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ABSTRACT .

RUMMLER, DONALD ROBERT. Creep-Rupture Data, Analysis -
Engineering Application -of Régressiﬁn Techniques (Under

the direction of HAYNE PALMOUR III),

The creep and rupture pehamior of materials can
contrcl the design of structu%es which qpenate at elevated
temperatures. In lieu of an adequate fundamental under-
standing, current design practice makes use of a variety
of empirical techniques to predict creep behavior.

Phe results of investigations to apply regression
techniques to the development of methodology for
ecreep-rupture data analysis are presented. Regression
analysis techniques are applied to the explicit
description of the creep behavior of materials for space
shuttle thermal protection systems. A regression analysis
technique ;s then compared to five parametric methods for
analyzing three simulated'and twenty real data sets.
Finally, a computer program for the efficlent evaluation
of ereep- rupture data with five parametric methods 1s

presented.
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GENERAL INTRODUCTION

The creep-~rupture behavior of materials éan and does
control the design of many structursl components. Designers
and analysts in the nuclear power generation, aerospace
turbine, and chemical processiné industries, for example, are
required to design structural components which must operate
reliably for periods up to forty years in complex, high
temperature environments. Unfortunately, the current state of
our understanding of the creep process does not allow the use
of "first principles" for sizing components and pre&icting
their service behavior. Consequently, the creep-rupture design
techniques used today can at best be called—"enlightened-
empiricism," Ehere is no generally accepted method of analysis
for the prediction of creep~rupture bghavior. In fact, a
method which works well for one material very often will not

work well for a different material.

The purpose of the investigations reported herein was to
explore the application of regression analysis technlques to
the analysis of creep-rupture data of interest in aerospace
applications. They constitute a part of a continuing effort,
begun in 1970, to provide the materials related methodology

necessary to design efficient aerospace vehicles,

The first paper deals with the application of regression

analysis to the creep of space shuttle materials. Regression

TP



techniques are used as a tool (1) to assess the effects of
sheet thickness and oxygen partial pressure on the steady-state
creep behavior, (2) to analytically describe the low creep-
strain behavior, and (3) to assess the effects of data scatter
for materials where data are limited.

The third paper describes the developmént and use of a
computer program for parametriq analysis of creep ruﬁture data,
The program includes provisions for the analysis of filve ‘
different parameter methods. Sample probiems to aid the3ﬁéer

1

in setting- Up a problem are presented,

VLt
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APPLICATION OF REGRESSION ANALYSIS TO CREEP OF
SPACE SHUTTLE MATERIALS
Donald R. Rummler
NASA Tangley Research Center
Hampton, Virginia

ABSTRACT

Regression analysis techniques were used to assess the effects of sheet
thickness and oxygen partial pressure and to develop constitutive creep equa-

tions. Application of prediction intervals is emphasized.
1l SYNOPSIS

Metallic heat shields for Space Shuttle thermal protection systems must
operate for many flight cycles at high temperatures in low-pressure air and
use thin-gage (< 0.65 mﬁ) sheet, Availablé creep data for thi£ sheet under
those conditions are inadequate. To assess the effects of oxygen partial
pressure and sheet thickness on’creep Beha;ior end to develop constitutive

.creep equations for small-sets of data, regression techniques are applied and

discussed.

2 SYMBOLS

m
il

L
creep strain
1)

ok -
i

= time, hours
th = sheet thicgness; mm
7= temperatﬁre, X
o = stress, MN/m®

X, ¥, 2, D, ¢ = dummy variables

1¢6)



3 INTRODUCTION

Recent Space Shuttle technology research and development studies ((l)*
and (2)) have indicated that the creep behavior of high-temperature alloys
may control the design and reusability of metallic heat shields for radiative
thermal protection systems (TPS). The heat shields function as lightly loaded
aerodynamic surfaces, and they must efficiently utilize thin-gage sheet to
avoid weight penalties. Loads are applied at high temperature, when the locel
partial pressure of oxygen is low. In general, creep strains must be limited
to less than 0.005 to aveid excessive panel deflections.

The creep data which exist for candidate superalloys are for steady-state
creep tests run on relatively thick specimens at atmospheric pressure. These
data are presented as time to a given strain level for various combinations
of stress and temperature (see, for example, Refs. (3) and (&)). Attempts to
use this type of data to predict the cyclic creep deformation of simple tensile
specimens or for the preliminary design of Qeaﬁ shields underestimated the
experimental creep strains by as much as a factor of 10 ((1) and (2)). These
predictions typically utilized one of the parameter methods (5) combined with
a life fraction approach to sum the cyclically accumulated strains. This
failure to predict the experimental creep strains could be the result of one
or both of the following:

(1) The data upon which calculations were based were for the creep of
relatively thick specimens at atmospheric pressure, and may not be applicable

to thin specimens at low pressure.

¥
References are given in Appendix 1.
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(2} TNo analytic expression was available which could account for both
the nonlinear primary and linear secénddry creep stages.

The purpose of this paper is to present the results of an investigation
to determine the applicability of regression analysis techniques to predict
ereep behavior when data are limited. Three applications of regression tech-
niques which address the aforementioned shuttle TPS creep problems are dis-
cussed. Regression techniques are used as a tool (1) to assess the effects
of sheet thickness and oxygen partial pressure on steady-state creep behavior,
(2) to analytically describe the low creep strain behavior, and (3) to assess

the effects of data scatter for materials when data are limited.
L ANATLYSTS PROCEDURES

4.1 Development

To evaiuate trends in creep data and to predict creep behavior, explicit
expressions for-the mean and the expected upper and lower bounds for creep
strain datae as a function of stress, temperature, and time were desired.
Little information is available about the form of these expressions for the
candidate materials at low levels of creep strain. Consequently, two computer
programs were written and applied to develop the desired expressions., Both

progrems utilize standard linear regression techmiques (6). One program was

of the form:

w=7b_ +b u (W
vhere w = log {stress)

1= log (time)’



This program was used to generate coefficients, mean value estimates, and
L] 4 * *
95 percent prediction intervals for data at specific values of strain and
temperature,
The seccnd program was used to develop models for creep strain as a
function stress, temperature, and time. For this multiple regression program,

the equation form assimed was:

f(y)-—g{(ax + byx +c])(ax + box, +c2)(a.3x +bx +c5)} (2)

where 7y, Xy Xp and X3 are, respectively, functions of creep strain,
stress, temperature, and time.

Provision for transformation of ¥, Xy;5 ¥p; and x3 was included in the
program. The transformations, which included many of those found useful for

analysis of creep data (7) were as follows:

*Pre prediction interval {6) is used to make a statement about the antic-
ipated value of the dependent varisble (y) for a future single observation &t
a specific value of the independent variable (x) or variables (x;, x. 30 %
for example, y will be between 2 and 6 for 95 percent of all fu%ure 81ngle
cbservations taken at x = 3. The more familiar confidence interval, on the
other hand, is used to make statements about the true mean value cof y; for
example, there is a 95-percent probability that the true mean value of y at
X = 3% 4is between 3 and 5, The prediction interval limits are wider since
these include both the sampling errors and the uncertainties in estimating the
mean value of .

¥



Transformati
Code (TCjJ

0

where the z; are specific

on Transformation
(0<i<3)
X, = 4,
1 1
- x; = log (Zi)
X, = l/zi
x, = log (l/zi)
X, = ln'(zi)
- 1/2
x; = (z)
X. =z, + 1.0
i i
x, = log (zi + 1.0)
_ o, \L/3
}-c - (zl)

-

values of stress, temperature, or time. Similar

functional transformations (y.= £(D)) were used for strain. Fach transforma-

tion combination was assigne

digits are the transformation code values for v, xi, X5 and

d a four-digit transformation number where the
. 'l i3 : .

x,, respectively.

3

Thus transformation 1025 .used the foIlowing,transformations:

13

, 4 R i _.-.1‘_‘_-',}
¥ = log D = log (e}
xl = zl = U} *

x, = L/z, = L/T.

X

= (a)M? = ()2

1

Creep data sets usually includefé wide range of times, typically three

orders of magnitude, ‘whereas the ranges for creep strain, stress, and tempera-

ture are seldom in excess of one .order of magnitude. Early analysis of

5.



mitiple regression computer runs revealed that the combination of the wide
range in the varilables assoclated with creep data sets and eguation forms
#hich include terms that can be highly colinear, such as X and xe, led to
ill~conditioned normal equations which were subject to significant round-off
errors during a matrix inversion operation. TIn order to minimize these
errors, the data were scaled from 1 to 10 after transformation of the primary

variables (y, X5 Xps x5) as follows:

Iy 9.0 (yi h ymin)/ (yma.x i ymin) 1
X549 = 9.0 (xij - X min)/(xi mex ~ i min) + 1

where Vain and ¥y are the minimm and maximum values of the transformed

strain. The x, _. and X, have similar definitions as they apply to
i min i max .
the transformed values of stress, temperature, and time.

After transforming and scaling the primary veriables, Equation (2) was

expanded and new independent variables, defined as follows, were introduced:

k
222 2.2 '
¥ = ay80s (xlxng)) + za.]_za.eb3 (xlx2x5) t - = Z @ jzj‘ (3)
h . -=l

This procedure results in an equation with 27 terms having linear coefficients

(9;)-

T

Some values of ij were set equal to zero so that, in Equation (3), the
order (degree of interaction) for the number of terms in the regression

analysis could be reduced as follows:



k Order = {(Allowed term types)

2 z2 2
2% kth (xlxm;n and xlxm)
7 Ard ‘(x X X and xax
1mn 1m
10 2nd (xlxh

4 1st (xl)

(Note that the reduced form can no longer be factored back to Equation (2).)

4.2 Application

To perform & multiple regression analysis using Equation (3), the order
of the equation (k +value) was selected first. Next, the transformatiéns to
be used on the primary variables were selected., Each observation of the data
set was transformed, then scaled. The transformed and scaled values for
strain, stress, temperature, and time were then used to generate values for
the additional veriables in Eguation (3). This data set was then used in
the regression analysis. The mean values of creep strain were calculated
from the coefficients derived during a multiple regression analysis. Explicit
functions for the upper and lower boundg (95 percent prediction intervals}
were calculated by treating either the upper or lower prediction limit calcu-
lated for each observed value of strain during the initial regression as
another set of observed strain values; two additional regression analyses
provided the desired coefficients. The residual mean square (RMS) for the
prediction interval “data" sets were always extremel} small (z‘lO_T times that
of the original data set analysis). This suggests that the errors involved in

these approximations for the original prediction intervals were not large.



After a regression analysis was performed, all variables and residuals
were descaled and back-transformed. Several guasi-statistical parameters were
then calculated to aid model development and "best-equation” selection. These

parameters are described as they are introduced.
5 RESULTS AND DISCUSSION

The following examples illustrate how reg?ession techniques were applied
to three areas of creep behavior which are of interest in Space Shuttle TPS
creep studies. These areas are typical of those which can occur during the
preliminary design phases of any program when extensive creep data are not.

available.

5.1 Use of Simple Regression (Eaquation (1))

Haynes alloy H-188 is a cobalt base alloy which has excellent oxidation
resistance and modérate elevated temperature streng?h. It is a candidate
material for TPS application up to 1250 K The creép data hase consists
primarily of the work reported in (4). This work includes creep tests on
H-188 sheet from 10 prodﬁction heats and for thicknesses ranging from 0.51 to
2.03 mm. All creep tests were run in air at standard pressure.

Figure 1 presents the data at 1144 K at a strain level of 0.002. A
regression analysis was performed on the data set with sheet thickness
< 0.84 mm. These date will be defined herein as the "standard date,” against
which data from future observations will be compared. The regression line
and the 95-percent prediction interval for the standard data are also shown
on the figure. The results shown in Figure 1 allow the following statements

to be made:



(1) Ninety-five (95) percent of all future observations made under the
jame test conditions are expected to fall within the prediction interval for
sheet thicknesses between 0.51 and 0.84 mm. If creep data from tests at
lifferent test conditions generally fall outside of the prediction interval,
shen the new test conditions have probably changed the creep behavior of the
wberial.

(2) Most of the data for the > 0.84 mm fall well within the prediction
nterval for the "standard data.” Thus, the € = 0.002 creep strength of
laynes alloy H-188 at 114k K is not significantly different for sheet thick-
1esses from 0.51 to 2.03 mm. This is in contrast to the results presented
n (4) where creep rupture strengths of sheet < 1.27 mm thick were lower than
shose for sheets >1.27 mm thick.

The prediction interval apd mean line from Figure 1 for the "standard
lata" are shown in Figure 2. Also shown in Figure 2 are the results of
:reep tests run in anocther laboratory on thin-gage H-188 at both standard and
~educed pressures of air. The focus provided by the prediction interval indi-
sates that the e = 0.002 creep strength of H-188 for sheet thicknesses
>etween 0.51 andm0.6h mn both at standard atmospheric and reduced pressures
sas not significantly different from that previously established for 0.51 to
).8k mm sheet at standard atmospheric pressure. However, for thinner sheet
'0.25k mm) at reduced pressure creep, strength was significantly higher as
indicated by the many test data points (open circles) above the—prediction
intervel. Similar results were observed for other strain levels at 114 XK.

The conclusions drawn from Figure 2 could have been reached with far

fewer tests (as few as 2 or 3 for any of the test conditions shown). The use

of prediction intervals data appears to Be an efficient technique to éxploré

g



the effects of ﬁnonstandard" creep conditions and to compare creep data from
different sources, This is particularly useful during tie preliminary design
phases of a program when the consequences of tyonstandard" conditions, such
as thin gage or low alr pressure, must be assessed rapidly and maximum use of

existing data base for thicker material at atmospheric air pressure is necessanys

5.2 Use of Multiple Regression {Equation (3))

To explore the effects of primery creep and various hardening rules,
such as strain hardening, on the accumulation of cyclic creepustr&in, it is
useful to have a constitutive relationship for steady-state creep strain. This

is particularly true when the data base is limited and does not include a

[ '

large number of test stresses and temperatqres:

The date set (8) for René sheet (solution treated at i&ﬁO(K and aged at
1172 K) was selected to demonstrate the applicati;n of-multiple-reg?eésion
techniques to develop a constitutive creep equationﬁi Creep tests were con-
ducted at 1005, 1089, and 1172 K. Tests were not replicated. For this study,
142 strain-time data points {observations) with str;in levels from 0.0005 to
0.005 were selected as input for the multiple regression analyses.

In addition to a normal regression analysis, the frogéam runmerically
solved the resulting equation to estimate the time (te) required to reach
each input st&ain level. To assure-comgatibility with a strain-hardening
cyclic-creep analysis, all eguation forms wﬁich did not permit efficient
solutions (less than 500 iterations) for all te were rejected. The program
also rejected all equation forms which calculated either a negative strain or
time. TFarly computer runs revealed that the multiple correlation coefficient

square (Re) and the residual mean squared error (MSE), commonly used (7) to

10 -



repidly evaluate a large number of equation alternatives were poor discrimi-
nators for this data set and these variable transformations. The following
parameters were determined from the descaled and back-transformed caleculated
values of strain and time:

EMSE (strain mean squared error)

E/T0 (maximum celculated strain at + = 0.00Ll h)

T/E0 (maximum calculated time at € = 0.000001)

AR {average strain error)

ATP (average time error, percent)
These parameters have recognizable consequences in the preliminary design
sense and were considered useful discriminators for the selection of a "best"
equation. Numerous variable transformations were evaluated in a single com-
puter run. Typically, 200 different transformations were examineq in a single
600-second computer run.

Analysis of several "best" equations during early computer runs indicated
that the equations were often unstable near time = zero. This unstable behav-
ior is illustrated in Figure 3 for typical values of stress and temperature.
This failure to predict € =0 at t = 0 was eliminated by assuming an
unrecorded data point (e = 0.000001, t = 0.00L h) for each creep test reported
in (8). These assumed data points were added to the initial data set to yield
the 167 data points and were included in all further regressions. The dashed
line in Figure 3 shows that a typical predicted creép curve using the addi-

tional assumed points is reasonable, although the fit to' the original data

4

(open circular symbols) is not as good. »

Even with the addition of the assumed data points, mone of the variable

transformations yielded a satisfactory prediction equation for the k = 27

11



version of Eguation (3). The model waslunstable when projected on log-stress,
log-time plots. At the lowest test temperature (1005 K) and short test times
‘ (= 10 h) these eguation forms began to predict longer times for a particular
level of creep strain as the stress was increésed. ‘For this particular data
set, run 412L with %k = 23 produced the "best" model eguation. This run
produced the lowest values of EMSE, AE, and ATP and computed E/TO < 0.00000L

and T/EO < 0.0L hr. The use of fewer terms in the model (k < 23) signifi-

cantly increased ‘the EMSE, AE, and ATP values calculated with the

original 142 observations, This is illustrated in the following table:

X
23 10 7
EMSE (X 107 6.71 7.25 9.14
AE (X 107 ) 550 622 730
ATP (0/0) 33 37 T

Thus for this data set, the inclgsion of the higher order interaction terms in
the model significantly improved the model's ability to fit the data.

The degree of fit typically provided by "best" model equation is illus;
trated in Figure b for e = 0.002. The symbols are the data taken from (8),
the solid lines are the mean stress and the 95-percent prediction interval
caleulated from a regression of log time on log stress using only those data
points shown for each temper;tune. The-dashed lines are the mean stress
values and the 95-percent prediction intervals ecaleculated by run 412k, k = 23
which included all of the 167 data points available in the data set. Agree-
ment between the two calculated mean stress values is considered good. More

importantly, however, this figure illustrates that the calculated 95-percent

prediction intervals from run 4124, k = 25 are consistent with those obtained

12



from the linear regressions on the data for each temperature. This indicates
that the model is probably as good as the data scatter warrant and that the
consequences of this scatter can be adequately'assessed in a steady-state
creep analysis by utilizing the coefficients determined by run 412 to calecu-
late mean creep strains and the coefficients determined for the lower bounds
of the prediction interval shown in Figure I to calculate maximum creep
strains. TFor insbtance; a "best” model equation could be used to calculate
creep strains at intermediate values of temperature to compare with other
creep data obtained by other investigators.

Figure % illustrates some typilcal mean creep éurves calculated with the‘
coefficients determined for the "best"” equation. The shapes of these curves
are consistent with those obtained by fairing through the original data
points. More importantly, the curvilinéar nature of the creep curves demon-
strate that the model equation applies even wﬁen creep strain does not
accunulate linearly as a function of time. 'Therefore, the model is function-
ally caﬁable of accounting for the effects'of'primarj stage creep in a strain-
hardening analysis of cyclic creep. - ' .

To further assess the applicability of the regression analysis, the
standard deviations for the average percentage time error for strain leve}s
0.00L, 0.0015, and 0.002 were caleculated. These standard deviations were
compared to similar results obtained from three optimized "C" velue Larson-
Miller analyses (5) of the data at these strain levels with the following

results.
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Comparison of Standard Deviation of .Percent Time Errdér

& Larson-Miller Run #iZ#, k=25
0.001 Yy.2 20. 4
0.0015 46.7 20. 8
0.002 36.3 33.5

This comparison suggests that the "best” regression equetion, which includes
all strain levels, predicts the observed creep behavior at least as well as
the family of Larson-Miller curves which would be required to cover a similar
range of strain’levels.

Multiple regression technigues can also be applied to fit "faired" data
to estimate mean values for creep strain. This is illustrated in Figure 6.
First, linear regressions of log time on log stress (Eq: (1)) were run on
the original data set (8) for each level of strain and temperature. The
results of several of these regressions are shown as solid lines in the
figure. Next, the mean times to a given level of strain were calculated from
the regression equations of the solid lines. Finally, these calculated mean
times and the appropriate values of creep strain, stress, and temperature
were used as input data for a multiple regression apalysis (Eq. (3)). The
dashed lines in Figure 6 were calculated from the results of a‘run 4121,
k = 27, using these calculated mean times as input data. The k = 27 version
of Equation (3) was not unstable with the "faired" data set, whereas, as
noted before, this version was unstable with the "raw" data.

Often creep data are presented in the literature as families of faired
curves for specific levels of strain and temperature. To individual creep

curves are available for the material of interest.
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As can be seen from this example, multiple regression techniques can be
used to obtain a single eguation which will coalesce families of curves.
However, a prediction interwval is no longer applicable because the calcula-

tions are no longer based on scattered data.
6 CONCLUDING REMARKS

Frequently, creep data are limited during the preliminary design phases
of a program such as the design of Space Shuttle thermal protection systems.
The examples presented herein illustrate the applicability of regression
techniques for (1) evaluating the effects of "nonstandard" creep conditions
such as sheet thickness or low oxygen partial pressure on creep behavior and
(2) developing analytical expressions to predict creep behavior from limited
data. The use of prediction intervals to evaluate the désign consequences

of the data scatter has been discussed.
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STRESS-RUPTURE DATA CORRELATION -
GENERALIZED RECESSION ANALYSIS

AN ALTERNATIVE TO PARAMETRIC METHODS

By i

Donald R. Rummler

ABSTRACT: The applicability of mgltipie regression analysis
techniques to stress-rupture data correla%ion has'been inﬁeéti—
gated., A generalized interacting variable (GIVAR) method of data
correlation is proposed and evaluated., The GIVAR metnod is
compared to six parameter methods of data correlation on‘;hree
sets of simulaved data and twenty sets of real data., In all
cases, the GIVAR method provided the best data cofrelation.
Application of prediction intervals and correlatiﬂg variables in

addition to temperature and stress is also discussed,



INTRODUCTION

Since 1952 when the first paper [1] introducing the concept of
a time-temperature parameter (TTP) was published, the need to
correlate and extrapolate stress~rupture data has continued
unabated. The importance of stress;rupture data analysis has led
to a large number of papers which either Propose new parametric
approaches [2-5], offer detailed comparisons of analysis _
techniques [5~7], and/or provide state—of-the-art surveys [8-12].
Although the development of some parametric methods can be
related‘to-creep behavior and fundamental processes, most
parametriec methods have been empirically derived, Most also make
The assumption that there is a simple functienal relationship
bepween temperature énd time-to-rupture which will yield a
constant value of the parameter at a given level of applied
stress. Consequently, the selection of a particular'parameterrto
use for data analysis imposes rigid‘requirementé’on the nature of
the allowable interactions between flmemto—rupture, applled
stress, and temperature, Methods for the selectlons of a
particular parameter for the analysis of,dgta‘sets are giveﬁ in
the previously cited survey papers., The.apﬁlicationféf these.
methods to real data sets is often difficult., Often'the énalyst
is reguired to use data sets which are 1nadequate in terms of
stress or temperature range to allow a clear selectlon of the
parametric method best suited for data.correlatlon. Data scatter
further compounds the difficulty of selecting an analysis -

ﬁechnique and often forces the analyst to "smooth" or approximate
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his data in order to conform reasonably to the functional
requirements of a particular parametric representation.

An attempt to overcome some of the difficulties has led to
the concept of minimum commitment [7, 10, 13]. This method
(MCM) proposes the use of a general time-temperature functional
relationship, The MCM method has recently been evaluated during
an investigation concerned primarily with its extrapolative
characteristics [7]. Although the MCM showed promise during the
evaluation,”its clear superiority over other forms of parametric
analysis was not demonstrated, In addition, in its present form,
the MCM does not provide the analyst with an explicit form of
parametric representation directly nor is it completely general
in the allowed functional interactions between the primary
variables of time-to-rupture, stress, and temperature,.

The empirical nature of the data analysis techniques current-
ly available is the direct result of the lack of understanding
of the stress-rupture process particularly in complex engineer-
ing alloys. Until better theoretical models of creep-rupture
behavior are developed, the engineer or analyst is faced with
the task of establishing -a functional relationship which will
describe and correlate the data at hand. Regression analysis
has been found to be a useful tool for the analysis of multi-
factor data particularly when the physical factors which control
the response to be predicted are understood only in general
terms. Such is currently the case in the analysis of stress-

rupture data.



The purpose of this paper is to present the results of an
investigation to determine the applicability of multiple
regression analysis_techniques to stress-rupture data
correlation. The particular regression techniques developed are
first compared to several parametric methods using both simulated
and real stress—rupture data sets. The potential of the
developed regression techniques is further explbred by subjecting
a large number of real data sets to a preliminary analysis
desighed to select the functional fofﬁ of an equation to be .used
for detailed analysis., These results are also compared to
several parametric methods.

DATA FOR ANALYSIS

Both simulated and real data sets were used to assess the
cgpabilities of multiple regression analysis techniques for
stress~-rupture data correlation.

simulated Data

Simulated data sets were derived from data for Timken 35-15
stainless steel taken from reference [8], These data were fitted
by the method of least squares to transformations of the
following parémetric expressions:

Larson-Miller

T(C .+ log tr) = bo + bl log ©

Orr-Sherby-Dorn

log tr-AH/2.3RT = bo + bilog o]

Rabotnov

2

- b -
o(l + A tr) bO + bl/T + b2/T
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R = universal gas constant
tr = time to rupture

T = temperature

o = stress

C, AH; A, b, bo, bl’ b2 = constants determined by least
squares

The Larson~Miller [1] and the Orr-Sherby-Dorn [2] expressions are
familiah time-temperature parameters which assume that the
parameter (left side of equation) is constant for a given stress.
The parameter can be considered a temperature compensated time,
The Rabotnov [12,. 14] expression is a time-stress parameter which
asstmes that the value of the parameﬁer (left side of equation)
© 18 a constant for a given temperature, The parameter represents
a time compensated stress. Although the‘Rabotnov expression was
originally developed for correlation of creep data, its use for
creep-rupture correlation has been suggested [12] as an
alternative to TTP methods.

The values of the constants determined by the regression
analysis for each pgrametric expression were used with the
experimeﬁtal stress and temperature levels to calculate "exact"
times for each simulated data set, The simulated data sets are
referred to as L-~M Exact, O-S-D Exact, and RAB Exact, Additional
details of the fitting procedures and tabulation of the real and
simulated data are presented in Appendix A.

Real Data

All real data were taken from a recent evaluation of para-

5
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metric methods for extrapolation [7], Careful attention was
paid to the adequacy of the data in terms of range of stress and
femperature exposure and long times to rupture. The data in-
cluded a wide range of materials. The materia} types and number
of observations in each data set are shown in Table 1, The data
set numbering in reference [ 7] has)been retained in this investi-
gation, Tables 2 and 3 present the data for the two aata sets
(4 and 16) which are analyzed in detail. Reference [7] lists
the data for the other data sets analyzed..
ANALYSIS PROCEDURES

The three types of analysis technigues used during this in-
vestigation (1) parametric, (2) minimum commitment (MCM), and
(3) Generalized Iteracting Variables (GIVAR) are discussed in
this section

Parametric Methods

A number of different parametric techniques have been
suggested for correlating stress-rupture data. The equation
forms used for multiple regression analysis of the parametric
techniques selected for this investigation were as follows:

Larson-Miller (L~M)

_ - 2 /m 3
Y = log &, = b + bl/TR + b2S/TR + b3 S /TR + by 8 /TR +

b 5
boS /Ty + bgS” /Ty

Orr-Sherby~Dorn {(0-3-D)

= _ 2 3 4 5
Y = log tr = b, + bl/TK + b,8 + b3 8% + bys- + b5S + beS
Manson-Succop {(M-3)
Y= log t. =b_ + biTw + b8 + b8 + b,83 + b_s" + b,8>
& Up o 1°F 2 3 it 5 6
' 6
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Manson-~Haferd {(M-H)

= = 2
Y log tr = bo + blTo + b2TOS + b3TOS

4

3 3
+ bHTOS + b TOS +

5
5
bSToS + b6ToS

Rabotnov (RAB)

¥ = £2 = b + by /0T + by/0Ty + by/T] + bu/ch + b /0T’
where

tr = time to rupture, hours

5 = log o

g = applied stress, ksi

TF = temperature, Of

TK = temperature, Kelvin

TR = temperature, Rankin

T0 = offset temperature = TF - TA

bi’ TA’ a = constants estimated by method of least sguares.

Both the M-H and RAB techniques required the use of iterative,
non-linear multiple regression techniques to estimate all of the
constants.

In all cases, some function of time to rupture was considered
the dependent variable whose variance was minimized. High order
polynomials which are functioﬁs of stress have often been used to
correlate stress-rupture data [7, 8]. Although a sufficiently
high order polynomial can apgfoximate any function, it can also
result in unrealistic waviness in'plots:of the dependent
variable versus any one of the independgnt variables, For these

reasons, the parametric model equation forms were also analyzed

in funetional forms which included only second or third order
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polynomials in the stress function,

In addition to estimating thg required constants and predicted
values of log time to rupture, the parametric analysis procedures
produced the following summary values'to~aid data correlation and
parameter comparison:

pys = ( 2(OTR - PTH)2)1/2

N
. 2

e .. ¢L(0OTR -~ PTR)<,1/2

STD - ( N - K - 1 )

DPAVG = 3 (PIMAX ~ PIMIN)

N

DPMAX = maximum value of PIMAX — PIMIN
whetre

OTR = cbserved log time to rupture

PTR = predicted log time to rupture
N = number of observations in data set

K

i

number of constants in regression model

PIMAX, PIMIN = upper and lower bounds cf 95% prediction

interval for each obsePrvation in a data set

The root mean square (RMS) provides an overall comparison of
data correlation including both random error and functional bias,
It does not, however, reflect the increases in the regression
standard deviation which can occur when high order polynomial
terms are included in the model equation. The added high order
terms may be highly correlated with the other independent
variables already in the equation and consequently may not reduce
the residual sum of squares enough to account for the loss in
degrees of freedom [15], For all regressions which used log time
to rupture as the dependent variable the calculated value of STD

8
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1s equivalent to the standard deviation of the regression,

The average width (DPAVG) and the maximum width (DPMAX) of the
95% prediction interval are considered useful indicators of the
expected scatter for a future observation taken from the same
material under the same testing conditions, The prediction
interval [16, 17] is used to make a statement about the expected
value of the dependent variable (log time to rupture) for a
single future observation at specific values of the independent
variables (functions of stress and temperature). The prediction
interval is wider than the more familiar confidence interval on
the mean, since it includes both sampling errors and the
uncertainties'in estimating the mean value of the dependent

variable,

Minimum Commitment Method

The minimum commitment method (MCM) of parametric analysis [7,
10] was developed to minimize the dependence of the data analyst
on the particular model equation forms of the generally used
parameter methods. The MCM concept is to utilize a parameter
model eguation general enough to eﬁcqmpass méét‘of the popular
parameter methods. The parametric equétion chosen has the form:

log t (1 + AP) + P = G

where
t = Time €0 rupture
A = constant
P = function of temperature
G = function of stress
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The functions P and G are "station functions" which are defined
by their values at selected levels of tempefature and stress.
Since it is not necessary for P and G to be explicitly expressed,
there is no commitment on the part of the analyst to a particular
parametric form, MEGA (Manson-Ensign Generalized Analysis) is
the computer program developed to implement the MCM [13]. The
particular version of MEGA used during this investigation
utilized thfee stations of temperature to define P and three
stations of stress to define G, In addition, the first and
second derivatives of the G function at the mid station were
included in the analysis. The analysis, therefore, involved the
calculation of eight constants [7].

The parametric eguation form which has been selected for the
MCM does not readily lend itself tc a least squares method of
solution with log of time to rupture as the dependent variable.
Consequently, the MEGA computer program in its current form does
not yield least squares statistics such as the standard deviation
of the solution (regression). The lack of appropriate statistics
necessitated the use of RMS as the evaluator when comparing the
MCM method to other methods of stress-—rupture data correlation,

Generalized Interacting Variables Method

Development — The basic concept for the generalized
interacting variables (GIVAR) method of data correlation was
developed for the analysis and correlation of creep data-tlBJ.
Simply stated, it is assumed that the functional relationship

between the dependent variable and independent variables can be

10
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described by a low order polynomial in each independent variable.
For stress-—rupture .data correlation, this concept leads to a
model response equation of the general form:

£(y) = gllay + byX; + ¢ X5)(8y + boX, + e X5 + ApX3)]
where y, Xl’ and X2 are respectively functions of time to
ruptEre, temperature, and stress. DBecause complex interactions
bétween time, temperature, and stress are known to occur during
the creep-rupture process, the model equation is completely
general and allows all interaction terms which resulf from the
combination of the low order polynomials specified for each

independent variable, Additional independent variables can be

¥
*

readily introduced into the'geﬁeral mé@el form by the inclusion
of additional low order polynomials,

£(y) = gh(a) (B) () (D)1
where A, B, C, D are low order polyhomials of the independent

7

correlating variables, ) o Lo
The computer program to impiement the GIVAR meéhod includes

provision for transformation of ¥ and Xi. For this

investigation, the majority of data correlations were performed

with the following transformations

Variable , Allowed Transformations

y log €
Xl T, 1/T, log T
X2 o, 01/3, leg o

where t, T, o are respectively time to rupture, temperature, and

stress, After transformation of the primary variables, the model
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equation .form is expanded and new independent variables, defined
as follows, are inﬁpoduced te yield a response equation for a
muipiple regression analysis:

y = 515233 + byXy + boX, 4 Plb2XlX2 - - === §=l ¢ij
The resulting model equation form for the multiple regression
analysié is linear in the coefficients (¢j) and is simply an
extension of equationbforms which have been used to determine
optimum conditions in multifactor environments [19], for example,
to determine the coﬁditions necessary to maximize the output of a
chemical process.

Application - To perform a GIVAR correlation of stress
rupture data, the orders of the indepéndent variable polynomials
were Selécted and the general equation form expanded.— A second
order polynomial in temperature and a fifth order polynomial in
stress were used for the majority of data correlations. When a
cl/3ltransformation was selected, a sixth order pclynomial in
stress was used. Temperature and stress interaction terms above
third oréer (X§X2) were deleted from the polynomial expansions,
Next, the transformations of each prime variable which would be
allowed were selected. The computer program, using these
control inputs plus the original data set, then analyzed all
combinations of the variable transforms and printed out summary
results for each analysis. The variable transforms which
produced the lowest standard deviation of the regression were
then resubmitted and the number of terms in the regression model

was reduced using a technique known as.a tk i—directed search [15],
3
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When there are M potential variables in a regression model,
there are 2M possible regression equations. The tk,i directed
search technique has been proposed as an alternative to stepwise
regression techniques [16] to reduce the number of variables in a
regressgion model., The tk,i directed search uses the ratio of
each bi to its standard error as follows:

where bi and S(bi) are the values of the coefficient and the
standard error for ith variable. Following a regression on the
full model equation, the variables in the fuil regression model
are arranged 1ln decreasing order of fheir tk,i values.

Successive regressions reduce the number of variables until a
"basic set" 1s found. The program then analyzes all model
equations which can be constructed including all of the basic set
of wvariables plus all possibie combinations of the previously
dropped variables., The "best" equation is selected en the basis
of the lowest standard deviafion of the regression.

Finally, the "best" reduced variable regression equation was
analyzed in detail to verify its adequacy. If the model was to
be used for significance tests or if a statistical interval such
as the prediction interval were to be used, verification included
careful examination of residual plots [15, 16, 20] to assess
departures from the assumptions of the linear regression model,
RESULTS AND DISCUSSION

Simulated Data
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The purpose of the simulated data sets was to assess the
functional capability of the GIVAR method and its associated
computer program without the confusing influence of the large
scatter normally associated with stress-rupture data.

The results of the simulated data set analyses are summarized
in Table 4 which shows the calculated values of STD for each of
the six methods of data correlation for the three simulated data
sets. For each data set, the generalized interacting variables
method (GIVAR) produced the lowest value of STD. Of equal
importance to the significantly better correlation was the fact
that the GIVAR computer program selected the most correct of the
prime variable transformations for the L-M and 0-S-D Exact data
sets. The tk,i search quickly redgped the original nine term
model equations to the correct three term equations. The value
of STD calculated for these two cases is due primarily to
rounding off the calculated exact times for these data sets. For
the RAB Exact data, log t, log T, and log ¢ were selected as the
best prime wvariable traQSformations. In this case, the original
eleven term model eﬁuation was reduced to nine terms during the
tk,i search.,

Table U4 also illustrates the general futility of adding higher
order polynomial terms to improve correlation for the restricted
models. ‘For the +four commonly used-parameters, no significant
improvement can be seeﬁ whén—expanding the model equationjfrom
four terms to seven terms (from a second order to a fifth order

equation in stress). A similar lack of correlation improvement
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has been reported on real data [5],

The correlations produced by the M-H and GIVAR methods for the
RAB Exact data aré shown in Fig; 1. The GIVAR method correlation
is noticeably betfer than the M-H correlation. It is important
to remembef that in both analyses, log time to rupture was the
depehdent variable and consequently, minimization of differences
between observed and calculated times to rupture was the
regression criteria. For these data, neither of the two methods
shown had model equation forms which would exactly duplicate the
governing equatioﬁ-for the RAB Exact data generation. This is a
comparable situation to most real data where correlation models
seldom represent a materialt's behavior exactly, Since for most
real data either correlation woulq probably be considered
_ satisfactory, the calculation of a statistical interval such as
the prediction interval to assess uncertainty about a future
observation would be a natural extéﬁgion of these correlations.,

The residuals of the M~H and GIVAR correlations for the RAB
Exact data are presented in Fig, 2. The M-H residuals clearly
exhibit curvature as a function of the predicted log time to
rupture, The residuals are not randomly distributed with respect
to the dependent variable (predicted log time to rupture).' This
Type of behavior indicates that the regression model is
inadequate and needs additional terms. Wﬁat has happened is that
the M~H model equation, even with a fifth order polynomial in
stress, was functionally incapable of correctly approximating the

Rabotnov expression which was used to generate these data, The
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random distribution of the GIVAR correlation which includes
interaction terms does not suggest any functional inadequacy, An
examination of the cumulative normal distribution of the
residuals for the GIVAR correlation failed to indicate that the
residuals were not normally distributed. Since the GIVAR
correlation equation of these data does not appear to violate any
of the basic regression assumptions, the calculation and use of a
statistical interval would be in order [16].

Real Data

The resuits of the GIVAR correlation on alloy 4 (a plain
carbon steel) are presented in Fig, 3, As for all GIVAR
correlations, log time to rupture was the dependent variable.

The prime variable fransformations selected by the computer |
program are shown. The original eleven term model equation was
reduced to seven terms dufing the tk,i search, The GIVAR mean
fit seems to satisfactorily correlate this complex behavior., The
STD #élue of ﬁhe GIVAR correlation for these data was 40 percent
lower (0.103 versus 0.146)‘than a third order M-H model which was
the best of the parameter models,

To minimize the computer time, the 95% prediction interval
about each observation is normally calculated during the computer
run which performslthe regression on the model equation. ' The
upper and lower bounds of the 95% prediction are listed along
with the calculated time to rupture. For these data, the
calculated prediction interval called attention to a possible

outlier, i.e.,, an atypical observation. This data point is shouwn
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with thé filled symbol, Examination of the residual plot with
respect To predicted log time to failure (Fig, 4) suggested that
the residuals were randomly distributed, had a mean of zero, and
exhibited constant variance with the single exception of the
residual for the possible outlier, The cumulative normal
distribution plot of these residuals (Fig. 5) also appeared
normal with thg exception of the single suspect data point.
Although there are many schemes for outlier rejection [21, 221,
the present purpose is to demonstrate that the prediction
interval provided a pseful tool for focuéing attention on a
possible outlier which may have otherwise been overlooked., For
other data sets, the calculated prediction interval has called
attention to data transcription errors which had gone undetected
because of large data scatter, It should be pointed out that the
use of the prediction interval to provide a focus for'possible
outliers is not strictly .correct in the statistical sense. Its
pProper use is to make estimates of the bounds which can be
expected from a single future observation from the same
population. Dismissing the outlier for the moment, we can say
that 95% of the time a future single observation will fall within
the bounds shown in Fig, 3. The implications pf this kind of
statement for acceptance testing, quality control, or determining
the significance of a new test variable are obvious. '
Temperature and stress are usually considered the prime
variables for stress rupture correlation. Some authors [5],

however, have been able to improve correlation by the use of an
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additional variable such as elastic modulus to normalize stress,
Table 5 summarizes the results of correlation analyses on alloy
16 (a nickel base alloy) to evaluate the effect of additional
variables. The listing includes the analysis method, the prime
variable transformations, and the calculated values for STD,
DPAVG and DPMAX. The units of DPAVG and DPMAX are log (time to
rupture, hours), For these data, the M-S and M-H methods were
the best (lowest STD) of the parameter methods. However, the use
of elastic modulus (E) to normalige stress did not significantly
improve the fit in either case. Using just temperature and
stress, the GIVAR method resulted in a significantly lower value
of STD than the best parameter method. When second order
polynomial expressions for elastic modulus and ultimate tensile
Strength at the test temperature were incorporated into s
generalized intefacting model equation, a significant further
correlation improvement was achieved., The significance of the
better correlation provided by the GIVAR method is more easily
appreciated when it is'realized, that within the average
prediction intefval bounds, the predicted time to rupture varies
by a factor of 3 for the best parameter method and by a factor of
1.6 for the GIVAR method. For the maximum width of the
prediction intervals, these values are 4.5 and 1.8, respectively.
It should be pointed out thqt the GIVAR model equation did not
allow interactions to occur between elastic modulus or ultimate
tensile strength and temperature, since they are both highly

correlated with temperature. In This case, the original 21 tern
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model equation was reduced to 13 ,terms during‘ﬁhe tk,i search,

The best M-H and GIVAR correlations of the -alloy 16 data ave
presented graphically in Fig. 6. The GIVAR fit is noticeably
superior. Even with a fifth order polynomial in log stress, the
M~H model equation appears to be functionally inadequate to
correlate the complex behavior of alloy 16. This functional
inadequacy is further demonstrated in Fig. 7 which presents the
residuals as a function of the predicted log time to failure,

The M-H residuals are not randomly distributed and definitely
display a curvilinear fTendency suggesting the need for
interaction terms. The GIVAR residuals appear to be randomly
distributed and do not suggest any inadequacies in the model
egquation form. The cumulative .normal distribution of the -
residuals for the GIVAR solution (not shown) did not reveal any
gross departures from normalcy. Since none ¢f the basic
assumptions of the linear regression appear to have been
viclated, the making of significaﬁce statements or the
calculation of statistical intervals for this solution would be
in order.

In order to further assess the generality of the GIVAR method,
3ll of the data sets of reference | 7] were correlated with the
five parameter methods, the MCM method and the GIVAR method. The
independent variables for these analyses were limited to
functions of temperature and stress. For the parameter
methods, second, third, and fifth order model equation forms were

* examined., The lowest RMS wvalues foxr the five parameter methods,
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MCM and GIVAR methods are tabulated in Table 6 and presented
graphically in Fig. 8. RMS was selected as the basis of
comparison in order to include the MCM analyses, Additional
details and other sumﬁary values for these analyses are presented
in Appendix B. P

In Fig. 8, a range band is shown for the five parameter
methods, The MCM and GIVAR method are shoﬁn with symbels. For
each of the twenty data sets analyzed, the GIVAR method produced
the lowest value of RMS, The GIVAR method on the average
porduced a 19% lower RMS value than thg'MCM‘which wasion thé
average_the best of the other methods eiamined. .Examination of
Table 6 reveals that the GIVAR solution in several cases required
less terms in the model equation than the best parameter model
equation., The MEGA computer program used to impleﬁent the MCM
required the determination of eight constants. ‘Taﬁle 6 also
shows that the Rabotnov method was in all cases the worst of the
parametric methods., It should be pointed out, however, that a
polynomial in 1/T was the only function of temperature
investigated and that other functions_of temperature might
provide better correlations. With the exception of the GIVAR
method, none of the other methods consistently produced the
lowest RMS value for all twenty alloys. The failure of any
single method To be consistently superior was also observed in
reference [7] where the primary emphasis was on the extrapolative
characteristics of the various parametric methods with these sets

of data,
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CONCLUSTIONS

An investigation has been made to assess the applicability
of a generaliged interacting variable (GIVAR) multiple regression
analysis method for the correlation of stress~rupture data. The
GIVAR method was compared to six other methods of stress-rupture
data correlation on twenty sets of data. The following conciuw
sions are made from the analyses presented herein.
l. Por all data sets examined, the GIVAR method produced the
best correlation (lowest RMS value).
2. It was shown that the GIVAR method has the functional
generality to satisfy criteria necessary for thelcalculation of
statistical intervals..
3+ The GIVAR method readily accepts the inclusion of corréla—
ting variables in addition to stress and temperature,
4, The prediction interval was shown to be useful for the detec-—

tion of possible data outliers.
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APPENDIX A
Parametric Analysis to Establish Simulated Data Sets

The purpose of simulated data sets was ts evaluate the func-
tional capabilities of the various correlation methods without
the confounding influences of the large scatter normally assoc-
iateq with real data. Creep rupture data are seldom the result
of a statistically designed experiment. The Fafa are se;dom
balanced in variable space., In addition; temperature and stress
are often highly correlated. Because of ‘testing economics, low
stresses are usually associated with high temperatures and high
stresses are usually associated with low ftest temperatures, In
order to include this type of inbalance in the simulated data
sets, the data for Timken 35-15 stainless steel [8] were fitted
to a first order Larson-Miller and Orr-Sherby-Dorn expressions
and tc a second order Rabotnov expression by the method of least

squares. The equation forms and the fitted coefficients were as

follows:
Larson~Miller
(Txlo*u) (C + log tr) = bo + bl log o
where T = test temperature, °R
C = iteratively determined constant = 13
tr = time to rupture, hours
b, = 6.39038
b, = -0.90584
g = gtress, psi
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Orr-Sherby-Dorn

log t, - 2R = p_+ by log o
2+ 3RT
where
tr = time to rupture, hours

AHR apparent activation energy, iteratively calculated =

58000

R = universal gas constant = 1.986
T = temperature, K
b = 4, U6410
by, = -4.60029
g = stress, psi
Rabvotnov
t2 ='by + b /0T + by/oT°
where
t = time to rupture, hours
a = constant iteratively determined = 0.3637
b, = -1.62434
b, = -2.44083 x 10°
g = stress, ksi
T = temperature, OF

b, = 4.88958 x 10°
The rupture times which were calculated for each of the three
solution methods were substituted for the experimental times to
rupture to form the "exact" simul@téd data sets. These calcula-
ted times and the origindl data for the Timgeﬁ 35=15 ‘stainless

steel are presented in Table, 7.
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APPENDIX B
Supplementary Analysis of Correlation Methods

The purpose of this appendix is to supplement the correla-
tion method comparison presented in the main boedy of the paper
on the twenty real sets of data.

The results of the parametric correlations are summarized
for the L-M, 0-8-D, M-3, M-H and RAB in tables 8 through 12,
respectively. The tables present values of RMS, STD, DPAVG and
DPMAX which were calculated for each level of polynomial model
equation which was evaluated, For the L-M, 0-3-D, M-S, and M-H
methods, second, third, and fifth order expressions 1in stress
required 4, 5, and 7 terms, respectively., The RAB method re-
guired 3, U4, or 6 terms to develop second, third, and fifth
order expressions., Table 13 presents aysummary—of the GIVAR
method for these twenty data sets. s
Parametric methods .

In all cases for the L-M, O-S-b, M~3, and M-H methods, a
fifth order expression produced the 1owest1§alue of RMS for a
given alloy. In some cases, however, the high correlation of
the power terms in stress resulted in ill-éonditioned solutions
which were not reliable (see Table 8, alloy 14, for example).
Such was net the case for the EAB solutions (Table 12) where
third order expansions (4 terms) of temperature fit better than
fifth order in a number of cases (alloys 4, 6, 8, 114, 11B, 17A).

The calculated values of STD, which for the L-M, 0-5-D, M-S,

and Mwﬂ‘ﬁethods were equivalent to the standard deviation of the
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regression, did not follow the trend of better correlation with
increasing degree of stress polynomial. The increased STD values
reflect the fact that added variables did not reduce the residual
sum of sguares enough to account for the loss in degrees of

freedom. These cases included the following:

Alloy Method(s) .
1 L-M
4 L-M, 0=-S~D, M-S, M-H
6 L-M, 0-S-D, M-S, M-H
8 L-M, M-S, M-H

114 L-M, O=S8-D, M-S, M-H

11B L-M, 0-S-D, M-8

12 L-M, 0-S-D, M-S, M-H

This behavior, larger values of STD with a higher order
polynomial, was also exhibited for several of the alloys during
the RAB method correlations (Table 12). The poorer correlation
provided by the higher order polynomials can be better
appreciated when we recali that the units of DPAVG and DPMAX are
log time. Taking the best parametric method correlation in fterms
of RMS for alloy 4 (Table 11), we see that the average predicted
time within the 95% prediction interval varies by a factor of 4.9
for a seven term equation and by 4.5 for a five term equation,
The comparable values for the maximum width of the prediction
interval are 6,4 and 5,4, In this case the use of a

Tifth order expression has significantly degraded the

correlation, In addition to providing more sensitivity to
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changes in the "goodness" of correlation, the values of DPAVG and
DPMAX as preliminary evaluators of correlation have the feature
of allowing all methods to be compared on an equal basis. Values
of DPAVG and DPMAX can be backtransformed and averaged if
necessary to accommodate different transforms of the dependent
variable, They can thus provide the-analyst with a "feeling" for
the scatter and uncertainty in the data and its correlation.,

It 1s beyond the scope of this paper to summarize the results
of all of the analyses which were performed by the GIVAR method
on the real data. Table 13 summarizes the "best" model equation
results for each alloy. In most cases, the "best" equation was
selected  after the examination of summary computer results for
nine different model equation forms. Log T and 01/3
transformations of temperature and stress were selected for
several of the alloys (Table 13). These transformations are not
suggested by any of the standard parametric methods, As
expected, not only did the GIVAR method produce the lowest value
of RMS for each of the alloys, but it also produced the lowest
value of the other preliminary correlation evaluators STD, DPAVG,
and DPMAX (Tables 8 through 13).

It is rare that stress-rupture data have the replicated
observations that are necessary to provide an Internal estimate
of data scatter. The data for alloy 13 [7] was such an
exception. There were seventeen experimental conditions which
were replicated. These replicated'observationg had an average

standard deviation of 0,232 with a spread of from 0,024 to 0,476,

26 5



in terms of log time, The best GIVAR correlation of these data
(Table 13) had a standard deviation of 0.280 indicating that the
fit was comparable to the data scatter., This value is somewhat
lower than the best (M-H) parameter method STD of 0.293 (Table
11).

summary

i. Higher order polynomial model eguations do not always pro-
vide the best correlations of stress-rupture data.

2e The_standard deviation of the regression (STD) is a better
correlation evaluator than RMS.

3. The average and maximum width of the 95% prediction interval
(DPAVG and DPMAX) are sensitive prelimiﬁary evaluators for

stress-rupture data correlations,
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ALLOY

W o N oy Ul oI N e

114, 11B

12

13

14

15

16
174, 17B.
184, '18B

i9

TABLE l--Real data sets examined.

MATERIAL

1200-0 ALUMINUM'
5454—0 ALUMINUM
PLAIN CARBON STEEL

1Cr-1Mo STEEL

1Cr-1Mo~ 0.25 V STEEL

304 STAINLESS STEEL
304 STAINLESS STEEL
316 STAINLESS STEEL
347 STAINLESS STEEL
A286 IRON-NICKEL
INCO 625 IRON~NICKEL
INCO 718 NICKEL-BASE

RENE U1 NICKEL-BASE

asTroL0Y ® NECKEL-BASE

UDIMET 500 NICKEL-BASE

L~605 COBALT-BASE
6061~-T651 ALUMINUM

TOTAL = 20 DATA SETS

28

NUMBER OF

OBSERVATIONS

64
75
26
33
26
52
39
38

42,44

24,

99

26

37
. 33

103,105

100,104

99
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TABLE 2~-Stress-rupture data for alley 4.

Temperature Stress " Time to Rupture
Op ksi Hours
752 40.3 752
752 38.1 1696
752 35.8 3973
752 33.6 6134
752 31.4 10422
752 29.1 20227
gh2 33.6 65
842 31.4 hhg

" 842 26.9 1341
842 24,6 3023
8u2 22,4 3934
842 17.9 12985
842 15,7 18648
842 13.4 34753—
932 22.4 63
932 20,2 ' 2h7
932 17.9 430
932 15.7 1317
932 13.5 2958
932 11,2 3202
932 9.0 7558
932 6.7 22707

1022 13.5 43

1022 11.2 " 142

1022 9.0 Ug6

1022 6.9 ;1935
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- “TABLE 3--Stress rupture data for alloy 16.

Temperature Stress Time to Rupture Tensile Strength(a) Elastic Modulus(b)
Op ksi .. - Hours ksi 10-6 psi
1400 101.0 +12.8 150 25.80
1400 * 86.0 " 759.0 150 25.80
" 1400 " 80.0,, 176.6 150 25.80
1400 74.0, T 4007 150 25.80
1400 . 70.0.. < T 577.0 150 25.80
1400 61.0 2279.8 150 25.80
- 1400 55.0 . 4063.2 150 25.80
1500 75.0 30.5 130 25.05
1500 64.0 142,2 130 25.05
1500 56,0 351.3 130 25,05
1500 52.0 . T712.0 130 25.05
1500 45.0- 1228.3 130 25.05
1500 "39,0 2227.4 130 25.05
W 1500 31.0 - 4393.4 130 25,05
1600 64.0 10.5 110 24,50
1600 56.5 28.8 110 24.50
600 46,5 145,8 110 24.50
1600 41,0 253.0 110 24,50
1600 37.0 535.7 110 24,50
1600 31.0 888.0 110 24.50
1600 245 2899.7 110 24 .50
1600 19.0 - 6331L.0 110 24,50
1700 41,0 11.5 80 23.30
1700 33.5. 4,2 8D 23,30
1700 . 29.0 120.9 . 8o 23.30
1700 2.0 42,7 80 23.3D
1700 21.0 . TU6.T 80 23:30
1700 17.5 1768.7 80 23.30
1760 14,5 2838.7 80 23,30
1800 29.5 . 6.1 40 22.15
1800 20,5 49,3 bo 22.15
1800 17.0 174.0 ho . 22.15
1800 14,5 340.7 ho 22.15

‘ (a) Estimated from reference [23]
fg (b) Prom reference [5]
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TABLE Y~~Comparison of STD values Tor simulated data.

Generalized Interacting Varlables
to. of Parameter Methods GIVAR Ho. of varia- Prime varlable
Dath  equation E-M 0-5-0 M5 M=H RAB bles in "pest" transformations
Set terms L] 5 7 q 5 7 4 5 7 ' 5 7 3 Yy 5 equation
0-5-D .o45 L0445 W5 -- - - 1092 095 .096 027 .023 .020 .37 046,003 ,00003 3 log t, 1/T, log @
Exact
LM —— - - o045 L04T  LO4T .052 .054 ,085 027 .024 025 .202 052 051 00002 3 log t, L/T, log a
+ Exaet B - i
AAB L117 .118 .119 J1U5 149 +150 L083 .084 085 Lol L0482 (040 == - - .010 9
Exaot

log &, log T, log o
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TABLE 5-~Effect of additlonal varlables on correlation

ANALYSIS
METHOD

L-M
QwS~D
M-8
M~S
M~H
M~H
RAB
GIVAR
GIVAR

alloy 16 - Astrolofﬁ)

PRIME
VARIABLES

1/Tg, log ©
1/Ty, log o
TF’ log ©

T log o/E

F’

Tps TAslog o

TF, TA’ lég o/E
1/Tq, ©

. 1/Tps ©

1 1/3
log T o] 1/E
g F’ O'TU, 3 /

STD

142
.148
,118
.114
116
.110
«373
.061
044

PREDICTION INTERVAL

AVERAGE MAXTIMUM
631 756
661 .824
<527 657
.506 648
«517 .660
U489 " ,652
1.159 4,140
279 353
213 .256
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Alloy

174
17B
184
18B

19

Average

Number
of Data

Points

64
75
26
33
26
52
39
38
42
4y
24
95
26
37
33
103
105
100
104
100

L-M

Terms RMS

-~y =3

e B Bt T B B B IS L N I B B B IR S IS I e |

]

.159
.082
.161
.063
.097
L1480
178
.111
.13k
.132
.183
.288
060
.088
«126
L 202
.200
.216
. L2148
.265

<155

Terms

B B I R R . R Rt B R B B N e T e e )

TABLE 6--~Summary of RMS comparisons.

0~5~D

0

RMS

+139
+086
. 149
+050
« 057
«131
131
.94
142
+139
.191
+ 291
L 074
.092
132
232
.228
«251
. 252
+253

«156

M-S

Terms RMS

L I R R R R R T T T Tt JC, R e R R

4]

.220
160
161
089
.128
+179
+233
L1l
122
122
178
201
<073
100
.105

201,

.201
182
.180
308

«169

aEvidence of illrconditioned solution for seven term model,

M~H

Terms RMS

B I I JCRSCRRY I R e SR ST R S S Sy S G e

m .

+153
o7k
+128
.054
L]
.121
2137
.111
2113
£111
.178
282
.059

«103
+200
.196
182
.180
276

140

,088

RAB

Terms

SO E oW ST T DOV WSS GOy

RMS

.209
245
J2HTF
. 304
.298
+256
.291
.148
179
.218
. 385
.363
+293
.321
£ 344
A6l
A77
.38
JHl0
52

<314

MCM

0
0
~-.15

-.05

-.05
.15

-.10
-.05
~e10
-.05

-+15

o oo o

RMS

127
077
. 109
054
043
+131
115
.078
.109
111
175
.290
. 056
.096
072
.198
»201
.186
187
+ 350

+138

GIVAR
Terms RMS
9 L3106
11 .055
7 . 088
9 .043
6 .o042
10 .09l
10 ,o07h
8 L068
7 100
9 .099
6 .166
8 . 268
16 .037
7 068
9 +052
g 101
7 +196
8 173
B +L7L
e .225
L1116

ATITVAD ¥00d J0
SI @HV4 TVNIDIEO



TABLE 7--~Experimental and caleulated stress-rupture data
for Timken 35-15 stainless steel.

e

Experimental Calculated time to rupture, hours

Tgmp., Stress, Time to L~M 0-S=D _RAB
F ksi Rupture Exact Exact Exact

Hours

1200 21,0 120 81,36 149,16 77.21
1200 19.0 170 140,147 236,38 110.82
1200 18.0 300 188,67 303,14 134,11
1200 13.0 975. 1114,10 1354 .55 401,32
1300 16,0 60 46,89 . 52.16 T1.H4
1300 13.0 160 136,51 135,58 150,14
1300 11.0 - 300 322,53 .. 292,38 265,00
1300 7.5 =~ 1300 2315.56 1702,62 910,22
1400 8.5 120 166,00 122,73 228,84
1400 7.0 400 427.33 . _ 299,80 ° 434,31
1400 - 6.0 900 905,32  ~ 609.27 711.23
1500 6.0 120- 138,89 .96,32 252,30
1500 ‘4.9 . 300, 354,14 v24h 54 490,24
1500 . 3.5 950 . 1676,99 © . 1149,68 1409, 44
1600 6.0 20 - -~ 25,56 . 18,21 6

1600 4,0 - . 132
. 170 152,03 117,62 302,83

1600 3.0 - 500 538.66 - 441,81 765,48
1600 2.5 . 1300 ©1200.88° . 1022.11 1349, 5%
1800 3.0 -, 22 21,84 24,58 30.82
1800 2.0 100 110.91 158,75 139.88
1800 1.5 500 351.35 596431 369.08
00 1.3 1000 623,51 1151.78 585,77
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TABLE B--Summary of Larson-Miller method correlatlons,

RMS 3TD
Number of %erms 4 5 7 4 5 7 4
Alloy
1 (3882 ©.16bd  0.150f €.1703 60,1671 0.1680 0,7937
2 0.1474 00,0890 0,0817 P.1514  A.0921  N.0RGE n.E6PRT
4 C.1796 0,162f 0,160n G.19%7 N,1811 00,1382 a,R487
5 n.082% 00,0737 n,.0625 p.NATA N, U795 0,.0704 n,3750
S 0.1089 0,0977 06,0970 n,110% N, I0RT . 0,113% a,51583
7 60,1709 0.1587 0,3404 n.18%9 n,1606 ©,1509 771G
8 0.1791  (,17%1 10,1777 0.1891 0,191R 10,1962 n.ANGA
9 G.1387 0,1224 0. 1114 0,146 N, I13TEZ D0,1233% 0.6214
114 G.13%% 0,135 0.1337 U.1847 0,447 0,14AG 0,6193
11B G.1397 0,134p 0,1317  0,1465 0,1424 0,1436 0,6174
15 0,235 0,186 0,1833 0.25A1 0,2091 0.217h 1,1370
13 0,.3313 0,3057 n,2861 6.3%R5 0n,3137 0,799% 1,3925
1k 0,0677 0,064 2 (.07% A NT16 a ©0,3201
15 D.1427 0.09%: 0,0&7~ n.1ER5  A,1072 06,0873 0.6729
16 n,663 0,134¢ n,1297 0.1774 N,1457 0.1817 0,7577
7A £.237TH  0,2064 %,2020 0,206 0,2114 0.p092 n,9951
178 0,254 0,204C n,1999 0,2575 0,2090 0.Pr6° 1.0854
184 0,2304 00,2245 0,Pl6l 0,23% 0,2303 U, P241 0,967
188 0.726% 0,2261 0,P13° 01,2377 (L2338 4.771% n,5541
19 OL,u805 P AuBr  N,ZEDA G, he0%  CLZEPA 0 0,P7H1 1.8096

8pvidence of illwconditionad selutien,

DPAYG
5

n,7020
0.%849
h.8029
0.3443
0.4A18
0.6797
0,4219
0.5631
06176
0,6062
0,9359
11,2903
n,3172
0.4606
0.67309
0.8725
G, 8607
06,9510
04,9631
1,49681

6.7159
n,3632
0. ESY
0.%3131
0.%223
t.6u%7
0,8597
n,5410
N.6386
0.6241
1,0142

1.?5%#

o,4282
0,6303
r,8711
0.Rre02
0,934%4
0,9212
1,1473

0,A45%
0.H633
0,8480
n,spee
a,5700
0,021
D.Re31
n,r412
D,RBERY
D,701%
1.,k289
1.5469
r,X578
a,727%
0.RY09
1,0364
1.1363
1,005A
1,0288
1.AR03

DPMAX

0.7960
0.4218
0D.9214
0.4077
0.5662
0.7370
0,9337
0.,7294
0.6786
0,7087
1,2125
1,5613
0,3772
0.5297
0.7562
0.9428
1,00842
1,0292
1,1120
1,5931

0.9100
0,4410
1,0204
0.4036
0.,A49%
0, 7830
1,0R32
1.7116
D. 7051
0,7229
1.2P80
1.gfas

0.5359
0.68062
1.0413
1.1186
1,1236
1,1542
1.,?AAL



TABLE GwmSummary of Orr-Sherby-Dorn method correlations,

RM3 STD DPAVG
Number of terms 4 5 7 4 5 7 il 5

Alloy

1 0.1892 0.3417  0.1387 0.1954 0.,1476 0.,1470 0.8149 0,6202

2 0.2025 w©.1u72 0,086 0,20p1 N,1309 0,0903 01,8683 0.4636

4 0,181% 0.1510 0.3493 0.1978 0,16R0 0.1745 0,8608 C,7452

5 8.L818F 0,0611 0,0495 0,0872 N.0663 0.0857 0.3727 0,2876

6 0. 0661 0.0574 N.0566 0,0718 N,0f39 C.0662 n.3128 0,2A34

7 g,1be? 0,145 00,1304 0,1647 0,1531 0,1404 0,6907 0,6480

Lo 8 €.,1389 0,1374 0,1308 G 1866 01477 0,044 0.6209 0,6308

o\ 2 6.1204 0,1077 46,0935 0.1337 0.1156 0.1035 60,5668 0N.4962

11A 0,1511 06,1437 ©,1424 -0.158F 0,1531 0,1560° 0,6707 0,6539

11B @.1588 0,14%13 10,1393 0,164 0,1501 0.1519% 0,6930 0,6393

12 0.2689 0,1940 0,1914 . 0,2945 ©,2180 B0,227% 1,2931 0,9767

13 6,342 £,3193 ' 0,2910 06,3503 00,3281 o.ag?3 1,4425 1,3578

14 0.0873 (.0T3P a 6.0949  n,0R21 L n,H131 0.3642

15 £.1742 0,099 0,0923 o.1884 ©,1073" 0,1025 0,7a30 0.4614

16 0,1797 0,1%16 f,1317 06,1917 0,1537 0,1484 “0,8191 0.6661

174 0,2864 ©,2370 0,2327 0.2971 0,2029 0,2405 1.1982 11,0016

17B 0,318l 0,2329 n,2284 0,323 0,P387  0,2364 1.3290 90,9830

184 G,26b8 0,265%¢ N,250% 6.2713 0.2719 0,2597 31,1145 11,1226

18B 0,2707 00,2661 09,2520 0.275% 00,2727 0,2609 1,1297 1.1238

19 0.5107 0.5067 0.2533 G:5207 0.4173 0.7627 2.1390 1.7232

8Evidence of 1ll-conditioned solution,

77

.

0.6264
0.3823
0,8036
0,2u82
0,5045
0,6048
0.6329
0.4541
0,6803
0,6605
1,0607

1.%5“3

0.4516
0,6605
1,0013
0,9830
1,0832
1.,0855
1.0957

0.R619
0,9103
0.9502
0.3975
n,%282
n,7184
0,0616
0,5925
0,7124
0,7803
1.4279
1,5942
0.4261
0.R225
0,AS5H0
1,2249
1.%996
1,1424
1,167&
2,1995

DPMAX

0.6899
0.4550
0.8133
0.35029
0.3110
0,6680
0,6944
0.5693
0,6901
0,7149
1,1902
1,6033
043991
0,4857
0,7447
1.0250
1.0309
1,1523
1,1764
1.7714%

0.7806
D.H450
0.51869
03043
0.3688
0,6624
0,7589
0,5902
06,7378
o0,7582
1,3414
1,5184
a

8,53249
0.8237
1.1031
1,1771
1,2127
1.2777
1,1595
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/9

Number of terms y
Alloy
1 0.2417
2 C.2042
4 0.1776
5 n,1055%
[ 0.126¢
7 0,202
8 G,2329
g 70,1639
11A 80,1305
11B 0.1317
12 0,235
13 n, 3492
1§ U, s
15 n,1673
16 v.15459
174 0.2647
178 n,z274v4
184 0,.1544
18B 0,1957
19 0, 41e)

4gyvidence of ill-conditioned solution.

1]
1}
1]
0
0
0
0
0
o
0

0.
C.

&
0

G
b

c.

43
[

.2256
L1679
.1628
L0941
.1239
.1e3n
.2339
L1516
L1281
L1249
1821
3056
.h72R
L1153
L1157
L2184
2208
L1942

L1954
e.

&40

TABLE 1l0--Summary of Manson-Succeop method correlatlons,

7

0.2204
0D,166G2
N.1610
n,088E
0,1235
0.1788
0,2330
0.1409
0,1219
0.1219
n_177%
0,291
a

0,8999
n,1051
n,201¢
¢.2007
fr,1022
N,1e0h
fn,307H

0.2496
u.2098
6.1930
0.1126
0.1376
£.2105
0.24F9
£.1733
0.1269
0.1381
0,2579

0,356A

A, NE75
n 1771
H.1663
CL,2736
u,72849
0.1989
n,2n27
0,42u87

STB
5

0,2350
0.1738
f.1812
n,1022
0.1378
0,1925
0,2505
0,1627
6,1322
D.1327
fi,20u6
0,31u40
n,OALA
0,124%0
¢.1256
p.2239
r.2260
n,1952
n,2o03a

L2735

0.233%
0.1682
0.1682
0,6994
0.1445
0,1927
0,257
07,1559
0,1336
0.1329
0,2114
60,3027
a

0,1110
0.11R4
0,20A5
n,2077
n,laae
0.1667
0.31%2

1,0412
0,871k
0,8404
0,4809
0,5390
0,8830
1,0455
0,7348
0,5779
0.5822
1,1325
1,4688
n,3A10
0,720
t.7106
1,1222
1,1677
0,8171
0,8309
1.7446

DPAVG
5 7

0.9873 10,9951
D.7264% 0.,7119
00,8036 0.B8666
0.4429 O0,4446
0,611 10,6647
0.8145 0,8279
1,0735 1,1276
2,6981 0.6844
t,5646 0,5826
0,5652 0,5778
¢.2167 0,9858
1,2996 1,2661
0.3591

8.,5331 0,4889
8,.5443 0.5268
G.9231 0,8679
0,9307 00,8637
0,8227 -0,7878
0,8253 00,7768
1,5423 1,3313

1.,1p62
0,9425
0,A213
n.4988
0.A761
0,9291
1,1286
0,7T06
0,6197
D.6514%
1.2058
1,F739
n,3928
n,7838
D.7567
1,1897
1,2206
0,R378
n,R621
1,8299

DPMAX

1.0916
0.8035
b.8661

0.4680

0.6824
0,85G0
1.1731
0.7975
0.5990
0.6310
1,1163
1,5537
0,3936
0,5629
0.6055
0.9447
0,9689
0,8u82
0.8620
1,6135

1,2462
0,8258
0,9908
0,5449
0,8080
0,9079
1,3518
0.889%
0.6316
0.6609
1,24A8
11,5409
a

0,5796
0’05570
0,9559

L1.0323

0.RAZT
0.9142
1,413
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7

Number of terms y

Alloy

1 0.2322

2 0,1893

4 0.1722

5 6.0930

6 B.0481

7 0.1475

8 60,1524

g 0,1476

1lA 0,1248

1i1B 0,1287

12 0,217s

T13 0,3448

11 £,0773

15 0,1673

18 0.1557

17A 0,2677

178~ 00,2758

184 0,194%

188 0,19567

19 o,4129

8pvidence of ill-conditioned solution.

.

RMS

0.1653
0,114%
0.,1312
0.0597
0.0455
0.1294
0,1390
0,1299
0D,1143
0,1144
D.1821
0,304
09,0587
90,1015
0,1148
6.2170
08,2179
0,1936
0,1948

0,3619

TABLE ll=~Summary of Manson-Haferd method correlations,

04,1533
N.o74}
0,125u
r, 0541
D.,0448
n,1212
n,1369
n,1111
Nn.112#
0,1111
C.1779
0.2819

a
0,0883
n,1032
0.1998
9.1984
0,1822
0,1804
0,2760

0.2192
0.1946
G.1872
G.0992
0.0523
D.1535
0,1609
0,1560
G.,1312
¢.1350
0.2384
0.3523
0,08u40
0.1771
0.1/&0
0.2730
0,2812
0,1986
0,2006
0.4214

STD
5

n,1722
0.11R5
0,1460
0.0649
0.0507
D.1361
N.1489
n,1394
N,1217
0,1215
N.2046
0,312u
0, 0654
n,i091
n,1247
0.0722%
n,e223z
0,19846
0,1997
n,3713%

01674
N.0779
0,1502
D.CELN
b.0525
B.1303
0,1507
5,123
1.1235%
0.1212
D.2k1k
0.72929
a

0,0980
0.1162
0.p069
0,2054
0,1889
D.1RRH
h,?862

N.9144
0.,80a0
fLBI4A
04239
p,2277
0,6437
0,6813
n,6A11
0.5%u0
n,5689
1.0u%5
1,450%
0,.365%
0,7520
n,.7n93
1,1199
1,1525
0,8158
n,8274
1.7%10

DPAVG
5

0,723%5
n.i9s5y
0.6472
0.2R09
0.2247
n,5759
0,6380
0.5975
0.5196
0,5172
N.9157
1.2929
0.28%9&
0.4690
0.,5398
n,9170
0,9193
0,8200
D.8226
1,5%31

0.6921
0.3295
0.6908
0.2712
0,2413
0.5608
0,6605
a,5397
n,5388
0.5266
n,9847
1.2244
a

0,u315
0.5172
D.B&10
0.8537
o,7878
00,7769
1,1934

N.971A
. PA6AD
0,9018
0,677
n, 2468
N.RI07
n,7561
N,AR4YA
n,598%
0,A492
13147
1,456}
P.4131
0,8203
0,7821
1.1704
1.246¢
n,As540
n,R926
1,PD26

DPMAY
5

0.7%94
0.5535
€0.7294
0.3406
0,.2594
0.6429
0,7468
0,7819
0.5721
0.6060
1.1877
1.5899
a.3481
0.5505
0,64109
0,9968
1,0A43
0,A953
0.9539
1.63A%

7

0.80R6
0,.3n57
0,807?
06,3510
B.29R8
G.65%4
0,8nA1
0,71n5
0,5R2A
N.6095
1.25n2
1,379
a

0.5u4]
0.66N0
1.03R8
1,11%7
06,9548
0,9775
1,3242

ALITVAD 9004 JO
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Number of terms 3

Alloy

1 0,43a7

2 0,3800

4 0,3033

5 0,3040

6 0,3228

7 0,4090

8 .. 0,5865

0,2364

11a 0.5637

11B - Q.4127

i2 0,4197

13 00,8140

14 “0,3240

15 0.3249

16 '0,5893
1LTA . ..D.4785

17B 0.u892
18a 0.38%
18B D.4168
19 0,6105

RMS
4

0,2185
0,2u58
0.2473
0,3053
0,2975
0,2674
0.2912
0,1523
0,%791
0.2180
0:3891
0,3982
10,2945
0,3306
0,3604
0.4608
0,4770
0.3921
0,411k
0,4668

.

TABLE 12--Summary of Rabothov method correlations,

STD DPAVG DPMAX
6 .3 4 T 6 3 4 6 3 L
0,2091 G 4494 0,2257 0.2178 0,0000 0,0000 0,9158 0.0000 0,0000
0,2452 6.3879 0.,P526 0.2%38 1.6936 1.0257 1.0269 3.5595% 1,6010
0.2644 0.3225 0,2688 10,2942 1,4867 - 1,4262 11,4309 3,4359 3,8611
0.,3132 ° 0,3188 "0.3257 0.3400 11,7321 1.6602 1.7328 31460 2,9195
0,3425 *  0.3432 0.3235 0,3811 1,6292 1,6693 1.6632 4,3534  4,2000
0,2561, 0;4213 0,2783 0,269L. 1.9803 1.3364 1,3095 f#,4589 4,1598
0.3257 - 0,6105 0.3074 0,3u8% 2,9696 1,6791 1,9132 12,1315 3,4506
0,1u7a 0:246% 0,1610 0,1611 1,0881 0,7106 10,7195 1.3500 11,0488
0,1915 ~ 0.5227 90,1882 0,Z040 1,4767 00,8855 0,9193 3, 7275 2,4518
0.2326 0,4276- 0,2287 04,2471 1,8768 1,0452 11,0775 4,P993% 3,7546
0.3854 ™ 0,487 0.4262 " 0.4332 * 2.4168  1,8572 1,9490 6,192 33,1121
6.3626 "' 0,8272 0,408 0,3T46 ,7109 2,084% 1,9350 7.4721  5,68910
~0:2927 0.3445  0,3202 . 0,3757 - 0,0000 1,4657 1.,4%24 0,0000 1,5688
0.2210 .. 0.3389 ¢,3501 0,3451 1,6262 1,6262 11,4666 3,4998 5,7345
0,3438 ., 0,61R1 00,3845 0.3737 1.2650 1,1264 1,15%0 6,N260 3,8238
0.4638 0.4857 _0,4700 0.4755 2.8625 2,2600 2,3512 13,3286 T,.218%
0.4770 D.4963 0.4863 0.4BA7 2.82R8  2.4270 2.4692 13,1340 10,3149
0,2807 0.3955 90,4002 0,390 1,78R4 ~1,p021 1,8257 S,%52%  5,A294
0.4101 D.4229 A.4198 0,4203 1,9822 1,742 1,86&09 16,9526 65,7573
0.4516 0.6196 0,4764% 0,u3u 3.4160 2,0914 2,0226. 16,1522 3,4808

v

aBased upon backtransformed log time values,

1,0270

1,6469 .

5,3300
3.2385
4, 4872
23,6349
5.8765
1,1497
2,8222
4,5071
3.1823
3.7243
1.5985
4,5364
4,1400
B,4%88
10,839y
11,8130
14,9883
3.1542
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No, of

Alloy . Observ.

1 64

2 75

b 26

5 33

6 26,

7 52

8 39

9 38
114 42
11B 4y
12 24
13 95
14 - 26
i5 37
16 133
17A 103
178 105
184 100
18B 104
19 100

TABLE 13-~Summary of GIVAR method ¢orrelations,

Prime Variable

Transformation
Temp. Stress
1/T o173
log T 01/3
1/T o1/3
log T g

1/T log ©
log T 1/3
/T o

log ® o

1/T g+/3
/T s

/T o

1/T log
log T /3
iog T g

/T o}

1/T o
1/T 01/3
1/T o
1/ ol/3
1/7 1/3

No. of Variables

Start "Best"
12 9
12 11
12 7
11 9
9 6
12 1.0
11 10
11 8
12 7
11 9
11 6
11 8
12 10
11 7
11 9
11 [
12 7
11 8
12 8
12 10

STD

RMS 'DPAVG ~ DEMAX
.1060 ,1130 4921  .6387
.0551 ,0592 .2548  .3099
.0883 ,1033 4754  ,5273,
L0426 ,0499 ,2284 2799
L0418 ,0476 .2150 ,2485
,0910 ,1013 L4471  ,5155
L0744 L0863 .3910-  ,4971.°
;0677 ,0762 ,3384 U169
.0997 ,1092 4764  ,5360
.0985 ;1104 L4894  ,5686
L1664 ,1921 8784 11,0377
2677 .2797 1.1756 - 1.4435
.0368 ,0l56 ,2218 ' .35L7
.0683 ,0758 ..3337 .4185
.0520 ",0610 .2788  .352G -
.1913  .2002 8417 ‘.9éu9
.1963 ,2032 L8450 ~.9053
1726 .1799 7541  .8583
\1712  .1782 L7451  .BL7h
,2248 ,2369 1,0028 1.0978
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Fig. l—Correlation of Rabotnov simulated data set.
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Fig. 3—GIVAR correlation for alloy 4.
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COMPUTER PROGRAM FOR PARAMETRIC

ANALYSIS OF CREEP~RUPTURE DATAT

By

Donald R, Rummlepr

ABSTRACT

A computer program which uses several parametric model
equations to analyze creep-rupture data is presented in detail.
The model equations include the Larson-Miller, Orr-Sherby~Dorn,
Manson~Succop, Manson-Haferd, and Rabotnov parameter methods.
Standard multiple regression fechniques are used to analyze data
with respect to each model equation., In addition to the usual
regression statistics, the program calculates sﬁatistical
intervals including confidence and prediction intervals.
Graphical output includes a residual plot with respect to the
dependent variable and a cumulative distribution of the
residuals., The computer input and output, in ﬁrinted and plotted
form, for sample problems are presented to aid the user in

setting up and running the progran.



SUMMARY

A computer program which uses sevefal parametric model
equations to analyze creep-rupture data is presented in detail.
The model equations include the Larson-Miller, Orr-Sherby-Dorn,
Manson~-Succop, Manson-Haferd, and Rabotnov parameter methods,
Standard multiple regression techniques are used to analyze data
with respect to each model eguation. In addition to the usual
regression statistics, the program calculates statistical
intervals including confidence and prediction intervals.
Graphical output includes a residual plot with respect to the
dependent variable and a cumulative distribution of the
residuals, The program, its subroutines and thelr variables arei
listed and defined. The computer input and output, in printed
and plotted form, for sample problems are préseﬁted to aid the
user in setting-up and running the program, " The deve;opment of
the parameter model squations and‘the use of statistical |

ot

intervals is discussed.



INTRODUCTION

The importance of creep-rupture data analysis has led to a
large number of papers which either propose new parametric
analysis approaches (refs. 1, 2, 3, and U4, for example) or offer
detailed comparisons of different parametric me?hods (refs. 4, 5,
and 6). Most parametric methods for creeprrﬁpture data analysis
are empirical. Consequently, it 1s common pfactice for the data
analyst to fit the creep-rupture data at hand to a variety of
parametric model equations to select the most appropfiate
analysis method.

Although several analysis methods have been presented in
general terms (ref. 6, for example), there is no widely used,
efficient computer program tailored specifically to the
pérametric analysis of creep-rupture data. In addition, most
methods do not include generation of statistical intervals to aid
in the selection of the "best" parametric model equation for a
particular set of data.

This paper describes the development and use of a computer
program for the parametric analysis of creep-rupture data., The
program includes provisions for the analysis of five different
parameter methods. The parametric equations used and the
statistical quantities calculated are discussed. The computer
program input and output, in printed and plotted form, for three
sample problems are presented to ald the user in setting up and

running a problem with the program.



PROGRAM DESCRIPTION

The computer program (PARAM) was developed to analyze and
correlate creep-rupture data utilizing a variety of parametric
method model equations, For each model equation, a function of
the time to a particular creep event (such as time to 0,005
strain) is the dependent variable. Functions of stress and
temperature are the only correlating independent variables, The
major features of the program are as follows:

(1) The method of least squares is used to establish the
coefficients for the parametric model eguation selected for
analysis.

(2) Provisions are made for analysis with four widely used
time-temperature methods (Larson-~Miller, Orr-Sherby-Dorn,
Manson-Succop, and Manson-Haferd) and one time-stress (Rabotnov)
method.

(3) Polynomial forms of the parametric model equations up
to the fifth order are included.

(4) Multiple analyses can be accomplished during a single
computer run. ‘

(5} In addition to the usual regression statistics, the
program Ealculates the maximum énd minimuﬁ value of each
independent variable, as well as its range an@ dverage value,

(6) The program also calculates the relative influence,
contribution to the sums of squares, and warns of coefficient
solution errors for each independent Variable.

(7) Listings are made of the observed and fitted values of
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the dependent variable in both regression énd real variable
coordinates,

(8) Two statistical intervals, the 95 percent confidence
and the 95 percent prediction, are approximated and calculated
for each observation,

(9) Residual plots are made to indicate how the regression
residuals are distributed over all of the fitted values of the
dependent variable and whether they are normally distributed,

PARAM was writteﬂ in FORTRAN IV language for the Control
Data 6000 series digital computer under the SCOPE 3.0 operating
system. The program is dimensioned for a maximum of 5 input
variables, a maximum of 10 derived independent variables and a
maximum of 200 observations for each data set, It requires
approximately 60,000 octal locations of core storage. A source
listing of the main program and its subroutines is presenfed in
appendix A., A detailed description of the matrix equation
solution subrouftine MATINV and the plotting subroutines FSEUDO,
DDIPLT and CALPLT are presented in appendix B,

ANALYSIS

The analysis utilizes standard least squares multiple
regression analysis techniques (refs. 7 and 8) to solve
parametric equations of the following form:

¥. + b X, + == + Db.X. (1)

171 272 i%i
where Y = fitted value of dependent variable

Y = bo + b

Xl’XE « + « +» X; = independent variables



bo =~estimated Y intercept when all Xi = (
bl’ b2, - - - bi = estimated coefficients of independent
variables

Specifically, the equation forms chosen for each of the

parametric methods selected are as follows:

Larson—Miller (L~M)

Y= log & = by + b)/Ty + byS/Ty + by S°/Ty + by S3/Ty +
b 5
beS7/Tp + bS°/ T : (2)

Orr=Sherby-Dorn (0-8-D)

4

T = = - 2 ) 3
Y log t bo + bl/TK + b,S + b, 57 + buS + b8 +

2 3 5
DS’ (3)

Manson-Succop {M~S)

4

2 st +

Y =1log t = b0 + blTF + bES + b3S 5

5
beS ) (4)
Manson-Haferd (M-H)

+ bys3 + b

= = 2 3
Y =1log t = b, + bT, + b,T 8 + b3TOS T byT 87 +
R e (5)

I

3
bSTOS + b6TOS

Rabotnov (RAB)

- +2 = 2 3 b
5 6 ,

Wwhere

ct
i

time to a particular creep-rupture event, rupture,
for example : NN

S=log o ' ;

Q
]

applied stress



Ty = temperature, Op

TK = temperature, Kelvin

TR = temperature, Raﬁkine

TO = offset teﬁperature =—TF - 'I‘A

by, T,, a = constants -estimated by method of least

squares.
Both the M-H and RAB techniques require the use of iterative,
non-linear multiple regression technigues to estimate all of the
constants.

Each paramefric equation can be analyzed in truncated form
since the number of equation terms (LLO) is selected with input
case control cards.

The development .of each of the parametric method model

equations is presented in appendix C.

PROGRAM USAGE

To submit a problém, infbrmation'is normally entered on
punched cards. Four types of information cards (option, case
control, dafa set identification, and.data) are the only input
required, .Output includes 1istings and plots.

. Input

The option card controls both the printed and graphic output
of the program, ~ It élso establishes the Initial values to be
used for the iteratively modified constants for the Mansén-Haferd

and Rabotnov parametric éna;yséé. The case control cards

determine the parametric equation forms to be evaluated and their
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degree of truncation. A data identification card and the data
cards complete the deck set up. The input card order, format,

permitted values and comments follow:

Option card (215, 2F10.0)
Column FORTRAN Variable Value Comnents
5 INFUT 0 No listing of input cards
1 List data set I,D., opftion,

and ease control cards

2 List 1 + data observa-
tions

3 List 2 + regression varia-

bles for first five

observations
10 QUTPUT 0 No listing of residuals
' 1 List regression residuals
2 1 + 1ist back transformed
residuals
3 2 + regression residual
plots
Il to 20 TA Initial value for constant

in non-linear M-H equatlon;
A value of -~5000.0 is
recommended

21 to 30 RA ’ Initial value for constant
in non-linear RAB equation;

A value of 0,2 is recommended,
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Column FORTRAN Variable Value Comments
5 NPAM(I) Parametric expression to

be evaluated

1 Larson~Miller
2 Orr-Sherby-Dorn
3 Manson-Succop ‘
4 Manson~Haferd
5 Rabotnov
10 LLO(T) 2to6 Number of coefficients to

be determined for parametric
expression selected, see
ANALYSIS section of
paper,
The program is dimeﬁsioned.for a maximum of 20 case control cards,
During a single computer run, a data set can be evaluated with 20
different parametric model equation forms., A blank card must

follow the last case control card, .

Blank Card

Data identification card (8410)

Column FORTRAN Variable Comment -

1 to 80 TYPE Data I.D. Any characters in

‘columns 1 to 80, This title

is ineluded in all listed output



Data cards (3F12.0)

Column FORTRAN Variables Comments

i-12 R3(I,1) Time to a particular creep event
i3-24 R3(I,3) Temperature, °p

25-36 RS(I,2} Applied stress

The program is dimensioned for a maximum of 200 observations in a
data seé. Round-off errors can be minimized by limiting the range
of the variables, This range reduction is helpful since most
creep~rupture data is ill-conditioned (see refs, 7 and 8).

Last data card must be followed by a blank card,

Blank card

More than one set of data may be analyzed with a single set up of
the option and case control cards. To analyze additional data sets
during a single computer run, assemble the deck as follows:

Option card

Case conbtrol cards

Blank card First data set

Data identification card

Data cards

Blank card

Data ldentification card

Data cards K Second data set

Blank cafd
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Data ldentification card

Data cards Third data set

Blank card

As many data sets as desired may be analyzed during a single

computer run with this type of deck setup.

Output

Examples of printed and plotted output are presented in
the discussion of sample problems. Most of the output
headings are self-explanatory or standard statistical terms
(refs. 7 and 8). Some headings are abbreviations of
standard terms and/or require additional description, These
headings and brief descriptions, in the order of their
appearance for the printed output are as follows:

Heading Description

STANDARD ERROR Standard error of estiﬁate is square
root of residual mean square, sometimes
called residual rcot mean sguare

MULT, CORREL,

COEFF, SQUARED The multiple correlation coefficient
squared, sometimes called coefficient

of determinatioh

11 - '



MIN

MAX

Y

X1-X(L2)

VARIABLE

COEF, P.I.

S.E. COEF.

T
RAN X(I)
RINF(I)

PSUM

The minimum value of indicated variable;

independent variables are in tabular form

The maximum value of indicated variable

Tabulated values of independent variable

Tabulated values of independent variables;

L2 is number of variables in.case
Transformation required for parametric
method belng evaluated

Calculated coefficients for the fitted
equation, indexed by I starting’with bO
Estimated standard errer of the coeffi-
cient . ‘
COEF.P(I)/S.E. COEF. -

Range of independent variable

Relative influence of independent’

variable, (COEF,P{I){(RANX(I))
Y RANGE

The fraction of the total sums

of squares explained by an inde-
pendent variable; corrected for
those independent variables which

preceed it in the listing

12
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CERR

95 PERCENT
PREDICTION
INTERVAL

STATISTIES

REAL TIME FACTOR
RESIDUALS -
REGRESSION

SPACE

RESIDUAL

PCTERR

The percentage difference

between MATINV and Gaussian

elimination solutions for

coefficient; values in excess

of 0.01 suggest round-off

errors due to ill-conditioned

normal equations

The 95 percent prediction interval for

a single future observation is estimated
for each observation in regression
variable space; these values are back
transformed into log time space to calcu-
late average and maximum values; values
for the ¢t " distribution are approximated
with a third order polynomial in log
(degrees of freedom)

lo.(WIDTH)

Values l1listed under this heading are

in terms of the regression dependsnt
variable coordinates

Observed value of dependent variable~cal-

culated value of dependent variable

(100) (RESIDUAL)
3 :

13
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ORDER The rank order of the residual in regression
coordinateé; the rank order of the
PCTERR in real space coordinates;
ordered with respect to the largest
absolute value, (

CIMIN Estimated lower limit of 95% confidence
interval for the mean

CIMAX Estimated upper 1limit of tﬁe 95%
confidence interval for the mean

PIMIN Estimated lower limit of 95% prediction
interval for a single future observation

PIMAX Estimated upper limit of the 95%
prediction interval for a single future
observation

The values of the t distribution required for the

calculation of the statistical intervals are approximated

L]

with the following expression:

TVALUE = (10.0)77

where . L
T1 = 0.86186 - 0.98427 DF + 0.58495(DF)>
-~ 0.11594(DF)3
DF =

residual degrees of freedom for regression,

The graphical output of thée program includes a
plot of the residuals with respect to the calculated value
of the dependent variable (FITTED Y) and a cumulative

normal distribution of the residuals (ZP NORMAL)., For the

t 9/



ZP NORMAL blot, the plotting points for the abscissa,
P, are in terms of the inverse of the $tandardized normal
distribution and are calculated in the foilowing manner:
for FZ = 0 » 0.5
ZP, = 1.0451 + 4,3598XP + 3.4606(XE)" + 1.,9088(xp)>

0.5446(xP)* + 0.0608(XP)>

+
where XP = log FZ

FZ ="(j - 3/8)/4N + 1/4)

j =1, 2, ~ - = N when the residuals are arranged in

order of increasing magnitude.

k]

for FZ = 0,5 = 1,0
XP

log (1~FZ)
The ZP expression approximates the inverse of the standard

normal distribution,

15
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SAMPLE CASES

Three sample cases are presented to illustrate operation
0f the computer program and a method for rapidly selecting the
nost applicable parametric equation for a single set of
creep-rupture data., The data are fo; a type 316 stainless steel
(ref. 5). The three sample cases described in this section
required a total of 10.9 seconds of'CDC 6600 CPU time to compile
and run,

Case 1

For this case, all five_parametric methbds in second
degree form were used to correlate the data. The purpose of
this case was to quickly scaﬁ the.parametric models to select a
Single parameter for further study. Output was minimized by
using INPUT = 1 and IOUT = @¢. The proéram input and output for
case 1 are presented in Figures 1 and 2, respectively.

When compared to the other four parameter methods, the
0-5-D method had the highest MULT. CORREL. COEF, SQUARED, the
lowest AVERAGE and MAXIMUM WIDTH of the 95% prediction interval,
It also had the lowest STANDARD ERROR of the four
time-temperature parameters,

Case 2

Based upon the results of case 1, the Orr-Sherby-Dorn
parameter (NPAM = 2) was selected for further evaluation, The
purpose of this case was to quickly determine the degree of the
0-5-D expression which would provide the best correlation of the

data. Once again, output was minimized (INPUT = Q, I0UT = Q).
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The program input and output for case 2 are presented in Figures
3 and 4, respectively,

With respect to MULT. CORRFEL. COEF. SQUARED, there is no
appreciable improvement in the correlation produced by
increasing the degree of the polynomial expression, However,
the STANDARD ERROR shows a steady decrease as additional
variables are added up to the fifth order expression where it
increases slightly, The T values for this fifth order ex~
pression clearly illustrate the inflation of the standard error
of the coefficients which this high level of_co-linearity
produces. The CERR value for I = 2 (X(I) = LOG STRESS) suggests
that the solution matrix was ili—conditioned because the two
methods of solution do not agree,

The RESIDUAL SUMS OF SQUARES for the fourth order
expression is approximately 30 percent lower than the third
order expression, Although significant differences between the
other correlation indications are not apparent, the fourth order
expression is selected for further evaluation,

Case 3

Final verification of the fourth order expression selected
in case 2 requires the full output capabilities of the program
(INPUT = 3, IOUT = 3),., The input and output for this case are
presented in figures 5 and 6. The output includes a listing of
the first 5 values of the regression variables, resilduals and
statistical intervals in regression and back transformed

coordinates and plots of residuals with respect to the
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calculated dependent varizble (¥ FITTED) and with respect to the
normal cumulative distribution. The most important part of the
verification of the fourth order expression is the examination
of the residual plots. These plots suggest that the residuals
have a zero mean and are randomly distributed with respect to
the PITTED Y and that their cumulative distributiocn is normal.
These two characteristics of the residuals are necessary for the
calculation of valid statistical intervals.

The method selected for determining the "best" parametric
equation for a set of data was used primarily to demonstrate the
capabilities of the computer program PARAM, For other methods
see references U4, 5, and 6. For a further discussion of the use
of statistical intervais, the reader is referred to references 7
and 11,

CONCLUDING REMARKS

A computer program specifically developed for the
parametric analysis of creep-rupture data has béen discussed,
The equations used for the analysls of five parametric methods
and the computer program used to implement the analysis are
given. |

The computer program is versatile, allows rapid assessment
of parametric methods for creep-rupture data, and has a
_relatively small core storage requirement, In addition to the
statistics which are usually calculated and output by multiple
regression programs, the program outputs the 95% confldence

interval on the mean and the 95% prediction interval for a



future observation. Residual plots are provided to assess the

validity of the calculated statistical intervals.
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APPENDIX A
SOURCE LISTING OF PROGRAM‘PARAM "

PROGRAM PARAM(INPUT s OUTPUT + PUNCH ¢ TAPES= INPUT + TAPES=0UTPUT »
1 TAPE7=PUNCH) '
PARAM
PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA
COEFFICIENTS FOR PARAMETRIC MODEL EQUATIONS ARE DETERMINED BY
METHOD 'OF LEAST SQUARES
Y= BO+B1IX14+B2X2 -————-
PARAMETRIC METHODS INCLUDE

LARSON-MILLER (L~M)

ORR-SHERBY—-DORN(0O-S-D}

MANSON=SUCCOP (M=-5)

MANSON-HAFERD (M=H )

RABOTNOV (RAB) o .
DONALD Re RUMMLER ,
NASA-LANGLEY RESEARCH CENTER. HAMPTON.: VA. + 1976
ARRAYS WHICH DEPEND ON NUMBER OF OBSERVATIONS IN DATA SET (L1}
DIMENSION AA{ 200)+-CY( 200)«  CIMAX( 200), CIMIN( 200}
DIMENSION ERRPER( 200)s F( 200+10)s IPERM( 200)+ PYMAX( '200)
DIMENSION "PYMIN( 200)s RIS( 200)s RS{ 20045)s TEMP( 200)s Y(
DIMENSION ZP(200)
ARRAYS WHICH DEPEND ON NUMBER OF VARIABLES IN REGRESSION MODEL
NUMBER OF INDEPENDENT VARIABLES (L2)

DIMENSION CERR(10Y4s PARCC1O)

DIMENSION PAR1 (10} SB(10)s SSR(10)s SUMA(10), SUMBI(10)
DIMENSION . SUMP2(10440)s SUMX(10Jes SUMXY (10+410)s SUMX1(10,10)
DIMENSION. SUMX2(T0),s TC10)s XMAX(10)s XMINC10)s XRAN(10)
DIMENSION XMEAN{10) ° b .

NUMBER OF 'COEFFICIFENTS DETERMINED (.3)

DIMENSION D(11411)s DD(11s113s E{1191)s G(11el)e INDEX(114+2)
DIMENSION IPIVOT(11)y X(11) "

NUMBER OF COEFFICIENTS +1 (N3)

DIMENSION

ARRAYS WHIGCH DEPEND UPON OTHER FACTORS

All2+12)s Bl12412)

00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
06000009
00000010
0000001 1
00000012
0000001 3

DO000016
0oOOO0017
poooonti8

200100000019

00000020
ooo00021
00000022
00000023
000600024
00000025
00000026
00000027
D00 000Z8
00000029
00000030
00000031
00000032
00000033

+



TC

B84

OO0

a6

O0O0O000000000

NUMBER OF CASES

DIMENSION LLO(20) + NPAM(20)

MISC

DIMENSION TYPE(8)s IN(2)+ VAR(30)s PAM(D)

DATA (PAM{1)s1=1+5)/ 3HL-Ms SHO-S=~Dy 3HM-S54 3HM-H. 3HRAB/
DATA(VAR{I).1=1-30)/3H1/T.3H5/T.6H5**2/T.5HS**3/T.5H5**4/T.
16HS*%¥5/T

2AHL/TelHS s 4HSH A2+ 4HSX KB 4HS ¥R 9 LHSHHD 9

BIHT ¢ IHS s GHSHR2 3 4HSEH 3¢ 4HSH ¥ L 4 4HSH¥ Sy
42HDT-4HDT*S¢7HDT*S**2.7HDT*S**3~7HDT*S**4.7HDT*S**5-
55H1/L*T.8H1/L*T**2.BH1/L*T**a.SHl/L*T**A.BHI/L*T**5.5H1/L*T**6/
L1 = NUMBER OF OBSERVATIONS IN DATA SET - .

Ll 1S DETERMINED BY PROGRAM S

L2 = NUMBER OF VARIABLES INPARAMETRIC EQUATION SELECTED ~

L3 NUMBER OF COEFFICIENTS TO BE DETERMINED, INCLUDES BO

L3 = L2+1 .

CALL PLOT VECTOR FILE ONLY WHEN OUTPUT INCLUDES PLOTTING U
CALL PSEUDO . i
CALL LEROY

e

COMPLETE DATA DECK SETUP INCLUDING OPTION AND CASE-'€ONTROL CARDS

FOR EACH DATA SET ARE REQUIRED IF 1 — .CONTINUE €ARD 18 HERE
CONT INUE s .
READ INPUT AND OQUTPUT OPTIONS AND ,
INTTIAL VALUES OF M=H AND RAB .CONSTANTS
IPUT = INPUT LISTING OPTIONS
0 — NO INPUT LISTING
1 - CASE CONTROL VARIABLES S
2 - + DATA SET OBSERVATIONS L
3 4+ TRANSFORMED REGRESSION VARIABLES FOR FIRST
FIVE OBSERVATIONS . .
OUTPUT = OUTPUT OPTIONS
0 - NO RESIDUALS
1 - RESIDUALS REGRESSED SPACE

00000034
00000035
00000NnN36

00000038
00000039
00000040
00000041
00000042
00000043

T 00000044

00000045
Q00600046
00000047
00000048
00000049

N0000063

-

00000081

0000p055

00000058

00000060
+



ce

bb

OO0 0O0000

OO0

OO0O0O00O00

7Y

2 - 1 + REAL SPACE RESIDUALS
3 - 2 + RESTDUAL PLOT IN REGRESSED SPACE
READ(S+4) INPUT+I0UT TA+RA
FORMAT(Z2IS5+2F1 00}
IF(EOF +51500,49
CONT INUE
READ CASE CONTROL CARDS
PUT BLANK CARD AFTER LAST CASE CARD
LLO = TOTAL NUMBER OF VARIABLES FOR CASE
NPAM = PARAMETRIC EXPRESSION TO BE EVALUATED
I - LLARSON-MILLER (LM)
2 - ORR~-SHERBY-DORN {0SD)
3 - MANSON-SUCCOP (MS)
4 — MANSON-~HAFERD (MH)
5 — RABOTNOV (RASB )

S 13=1

READ(S+2) NPAM(I3)LLO(IZ)
IF(LLOC(I3Y) TeBa7

[3=13+1

G0 TO 3

FORMAT (215)

I13=13—1

ONLY ONE SETUP OF OPTION AND CASE CONTROL CARDS ARE REQUIRED

FOR MANY DATA SETS IF 1 - CONTINUE CARD IS HERE
CONT I'NUE
READ DATA SET IDENIFICATION (TYPE)
READ(S777)(TYPE(T s I=18)
FORMAT (8A10)
IF(EQF +5) 90046
1=1 ’
READ IN OBSERVATIONS
IF NUMBER OF CORRELATING VARIABLES CHANGES.,
CHANGE STATEMENTS 5 AND 10
RS({I+1)= RUPTURE TIME
RS(1+2)7 APPLIED STRESS.PS!
RS({1+3)= TEST TEMPERATURE, DEGREES F

60000061
00000062
00000051
00000052

00000063
00000064
00000069
00600070
00000071
00000072
0000073
00000074
00000075
00000067
00000068
00000076
0000077
00000078
00000079
00000080

00000082
00000083
ooNo0084
00000085
00000086
gooooo088

00000091
onoo00%2
00000093
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£e

os/

10
S01

i1

300

30z

299

303

304

305
301

308

PUT BLANK CARD BEHIND LAST DATA CARD
READ(S5+5) RS(Isl)s RS(Is3)e RS(1+2)
IF{E0OF+S) 900,301

CONT I NUE

IF (RS(I+1)=0e) 11412411

I=1+1

Go TO 10

FORMATI(3F1240)

L1=1~t

IF(INPUT-1)301,300,300

INPUT = 1 LISTING

WRITE(G6+414)

WRITE(6+220)

WRITE(5+221)
WRITE(HS02)(TYPE(I)el=148)

FORMAT ( 10X+ *DATA SET*#/10Xe BA10/)

WRITE(6.299)
FORMAT (* OPTION CARD#) -
WRITE(S+303)INPUTI0OUTs TAWRA

FORMAT (¥ INPUT= *e11/% TOUT= % +11/% TAs

WRITE(54304)

FORMAT (¥ CASE CONTROL CARDS*/5X+¥ PARAMETER CODE* 15X s
1#NO, COEFFICIENTS*/)
'WRITE(&-BOS)(NPAM(I)»LLO(I)-I—lcl3 }

FORMAT (10X« I5415X15)
CONT INUE

INPUT = 2 LISTING
IF(INPUT=2) 309,308,308
WRITE(6+414)
WRITE(6+306)

TEGF10.,0/% RA: X4F10447)

0ooonnN89
00000090
0felstelolo =l
00000095
00000096
00000097
Q0000098
00R000I9
00000100
00000101
00000102
00000103
00000104
00000105
0000106
000Q00107
00000108
00000109
00000110
00000111
00000112
00000113
00000114
00000115
ooQootle
0Cco00117
00000118
00000119
00000C120
00000121

+
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C
Cc
C

306 FORMAT(SX«#INPUT DATA OBSERVATIONS®/ 3X«¥NOe¥+ 14X+ % TIMEX®,

307
309

20

21

22
23

+

1 ¥STRESS#*, SX+*#TEMPERATURE*)

WRITE(S6+307)I(I+RS(I+114RS{I2)eRS{1.+3)
4X+F10a0C)

FORMAT (IS5+10XsF10e2,
CONTINUE
START CASE LOOP (13)

13 = NUMBER OF CASES (PARAMETRIC EQUATIONS)

FOR EACH DATA SET

DO 350 KK= 1413
NEGSB=0
L3=LL0(KK)
L2=( 3-1
LAST=0
BMSE= 1000000,
XN=L1
LIM=0

IFG=0
L=NPAM (KK )

IF (L-4)22+214+20
CONTINUE
RABOTNOV CONSTANTS
C=RA
DEL =0e1
DELMIN=0e001
GO TO 23
MANSON~HAFERD CONSTANTS
CONTINUE

C=TA

DEL = 100040
DELMIN=10.

GO TO 23
LAST=2

CONTINUE

F8e0

TO BE EXAMINED

5Xe

00000122
00000123
00000124
00000125
00000126
00000127

00000130
00000131
00000132
00000133
o0000134
00000135
00000136
00000137
00000138
00000139
00000140
00000141
ooooola2
00000143
00000144
00000145
00000146
00000147
00000148
00000149
00000150
00000151
00000152
00000153
00000154
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57

61
62
63
64

65
66

T+

473

105

106

YAl 4

CONTINUE

SELECT PARAMETRIC FORM FOR REGRESSION
L=NPAM (KK

GO TO (61+62:+83+644+4865) L.
CALL LMY «RSaFJL1)

GO TO 66

CALL OSD{Y+RS+FsL 1

GO TO &6

CALL MS(IYRSFWL1)

GO TO 66

CALL MH{ YsRS+F+L1+C )
GO TO 66

CALL RAB (Y+RSsFsL1sC)
CONTINUE

SSER=040

ZERO A+B+5SUMX1I ARRAYS
DO 473 M=1.12

DO 473 J=1+12
A(M.J):0.0

B({MeJ)=0e0

SUMX]1 (MeJ)=0e0

DO 105 M=1.+L2
SUMX(M)=0,0

DO10SI=1.L1
SUMNY(M)Y=SUMXIMI4F (1 . M)
DO 106 M=1.L2

DO 106 J=1.tL2 :
SUMP2 (Me J)=0s0
DO1061I=1sL1

SUMPZ2 (Me JISSUMPZ (M JYI+F{ T MIRF (] o)
SUMyY=0,0

SUMYZ2=00

DC1071=1.L1

nnnon1ss
00000136
00000157
00000158
00000159
00000160
00000161
00000162
00000163
00000164
00000165
00000166
00000167
00000168
00000169
0Co00170
00000171
00000172
00000173
00000174
0o000175
00000176
00000177
00000178
00D0ON179
oon0ont 80
0NO001 81
00000182
00000183
00000184
00000185
00000186
0000087

+
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107

108

109

42

16

17

18

SUMY=SUMY+Y (1)
SUMY2=SUMYZ2+Y (1 ) %#2

DO 108 M=1.L2

SUMXY(M)I=0.0

DOIOBI=1.4L1

SUMXY ({MI=SUMXY (M)+F (T s M) %Y (1}
DO 109 M=1.L2

DO 1060 J=1.L.2

SUMX 1T (MeJISSUMPZ2 (Me J) = { SUMX (M) XSUMX (J ) )/ XN
DO 110 M=1.L2

SUMX1 {MeLL3)=SUMXY (M) — {SUMX (M) *¥5UMY ) /XN
SUMXT (L3sL.3I=SUMY2- (SUMY%%2) /XN
DOoazM=1 L3

SUMX1 (L3+M)=SUMX] (MsL3)

N3=[3+1 "
DO16I=14.3

SUMX1 (T +N3)=0e0

DOl1aM=1 4.3

SUMXI (] +N3I=SUMXT (T aN3)+SUMX1 (T M}
DO17J=1 N3

A(lJ)=SUMXI(TIsJ)

SUMB(1)1=040

DO18J=1 +N3

R{1aJI=AC1eJY/A(T 41

SUMR {1 1=SUMR (1 1+R (1 +J)
SUMB(1)1=SUMB (11-B(1.N3)
DO11851=2+L3

DO115J=1N3

NIxXx=I—1

TEMP=0.0

DO11611I=14NIX
TEMP==A(I1+1)*¥B(11+J)+TEMP

All 4 JISTEMPH+SUMXL (] +J)

00000188
00000189
DNNOQN1 90
onnoni sl
ononn192
Q0000193
00000194
Q0000195
Q0000196
06000197
00000198
GO000199
ocCnNOO200
00000201
00000202
00000203
aQoo0n204
00000208
00000206
00000207
00000208
00000209
00000210
fOnnn>11
nanons12
00000213
00000214
00000215
oonNnN0216
Q0000217
00000218
00000219
00000220

o+
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L2

Ao/

115 BT« I=ALTIA Y/ AT )

29

51

52

1439

DozolI=1.L2

SSRIII=ACEL3)*B(I.L3)

REGSS=SUMX1 (L3.L3)-A(L3.L3)

SSER=A(L3.L3)

CORC=REGSS/SUMX1 (L3+L3)

XN1=L1-L2~1

XMSER=SSER/XNI

ZIP=XMSER

STD=SQRT (XMSER)

XMRSS=REGSS/L2

FTRSS=XMRSS/XMSER

TOTSUM=SUMX] (L3013}

ITERATE ON LOWEST 1—-CORC FOR RABOTNOV SOLUTION
[IF{NPAMIKK ) +EQeS) ZIP=1.0-CORC

LOooOP AROUND ITERATION FOR L.—M+O-S-Ds AND M=S SOLUTIONS
L=NPAM (KK ) '
IF(LelLTe&4) GO TO 1439

IFILAST=1) 51,52,1439

CONT INUE ) .
CALL ITER(C JCBEST+ZIP +BMSEsIFG+ICTs DEL+DELMINJLIMLLAST)
GD TO 57 .
CONTINUE

C=CBEST

LAST=2

GO TO 57

CONT INUE

DO11 71222

SUMA(11=040

sSUMB (I Y=0.0

DO117J=1,L3

SUMA (1)=SUMA (1)-+A (1 4J)

SUMB(1)=SUMB(T1+B (1 +J}

0ononzr 1
oooao222
oooo0223
00000224
noooo225
onoonzz26
00000227
00000228
0000022%9
noooo230
nnoon231
onnnnz32
0000233
00000234
00000235
00000236
00000237
00000238
00000239
00000240
00000241
00000242
00000243
oocoQn244
nnQo0245

. 00000246

00000247
00000248
00000249
00000250
00000251
00000252

00000253
+
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DOBoI=1 .2
DOBsnJ=1 L2
80 D(1+I=SUMXL (1)
DD(1+1)=L1
DO72 M=1.12
I:M"‘l
72 DD(1e1)=SUMX (M)
DO73 K=1.L2
. JEK+1
73 DD(1e¢J)=SUMXAIK)
D074 M=1.+L2
I=m+1
DO74a K=1.L2
J=K+1
74 DD{T+J)I= DIMWKY
C CHANGE L9 WHEN YOU REDIMENSION PROGRAM
Lo9=11
CALL MATINVILO+L3+0D+0+5e1 +DETERMISCALE Y IPIVOT s INDEX)
DOB11=1sL2
B8] E(],1)1=SUMXI{IL3)
CALL MATINVI(LIL24D +14E¢1+DETERM, ISCALE IPTVOT INDEX)
PAR (1)=8B(L2.L3)
M3=L 2
K3=2
DO113I=2.L2
MIx=I-1
M3=M3-1
TEMP1=00
DN11411=1+MIX
TEMP1=—PAR(I1 1 ¥B(M3+K3)1+TEMPI1
114 K3=K3~1
PAR(I)=TEMP1+B (K3+L3)
113 K3=1.2

00000254
onO002S5
~NGOOPS6
Q0000257
alelololedbals]
00000259
ao000260
00000261
nooonn262
00000263
00000264
00000265
00000266
00000267
nononr6es
00000269
Q0000270
00000271
oo0e0272
oo000273
00000274
00000275
00000276
00000277
00000278
Q0000279
00000280
00000281
o0o00282
00000283
00000284
00000285
00000286
+



62

90/

O

47

216

217

1100
49

123

122

DOA7M=1 + L2

SUMX2 (M) 2SUMX (M) /XN

SUMY3=SUMY /XN

Ka4=L2

DO21&I=1,L2

PAR] (K4 )=PAR{T

Ka=Ka-1

PAROD=040

DO217I=140L2
PARO=PARO-PAR] { 1 ) #SUMX2( 1)
PARO=PARO+SUMY3

NS=_1-L2-1

XN =NS

XMSER=SSER/XN]

IF(XMSER «GTe T+0E+100) GO TO 350
DO4SI=1+L2 '

IE(D(la] ) el TeOeOIWRITE(SE+110014D(L 1))
IF(D(leT)el.Te0e0) NEGSB=NEGSH+!
AVDID MODE 2 DUMP ABORT CASE 3/3/76
IF(D(I+131eLTe 00} GO TO 350
FORMAT(// +SX+s ¥ % ¥R ¥NEGATIVE SBlI)+I=¥413+#DI=%+E208)
SB{1)=SQRT(ABS(D(I+1) *XMSER}Y)
DO118I=1.1L2

T(1)=PAR1 {I1}/5B (1)

T(ly= ABS(T(13)

CY(I)= SOLUTION IN RFGRESSION SPACE
pot2zl=1.L1

SUMCY =00

TEM=0e0

-DO123M=1,L2

TEM=TEM+PARL (M)¥F (I +M)
SUMCY =SUMCY+TEM
CY(1)=SUMCY +PARO

onono287
00000288
onnon289
00000290
00000291
nNoONOR92
00n00PaR
00000294
00000295
nnooo296
00000297
nNoon298
00000299
00000300
00000301
00000302
00000303
00000304
00000305
00000306
00000307
0H000308
00000309
00000310
00000311
ooponalz
00000313
00000314
00000315
00000316
000007317
00000318
00000319
+
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96

95

220
221

526
502
506
507
508

509

545

546

CALCULATE MIN, MAXe. RANGE. MEAN

CALL MINMAX(YMIN,YMAX s YRANSYMEAN Y LL1)
DO 95 1=1.L2

DO 95 K=1a.L1

X(KI=F (Ks1)

CALL MINMAX{(XMINCI).
CONT INUE

PRINT REGRESSION STATISTICS

WRITE(S+414)

WRITE(6:220)

WRITE(6+221)

FORMAT( SX+% LEAST-SQUARES REGRESSION PROGRAM
FORMAT( S5Xe¥% ANALYSIS OF CREEP-RUPTURE DATA¥)
WRITE(&6+526)

FORMAT( /% REGREFSSION VALUES
WRITE(6+S02)(TYPE{(l1+1=148)
ECORMAT(% DATA SET
MM=NPAM (KK )

WRITE (6+506)IPAM(MM)
FORMAT (¥ PARAMETER SELECTED *4
WRITE(B+S07)C L1 Lo
FORMAT (¥ NOe« OF OBSERVATIONS * 4
WRITE(6+508)¢ L2)

FORMAT(* NOe OF INDEPENDENT VARIABLES ¥y
WRITE(6+509) (XN1) .

FORMAT (¥ RESIDUAL DEGREES OF FREEDOM *y
WRITE(S6+5141( FTRSS )

FORMAT(%¥ F = VALUE *y
WRITE(61545) (XMSER)

FORMAT (*
WRITE(6+546)( STD)

FORMAT (¥ STANDARD ERROR *o
WRITE(6+547)( SSER)

XMAX (1)

¥4 1X28BA1O)

RESIDUAL. MEAN SQUARE ¥4

XRAN(I) o xXMEANC(TI I XL 1)

FOR PARAMETRIC*)

7x+ AB)
8xs 14)
8x. lay
Bx+ Fa)
Fiaol)
Ei1Z2+4)

E12e4Y

00000320
AON0N321
00000322
00000323
00b00324
00000325
00000326
00000327
00000328
c0000329
00000330
D00 00331
00000332
00000333
00000334
00000335
00000336
00000337
00000338
00000339
00000340
00000341
60000342
00000343
00000344

- 0000345

00000346
00000347
00000348
00000349

. C0DO00350

00000351
00000382
+
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548
549
320
432
433

492
i

312 FORMAT (/ SX«¥FIRST 5 OBSERVATIONS
XLzy *)

SQUARED

FORMAT(¥* RESIDUAL SUM OF SQUARFS
WRITE(GEs S548B)Y(TOTSUM)

FORMAT (% TOTAL SUMS OF SQUARES
WRITE(S+ 5491 (CORC)

FORMAT (% MULT. CORREL e« COEF.
WRITE(5+320)

FORMAT (/)

IF (MMeEQe4) WRITE(64+432) CBEST
IF(MMeEQeS) WRITE(6+433) CBEST
FORMAT (% MANSON — HAFERD CONSTANT(TA)
FORMAT (¥ RABOTNOYV CONSTANT (RA)

WRITE (644923 (YMINsYMAX s YRAN « YMEAN)

FORMAT (5

Elle2¢3X% MEAN Y

ek MIN Y

INPUT= 3 LISTING
IF{INPUT-31311+310+311
31C WRITE(6+312)

19X+ 2YX 4 18Xe¥ X1 —

315

313
314

311

422 FORMAT (3Xi%* I
4Xy ¥T%,
¥RAN X {1)%,

1

293X

DO 313 I=
Do 315 J=

145
jsL2

TEMRP{J)=F (I+J)
WRITE(S+314)Y (YL )W {TEMP{J)»J=1+L21))

CONT INUE

FORMATI(B8E1S.5)
WRITE(6+320)

CONTINUE

WRITE(64+422)

WRITE (6+4535) (PARD)
535 FORMAT(O6X«#0¥,11XEldes)

=HeEl]lel2e3Xe¥ MAX Y

=k 4E11e2/)

¥y ZX+¥VARITABLE*

SX e+ ¥FMEAN X(I)¥.

4Ky KRINF¥ 4

3%

RPSUMR o

%* 4

* ¢

*»

Fl1Z.4)

El12+4)

Fl2ea/)

SH+F10e1/)
=*.F10.5/}

22X 4 F1]1 243X e¥* ¥ RANGE

~ TRANSFORMED VARIABLES*/

AN+ HCOEF «P (1 )% 43X
FMIN X (I )¥,
33X« *CERR¥ )

¥S oFE « COEF o %o
3X«EMAX X(1)o0000382

0oNON353
00000354
nNNONRSS
00000356
00000357
00000358
00000359
DOD0O36D
00000361
00000362
00000363
00000364
00000365
00000366
00000367
0000N368
00000369
DO000370
DOQ0037!
00000372
00000373
00000374
00000375
00000376
00000377
00000378
00000379
00000380
00000381

00000383
00000384
00000385

+



ct

be’

424 FORMAT( /% VARIABLE CODE#/10X+¥S=L0G STRESS*/10Xe¥T= TEMPERATURE*

oz

1

1

M=NPAM (KK ) ¥6—6
DO 420 I=1.L2
CERR(II=100, 0% ((PAR1(TY-E (1) WPARIL (1))

RINF=(XRAN(I)*¥PAR1 (1 1+1+0E~30}

SSRR=5SR(!)Y/REGSS

WRITE(S6+421) (1 VAR(I+M)I«PARL (]}

XMINCT Yo XMAX (T )« XRANCT o
420 CONTINUE
421 FORMATI

El3e3

17

WRITE(6+424)

SE1le2

4X e ABe 1 Xy

/YRAN

SBUIYeT (L) e XMEANCT )

RINF+SSRR«CERR(T))

ElZ2e4

FSe2s FT7e3,

1 /10X e ¥DTET-TA¥/ 10X+ ¥L=3TRESS*/)

CUMERR=0«
RRIS=0.0
SRI1S2=0+0
EMAX =040
EMAXP=0 0
NZERO=0C

SDP=0.O

SSDP=0.0

0

DPMAX = =100

XDF=ALOGI1O(XN1)
TE=0+8618559 0 e TBEGE2TISHXDFE+0 e SB4F466KXOF K ¥2—- o 1 1 59365¥XDF ¥%3

TE6=10e¥*TH
CCCC *%¥%% START 333 LOOP¥#X¥%
DO333M=1,.011

X(1)1=140
DO 92 K=1
I=K+1

o2

XK1 )I=F (MK}

DO 100 U
TEMP ()

=14L3
=0e¢0

ElleZ2s
F7e¢2)

F7e20

p0o000386
00000387

00000388
00000389
0NnOn19n
0000391

00000392
00000393
00000394
00000395
00000396
00000397
00000398
00000399
00000400
00000401

00000402
00000403
nono004ans
00000405
00000406
00000407

00000408

00000409
po000410
BO00041 1
00000412
DO000413
00000414
00000415
on000416
Oono0o00417?
00000418

+
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o//

C

100

200

NO 100 1 =1.L73

TEMP(JI= TEMP(Ji+ X(13% DD(I .S}
CONTINUE

ANS =0,0 .

DO 200 J=1,.L3

ANS= ANS +TFMP(J)y*X(J)
CONTINUE

¥XMER = XMSFR

XMER= ABS{XMER)

ANS = ABS(ANS)

CALCULATE 95 PERCENT STATISTICAL INTERVALS
DELTAST6%4SART (XMERXANS)
CIMAX(MI=Z=CY{MI+DEL.TA
CIMIN(M)I=CY(M}—DELTA
DELTA=TO*SART (XMER* { 1 +ANS) )
PYMAX(MI=CY (M)+DELTA
PYMIN(MI=CY (M)~DELTA

RIS(M)= CY{M)= Y(M)

AVOID DUMP WHEN Y=0 2/25/76
IF(Y(M)eEGeDs0) YIMI=0.000001
ERRPER(M)=RIS(MI/Y{M)¥100.

IF( ABS(RIS(M))eGTe ABS(EMAX)IEMAX = RIS(M)

RIs2 =ZRIS(M)%*2 u
SRIS2=5RIS2+R1S82 e
RRIS=RRIS+ABS(RIS (M))

IF (ABS(ERRPER(M))eGT e ABS(FMAXP)) FMAXP =
CUMERR=CUMERR+ABS (ERRPER (M) )

333 CONTINUE
CCCC #%%%%% END 333 LOOOP $HBS%%

FIND OBSERVATIONS OUTSIDE OF 95 PERCENT PREDICTION

FRRPER (M)

INTERVAL

noNNaAtT e
0o00N04az20
0Non00421
nonQnazz
00000423
nON0oazZs
00000425
nONNNARE
DOOOQUZT
00000428
00000429
0C000430
00000431
00000432
00000433
00000434
00000435
00000437
00000438
00000439
00000440
00000441
00000442
00000443
00000444
00000a4s
0nO00N446
nNoooda4aT
00000448
Q0000449

401 FORMAT (/% OBSERVATIONS OUTSIDE OF 95 PERCENT PREDICTION INTERVAL%*/00000450

15X+ ¥0BSe%s SXs#CALC Y%, SX+¥PYMIN¥, 5X + ¥PYMAX® /)

I13AD=0

-

00000451
onneoasz2
+



e

11

399

402

400
403

404

405

406

407
408

DO 400 I=1.L1
IF(CY (1 )Y—PYMIN(I) )} 402,399,399
CONTINUE

IF(CY(II—PYMAX (1)) 4004400+402
IBAD=IBAD+1

[IE(IBADEQel) WRITZ (64401

WRITE(6+4033C [+ CY(I}+PYMINCI)+PYMAX{T)

CONTINUE
FORMAT ( 15+3E1646)

DETERMINE DP STATISTICS IN TERMS OF LOG TIME TO RUPTURE

DPSUM=0+0

DPMAX= =100,0
IF(NPAMIKK I =5) 4044+4064404
DO 405 I=1.L1
DP=pYMAX{I)~-PYMINC(T)
IF{DP«eGT«DPMAX Y DPMAX=DP
DPsSuM= DPSUM+DP

CONTINUE

GO TO 408

RABOTNOV DP

DO 407 I=1,.L1

AVOID NEGATIVE Py DUMP
IF(PYMIN(I)eLT+CeQ) PYMIN(II=1+0
IF(PYMAX{I)aLTa0eQ) PYMAX(I)=1+0
RP1=PYMAX (T )%% (1 ,0/CRFST)
RP2=PYMIN(I)I*%(]1.0/CBEST)
DP= ALOGIO(RPI)“ALOGIO(RPZ)
IF(DP«GTesDPMAX YOPMAX=DP
DPSUM=DPSUM+DP

CONTINUE

DRPAVE = DPSUM/LL

RP1 =10+ *%¥DPAVE
RPZ2=10 ¢ *¥%¥DPMAX

00000453
00000454
00000455
0nNo0N456
00000457
00000458
00000459
00000460
0N000461
00000462
OnNoN04a63
00000464
C0000465
00000466
00000467
00000468
oDOO04B9
onooo0470
oJolsfele A
00060472
onDno004a73
on0004aT4e
00000475
00000476
000d0477
00000478
000004s79
00000480
00000481
00000482
00000483
00000484
00000485

+



Gt

AN

WRITE(G6+4410)

410 FORMAT( S5X.¥% 95 PERCENT PREDICTION INTERVAL STATISTICS*/25X
1%L0OG TIMEX*s 10X «¥REAL TIME FACTOR (ANTILOG WIDTH)Y*/)
WRITE(&+409) (DPAVE «RPL +OPMAXRP2)

409 FORMAT (¥ AVERAGE WIDTH %, SX+ Fl0e3319Xe FiIQal/% MAXIMUM WIDTH¥,

1 6%Xe F10e3¢13%4F10a1 )

ORDOER RESIDUALS — LARGEST TO SMALLEST
LINEG =—Lt}

DO 2100 1=1.L1

TEMP (L) =00

2100 TEMP(]l )= ABS(RISC(I))

CALL AORDER(TEMP + LINEGsIPERM}
NO 1202 1=t.L1

J=IPERM(1)

TEMP (J) =1

1202 CONTINUE

OUTPUT = 1t OR GREATER
RESIDUALS IN REGRESSED SPACE
IF(IOUT =1) 41344124412
412 CONTINUE
WRITE(6e414)
WRITE(S5+¢415)
414 FORMAT(1H1) .
415 FORMAT (% RESIDUALS - REGRESSION SPACE*/)
WRITE(6+416) o ‘
WRITE(G+41 73 (TaY(I1eCYIII14RISI]II+ERRPER(I Vs TZMP(I)
1 CIMAXCIYsCIMINCI JaPYMINCI) «PYMAX (I aI=100L1)
417 FORMAT(IS5s 1Xe3E1203s  +F10el1 BX1FSs 4X¢ 4E123)
416 FORMAT( ZX+¥0OBS*e 7Xe¥Y OBS*s 6Xe%®Y CALC*+5Xe H¥RESIDUAL¥ 46X
1 *PCTERR ey 1XsHORDER¥ +TX +*¥CIMIN®« 7Xe¥CIMAX¥® 47X 0
2 X¥PIMIN¥,7X «¥PIMAX¥ /)
413 CONTINUE
XMRSS=REGSS/L2

nONNN4A8E
000004aB7
00000488
Do000489
00000490
ONANNasl
00000492
20000493
nonNnNNNaga
00000495
000004956
00000497
ANNNNA9E
00000499
00000500
00000501
oo000502
00000503
00000504
00000805
00000506
00000507
00000508
oc000509
00000510
0ON00S1 i
QQoD0512
N000051 3
cQ000%1 4
00000515
aloJalslelat ¥-)
Nnoo0sS17
nanNnNos1a

o+


http:IX,*ORDER*.7X

9¢

c I,

440

1

FTRSS=XMRS S/ XMSER

DPAVE= SDP/L1

DPSTG=(L1*SSDP~SDP#*¥2) /(L1%¥(L1-140))
DPSIG=SART (DPSIG)

STD=SQRT (XMSER)

PLOTTING ROUT INE

PLOT RESIDUALS WITH VARIAN ON LINE PLOTTER
IE(JOUT —3)445+440,440

CONT I NUE

IN(1)= SHPARAM

IN(2)= 4HPLOT

N=L1

ISymMD=12

1EC=1

CALL MINMAX (YL +YHsYRANSs YMEAN RIS L1
YL=1e8%YL

YH=1 e 8%YH

XL=0e0

XH=0 ¢ 0

NXM=1

NYM= 1

YNOTE= 10H RESIDUAL

XNOTES = 10HZP NORMAL

XNOTE6= 10H FITTED Y

CALL VDIPLTC(IECs INs No CY{l)s RIS(1}s XL aXHaYL e YHINXM,

XNOTESGs NYMs YNOTE. 15YMD)

CALL AORDER(RIS«L.1 +IPERM}

DO 430 I=1.01

JE1IPERM(I}

TEMP(I)= RIS()

X1 =1

FZo{X]1=e375)/ (L.1+25)
IF(FZ=0s5)1570+s570+571

00000519
00NO0S20
00000521
00000522
00000523
00000524
00000525
00000526
00000527
00000528
00000529
00000530
00000531
00000532
00000533
00000534
00000535
00000536
00000537
00000538
Q0000539
00000540
00000541
00000542
00000543
00000544
00000545
00000546
00000547
00000548
00000549
00000550
00000551
+


http:FZ=(XI-375)/(LI+.25

LE

#1!

(e NeoNg]

570

t

571

1

572
430

1
445

201

203

XX=ALOGI0(FZ)

ZP{1)= 1404505 + 4435979%XX + 3,460FTHXXER2+ 10878 XXE*3

+ D4SE456%XXXAX4L 040608 XX%X%5
GO 70 572
XX=ALOG10(1l «0-F2)

ZP{I)= 1404505 4+ 4¢35979%XX + 3.46057*¥XXE¥2+ 1 «F0B7BFXX¥X3

+ DeS4A456HXXAE4+ D +QCUBRXX%%S
ZRP(1y=—2ZP (1)
CONT I NUE
CONT INUE
¥L=0e0
YH=00

CALL VDIPLTUIECs TN, N ZP{IY«TEMP (1)

XNOTESs NYMs YNOTEs [SYMD}
CONTINUE
QUTPUT. = 2 OR GREATER
REAL SRPACE RESIDUAL OUTPUT

BACKTRANSFORM SOLUTION AND PREDICTION INTERVALS

MX=NPAM (KK )

DO 441 M=1l.L1

GO TO(2014201,201+2014:203)sMX
CY(M)= 10.0%%CY (M)

PYMAX(M)=104 0% XPYMAX (M)

PYMIN(M3I=104O¥¥PYMIN (M)

CIMAX{MI=10eO¥XCIMAX (M)

CIMIN{M)I=10sOX*CIMIN(M

GO TO 205 ‘

CONT INUE

AVOID NEGATIVE TO A POWER DUMP
IF(PYMIN(M) sl Ee OeQ) PYMIN(MIZL 0
IF (PYMAX (M) elLEs 0e0) PYMAX{M)=140

IF(CIMAX(M)eLEsDOeO) CIMAX(M}=1e0

IF(CIMIN(M)}sLE.Os0) CIMIN(M)=140

X e XHaYL « YH+NXM,

ONONORS?
00000553
00000554
00000SSS
00000556
00000557
00000558
00000559
00000560
00000561
00000562
00000563
aleToTsToLoTo¥ !
00000565
00000566
00000567
00000568
00000569
00000571
00000572
00000573
00000574
00000575
NON00S76
nonons77
n0000578
00000579
00000580
00000581
Q0000582
nOo000sS83
00000584
00000585

+
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C

205

a41

425

1203

431

350

900

[F(CY(M)elEaOWD) CY{MI=1aD
CY(M)= CY{MI*¥X%(10/CBEST)
PYMAX (M)= PYMAX(MI®#% (] «O/CBEST)
PYMIN(MI= PYMIN(M)®%(1+«0/CBEST)
CIMAX(M)I=CIMAX(M)*%(1«0/CBEST)
CIMIN(M)=CIMIN{(M)*% (] e0/CBEST)

CONT INUE

RIS(MI= RS (M1 3~CY (M)
ERRPER(MI=(RIS{M}/RS(Ms1))%100.
CONT INUE

ORDER REAL SPACE RESIDUALS

DO 425 I=1.L1

TEMP (1)=040

TEME (T )=ABS(ERRPER (1))

CALL AORDER (TEMP L INEG IPERM)
DO 1203 I=1i.L1

J=SIPERM (1)

TEMP (JY=1

CONT INUE

IF{IOUT«LTe2) GO TO 350

WRITE (64414

WRITE(6+431)

FORMAT (¥ BACKTRANSFQORMED RESIDUALS

WRITE(H6+416)

WRITE(6+417)¢1sRS{I+1)4CY(I1)IRIS(I)IERRPER(TII+TEMP (11,
1 CIMINCI)+CIMAX{TYs PYMIN(IIWPYMAX(I)s1=140L1)

CONTINUE
GO 710 1}
CONTINUE -

CALL CALPLT ROUTINE ONLY WHEN PLOTT ING
IF(IOUT +GEe3) CALL CALPLT(0+04999)

S5TCP
END N
SUBROUT INE AORDER (AAsN+IPERM)

- REAL SPACE*/)

nnNonNosBé
alelaTelelat= g
onnnnses
00000589
00000590
00000591
00000592
00000593
O00N0SI4
00000595
00000596
00000597
00000598
00000599
0nN000600
00000601
00000602
00000603
00000604
00000605
nNnoooe0s6
0000607
Q0000608
00000609
NDOO00610
00000611
00000612
000006132
ononoo6la
00000615
00000616

00000617
00000618
+
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OO0 000

THIS SUBROUTINE ORDERS VALUES IN AA AND STORES ORDER IN IPERM no0onNGte
N IS NUMBER OF VALUES IN AA nNoN00&E20
IPERM 15 ORDERED WITH RESPECT TO LOCATION OF VALUFS IN AA 0NOoN621

IF N IS POSITIVE IPERM(13) HAS LOCATION I[N AA OF SMALLFST VALUE
IPERM(N) HAS LOCATION OF LARGEST VALUE IN AA 00000623
IF N IS NEGATIVE IPERM IS ORDERED BY LOCATION OF LARGEST TO 00000624
SMALLEST VALUES IN AA 00000625
ARRAY AA IS NOT CHANGED N0O00626
DIMENSION AA(1Ys IPERMI(1) onno00e27
LOGICAL SwITCH onnn0e62s8
NABS = IABS(N) 0000629
DO 100 I=14+NABS 00000630
100 IPERM(I) = 1 00000631
IF{ NABS «LTe2) RETURN 00000632
200 SWITCH = +FALSE. On0o00633
DOSN0 1= 2.NABS 00000634
11= IPERM(I~1} 00000635
JJd= IPERM(I) 00000636
IF( Nel,Te O) GO TO 400 00000637
IF(AA(TIEYellEeAA(UJY )Y GO TO S00 00000638
300 ITEMP= IPERM(I=1) 0000639
IPERM{I-1) = IPERM (I oQQ00640
IPERM( 1) =] TEMP 00000641
SWITCH = «TRUE, 0000642
GO TO 500 00000643
400 IF(AA(IT)eLTeAA{JIY) GO TO 300 Q0000644
500 CONTINUE 00000645
IF( SWITCH)Y GO TO 200 00000646
900 RETURN 00000647
END 00000648
SUBROUTINE M (Y+RS+Fsi 1) 060000649
CONVERTS TIME«STRESS.AND TEMPERATURE TO FORMAT REOUIRED 00000650
FOR LINEAR SOLUTION OF LARSON-MILLER EXPRESSION 00000651
+
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SOLUTION ALLOWS FIFTH ORDER EXPANSION OF LOG STRESS
Y= BO + Bl (X1)+B2(X2)~—— B6(X5)

WHERE Y = LOG(RUPTURE TIME)
S = APPLIED STRESS IN PSI
T = TEST TEMPERATURE IN DEGREES F
Xl= 1 /(T+460) '
X2= LOG(S)/(T+460) = S/TK
X3z SX¥2/TK
X4z SEX3/TK
X5= S*¥*4/TK
X6= S*X5/TK

C+BO=B6 = CONSTANTS DETERMINED BY LINEAR LEAST SQUARFS METHOD
B80= OPTIMUM L—M CONSTANT (C)

DIMENSION Y(200)s RS(20045)s F(200+10)

DO 10 I=1.0L1

Y(1)= ALOGIO(RS(I+1))

S= ALOGIO(RS(1+2))

T= (RS(1+3)+46040)

F(lel) = 1e0/T

F(1+2) = S/T

F(ls3) = S¥X2/T

Feled) = SH¥X3/T :

F(1+5) = S*¥*4,T

Flle6) = SEX5/T

CONT INUE

RETURN

END

SUBROUTINE OSD(YsRS+FaL1)
CONVERTS TIME+STRESS.AND TEMPERATURE TO FORMAT REQUIRED
FOR LINEAR SOLUTION OF ORR-SHERBY-DORN EXPRESSICON
SOLUTION ALLOWS FIFTH ORDER EXPANSION OF, LN STRESS
WHERE Y LOG(TIME TO CREEP EVENT)

S APPLIED STRESS IN PRSI

H

onooo652
00000653
00000654
00000655
N00000&56
000006357
00000658
00000659
00000660
00000661

00000862
0000663
00000664
000N0665
00000666
00000667
00000668
00000669
00000670
00000671

c0000672
00000673
00000674
00000673
00000676
Q0000677
00000678
00000679
00000680
00000681

noooosdz

00000684
-+
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T = TEST TEMP IN DFGREES F

X1= 1/TK

X2= LN(S) = SuL

X3= SL¥*2

X4= SU¥¥3

XF= SL¥*4

X6= SL¥%5

BO~B&6= CONSTANTS, DETERMINED BY LINEAR LEAST SQUARES METHOD

B1= DELH/R

DELH= APPARENT ACTIVATION ENERGY
R= UNIVERSAL GAS CONSTANT:

DIMENSION Y(200), RS(200+,5)s F(200+10)
DO 16 I=1sL1

Y(Iy= ALOGIO(RS(I+1))

S= ALOGIO(RS(142))
T=(5e/9 )% (RS(1+3)=32e) +2730

Ftlsl)= 140/ T

F(ls+2)= S

F(Ie3)= S**2

F(lea)= S¥*3

FlleS)= S*%4

F(1,6)= S¥*5 .
CONT INUE -
RETURN

END

SUBROUTINE MS(YsRS«FsL1)
CONVERTS TIME+STRESS.AND TEMPERATURE TO FOQMAT REQUIRFD
FOR LINEAR SOLUTION OF MANSON-SUCCOP EXPRESSION
SOLUTION ALLOWS FIFTH ORDER EXPANSION OF LOG STRESS
Bl = OPTIMUM M—5 CONSTANT (CH
DIMENSION Y(200)s RS(200+5)s F(2004+10)
DG 10 I=1,L1
Y(I)= ALOGLIO(RS(I.11}}

No00068s
NNGNNARAS
noo00687
00000688
00000689
00000690
00000691
00000692
Na000693
00000694
00D 00695
00000696
00000697
00000698
00000699
00000700
00000701
00000702
00000703
(nlaTalalplrdql.!
00000705
00000706
00000707
00000708
00000709
00000710
DOO00T1 !
00000712
00000713
00000714
00000715
00000716
00000717

-+
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S= ALOGIO(RS{I.2))

T= RS(1e
F(IQI y=T
F{l.2)=
F(l+3)=
F{l44)=
F(l«D)=
F(ls5)=
CONTINUE
RETURN
END

SUBROUT INE MH (Y RS+F oL 1+ CMH)
FOR NONL INEAR SOLUTION OF MANSON-HAFERD EXPRESSION
CMH = TEMPERATURE OFFSET

SOLUTION
DIMENSIO

‘DO 10 I=
Y(I)= ALOGIO(RS(I+11})
S= ALOGIO(RS(I+2))

DT= RS(1
Filal)=
F(l«2)=
F{I+3)=
F(Tleqd)=
F(le5)=
Fll«H)=

10 CONTINUE

)

s

SERZ
SE¥3
S¥x4
SHHS

X1l= T=—=CMH

IS ITERATED TO FIND CMH wWHICH PRODUCES BEST FIT
F{(200+10}

x2= DT#*5
X3= DT*S*¥%2
X4= DT#S*%3
XS5= DT#*S*%4
XE= DTHSH¥#S
N Y(200) 4
1+L1

+3)~CMH
oT

OT¥*S
DT#S*¥%*2
DT*S*%#3
DTHSH*Y
DT*S*%5

RS(20045)»

00000718
nonnoo7LY
nNoooN720
nnNooonT21
noooora2
00000723
00000724
00000725
00000726
00000727
00000728
00000729
00000730
00000731
00000732
00000733
NO000734
00000735
00000736
00000737
a0o00738
00000739
00000740
00000741
00000742
0co00743
00000744
00000745
00000746
00000747
nOn00748
00060749
0oO00750
+
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RETURN

END
SUBROUTINE ITER(C. BCeX+PBXs IFG2ICT+ DEL.

ITERATES CONSTANT (C) TO MINIMIZE VALUE (X}

BC = VALUE OF CONSTANT ASSOCIATED WwITH LOWESTI(BEST)Y X VALUE

pex= BEST PREVIOUS VALUE OF X

IFG =FLAG TC CONTROL

DEC =CONTROLS SIZE OF C INCREMENT

ICT =ALLOWS C TO INCREMENT BEYOND BC BFFORF CHANGING
INCREMENT SIZEs ITERATION STOPS WHEN DEL «LE« DELMIN

LIm = COUNTER FOR ITERATIONS

LAST=END ITERATION FLAG

IF( IFG) 55430

INCREASING C

LIm = LIM+1

NEXT CARD PREVENTS NEGATIVE X FROM BEING BEST X VALUE

IF{xeLEe 00) GO TO 10

DELMINy LIMsLAST)

IF(PBX «GTe X} BC=C
IF(PBX oGTe X3y PBX=X
IF(PBX +EQe X} ICT=0
IF(X «GCTe PBX) ICT=I1CT+1

IF(DEL «LESDELMINY) GO TO 40
1IF( ICTeLTe 2y GO TO 10
IF¢ ICTs«LT«10) GO TO 10O
DEL. = O«3%¥DEL

ICT=0

Cc= ¢-DEL

C=BC+5«0¥*DEL

1FG=1

GO TO SO0

C= C4+DEL

GO TO 50

DECREASING CONSTANT

nnononn7osl
20000752
DOOONB753
00000754
00000755
NO000756

INCREASING OR DECREASING ¢ FOR NEXT I TERATIONNOOOQQT7SY

00000758

0000076}
NOO00762
N0Q00763
00000764
00000765
00000766
00000767
00000768
n0000769

00000770

00000771
00000772

‘00000773

00000774
00000775
00000776
00000777
00000778
00000779
00000780
00000781
00000782
00000783
+
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Y

OO0 0O0

30

LIM =L IM+1

NEXT CARD PREVENTS NEGATIVE X FROM BEING BFST X VALUF
IF{xelLEs 00Oy GO TO 35
IF(PBX oGTe X)) BC=C

IF(PBX oGTs X)) PBX=X
IF(PBX +EQe X) ICT=0

IF(x «GTse PBX) ICT=1CT+!
IF(DELsLEDELMINY GO TO 40
IF( ICTeLTe10)Y GO TO 35
DEL=0«+3%DEL

ICT=0

C=BC~50*DEL

IFG=0

C=C~DEL

GO TC S0

LAST=1

CONT INUE

RETURN

END

SUBROUTINE RAB(Y+RSsFsl1+A)
FOR NONLINEAR SOLUTION OF RABOTNOV EXPRESSION

SOLUTION ALLOWS FIFTH ORDER EXPANSION OF TEMPERATURE FUNCTION
WHERE Y= RUPTURE TIME #¥A
' T= TEST TEMPERATURE IN DEGREES F
xXl= 1/5T
" A= ITERATED CONSTANT
S= STRESS IN PSI ,
DIMENSION Y(200)s RS(200+S)s F(200+10)
DO 10 I=l.L1
Y{1)= (RS{(I+1))%%A
5 = RS(i+2)
T = QS‘IQB}
F(lald= 10/(S*T)

nnoooTa4
slelalelard=1=
nNOON786
00000787
00000788
00000789
00000790
00000791

-NN000732

00000793
00000794
00000795
00000796
00000797
00000798
00000799
00000800
00000801
N0000802

© 00000803

00000804
00000805
00000806
00000807
00000808
00000809
00000810
00000811
00000812
00000813
00000814
00000815
aoon0nsls

+
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bW,

F{l.2Y)=
F{l.3)=
F{l.a)=
Fll+.5)=
Fll«6)=
CONTINUE
RETURN
END

1O/ (SHTHERZ
1o/ (S¥TX¥3)
1e /{SHTH¥4)
le/ (SHTHXD)
e/ (SHTHXE)

SUBROUTINE MINMAX {CMIN.CMAX+ CRANsCMEANCaN)
CALCULATES MINIMUM, MAXIMUMRANGE s

WHERE N=

NUMBER OF OBSERVATIONS

DIMENSION C(1)}
CMAY=~1 «0E+100
CMIN=1+0E+100

CSUM=0.0
DO 5. I=1.

N

CSUM=CSUM+C (1)

IFt Cc(I)-

CMIN=C(1)

CMIN) 24333

IF( C(1}—-CMAX)5+5+4

CMAX=C(I)
CONTINUE

CMEAN=CSUM/N

-

*

CRAN=CMAX~CMIN

CONTINUE
RETURN
END

<

-~

AND MEAN OF C(I)

00000817
00000818
00000819
00000820
00000821
opooo0822
00000823
00000824
00000825
00000826
00000827
00000828
00000829
00000830
00000831
00000832
00000833
co0000834
00000835
00000836
00000837
00000838
00000839
op000840
00000841
00000842
00000843
+



APPENDIX B
LANGLEY RESEARCH CENTER SYSTEM SUBROUTINES

SUBROUTINE MATINV

LANGUAGE FORTRAN

*

PURPOSE! To invert a real square matrix A, solve-the matrix
equation AX = B, where B is a matrix of congtant wvectors.,

¥

and by an option evaluate the determinant.

Yy .
+

. "

USE: CALL MATTINV(MAX,N,A,M,B,TI0P,DETERM,ISCALE ,IPIVOT,IWK)

H
-
r

MAY An’input integer specifying the maximum
order of A as stated in the dimension

statement of the calling program.

N An input integer specifying the order
of A; 1 < N < MAX.

A An input/output two-dimensional array of the
coefficients. On return to the calling
program, Al is stored in A. A must be
dimensioned in the calling program with
first dimension MAX and second dimension
at least N. The briginal A matrix is

destroyed.

M An input integer specifying the mmber of
column vectors in B. M = 0 signsls that
the subroutine is used solely for inversion;
however, in the call statement an entry

corresponding to B must be present.
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IOP

DETERM

ISCALE

An input/output two-dimensional array of the
constant vectors. On return to the calling
program, the solution X 1§ stored in B.
B should have its first dimension MAX and
its second dimension at least M. The

original B matrix is destroyed.

Compute the determinant option.
Iop
Iop

0, Compute the determinant.

i

1, Do not compute the determinant.

For IOP = 0, in conjunction with ISCALE,
represents the value of the determinant of
A as follows:

DET(4) = (DETERM)IOIOO(ISCALE)

For IOP=1, the determinant is set to 1. The
determinant is set to zero for a singular

matrix, for both IOP = O or 1 option. Upon
return from MATINV, DETERM should be tested

or written out in the calling program.
(See Other Coding Information)

Fér I0P = 0, the scale factor is computed by
tﬁe~subroutine to avoid overflow or under-
flow in tﬁé computation of the gquantity,
DEFERM. For IOP = 1, ISCALE may be &

 dummy .argument.

’

/&
47 ?L



METHOD:

ACCURACY:

REFERENCE:

STORAGE:

IPIVOT

. A one-dimensional array used by the subprogram
e to store pivotal information. It should be
dimensioned at least N. In general the user
does not need to make use of this array.
IWK An integer array of temporary storage,

dimensioned at least 2 x W.

Jordan's method is used to reduce a matrix A to the identity
matrix I through a succession of elementary transformations:
Rn, gn—l""’ Rl. A =TI. If these transformations are
simultaneously applied to T and to a matrix B of constant
vectors, the results are A™' and X where AX = B. Each
transformation is selected so that the largest element is

uged in the pivotal position.

Total pivotal strategy is used to minimize the rounding

.errors; however, the accuracy of the final results depends

upon how well-conditioned the originel matrix is. A return
with DETERM # O does not guarantee accuracy in the

solutions or inverse.

Fox, L., An Introduction to Numerical Linear Algebra.
Oxford University Press, New York, 1965.

5168 locations
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SUBROUTINE DDIPLT

LANGUAGE: FORTRAN

PURPOSE: To provide a one-call method of preparing plotting. This
routine was originally designed for recording plots on
the DD80 plotter only; however, it has been redesigned
to use on any plotter. This one—call routine should not
be used on any new jobs; new jobs requiring one-call dis-
plays should use INFOPLT.

These displays will not meet specifications for final

figures.
USE: * CALL DDI?LT(IEC,IN,N,XDATA,YDATA,XMIN,XMAX,YMIN,YMAX,
NXM,XM,NYM,YM,ISYMD)
where' L
IEC is the code for terminating the freme
0 frame incomplete
1 frame complete with this date. The frame
change is built in and the plotter will be
spaced for the next frame.
IN is a two-word arrsy. Each word contains 10
- Hollerith characters for plot identification.
N is the mmber of points to be plotted.
XDATA is the nsme of the array containing the floating
point values of X to be plotted.
YDATA is the neme of the esrray containing the floating
point values of Y to be plotted.
MIN is the minimum value for X.
XMAX is the maximm value for X.
YMIN is the minimum velue for Y.

49 ,26



YMAX is the maximum for Y.

The routine checks for the first call only to determine
if either (XMAX-XMIN) or (YMAX-YMIN)} is equal to zero.
When either is zero, the routine will scen the X and/or
Y array to determine the limits. For multiple curves
per display, the limits must be specified on the first
call to include all curves since the limits from the
first call will be used for all curves.

If any data falls oubside the limits, it will be elimi-
nated; but & count will be kept of all points dropped
and written at top of the plot.

Minimum/meximm values are next checked to see that the
range is not zero. When it is, the specified values are
adjusted by 10 percent of the minimum or set equal to
+1.0 in cases where minimum and maximum are equal to zero.

NxM is the number of central memory words in the
message for the horizontal annctation., Maxi-
mum namber of words is 133 each word conbains
10 characters. If NXM and NYM are both neg-
ative, tic marks will be generated instead of
grid.

AU\ ig the name of array containing the label for
the horizontal annotation.

NIM is the number of words in the message for the
’ vertical annotation. Maximum number of words
is 13.
+
™M ‘4{s the name of arrsy containing the lebel for

the vertical annotation.

I8YMD is the integer code specifying the symbol or

mode to be used for plotting the dats values.
1 Circle QO 8 Fn O
2  Square Eg 9 Long diamond ¢
3  Diamond 10 House O
4  Triangle A 11 Circled dot (9
5 Right Triangle DN 12 X

6 Quadrant D 13 Dot

7 Dog House (O 14 Vectors

50 /47



RESTRICTIONS:

METHOD:

ACCURACY:

REFERENCES:

STORAGE:

SUBPROGRAMS USED:

OTHER CODING
INFORMATION:

The following arrays must be gpecified in a DIMENSTON
‘statement of the calling program: IN(2), XDATA(N), YDATA(N),
AM(NEM), YM(NYM).

.Fach curve on a display regquires a separate entry to

the routine. X and Y coordinates for plotting must be in
separate arrays of single precision, floating point data.
Frame control is specified by the IEC code in the calling
sequence for the routine.

Data are scaled and plotted; axes are drawn and annobated,
and grid lines or tic marks are generated.

Minimum/maximm values are adjusted to provide a range
when all values of sn array are egual. Adjustment is
also made where needed to improve the appearance of the
plot.

Approximately three significant figures may be read in
either direction.

30218 locations

CALPLT, NOTATE, NUMBER, PNTPLT, NFRAME

A call 4o PSEUDO (1.4.1) wmust precede the first call
to DDIPLT. An entry called VDIPLT with the same para-

meters as DDIPLT is available which packs 8 6" x 6
plots per frame for the Varian postprocessor,
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LANGUAGE:

PURPOBE:

USE:

RESTRICTIONS:

SUBROUTINE PSEUDO

COMPASS

o ereate and write an appropriately named Plot Vector

File. Through linkeges set up by an initial call to

PSEUDO, all subsequent graphics data generated by the

user will be routed through one of the PSEULO entry

points and written on the Plot Vector Tile. The PSEUDO
processor 1s designed for use with the frame dependent post-
processors described in Section 1.3, Volume IV, of the
Computer Programing Manual.

CALL PSEUDO
or

CALI, PSEUDO(FN.}

N file name left-Jjustified with zero fill.
Default file name is SAVPLT.
Example:

CALL PSEUDO

.. 'This will establish a Plot Vector File named
SAVP’LT *

CALL, PSEUDO(6IMYFILE)

This will establish a Plot Vector File named
MYFI’LE [}

NOTE: The Plot Vector File (or Files) will usually be
written to disk (as opposed to tape) and may be
postprocessed following user program termination
via appropriate specification of one or more
PLOT control cards (see Section 1.3, Volume
IV, Computer Programing Manual).

(1) An initializing call to PSEUDO (with or without a
file name argument) must be made prior to any calls
to CALPLT or any other graphics output routine.

52
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METHOD:

ACCURACY:

REFERENCES:

STORAGE:

SUBPROGRAMS USED:

(2) - Every Plot Vector File should be terminated
with a 999 pen code, CALL CALPLT(0.0,0.0,999).
The transmission of the 999 code will cause an
EOF write on the Plot Vector File, and the file
will temporarily be closed. Thus, any given
Plot Vector File will contain only one 999 Pen
code and/or one EOF. .

{3) To continue plotting execution following trans-—
mission of a 999 code to a current Plot Vector
File, the user program must call the PSEUDO pro-
cessor to create new Plot Vector File (i.e.,
CALL PSEUDO(6LMYFIL2)).

In addition to entry PSEUDO, this processor contains two
other entry points, namely PLT9999 and PLT9998. An initial-
izing call to PSEUDO will set PLT9999 into the processor
switching mechanism (PLOTSW). Subsequent plot data gen-—
eration will then be routed vis CALPLT, PLOTSW, and

PLT9999 and written on the Plot Vector File. The entry
PLT9998 is used to record special purpose data from

routines NFRAME and PLTSTOP.

See Section 1.3, Volume IV, Computer Programing Manual.

21558 locations total for direct subprograms

NUMARG, PLOTSW
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APPENDIX C
DEVELOPMENT OF PARAMETRIC MODEI. EQUATIONS

Thig appendix presents the development of the parametric
model equations used in the computer program PARAM,
Tﬂe Larson-Miller, Orr-Sherby-Dorn, Manson-Succop, and
Manson-Haferd expressions are familiar time-temperature
parameters., These parameters assume that the wvalue of the
parameter (a function of stress) is a constant for each
value of the temperaturé compensated time parameter., The
Rabotnov parameter (refs. 9 and 10) is a time-stress
parameter which assumes that the value of the parameter (a
function of temperature) is a constant for each‘value of
the time compensated stress parameterT Time to a glven creep
event and a polynomial in the parameter function (stress
or temperature) were respectively the dependent and inde-
pendent variables all ragreésion model equation forms
used in PARAM. The following presents the development of
~ These five equation forms:

s

Larson-Miller Parameter

P =Ty (log "+ C) =f (c)" "

R(log t + C) = by + b2 log o + b (1og 0) + bu(log 0)3
+ b (1og o) + b6(log 0)5

assuming bo = -C ,

log t = bO + bl/TR + b, log 'o/TR + b3 (log 0')2/'1‘R
+ by (log 0)3/1; + by (log 0) /Ty + by (log 0)7/Ty

SH I~



where P = the Larson-Miller parameter

<
.

T

L

R teﬁpératgre,'PR

L ?

t = time to a particular creep event

c = Larson-Mil}qr?constant X

g = applied stress ‘

b, = =Dbg = coefficients estimated by method of

least squares.

Orr-Sherby-Dorn Parameter

P =1t exp (-AH/RTK) = g (0)

log t - K (AH/RTK) = f (log o)

assuming b, = KAH/R

log t = b, +-bl/TK + b, log ¢ + b3 (log 0)2 t by (log 0)3
+ b5 (log U)Ll + bg (log 0)5 ﬁ

whereP = Orr-Sherby-Dorn parameter

i

v time to a particular creep event

AH = apparent activation energy

R = universal gas constant

TK = temperature, Kelvin

¢ = epplied stress

bo-u b6 = coefficients estimated by method of

least squares.

Manson-Succop Parameter

P=1log t + CTp = f (o)
log t = =C Ty + £ (0)

assuming bl = =0
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log t = b, + byTy + b, log o + by (log )2 + by (log 0)3
+ b5 (log 0)4 + bg (log 0)5

whereP = Manson-Succop parameter

t = time to a particular creep event
¢ = Manson-Succop constant

TF = temperature, Op

g = appliéd stress

b -~bg = coefficients estimated by method of
leagt squares,

Manson-Haferd Parameter

P = (log t - log ta)/(TF - TA) = f(a)
log t = log t_ + (TF - TA) (o)
assuming bo = log td

D = TF - TA

log t = b, + byD + b, D log 0 + b3 D (log 0)2

o} 1
+ bu D (log 0)3 + b5 D {(log 0)4 + b6 D (log 0)5

where P = Manson-Haferd parameter

t = time to a particular creep event

ta = offset time

Ty temperature, °F

TA = offset temperature, °p

g = applied stfess

b0 —_ b6 = coefficients estimated by method of

least squares which iteratively searched values

of 'I'A to determine best fift.

6
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Rabotnov Parameter

P =o(l + At%) = £(T)

1% = <1/A + 1/Bo [y + C,/T + 03/T2 + Cu/T3 + c5/T”

5 6
+ 05/T + Cg/T ]

assumning bO ~1/A
bi Ci/A

o 2 3 hy 5
t7 = bO + bl/cT + b2/0T + b3/0T + bu/cT + b5/GT

n

+ b6/cT6
where P = Rabotnov parameter
g = applied stress
A, a = constants
t = time to a particular creep event
T = temperature, Op

bo——b6 = coefficients estimated by method of least
squares which iteratively searched values of o

to determine best fit.
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Figﬁre.leylnput data for Case 1.
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LEAST-SQUARFS REGRESSION PROGRAM FOR PARAMETRIC - .
ANALYSIS OF CRESP-RUPTURE DATA

DATA SET ALLAY 9 316 STAINLESS:STEEL
OPTION CARD T v
INPUT= 1
10UT= 0
TA= ~5000
R A= .2000
CASF CONTROL CARDS

PARAMETER CODE NO. COEFFICIENTS
1 4
2 4
3 4
4 A
5 3

Figure 2.~0utput for Case 1.
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LEAST-SQUARES REGR®SSION PROGRAM FOR PARAMETRIC
ANALYSIS OF CREEP~RUPTURE DATA

m—————— REGRESSTON V‘LDES --------

DATA SET ALLOY 9 316 STAINLESS STERL

PARAMETER SELECTED L=M

.ND. OF CBSERVATIONS 38

ND. OF INDEPENDENT VARIABLES 3

RESIDUAL DEGRE S OF FREEDOM 34

F - VALUE 476.8

RES IDUAL MEAN SQUARE 2.1495E-~02

STANDARD ERROR 1. 4661E-01

RESIDUAL 3>SUM OF SQUARFS 7.3083E-01

TOTAL SUMS OF SQUARFS 3.1476E+0L

MULT. CORRESL. CDEF. SQUARED -9768
MIN Y = 4.31F-01 MAX ¥ = %+ ZDE* 00 ¥ RANGE = 3.77E+0QO MEAN ¥ =
1 VART ABLE COEF.P(I}  S5.E.COEF. T MEAN X{1J  MIN X{1} MAX X{I}
0 -1.8792E +01
1 /T 4.TH42E+04  2.98E+03 16,00 5.613E-04  4.98E-04 6, L2E-04%
2 ST -3.7957E+03  4.14E+03 .92 6.929E-04  4,31E~-04  B.90E-04
3 SHn2/T -3.2979E403  1.69E+03  1.95 B.6B9E-04  3.64E~04  1.31E-03

VARIABLE COOE
. 5=L0G STRESS
T=TEMPFRATURE

DT=T=TA
L=STRESS
95 PERCENT PREDICTION INTERVAL STATISTICS
LOG TIME REAL TIME FACTYOR (ANTILOG WIDTH)
AVERAGE WIDTH 621 4.2
MAXTMUM WIDTH ST 5.5

Figure 2.-Continued.

24 45E+Q0
RAN XtEI
1.14E-04

4« 59€-04%
9.50E-04

RINF

letd
~a &b
=083

PSUM

«335
663
-003

CERR

.00
.00
-.00

AIrIvad ¥00d J6
SI HOVd "TVNRIT™S
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LEAST~SQUARES REGRESSION PRNGRAM FOR
ANALYSIS UF‘CREEP-RUPIURE DATA

"REGRFSS 10N VALUES

DATA*SET . aALLOY, 9 3
PARAMETER- SELECTED - .. . ®
NO. OF DOBSERVATIONS.- - -~

NO. OF INDEPENDENT VARTABLES
RESIDUAL DEGREES DF FREEDOM

b - Te

F - VALUE * - . . - Thotr s
RESIDUAL MEAN SQUARE ! 1.7867
STANDARD ERROR ‘. *1.33567
RESIDUAL . SUM OF SQUARES T 6.0T48
TOTAL SUMS OF SQUARES. 3.14T6
MULT. CORREL. .COEF, SQUARED ° .. Te

MIN Y =+ 4.316-01 - MAX ¥ = 4.20%

M ' % -

COEF.PLE) » S.E.COEF

VARTABLE
L . —1.5630E+01 -

W) 3

/T 2:1117E+04  5.2TF#+02
s . 1.50T7E+00 2. 02F+00
-3.33233E+00 ~ 8.36E-01

Sex2

VARIABLE CODE '
5=L0G STRESS
T=TEMPERATURE
DT=T-TA

* L=STRESS

g% PERCENT PREDICTICN INTERVAL STATIS
LOG TIMF
AVERAGE WIDTH .567
MAXIMUM WIDTH 593

PARAﬂETRlC

16 STAINLESS, STEEL

-S-D
* 38" ’
3 L
< 34
T5.9 *
E-02 "l
E-01 v,
E=01
E+0Ol -
g807
+00 ¥ RANGE = 3.7TE+00 MEAN ¥ =
. T MEAN X(I} MIN X{I) MAX XUIL
40.07T 1.011E-03 Bae96E-04 1.10E=-03
+ 75 Ll.228%+00 B.45E=-0OL 1.48E+Q0
3.99 1.533E+400 T.14E-01 2. 1BE+00
TICS

REAL TIME FACTOR {ANTILOG WIDTH)

3,7
3.9

Figure 2.-Continued.

2.45E+00
RAN Xt}
2. 06FE-04

6+32E~01
i.476400

RINF

1l.15
«25
~1.30

PSUM

+333
658
.009

CERR

-+ 00
+00
00
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LEAST-SQUARES REGRESSTON PRIGRAM FQR PARAMETRIC
ANALYSIS OF CREEP-RUPTURE DATA

REGRESSION VALUES

DATA SET ALLOY 9 316 STAINLESS STEFL

PARAMETER SELECTED M=5

NO. OF OBSERVATIONS 38

§0. DOF INDEPENDENT VARIABLES 3

RES!DUAL DEGREES™OF FREEDOM 34

F - VALUE 338.2

RESIDUAL MEAN SQUARE 3.0019E-02

STANDARD ERROR 1. 7326E-01

-RESIDUAL SUM OF SQUARES 1.0206E+00

TOTAL SUMS OF SQUARES 3.1%76E+01L

NULT. CORREL. CDEF. SQUARED <9676
MIN ¥ = 4.31E-01 MAX ¥ =  4.,205+00 Y RANGE =  3,7TE+00 MEAN ¥ =
1 VARI ABLE COEF.P{I} S.E.CNFF. T MEAN X(11) MIN X[I3  MAX X{I}
9 2.2556E 401
1 T -1.1£58E-02  3.B0E-0% 30.69 1.326E+¢03 L1.1TE+QG3  1,55E+03
2 s T =T7.9643E-01  2.64E+00 «30 1.228E+00  B8.45E-01  1.4BE+00
3 SHk2 ~2.3794E+00 1.09E+00 2.19 1.533F4+00  T.14E-01  2.1BE+00C

VARIABLE CODE
$=L0G STRESS
T=TEMP® RATURE

REAL TIME FACTOR {ANTILOG WIDTH)

L

DT=T-TA
L=STRESS
95 PERCENT PREDICTION INTERVAL STATISTICS
LOG TIME
AVERAGE WIDTH .735
MAXIMUM WIDTH 771

5.9

Figure 2.-Continued.

2. 45E4+00
RAN X{I)
3.75E+02

6.32E-01
La4TE+Q0

RINF

-1.16
—s13
=93

PSUNM

330
-1-3
«005

0

-'-{—_

.

00
TVNTH™

ALTTVOY
ST @Dvgq

CERR

=00
00
-.00
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LFAST-SQUAPES REGRESSION PROGRAM FOR PARAMETRIC

ANALYSIS OF CREEP-RUPTURE DATA

REGRFSSION VALUES

NATA SET ALLOY 9 316 STATNLESS STEEL
PARAMETFR SELECTED M=-H
NO. OF OBSERVATIDNS 38
NO. OF INDEPENDENT VARTABLES 3
RESIDUAL DEGREFS OF FREEDOM 34
F - VALUE 419.8
RESIDUAL MEAN SQUARE 2. 4334E~-02
STANDARD ERROR l. 5599E~01
RESTDUAL SUM OF SQUARES B8.273TE-01
TQRTAL SUMS OF SQUARES 3. 14THE+OL
MULT. CORRFL. COZF. SQUARED +9737
MANSCON - HAFERC CONSTANT{TA} = 307.0
MIN ¥ = 4.31E-01 MAX Y = 4.20FE+00 Y RANGE = 3.77E+00 MEAN ¥ =
1 VART ABLE COEF.P(I} S.E.COEF, T MEAN X(T) MIN X{I} MaX X{0)
2 1.45Q09€+01
1 or -1.0686E-02 1.26E~03 B8.48 1.028E+03 8+ T5E+02 1. 25E+03
2 0T%S 4. 8648E-03 2.15€6-03 2.26 1.251€+03 1.01E+03 1.54E+03
3 DT*S%%Z —4a 6243E-03 9.02E-04 .13 1.548E+03 8.57E+02 2. 15E+03

VARTABLE CCDE
$=1.0G STRESS
T=TEMPERATURE

DT=T-T4A
L=STRESS
95 PERCENT PREDICTION INTERVAL
LOG TIME
AVERAGE WIDTH 661
MAXTMUM WIDTH .805

STATISTICS
REAL TIME FACTOR (ANTILOG WIDTHI
4.6
5.4

Figure 2.-Continued.

2-45E+00
RAN X(I)

3. 75E+02
5.24E+02
1.29E+#03

RINF

~1.06
%:1:]
~1.59

PSUM

«328
«651
021

CERR

-.00
~.00
-.00
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LEAST-SQUARES REGRESSION PRCGRAN FOR PARAMETRIC
ANALYSIS OF CREEP-RUPTURE DATA

. - - .
. o -

REGRESSION VALUES

NATA SET ALLOY & 3156 STAINLESS STEEL
PARAMETER SSLECTEDR . RAB
NO. OF NBSERYATIONS 3g
NO. OF INDEPENDENT VARIABLES 2
RESIDUYAL DEGRETS fF FREEDUM - s - .
F - VALUE . 220.4
RESIDUAL MEAN SQUARE 2.1137€-03
STANDARD ERROR ~ 4.59T5E-02 .
RESIDUAL 5SUM OF SQUARES 7.39796-02 . .
TATAL SUMS OF SQUARES 1.0058E+00
MULT. CORREL. CUEF. SQUARED 9265
RABOTNOV CONSTANT (RA} = 05630 .
MIN Y = L.06E+00 MAX ¥ = L.T2E+00 Y RANGE = 6.66E-01 MEAN ¥ =  Ll.3BE+00
1 VARTABLE COEF.P(I)  $.E.COEF. T MEAN X(I)  MIN X{I) MAX X{I)  RAN X(I)
A B8.7594E=-01 R , !
1 1/7L%T ~3.68B6E 404  2.06E+03 17.9% 4,693E-05 2.7BE-05 9.52E-05 6.758-05
2 1/L#Tx%2  6.3B69E+07  3.19E+06 20.01 3,505E-08 2.04E-08 6.35B-08  4.31lE-08
VAP TABLE CODE
S=L.06 STRESS
T=TEMPERATURE
DY=T-TA
L=STRESS
a5 PERCENT PREDICT ION INTERVAL S$TATISTICS .
LDG TIME REAL TIME FACTOR (ANTILOG WIDTH)
AYERAGE WIDTH 1.088 12.3
MAX TMUM WIOTH 1.350 224

Figure 2.-Concluded.

e
-
»

g/

RINF PSUN CERR
-3.74 - 092 0.00
4.13 908 G.00



QUIN VIRV IV e
SR hWwo

ALLOY
3142,4,90
T4 .60
213,00
656.20
3476410
6825430
10076450
15790,80
290,90
186.50
81450
36450
104,10
2284720
258,410
319,00
37750
75370
785,30
1232,.,50
1854 ,60
2421 4,00
4078,30
6258410
2150
Q690
270
83.30
25120
921,00
2790
7520
5400
404,60
8790
170,40
614,90
2Be70

~5000.0

117500
120000
1200 .00
1200400
120000
120000
120000
120000
1225000
125000
127500
130000
130000
1300400
1300400
130000
130000
130000
130000
130000
130000
130000
130000
130000
1325.00
1350400
1400400
1400400
140000
140000
1450400
145000
150000
1500400
150000
150000
150000
155000

Qa2

316 STAINLESS STEEL
25« Q0

20,00
28,00
25+ 00
22400
20400
1850
1700
25400
2500
25600
2500
22.00
20,00
19400
1800
1700
1600
1650
1500
1360
13+00
12¢00
11400
2500
25400
25400
1500
1250
1000
1500
12450
16640
12450
10400
9.00
1000

Flgure 3.~Input data for Case 2,

67 .
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LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC
ANALYSIS DF CREEP-RUPTURE DATA

——mm——  REGRESSION VALUES ~—=—%->- ) L. o

NATA SET ALLOY 9 316 STAINLESS SYEFL

DARAMETER SELECTED 0-5-D M

N0. OF DBSERVATIONS . 38

NO. OF INDEPENDENT VARIABLES -~ 2

2ESIDUAL DEGREES OF FRFEDOM - 35

F = VALUE . 600.1 -

2SS IDUAL MEAN SQUARE 2. 5481E-02

STANDARD ERROR .+ 1i5963E-01

2ESIDUAL  SUM NF SQUARES . 8.9183E-01

TOTAL SUMS OF SQUARES 3.14T6E+0L

MULT. CORREL. COEF. SQUARED .9TLY

gg MIN ¥ = 4,31E=D1 MAX Y = 4.20E+00 , Y RANGE =  3.77E+Q0 - MEAN Y. = 2.45E+00

1 VAR] ARLF COEF.P(I) S.E.COEF. T MEAN X{1)  MIN X(I)  MAX X{I} RAN X{T)
0 ~1.1091E+01
1 177 2.1335E404  6£.26E+02 34.09 1.011E=03  B.96E-04 1410E-03  2.06E-04
2 5 -5.5279E+00  2.31E-01 28.22 1.228E+¢00  8:45E-01 1. 48E+00  6.32E-01

VAR TABLE CODE
S=LOG STRESS
T=TEMPF RATURE

DT=T-TA
L=STRESS
95 PERCENT PPED!CTIUN INTERVAL STAT!ST;CS
LOG TIME REAL TIME FACTOR (ANTILOG WIDTH)
AVEGAGE WIDTH .668 4.1
MAX TMUM WIDTH - 703 5.0

Figure H.-Continued.

57!

RINF

l.16
-1.10

PSUM

336
664

CERR,

0,00
<00
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LEAST SQUARES REGRESSION PROGRAM FOR PARAMETRIC
'ANALYSTS DE CREEP-RUPTURE DATA

———e——, REGRFSSION VALUES
DATA SET -
. PARAMETER SELEC*FD

ALLOY 9 316 STAINLESS STEEL

0=-5=-0
_NO. DF DBSERVATIONS 38
. NO. ' QF - INDEPENNENT VARTABLES 3
RESIDUAL DEGRE=S OF FREEDUH 34
F - VALUE 575.9
2ESTDUAL MEAN QQUAPE 1. 786TE-02
QTANDARD ERROR 1.3367E-0L
RESIDUAL SUM OF SQUARES 6.0T48E-01
TUTAL SUMS OF SQUARES 3.14T76E+0L
« MULT. CDRRSL. COEFs SQUARED 9807
MIN ¥ = 4;31E~01 MAX Y = 4420E+00 Y RANGE = 3.77TE+QQ MEAN Y =
I VAR T ABLE COEF.PIID S.E.COEF.” T MEAN X(I) MIN XU} MAX X{I)
-0 e« —1.5630E401

1 /T 2-1117E+04 S.2TE+D2  40.07 1.011%~03 B.96E-04 1.10E-03

2 S 1.5077E+00 2.92€+00 .75 L.22BF+00 B.45E~01L 1.4BE+00

3 Swu2 -3.3333E+00 8.36F-01 3.99 1.5335+00 T+148-01 2. 18E+00

VAPTABLE CUODE
§=LDG STR=SS
T=TEMPERATURE
BT=T=TA
L=STRFSS

a5 PERCENT PREDICTICN INTERVAL STATISTICS

LOG TIME
AVER AGE WIDTH 567
MAXT MUM WIDTH «593

REAL TIME FACTOR [ANTILOG WIDTH)

.

3.7
3.9

Figure 4,-Contihued.

2. 45E+Q0
RaN XI{I)
2.06E-04

6.32E-01
1.47E+00

RINF

1.15
.25
-1.30

PSUM

.333
.658
+009

X LTIV ad A00d \EO
g1 goHva Ty NIDINS

GERR

~.00

200
00
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LEAST=-SQUARES REGRTSSION PRAGRAM FOR PARAMETRIC

ANALYSIS OF CREEP-RUPTURE DATA

—wlmame REGRESSION VALUES ~——=w—--

DATA SET ALLOY g 316 STAINLESS STEEL

PARAMETER SELECTED 9-5-0

NO. OF GBSSRVATIONS 38

NO. OF INDEPENDENT VARIABLES 4

2ESTDUAL DEGREES OF FREENOM 13

F - VALUE 530.4

RESIDUAL MEAN SQUARE 1.336TE-02

STANDARD ERROR 1.1562F~01

QESIDUAL  SUM OF SQUARES 4.4113F-01

TOTAL SUMS OF SQUARES 3. 14T6E+01

MULT. CORREL. COEF. SQUARED +9860
MIN ¥ =  4.31E-01 MAX Y = 4.202+00 Y RANGE =  3.77£400
1 VARTABLE COEF.PII) S.F.CDEF. T MEAN Xx(1) MIN X{(I)
Q 6. TOS1E+00
1 /7 2.0982E+04 4.57TE+02 45.87 L.OL1E-D3 8,96E-04
2 S ‘=5.7228E401 1.6TE+0L 3.42 1.228E+D0 8.455-01
3 Skx2 4,T68TE+0L  1.45E¢01  23.29 1.5336400  7.14E-01
4 S*%3 ~1.4563E+01 4.13F+00 3.53 1. 942E +00 6.04E-01

VARLABLE CODE
S=L0OG STRESS
T=TEMPERATURE

MEA‘N Y =
MAX X{(I)

1.10E~-03
le 48E+ 0D
2.18E+Q0
3.22E+00

REAL TIME FACTOR (ANTILOG WIDTH)

DT=T-TA
L=STRESS
95 PERCENT PREDICTIDN INTERVAL STATISTICS
LOG TIME
AVERAGE WIDTH 496
MAXIMUM WIOTH «369

3.1
3.7

Figure 4,-Continued.

2. 45E+00
RAN X(I)

2.06E-04
6.32E~01
L.4TE+QOD
2.62E+402

RINF

1.14
-9.60
18.58

~10.13

PSUM

-331
654
« 009
=205

CERR

00
-.00
-.00
-.00

0d J0

TYNIOIYO

ALITVAD ¥o
SI @Dvg
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LEAST-SQUARFS REGRESSION PRCGRAM FOR PARAMETRIC
ANALYSIS OF CREEP-RUPTURR DATA

------ REGRESSION VALUFS o———=——-<

DATA SET ALLoy 9 316 STAINLESS STEEL

PARAMETER SELECTED | - 0-5-D

NO. OF OBSERVATIONS 38 .

NO. OF INDEPENDENT VARIABLES . 5

RESIDUAL DEGREES OF FREEDOM v 32w

£ ~ VALUE - 594.8

RESIDUAL MEAN SQUARE 1.0472E-02

STANDARD ERROR ] 1, 0233E~01

RESIDUAL SUM OF SQUARES - 3.350%E-01

TATAL SUMS OF SQUARES 3.14T6E+0L

MULT. CORREL. COEF. SQUARED . -989%
MIN ¥ = 4.31E-01 MAX Y =  4,20E+Q0 Y RANGE =  3.7TE+0D MEAN Y =  2.45E+00
1 VARIABLE ~ COEF.P{I}  S5.E.COEF. T MEAN X(1)  MIN X({I1  Hax X(tI)  RAN X(I} RINF  PSUM  CERR
0 -1.0736E+02
1 T 2.1161E 404 4.09E+02 51.77 1.011E~03 8.96E-04 l.10E~03 2.06E-04% 1.15 +330 =+ 00
2 3 3.4852E+02 1.28E+22 2.72 1.22BE+00 8+45E-01 L. 48E+00Q 6.,32E~01 58447 652 ~«Q0
3 S¥%2 -4,87B0E+02  1.69F+02 2.89 1.533E400 7.14E-01  2.1BE+00  1.47g+00 -190.05 ,009 -.00
4 S*#3 2.9592E+02 9. T6E+ 0L 3403 1.9425+00 6.04E-21 3. 22E+00 2.62E+00 205.77 «005 - 00
5 Swks -6+ 6TBTE401  2.10E+01  3.18 2.4926400 S5.10E-01 4. T6E+00  4.25E+00 -75.36  .003  -.00

VARIABLE CODE )
$=L0G STRESS
T=TEMPERATURE

DT=T-TA
L=STRFSS
95 PERCENT PREDICTION INTERVAL STATISTICS
LOG YIMF REAL TIME FACTOR (ANTILDG WIDTH)
AVERAGE WIDTH « 444 2.8
MAXIMUM WIODTH 560 3.6

Figure 4,-Continued.
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LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC

ANMALYSIS OF CREEP-RUPTURE DATA

OATA SET

PARAMETER SELECTED

NO. OF NBSERVATIONS

NO. OF INDEPENDENT VARIABLES
2sSIPUAL O GREES OF FREEDOM
F - YALUE

2ESIDUAL MEAN SQUARE
STAMNDARD FRROR

SESIDUAL SUM OF SQUARES
TPT AL SUMS OF SQUAPES

MULT. CORR-L. COEF. SQUARED

REGRESSINN VALUES

MIN ¥ = 4.3158-01 MAX Y =

1 VARTABLE COEF.P{I) Se
) 4.T690E 401

1 T 2.11815+04 4.
2 S ~3.3766E402 l.
3 SH% T+1482E+02 2e
& Sk ~Ta4T98E 402 l.
5 Sxx4 3.3218E+02 B.
6 S %% ~7.65T2E+01 l.

VA JABLE CODE
S=1.0G STRESS
T=TEMPFRATURE

0T=T-TA
L=5TRESS
95 PERCENT PREDICTION TNTERVAL
L0G TIME
AVEF AGE WIDTH 454
MAXIMUM WIDTH +590

9 316 STAINLESS STESL

0=5~D
38
-]
31
484.8
1.0T08E-02
1.034BE~0L
3.3194E-01
3. 1475E+ 0L
9895
4.205+00 Y RANGE = 3.7TE+0Q MEAN Y =
E.COEF. T MEAN X( L) MIN X{1) MAX X{T)
15E+#02 51.03 1.011E~03 8.96E-~04 1.10E-03
2TE+Q3 W27 1.228E+00 8.456-01 1.48E+00
22E+03 .32 1.533E+00 T.14E-01 2.18E+00
93E+03 «39 1.942E+00 ¢ 04E~OL 3,22E+0Q0
28E+02 o46 24926400 S.10E~01 4. TOE#+DO
4LE+02 «54 3.235E+00 44 3LE~QL T« 03E+00

STATISTICS
REAL TIME FACTOR (ANTILODG WIDTH}

2.8
3.9

Figure 4.-Concluded.

2.45E+00
RAN X{I} RINF
2.06E=04 lel6
6.32E-01 -56.65
1.47E+00 27850

2.62E+#00 -520.10
4.256¢00 431.24
6. 60E+00 ~134.18

PSUM

«330
652
- 309
-005
«003
«000

CERR

.00
.01
=00
00
+00
00



3 3
2 5

At LOY
3142,90
74 .60
213400
656420
3476410
6825.30
10076450
15790.80
290,90
186+50
81450
3650
104,10
228,20
258410
319,00

37750

753,70
785,30
1232.50
1854,.,60
2421 .00
4078.30
5258410
21450
9.90
270
83,30
251.20
921,00
2790
75820
5400
404,60
87.90
170440
614,90
P2Bes70

-5000.0

117500
1200+00
1200400
120000
120000
1200400
1200400

"1200.00

122500
125000
1275400
1300400
1300200
1300600
1300400
130000
1300+00
130000
130000

1300.,00

130000
130000
1300+00
130000
132500
1350400
1400400
1400?00
1400400
140000
1450,00
1450400
150000
150000
150000
150000
150000
1550+00

316 STAINLESS STEEL

25.00
30400
2800
2500
22 ¢ 00
20400
18450
1700
25400
2500
25+ 00
2500
2200
2000
1900
18400
1700
1600
16450
15,00
1360
13.00
1200
1100
2500
25400
25200
15400
1250
10.00
15,00
12450
16440
12450
1000
900
7400
10,00

Figure 5,.,~Input data for Case 3.
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LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC
ANALYSIS OF CREEP~RUPTURE DATA

DATA SET
OPTION CARD
INPUT= 3
10UT= 3
TA= -5000
RA= .2000

CASE CONTROL CARDS
PARAMETER CODE

2

NO.

ALLOY 9

COEFFICIENTS

]

316 STAINLESS STEEL

Figure 6.-0utput for Case 3.



INPUT
NO.

ot
R R e R N PO o

s b foed ek bk
AN L PO

—h pt ok
O e~

N
N =S

WS N
-~ W

NN
O w

[TCRCUP R Y]
LI ™ =0

[TURVERVCIRPY RN Y
o=l P

DATA OBSERVATIONS

TEME
3142.90
74.60
213.00
656.20
347610
6825.30
10076. 50
15790.80
290.90
186..50
81.50
36.50
104.10
228,20
258410
319.00
377.50
753.70
785.30
1232.50
1854.60
2421.00
4078.30
6258.10
21,59

. 9.90 °

2.70
83.30
251.20
921.00
27.90
75.20
© 5.00
40.60
87.90
170.40
614.90
28.70

Figure 6.-Continued.

STRESS
25
30
28
25
22
20
18
17
25
25
25
25
22
20
19
18
17
16
16
15
14
13
12
It
25
25
25
15
13
1o
15
13
16
13
10

9
7
10

TEMPERATURE
1175
1200
1200
1200
1200
1260
1200
1200
1225
1250
1275
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1325
1350
1400
1400
1400
1400
1450
1450
1500
L5060
1500
1500
1500
1550


http:15790.80
http:10076.50
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LFAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC .
ANALYSTS OF CREEP—RUPTURE DATA

REGRFSS ION VALUES

DATA SET ALLGY 3 316 STAINLESS STEEL
PARAMETER SELECTED 0-5-D '
NO. OF CBSSRVATIOMS a8
ND. OF INDEPENDENT VARTABLES 5 -
RESIDUAL DEGREES NF FREEDOM 32
F - VALUE 594.8
RESIDUAL R=AN SQUARE 1.0472E~02 e
STANDARD ERROR . 0233E-01 i
SESIDUAL  SUM OF SQUARES 3.3509E-01
TATAL SUMS OF SOUARES 3.14T6E+01
MULT. CORREL. COEF. SQUARED <989
HIN ¥ = 33 1F-01 MAX ¥ =. 4.20F¢00 ¥ RANGE = 3.T7E#00 MEAN Y = 2. 45E+00
FIRST 5 NBSFRVATIONS ~ TRANSFORMED VARIABLES B .
Y X1 - X{L2}
3.497337+#00  1.101326-03  1.39794E+00  1.95424E400  2.T319LE+00  3.B1904E+00
1.87274° +00 1.084735-03  1.47712F+00  2.1B8189E+00  3.22291E+00  4.76063E¢00
2.32838°+00 1. )B4T3E-03 1.44716E+00 2.0942TE+00 3.G30T3E+O0 4+38595E+00
2.81704T+00  1.084735-03  1.397T94E+D0  1.95424E400  2.7319LE¢00  3.81904E+400
3.54109°+00  1.98473F-03  1.34242E400  1.80210E+400  2.41918E400  3.24756E+00
T VARY ABLE CNEF.P(I} S.E.COEF. T MEAN X[Y} MIN X{I3 MAX XEI) RAN X{1} RINF
0 -1.0736E+02 .
LT 2.1161E%04 4.09E+02 S51.77  1-0115-03 B.96E-04 L.10E-03  2.06E-04  1.15
2 s 3.4852F4¢02 1.28F+02 2.72  1.228E¢00 B.45E-01  1.48E¢00 6.32E-0L 58.47
3 seR2 ~4.87BOE+0Z 1.60E+D2 2.89  1.533F+00 7.14E-01 2.18E+00 L1.47E+00 -150.05
4  S%*3 2.95925402 9.T6E¢01  3.03  1.9426400  6.04E-01  3.2ZE¢00  2.62E+00 205.77
5 sun4 ~6.6T8TE+OL  2.106#01  3.18  2.4926+¢00 5.108-01 4.T6E+00  4.258+00 -75.36

VARIABLE CODE
S=LOG STRESS
T=TEMPERATURE

REAL TIME FACTOR {ANTILOG WIDTH}

0T=T-TA
L=STRESS
95 PERCENT PREDICTION INTERVAL STATISTICS
LOG TIME
AVIRAGE WIDTH ol
MAXTMUM WIDTH «560

2.8
3.6

Figure 6.-Continued.

PSUR

330
«652
=009
005
-003



Ll
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OCSINUALS -

g

.
DO T TN I

et b g pen v a
FORT N L

]

e bl
O m -~

YV
LI - D

13"
AR

™~
a

[ R T R ]
R ee & 0 O~

3
Wi

W
w o~ ™

Y @<

3. 4975 +00
1.873F+00
2.328~F+00
2.817E+00
3.541F+00
3.834%+00
4s D035 +00
4. 1985400
2s 46 4F +00
2.271E+00
1.911F+00
1.562F +00
2. Y1 TE#N0
2.3585+400
24125400
2. 5045 +00
2.5775+00
28775400
2. 8955 +00
3.091F+.:0
3.2685+400
3.384F+00
3. 6107+00
3. 796 +0D
1.3325+00
9,9546F-01
4,3147=-01
1.9215 +00
2. 400F 400
2+ 964F D0
L 446F+00
1. 87&F +00
64 990F-01
1.609F+00
1.544F+00
242317400
2.T895+00
1.458F+00

REGRESSTON SPACE

Y CALC

3.2665+00
1.879C+00
2.3315+00
2.915€6+00
3.4025¢00
3.688F+4+00
3.B892%+00
4.098+09Q
245745+00
22447400
1.922E+00
1.6105¢00
2.0977+00
2.383F+00
2.5225400
2.656F4+00
2.7T935+00
2.9375+00
2.8645+00
3.089%+00
3.328E400
3.442E+00
3,6517+00
3.8887+00
1.307F+00
1.012F+00
4 461F-01
1.925F+00
2.3T79E+00
2+.990F+00
1.389F+00
1.8435+00
5.687E~01
1.333E+00
1.9456400
22357400
2.7B0E+00
l.461E+00

RESIDUAL

~2.3126-01
& 4056-03
2. 687E-03
F.TIGE~02
=1.391E-01
-1.462F~01
-1.109€E-01
-L1. 004E-01
1.106F-01
~2+. TQ4E-02
1.1306-02
4.811E-02
7.9905-02
2.501E~02
l.082E-01
1.,519E~01
2. 1655-01
S.943E-02
~3.093E-02
~1.443F-03
5. 957602
S5.7786=02
4. 073E-02
9, 195¢=-02
-2.534E-02
1.6545-02
1.4756-02
4,402E-03
~2.108E-02
2.611FE-02
-5.697E-02
-3.369E-02
-3.0286-02
-2.750F-01
9. 2T1E-04
3.831E-03
-B.5005-03
3.328E-03

PCTERR

wbeb

]
[y SRR I B U o R S Tt )
2 % % & & & & & & B 3 A &k & "3

P ml D e ag OO e T OO

1

G 1
L I B )
@0 00

1
o+
.
W

-17.1

.«
A=)

~a3
2

ORDER

32
36
11

10

23
30
:}
13
26

i5
21
37
14
16
15
12
25
28
29
33

24
17
20
22

38
34

35

CIMIN

3,.334E+30
2.024E+00
2+426E+00
2.9T5E+0Q0
34ETEHOD
3,758E+00
3.965E+00
4.1T3E4Q0
2-530€8+00
2.298£+00
1.978F+00
1.670E+00
2.155E+00
2.440E+00
2.573E+00
2+TOBE +20
2.844E+00
2.98TE+ (O
2.914F+00
3.142E+00
3.3BBE+00
3.506E+00
3.T24E+00Q
3+9T1E+DD
1.3T72E+00
1.084E+00

¢ 5.344E-01

1.98LE+00
2.437E+00
3.062E+00
1.457TE+Q0
1.907€+00
T«602E~01
1.408E+00
2.21BE+00
2.319E+00
2.966E+00
1.543E+00

Figure 6.-Continued.

CIMAX

3.199F+«00
1.735E+0Q0
2.236E4+00
2.855E+00
3.337F+00
3.6188+400
3,820E+00
4.023E400
2.51B8E+00
2.1B89E+00
1,86TE+Q0
L.S51E+00
2.040F+00
2.326F+00
2.465E+00
2.603E+00
2.7T43E+00
2.8BTE+00
2.8L45+00
3.,037E+00
3.26BE+00
3.3TTE+Q0
3.578BE+00
3.806E4+00
1.242E+00
2.400E-01
3.578E-01
1.869E+00
2.321E+00
2.919E+00
1.320E+00
1, 778E+Q0
5.772E=01
1.259E+00
1L.BT2E+00
2.152E+00
2.594E+00
1.3B80E+00

PIMIN

3.046E+00
1.625E+00
2. 102E+00
2+697E+Q0
3.183E+00
3.4468E+00
3,671E+00
3.876E£+00
2.358E+00
2.028E+03
L. 7TOEE+0D
L.393E+30
1.8815+400
2. 167E+00
2.304E+90
224405400
2«5 78E€ 00
2.T22E+00
2.649E+00
2+8T4E+00D
3.110E+00
3.223E¢00
3+ 430E+00
3.664E+30
1.08BE+00
T.910E-01
2.192E-01
l.7Q9E+QD
2.162E+00
2+ T70E+00
1. 169E+00
1. 6249E+00
4e405E-21
1.111E+0Q0
L T23E+02
2.010E+00
2500E+30
1.237E+00

PIMAX

3.486E+00
2+ L33E+00
2+561E+00
3.133E+00
3.,621E+00
3.908E+00
4.114E+00
4.320E+00
2.791E+00
2+460E+00
2.139E+00
1.828E+00
2+314E+00
2+6005+00
2.T36E+00
2.871E+00
3.009E+00
3.152E+00
3.079E+00
3.305E+00
3.545E+00
3.661E+00
3,8T3E+00
4.113E8+00
1.5265+00
1.233E+00
6.T30E~D1
2.141E+00
2.596E+00
3.211E+00
1.609E+00
2.061E+00D
8.969E-01
1.555E+00
2« L6GE+OD
2.460E+00
3.060E+00
1.686E+00



gL

i /

RACKIRANSFIRMED: RFSEDUPALS —~ RFAL SPACE

a5

[l R R N

Y nes

J3a 143E+03
Ta4&07+01

« LI05+02
S.T62F#02
3.4T6F+ 03
be G2EF+73
L. 0087 +04
1.579%+04
2.909%+N2
1. 865F+02
8.150F+NL
2 650F +01
104152
2.2825%02
2.58154+02
3. L90F+02
3.775%+02
T.5375+22
T.853%+02
1.2327+13
1.8555+32
2.421F+N2
4. QTR +03
622585433
2. 1507 +01
9.9007+00
2. 7007020
8. 2305+01
Z2.512%4>2
$.210=+02
2.799+71
T.95207+01
5. JO0T 0D
4. 0605401
8.7907+31
1. T4=¢)2
6. 1495402
2.870F+01

Y CALC

1.84654073
TeSTLE+OL
2.143%+02
§.223F¢02
25235403
4.8755+03
T.5068+03
1.2535+24
3. T535+02
L.752E+Q2
R.365E+0]
4. QTBERDL
1.251F«02
2+41TE+Q2
3.311F+02
4. 526E+02
5.2155+22
8.642754732
Te3125¢02
1.228%+03
2.127F¢03
2.T56T+02
4.4679%403
T.7345+03
2.028=+01
1.028=+31
2.7937+00
B.4135°+01
2.393%+32
9.781°+02
2+447C+01
5.9595+0 1
4,663E+00
2.L558+01]
3.8995+01
1.719c+02
5.,0305+02
2.892%+0)

RESTDUAL

L 2STF+0%
-1.1385+00
-1.322E+00
~le5615¢02

Q.5275¢02

1.951F+03

2.27T05+03
3.25A85+03
~R. 4385401

L.126%+01
-2~ 14900
e 2765 +00
-2.1035+01
-1.3535401
~T 3045 +0 L
~1.336E+02
~2+44054+02

~1.1055+02

5.3995+01
4.0875+00
-2.7275402
-3.445F 402
~4.010E+02
~Le4TEE+03
1.219E+00
-3.8425-01
-5, 3256-02
-8. 487801
1.1502 01
~5.707F+01
3.430F +00
S5.514E+00
3.367E-01
1.9056+01
-1.8785-01
~1.5105400
1.1925+01
~2.208E-01

L ]

PCTERF

4l.3
=1.5
- &
-25.3
2T &
2846
2245
20. 6
-29.0
6-0
~-2.6
-l1.7
—-2042
-5.9
-28.3
=41.9
-64. 6

—lgaT

£. 9
.3
=l4e7
-14,2
-5.8
=-23. 4
5.7
~3.9
-3.5
=-1.0
4.7
—8.2
12.3
Te5
£.7
G&.9
2
-
1.9
—a 8

ORDER

32
26

1l
Lz

24
30
18
13
25

8=
21
37
14
1€
i9
10
2&
28
29
a3
27
23
17
20
22

38
34
31
35

CIMIN

L~580E+03
Se428E+0L
l.T23E+02
7.155E+02
2.1 T4E+(3
4.153FE+03
6.GL1IE+Q3
l.353E+04
3.300E+02

1 54TE+O2

T.359E+31
3.556T+0QL
1.096E+32
2.121E¢02
2+91TE+D2
4.309E+02
S5.532E¢02
T.TO0LE+02
G.51TE+02
1:089E+03
L.852E+03
2.383E+03
3.784E5+03
6.399E+03
L.7T45E+0]
B.TI9E+]D
2.2T9E+00
T«397E+0QL
24 IFLE+D2
8.302E+02
2-089F+#9]
G.00aE+])
3.7T7E+OQ
1.813E+01
Todd2E+01
l.418E+02
3.928E+02
2+398E+01

Figure 6.~Continued.

CIMAX

Z.L56E+03
L. 056E+02
2. 665E+02
9.45LE+Q2
2.928E+03
5.7225+03
Fa218E+03
L.49LE+D4
4.26BE+02
L.9B6E+02
9.508E+01
4.6 TGE+OL
L.428E+02
2.7556+02
3, 7T59E+02
5.L09E+02
6.982E+02
Q.6 99E+02
8.207TE+D2
1.385E+03
2.443E+03
3.210E+03
5.302E+03
9.34TE+03
2,257E+0L
1.Z14E+01
3.423E+00
9.572E+01
2.734E+02
L.152E+03
2.865E+0L
8.064E+01
5.757E+0D
2.56LE+01
1.043E+02
2.083E+02
9.25TE+02
3.488E+01

PIMIN

La113E+)3
4+ 2LTE+OL
L. 264E+02
4.982E+02
l1.525+03
2.935E+23
4.651E+D3
T« 51L3E+23
2.280E+#02
1.066E+22
5.083E+01
24 T2E+D1
7-595E+01
1l.458E+02
2.013E+02
2. T55E+02
3.TEBTE+D2
S226BE+Q2
4. 458E+22
T4 TIE+D2
L.289E+)3
1.6T1E+0D3
2.690E+03
4.610E+03
1.225E+01
6. l80E+3]
1.656E+00
S«113E+01L
1.452E+02
5.882E+02
l.4T4E+0L
44 2C06E+0L
2.T5TE+Q0
1.292E+01
5.290E+01
1.024E+02
3.165E+32
L. 725E+01L

PIMAX

3.061E¢03
L.359E+02
3.635E+02
1.357E+03
4,176E+03
8.0965+03
1.299E¢04
2.0915+04
6.1765+02
Z.8BLE+Q2
L.3T76E+02
6. T26E¢01L
2.061E+02
3.981E+02
S.44TER(G2
T« 435E4¢02
1.02Q054+03
1.418E+03
L.200E+03
2.018E+03
3.5L0E¢03
4.5TTE+03
Te459E+03
1.297E+04
3.358E+01
1. 71LE+Q1L
4,T107+Q0
1.3855+02
3.9435+02
1.626E+03
4.061E+01
1.151E+02
7.887S+00
3.594E+01
le46TE+02
2.88TE+02
L. L49E+0D3
%.848E+01



RESIDUAL

%0

30

20

10

~10

-20

~-30

X HIN = H.4BLE-01 INCREMENT 5.0Q0£-01 PRRAN
Y MIN = -4.951£-01 [NCREMENT 1.000£-01 PLOT 7
P
x
X "
x*
x
% x X%
X X
x X i % % x < N
¥ X X x % b4
X
X
X
X
10 iB a0 35 40 45

20 25
 FITTED ¥

Figure 6.~Continued.
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RESIDUAL

-~

1IN

o ~2.1820+400 INCREMENT §.000E-01 PRRAN

~2-760E£~01 INCREMENT b5.000£-08 PLOT 8

25

29

15

10

XXX

o

b

1
o

-i0

~15

~20

-2%

-39

-2b

0 10 15 20 25
IF  NORHAL

Figure 6.-Concluded.
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