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A Note on the Banding of a
Cracked Strip(*)
by
Ragip Erdol and F. Erdogan
“ Lehigh University, Bethlehem, PA

Abstract, The objective of this note is to describe a technique for
calculating the stress intensity factors in a strip under bending by
treating the strip as a two-dimensional continuum rather than a simple
beam in evaluating the crack surface tractions used for the .solution

of the perturbation problem,

1. INTRODUCTION

A long strip or beam containing a tﬁ}ough crack perpendicular to
the sides has been one of the most widely studied problems in linear
fracture mechanics (see, for example; references [1-9]). The {import-
ance of the problem 1ies in the faét that its geometry approximates a
very common structural component andlg standard test specimen. In the
case of three or four point bend tests the specimen has an edge crack.
Generally, in the existing solutions involving bending it is assumed
that the uncracked beam‘is under a linear stress distribution, thus
" jgnoring the perturbations caused by the supports and the loading

fixtures.

The main objective of this note is in a "long" beam to examine
the deviation from linearity in the stress field for a given state of

& )Th1s work was supported by NASA-Langley under the Grant NGR 39 007-
011 and by NSF under the Grant ENG 73-045053 AO1.
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external loads and to study the effect of this deviation on the stress

intensity factors for internal and edge cracks.
2. STRESSES IN UNCRACKED BEAM

Consider the infinite strip or the beam show in Figure 1. Let

the external forces be

"O';y(x:o) = p"(x) = P1(-X) ) U;y(xno) =0 , “) :
ol XY = py(x) = pyl-X) 4 - fxh) = 0 . (@

where h is the height of the beam Py and p, are kndwn functions

. satisfying

2 . | 3
Jorﬁ(x)dx LPZ(X)dx | (3)

Ignoring the crack and using the standard Fourier transform technique
(see, for example, [10]), after some routine manipulations the stress

component of primary interest may be expressed as

) =2 |
Oy (%s¥) = W,Iosx(g,y)cosax da , (4)

_where

-0y
6, (0.y) = Ex ((1-202h2-20h-e"M)s, (0

+ [{1+3ah)e?™ - (1+ah)e s, (a)

+ ay(-1+20he®M)s. (a)

R



- ay[(1+20h)e™" - e'“h]SZ(u)}

oy
+ ﬁ%aj- {{1+2ch-202h? - e'zah)81(a)
+ [ (~V+ah)e®M + (1-3ah)e"““]szca)

+ ay(1+2ah-e—zuh)81(a)

+ oy[-e® + (1-20h)e™M IS (a)} (5)
D(a) = N + 72N _ go2pz . 2, (6)
sy(a) = [ py(x)cosax ax (7)
spla) = | pytxjconx dx . ®

3. THE CRACK PROBLEM

To obtain the sglution of the crack prob}em shown in Figure 1
under the external loads given by (1) and (2) one has to superimpose
on the solution obtained in the previous section for the uncracked
stripi&isturbed stress state found from a cracked strip in which the
following self-equiiibrating crack surface tractions are the on}y ex-

ternal loads:

qxx(o,y) =“-c;x(0,y) \ ny(Q’y? =0 , a<y<h , | (9)
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where “;x is given by (4). The formulation of this problem too is
re]ative]y_straightforward. Following, for example, the technique
described in [6] or [7], the problem may be reduced to the following

integral equation:

b

Ja [“f%y * k(y,t)1f(t)dt = -n 1;115 oy (0,¥) » a<y<h (10)
subject to

b

[af(t)df, =0 (1)

where the input function_o;x is obtained from {4), u is the shear

modulus, k=3-4v for plane strain (e.g., cylindrical bending of a
plate with a long surface crack), k=(3-v}/(1+v) for plane stress
" (e.g., a beam), v is the Poisson's ratio, crack extends along the y

axis from a to b, the unknown function f is defined by
N
fly) = 55 u(0:y) __ (12)

u is the x-component of the displacement vector, and the kernel k{y,t)

is given by

k(y,t) = [: [(e™e™®M)? 4o2p2]1 {[-1-20n+e?*"
20t (e22.1) 1 a(hey) + & & 2X BV el EHY)
+ [20n-T+e 20 gtho? ][~ 3+ a(hey) - § e22{h¥)geelty)

+ [1+20h-e"2%s20(h-t) (e2M-1) 112+ oy
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- 4(h-t)orhI[§- ay + § 210Vt oy (13)

For an internal crack O<a<b<h, the kernel k(y,t) is bounded in
the closed domain a<(y,t)<b, and the integral equation may be solved
quite simply by using the technique described in [11]. The stress in-

tensity factors are then defined and calculated from

. 4
k(a) = Vin V2TEy Tye¥50) = Vi V2T=2) Tre ) (14)
k(b) = lin V2(y B) ogx(¥20) = ~1in /26T T fly) (15)

However, in the case of an edge crack 0=a<b<h, the kernel k(x,t)
is no longer bounded in the closed-domain 0<{y,t)<b. The singular
part of k which becomes unbounded as y and t approach the end point
a=0 may be separated by considering the asymptotic behavior of the

“integrand in (13). Expressing
k(yst) = ks(y,t) + ke(y,t) (16)

where ke is bounded in a<(y,t)<b, the singular part kg is found to be

ks(y,t) J (2-ay-3at+2yta2)e'a(t+y)da
0

N 6y 4y* :
AN GO L | an

Noting that the. integral equation (10) is still valid for a=0, after-
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separating ks it may be solved by following the procedure described
in [6].

4. AN EXAMPLE AND SOME RESULTS

As an éxample consider the beam supported at twe points x=%d on
the side y=0 and subjected to uniform pressure on y=h, -c4£<c (see
Figure 1). In reality all loading problems involving solid grips and’
fixtures are contact problems. For example, the supports at x=+d, y=0
are generally rollers often with different elastic properties. In the
three or four point bending problems the same is true for the loading
fixtures on y=h. - In this case the contact areas and the distribution
of contact pressures as well as the crack surface displacement are un-
known and the problem is a coupled contact-crack problem which is some-
what more difficult to formulate. However, if the contact éreas are “
small and are sufficiently far from the crack region, one may replace
the unknown contact stresses with statically equivalent known trac-
tions gaining considerable simplicity in the formulation of the probtem
without sacrificing too much in the accuracy of the results. Thus, in
the present example it will be assumed that the reactions at the sup-
ports y=0, x=td are concentrated forces of magnitude P (per unit thick-
ness). In the three point bending problem the pressure under the loading
pin will be assumed to be constant with c=0.05h. The external loads
and their Fourier transforms may then be expressed as follows (see

‘equations 1 to 4):

piix) = Po(x-d) , ey



Py{x) =<l 0 (19)

S](u) = P cos{da) , (20)

o (21)

!

In evaluating the{input function Gix from (4)-(8) one runs into
convergence difficulty for values of y around 0 and h. To avoid this
difficulty the damping of the integrand as a»» is increased by separ-
ating the asymptotic value of Sx(a,y) and integrating it in closed

form., Equation (4) may then be expressed as

odion) = & [ Ts,fe) - s (e leoson da + s, 0) , (22)
S,(0y) = (ay-1)e"s, (@) - (oy+1-ah)e M ¥)s,(a) (23)
sab) = 2 s (a,y)eosax da | (24)
TS T Jg e sy JCOosaX do ) .

w2 de - -
So(0sy) = P [—wﬁv"%ﬁ%m%%*aﬁ‘ﬁ%v"%ta“ (FET)]

(25)

The stress distribution o;x(o,y) obtaiped from the elasticity
theory as described by equatioﬁs (20) to (25) and that obtained from
the simpie bea&ztheory for the 1oading condition shown in Figure 1 is
given infTébTe 1. The normalization stress o, used in this and in the
subseduent.tables“is thé surface_stréss given by the beam theory which

may. be expressed as
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0y = B (d-5) . (26)

The table shows that in the elasticity results there is some
deviation from that of 1inear beam theory. The indication is that
the sign as well as the magnitude of the deviations depend on details
of the loading condition. However, at least for the particular load-
ing considered here, the relative magnitude of the deviation does not
apnear to be very significant (approximately 6 percent at y=0).

Table 1. The stress profile cég(o,y)/ao for the uncracked beam

calculated from (22-25) for various dimensions c and d.
The normalization factor: o = 6P(d-c/2)h?.

y/h ¢/h=1 [ ¢/h=0.06 | ¢/h=0.05{ Beam Theory |
d/h=1 | d/h=2 d/h =4 (h/2-y)
0 1.0589 0.9435 0.9399 1
0.1 0.7949 0.7276 0.7384 0.8
- 0.2 0.5595 0.5363 0.5491 ¢.6
0.3 0.3486 0.3615 0.3680 0.4
0.4 0.1566 0.1971 0.1921 0.2
0.5 -0.0233 0.0386 -0.0192 0
0.6 ~-0.1993 =0.1179 -0.1528 -0.2
0.7 -0.3801 -0.2767 -0.3259 -0.4
0.8 -0.5750 -0.4452 ~0.5039 -0.6
0.9 -0.7938 -0.6723 -0.7109 -0.8
0.95 -,09153 |- -0.9991 -0.9204 -0.9

Table 2 gives the stress intensity factors for the internal crack
shown in Figure 1. In this example the crack tip a was figgd at a=0.1h
and b was varied until the stress intensity factor at b, k(b) became
(approximately) zero or negative. Note that for a very small crack
(i.e., a=0.1h, b=0“.'IOO'| h) k(a) 2 k(b) Eg;x(0,0.Ih)/f which is the

expected result for an infinite plane with line crack of‘]éngth 28=b-a .
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pressurized by o;x (see the rows y/h=0.1 in Table 1 and b/h=0.1001 in
Table 2). For fixed a/h the stress intensity ratio k(a)/o v% remains
approximately constant, meaning that for increasing crack length, k(a)
itself increases as vZ. Also note that k(b) is reduced raupidly as the
crack tip b moves towards and into the compression region. For the
beam theory extensive results are given in [7]. Table 2 shows the re-
sulﬁs from t?] which coincides with the parameters a/h and b/h in tﬁe
tab]e;

In the jmportant case of the edge crack (i.e., a=0, b<h in Fig-
ure 1) the results for c¢=0.05h and ﬁ=4h are shown in Table 3. The
stress intensity factor obtained from the beam theory is reproduced
from [7]. For a very short crack one would expect to recover the
result of the semi-infinite plane with an edge crack of length b pres-
surized by a;x(o,o) given in Table 1. Indeed for b/h=0.001 it is seen
that

—r

—Kib) _ - 1.0537 _ 4 4oy

s
05, (0,0)v% ~ 0.9399
which is the half plane result.(*)

The results shown in Tables 2 and 3 indicate that, depending on

the 1oad{ng coﬁdition, the elasticity so1ution.may be different than

(;)For higher values of b/h the convergence of the numerical analysis
giving the stress intensity factor is somewhat slow. The results
shown in the table are obtained by letting k(b)=A/n2+8/n+C and
extrapolating the results to n=c, where n is the number of collo-
cation points in the solution of the related integral equation.
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Table 3. Stress jntensity factor in a beam with an edge crack under
the Toading condition shown in Figure 1 (c=0.05h, a=0, b<h c=4h),
ao=6P(d-c/2)/h2.

k({b)/o,vb
b/h
Elasticity | Beam Th.

0.001 ( 1.05837 1.12
0.1 0,9731 1.06
0.¢ 0.9750 1.06
0.3 1.0375 1.12
0.4 1.1661 1.26
0.5 1.3907 1.50
0.6 1.7838

0.7 2.5127

the beam solution. As to how significant this difference is depends on
the degree of accuracy required in the particular application as well
as the details of the loading condition. It should only be pointed out
that the procedure outlined in this paper is very straightforward and
would give the results for any given state of loading to any desired

degree of accuracy.
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Figure 1. Geometry for a cracked strip under bending.

L RRCIUING 1 A0k BLANK wUL FOMER



	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf

