteresis effect.

Repeatability— Repeated test runs were made with the basic pointed configuration and, as .
figure 5 shows for M = 0.25, the side force was generally repeatable from test to test.

Reynolds number— The effect of Reynolds number was not measured in previous investiga-
tions; however, previous use of boundary-layer transition trips have tended to reduce the side force
(ref. 5). Consequently, it was felt that increasing Reynolds number might have a similar effect. To
investigate this effect, the forebody was tested at M = 0.25 over a wide range of Reynolds numbers
from 0.3X 106 to 3.8X10° (based on base diameter); the results are presented in figures 6 and 7.

At the lowest Reynolds numbers, a large side force develops, starting at « &~ 33° and extending
to a =~ 80°. The angle of attack at which the side force first becomes significant (generally within
about +2.5°) is called the “angle of onset” herein. The direction of the side force has been shown
by previous studies to be arbitrary, depending on small geometric asymmetries in each model,
especially in the machining of the nose tip (refs. 2 and 10). The magnitude of the maximum side
force at the lower Reynolds numbers is as large as 1.4 times the maximum normal force (see
|Cyl/Cn), so that the inclination angle, ¥, of the resultant force is as large as 55°. Increasing the
Reynolds number above Ry = 0.8X 10% progressively reduces the magnitude of the side force, an
effect similar to that of tests with boundary-layer trips. However, the maximum side force increases

6



again as the Reynolds number increases above Rz = 2X10°, and the direction is opposite to that of
the low Reynolds number side force. This means that inclination angle, ¥, of the resultant force
changes from left to right with increasing Reynolds number. This effect is not entirely understood,
except that the boundary layer on the windward side of the forebody is tending towards more
turbulent flow. A question was raised that the change with Reynolds number could be an effect of
the flow in the tunnel; however, the 12-foot wind tunnel used is known to have a very low free
stream turbulence and the known effect of increasing noise level with increasing Reynolds number
should only increase the effective Reynolds number of the test. Also, the effect of possible small
changes in free stream flow angle (such as that due to the sting support fairing) should be negligible
according to the tests with sideslip (fig. 10). Note that the effect of increasing the Reynolds number
on the angle of onset is small.

The normal-force coefficient has a maximum value of 2.9 at the lowest Reynolds number of
0.3X10° and decreases appreciably to about 2 at the remainder of the Reynolds numbers tested
(0.8X10% to 3.8X10%). Also, the maximum Cp occurs at angles of attack between 50° to 65°,
above which it decreases appreciably, sometimes abruptly, so that the value of Cy at a = 88° is
considerably lower than the maximum. Note also that there is an apparent increase in the normal-
force curve slope in the angle-of-attack range where the side force increases (a > 33°). This increase
in Cp curve slope implies that the normal force and, hence, the resultant force, are increased by the
flow asymmetry that causes the side force.

The center of pressure, CPR, of the resultant normal force is located at about x/2 = 0.5 for
angles of attack less than 30°. This is in general agreement with the slender-body theory value of
0.46 ? for this forebody. At higher angles of attack, CPR moves slightly rearward until at o = 88° it
is close to the centroid of planform area, x/% = 0.624.

A small rolling moment was recorded that occurred at high angles of attack when the side
force was large. Since the asymmetric pressures that produce the side force do not produce a rolling
moment for a circular body, the small recorded rolling moment was probably due to an asymmetry
in the boundary-layer skin-friction forces. Evidently, a rolling moment due to asymmetric skin-
friction forces should be anticipated on flight vehicles when large side forces exist. The data are not
presented because the measured rolling moment was small (maximum |Cj| < 0.02) and relatively
inaccurate from the particular strain-gauge balance used.

In order to investigate the accuracy of the force measurements at the lowest Reynolds
numbers, tests were repeated with balance B, which had one-half the normal-force range of balance
A used in the other tests. The resuits for Rz = 0.3X10°, 0.8X10°, and 1.1X10° are presented in
figure 7 and show that no significant differences occurred between the results from the two
balances.

Roll— Previous investigations (refs. 5 and 10) have shown that when a body is tested in various
positions of roll angle about the axis of symmetry that the side force can change direction for a
range of roll angles. For example, reference 10 shows that the direction changed every 90° in roll
angle for a forebody identical to that of the present model. A considerable amount of experimental
data show that the direction of the side force is influenced by very small geometric asymmetries
that exist in most models, especially near the nose. In the present results the effect of roll angle
(fig. 8) is to change the direction of the side force from left to right in the range of roll angles near
¢ = 270°.



More startling results (fig. 9) were obtained when the removable nose tip (length of 0.192) was
rolled to several fixed positions, resulting in an effect that was similar to that of rolling the
complete body. Apparently, the asymmetry in the vortex flow is very sensitive to the body geom-
etry near the nose. Note that the angle of onset does not change more than about 5° with roll
position.

These roll tests indicate that body models should be tested in several positions of roll, if
possible, when determining the asymmetric characteristics at high angles of attack. In addition, the
orientation of model parts and of surface discontinuities, such as junctions and set screws, should be
noted. Some insight into the possible effect of the junction of the removable nose section may be
obtained from the results of tests that were made with a ring of roughness elements located at the
junction (fig. 14). Because the side force was greatly reduced, it was believed that the effect of a
large discontinuity at the junction would act as a boundary layer trip and would likewise reduce the
side force. Since the side force is large without the ring of trips it is believed that the junction effect
is negligible.

Sideslip— Figure 10 shows the effect of sideslip angle for o=40°, 55°, and 70° at
R4 =0.8X 10¢. At sideslip angles between 5° and 15° the side force changes sign (direction). The
angle of sideslip range where the change occurs is generally repeatable. The data show nearly
identical results for both increasing and decreasing angles of sideslip. The data also show that the
direction of sideslip is not sensitive to small variations in stream angles such as those produced by
the model support system fairing on the floor of the wind tunnel. ’

Note that the effect of sideslip on a body is identical to testing at zero sideslip at a slightly
higher angle of attack and at a roll angle of both the body and the balance. The change in direction
of side force from left to right between 8= 5° to 15° would correspond to roll angles between
about 6° and 18°. On the other hand, the side force data at roll angles of 0° and 90° (figs. 8 and 9)
are in the same direction, indicating that the side force changed direction twice in the roll range
between 0° and 90°, the 0°-90° range was not tested. An identical model used in reference 10
experienced a change in direction of side force every 90°, or four times in 360°. These results
indicate that testing in 90° increments could be insufficient to adequately describe the effect of
roll.

Boundary-layer trips— Boundary-layer transition trips have been shown in previous investiga-
tions (refs. 2 and 5) to reduce the asymmetric force, the amount depending on the location of the
trips. At high angles of attack, longitudinal boundary-layer transition strips were partially effective.
Surprisingly, a ring of roughness elements around the body behind the nose was also effective, as
was the application of roughness elements over a large part of the nose surface area (ref. 2).

Results of the present investigation with boundary-layer transition strips and surface roughness
are presented in figures 11-15 for M = 0.25. Longitudinal strips at ® = +15° (T2 in fig. 11) and
© = +30° (T4 in fig. 12) reduce the magnitude of the side force significantly (by 50 percent or
more). When the length of the transition strips at ® = +30° is reduced to 1/3 of the body length
(T6 in fig. 12), the maximum side force is even smaller than with the full-length strip, an indication
that the vortex asymmetry is sensitive to the nature of the boundary layer near the apex. Results of
tests with transition strips at ® = 0° and ® = +60° (data not shown) showed little or no reduction
in side force.



The side force is also reduced by a ring of roughness elements around the forebody (fig. 13)
when the elements are located at x/2 = 0.09, 0.14, 0.19, and 0.286. However, a ring at x/2 = 0.05
and at 0.286 is less effective in reducing the side force. Figure 14 shows that the ring of roughness
elements at x/2 = 0.19 is not as effective at higher Reynolds numbers. (Perhaps, the results for the
longitudinal strips might also be affected by Reynolds number, but this was not tested.)

An interesting effect related to boundary-layer tripping was found when the forebody was
sprayed with flat-black, spray-can paint in preparation for oil-flow studies. The surface of the coat of
paint on the model was very rough and tests without oil showed a substantial reduction in the side
force (fig. 15). Polishing the flat paint did not change the results. Only when a gloss enamel paint
was applied and highly polished did the maximum side force increase to nearly the value obtained
with the smooth, bare model (fig. 15). This result is not surprising, however, since the effect of
rough paint on the boundary layer must be similar to that produced by using roughness elements.
Adding oil to the polished surface reduced the side force only slightly; however, it must not be
assumed that oil will not induce large changes. In oil flow tests, the forces should be measured to
determine if changes occur.

These results with boundary-layer trips show that the side force is sensitive to the nature of the
boundary layer (i.e., whether it is laminar, transitional, or turbulent), especially near the forebody
apex.

Nose bluntness— Based on the results presented in references 5 and 10, it was expected, but
not certain, that the side force would be maximum for pointed noses and would decrease with
increasing nose bluntness. To investigate this effect, three nose radii were tested (figs. 16-18). Even
the smallest nose radius of 4 percent of the base radius (NB1) (fig. 16) greatly reduces the side
force. The next larger radius of 8 percent (NB2) has the lowest side force at Rd=0.8X106,
although at the higher Reynolds numbers (fig. 17) the side force is larger. Increasing the nose radius
further to 16.7 percent increases the maximum side force. The variation of the side force with sideslip
(fig. 18) is almost linear; no abrupt changes occur as for the pointed-nose results (fig. 10). The flow
mechanism associated with nose bluntness is not understood at his time, but it must be related to
the effect of the shape of the nose section on the local flow, perhaps in spreading the initial vortices
farther apart. Evidently, some caution should be exercised in the use of nose bluntness to reduce
side forces, because it is possible that there is an optimum nose radius for a particular configuration.

Strakes— Previous studies have shown that strakes placed on each side of the body near the
nose can reduce the asymmetric force (ref. 10). To investigate the effect of strakes, a slot was made
in a duplicate, pointed nose section. Three removable, flat, sharp-edged plates were made to insert
in the slot; the plates had exposed widths on each side of 0.32, 0.64, and 1.27 cm. Even the
narrowest strake (NST1 in figs. 19 and 20) essentially eliminated the side force at all except the
lowest Reynolds number of 0.3X 10%, where the side force is greatly reduced. As expected, a side
force occurs with sideslip angle (fig. 21), which is identical to rolling the forebody. Note that the
side force and yawing moment variations with sideslip angle are directionally stable at o = 40°.

Figure 22 shows that when the roll angle of the removable nose with the narrowest strake is
varied, the effect produces mixed variations in the side force. Note that at angles of attack of up to
about 50° the side force and yawing moment increases with roll angles up to 30°. In this angle of
attack range a rotatable nose with strakes might, perhaps, be used to provide high angle-of-attack
yawing moment control.



Nose booms— Many aircraft use nose booms that extend ahead of the fuselage to mount
pitot-static pressure systems and systems that measure the flow angle. Consequently, tests were
conducted with short rods (0.319-cm in diameter) of two different lengths (2.54 and 5.08 cm)
inserted in the blunt noses and one of one length (2.54 cm) inserted in the sharp nose of the
2/d = 3.5 tangent ogive forebody. No significant effect was obtained with nose booms mounted in
the blunt noses. On the other hand, a nose boom mounted in the pointed nose greatly reduced the
large side force (fig. 23). The side force varies somewhat with Reynolds number and it is noted that
the data are not repeated very well at Rz = 0.8X10°. Although the angle of onset appears to vary
with Reynolds number the lowest angle of onset is about 35°, similar to the results without the
nose boom.

Canopy— The simulated canopy had no effect on the asymmetric forces at M = 0.25 at zero
sideslip (data not shown).

Mach number— It was expected from the results of reference 5 that the side force would
decrease with increasing Mach number. To investigate this effect, tests were made at several Mach
numbers from 0.1 to 0.7 at Rz = 0.8X10°. The results in figure 24 show that the magnitude of the
side force decreases with increasing Mach number. At M = 0.7, the maximum absolute value of Cy
is less than 0.5. Note that the angle of onset does not vary much with Mach number.

Forebody With Afterbody

Effect of Reynolds number— Figure 25 shows the results at several Reynolds numbers for the
forebody attached to the £/d = 3.5 afterbody. The magnitude of the side force is generally as large
or larger than for the forebody alone and it changes direction with increasing angle of attack,
indicating that additional vortices might be forming and shedding due to the increased length of the
afterbody. At Rz = 0.8X 108, the side force is noticeably smaller than at any of the other Reynolds
numbers, whether higher and lower. The reason for this is not known, although it is possible that
some intermediate transitional flow condition exists at Reynolds numbers near this value. The angle
of onset of side force is between 25° and 30°, about 5° to 10° lower than for the forebody alone.

Similar to the forebody results, the normal-force-curve slope increases noticeably when the
side force increases, as does the resultant force (compare the curves for Cpy, ICyl/Cp and Cg - CN).
The maximum normal force occurs near an angle of attack of 55° and is noticeably greater than the
magnitudes at o = 88°. The resultant center of pressure ranges between 70 and 120 percent of the
forebody length as angle of attack increases from 10° to 88°.

Effect of Mach number— Figure 26 shows the effect of Mach number from 0.1 to 0.7 at
R;j =0.8X108. Note that at M = 0.25 the side force is smallest for this Reynolds number (fig. 25);
this is an unexplained anomaly, because at other Reynolds numbers tested the magnitude of the
absolute value of the maximum measured side force coefficient, [Cyl, is about 3.4 at M =0.25. At
M = 0.7 maximum |Cy], is reduced to about 2. The angle of onset is essentially constant with Mach
number. A large increase in normal force occurs, as expected, with increasing Mach number. Note
the discontinuities in the Cp curves at M = 0.6 and 0.7 at a ~ 40° and 45°, coinciding with the
rapid decrease in the side force.
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CONCLUSIONS

Based on data obtained from this wind-tunnel investigation to determine the effect of fore-
body shape on the asymmetric force and moment generated on an {/d =3.5, tangent ogive at high
angles of attack and at zero sideslip, the following conclusions are made. Data were obtained over a
wide range of angles of attack, angles of sideslip, Reynolds numbers and Mach numbers up to 0.7.

1. At low speeds the pointed forebody develops a side force at angles of attack above about
33°. The side force increases to a maximum at an angle of attack of about 55° and decreases to zero
at an angle of about 80°.

2. The variation of side force is generally repeatable with mcreasmg and decreasing angle of
attack and also from test to test.

3. The maximum side force is as large as 1.5 times the maximum normal force.

4. The side force is sensitive to the nature of the boundary layer as indicated by large changes
with boundary layer trips.

5. The normal-force curve slope is increased in the angle-of-attack range where the side force
occurs and the maximum normal force occurs at angles of attack near 60°, rather than at 90°.

6. The maximum side force varies considerably with Reynolds number and decreases with
increasing Mach number to near zero at M = 0.7.

7. The direction and magnitude of the side force is sensitive to the body geometry near the
nose: rotating the nose tip changes the direction of the side force; nose boom and boundary-layer
trips near the apex significantly reduce the side force; and nose strakes and small bluntness tend to
eliminate the side force.

8. The angle of attack of onset of side force is not strongly influenced by Reynolds number or
Mach number.

9. The short 2/d = 3.5 afterbody lowers the angle of onset of side force by about 5°.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, California 94035, July 9, 1976.
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(a) 2/d = 3.5 tangent ogive with removable noses and simulated canopy.

Figure 2.— Photographs of models and tunnel installation.



(b) Installation of &/d = 3.5 tangent ogive on floor-support system, & = 0° to 45°.

Figure 2.— Continued.




Installation of 2/d = 3.5 tangent ogive on floor-support system, o = 36° to 88°.

Figure 2.— Continued.




(d) 2/d = 3.5 tangent ogive with 2/d = 3.5 afterbody.

Figure 2.— Concluded.
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Figure 15.— Effect of surface roughness caused by flat-black point; M = 0.25, R4 =0.8X 109
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Figure 16.— Effect of nose radius; M = 0.25, Ry = 0.8X108.
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Figure 17.— Effect of Reynolds number with nose bluntness; M = 0.25, Rz = 0.8X108, (nose radius/base radius) = 0.08.



69

CN

4.0F

SYMBOL

CONF IGURATION DESCRIPTION Rg x 10~€

NB2 FT1 AD 0.8
NB2 FTI AD 2.0
NB2 FTL AD 3.8
’llll TITtver Trrr ¥ Tew ToT LS AL LA BEAER] LA Tvevw "l'.

3.0t

: §
; ]
2 3
. ]
AAn

’ = 5

(81}

ok Ll
0 5 10

MY

dendeded,

WY

Aok

Aededenh

e abnahabbad

INEVE TS E SRTTE SN

ALPHA

(b) Cp versus a.

Figure 17.— Continued.

1S 20 25 30 35 40 45 S0 S5 60 BS 70

75 80 85 90



0L

CYN

CLM

SYMBOL  CONF{GURATION DESCRIPTION Rg x 10~°

NB2 FTiI AD . " 0.8

NB2 FT1 AD 2.0

NB2 FT1 AD 3.8
lo_vwrv L2, B I B A B B B A NN B v BB AN N AL AN MLEL AR AR B I 2 L5 LA LB B B B (LB B L G0 08 A B B AR A 2 G NS N A B A A B A B M A A S0 8 S0 A M A M AR 4
s ]
: ]
(=9 o ]
bd 3 p
t -
O' Vo | -t ‘ Vau'l n:
F \-ﬂ*_?—lﬂ Ff \r ~3 3
-5F E
J: p
[ ]
g ]
_10:L|.| iaaa e s laaa gt aeaalaaaalay aaaa o v laaaadaaca tagaalag LAl TS FEWE l:

10 15 20 25 30 35 40 45 50 S5 60
ALPHA

o))
a
~
(]
~
o
@
o
®
Ut
wf
o

[T T T T Ty

| B B e B O A 0 A B OO N B B S AN M A Ak B BN A 20 B B BN S BN AL I B Am ik AN R A BB BN MO §

L0 B B I B B B A NN A O 0 B BLAS BB

10f :
st

0 .
s

Lidd

aaaba sl o bt aaaa biaa s ool aagalaaaalaag

aaaala oo gl gl sty

0 S

10 1S 20 25 30 35 40 45 50 55 60
ALPHA

(c) Cy and Gy, versus a.

Figure 17.— Concluded.

85 70 75 80 85 90



L

SYMBOL CONF IGURATION DESCRIPTION ALPHA
NB2 FTi 40.000
NB2 FT1 S$5.000
NB2 FT1 70.000

IS T LI AR S B B I it (O M M B D BN SR B8 A A Mt I ¢ m B B o o 2 B A M A A g TrTT)
. ]
o 4
3.0
3 4
+ 1
o 4
o 4
2.5
F p
L 4
2.0
1.5t
L
1.01
L
L

ITETE PR SUwY

5o ——
-.sE Mmﬁ
-1.0: ]
-1 S; ;
2.0f :
-2.5¢ ;

SEC N1 MU T TN T P P T U P T P e N W

-10 -5 0 S 10 15 20 25 30
BETA

(a) Cy versus a.
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Figure 19.— Effect of nose strakes having various widths; M = 0.25, Rz =0.8X106.
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Figure 20.— Effect of Reynolds number with nose strakes; M = 0.25, exposed width = 0.32 cm.
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figure 21.— Effect of sideslip with nose strakes; M = 0.25, Rg = 0.8X10°, exposed width = 0.32 cm.
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Figure 26.— Concluded.

S 60

65 70 75 80 85 90



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON. D.C. 20546

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

SPECIAL FOURTH-CLASS RATE s
BOOK

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $300

*

EE—
U.S.MAIL
[~ ]

If Undeliverable (Section 158

POSTMASTER : Postal Manual) Do Not Return

“The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of buman knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a

contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

q SCIENTIFIC AND TECHNICAL INFORMATION OFFICE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546






