by
Donald R. Rummer

A thesis submitted to the Graduate Faculty of North Carolina State University at Raleigh
 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

DEPARTMENT OF MATERIALS ENGINEERING

RALEIGH
1976

APPROVED BY:

RUMMIJER, DONALD ROBERT, Creep-Rupture Data, Analysis Engineéring Application of Régressión Techniques (Under the direction of HAYNE PALMOUR III).

The creep and rupture behavior of materials can control the design of structures which operate at elevated temperatures. In lieu of an adequate fundamental understanding, current design practice makes use of a variety of empirical techniques to predict creep behavior.

The results of investigations to apply regression techniques to the development of methodology for creep-rupture data analysis are presented. Regression analysis techniques are applied to the explicit description of the creep behavior of materials for space shuttle thermal protection systems. A regression analysis technique is then compared to five parametric methods for analyzing three simulated and twenty real data sets. Finally, a computer program for the efficient evaluation of creep- rupture data with five parametric methods is presented.

Donald R. Rummler was born in
, the son of a master tailor. He received his elementary and secondary education in Cheraw, South Carolina and Belmont, North Carolina, graduating from Belmont Abbey Preparatory School in 1955.

He received his Bachelor of Science degree in Civil Engineering in 1959 and his Master of Science degree in Ceramic Engineering in 1966, both from North Carolina State University at Raleigh.

Since 1959, he has been a member of the technical staff at the National Aeronautics and Space Administration - Langley Research Center. His primary duties during this time have been concerned with the structural application of advanced materials systems to aerospace vehicles.

The author is married to the former Mary Lou They have three children -- Mark, Kathy, and Karen,

ACKNOWJEDGMENTS

The author wishes to express his appreciation to the National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia, for permitting him to conduct this research as part of his work assignment. The advice and guidance of Professor H. Palmour III, Chairman of his Advisory Committee, has been invaluable in the completion of this study. A special thank you is extended to Professor Emeritus W. W. Kriegel for his continuing interest and counsel. Appreciation is also extended to the other members of the committee, including Professors R. J. Hader, H. H. Stadelmaier, and J. K. Whitfield. Gratitude is expressed to B. A. Stein for many informative discussions.

The author also expresses heartfelt thanks to his parents who stimulated and encouraged his curiosity. Finally, the author expresses his thanks to his wife, Mary, and children, Mark, Kathy, and Karen, for their patience and constant support.
GENERAL INTRODUCTION vi
APPLICATION OF REGRESSION ANALYSIS TO CREEP OF SPACE SHUTMLE MATERIALS 1
Abstract 1
Synopsis '1
Symbols 1
Introduction 2
Analysis Procedures 3
Development 3
Application 7
Results and Discussion 8
Use of simple regression 8
Use of multiple regression 10
Concluding Remarks 15
Acknowledgements 15
References 16
Figures 18
STRESS-RUPTURE DATA CORRELATION - GENERALIZED REGRESSIONANALYSIS - AN ALTERNATIVE TO PARAMETRIC
METHODS I
Abstract 1
Introduction 2
Data for Analysis 4
Simulated data 4
Real data 5
Analysis Procedures 6
Parametric Methods 6
Minimum Commitment Method 9
Generalized Interacting Variables Method 10
Development 10
Application 12
Results and Discussion 13
Simulated data 13
Real data 16
Conclusions 21
Appendix A. Parametric Analysis to Establish
Simulated Data Sets 22
Appendix B. Supplementary Analysis of Correlation Methods 24
Tables 28
References 41
Figures 45

COMPUTER PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE
DATA . 1
Abstract 1
Summary 2
Introduction 3
Program Description 4
Analysis 5
Program Usage 7 Input 7
Output 11
Sample Cases 16
Concluding Remarks 18
Appendix A. Source Listing of Program PARAM . . 20
Appendix B. Langley Research Center System
Appendix C. Development of Parametric Model
Equations 54
References 58
Figures 60

The creep-rupture behavior of materials can and does control the design of many structural components. Designers and analysts in the nuclear power generation, aerospace turbine, and chemical processing industries, for example, are required to design structural components which must operate reliably for periods up to forty years in complex, high temperature environments. Unfortunately, the current state of our understanding of the creep process does not allow the use of "first principles" for sizing components and predicting their service behavior. Consequently, the creep-rupture design techniques used today can at best be called "enlightened. empiricism." There is no generally accepted method of analysis for the prediction of creep-rupture behavior. In fact, a method which works well for one material very often will not work well for a different material.

The purpose of the investigations reported herein was to explore the application of regression analysis techniques to the analysis of creep-rupture data of interest in aerospace applications. They constitute a part of a continuing effort, begun in 1970, to provide the materials related methodology necessary to design efficient aerospace vehicles.

The first paper deals with the application of regression analysis to the creep of space shuttle materials. Regression
techniques are used as a tool (1) to assess the effects of sheet thickness and oxygen partial pressure on the steady-state creep behavior, (2) to analytically describe the low creepstrain behavior, and (3) to assess the effects of data scatter for materials where data are limited.

The third paper describes the development and use of a computer program for parametric analysis of creep rupture data. The program includes provisions for the analysis of five different parameter methods. Sample problems to aid the user ' in setting- up a problem are presented.

AYPLICATLON OF REGRESSION ANALYSIS TO CREEP OF
 SPACE SHUTTLLE MATERIALS ${ }^{1}$

Donald R. Rummler
NASA Langley Research Center
Hampton, Virginia

[^0]
APPLICATION OF REGRESSION ANALYSIS TO CREEP OF
 SPACE SHUTTLE MATERIALS
 Donald R. Rummler
 NASA Langley Research Center Hampton, Virginia

Abstract

Regression analysis techniques were used to assess the effects of sheet thickness and oxygen partial pressure and to develop constitutive creep equations. Application of prediction intervals is emphasized.

1 SYNOPSIS

Metallic heat shields for Space Shuttle thermal protection systems must operate for many flight cycles at high temperatures in low-pressure air and use thin-gage ($\leq 0.65 \mathrm{~mm}$) sheet. Available creep data for thin sheet under those conditions are inadequate. To assess the effects of oxygen partial pressure and sheet thickness on'creep behavior and to develop constitutive .creep equations for small-sets of data, regression techniques are applied and discussed.

2 SYMBOLS
$\epsilon=$ creep strain.
't $=$ time, hours.
th $=$ sheet thickness, mm
$T=$ temperature, K
$\sigma=$ stress, $\mathrm{MN} / \mathrm{m}^{2}$
$x, y, z, D, \phi=$ dummy variables

3 INTRODUCTION

Recent Space Shuttle technology research and development studies ((1)* and (2)) have indicated that the creep behavior of high-temperature alloys may control the design and reusability of metallic heat shields for radiative thermal protection systems (TPS). The heat shields function as lightly loaded aerodynamic surfaces, and they must efficiently utilize thin-gage sheet to avoid weight penalties. Loads are applied at high temperature, when the local partial pressure of oxygen is low. In general, creep strains must be limited to less than 0.005 to avoid excessive panel deflections.

The creep data which exist for candidate superalloys are for steady-state creep tests run on relatively thick specimens at atmospheric pressure. These data are presented as time to a given strain level for various combinations of stress and temperature (see, for example, Refs. (3) and (4)). Attempts to use this type of data to predict the cyclic creep deformation of simple tensile specimens or for the preliminary design of heat shields underestimated the experimental creep strains by as much as a factor of 10 ((1) and (2)). These predictions typically utilized one of the parameter methods (5) combined with a life fraction approach to sum the cyclically accumulated strains. This failure to predict the experimental creep strains could be the result of one or both of the following:
(1) The data upon which calculations were based were for the creep of relatively thick specimens at atmospheric pressure, and may not be applicable to thin specimens at low pressure.

[^1](2) No analytic expression was available which could account for both the nonlinear primary and linear secondary creep stages.

The purpose of this paper is to present the results of an investigation to determine the applicability of regression analysis techniques to predict creep behavior when data are limited. Three applications of regression techniques which address the aforementioned shuttle TPS creep problems are discussed. Regression techniques are used as a tool (1) to assess the effects of sheet thickness and oxygen partial pressure on steady-state creep behavior, (2) to analytically describe the low creep strain behavior, and (3) to assess the effects of data scatter for materials when data are limited.

4 ANALYSIS PROCEDURES

4.1 Development

To evaluate trends in creep data and to predict creep behavior, explicit expressions for the mean and the expected upper and lower bounds for creep. strain data as a function of stress, temperature, and time were desired. Little information is available about the form of these expressions for the candidate materials at low levels of creep'strain. Consequently, two computer programs were written and applied to develop the desired expressions. Both programs utilize standard linear regression techniques (6). One program was of the form:
where

$$
\begin{align*}
& \mathrm{w}=\mathrm{b}_{0}+\mathrm{b}_{1} \mu \tag{I}\\
& \mathrm{w}=\log \text { (stress) } \\
& \mu=\log \text { (time) }
\end{align*}
$$

This program was used to generate coefficients, mean value estimates, and 95 percent prediction intervals* for data at specific values of strain and temperature.

The second program was used to develop models for creep strain as a function stress, temperature, and time. For this multiple regression program, the equation form assumed was:
$f(y)=g\left\{\left(a_{1} x_{1}^{2}+b_{1} x_{1}+c_{1}\right)\left(a_{2} x_{2}^{2}+b_{2} x_{2}+c_{2}\right)\left(a_{3} x_{3}^{2}+b_{3} x_{3}+c_{3}\right)\right\}$
where y, x_{1}, x_{2}, and x_{3} are, respectively, functions of creep strain, stress, temperature, and time.

Provision for transformation of y, x_{1}, x_{2}, and x_{3} was included in the program. The transformations, which included many of those found useful for analysis of creep data (7) were as follows:

[^2]\[

$$
\begin{array}{cl}
\begin{array}{c}
\text { Transformation } \\
\text { Code }\left(T C_{j}\right)
\end{array} \\
0 & \begin{array}{c}
\text { Transformation } \\
(0 \leq i \leq 3)
\end{array} \\
1 & x_{i}=z_{i} \\
2 & x_{i}=\log \left(z_{i}\right) \\
3 & x_{i}=1 / z_{i} \\
4 & x_{i}=\log \left(1 / z_{i}\right) \\
5 & x_{i}=\ln \left(z_{i}\right) \\
6 & x_{i}=\left(z_{i}\right)^{1 / 2} \\
7 & x_{i}=\log \left(z_{i}+1.0\right) \\
8 & x_{i}=\left(z_{i}\right)^{1 / 3}
\end{array}
$$
\]

where the z_{i} are specific values of stress, temperature, or time. Similar functional transformations $(y,=f(D))$ were used for strain. Each transformation combination was assigned a four-digit transformation number where the digits are the transformation code values for y, x_{1}, x_{2}, and x_{3}, respectively.

Thus transformation 1025 used the following transformations:

$$
\begin{aligned}
& y=\log D=10{ }^{n}(\mathrm{c})! \\
& x_{1}=z_{1}=\sigma \vdots \\
& x_{2}=1 / z_{2}=1 / T \\
& x_{3}=\left(z_{3}\right)^{1 / 2}=(t)^{1 / 2}
\end{aligned}
$$

Creep data sets usually include a wide range of times, typically three orders of magnitude, whereas the ranges for creep strain, stress, and temperature are seldom in excess of one order of magnitude. Early analysis of
nultiple regression computer runs revealed that the combination of the wide range in the variables associated with creep data sets and equation forms which include terms that can be highly colinear, such as x and x^{2}, led to ill-conditioned normal equations which were subject to significant round-off errors during a matrix inversion operation. In order to minimize these errors, the data were scaled from 1 to 10 after transformation of the primary variables (y, x_{1}, x_{2}, x_{3}) as follows:

$$
\begin{aligned}
& y_{i}=9.0\left(y_{i}-y_{\min }\right) /\left(y_{\max }-y_{\min }\right)+1 \\
& x_{i j}=9.0\left(x_{i j}-x_{i \min }\right) /\left(x_{i \max }-x_{i \min }\right)+1
\end{aligned}
$$

where $y_{\min }$ and $y_{\max }$ are the minimum and maximum values of the transformed strain. The $x_{i \min }$ and $x_{i \max }$ have similar definitions as they apply to the transformed values of stress, temperature, and time.

After transforming and scaling the primary variables, Equation (2) was expanded and new independent variables, defined as follows, were introduced:
$y=a_{1} a_{2} a_{3}\left(x_{1}^{2} x_{2}^{2} x_{3}^{2}\right)+a_{1} a_{2} b_{3}\left(x_{1}^{2} x_{2}^{2} x_{3}\right)+\cdots=\sum_{j=1}^{k} \phi_{j} z_{j}$
This procedure results in an equation with 27 terms having linear coefficients $\left(\phi_{j}\right)$.

Some values of ϕ_{j} were set equal to zero so that, in Equation (3), the order (degree of interaction) for the number of terms in the regression analysis could be reduced as follows:

K	Order	(Allowed term types)
23	4th	$\left(x_{2} x_{m} x_{n}^{2}\right.$ and $\left.x_{2}^{2} x_{m}^{2}\right)$
17	$3 r d$	$\left(x_{2} x_{m} x_{n}\right.$ and $\left.x_{2}^{2} x_{m}\right)$
10	2nd	$\left(x_{2} x_{m}\right)$
4	lst	$\left(x_{2}\right)$

(Note that the reduced form can no longer be factored back to Equation (2).)

4.2 Application

To perform a multiple regression analysis using Equation (3), the order of the equation (k value) was selected first. Next, the transformations to be used on the primary variables were selected. Each observation of the data set was transformed, then scaled. The transformed and scaled values for strain, stress, temperature, and time were then used to generate values for the additional variables in Equation (3). This data set was then used in the regression analysis. The mean values of creep strain were calculated from the coefficients derived during a multiple regression analysis. Explicit functions for the upper and lower bounds (95 percent prediction intervals) were calculated by treating either the upper or lower prediction limit calculated for each observed value of strain during the initial regression as another set of observed strain values; two additional regression analyses provided the desired coefficients. The residual mean square (RMS) for the prediction interval "data" sets were always extremely small ($\approx 10^{-7}$ times that of the original data set analysis). This suggests that the errors involved in these approximations for the original prediction intervals were not large.

After a regression analysis was performed, all variables and residuals were descaled and back-transformed. Several quasi-statistical parameters were then calculated to aid model development and "best-equation" selection. These parameters are described as they are introduced.

5 RESULIS AND DISCUSSION

The following examples illustrate how regression techniques were applied to three areas of creep behavior which are of interest in Space Shuttle TPS creep studies. These areas are typical of those which can occur during the preliminary design phases of any program when extensive creep data are not. available.
5.1 Use of Simple Regression (Equation (1)).

Haynes alloy H-188 is a cobalt base alloy which has excellent oxidation resistance and modérate elevated temperature strength. It is a candidate material for TPS application up to 1250 K . The creep data base consists primarily of the work reported in (4). This work includes creep tests on H-188 sheet from 10 production heats and for thicknesses ranging from 0.51 to 2.03 mm . All creep tests were run in air at standard pressure.

Figure 1 presents the data at 1144 K at a strain level of 0.002 . A regression analysis was performed on the data set with sheet thickness $\leq 0.84 \mathrm{~mm}$. These data will be defined herein as the "standard data," against which data from future observations will be compared. The regression line and the 95 -percent prediction interval for the standard data are also shown on the figure. The results shown in Figure 1 allow the following statements to be made:
(1) ivinety-five (95) percent of all future observations made under the ;ame test conditions are expected to fall within the prediction interval for ;heet thicknesses between 0.51 and 0.84 mm . If creep data from tests at lifferent test conditions generally fall outside of the prediction interval, ;hen the new test conditions have probably changed the creep behavior of the laterial.
(2) Most of the data for the $>0.84 \mathrm{~mm}$ fall well within the prediction nterval for the "standard data.". Thus, the $\epsilon=0.002$ creep strength of laynes alloy $\mathrm{H}-188$ at 1144 K is not significantly different for sheet thicklesses from 0.51 to 2.03 mm . This is in contrast to the results presented in (4) where creep rupture strengths of sheet $\leq 1.27 \mathrm{~mm}$ thick were lower than shose for sheets $>1.27 \mathrm{~mm}$ thick.

The prediction interval and mean line from Figure 1 for the "standard lata" are shown in Figure 2. Also shown in Figure 2 are the results of sreep tests run in another laboratory on thin-gage H-188 at both standard and reduced pressures of air. The focus provided by the prediction interval indi2ates that the $\epsilon=0.002$ creep strength of $\mathrm{H}-188$ for sheet thicknesses jetween 0.51 and 0.64 mm both at standard atmospheric and reduced pressures vas not significantly different from that previously established for 0.51 to 0.84 mm sheet at standard atmospheric pressure. However, for thinner sheet (0.254 mm) at reduced pressure creep, strength was significantiy higher as indicated by the many test data points (open circles) above the prediction interval. Similar results were observed for other strain levels at 1144 K .

The conclusions drawn from Figure 2 could have been reached with far fewer tests (as few as 2 or 3 for any of the test conditions shown). The use of prediction intervals data appears to be an efficient technìque to explore
the effects of "nonstandard" creep conditions and to compare creep data Erom different sources. This is particularly useful during the preliminary design phases of a program when the consequences of "nonstandard" conditions, such as thin gage or low air pressure, must be assessed rapidly and maximum use of existing data base for thicker material at atmospheric air pressure is necessary.

5.2 Use of Multiple Regression (Equation (3))

To explore the effects of primary creep and various hardening rules, such as strain hardening, on the accumulation of cyclic creep" strain, it is useful to have a constitutive relationship for steady-state creep strain. This is particularly true when the data base is limited and does not include a large number of test stresses and temperatures.

The data set (8) for René sheet (solution treated at 1450 K and aged at 1172 K) was selected to demonstrate the application of multiple-regression techniques to develop a constitutive creep equation. ${ }^{\text {C }}$ Creep tests were conducted at 1005,1089 , and 1172 K . Tests were not replicated. For this study, 142 strain-time data points (observations) with strain levels from 0.0005 to 0.005 were selected as input for the multiple regression analyses.

In addition to a normal regression analysis, the program numerically solved the resulting equation to estimate the time (t_{ϵ}) required to reach each input strain level. To assure compatibility with a strain-hardening cyclic-creep analysis, all equation forms which did not permit efficient solutions (less than 500 iterations) for all t_{ϵ} were rejected. The program also rejected all equation forms which calculated either a negative strain or time. Early computer runs revealed that the multiple correlation coefficient square (R^{2}) and the residual mean squared error (MSE), commonly used (7) to
rapidly evaluate a large number of equation alternatives were poor discriminators for this data set and these variable transformations. The following parameters were determined from the descaled and back-transformed calculated values of strain and time:

EMSE (strain mean squared error)
E/TO (maximum calculated strain at $t=0.001 \mathrm{~h}$)
T/EO (maximum calculated time at $\epsilon=0.000001$)
AE (average strain error)
ATP (average time error, percent)
These parameters have recognizable consequences in the preliminary design sense and were considered useful discriminators for the selection of a "best" equation. Numerous variable transformations were evaluated in a single comm puter run. Typically, 200 different transformations were examined in a single 600-second computer run.

Analysis of several "best" equations during early computer runs indicated that the equations were often unstable near time $=$ zero. This unstable behavior is illustrated in Figure 3 for typical values of stress and temperature. This failure to predict $\epsilon=0$ at $t=0$ was eliminated by assuming an unrecorded data point ($\epsilon=0.000001, t=0.001 \mathrm{~h}$) for each creep test reported in (8). These assumed data points were added to the initial data set to yield the 167 data points and were included in all further regressions. The dashed line in Figure 3 shows that a typical predicted creep curve using the additional assumed points is reasonable, although the fit to the original data (open circular symbols) is not as good.

Even with the addition of the assumed data points, none of the variable transformations yielded a satisfactory prediction equation for the $k=27$
version of Equation (3). The model was, unstable when projected on log-stress, log-time plots. At the lowest test temperature (1005 K) and short test times ($\approx 10 \mathrm{~h}$) these equation forms began to predict longer times for a particular level of creep strain as the stress was increased. For this particular data set, run 4124 with $k=23$ produced the "best" model equation. This run produced the lowest values of EMSE, AE, and ATP and computed $E / T O \leq 0.000001$ and $T / E O \leq 0.01 \mathrm{hr}$. The use of fewer terms in the model $(\mathrm{k}<23)$ significantly increased the EMSE, AE, and ATP values calculated with the original 142 observations. This is illustrated in the following table:.

	$\frac{23}{}$		$\frac{k}{10}$	
EMSE $\left(\times 10^{7}\right.$	6.71		7.25	
AE $\left(\times 10^{3}\right)$	550		622	730
$\operatorname{ATP}(0 / 0)$	33	37	74	

Thus for this data set, the inclusion of the higher order interaction terms in the model significantly improved the model's ability to fit the data.

The degree of fit typically provided by "best" model equation is illustrated in Figure 4 for $\epsilon=0.002$. The symbols are the data taken from (8), the solid lines are the mean stress and the 95 -percent prediction interval calculated from a regression of log time on log stress using only those data points show for each temperature. The dashed lines are the mean stress values and the 95 -percent prediction intervals calculated by run 4124, $\mathrm{k}=23$ which included all of the 167 data points available in the data set. Agreement between the two calculated mean stress values is considered good. More importantly, however, this figure illustrates that the calculated 95-percent prediction intervals from run 4124, $k=23$ are consistent with those obtained
from the linear regressions on the data for each temperature. This indicates that the model is probably as good as the data scatter warrant and that the consequences of this scatter can be adequately assessed in a steady-state creep analysis by utilizing the coefficients determined by run 4124 to calculate mean creep strains and the coefficients determined for the lower bounds of the prediction interval shown in Figure 4 to calculate maximum creep strains. For instance; a "best" model equation could be used to calculate creep strains at intermediate values of temperature to compare with other creep data obtained by other investigators.

Figure 5 illustrates some typical mean creep curves calculated with the coefficients determined for the "best" equation. The shapes of these curves are consistent with those obtained by fairing through the original data points. More importantly, the curvilinear nature of the creep curves demonstrate that the model equation applies even when creep strain does not accumulate linearly as a function of time. "Therefore, the model is functionally capable of accounting for the effects of primary stage creep in a strainhardening analysis of cyclic creep.

To further assess the applicability of the regression analysis, the standard deviations for the average percentage time error for strain levels $0.001,0.0015$, and 0.002 were calculated. These standard deviations were compared to similar results obtained from three optimized "C" value LarsonMiller analyses (5) of the data at these strain levels with the following results.

Comparison of Standard Deviation of Percent Time Error

$\frac{\epsilon}{\epsilon}$	Larson-Miller	
	Run 4124, $\mathrm{k}=23$	
0.001	44.2	20.4
0.0015	46.7	20.8
0.002	36.3	33.5

This comparison suggests that the "best" regression equation, which includes all strain levels, predicts the observed creep behavior at least as well as the family of Larson-Miller curves which would be required to cover a similar range of strain levels.

Multiple regression techniques can also be applied to fit "faired" data to estimate mean values for creep strain. This is illustrated in Figure 6. First, linear regressions of log time on log stress (Eq. (1)) were run on the original data set (8) for each level of strain and temperature. The results of'several of these regressions are shown as solid lines in the figure. Next, the mean times to a given level of strain were calculated from the regression equations of the solid lines. Finally, these calculated mean times and the appropriate values of creep strain, stress, and temperature were used as input data for a multiple regression analysis (Eq. (3)). The dashed lines in Figure 6 were calculated from the results of a run 4121, $k=27$, using these calculated mean times as input data. The $k=27$ version of Equation (3) was not unstable with the "faired" data set, whereas, as noted before, this version was unstable with the "raw" data.

Often creep data are presented in the literature as families of faired curves for specific levels of strain and temperature. No individual creep curves are available for the material of interest.

As can be seen from this example, multiple regression techniques can be used to obtain a single equation which will coalesce families of curves. However, a prediction interval is no longer applicable because the calculations are no longer based on scattered data.

6 CONCLUDING REMARKS

Frequently, creep data are limited during the preliminary design phases of a program such as the design of Space Shuttle thermal protection systems. The examples presented herein illustrate the applicability of regression techniques for (1) evaluating the effects of "nonstandard" creep conditions such as sheet thickness or low oxygen partial pressure on creep behavior and (2) developing analytical expressions to predict creep behavior from limited data. The use of prediction intervals to evaluate the design consequences of the data scatter has been discussed.

7 ACKNOWLEDGMENPS

The author expresses his appreciation to Bland A. Stein for numerous technical discussions and encouragements and to Dick M. Royster for furnishing unpublished creep data.

APPENDIX 1

REFERENCES
(1) Harris, H. G. and Morman, K. N., Jr. 'Creep of Metallic Thermal Protection systems,' NASA TM X-2273, Vol. II, April 1972. National Aeronautics and Space Administration, Washington, D.C.
(2) Black, W. E. et al. 'Evaluation of Coated Columbium Alloy Heat Shields for Space Shuttle Thermal Protection System Application,' NASA CR-112119, June 1972.
(3) Moon, D. P. et al. 'The Elevated-Temperature Properties of Selected Superalloys,' ASTM Data Series DS 7-Sl (American Society for Testing and Materials, 1968).
(4) Tackett, J. W. 'The Creep Rupture Properties of Haymes Alloy No. 188,' Report No. 8020, Cabot Corporation, Kokomo, Ind., November 4, 1971.
(5) Conway, J. B. 'Stress-Rupture Parameters: Origin, Calculation and Use 1969,' Ist Edition (Gordon and Breach, New York, New York).
(6) Draper, N. R. and Smith, H. 'Applied Regression Analysis 1966' (John Wiley and Sons, Inc., New York, New York).
('7) Conway, J. B. 'Numerical Methods for Creep and Rupture Analysis 1967' (Gordon and Breach, New York, New York).
(8) ' McBride, J. G. et al. 'Creep-Rupture Properties of Six Elevated Temperature Alloys,' WADD-TR-61-99, August 1962, Air Force Systems Comand, Wright-Patterson Air Force Base, Ohio.
(9) Royster, Dick M. and Lisagor, W. Barry. 'Effect of High-Temperature Creep and Oxidation on Residual Room-Temperature Properties for Several

Thin-Sheet Superalloys,' NASA TN D-6893, November 197.2, National Aeronautics and Space Administration, Washington, D.C.
(10) Royster, Dick M. Unpublished Data, Langley Research Center, NASA, Hampton, Virginia, December 1972.

0 th $>0.84 \mathrm{~mm}$ (4)
$\square \mathrm{th} \leqslant 0.84 \mathrm{~mm}(4)$
lines: mean and bounds of 95 per cent prediction interval from linear regression of $\log t$ on $\log \sigma$ for th $\leqslant 0.84 \mathrm{~mm}$

FIg. 1. Creep strength of Haynes alloy H-188 at 1144 K , test pressure $=101 \mathrm{KPa}$,

	pressure kPa	th, mm	ref.
0	0.13	0.254	10
-	101	0.254	10
-	0.13	0.510	9
0	0.13	0.640	10
\therefore	101	0.640	10

Fig. 2. Effect of sheet thickness and test pressure on creep strength of $\mathrm{H}-188$ at $1144 \mathrm{~K}, e=0.022$

run 4024, $k=27: \sigma=207 \mathrm{MN} / \mathrm{m}^{2}, T=1089 \mathrm{~K}$ \circ : experimental (8)

- : calculated, raw data, 142 observations
- - - : calculated, raw data + 'zeros', 167 observations

Fig. 3. Effect of 'zero' data points on a typłcal calculated creep curve for René 41

Symbols: experimental (8)
-: linear regression at each temperature, mean and 95 per cent prediction interval
---: run $4124, k=23$, mean and 95 per cent prediction interval

Fig. 4. Comparison of experimental and calculated creep strength for Rene 41, $e=0.002$

Fig. 5. Typical calculated creep curves.for Rene 41 , run $4124, k=23$

_- experimental means from linear regressions on data (8) for each T and ϵ shown
---: calculated means from run $\mathrm{H} 21, k=2.7$

Fig. 6. Comparison of experimental and calculated. mean creep strengths for Rene 41

STRESS-RUPTURE DATA CORRELATION GENERALIZED REGRESSION ANALYSIS AN ALTERNATIVE TO PARAMETRIC ${ }^{\text {METTHODS }}{ }^{1}$

By

Donald R. Rummler

$I_{\text {This manuscript has been submitted to the ASTM for publica- }}$ tion in the proceedings of the ASTM Symposium on Reproducibility and Accuracy of Mechanical Tests, St. Louis, Missouri, May 5, 1976.

STRESS-RUPTURE DATA CORRELATION GENERALIZED RECESSION ANALYSIS
 AN ALTERNATIVE TO PARAMETRIC METHODS

By

Donald R. Rummer

Abstract

The applicability of multiple regression analysis techniques to stress-rupture data correlation has been investigated. A generalized interacting variable (GIVAR) method of data correlation is proposed and evaluated. The GIVAR metnod is compared to six parameter methods of data correlation on three sets of simulated data and twenty sets of real data. In all cases, the GIVAR method provided the best data correlation. Application of prediction intervals and correlating variables in addition to temperature and stress is also discussed.

INTRODUCTION
Since 1952 when the first paper [I] introducing the concept of a time-temperature parameter (TTP) was published; the need to correlate and extrapolate stressmrupture data has continued unabated. The importance of stressirupture data analysis has led to a large number of papers which either propose new parametric approaches [2-5], offer detailed comparisons of analysis techniques [5-7], and/or provide state-of-the-art surveys [8-12]. Although the development of some parametric methods can be related to creep behavior and fundamental processes, most parametric methods have been empirically derived. Most also make the assumption that there is a simple functional relationship between temperature and time-to-rupture which will yield a constant value of the parameter at a given level of applied stress. Consequently, the selection of a particular parameter to use for data analysis imposes rigid requirements on the nature of the allowable interactions between time-to-rupture, applied stress, and temperature. Methods for the selections of a particular parameter for the analysis of, data, sets are given in the previously cited survey papers. The application, of these. methods to real data sets is often difficult. Often the analyst is required to use data sets which are inadequate in terms of stress or temperature range to allow a clear. sélection of the parametric method best suited for data correlation. Data scatter further compounds the difficulty of selecting an analysis: technique and often forces the analyst to "smooth" or approximate
his data in order to conform reasonably to the functional requirements of a particular parametric representation. An attempt to overcome some of the difficulties has led to the concept of minimum commitment [7, 10, 13]. This method (MCM) proposes the use of a general time-temperature functional relationship. The MCM method has recently been evaluated during an investigation concerned primarily with its extrapolative characteristics [7]. Although the MCM showed promise during the evaluation, its clear superiority over other forms of parametric analysis was not demonstrated. In addition, in its present form, the MCM does not provide the analyst with an explicit form of parametric representation directly nor is it completely general in the allowed functional interactions between the primary variables of time-to-rupture, stress, and temperature.

The empirical nature of the data analysis techniques currently available is the direct result of the lack of understanding of the stress-rupture process particularly in complex engineering alloys. Until better theoretical models of creep-rupture behavior are developed, the engineer or analyst is faced with the task of establishing a functional relationship which will describe and correlate the data at hand. Regression analysis has been found to be a useful tool for the analysis of multifactor data particularly when the physical factors which control the response to be predicted are understood only in general terms. Such is currently the case in the analysis of stressrupture data.

The purpose of this paper is to present the results of an in̦vestigation to determine the applicability of multiple regression analysis techniques to stress-rupture data correlation. The particular regression techniques developed are first compared to several parametric methods using both simulated and real stress-rupture data sets. The potential of the developed regression techniques is further explored by subjecting a large number of real data sets to a preliminary analysis designed to select the functional form of an equation to be used for detailed analysis. These results are also compared to several parametric methods.

DATA FOR ANALYSIS
Both simulated and real data sets were used to assess the capabilities of multiple regression analysis techniques for stress-rupture data correlation.

Simulated Data

Simulated data sets were derived from data for Timken 35-15 stainless steel taken from reference [8]. These data were fitted by the method of least squares to transformations of the
following parametric expressions:
Larson-Miller

$$
T\left(C+\log t_{r}\right)=b_{0}+b_{1} \log \sigma
$$

Orr-Sherby-Dorn

$$
\log t_{r}-\Delta H / 2 \cdot 3 R T=b_{0}+b_{1} \log \sigma
$$

Rabotnov

$$
\sigma\left(i+A t_{r}^{b}\right)=b_{0}+b_{1} / T+b_{2} / T^{2}
$$

where
$\mathrm{R}=$ universal gas constant
$t_{r}=$ time to rupture
$T=$ temperature
$\sigma=$ stress
$\mathrm{C}, \Delta \mathrm{H}, \mathrm{A}, \mathrm{b}, \mathrm{b}_{\mathrm{O}}, \mathrm{b}_{1}, \mathrm{~b}_{2}=$ constants determined by least squares

The Larson-Miller [1] and the Orr-Sherby-Dorn [2] expressions are familiax eime-temperature parameters which assume that the parameter (left side of equation) is constant for a given stress. The parameter can be considered a temperature compensated time. The Rabotnov $[12,14]$ expression is a time-stress parameter which assumes that the value of the parameter (left side of equation) is a constant for a given temperature. The parameter represents a time compensated stress. Although the Rabotnov expression was originally developed for correlation of creep data, its use for creep-rupture correlation has been suggested [12] as an alternative to TIP methods.

The values of the constants determined by the regression analysis for each parametric expression were used with the experimental stress and temperature levels to calculate "exact" times for each simulated data set. The simulated data sets are referred to as L-M Exact, $0-S-D$ Exact, and RAB Exact. Additional details of the fitting procedures and tabulation of the real and simulated data are presented in Appendix A. Real Data

All real data were taken from a recent evaluation of para-
metric methods for extrapolation [7], Careful attention was paid to the adequacy of the data in terms of range of stress and temperature exposure and long times to rupture. The data included a wide range of materials. The material types and number of observations in each data set are shown in Table 1. The data set numbering in reference [7] has been retained in this investigation. Tables 2 and 3 present the data for the two data sets (4 and 16) which are analyzed in detail. Reference [7] lists the data for the other data sets analyzed.

ANALYSIS PROCEDURES
The three types of analysis techniques used during this investigation (1) parametric, (2) minimum commitment (MCM), and (3) Generalized Iteracting Variables (GIVAR) are discussed in this section

Parametric Methods

A number of different parametric techniques have been suggested for correlating stress-rupture data. The equation forms used for multiple regression analysis of the parametric techniques selected for this investigation were as follows:

Larson-Miller (L-M)
$Y=\log t_{r}=b_{o}+b_{1} / T_{R}+b_{2} S / T_{R}+b_{3} S^{2} / T_{R}+b_{4} S^{3} / T_{R}+$ $b_{5} S^{4} / T_{R}+b_{6} S^{5} / T_{R}$

Orr-Sherby-Dorn ($0-S-D$)
$Y=\log t_{r}=b_{0}+b_{1} / T_{K}+b_{2} S+b_{3} s^{2}+b_{4} S^{3}+b_{5} s^{4}+b_{6} S^{5}$
Manson-Succop (M-S)

$$
Y=\log t_{r}=b_{0}+b_{1} T_{F}+b_{2} S+b_{3} s^{2}+b_{4} s^{3}+b_{5} S^{4}+b_{6} S^{5}
$$

Manson-Haferd ($\mathrm{M}-\mathrm{H}$)

$Y=\log t_{r}=b_{0}+b_{1} T_{0}+b_{2} T_{0} S+b_{3} T_{0} S^{2}+b_{4} T_{0} S^{3}+b_{5} T_{0} S^{3}+$ $b_{6} T_{0} S^{4}+b_{6} T_{0} S^{5}$

Rabotnov (RAB)
$Y=t_{r}^{a}=b_{0}+b_{1} / \sigma T_{F}+b_{2} / \sigma T_{F}^{2}+b_{3} / \sigma T_{F}^{3}+b_{4} / \sigma T_{F}^{4}+b_{5} / \sigma T^{5}$
where
$t_{r}=$ time to rupture, hours
$S=\log \sigma$
$\sigma=$ applied stress, ksi
$\mathrm{T}_{\mathrm{F}}=$ temperature, ${ }^{\circ} \mathrm{F}$
$\mathrm{T}_{\mathrm{K}}=$ temperature, Kelvin
$\mathrm{T}_{\mathrm{R}}=$ temperature, Rankin
$T_{o}=$ offset temperature $=T_{F}-T_{A}$
$b_{i}, T_{A}, a=$ constants estimated by method of least squares. Both the $\mathrm{M}-\mathrm{H}$ and RAB techniques required the use of iterative, non-linear multiple regression techniques to estimate all of the constants.

In all cases, some function of time to rupture was considered the dependent variable whose variance was minimized. High order polynomials which are functions of stress have often been used to correlate stress-rupture data [7, 8]. Although a sufficiently high order polynomial can approximate any function, it can also result in unrealistic waviness in plots:of the dependent variable versus any one of the independent yariables. For these reasons, the parametric model equation forms were also analyzed in functional forms which included only second or third order
polynomilals in the stress function.
In addition to estimating the required constants and predicted values of log time to rupture, the parametric analysis procedures produced the following summary values to aid data correlation and parameter comparison:

$\mathrm{STD}=\left(\frac{\Sigma(\mathrm{OTR}-\mathrm{PTR})^{2}}{\mathrm{~N}-\mathrm{K}-1}\right)^{1 / 2}$
DPAVG $=\frac{\Sigma(\text { PIMAX }- \text { PIMIN })}{N}$
DPMAX = maximum value of PIMAX - PIMIN
where
OTR $=$ observed log time to rupture
$\mathrm{PTR}=$ predicted log time to rupture
$\mathrm{N}=$ number of observations in data set
$\mathrm{K}=$ number of constants in regression model
PLMAX, PIMIN = upper and lower bounds of 95% prediction interval for each observation in a data set

The root mean square (RMS) provides an overall comparison of data correlation including both random error and functional bias. It does not, however, reflect the increases in the regression standard deviation which can occur when high order polynomial temns are included in the model equation. The added high order terms may be highly correlated with the other independent variables already in the equation and consequently may not reduce the restdual sum of squares enough to account for the loss in degrees of freedom [15]. For all regressions which used log time to pupture as the dependent variable the calculated value of STD
is equivalent to the standard deviation of the regression.
The average width (DPAVG) and the maximum width (DPMAX) of the 95% prediction interval are considered useful indicators of the expected scatter for a future observation taken from the same material under the same testing conditions. The prediction interval [16, 17] is used to make a statement about the expected value of the dependent variable (log time to rupture) for a single future observation at specific values of the independent variables (functions of stress and temperature). The prediction interval is wider than the more familiar confidence interval on the mean, since it includes both sampling errors and the uncertainties in estimating the mean value of the dependent variable.

Minimum Commitment Method
The minimum commitment method (MCM) of parametric analysis [7, 10] was developed to minimize the dependence of the data analyst on the particular model equation forms of the generally used parameter methods. The MCM concept is to utilize a parameter model equation general enough to encompass most of the popular parameter methods. The parametric equation chosen has the form:
$\log t(1+A P)+P=G$
where
$t=$ time to rupture
$A=$ constant
$P=$ function of temperature
$G=$ function of stress

The functions P and G are "station functions" 'which are defined by their values at selected levels of temperature and stress. Since it is not necessary for P and G to be explicitly expressed, there is no commitment on the part of the analyst to a particular parametric form. MEGA (Manson-Ensign Generailzed Analysis) is the computer program developed to implement the MCM [13]. The particular version of MEGA used during this investigation utilized three stations of temperature to define P and three stations of stress to define G. In addition, the first and second derivatives of the G function at the mid station were included in the analysis. The analysis, therefore, involved the calculation of eight constants [7].

The parametric equation form which has been selected for the MCM does not readily lend itself to a least squares method of solution with log of time to rupture as the dependent variable. Consequently, the MEGA computer program in its current form does not yield least squares statistics such as the standard deviation of the solution (regression). The lack of appropriate statistics necessitated the use of RMS as the evaluator when comparing the MCM method to other methods of stress-rupture data correlation. Generalized Interacting Variables Method

Development - The basic concept for the generalized interacting variables (GIVAR) method of data correlation was. developed for the analysis and correlation of creep data [18]. Simply stated, it is assumed that the functional relationship between the dependent variable and independent variables can be
described by a low order polynomial in each independent variable. For stress-rupture data correlation, this concept leads to a model response equation of the general form:
$f(y)=g\left[\left(a_{1}+b_{1} X_{1}+c_{1} X_{1}^{2}\right)\left(a_{2}+b_{2} X_{2}+c_{2} X_{2}^{2}+d_{2} X_{2}^{3}\right)\right]$ where y, X_{1}, and X_{2} are respectively functions of time to rupture, temperature, and stress. Because complex interactions between time, temperature, and stress are known to occur during the creep-rupture process, the model equation is completely general and allows all interaction terms which result from the combination of the low order polynomials specified for each independent variable. Additional independent variables can be readily introduced into the general model form by the inclusion of additional low order polynomials,

$$
f(y)=g[(A) \quad(B)(C)(D)]
$$

where A, B, C, D are low order polynomials of the independent correlating variables.

The computer program to implement the GIVAR method includes provision for transformation of y and X_{i}. For this investigation, the majority of data correlations were performed with the following transformations

Variable
y
X_{1}
X_{2}

Allowed Transformations
$\log t$

```
T, I/T, log T
\sigma, \sigma}\mp@subsup{\sigma}{}{1/3},\operatorname{log}
```

where t, T, σ are respectively time to rupture, temperature, and stress. After transformation of the primary variables, the model
equation form is expanded and new independent variables, defined as follows, are introduced to yield a response equation for a multiple regression analysis:
$y=a_{1} a_{2} a_{3}+b_{1} X_{1}+b_{2} X_{2}+b_{1} b_{2} X_{1} X_{2}-\cdots \sum_{j=1}^{k} \phi_{j} Z_{j}$ The resulting model equation form for the multiple regression analysis is linear in the coefficients $\left(\phi_{j}\right)$ and is simply an extension of equation forms which have been used to determine optimum conditions in multifactor environments [I9], for example, to determine the conditions necessary to maximize the output of a chemical process.

Application - To perform a GIVAR correlation of stress rupture data, the orders of the independent variable polynomials were selected and the general equation form expanded. A second order polynomial in temperature and a fifth order polynomial in stress were used for the majority of data correlations. When a $\sigma^{1 / 3}$ transformation was selected, a sixth order polynomial in stress was used. Temperature and stress interaction terms above third order ($X_{l}^{2} X_{2}$) were deleted from the polynomial expansions. Next, the transformations of each prime variable which would be allowed were selected. The computer program, using these control inputs plus the original data set, then analyzed all combinations of the variable transforms and printed out summary results for each analysis. The variable transforms which produced the lowest standard deviation of the regression were then resubmitted and the number of terms in the regression model was reduced using a technique known as, a $t_{k, i}$-directed search [15].

When there are M potential variables in a regression model, there are 2^{M} possible regression equations. The $t_{k, i}$ directed search technique has been proposed as an alternative to stepwise regression techniques [16] to reduce the number of variables in a regression model. The $t_{k, i}$ directed search uses the ratio of each b_{i} to its standard error as follows:

$$
t_{k, i}=\frac{b_{i}}{S\left(b_{i}\right)}
$$

where b_{i} and $S\left(b_{i}\right)$ are the values of the coefficient and the standard error for ith variable. Following a regression on the full model equation, the variables in the full regression model are, arranged in decreasing order of their $t_{k, i}$ values. Successive regressions reduce the number of variables until a "basic set" is found. The program then analyzes all model equations which can be constructed including all of the basic set of variables plus all possible combinations of the previously dropped variables. The "best" equation is selected on the basis of the lowest standard deviation of the regression.

Finally, the "best" reduced variable regression equation was analyzed in detail to verify its adequacy. If the model was to be used for significance tests or if a statistical interval such as the prediction interval were to be used, verification included careful examination of residual plots $[15,16,20]$ to assess departures from the assumptions of the linear regression model. RESULTS AND DISCUSSION

Simulated Data

The purpose of the simulated data sets was to assess the functional capability of the GIVAR method and its associated computer program without the confusing influence of the large scatter normally associated with stress-rupture data.

The results of the simulated data set analyses are summarized in Table 4 which shows the calculated values of STD for each of the six methods of data correlation for the three simulated data sets. For each data set, the generalized interacting variables method (GIVAR) produced the lowest value of STD. Of equal importance to the significantly better correlation was the fact that the GIVAR computer program selected the most correct of the prime variable transformations for the $L-M$ and O-S-D Exact data sets. The $t_{k, i}$ search quickly reduced the original nine term model equations to the correct three term equations. The value of STD calculated for these two cases is due primarily to rounding off the calculated exact times for these data sets. For the RAB Exact data, $\log t$, $\log T$, and $\log \sigma$ were selected as the best prime variable transformations. In this case, the original eleven term model equation was reduced to nine terms during the $t_{k, i}$ search.

Table 4 also illustrates the general futility of adding higher order polynomial terms to improve correlation for the restricted models. For the four commonly used parameters, no significant improvement can be seen when expanding the model equation from four terms to seven terms (from a second order to a fifth order equation in stress). A similar lack of correlation improvement
has been reported on real data [5].
The correlations produced by the $\mathrm{M}-\mathrm{H}$ and GIVAR methods for the RAB Exact data are shown in Fig. 1. The GIVAR method correlation is noticeably better than the $M-H$ correlation. It is important to remember that in both analyses, log time to rupture was the dependent variable and consequently, minimization of differences between observed and calculated times to rupture was the regression criteria. For these data, neither of the two methods shown had model equation forms which would exactly duplicate the governing equation for the RAB Exact data generation. This is a comparable situation to most real data where correlation models seldom represent a material's behavior exactly. Since for most real data either correlation would probably be considered satisfactory, the calculation of a statistical interval such as the prediction interval to assess uncertainty about a future observation would be a natural extension of these correlations.

The residuals of the $M-H$ and GIVAR correlations for the RAB Exact data are presented in Fig. 2. The $M-H$ residuals clearly exhibit curvature as a function of the predicted log time to rupture. The residuals are not randomly distributed with respect to the dependent variable (predicted log time to rupture). This type of behavior indicates that the regression model is inadequate and needs additional terms. What has happened is that the M-H model equation, even with a fifth order polynomial in stress, was functionally incapable of correctly approximating the Rabotnov expression which was used to generate these data. The
random distribution of the GIVAR correlation which includes interaction terms does not suggest any functional inadequacy. An examination of the cumulative normal distribution of the residuals for the GIVAR correlation failed to indicate that the residuals were not normally distributed. Since the GIVAR correlation equation of these data does not appear to violate any of the basic regression assumptions, the calculation and use of a statistical interval would be in order [16].

Real Data

The results of the GIVAR correlation on alloy 4 (a plain carbon steel) are presented in Fig. 3. As for all GIVAR correlations, log time to rupture was the dependent variable. The prime variable transformations selected by the computer program are shown. The original eleven term model equation was reduced to seven terms during the $t_{k, i}$ search. The GIVAR mean fit seems to satisfactorily correlate this complex behavior. The STD value of the GIVAR correlation for these data was 40 percent lower (0.103 versus 0.146) than a third order $\mathrm{M}-\mathrm{H}$ model which was the best of the parameter models.

To minimize the computer time, the 95% prediction interval about each observation is normally calculated during the computer run which performs the regression on the model equation. "The upper and lower bounds of the 95% prediction are listed along with the calculated time to rupture. For these data, the calculated prediction interval called attention to a possible outlier, i.e., an atypical observation. This data point is shown
with the filled symbol. Examination of the residual plot with' respect to predicted log time to failure (Fig. 4) suggested that the residuals were randomly distributed, had a mean of zero, and exhibited constant variance with the single exception of the residual for the possible outlier. The cumulative normal distribution plot of these residuals (Fig. 5) also appeared normal with the exception of the single suspect data point. Although there are many schemes for outlier rejection [21, 22], the present purpose is to demonstrate that the prediction interval provided a useful tool for focusing attention on a possible outlier which may have otherwise been overlooked. For other data sets, the calculated prediction interval has called attention to data transcription errors which had gone undetected because of large data scatter. It should be pointed out that the use of the prediction interval to provide a focus for possible outliers is not strictly correct in the statistical sense. Its proper use is to make estimates of the bounds which can be expected from a single future observation from the same population. Dismissing the outlier for the moment, we can say that 95% of the time a future single observation will fall within the bounds shown in Fig. 3. The implications of this kind of statement for acceptance testing, quality control, or determining the significance of a new test variable are obvious.

Temperature and stress are usually considered the prime variables for stress rupture correlation. Some authors [5], however, have been able to improve correlation by the use of an
additional variable such as elastic modulus to normalize stress. Table 5 summarizes the results of correlation analyses on alloy 16 (a nickel base alloy) to evaluate the effect of additional variables. The listing includes the analysis method, the prime variable transformations, and the calculated values for STD, DPAVG and DPMAX. The units of DPAVG and DPMAX are log (time to rupture, hours). For these data, the $M-S$ and $M-H$ methods were the best (lowest STD) of the parameter methods. However, the use of elastic modulus (E) to normalize stress did not significantly improve the fit in either case. Using just temperature and stress, the GIVAR method resulted in a significantly lower value of STD than the best parameter method. When second order polynomial expressions for elastic modulus and ultimate tensile strength at the test temperature were incorporated into a generalized interacting model equation, a significant further correlation improvement was achieved. The significance of the better correlation provided by the GIVAR method is more easily appreciated when it is realized, that within the average prediction interval bounds, the predicted time to rupture varies by a factor of 3 for the best parameter method and by a factor of 1. 6 for the GIVAR method. For the maximum width of the prediction intervals, these values are 4.5 and 1.8 , respectively. It should be pointed out that the GIVAR model equation did not allow interactions to occur between elastic modulus or ultimate tensile strength and temperature, since they are both highly correlated with temperature. In this case, the original 21 term
model equation was reduced to 13 ,terms during the $t_{k, i}$ search. The best $M-H$ and GIVAR correlations of the alloy 16 data are presented graphically in Fig. 6. The GIVAR fit is noticeably superior. Even with a fifth order polynomial in log stress, the M-H model equation appears to be functionally inadequate to correlate the complex behavior of alloy 16 . This functional inadequacy is further demonstrated in Fig. 7 which presents the residuals as a function of the predicted log time to failure. The $\mathrm{M}-\mathrm{H}$ residuals are not randomly distributed and definitely display a curvilinear tendency suggesting the need for interaction terms. The GIVAR residuals appear to be randomly distributed and do not suggest any inadequacies in the model equation form. The cumulative normal distribution of the residuals for the GIVAR solution (not shown) did not reveal any gross departures from normalcy. Since none of the basic assumptions of the linear regression appear to have been violated, the making of significance statements or the calculation of statistical intervals for this solution would be in order.

In order to further assess the generality of the GIVAR method, all of the data sets of reference L7] were correlated with the five parameter methods, the MCM method and the GIVAR method. The independent variables for these analyses were limited to functions of temperature and stress. For the parameter methods, second, third, and fifth order model equation forms were examined. The lowest RMS values for the five parameter methods,

MCM and GIVAR methods are tabulated in Table 6 and presented graphically in Fig. 8. RMS was selected as the basis of comparison in order to include the MCM analyses. Additional details and other summary values for these analyses are presented in Appendix B.

In Fig. 8, a range band is shown for the five parameter methods. The MCM and GIVAR method are shown with symbols. For each of the twenty data sets analyzed, the GIVAR method produced the lowest value of RMS. The GIVAR method on the average porduced a 19% lower RMS value than the MCM'which was on the average the best of the other methods examined. Examination of Table 6 reveals that the GIVAR solution in several cases required less terms in the model equation than the best parameter model equation. The MEGA computer program used to implement the MCM required the determination of eight constants. Table 6 also shows that the Rabotnov method was in all cases the wors.t of the parametric methods. It should be pointed out, however, that a polynomial in $1 / T$ was the only function of temperature investigated and that other functions of temperature might provide better correlations. With the exception of the GIVAR method, none of the other methods consistently produced the lowest RMS value for all twenty alloys. The failure of any single method to be consistently superior was also observed in reference [7] where the primary emphasis was on the extrapolative characteristics of the various parametric methods with these sets of data.

CONCLUSIONS

An investigation has been made to assess the applicability of a generalized interacting variable (GIVAR) multiple regression analysis method for the correlation of stressmrupture data. The GIVAR method was compared to six other methods of stress-rupture data correlation on twenty sets of data. The following conclusions are made from the analyses presented herein.

1. For all data sets examined, the GIVAR method produced the best correlation (lowest RMS value).
2. It was shown that the GIVAR method has the functional
generality to satisfy criteria necessary for the calculation of statistical intervals.
3. The GIVAR method readily accepts the inclusion of correlating variables in addition to stress and temperature. 4. The prediction interval was shown to be useful for the detection of possible data outliers.

APPENDIX A

Parametric Analysis to Establish Simulated Data Sets
The purpose of simulated data sets was to evaluate the functional capabilities of the various correlation methods without the confounding influences of the large scatter normally associated with real data. Creep rupture data are seldom the result of a statistically designed experiment. The data are seldom balanced in variable space. In addition, temperature and stress are often highly correlated. Because of testing economics, low stresses are usually associated with high temperatures and high stresses are usually associated with low test temperatures. In order to include this type of inbalance in the simulated data sets, the data for Timken $35-15$ stainless steel [8] were fitted to a first order Larson-Miller and Orr-Sherby-Dorn expressions and to a second order Rabotnov expression by the method of least squares. The equation forms and the fitted coefficients were as follows:

Larson-Miller

$$
\left(T \times 10^{-4}\right)\left(c+\log t_{r}\right)=b_{o}+b_{1} \log \sigma
$$

where $T=$ test temperature, ${ }^{\circ}{ }_{R}$
$C=$ iteratively determined constant $=13$
$t_{r}=$ time to rupture, hours
$b_{0}=6.39038$
$b_{1}=-0.90584$
$\sigma=$ stress, psi

Orr-Sherby-Dorn
$\log t_{r}-\frac{\Delta H_{R}}{2.3 R T}=b_{o}+b_{1} \log \sigma$
where

$$
\begin{aligned}
t_{r} & =\text { time to rupture, hours } \\
\Delta H_{R} & =\text { apparent activation energy, iteratively calculated }=
\end{aligned}
$$ 58000

$R=$ universal gas constant $=1.986$
$T=$ temperature, K
$b_{0}=4.46410$
$\mathrm{b}_{1}=-4.60029$
$o=$ stress, psi
Rabotnov

$$
t^{a}=b_{0}+b_{1} / \sigma T+b_{2} / \sigma T^{2}
$$

where
$t=$ time to rupture, hours
$\mathrm{a}=$ constant iteratively determined $=0.3637$
$b_{0}=-1.62434$
$\mathrm{b}_{1}=-2.44083 \times 10^{5}$
$\sigma=$ stress, ksi
$T=$ temperature, ${ }^{\circ} \mathrm{F}$
$b_{2}=4.88958 \times 10^{8}$
The rupture times which were calculated for each of the three solution methods were substituted for the experimental times to rupture to form the "exact" simulated data sets. These calculated times and the original data for the Timken $35-15$ stainless steel are presented in Table. 7.

APPENDIX B

Supplementary Analysis of Correlation Methods
The purpose of this appendix is to supplement the correlation method comparison presented in the main body of the paper on the twenty real sets of data.

The results of the parametric correlations are summarized for the $L-M, O-S-D, M-S, M-H$ and $R A B$ in tables 8 through 12, respectively. The tables present values of RMS, STD, DPAVG and DPMAX which were calculated for each level of polynomial model equation which was evaluated. For the $L-M, O-S-D, M-S$, and $M-H$ methods, second, third, and fifth order expressions in stress required 4, 5, and 7 terms, respectively. The RAB method required 3, 4, or 6 terms to develop second, third, and fifth order expressions. Table 13 presients a summary of the GIVAR method for these twenty data sets.

Parametric methods
In all cases for the $L-M, O-S-D, M-S$, and $M-H$ methods, a fifth order expression produced the lowest: value of RMS for a given alloy. In some cases, however, the high correlation of the power terms in stress resulted in ill-conditioned solutions which were not reliable (see Table 8, alloy 14 , for example). Such was not the case for the RAB solutions (Table 12) where third order expansions (4 terms) of temperature fit better than fifth order in a number of cases (alloys $4,6,8,11 A, 11 B, 17 A$).

The calculated values of STD, which for the L-M, O-S-D, M-S, and $M-H$ methods were equivalent to the standard deviation of the
regression, did not follow the trend of better correlation with increasing degree of stress polynomial. The increased STD values reflect the fact that added variables did not reduce the residual sum of squares enough to account for the loss in degrees of freedom. These cases included the following:

Alloy	Method (s) $\cdot \because$
1	L-M
4	L-M, O-S-D, M-S, M-H
6	L-M, O-S-D, M-S, M-H
8	L-M, M-S, M-H
IIA	L-M, O-S-D, M-S, M-H
IlB	L-M, O-S-D, M-S
12	L-M, O-S-D, M-S, M-H

This behavior, larger values of STD with a higher order polynomial, was also exhibited for several of the alloys during the RAB method correlations (Table 12). The poorer correlation provided by the higher order polynomials can be better appreciated when we recali that the units of DPAVG and DPMAX are log time. Taking the best parametric method correlation in terms of RMS for alloy 4 (Table 1l), we see that the average predicted time within the 95% prediction interval varies by a factor of 4.9 for a seven term equation and by 4.5 for a five term equation. The comparable values for the maximum width of the prediction interval are 6.4 and 5.4. In this case the use of a fifth order expression has significantly degraded the correlation. In addition to providing more sensitivity to
changes in the "goodness" of correlation, the values of DPAVG and DPMAX as preliminary evaluators of correlation have the feature of allowing all methods to be compared on an equal basis. Values of DPAVG and DPMAX can be backtransformed and averaged if necessary to accommodate different transforms of the dependent variable. They can thus provide the analyst with a "feeling" for the scatter and uncertainty in the data and its correlation.

It is beyond the scope of this paper to summarize the results of all of the analyses which were performed by the GIVAR method on the real data. Table 13 summarizes the "best" model equation results for each alloy. In most cases, the "best" equation was selected after the examination of summary computer results for nine different model equation forms. Log T and $\sigma^{I / 3}$ transformations of temperature and stress were selected for several of the alloys (Table 13). These transformations are not suggested by any of the standard parametric methods. As expected, not only did the GIVAR method produce the lowest value of RMS for each of the alloys, but it also produced the lowest value of the other preliminary correlation evaluators STD, DPAVG, and DPMAX (Tables 8 through 13).

It is rare that stress-rupture data have the replicated observations that are necessary to provide an internal estimate of data scatter. The data for alloy 13 [7] was such an exception. There were seventeen experimental conditions which were replicated. These replicated observations had an average standard deviation of 0.232 with a spread of from 0.024 to 0.476 ,
in terms of log time. The best GIVAR correlation of these data (Table 13) had a standard deviation of 0.280 indicating that the fit was comparable to the data scatter. This value is somewhat lower than the best (M-H) parameter method STD of 0.293 (Table 11).

Summary

i. Higher order polynomial model equations do not always provide the best correlations of stress-rupture data.
2. The standard deviation of the regression (STD) is a better correlation evaluator than RMS.
3. The average and maximum width of the 95% prediction interval (DPAVG and DPMAX) are sensitive preliminary evaluators for stress-rupture data correlations.

TABLE 1--Real data'sets examined.

ALLOY	MATERIAL	NUMBER OF
		OBSERVATIONS
		. ${ }^{\prime}$
1	1100-0 ALUMINUM ${ }^{\text {a }}$	64
2	5454-0 ALUMINÚM	75
4.	PLAIN CARBON STEEL,	26
5	1Cr-1MÓ STEEL	33
6	1Cr-1MO- 0.25 V STEEL ${ }^{\prime}$	26
7	304 STAINLESS STEEL	52
8	304 STAINLESS STEEL	39
9	316 STAINLESS STEEL	38
$11 \mathrm{~A}, 11 \mathrm{~B}$	347 STAINLESS STEEL	42,44
12	A 286 IRON-NICKEL	24.
13	INCO 625 IRON-NICKEL	99
14	INCO 71.8 NICKEL-BASE	26
15	RENE 41 NTCKEL-BASE	37
16	ASTROLOY ${ }^{(R)}$ NICKEL-BASE	33
17A, 17B.	UDIMET 500 NICKEL-BASE	103,105
18A, 18B	L-605 COBALT-BASE	100,104
19	6061-T651 ALUMINUM	99
TOTAL $=2$	SETS	

TABLE 2--Stressmupture data for alley 4.

Temperature	Stress	Time to Rupture
$\underline{O_{F}}$	ksi	Hours

752	40.3	752
752	38.1	1696
75.2	35.8	3973
752	33.6	6134
752	31.4	10422
752	29.1	20227
842	33.6	65
842	31.4	441
842	26.9	1341
842	24.6	3023
842	22.4	3934
842	17.9	12985
842	15.7	18648
842	13.4	$34753-$
932	22.4	63
932	20.2	247
932	17.9	430
932	15.7	1317
932	13.5	2958
932	11.2	3202
932	9.0	7558
932	6.7	22707
1022	13.5	433
1.022	11.2	4935
1022	9.0	
1022		19

\because TABLE 3--Stress rupture data for alloy 16.

TABLE 4 m-Comparison of STD values for slmulated data.

TABLE 5--Effect of additional variables on correlation
alloy 16 - Astroloy R

$\begin{aligned} & \text { ANALYSIS } \\ & \text { METHOD } \\ & \hline \end{aligned}$	$\begin{gathered} \text { PRIME } \\ \text { VARIABLES } \end{gathered}$	STD	$\begin{aligned} & \text { PREDICTION } \\ & \text { AVERAGE } \end{aligned}$	INTERVAL MAXIMUM
$\underline{L}-\mathrm{M}$	$1 / T_{R}, \log \sigma$. 142	. 631	. 756
O-S-D	$1 / T_{K}, \log \sigma$. 148	. 661	. 824
M-S	$\mathrm{T}_{\mathrm{F}}, \log \sigma$.118	. 527	. 657
M-S	$\mathrm{T}_{\mathrm{F}}, \log \sigma / E$. 114	. 506	. 648
M-H	$\mathrm{T}_{\mathrm{F}}, \mathrm{T}_{\mathrm{A},} \log \sigma$. 116	. 517	. 660
M-H	$\mathrm{T}_{\mathrm{F}}, \mathrm{T}_{\mathrm{A}}, \log \sigma / \mathrm{E}$. 110	. 489	. 652
RAB	$1 / T_{F}, \quad \sigma$. 373	1.159	4.140
GIVAR	$1 / T_{F}, \quad \sigma$. 061	. 279	. 353
GIVAR	$\log T_{F}, \frac{1}{\sigma_{T+U}}, \sigma^{1 / 3}, 1 / E$. 044	. 213	. 256

TABLE 6--Summary of RMS comparisons.

		Number of Data	$\xrightarrow[\text { Terms }]{\text { L- }}$				$\xrightarrow{\text { M- }}$		$\xrightarrow[\text { Terms }]{\text { M }}$		$\xrightarrow{\text { RAB }}$		MC			GIV	
	Alloy		Terms	RMS	A	RMS		Terms	RMS								
	1	64	7	. 159	7	. 139	7	. 220	7	. 153	6	. 209	0	. 227		9	. 106
	2	75	7	. 082	7	. 086	7	. 260	7	. 074	6	. 245	0	. 077		11	. 055
	4	26	7	. 161	7	. 149	7	. 161	7	. 128	4	. 247	-. 15	. 109		7	. 088
	5	33	7	. 063	7	. 050	7	. 089	7	. 054	3	. 304	0	. 054		9	. 043
	6	26	7	. 097	7	. 057	7	. 124	7	. 045	4	. 298	-. 05	. 043		6	. 042
	7A	52	7	. 240	7	. 131	7	. 179	7	. 121	6	. 256	0	. 131		10	. 091
	8	39	7	. 278	7	. 131	7	. 233	7	. 137	4	. 291	-. 05	. 125		10	. 074
	9	38	7	. 111	7	. 094	7	. 141	7	. 111	6	. 148	. 15	. 078		8	. 068
ω	11a	42	7	. 134	7	. 142	7	. 122	7	. 213	4	. 179	-. 10	. 109		7	. 100
ω	218	44	7	. 132	7	. 139	7	. 122	7	. 111	4	. 218	-. 05	. 111		9	. 099
	12	24	7	. 283	7	. 191	7	. 178	7	. 178	6	. 385	-. 10	. 175		6	. 166
	13	95	7	. 288	7	. 291	7	. 291	7 .	. 282	6	. 363	-. 05	. 290		8	. 268
	14	26	$5^{\text {a }}$. 064	$5^{\text {a }}$. 074	$5^{\text {a }}$. 073	$5^{\text {a }}$. 059.	6	. 293	0	. 056		10	. 037
	25	37	7	. 088	7	. 092	7	. 100	7	. 0888°	6	. 321	0	. 096		7	. 068
	16	33	7	. 226	7	. 132	7	. 105	7	.103	6	. 344	-. 15	. 072		9	. 052
	17A	103	7	. 202	7	. 232	7	. 201.	7	. 200	4	. 461	0	. 198		9	. 191
	17B	105	7	. 200	7	. 228	7	. 201	7	. 198	4	. 477	0	. 201		7	. 196
	18A	100	7	. 216	7	. 251	7	. 182	7	. 182	6	. 381	0	. 186		8	. 173
	18B	104	7	. 214	7	. 252	7	. 180	7	. 180	6.	. 410	0	. 187		8	. 171
	19	100	7	. 265	7	. 253	7	. 308	7	. 276	6	. 452	0	. 350		10	. 225
	Average		. 155		. 156		. 269		. 140		:314		. 138			. 116	

[^3]TABLE 7--Experimental and calculated stress-rupture data for Timken 35-15 stainless sțeel.

Experimental

Temp. F	Stress, ksi	Time to Rupture Hours
1200	21.0	120
1200	19.0	170
1200	18.0	300
1200	13.0	975
1300	16.0	60
1300	13.0	160
13.00	11.0	300
1300	7.5	1300
1400	8.5	120
1400	7.0	400
1400	6.0	900
1500	.4 .9	120
1500	3.5	900
1500	6.0	200
1600	4.0	170
1600	3.0	500
1600	2.5	1300
1600	3.0	222
1800	2.0	100
1800	1.5	500
1800	1.3	1000

Calculated time to rupture, hours

L-M	O-S-D	RAB
Exact	Exact	Exact

81.36	149.16	77.21
140.47	236.38	110.82
188.67	303.14	134.11
1114.10	1354.55	401.32
46.89	52.16	71.44
136.51	135.58	150.14
322.53	292.38	265.00
2315.56	1702.62	910.22
166.00	122.73	228.84
427.33	299.80	434.31
-905.32	$\therefore 609.27$	711.23
138.89	.96.32	252.30
'354.14.	. 244.54	490.24
1676.99	$\bigcirc 1149.68$	1409.44
- 25.56	. 18.21	73.96
152.03	117.62	302.83
538.66	441.81	765.48
-1200.88.	1022.11	1349.54
, 21.84	24.58	30.82
110.91	158.75	139.88
351.35	596.31	369.08
623.51	1151.78	585.77

TABLE 8--Summary of LarsonmMiler method correlations.

${ }^{\text {a }}$ Evidence of 111 conditioned solution.

TABLE 9mSummary of OrrmSherby-Dorn method correlations.

$a_{\text {Evidence of }}$ 1ll-conditioned solution.

TABLE 10-SUmmary of Manson-Succop method correlations

	Number of terms	4	RMS 5	7	4	$\begin{array}{r} S T D \\ 5 \end{array}$	7	4	DPAVG 5	7	4	PMAX 5	7
	A11.0y	0.2417	0.2256	0.2204	0.2496	0.2350	0.2335	1.0412	0.9873	0.9951	1.1062	1.0916	1.2462
	$\frac{1}{2}$	6.2042	0.1679	0.1602	0.2098	0.1738	0.1682	0.8714	0.7264	0.7119	0.9425	0.8035	0.8258
	4	0.1776	0.162 A	10.1610	0.1930	0.1412	0.1883	0.8404	0.803,6	0.8666	0.4913	0.8661	0.9908
	5	0.1054	0.0941	7.088E	0.1126	$0.102 ?$	0.0998	0.4809	0.4429	0.4446	0.4988	0.4680	0.5449
	6	0.12 t .4	0.1239	0.1235	0.1376	0.1378	0.1445	0.5990	0.6111	0.6647	0.6761	0.6824	0.8050
	7	(.20\%)	0.1431	0.1788	C. 2105	0.1925	0.1927	0.8830	0.8145	0.8279	0.9291	0.8500	0.9079
	8	0.2329	0.2339	0.2330	0.2469	0.2505	0.2572	1.0455	1.0735	1.1276	1.1286	1.1731	1.3518
	9	0.1639	0.1516	0.1409	0.1733	0.1627	0.1559	0.7348	0.6981	0.6844	0.7706	0.7975	0.8895
	11 A	0.130%	0.1241	0.1219	0.1369	0.1322	0.1336	0.5779	0.5646	0.5826	0.5197	0.5990	0.6316
	12,	0.1317	0.1249	0.1219	0.1381	0.1327	0.1329	0.5822	0.5652	0.5778	0.6514	0.6310	0.6609
	12	0.235°	0.1621	n.1779	0.2579	0.2046	0.2114	1.1325	0.9167	0.9858	1.2058	1.1163	1. 2468
ω	13	ก.3492	C. 3056	0.2914	0.356 A .	0.314 f	0.3027	1.4688	1.2996	1.2661	1.4739	1.5537	1.5409
\cdots	14	U. 1805	C. 0728	a	0.0875	ก.0810	a	0.3810	0.3591	a	0.3928	0.3936	
	15	0.1673	0.1153	0.0990	n. 1771	0.1240	0.1110	0.7520	0.5331	0.4889	0.7838	0.5629	0.5796
	16	U.151,9	0.1157	n.1051	0.1663	C. 1256	0.1184	¢. 7106	0.5443	0.5268	0.7567	0.6055	0.6570
	17A	(1.26.3;	0.2184	0.201\%	0.2736	0.2239	0.2085	1.1222	0.9231	0.8679	1.1497	0.9447	0.9559
	17 B	ก.27\%	0.2205	0.2007	0.2849	r. 2260	ก. 2077	1.1677	0.9307	'0.8637	1. 2206	0.9689	1.0323
	18A	0.1944	0.1942	10.182?	0.1989	0.199?	$0.188{ }^{\circ}$	0.8171	0.8227	0.7878	0.8378	0.8482	0. RA27
	18B	0.1987	0.1954	0.180%	0.2027	0.2003	0.1667	0.8309	0.8253	0.7768	0.9621	0.8620	0.9142
	19	0.416 .3	0. 3644	9.3076	0.4247	0.3735	0.3192	1.7446	1.5423	1.3313	1.8299	1.6135	1.4131

a Evidence of ill-conditioned solution.

TABLE 2l--Summary of Manson-Haferd method correlations.

	Number of terms	4	$\begin{array}{r} \text { RMS } \\ 5 \end{array}$	7	4	$\begin{array}{r} \text { STD } \\ 5 \end{array}$	7	4	$\begin{array}{r} \text { DPAVG } \\ 5 \end{array}$	7	4	DPMAX 5	7
	Alloy												
	1	0.2122	0.1653	0.1533	0.2192	0.1727	0.1624	0.9144	0.7235	0.6921	0.9716	0.7998	0.846
	2	0.1893	0.1145	0.0741	0.1946	$0.11 A 9$	0.0779	0.8080	0.4954	0.3295	O.0668	0.5535	0.3859
	4	0.1722	0.1312	0.1284	0.1872	0.1460	0.1502	C.314R	0.6472	0.6908	C.0012	\$0.7294	$0.807 ?$
	5	0.0930	0.0597	0.0541	6.0992	0.0649	0.0610	0.4239	0.2809	0.2712	0.4677	0.3406	0.3510
	6	0.0481	0.0455	0.0448	0.0523	0.0507	0.0525	0.2277	0.2347	0.2413	0. 2468	0.2594	0.2988
	7	0.1475	0.1294	n. 1212	0.1535	0.1361	0.1303	0.6437	0.5759	0.5608	0.6907	0.6429	0.6534
	8	0.1524	0.1390	0.1365	0.1609	0.1489	0.1507	0.6813	0.63880	0.6605	0.7561	0.7468	O. Anfi
	9	0.1476	0.1299	0.1111	0.1560	0.1394	0.1231	0.6411	0.5975	0.5397	n. 8048	0.7819	0.7175
ω	21A	0.1248	0.1143	0.1124	C. 1312	0.1217	0.1735	0.5540	0.5196	0.5388	0.5985	0.5721	0.5998
	118	0.1287	0.1144	0.1111	0.1350	0.1215	0.1212	n.54R9	0.5172	0.5266	0.6492	0.6060	0.6095
	12	0.2176	0.1821	0.1779	0.2384	0.2046	0.2114	1.0455	0.9157	ก.9847	1.3147	1.1877	1.2502
	13	0.3448	0,3041	0.2819	0.3523	0.3124	0.2929	1.4505	1.2929	1.2244	1.4563	1.5899	1.6ス79
	14	c. 0773	0.0587	a	0.0840	0.0654	a	0.3655	0.2896	a	P. 4131	0.3481	a
	15	0.1673	0.1015	0.0883	0.1771	0.1091	0.01980	0.7520	0.4690	0.4315	0.4203	0.5505	0.5441
	16	0.1557	0.1148	n. 1032	0.1660	0.1247	0.116 ?	0.7793	0.5398	0.5172	0.7821	0.6419	0.660°
	17 A	0.2677	0.2170	0.1998	0.2730	0.2224	0.9069	1.1199	0.9170	0.8614	$1.170 \mathrm{G}_{1}$	0.9968	1.0388
	17B-	0.2758	0.2179	0.1984	0.2812	0.2232	0.2054	3.1525	0.9193	0.8537	1.2464	1.0843	1.11×7
	18 A	0.1946	0.1936	0.1822	0.1986	0.1986	0.1889	0.815 A	0.8200	0.7878	ก. ${ }^{\text {P } 540}$	0.8953	0.9548
	18B	0.1967	0.1948	0.1804	0.2006	0.1997	0.18 GR	9.8?24	0.8226	0.7769	0.9926	0.9539	0.9775
	19	0.4129	0.3619	0.2760	0.4214	0.3713	0.2867	1.7310	1.5231	1.1934	1.9026	1.6363	1.3342

avidence of ill-conditioned solution.

a

TABLE 13--Summary of GIVAR method correlations.

References

[1] Larson, F. R. and Miller, J., Transactions, American Society of Mechanical Engineers, Vol. 74, 1952, p. 765 .
[2] Orr, R. L., Sherby, O.D., and Dorn, J.E., Transactions, American Society for Metals, Vol. 46, 1954, p. 113.
[3]. Manson, S. S. and Haferd, A. M., "A Linear Time-Temperature Relation for Extrapolation of Creep and Rupture Stress Data," NACA Report TN-2890, . National Advisory Committee for Aeronautics, Washington, D.C., March 1953:
[4] : Mianson, S. S., and.Succop, G., "Stre'ss Rupture Properties of Inconel 700 and Correlation on the Basis of Several Time-Temperature Parameters,". American Society for Testing and Materíals"Symposium on Metallic Materials for Service at Temperatures Above $1600^{\circ} \mathrm{F}$, 1955 , p. 40.
[5] Goldhoff, R. M. and Hahn, G. J., "Correlation and Extrapolations of Creep-Rupture Data of Several Steels and Superalloys Using Time-Temperature Parameters," American Society for Metals Publication D8-100, American Society for Metals, Cleveland, $\mathrm{OH}, 1968$, p. 199.
[6] Larke, E. C. and Inglis, N.P., Proceedings Joint. International Conference on Creep, 1963, p. 6.
[7] Goldhoff, R. M., Journal of Testing and Evaluation, American Society for Testing and Materials, Vol. 2, No. 5, September 1974, pp. 387-424.
[8] Conway, J. B., "Stress-Rupture Parameters: Origin, Calculation, and Use," Gordon and Breach, New York, 1969.
[9] Van Leeuwen, H. P., "Predicting Material Behavior Under Load, Time and Temperature Conditions," NATO-AGARD Report 513, North Atlantic Treaty Organzation - Advisory Group for Aeronautical Research and Development, Paris, June l965, pp. 73-141.
[10] Manson, S.S., "Time-Temperature Parameters - .A Reevaluation and Some New Approaches," ASM publication D-8-100, American Society for Metals, Cleveland, OH, 1968, pp. 1-115.
[Il] Grounes, $\dot{M} ., J$. of Basic Engineering, Series D, Transactions, American Society of Mechanical Engineers, Vol. 91, March 1969, pp. 59-62.
[12] Penny, R. K. and Marriott, D. L., "Design for Creep," McGraw-Hill Book Company (UK), Ltd, Maidenhead, Berkshire, England, 1971.
[13]. Manson, S. S. and Ensign, C. R., "A Specialized Model for Analysis of Creep-Rupture Data by the Minimum. Commitment Station Function Approach," NASA Report TM X-52999, National Aeronautics and Space Administration, Washington, DC, 1971.
[14] Rabotnov, Yu, N., "Creep Problems in Structural Members," North Holland Publishing Company, A Wiley Interscience Division, Amsterdam, 1969.
[15] Daniel, C. and Wood, F.S., "Fitting Equations to Data," John Wiley and Sons, Inc., New York, 1971.
[16] Draper, N.R. and Smith, H., "Applied Regression Analysis," John Wiley and Sons, Inc., New York, 1966.
[17] Hahn, G. J., "Statistical Intervals for a Normal Population," General Electric Report No. 69-c-382, General Electric Research and Development Center, Schenectady, New York, November 1969.
[18] Rummler, D.R., "Application of Regression Analysis to Creep of Space Shuttle Materials," Conference Publication 13, International Conference on Creep and Fatigue in Elevated Temperature Applications, Institution of Mechanical Engineers (U.K.), 1973.
[19] Davies, O.L., "Design and Analysis of Industrial Experiments," Hafner Publishing Co., New York, 1967.
[20] Harris, R. J., "A Primer of Multivariate Statistics," Academic Press, New York, 1975.
[21] Matrella, M.G., "Experimental Statistics," National Bureau of Standards Handbook 91, August 1963.
[22] Anon., "Recommended Practice for Dealing With Outlying Observations," ASTM Standard E178-68, American Society for Testing and Materials, 1971.
[23] Lyman, Taylor; Editor, "Metals Handbook - Properties and Selection of Metals," Vol. 1, 8th Ed., American Society for Metals, 1961.

Fig. 1-Correlation of Rabotnov simulated data set.

Fig. 2-Comparison of regression residuals for Rabotnov simulated data set.

Fig. 4--Regression residuals for alloy 4, GIVAR analysis,
音

Fig. 7-Comparison of regression residuals for alloy 16 .

Fig. 8-RMS values for various methods of analysis.

COMPUTER PROGRAM FOR PARAMETRIC
 ANALYSIS OF CREEP-RUPTURE DATA ${ }^{\text {I }}$

By

Donald R. Rummler

$I_{\text {This manuscript will be submitted to the National Aeronautics }}$ and Space Administration for publication as a Technical Memorandum.

By

Donald R. Rummler

Abstract

A computer program which uses several parametric model equations to analyze creep-rupture data is presented in detail. The model equations include the Larson-Miller, Orr-Sherby-Dorn, Manson-Succop, Manson-Haferd, and Rabotnov parameter methods. Standard multiple regression techniques are used to analyze data with respect to each model equation. In addition to the usual regression statistics, the program calculates statistical intervals including confidence and prediction intervals. Graphical output includes a residual plot with respect to the dependent variable and a cumulative distribution of the residuals. The computer input and output, in printed and plotted form, for sample problems are presented to aid the user in setting up and running the program.

A computer program which uses several parametric model equations to analyze creep-rupture data is presented in detail. The model equations include the Larson-Miller, Orr-Sherby-Dorn, Manson-Succop, Manson-Haferd, and Rabotnov parameter methods. Standard multiple regression techniques are used to analyze data with respect to each model equation. In addition to the usual regression statistics, the program calculates statistical intervals including confidence and prediction intervals. Graphical output includes a residual plot with respect to the dependent variable and a cumulative distribution of the residuals. The program, its subroutines and their variables are listed and defined. The computer input and output, in printed and plotted form, for sample problems are presented to aid the user in setting-up and running the program. The development of the parameter model equations and the use of statistical intervals is discussed.

INTRODUCTION

The importance of creep-rupture data analysis has led to a large number of papers which either propose new parametric analysis approaches (refs. 1, 2, 3, and 4, for example) or offer detailed comparisons of different parametric methods (refs. 4, 5, and 6). Most parametric methods for creep-rupture data analysis are empirical. Consequently, it is common practice for the data analyst to fit the creep-rupture data at hand to a variety of parametric model equations to select the most appropriate analysis method.

Although several analysis methods have been presented in generai terms (ref. 6, for example), there is no widely used, efficient computer program tailored specifically to the parametric analysis of creep-rupture data. In addition, most methods do not include generation of statistical intervals to aid in the selection of the "best" parametric model equation for a particular set of data.

This paper describes the development and use of a computer program for the parametric analysis of creep-rupture data. The program includes provisions for the analysis of five different parameter methods. The parametric equations used and the statistical quantities calculated are discussed. The computer program input and output, in printed and plotted form, for three sample problems are presented to ald the user in setting up and running a problem with the program.

PROGRAM DESCRIPTION

The computer program (PARAM) was developed to analyze and correlate creep-rupture data utilizing a variety of parametric method model equations. For each model equation, a function of the time to a particular creep event (such as time to 0.005 strain) is the dependent variable. Functions of stress and temperature are the only correlating independent variables. The major features of the program are as follows:
(1) The method of least squares is used to establish the coefficients for the parametric model equation selected for analysis.
(2) Provisions are made for analysis with four widely used time-temperature methods (Larson-Miller, Orr-Sherby-Dorn, Manson-Succop, and Manson-Haferd) and one time-stress (Rabotnov) method.
(3) Polynomial forms of the parametric model equations up to the fifth order are included.
(4) Multiple analyses can be accomplished during a single computer run.
(5) In addition to the usual regression statistics, the program calculates the maximum and minimum value of each independent variable, as well as'its range and average value.
(6) The program also calculates the relative influence, contribution to the sums of squares, and warns of coefficient solution errors for each independent variable.
(7) Listings are made of the observed and fitted values of
the dependent variable in both regression and real variable coordinates.
(8) Two statistical intervals, the 95 percent confidence and the 95 percent prediction, are approximated and calculated for each observation.
(9) Residual plots are made to indicate how the regression residuals are distributed over all of the fitted values of the dependent variable and whether they are normally distributed.

PARAM was written in FORTRAN IV language for the Control Data 6000 series digital computer under the SCOPE 3.0 operating system. The program is dimensioned for a maximum of 5 input variables, a maximum of 10 derived independent variables and a maximum of 200 observations for each data set. It requires approximately 60,000 octal locations of core storage. A source listing of the main program and its subroutines is presented in appendix A. A detailed description of the matrix equation solution subroutine MATINV and the plotting subroutines PSEUDO, DDIPLT and CALPLT are presented in appendix B.

ANALYSIS

The analysis utilizes standard least squares multiple regression analysis techniques (refs. 7 and 8) to solve parametric equations of the following form:

$$
\begin{equation*}
Y=b_{0}+b_{1} X_{1}+b_{2} X_{2}+\cdots+b_{i} X_{i} \tag{I}
\end{equation*}
$$

where $Y=$ fitted value of dependent variable
$X_{1}, X_{2}, X_{i}=$ independent variables

$$
\begin{gathered}
b_{0}=\text { estimated } Y \text { intercept when all } X_{i}=0 \\
b_{1}, b_{2},---b_{i}=\text { estimated coefficients of independent } \\
\text { variables }
\end{gathered}
$$

Specifically, the equation forms chosen for each of the parametric methods selected are as follows:

Larson-Miller ($L-M$)
$Y=\log t=b_{0}+b_{1} / T_{R}+b_{2} S / T_{R}+b_{3} S^{2} / T_{R}+b_{4} S^{3} / T_{R}+$
$b_{5} S^{4} / T_{R}+b_{6} S^{5} / T_{R}$
Orr=Sherby-Dorn (O-S-D)
$Y=\log t=b_{0}+b_{1} / T_{K}+b_{2} S+b_{3} S^{2}+b_{4} S^{3}+b_{5} S^{4}+$ $\mathrm{b}_{6} S^{5}$
Manson-Succop (M-S)
$Y=\log t=b_{0}+b_{1} T_{F}+b_{2} S+b_{3} S^{2}+b_{4} S^{3}+b_{5} S^{4}+$
$\mathrm{b}_{6} S^{5}$
Manson-Haferd ($\mathrm{M}-\mathrm{H}$)
$Y=\log t=b_{0}+b_{1} T_{0}+b_{2} T_{0} S+b_{3} T_{0} S^{2}+b_{4} T_{0} S^{3}+$
$b_{5} T_{0} S^{3}+b_{6} T_{0} S^{4}+b_{6} T_{0} S^{5}$
Rabotnov (RA'B)
$Y=t^{a}=b_{0}+b_{1} / \sigma T_{F}+b_{2} / \sigma T_{F}^{2}+b_{3} / \sigma T_{F}^{3}+b_{4} / \sigma T_{F}^{4}+$ $\mathrm{b}_{5} / \sigma T_{\mathrm{F}}^{5}+\mathrm{b}_{6} / \sigma \mathrm{T}_{\mathrm{F}}^{6}$
where

$$
\begin{aligned}
t= & \text { time to a particular creep-rupture event, rupture, } \\
& \text { for example } \\
\mathrm{S}= & \log \sigma \\
\sigma= & \text { applied stress }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{F}}=\text { temperature, } \mathrm{O}_{\mathrm{F}} \\
& \mathrm{~T}_{\mathrm{K}}=\text { temperature, Kelvin } \\
& \mathrm{T}_{\mathrm{R}} \doteq \text { temperature, Rankine } \\
& \mathrm{T}_{\mathrm{O}}=\text { offset temperature }=\mathrm{T}_{\mathrm{F}}-\mathrm{T}_{\mathrm{A}} \\
& \mathrm{~b}_{1}, \mathrm{~T}_{\mathrm{A}}, \mathrm{a}=\text { constants estimated by method of least } \\
& \quad \text { squares. }
\end{aligned}
$$

Both the $\mathrm{M}-\mathrm{H}$ and RAB techniques require the use of iterative, non-linear multiple regression techniques to estimate all of the constants.

Each parametric equation can be analyzed in truncated form since the number of equation terms (LLO) is selected with input case control cards.

The development of each of the parametric method model equations is presented in appendix C.

PROGRAM USAGE
To submit a problem, information is normally entered on punched cards. Four types of information cards (option, case control, data set identification, and data) are the only input required. Output includes listings and plots.

Input
The option card controls both the printed and graphic output of the program: It also establishes the initial values to be used for the iteratively modified constants for the Manson-Haferd and Rabotnov parametric analyses. The case control cards determine the parametric equation forms to be evaluated and their
degree of truncation. A data identification card and the data cards complete the deck set up. The input card order, format, permitted values and comments follow:

Option card
Column FORTRAN Variable
5 INPUT

10
OUTPUT

Il to 20
TA

21 to 30
RA
(215, 2F10.0)
Value
0 No listing of input cards
1 List data set I.D., option, and case control cards

2 List 1 + data observatrons

3 List 2 + regression variables for first five observations
$0 \quad$ No listing of residuals
1 List regression residuals.
21 + list back transformed residuals
$32+$ regression residual plots

Initial value for constant
in non-linear $\mathrm{M}-\mathrm{H}$ equation;
A value of -5000.0 is recommended

Initial value for constant in non-linear $R A B$ equation;

A value of 0.2 is recommended.

The program is dimensioned. for a maximum of 20 case control cards. During a single computer run, a data set can be evaluated with 20 different parametric model equation forms. A blank card must follow the last case control card.

Blank Card
Data identification card
Column FORTRAN Variable
1 to 80
TYPE
Comment
Data I.D. Any characters in columns 1 to 80. This title is included in all listed output

Data cards

 (3F12.0)| Column | FORTRAN Variables | Comments |
| :---: | :---: | :---: |
| 1-12 | $R S(I, I)$ | Time to a particular creep event |
| 13-24 | $\mathrm{RS}(\mathrm{I}, 3)$ | Temperature, ${ }^{\circ} \mathrm{F}$ |
| 25-36 | $\operatorname{RS}(\mathrm{I}, 2)$ | Applied stress |
| The pro data se | is dimensioned fo Round-off errors | maximum of 200 observations in a be minimized by limiting the range |
| of the creep- | ables. This rang
 e data is ill-co | duction is helpful since most ioned (see refs. 7 and 8). |
| Last da
 Blank | ard must be follow | by a blank card. |

More than one set of data may be analyzed with a single set up of the option and case control cards. To analyze additional data sets during a single computer run, assemble the deck as follows:

Option card
Case control cards
Blank card First data set
Data identification card
Data cards
Blank card

Data identification card
Data cards.\quad Second data set
Blank card

Data identification card

Data cards Third data set
B.lank card

As many data sets as desired may be analyzed during a single computer run with this type of deck setup.

Output.

Examples of printed and plotted output are presented in the discussion of sample problems. Most of the output headings are self-explanatory or standard statistical terms (refs. 7 and 8). Some headings are abbreviations of standard terms and/or require additional description. These headings and brief descriptions, in the order of their appearance for the printed output are as follows:

Heading Description
STANDARD ERROR Standard error of estimate is square root of residual mean square, sometimes called residual root mean square

MULT. CORREL.
COEFF. SQUARED The multiple correlation coefficient squared, sometimes called coefficient of determination

MIN	The minimum value of indicated variable; independent variables are in tabular form
MAX	The maximum value of indicated variable
Y	Tabulated values of independent variable
XI-X (L2)	Tabulated values of independent variables; L2 is number of variables in case
VARIABLE	Transformation required for parametric method being evaluated
COEF. P.I.	Calculated coefficients for the fitted equation, indexed by I starting with b_{0}
S.E. COEF.	Estimated standard error of the coefficient
T	COEF.P(I)/S.E. COEF.
RAN X(I)	Range of independent variable
RINF (I)	Relative influence of independent variable, $\frac{(\operatorname{COEF} \cdot \mathrm{P}(I)(\operatorname{RANX}(I))}{Y \operatorname{RANGE}}$
PSUM	The fraction of the total sums of squares explained by an independent variable; corrected for those independent variables which preceed it in the listing

CERR	The percentage difference between MATINV and Gaussian elimination solutions for coefficient; values in excess of 0.01 suggest round-off errors due to ill-conditioned normal equations
95 PERCENT	The 95 percent prediction interval for
PREDICTION	a single future observation is estimated
INTERVAL	for each observation in regression
STATISTIES	variable space; these values are back transformed into log time space to calculate average and maximum values; values for the t distribution are approximated with a third order polynomial in log (degrees of freedom)
REAL TIME FACTOR	10. (WIDTH)
RESIDUALS -	Values listed under this heading are
REGRESSION	in terms of the regression dependent
SPACE	variable coordinates
RESIDUAL	Observed value of dependent variable-calculated value of dependent variable
PCTERR	$\frac{(100)(\text { RESIDUAL })}{Y}$

The rank order of the residual in regression coordinates; the rank order of the PCTERR in real space coordinates; ordered with respect to the largest absolute value.

CIMIN

CIMAX

PIMIN

PIMAX Estimated lower limit of 95% confidence interval for the mean

Estimated upper limit of the 95% confidence interval for the mean Estimated lower limit of 95% prediction interval for a single future observation Estimated upper limit of the 95% prediction interval for a single future observation

The values of the t distribution required for the \qquad calculation of the statistical intervals are approximated with the following expression:

TVALUE $=(10.0)^{\mathrm{Tl}}$
where

$$
\begin{aligned}
\mathrm{TI}= & 0.86186-0.98427 \mathrm{DF}+0.58495(\mathrm{DF})^{2} \\
& -0.11594(\mathrm{DF})^{3}
\end{aligned}
$$

$D F=r e s i d u a l$ degrees of freedom for regression.
The graphical output of the program includes a plot of the residuals with respect to the calculated value of the dependent variable (FITTED Y) and a cumulative normal distribution of the residuals (ZP NORMAL). For the

ZP NORMAL plot, the plotting points for the abscissa, P, are in terms of the inverse of the standardized normal distribution and are calculated in the following manner:

$$
\begin{aligned}
& \text { for } F Z=0 \rightarrow 0.5 \\
& Z P_{I}= 1.0451+4.3598 X P+3.4606(X P)^{2}+1.9088(X P)^{3} \\
&+0.5446(X P)^{4}+0.0608(X P)^{5}
\end{aligned}
$$

where $X P=\log F Z$
$F Z={ }^{\circ}(j-3 / 8) \cdot /(N+1 / 4)$
$j=1,2,--N$ when the residuals are arranged in order of increasing magnitude.

$$
\text { for } F Z=0.5 \rightarrow 1.0
$$

$$
X P=\log (1-F Z)
$$

$+$

$$
Z P_{2}=-Z P_{1}
$$

The ZP expression approximates the inverse of the standard normal distribution.

SAMPLE CASES
Three sample cases are presented to illustrate operation of the computer program and a method for rapidly selecting the most applicable parametric equation for a single set of creep-rupture data. The data are for a type 316 stainless steel (ref. 5). The three sample cases described in this section required a total of 10.9 seconds of CDC 6600 CPU time to compile and run.

Case 1
For this case, all five parametric methods in second degree form were used to correlate the data: The purpose of this case was to quickly scan the parametric models to select a single parameter for further study. Output was minimized by using INPUT $=1$ and IOUT $=0$. The program input and output for case 1 are presented in Figures 1 and 2, respectively.

When compared to the other four parameter methods, the O-S-D method had the highest MULT. CORREL. COEF. SQUARED, the lowest AVERAGE and MAXIMUM WIDTH of the 95% prediction interval. It also had the Iowest STANDARD ERROR of the four time-temperature parameters.

Case 2
Based upon the results of case 1 , the Orr-Sherby-Dorn parameter (NPAM $=2$) was selected for further evaluation. The purpose of this case was to quickly determine the degree of the O-S-D expression which would provide the best correlation of the data. Once again, output was minimized (INPUT $=0$, $\operatorname{IOUT}=0$).

The program input and output for case 2 are presented in Figures 3 and 4, respectively.

With respect to MULT. CORREL. COEF. SQUARED, there is no appreciable improvement in the correlation produced by increasing the degree of the polynomial expression. However, the STANDARD ERROR shows a steady decrease as additional variables are added up to the fifth order expression where it increases slightly. The T values for this fifth order expression clearly illustrate the inflation of the standard error of the coefficients which this high level of co-linearity produces. The CERR value for $I=2(X(I)=$ LOG STRESS) suggests that the solution matrix was ill-conditioned because the two methods of solution do not agree.

The RESIDUAL SUMS OF SQUARES for the fourth order expression is approximately 30 percent lower than the third order expression. Although significant differences between the other correlation indications are not apparent, the fourth order expression is selected for further evaluation.

Case 3
Final verification of the fourth order expression selected in case 2 requires the full output capabilities of the program (INPUT $=3$, IOUT $=3$). The input and output for this case are presented in figures 5 and 6. The output includes a listing of the first 5 values of the regression variables, residuals and statistical intervals in regression and back transformed coordinates and plots of residuals with respect to the
calculated dependent variable (Y FITMED) and with respect to the normal cumulative distribution. The most important part of the verification of the fourth order expression is the examination of the residual plots. These plots suggest that the residuals have a zero mean and are randomly distributed with respect to the FITTED Y and that their cumulative distribution is normal. These two characteristics of the residuals are necessary for the calculation of valid statistical intervals.

The method selected for determining the "best" parametric equation for a set of data was used primarily to demonstrate the capabilities of the computer program PARAM. For other methods see references 4, 5, and 6. For a further discussion of the use of statistical intervals, the reader is referred to references 7 and 11.

CONCLUDING REMARKS

A computer program specifically developed for the parametric analysis of creep-rupture data has been discussed. The equations used for the analysis of five parametric methods and the computer program used to implement the analysis are given.

The computer program is versatile, allows rapid assessment of parametric methods for creep-rupture data, and has a relatively small core storage requirement. In addition to the statistics which are usually calculated and output by multiple regression programs, the program outputs the 95% confidence interval on the mean and the 95% prediction interval for a
future observation. Residual plots are provided to assess the validity of the calculated statistical intervals.

APPENDIX A

SOURCE LISTING OF PROGRAM PARAM

NUMBER OF CASES
DIMENSION LLO(20) NPAM(20)

MISC

DIMENSION TYPE(8). IN(2). VAR(30), PAM(5)
DATA (PAM (I), $1=1,5) / 3 H L-M, 5 H O-S-D .3 H M-S, 3 H M-H$. 3HRAB/
DATA (VAR (1$), 1=1,30) / 3 H 1 / T, 3 H S / T, 6 H S * * 2 / T, 6 H S * * 3 / T, S H S * * 4 / T$,
16HS**5/T .
$23 \mathrm{H} 1 / \mathrm{T}, 1 \mathrm{HS}, 4 \mathrm{HS} * * 2,4 \mathrm{HS} * * 3,4 \mathrm{HS} * * 4,4 \mathrm{HS} * * 5$,
$31 \mathrm{HT}, 1 \mathrm{HS}, 4 \mathrm{HS} * * 2,4 \mathrm{HS} * * 3,4 \mathrm{HS} * * 4,4 \mathrm{HS} * * 5$,
$42 \mathrm{HDT}, 4 \mathrm{HDT} * S, 7 \mathrm{HDT} * 5 * * 2,7 \mathrm{HDT} * S * * 3,7 \mathrm{HDT} * 5 * * 4,7 \mathrm{HDT} * S * * 5$,
55H1/L*T.8H1/L*T**2.3H1/L*T**3.3H1/L*T**4, 8H1/L*T**5.8HIノL*T**6/
$L_{1}=$ NUMBER OF OBSERVATIONS IN DATA SET
Li IS DETERMINED EY PROGRAM
00000034 00000035 00000036
$L^{2}=$ NUMBER OF' VARIABLES INPARAMETRIC EQUATION SEEECTED
L3 = NUMBER OF COEFFICIENTS TO BE DETERMINED, INCLUDES BO
L3 $=\mathrm{L} 2+1$
L3 $3=$ L2+1 1 VECTOR FILE ONLY WHEN OUTPUT INCLUDES PLOTTING .*. . 00000065
00000038
00000039
00000040
00000041
00000041
00000043
00000044
00000045
00000046
00000047
00000047
00000049
CALL PSEUDO
\cdots
CALL LEROY
COMPLETE DATA DECK SETUP INCLUDING OPTION AND CASE• GONTROL CARDS
FOR EACH DATA SET ARE REQUIRED IF 1 - .CONTINUE CARD IS HERE.
1 CONTINUE
?
00000081
READ INPUT AND OUTPUT OPTIONS AND
INITIAL VALUES OF M-H AND RAB .CONSTANTS
IPUT $=$ INPUT LISTING OPTIONS
00000053
O - NO INPUT LISTING.
1 - CASE CONTROL VARIABLES
2 - + DATA SET OBSERVATIONS
3 + TRANSFORMED REGRESSION VARIABLES FOR FIRST
FIVE OBSERVATIONS
OUTPUT = OUTPUT OPTIONS
O - NO RESIDUALS
1 - RESIDUALS REGRESSED SPACE
c
C
C
C
ORMAT (8A10)
IF(EOF.5) 900,6
$6 \quad 1=1$
READ IN OBSERVATIONS
IF NUMBER OF CORRELATING VARIABLES CHANGES.
CHANGE STATEMENTS 5 AND 10
$\operatorname{RS}(1,1)=$ RUPTURE TIME
$\operatorname{RS}(1,2)=$ APPLIED STRESS,PSI
RS(I,3) $=$ TEST TEMPERATURE, DEGREES F

READ (5.4) INPUT.IOUT, TA.RA
4 FORMAT(2I5.2F10.0)
IF(EOF,5)900.9
9 CONTINUE
READ CASE CONTROL CARDS
PUT BLANK CARD AFTER LAST CASE CARD
$8 \quad 13=13-1$
ONLY ONE SETUP OF OPTION AND CASE CONTROL CARDS ARE REQUIRED FOR MANY DATA SETS IF 1 - CONTINUE CARD IS HERE
1 CONTİNUE

00000061 00000062 00000051 00000052

00000063
00000064 00000069 00000070 00000071 00000072 00000073 00000074 00000075 00000067 00000068 00000076 00000077 00000078 00000079

REAO DATA SET IDENIFICATION (TYPE) 00000082
READ (5,777) (TYPE (I), I = 1.8) 00000083

00000084
00000085
00000086
00000088
00000080

00000091
00000092
00000093

```
C
PUT BLANK CARD BEHIND LAST DATA CARD
    10 READ(5,5) RS(I,1), RS(I,3), RS(I,2)
        IF(EOF,5) 900,901
    901 CONTINUE
        IF (RS(1.1)-0.) 11,12,11
    11 l= I +1
        GO TO 1O
        5 FORMAT (3F12.0)
        12LI=I-1
            IF(INPUT-1)301,300,300
C
        300 WRITE(6.414)
            INPUT = 1 L.ISTING
        WRITE (6,220)
        WRITE(6.221)
        WRITE(6,502)(TYPE(I).I=1,8)
    302 FORMAT. 10X.*DATA SET*/10X. 8A10/)
        WRITE(6.299)
    299 FORMAT (* OPT ION CARD*)
    WRITE(6.303)INPUT,IOUT, TA,RA
    303 FORMAT(* INPUT = **!1/**IOUT = * *11/**TA=**F10.0/* RA * * 0F10.4/)
        WRITE (6.304)
    304 FORMAT(* CASE CONTROL CARDS*/5X** PARAMETER CODE*,5X,
        1*NO. COEFFICIENTS*/)
        WRITE(6,305)(NPAM(I),LLO(I),I=1,I3 )
    305 FORMAT(10X.I5.15X.15)
    301 CONTINUE
C
INPUT = 2 LISTING
IF(INPUT-2) 309.308,308
308 WRITE(6.414)
    WRITE(6.306)
```

00000089 00000090 00000094 00000095 00000096 00000097 00000098 00000099 00000100 00000101 00000102 00000103 00000104 00000105 00000106 00000107 00000108 00000109 00000110 00000111 00000112 00000113 00000114 00000115 00000116 00000117 00000118 00000119 00000120 00000121

```
    306 FORMAT(5x,*INPUT DATA OBSERVATIONS*/ 3X.*NO.**14X** TIME*. 5X. 00000122
            1 *STRESS*, 5X**TEMPERATURE*)
            WRITE(6.307)(1.RS(1.1).RS(1,2),RS(1.3), I=1,L1)
    307 FORMAT (15.10X,F10.2, F8.0. 4X.F10.C)
    309 CONTINUE
    START CASE LOOP (I3)
    13 = NUMBER OF CASES (PARAMETRIC EQUATIONS) TO BE EXAMINED
    FOR EACH DATA SET
        DO 350 KK=1.I3 00000130
        NEGSB=0
        L3=LLO(KK)
        L2=L3-1
        LAST=0
        BMSE= 1000000.
        XN=L_1
        LIM=0
        IFG=0
        L=NPAM(KK)
        IF(L-4)22,21:20
        20 CONTINUE
        RABOTNOV CONSTANTS
        C=RA
        DEL =0.1
        OELMIN=0.001
        GO TO 23
        MANSON-HAFERD CONSTANTS
        21 CONTINUE
            C=TA
            DEL = 1000.0
        DELMIN=10.
        GO TO 23
    22 LAST=2
    23 CONTINUE
    00000124
    00000125
    00000126
00000131
0 0 0 0 0 1 3 2
00000133
00000134
00000135
0 0 0 0 0 1 3 6
00000137
00000138
N
00000139
0 0 0 0 0 1 4 0
00000141
00000142
00000143
00000144
00000145
0 0 0 0 0 1 4 6
00000147
0 0 0 0 0 1 4 8
0 0 0 0 0 1 4 9
00000150
00000151
0 0 0 0 0 1 5 2
00000153
00000154
```

```
    5 7 \text { CONTINUE}
        SELECT PARAMETRIC FORM FOR REGRESSION
        L=NPAM (KK)
        GO TO (61.62.63,64,65).L
    61 CALL LM(Y,RS,F,LI)
        GO TO 66
    62 CALL OSD(Y,RS,F,L1)
        GO TO 66
    63 CALL MS(Y,RS,F,LI)
        GO TO 66
    64 CALL MH( Y,RS.F,LI,C )
        GO TO 66
    65 CALL RAB (Y,RS,F,LI,C)
    6 6 ~ C O N T I N U E ~
        SSER=0.0
        ZERO'A.8,SUMX1 ARRAYS
        DO 473 M=1.12
        DO 473 J=1.12
        A (M,N)=0.0
        B(M.J)=0.0
    4 7 3 \operatorname { S U M X 1 ( M . J ) = 0 . 0 }
        DO 105 M=1,L2
        SUMX(M)=0.0
        DO105I=1,L1
    105 SUMX(M)=SUMX(M)+F(I,M)
        DO 106 M=1.L2
        DO 106 J=1.L2
        SUMP2(M,J):0.0
        DOIO6I=1,L1
    106 SUMP2(M*J)=SUMP2(M,J)+F(I,M)*F(I|J)
        SUMY=0.0
        SUMYZ=0.0
        DO107I=1.L1
```

00000155 00000156 00000157 00000158 00000159 00000160 00000161 00000162 00000163 00000164 00000165 00000166 00000167 00000168 00000169 00000170 00000171 00000172 00000173 00000174 00000175 00000176 00000177 00000178 00000179 00000180 00000181 00000182 00000183 00000184 00000185 00000186 00000187

```
        SUMY=SUMY+Y (I)
    107 SUMY2=SUMY2+Y(I)**2
    DO 108 M=1.L2
    SUMXY(M})=0.
    DOIOPI=1,LI
108 SUMXY(M)=SUMXY(M)+F(I,M)*Y(I)
    DO 109 M=1.L2
    DO 109 J=1.L2
109 SUMX1(M,J)=SUMP2(M,J)-(SUMX(M)*SUMX(J))/XN
    DO 110 M=1.L2
    110 SUMX1(M.L3)=SUMXY(M)-(SUMX(M)*SUMY)/XN
    SUMX1(L3,L3)=SUMY2-(SUMY**2)/XN
    DO47M=1.L.3
    4 2 \operatorname { S U M X 1 ( L S , M ) = S U M X 1 ( M , L 3 ) }
    N3=L3+1
    DO161=1.L.3
    SUMX1(I,N3)=0.0
    DO16M=1.L3
    16 SUMX1(I,N3)=SUMX1(I,N3)+SUMX1(1,M)
    DO17J=1,N3
    17 A(1,J)=SUMX1(1,J)
    SUMB (1)=0.0
    DO1EJ=1,N3
    R(1,J)=A(1,J)/A(1,1)
    18 SUMR(1)=SUMR(1)+R(1,J)
    SUMB (1)=SUMB (1)-B(1,N3)
    DO115I=2.L3
    DO115J=1,N3
    NIX=I-1
    TEMP=0.0
    DO116II=1,NIX
116 TEMP=-A(I1.I)*B(I1.J)+TEMP
    A(I,J)=TEMP+SUMXI (I,J)

00000188 00000189 0nn00190 00000191 00000192 00000193 00000194 00000195 00000196 00000197 00000198 00000199 00000700 00000201 00000202 00000203 00000204 00000205 00000206 00000207 00000208 00000209 00000210 กกロロกン11 \(00000 ว 1 ว\) 00000213 00000214 00000215 00000216 00000217 00000218 00000219 00000220
```

 115RR(T,J)=A(I;J)/A(I|I)
 DO29I=1.L2
 29 SSR(I)=A(I.L3)*B(I.L3)
 REGSS=SUM\times1(L3,L3)-A(L3.L3)
 SSER=A(L3.L3)
 CORC=REGSS/SUMX1(L_3.L3)
 XN1=L1-L2-1
 XMSER=SSER/XNN1
 ZIP=XMSER
 STD=SQRT(XMSER)
 XMRSS=REGSS/L2
 FTRSS=XMRSS/XMSER
 TOTSUM=SUMX1(L.3.L3)
 C
 N C
IF (NPAM (KK).EQQ.5) ZIP=1.0-CORC
LOOP AROUND ITERATION FOR L-M.O-S-D, AND M-S SOLUTIONS
L=NPAM(KK)
IF(L.LT.4) GO TO 1439
IF(LAST-1) 51.52.1439
51 CONT INUE
CONTINUE ,CBLLITER(C ,CBEST,ZIP ,BMSE,IFG.ICT, DEL,OELMIN.LIM,LAST)
GO TO 57
52 CONTINUE
C=CBEST
LAST=2
GO TO 57
1439 CONTINUE
DO1171=2.L2
SUMA(I)=0.0
SUME (1)=0.0
DO117J=1.L3
SUMA(I)=SUMA(I)+A(I,J)
117 SUMB(I)=SUMB(I)+B(I,J)
00n0nファ1
00000222
0
00000225
00000
IF(NPAM(KK)\bulletEQ.5) ZIP=1•O-CORC
00000244
00000245
00000246
00000247
00000248
00000249
00000250
00000251
00000252
00000253

```
tool
```

 *)
 008\capJ=1,L2
 80D(1,J)=SUMX1(1,J)
 DD(1,1)=L
 D072 M=1.L2
 I=M+1
 72 DD(I,1)=SUMX(M)
 DO73 K=1.L2
 J=K+1
 DD(1.J)=SUMX(K)
 DO74 M=1,L2
 I=M+1
 DO74 K=1.L2
 J=K+1
 74 DD(I,J)= D(M,K)
 C CHANGE L9 WHEN YOU REDIMENSION PROGRAM
 L9=11
 CALL MATINV(L9,L3.00.0.G.1.DETERM.ISCALE,IPIVOT.INDEX)
 D081I=1.L?
 81E(I,1)=SUMX1(I,L3)
CALL MATINV(L9.L2,D,1,E.1,DETERM,ISCALE,IPIVOT,INDEX)
PAR(1)=B(L2.L3)
M3=L2
K3=L2
DO1131=2.L2
MIX=I-1
M3=M3-1
TEMP1=0.0
DO114I1=1,MIX
TEMP1=-PAR(11)*B(M3.K3)+TEMP1
114 K3=K3-1
PAR(1)=TEMP1+B(K3.L3)
113 K3=L2

```

00000254
000nn255
n0000256
00000257
ก०000フ58
00000259
00000260
00000261
00000262
00000263
00000264
00000265
00000266
00000267
กロロロロア68
00000269
00000270
00000271
00000272
00000273
00000274
00000275
00000,276
00000277
00000278
00000279
00000280
00000281
00000282
00000283
00000284
00000285
113 K3＝L 2

00000286
```

 DO47M=1.L2 00000287
 4 7 \text { SUMX2(M)こSUMX(M)/XN 00000288}
 SUMY3=SUMY/XN 0nn00289
 K4=12
 DO216I=1,L2
 PAR1 (K4)=PAR(1)
 216 K4=K4-1
 PARO=0.0
 DO2171=1,L2
 217 PARO=PARO-PAR1(1)*SUMX2(I)
 PARO =PARO+SUMY3
 N5=L1-L2-
 XN1=N5
 XMSER=SSER/XN1
 IF(XMSER .GT. 9.OE+100) GO TO 350
 D049I=1.L2
 IF(D(I,I).LT.O.O)WRITE(6.1100)(I .D(1,I))
 IF(D(I.I).LT.O.O) NEG்SE=NEGSB+1
 C AVOID MODE 2 DUMP ABORT CASE 3/3/76
IF(D(I,I).LT. O.O) GO TO 350
1100 FORMAT(///5X******NEGATIVE SB(I),I =*.I3.*DI=*,E2O.8)
4 9 ~ S B (I) = S Q R T (A B S (D (I , I) ~ * X M S E R)) ,
DO118I=1,L2
T(I)=PAR1 (I)/SB(1)
118 T(1)= ABS(T(I))
C CY(I)= SOLUTION IN RFGRESSION SPACE
DO1221=1,L!
SUMCY =0.0
TEM=0.0
DO1 23M=1.L2
123 TEM=TEM+PARI (M)*F(I M)
SUMCY =SUMCY +TEM
122 CY(I)=SUMCY +PARO

```

00000287 00000288 00000289 00000290 00000291 กกロกกวの2 ก0ロกロク9． 00000294 00000295 00000296 00000297 00000298 00000299 00000300 00000301 00000302 00000303 00000304 00000305 00000306 00000307 00000308 00000309 00000310 00000311 00000312 00000313 00000314 00000315 00000316 00000317 00000318 00000319
```

C
CALCULATE MIN, MAX, RANGE, MEAN
CALL MINMAX(YMIN,YMAX,YRAN,YMEAN,Y,L1)
DO 95 I=1.L2
DO 95 K=1,L1
96 X(K)=F(K,I)
CALL MINMAX(XMIN(I), XMAX(I), XRAN(I)*XMEAN(I),X,LI)
95 CONTINUE
PRINT REGRESSION STATISTICS
WRITE(6.414)
WRITE(6,220)
WRITE(6.221)
220 FORMAT(5X** LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC*;
221 FORMAT(5X** ANALYSIS OF CREEP-RUUPTURE DATA*)
WRITE(6,526)
526 FORMAT(/* -------- REGRESSION VALUES --------**)
WRITE(6.502)(TYPE (I),I=1.8)
5 0 2 ~ F O R M A T (* ~ D A T A ~ S E T ~ * , ~ 1 X , 8 A 1 0) ~
MM=NPAM (KK)
WRITE (6.506)PAM(MM)
5 0 6 ~ F O R M A T (* ~ P A R A M E T E R ~ S E L E C T E D ~ * , ~ 7 X , ~ A 8) ,
WRITE(6.507)(L1)
5 0 7 FORMAT (* NO. OF OBSERVATIONS
WRITE(6.508)(L2)
5O8 FORMAT\&* NO. OF INDEPENDENT VARIABLES
WRITE(6.509)(XN1)
5 0 9 ~ F O R M A T ~ (* ~ R E S I D U A L ~ D E G R E F S ~ O F ~ F R E E D O M ~
WRITE(6.514)(FTRSS)
514 FORMAT(* F - VALUE
WRITE(6.545)(XMSER)
5 4 5 FORMAT(* RESIDUAL MEAN SQUARE
WRITE(6.546)(STD)
546 FORMAT(* STANDARD ERROR

* 8x, 14)
*, 8x, 14).
* , 8x, F4)
*. F12.1)
* E12.4)
** E12.4)

```

00000320 00000.321 00000322 00000323 00000324 00000325 00000326 00000327 00000328 00000329 00000330 00000331 00000332 00000333 00000334 00000335 00000336 00000337 00000338 00000339 00000340 00000341 00000342 00000343 00000344 00000345 00000346 00000347 00000348 00000349 00000350 00000351 00000352
```

 5 4 7 \text { FORMAT(* RFSIDUAL SUM OF SQUARFS *, F12.4) 00000353}
 WRITE(6, 548)(TOTSUM)
 548 FORMAT(* TOTAL SUMS OF SQUARES * E12.4) 0クOOO`55
 *)
    ```

```

C
WRITE(6.320)
320 FORMAT(/)
IF(MM-EQ.4) WRITE(5.432) CBEST
IF(MM.EQ.5) WRITE(6.433) CBEST
4 3 2 ~ F O R M A T (* ~ M A N S O N ~ - ~ H A F E R D ~ C O N S T A N T (T A) ~ = * . F 1 0 . 1 /) ,
4 3 3 FORMAT(* RABOTNOV CONSTANT (RA) =*,F1O.5/)
WRITE (6,492)(YMIN,YMAX,YRAN,YMEAN) 00000364
00000358

```

```

 4 9 2 ~ F O R M A T (5 ~ X , * ~ M I N ~ Y ~ = * , E 1 1 . 2 . 3 X . * ~ M A X ~ Y ~ = * , E 1 1 . 2 , 3 X . * ~ Y ~ R A N G E ~ = * . ~ 0 0 0 0 0 3 6 5 ~
 1 E11.2.3X* MEAN Y =*, E11.2/) 00000366
 C
INPUT= 3 LISTING
IF(INPUT-3)311.310.311
310 WRITE(6,312)
12 FORMAT(312)}0000036
312 FORMAT (/ 5X.*FIRST 5 OBSERVATIONS - TRANSFORMED VARIABLES*/ 00000370
15X**Y*,18X** X1 - X(L2) *)
DO 313 I=1.5
DO 315 J=1,L2
315 TEMP(J)=F(I,J)
WRITE(5,314)(Y(1),(TEMP(J),J=1,L2))
313 CONTINUE
314 FORMAT(8E15.5)
WRITE(6.320)
311 CONTINUE
WRITE(6,422)
422 FORMAT(3x,* I *, 2X,*VARIAELE*, 4X.*COEF.P(I)*,3X. *S.E.COEF.** 00000381
1 4X, *T*. 5X. *MEAN X(I)*, 3X. *MIN X(I)*, 3X.*MAX X(1)00000382
2*,3X, *RAN X(I)*, 4x,*RINF*, 3x, *PSUM*, 3x,*CERR*) 00000383
WRITE(6,535)(PARO)
00000384
5 FORMAT(6X,*O*,11X,E14.4)
00000385

```
0
\(\infty\)
```

 M=NPAM (KK)*6-6
 DO 420 I=1.L2
 CERR(I)=100.0*((PAR1(I)-F(I))/PAR1(I))
 RINF=(XRAN(I)*PARI(I)+1.OE-30)/YRAN
 SSRR=SSR(I)/REGSS
 WRITE(G.421)(I,VAR(I+M),PARI(I), SE(I),T(I). XMEAN(I).
 I XMIN(I),XMAX(I), XRAN(I), RINF,SSRR,CERR(I))
 4 2 0 ~ C O N T I N U E ~
 421 FORMAT, I7. 4X.A8.1X. El2.4, Ell.2. F7.2.
 1 E13.3. 3E11.2. F3.2.F7.3.F7.2)
 WRITE(6.424)
 424 FORMAT(/* VARIABLE CODE*/10X**S=LOG STRESS*/10X**T=TEMPERATURE*
 1/10X**DT=T-TA*/10X**L=STRESS*/)
 CUMERR=0.0
 RRIS=0.0
 SRIS2=0.0
 EMAX=0.0
 EMAXP=0.0
 NZERO=0
 SDP=0.0
 SSDP=0.0
 DPMAX = -10.0
 XOF=ALOG1O(XN1)
 T6=0.8618559-0.9842715*\timesDF+0.5849466**DF**2-.1159365**DF**3
 TG=10.**T6
 CCCC **** START 333 LOOP******
DO333M=1,L1
X(1)=1.0
DO 92 K=1,L2
I=K+1
92
X(I)=F(M,K)
DO 100 J=1.L3
TEMP(J) =0.0

```

00000386 00000387 00000388 00000389 0กnのก790 n0000391 00000392 00000393 00000394 00000395 00000396 00000397 00000398 00000399 00000400 00000401 00000402 00000403 00000404 00000405 00000406 00000407 00000408 00000409 00000410 00000411 00000412 00000413 00000414 00000415 00000416 00000417 00000418
```

 no 100 I =1.L3 nonnnalo
 TEMP(J)= TEMP(J)+ X(1)* DD(I.J) 00000420
 100 CONTINUE
 00000421
 ANS =0.0
 DO 200 J=1.L. 3
 ANS=ANS +TFMP(J)*X(J)
 200 CONTINUE
 XMFR = XMSFR
 XMER= ABS(XMER)
 ANS = ABS(ANS)
 C CALCULATE 95 PERCENT STATISTICAL INTERVALS
 DELTA=TG*SQRT (XMER*ANS)
 CIMAX(M)=CY(M)+DELTA
 CIMIN(M)=CY(M)-DELTA
 DELTA=T6*SQRT(XMER*(1+ANS))
 PYMAX(M)=CY(M)+DELTA
 PYMIN(M)=CY(M)-DELTA
 RIS(M)=CY(M)- Y(M)
 C AVOID DUMP WHEN Y=0 2/25/76
 IF(Y(M).EQ.O.O) Y(M)=0.000001
 ERRPER(M)=R!S(M)/Y(M)*100.
 IF(AES(RIS(M)).GT. ABS(EMAX))EMAX = RIS(M)
 RIS2 =RIS(M)**2
 SRIS2=SRIS?+RIS2
 RRIS=RRIS+ABS(RIS(M))
 IF(ABS(ERRPER(M)).GT.ABS(EMAXP)) FMAXP = FRRPER(M)
 CUMERR=CUMERR+ABS(ERRPER(M))
 333 CONTINUE
 CCCC ****** END 333 LOOOP' \$\$\$\$**
C FIND OBSERVATIONS OUTSIDE OF }95\mathrm{ PERCENT PREDICTION INTERVAL 00000449
4 0 1 ~ F O R M A T ~ (/ * ~ O B S E R V A T I O N S ~ O U T S I D E ~ O F ~ 9 5 ~ P E R C E N T ~ P R E D I C T I O N ~ I N T E R V A L * / 0 0 0 0 0 4 5 0 ~
15X,*OBS**, 5X**CALC Y*, 5X**PYMIN*, 5X**PYMAX*/1)}00000045
IBAD=0 00000452
```1```
DO 400 I=1,L1 00000453
IF(CY(I)-PYMIN(I)) 402.399.399 00000454
3 9 9 ~ C O N T I N U E ~
IF(CY(I)-PYMAX(I)) 400.400.402
4 0 2 ~ 1 B A D = I B A D + 1 ~
IF(IBAD.EQ.1) WRITE(6.401)
WRITE(6.403)( I, CY(I),PYMIN(I),PYMAX(I) )
4 0 0 ~ C O N T I N U E ~
403 FOORMAT ( 15.3E16.6)
C
M(KK)-S
04 DO 405 I=1.L1
DP=PYMAX(I)-PYMIN(I)
IF(DP.GT.DPMAX) DPMAX=DP
DPSIJM= DPSUM+DP
4 0 5 ~ C O N T I N U E
GO TO 408
RABOTNOV DP
406 DO 407 I=1,LI
AVOID NEGATIVE PY DUMP
IF(PYMIN(I).LT.O.O) PYMIN(I)=1.0
IF(PYMAX(I).LT.O.O) PYMAX(I)=1.0
RP1=PYMAX(I)**(1.0/CPFST)
RP2=PYMIN(I)**(1.()/CBEST)
DP=ALOG1O(RP1)-ALOG1O(RP2)
IF(DP.GT.DPMAX)DPMAX=DP
DPSUM=DPSUM+DP
4 0 7 CONTINUE
4 0 8 ~ D P A V E ~ = ~ D P S U M / L 1 '
RP1 =10.**DPAVE
RP2=10.**DPMAX
```

00000453 00000454 00000455 00000456 00000457 00000458 00000459 00000460 00000461 00000462 00000463 00000464 00000465 00000466 00000467 00000468 00000469 00000470 00000471 00000472 00000473 00000474 00000475 00000476 00000477 00000478 00000479 00000480 00000481 00000482 00000483 000004844 00000485

```
WRITE(6.410)
        4 1 0 ~ F O R M A T ( ~ 5 X , * ~ 9 5 ~ P E R C E N T ~ P R E D I C T I O N ~ I N T E R V A L ~ S T A T I S T I C S * / 2 5 X , ~
        1*LOG TIME*,1OX**REAL TIME FACTOR (ANTILOG WIDTH)*/)
        WRITE(6,409)(DPAVE,RP1,DPMAX,RP2)
    4 0 9 ~ F O R M A T ( * ~ A V E R A G E ~ W I D T H ~ * , ~ 5 X , ~ F 1 O . 3 . 1 9 X . ~ F I O . 1 / * ~ M A X I M U M ~ W I D T H * , ' ,
        1 6X,F10.3.19 (.F10.1)
    C ORDEP RESIDUALS - LARGEST TO SMALLEST
        LINEGG=-LI
        OO 2100 1=1.L.1
        TEMP(I) =0.0
        2100 TEMP(I)= ABS(RIS(I))
CALL AORDER(TEMP , LINEG.IPERM)
        nO 1つO2 I=1.LI
        J=IPERM(1)
        TEMP(J)=1
u
    :202 CONTINUE
OUTPUT = 1 OR GREATER
C RESIDUALS IN REGRESSED SPACE
C RESIDUALS IN REGRESSED SPACE
    4:2 CONTINUE
        WRITE(5.414)
        WRITE(6.415)
    4:4 FORMAT(1H1)
    415 FORMAT(* RESIDUALS - REGRESSION SPACE*/)
        WRITEE(6.416)
        WRITE(6.417)(I.Y(I),CY(I),RIS(I),ERRPER(I), TEMP(1),
        1 CIMAX(I), CIMIN(I),PYMIN(I),PYMAX(I),I=1,LI)
    417 FORMAT(I5, 1X.3E12.3, ,F1O.1, 8X,F5, 4X. 4E12.3)
    4 1 6 ~ F O R M A T ( ~ 2 X . * O B S * , ~ 7 X , * Y ~ O B S * , ~ 6 X * * Y ~ C A L L C * , 5 X , ~ * R E S I D U A L * * G X . ~
        1 *PCTERR *, 1X**ORDER**7X **CIMIN** 7X**CIMAX**7X.
    2 *PIMIN*,7X **PIMAX*/)
    413 CONTINUE
        XMRSS=REGSS/L2
        00000486
        00000487
        00000488
        00000489
        00000490
        0nก0ก491
        00000492
        00000493
        n000n494
        00000495
00000496
00000497
nnnnn498
00000499
00000500
00000501
00000502
00000503
00000504
4
```

```
        FTRSS = XMRSS/XMSER
        DPAVE= SDP/LI
        DPSIG=(L1*SSDP-SDP**2)/(LI*(L1-1.0))
        DPSIG=SQRT(DPSIG)
        STD=SQRT(XMSER)
C PLOT RESIDUALS WITH VARIAN ON LINE PLOTTER
    IF(IOUT -3)445,440.440
    440 CONTINUE
    IN(1)= 5HPARAM
    IN(2)=4HPLOT
    N=L1
    ISYMD=12
    IEC=1
    CALL MINMAX(YL,YH,YRAN,YMEAN,RIS,LI)
    YL=1.8*YL
    YH=1.8*YH
    XL=0.0
    XH=O.O
    NXM=1
    NYM=1.
    YNOTE=1OH RESIDUAL
    XNOTES = IOHZP NORMAL
    XNOTEG= IOH FITTED Y .
    CALL VDIPLT(IEC, IN, N, CY(1), RIS(1), XL,XH,YL,YH.NXM,
    1 XNOTEG, NYM, YNOTE, ISYMDI
        CALL AORDER(RIS.LI,IPERM)
    DO 430 I=1.LI
    J=IPERM(I)
    TEMP(I)= RIS(J)
    XI =I
    FZ=(XI-•375)/(L1+. 25)
    IF(FZ-0.5)570,570.571
```

00000519 00000520 00000521 00000522 00000523 00000524 00000525 00000526 00000527 00000528 00000529 00000530 00000531 00000532 00000533 00000534 00000535 00000536 00000537 00000538 00000539 00000540 00000541 00000542 00000543 00000544 00000545 00000546 00000547 00000548 00000549 00000550 00000551

```
    570 XX=ALOG1O(FZ)
                ZP(I)=1.04505 + 4.35979*XX + 3.46057*XX**2+1.908378*XX**3
        1 +0.54456*xX**4+0.0608*xx**5
        GO TO 572
    571 XX=ALOG1O(1.O-FZ)
                    ZP(I)=1.04505 + 4.35979*xx + 3.46057**x**2+1.90878* x X **3
        1 +0.54456*xx**4+0.0608*xx**5
        ZP(I)=-ZP(I)
    5 7 2 ~ C O N T ~ I N U E ~
    4 3 0 ~ C O N T I N U E
        YL=0.0
        YH=0.O
        CALL VDIPLT(IEC, IN.N. ZP(1).TEMP(1). XL.XH.YL.YH.NXM,
        1 XNOTES. NYM, YNOTE, ISYMD)
    445 CONTINUE
    OUTPUT. = 2 OR GREATER
    REAL SPACE RESIDUAL OUTPUT
    BACKTRANSFORM SOLUTION AND PREDICTION INTERVALS
    MX=NPAM (KK)
    DO 441 M=1.L1
    GO TO(201,201,201,201,203).MX
    201 CY(M)=10.0**CY(M)
        PYMAX(M)=10.0**PYMAX(M)
        PYM!N(M)=10.0**PYMIN(M)
        CIMAX(M)=10.O**CIMAX(M)
        CIMIN(M)=10.O**CIMIN(M)
        GO TO 205
    203 CONT INUE
    AVOID NEGATIVE TO A POWER DUMP
        IF(PYMIN(M).LE. O.O) PYMIN(M)=1.0
        IF(PYMAX(M).LE. O.O) PYMAX(M)=1.0
    IF(CIMAX(M),LE.O:O) CIMAX(M)=1.0
    IF(CIMIN(M).LE.O.O) CIMIN(M)=1•0
C
W
กクロกロム5?
00000553
00000554
00000555
00000556
00000557
00000558
00000559
00000560
00000561
00000562
00000563
00000564
00000565
00000566
        00000567
        00000568
        00000569
        00000571
        00000572
        00000573
        00000574
        00000575
        00000576
        ก0000577
        00000578
        00000579
    00000580
    00000581
    00000582
    00000583
    00000584
    00000585
\(\stackrel{i}{i}\)
                IF (CY(M).LE.O.O) CY \((M)=1.0\)

00000586 ヘ0ロ00587 00000588 00000589 00000590 00000591 00000592 00000593 00000594 00000595 00000596 00000597 00000598 00000599 00000600 00000601 00000602 00000603 00000604 00000605 00000606 00000607 00000608 00000609 00000610 00000611 00000612 00000613 00000614 00000615 00000616

00000617
00000618
```

C THIS SUBROUTINE ORDERS VALUES IN AA AND STORES ORDER IN IPERM 0OOOOGI9
C
C
C
C
C
c
N IS NUMBER OF VALUES IN AA
IPERM IS ORDERED WITH RESPECT TO LOCATION OF VALUFS IN AA
IF N IS POSITIVE IPERM(1) HAS LOCATION IN AA OF SMALLFST VAL.UE
IPERM(N) HAS LOCATION OF LARGEST VALUE IN AA
IF N IS NEGATIVE IPERM IS ORDERED BY LOCATION OF LARGEST TO
SMALLEST VALUES IN AA
ARRAY AA IS NOT CHANGED
OIMENSION AA(1), IPERM(1)
LOGICAL SWITCH
NABS = IABS(N)
DO 100 I=1.NABS
100 IPERM(I) = I
IF(NABS •LT.2) RETURN
200 SWITCH = .FALSE.
DO50O 1= 2,NABS
II=IPERM(I-1)
JJ= IPERM(I)
IF(N.LT. O) GO TO 400
IF(AA(II).LEE.AA(JJ)) GO TO 500
300 1TEMP=1PERM(1-1)
IPERM(I-1) = IPERM (I)
IPERM(I)=ITEMP
SWITCH = .TRUE.
GO TO 500
400 IF(AA(II).LT.AA(JJ)) GO TO 300
5 0 0 ~ C O N T I N U E ~
IFF(SWITCH) GO TO 200
900 RETURN
END
SUBROUTINE LM (Y,RS,F,L1)
CONVERTS TIME,STRESS,AND TEMPERATURE TO FORMAT REQUIRED
FOR LINEAR SOLUTION OF LARSONMMILLER EXPRESSION
0000620
00000621
00000623
00000624
00000625
00000626
00n00627
0n000628
00000629
00000630
00000631
00000632
00000633
00000634
00000635
00000636
00000637
00000638
00000639
00000640
00000641
00000642
00000643
00000644
00000645
00000646
00000647
00000648
00000649
00000650
00000651

```
```

SOLUTION ALLOWS FIFTH ORDER EXPANSION OF LOG STRESS
Y=BO + BI(X1)+B2(X2)--- B6(X6)
WHERE Y = LOG(RUPTURE TIME)
S = APPLIED STRESS IN PSI
T = TEST TEMPERATURE IN DEGREES F
X1=1/(T+460)
X2=LOG(S)/(T+46O)=S/TK
x3=5**2/TK
*4=S**3/TK
X5= S**4/TK
*6=S**5/TK
C.BO-BG = CONSTANTS DETERMINED BY LINEAR LEAST SQUARES METHOD
BO= OPTIMUM L-M CONSTANT (C)
DIMENSION Y(200), RS(200,5), F(200,10)
DO 10 I=1.LL
Y(I)= ALOG1O(RS(I,1))
S= ALOG1O(RS(1,2))
T= (RS(I,3)+460.0)
F(I.1)=1.0/T
F(I,2)=S/T
F(1,3)=S**2/T
F(I,4)=S**3/T
F(1,5) = S**4/T
F(I,6)=S**5/T
10 CONTINUE
RETIJRN
END
SUBROUTINE OSD(Y,RS,F,LI)
CONVERTS TIME.STRESS,AND TEMPERATURE TO FORMAT REQUIRED
FOR LINEAR SOLUTION OF ORR-SHERBY-DORN EXPRESSION
SOLUTION ALLOWS FIFTH ORDER EXPANSION OF. LN STRESS
WHERE Y = LOG(TIME TO CREEP EVENT)
S = APPLIED STRESS IN PSI

```

00000652 00000653 00000654 00000655 00000656 00000657 00000658 00000659 00000660 00000661 00000662 00000663 00000664 00000665 00000666 00000667 00000668 00000669 00000670 00000671 00000672 00000673 00000674 00000675 00000676 00000677 00000678 00000679 00000680 00000681 00000682
```

 O
 c
 c
 c
 C
 C
 C
 c
 C
 C
 4 1 .

```
\(T=\) TEST TEMP IN DFGREES \(F\)
\(x_{1}=1 / T K\)
\(\times 2=L N(S)=S L\)
K3 \(=S L * * 2\)
x4＝SL＊＊3
\(\times 5=5 L * * 4\)
X6＝SL＊＊5
BO－BG＝CONSTANTS，DETERMINED BY LINEAR LEAST SQUARES METHOD
\(B 1=D E L H / R\)
DELH \(=\) APPARENT ACTIVATION ENERGY
\(R=\) UNIVERSAL GAS CONSTANT．
DIMENSION Y（200），RS（200．5），F（200．10）
DO 10 I＝1．L1
\(Y(I)=A L O G 1 O(\operatorname{RS}(I, 1))\)
\(S=A L O G 10(R S(1,2))\)
\(T=(5 \cdot / 9 \cdot) *(\operatorname{RS}(\mathrm{I} \cdot 3)-32 \cdot)+273\) ．
\(F(1,1)=1.0 / T\)
\(F(1,2)=S\)
\(F(1,3)=S * * 2\)
\(F(1,4)=5 * * 3\)
\(F(1,5)=5 * * 4\)
\(F(1,6)=5 * * 5\)
10 CONTINUE
RETURN
END
SUBROUTINE MS（Y，RS，F，L1）
CONVERTS TIME，STRESS，AND TEMPERATURE TO FORMAT REQUIRED FOR LINEAR SOLUTION OF MANSON－SUCCOP EXPRESSION
SOLUTION ALLOWS FIFTH ORDER EXPANSION OF LOG STRESS
B1＝OPTIMUM M－S CONSTANT（C）
DIMENSION Y（200）． \(\operatorname{RS}(200.5) \cdot F(200 \cdot 10)\)
DO \(10 \quad \mathrm{I}=1\) ，L1
\(Y(I)=A L O G 1 O(R S(1,1))\)

00000685 nonnogra 00000687 00000688 00000689 00000690 00000691 00000692 00000693 00000694 00000695 00000696 00000697 00000698 00000699 00000700 00000701 00000702 00000703 nกロロロ7n4 00000705 00000706 00000707 00000708 00000709 00000710 00000711 00000712 00000713 00000714 00000715 00000716 00000717
```

 S=ALOG1O(RS(I.2))}0000071
 T= RS(I,3)
 F(I,1)=T
 F(1,2)=S
 F(I,3)= S**2
 F(I,4)= S**3
 F(1,5)= S**4
 F(I,5)= 5**5
 10 CONTINUE
RETURN
END
SUBROUTINE MH(Y,RS,F,LI,CMH)
FOR NONLINEAR SOLUTION OF MANSON-HAFERD EXPRESSION
CMH = TEMPERATURE OFFSET (TA)
XI= T-CMH =OT
x2= DT*S
x3= DT*S**2
*4=DT*S**3
X5= DT*S**4
x6= DT*S**5
SOLUTION IS ITERATED TO FIND CMH WHICH PRODUCES BEST FIT
DIMENSION Y(200), RS(200.5),F(200.10)
DO 10 I=1,L1
Y(I)= ALOG1O(RS(I,1))
S= ALOG1O(RS(I,2))
DT= RS(I,3)-CMH
F(I,1)= DT
F(I,2)= DT*S
F(1,3)=DT*S**2
F(I,4)= DT*S**3
F(I,5)= DT*S**4
F(I,6)=DT*S**5
10 CONTINUE

```

00000718 00000719 00000720 0nono721 00000722 00000723 00000724 00000725 00000726 00000727 00000728 00000729 00000730 00000731 00000732 00000733 00000734 00000735 00000736 00000737 00000738 00000739 00000740 00000741 00000742 00000743 00000744 00000745 00000746 00000747 00000748 00000749 00000750
```

 RETURN 00000751
 SUBROUTINE ITER(C, BC.X.PBX,IFG.ICT, DEL, DELMIN, LIM,LAST) 00000753
 ITERATES CONSTANT (C) TO MINIMIZE VALUE (X) 00000754
 BC = VALUE OF CONSTANT ASSOCIATED WITH LOWFST (BEST) }\times\mathrm{ VALUE 00000755
 PBX= BEST PREVIOUS VALUE OF }
 IFG =FLAG TO CONTROL INCREASING OR DECREASING G FOR NEXT ITERATIONOOOOO757
 DEC =CONTROLS SIZE OF C INCREMENT 00000758
 ICT =ALLOWS C TO INCREMENT BEYOND BC BFFORF CHANGING
 INCREMENT SIZE, ITERATION STOPS WHEN DEL •LE. DELMIN
 LIM = COUNTER FOR ITERATIONS 00000761
 LAST=END ITERATION FLAG 00000762
 IF(IFG) 5.5.30 00000763
 INCREASING C.
 5 LIM = LIM+1
 NEXT CARD PREVENTS NEGATIVE }x\mathrm{ FROM BEING BFST }\times\mathrm{ VALUE
 IF(X•LE. O.O) GO TO 10
 IF (PBX •GT* X) BC=C
 IF(PBX \bulletGT & X) PBX=X
 IF(PBX \bulletEQ | X) ICT=0
 IF(X -GT. PBX) ICT=ICT+I
 IF(DEL •LE.DELMIN) GO TO 40
 IF(ICT.LT. 2) GO TO 10
 IF(ICT.LT.1O) GO TO 10
 OEL = 0.3*DEL
 ICT=O
 C= C-DEL
 C=BC+5.O*DEL
 IFG=1
 GO TO 50
 10 C= C+DEL
 GO TO 50
 DECREASING CONSTANT
 C

```

```

 30 LIM =LIM+1 n0000784
 NEXT CARD PREVENTS NEGATIVE }x\mathrm{ FROM BEING BFST }x\mathrm{ VALUF
 IF(X.LE. O.O) GO TO 35
 IF(PBX OGT• X) BC=C
 IF (PBX •GT. X) PBX=X
 IF(PBX *EQ& X) ICT=0
 IF(X \bulletGT• PBX) ICT=ICT+I
 IF(DEL.LE.DELMIN) GO TO 40
 IF(ICT•LT.10) GO TO 35
 DEL=0.3*DEL
 ICT=0
 C=BC-5.0*DEL
 IFG=0
 35 C=C-DEL
 GO TO 50
 40 LAST=1
 5 0 ~ C O N T I N U E ~
 RETURN
 END
 SUBROUTINE RAB(Y,RS,F,L1,A)
 FOR NONLINEAR SOLUTION OF RABOTNOV EXPRESSION
 SOLUTION ALLOWS FIFTH ORDER EXPANSION OF TEMPERATURE FUNCTION
 WHERE Y= 'RUPTURE TIME **A
 T= TEST TEMPERATURE IN DEGREES F
 X1= 1/ST
 A= ITERATED CONSTANT
 S = STRESS IN PSI
 DIMENSION Y(200), RS(200.5),F(200.10)
 OO 10 I=1.LI
 Y(1)=(RS(1, 1))**A
 S = RS (1,2)
 T = RS(I.3)
 F(1.1)= 1.0/(S*T)
    ```
n0000784 00000785 กกロก0786 00000787 00000788 00000789 00000790 00000791 00000792 00000793 00000794 00000795 00000796 00000797 00000798 00000799 00000800 00000801 00000802 00000803 00000804 00000805 00000806 00000807 00000808 00000809 00000810 00000811 00000812 00000813 00000814 00000815 00000816
```

 F(1,2)=1.0/(S*T**2)}0000081
 F(1,3)= 1./(S*T**3)
 F(I,4)=1./(S*T**4)
 F(I.5)=1./(S*T**5)
 F(I,6)= 1*/(S*T**6)
 10 CONTINUE
RETURN
END
SUBROUTINE MINMAX(CMIN,CMAX,CRAN,CMEAN,C,N)
C CALCULATES MINIMUM, MAXIMUM,RANGE, AND MEAN OF C(I)
C WHERE N= NUMBER OF OBSERVATIONS
DIMENSION C(1)
CMAX=-1.OE+100
CMIN=1.OE+10.0
CSUM=0.0
DO 5. I=1,N
CSUM=CSUM+C(I)
IF(C(I)-CMIN) 2.3:3
2 CMIN=C(I)
3 IF(C(I)-CMAX)5:5.4
4 CMAX=C(I)
CONTINUE
CMEAN=CSUM/N.
CRAN=CMAX-CMIN
CONTINUE
RETURN
END
00000818
00000819
00000820
00000821
00000822
00000823
00000824
00000825
00000826
00000827
00000828
00000829
00000830
00000831
00000832
00000833
00000834
00000835
00000836
00000837
00000838
00000839
00000840
00000841
00000842
00000843

```

APPENDIX B
LANGLEY RESEARCH CENTER SYSTEM SUBROUTINES

SUBROUTINE MATINV
fanguage:

PURPOSE:

USE:

FORTRAN

To invert a real square'matrix \(A\), solve'the matrix equation \(A X=B\), where \(B\) is a matrix of constant vectors., and by an option evaluate the determinant.

CALL MATINV (MAX,N,A,M,B,IOP,DETERM,ISCALE,TPIVOT,IWK)

MAX An input integer specifying the maximum order of \(A\) as stated in the dimension statement of the calling program.

An input integer specifying the order of \(A ; I \leq N \leq M A X\).

A
An input/output two-dimensional array of the coefficients. On return to the calling program, \(A^{-1}\) is stored in A. A must be dimensioned in the calling program with first dimension MAX and second dimension at least \(N\). The original A matrix is destroyed.

M

An input integer specifying the number of column vectors in \(B\). \(M=0\) signals that the subroutine is used solely for inversion; however, in the call statement an entry corresponding to \(B\) must be present.

ISCALE

An input/output two-dimensional array of the constant vectors. On return to the calling program, the solution \(X\) is stored in B. \(B\) should have its first dimension MAX and its second dimension at least M. The original \(B\) matrix is destroyed.

Compute the determinant option. TOP \(=0\), Compute the determinant. LOP \(=1\), Do not compute the determinant.

For IOP \(=0\), in conjunction with ISCALE, represents the value of the determinant of A as follows:
\(\operatorname{DET}(\mathrm{A})=(\mathrm{DETERM}) 10^{100(\text { SCALE })}\)

For \(I O P=1\), the determinant is set to 1 . The determinant is set to zero for a singular matrix, for both IOP \(=0\) or 1 option. Upon return from MATINV, DETERM should be tested or written out in the calling program.
(See Other Coding Information)

For IOP \(=0\), the scale factor is computed by the subroutine to avoid overflow or underflow in the computation of the quantity, DETER. F OT LOP \(=1\), ISCALE may be a - dummy argument.

IPIVOUT , . A one-dimensional array used by the subprogram to store pivotal information. It should be dimensioned at least \(N\). In general the user does, not need to make use of this array.

IWK An integer array of temporary storage, dimensioned at least 2 x N .

METHOD:

ACCURACY:

REFERENCE:

STORAGE:

Jordan's method is used to reduce a matrix A to the identity matrix I through a succession of elementary transformations: \(\ell_{n}, \ell_{n-1}, \ldots, \ell_{1} . A=I\). If these transformations are simultaneously applied to \(I\) and to a matrix \(B\) of constant vectors, the results are \(A^{-1}\) and \(X\) where \(A X=B\). Each transformation is selected so that the largest element is used in the pivotal position.

Total pivotal strategy is used to minimize the rounding errors; however, the accuracy of the final results depends upon how well-conditioned the original matrix is. A return with DEEERM \(\neq 0\) does not guarantee accuracy in the solutions or inverse.

Fox, L., An Introduction to Numerical Linear Algebra. Oxford University Press, New York, 1965.
\(516_{8}\) locations

IANGUAGE :
PURPOSE:

USE:

FORTRAN
To provide a one-call method of preparing plotting. This routine was originally designed for recording plots on the DD80 plotter only; however, it has been redesigned to use on any plotter. This one-call routine should not be used on any new jobs; new jobs requiring one-call displays should use INFOPIT.

These displays will not meet specifications for final figures.

CALI DDIPIT (IE, IN, \(N\), XDATA, YDATA, XMIN, XMAX, YMIN, MAX, NOM, XX, SYM, MM, ISYMD) where

IEC is the code for terminating the frame
0 frame incomplete
1 frame complete with this data. The frame change is built in and the plotter will be spaced for the next frame.

IN is a two-word array. Each word contains 10 Hollerith characters for plot identification.
\(\mathrm{N}_{\text {: }} \quad\) is the number of points to be plotted.
XDATA is the name of the array containing the floating point values of \(X\) to be plotted.

YDATA is the name of the array containing the floating point values of \(Y\) to be plotted.

XMIN is the minimum value for \(X\).
XMAX is the maximum value for \(X\).
YMIN is the minimum value for \(Y\).

YMAX is the maximum for \(Y\).
The routine checks for the first call only to determine if either (XMAX-XMIN) or (YMAX-YMIN) is equal to zero. When either is zero, the routine will scan the \(X\) and/or \(Y\) axray to determine the limits. For multiple curves per display, the limits must be specified on the first call to include all curves since the limits from the first call will be used for all curves.

If any data falls outside the limits, it will be eliminated; but a count will be kept of all points dropped and written at top of the plot.

Minimum/maximum values are next checked to see that the range is not zero. When it is, the specified values are adjusted by 10 percent of the minimum or set equal to \(\pm 1.0\) in cases where minimum and maximum are equal to zero.

NXM is the number of central memory words in the message for the horizontal annotation. Maximum number of words is 13; each word contains 10 characters. If NXM and NYM are both negative, tic marks will be generated instead of grid.
\(X M \quad\) is the name of array containing the label for the horizontal annotation.
is the number of words in the message for the vertical annotation. Maximum number of words is 13.
'is the name of array containing the label for the vertical annotation.

ISYMD is the integer code specifying the symbol or mode to be used for plotting the data values.


RESTRICTIONS:

METHOD:

REFERENCES:

STORAGE:
SUBPROGRAMS USED:
OTHER CODING
INFORMATION:

ACCURACY: Approximately three significant figures may be read in either direction.
The following arrays must be specified in a DIMENSION istatement of the calling program: \(\operatorname{IN}(2), X D A T A(N), Y D A T A(N)\), XM (NXM), YM(NYM).
. Each curve on a display requires a separate entry to the routine. \(X\) and \(Y\) coordinates for plotting must be in separate arrays of single precision, floating point data. Frame control is specified by the IEC code in the calling sequence for the routine.

Data are scaled and plotted; axes are drawn and annotated, and grid lines or tic marks are generated.

Minimum/maximum values are adjusted to provide a range when all values of an array are equal. Adjustment is also made where needed to improve the appearance of the plot.
\(3^{3021_{8}}\) locations
CALPLT, NOTATE, NUMBER, "PNTPLT, NFRAME
A call to PSEUDO (1.4.1) must precede the first call to DDIPIT. An entry called VDIPLT with the same parameters as DDIPIT is available which packs \(8^{\prime \prime} \times 6^{\prime \prime}\) plots per frame for the Varian postprocessor.

LAN̄GUAGE:
PURPOSE:

理里:

RESTRLCTHONS:

\section*{COMPASS}

To create and write an appropriately named Plot Vector F'ile. Through linkages set up by an initial call to PSEUDO, all subsequent graphics data generated by the user will be routed through one of the PSEUDO entry points and written on the Plot Vector File. The PSEUDO processor is designed for use with the frame dependent postprocessors described in Section 1.3, Volume IV, of the Computer Programing Manual.

CALL PSEUDO
or
CALL PSEUDO (FN.)
FN fille name left-justified with zero fill. Default file name is SAVPLT.

\section*{Example:}

CALL PSEUDO
: 'This will establish a Plot Vector File named - SAVPET.

CALL PSEUDO(6LMYFILEE)
This will establish a Plot Vector File named MYFILE.

NOTE: The Plot Vector File (or Files) will usually be written to disk (as opposed to tape) and may be postprocessed following user program termination via appropriate specification of one or more PLOT control cards (see Section 1.3, Volume IV, Computer Programing Manual).
(1)

An initializing call to PSEUDO (with or without a file name argument) must be made prior to any calls to CALPII or any other graphics output routine.
(2) Every Plot Vector File should be terminated with a 999 pen code, CALL CALPLT \((0.0,0.0,999)\). The transmission of the 999 code will cause an EOF write on the Plot Vector File, and the file will temporarily be closed. Thus, any given Plot Vector File will contain only one 999 pen code and/or one EOF.
(3) To continue plotting execution following transmission of a 999 code to a current Plot Vector File, the user program must call the PSEUDO processor to create new Plot Vector File (i.e., CALL PSEUDO(6LMYFIL2)).

METHOD:
In addition to entry PSEUDO, this processor contains two other entry points, namely PLT9999 and PLT9998. An initializing call to PSEUDO will set PLT9999 into the processor switching mechanism (PLOTSW). Subsequent plot data generation will then be routed via CALPLI, PLOTSW, and PLT9999 and written on the Plot Vector File. The entry PLT9998 is used to record special purpose data from routines NFRAME and PLTSTOP.

ACCURACY:
REFERENCES: See Section 1.3, Volume IV, Computer Programing Manual.
STORAGE: \(\quad 2155_{8}\) locations total for direct subprograms
SUBPROGRAMS USED: NUMARG, PLOTSW

\section*{APPENDIX C}

DEVELOPMENT OF PARAMETRIC MODEL EQUATIONS
This appendix presents the development of the parametric model equations used in the computer program PARAM. The Larson-Miller, Orr-Sherby-Dorn, Manson-Succop, and Manson-Haferd expressions are familiar time-temperature parameters. These parameters assume that the value of the parameter (a function of stress) is a constant for each value of the temperature compensated time parameter. The Rabotnov parameter (refs. 9 and 10) is a time-stress parameter which assumes that the value of the parameter (a function of temperature) is a constant for each value of the time compensated stress parameter. Time to a given creep event and a polynomial in the parameter function (stress or temperature) were respectively the dependent and independent variables all regression model equation forms used in PARAM. The following presents the development of these five equation forms:

Larson-Miller Parameter
```

P= TR

```
\(T_{R}(\log t+c)=b_{1}+b_{2} \log \sigma+b_{3}(\log \sigma)^{2}+b_{4}(\log \sigma)^{3}\)
    \(+b_{5}(\log \sigma)^{4}+b_{6}(\log \sigma)^{5}\)
assuming \(b_{0}=-C^{\text {. }}\)
\[
\begin{aligned}
\log t & =b_{0}+b_{1} / T_{R}+b_{2} \log \sigma / T_{R}+b_{3}(\log \sigma)^{2} / T_{R} \\
& +b_{4}(\log \sigma)^{3} / T_{R}+b_{5}(\log \sigma)^{4} / T_{R}+b_{6}(\log \sigma)^{5} / T_{R}
\end{aligned}
\]
where \(P=\) the Larson-Miller parameter
\(T_{R}=\) temperature, \({ }^{\circ}{ }_{R} ;\)
\(t=\) time to a particular creep event
\(C=\) Larson-Miller constant.
\(\sigma=\) applied stress
\(b_{0}--b_{6}=\) coefficients estimated by method of least squares:

Orr-Sherby-Dorn Parameter
\(P=t \exp \left(-\Delta H / R T_{K}\right)=g(\sigma)\)
\(\log t-K\left(\Delta H / R T_{K}\right)=f(\log \sigma)\)
assuming \(\mathrm{b}_{1}=\mathrm{K} \Delta \mathrm{H} / \mathrm{R}\)
\(\log t=b_{o}+b_{1} / T_{K}+b_{2} \log \sigma+b_{3}(\log \sigma)^{2}+b_{4}(\log \sigma)^{3}\)
\(+b_{5}(\log \sigma)^{4}+b_{6}(\log \sigma)^{5}\)
where \(P=\) Orr-Sherby-Dorn parameter
\(t=\) time to a particular creep event
\(\Delta \mathrm{H}=\) apparent activation energy
\(\mathrm{R}=\) universal gas constant
\(T_{\mathrm{K}}=\) temperature, Kelvin
\(\sigma=\) applied stress
\(b_{0}-b_{6}=\) coefficients estimated by method of least squares.

Manson-Succop Parameter
\(\mathrm{P}=\log \mathrm{t}+\mathrm{CT}_{\mathrm{F}}=\mathrm{f}(\sigma)\)
\(\log t=-C T_{F}+f(\sigma)\)
assuming \(b_{I}=-C\)
\[
\begin{aligned}
\log t & =b_{0}+b_{1} T_{F}+b_{2} \log \sigma+b_{3}(\log \sigma)^{2}+b_{4}(\log \sigma)^{3} \\
& +b_{5}(\log \sigma)^{4}+b_{6}(\log \sigma)^{5}
\end{aligned}
\]
whereP \(=\) Manson-Succop parameter
\(t=\) time to a particular creep event
C = Manson-Succop constant
\(T_{F}=\) temperature, \({ }^{\circ}{ }_{F}\)
\(\sigma=\) applied stress
\(b_{0}-b_{6}=\) coefficients estimated by method of least squares.

Manson-Haferd Parameter
\(P=\left(\log t-\log t_{a}\right) /\left(T_{F}-T_{A}\right)=f(\sigma)\)
\(\log t=\log t_{a}+\left(T_{F}-T_{A}\right) f(\sigma)\)
assuming \(b_{0}=\log t_{a}\)
\[
D=T_{F}-T_{A}
\]
\(\log t=b_{0}+b_{1} D+b_{2} D \log \sigma+b_{3} D(\log \sigma)^{2}\)
\(+b_{4} D(\log \sigma)^{3}+b_{5} D(\log \sigma)^{4}+b_{6} D(\log \sigma)^{5}\)
where \(P=\) Manson-Haferd parameter
\(t=\) time to a particular creep event
\(t_{a}=\) offset time
\(\mathrm{T}_{\mathrm{F}}\) temperature, \({ }^{\circ} \mathrm{F}\)
\(\mathrm{T}_{\mathrm{A}}=\) offset temperature, \({ }^{\mathrm{o}_{\mathrm{F}}}\)
\(\sigma=\) applied stress
\(b_{0}-b_{6}=\) coefficients estimated by method of least squares which iteratively searched values of \(T_{A}\) to determine best fit.

\section*{Rabotnov Parameter}
\[
\begin{aligned}
& P=\sigma\left(1+A t^{\alpha}\right)=f(T) \\
& i^{\alpha}=-1 / A+I / A \sigma\left[C_{1}+C_{2} / T+C_{3} / T^{2}+C_{4} / T^{3}+C_{5} / T^{4}\right. \\
& \left.+C_{5} / T^{5}+C_{6} / T^{6}\right] \\
& \text { assuming } \mathrm{b}_{\mathrm{o}}=-1 / \mathrm{A} \\
& b_{i}=C_{i} / A \\
& t^{\alpha}=b_{o}+b_{1} / \sigma T+b_{2} / \sigma T^{2}+b_{3} / \sigma T^{3}+b_{4} / \sigma T^{4}+b_{5} / \sigma T^{5} \\
& +b_{6} / \sigma T^{6} \\
& \text { where } P=\text { Rabotnov parameter } \\
& \sigma=\text { applied stress } \\
& \text { A, } \alpha=\text { constants } \\
& t \text { = time to a particular creep event } \\
& T=\text { temperature, }{ }^{\circ} F \\
& b_{0}-b_{6}=\text { coefficients estimated by method of least } \\
& \text { squares which iteratively searched values of } \alpha \\
& \text { to determine best fit. }
\end{aligned}
\]

\section*{REEERENCES -}
1. Larson, F. R.; and Miller, J.: A Time-Temperature Relationship for*Rupture and Greep Stresses. Trans. - ASME, vol. 74, 1952, pg. 765.
2. Orr, R. L.; Sherby, O.D.; and Dorn, J.E.: Correlations of Rutpure Data for Metals at Elevated Temperatures. Trans. ASM, vol. 46, 1954, pg. 113.
3. Manson, S.S.; and Haferd, A.M.: A Linear Time-Temperature Relation for Extrapolation of Creep and Rupture Stress Data. NACA TN-2890, 195.3.
4. Goldhoff, R. M.; and Hahn, G. J.: Correlation and Extrapolation of Creep-Rupture Data of Several Steels and Superalloys Using Time-Temperature Parameters. ASM publication D8-100, American Society for Metals, 1968, pg. 199.
5. Goldhoff, R. M.: Towards the Standardization of Time-Temperature Parameter Usage in Elevated Temperature Data Analysis. J. Testing and Evaluation, ASTM, vol. 2, no. 5, Sept. 1974, pp. 387-424.
6. Conway, J. B.: Stress-Rupture Parameters: Origin, Calculation, and Use. Gordon and Breck, 19.69.
7. Draper, N.R.; and Smith, H.: Applied Regression Analysis. John Wiley and Sons, Inc., 1966.
8. Daniel, C.; and Wood. F. S.: Fitting Equations to Data. John Wiley and Sons, Inc., I971.
9. Penny, R. K.; and Marriott, D. L,: Design for Creep. McGraw-Hill Book Co. (UK), Ltd. (Maidenhead, Berkshire, England), 1971.
10. Rabotnov, Yu. N.: Creep Problems in Structural Members. North Holland Publishing Co. (Amsterdam), 1969.
11. Hahn, G. J.: Statistical Intervals for a Normal Population. . GE Report No. 69-C-382, General Electric Research and Development Center, Schenectady, New - York, Nov . \(196{ }^{\circ}\)
\begin{tabular}{lllll}
1 & 0 & \(-5000 \cdot 0\) & 0.2 \\
1 & 4 & & & \\
2 & 4 & & & \\
3 & 4 & & & \\
4 & 4 & & & \\
5 & 3 & & & \\
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ALLOY 9 & 316 STAINLESS & STEEL \\
\hline 3142.90 & 1175.00 & 25.00 \\
\hline 74.60 & \(1200 \cdot 00\) & 30.00 \\
\hline 213.00 & 1200.00 & 28.00 \\
\hline 656.20 & \(1200 \cdot 00\) & 25.00 \\
\hline 3476.10 & \(1200 \cdot 00\) & 22.00 \\
\hline 6825.30 & \(1200 \cdot 00\) & 20.00 \\
\hline 10076.50 & 1200.00 & 18.50 \\
\hline 15790.80 & 1200.00 & 17.00 \\
\hline 290.90 & 1225.00 & 25.00 \\
\hline 186.50 & 1250.00 & 25.00 \\
\hline 81.50 & \(1275 \cdot 00^{\circ}\) & 25.00 \\
\hline 36.50 & 1300.00 & 25.00 \\
\hline 104.10 & 1300.00 & 22.00 \\
\hline 228.20 & 1300.00 & 20.00 \\
\hline 258.10 & 1300.00 & 19.00 \\
\hline 319.00 & \(1300 \cdot 00\) & 18.00 \\
\hline 377.50. & 1300.00 & 17.00 \\
\hline 753.70 & \(1300 \cdot 00\) & 16.00 \\
\hline 785.30 & 1.300 .00 & 16.50 \\
\hline 1232.50 & \(1300 \cdot 00\) & 15.00 \\
\hline 185.4.60 & \(1300 \cdot 00\) & 13.60 \\
\hline 2421.00 & \(1300 \cdot 00\) & 13.00 \\
\hline 4078.30 & 1300.00 & 12.00 \\
\hline 6258.10 & 1300.00 & 11.00 \\
\hline 21.50 ? & 1325.00 & 25.00 \\
\hline + 9.90 & 1350.00 & 25.00 \\
\hline 2.70 & \(1400 \cdot 00\) & 25.00 \\
\hline \(\therefore 83.30\) & 1400.00 & 15.00 \\
\hline - 251.20 & 1400.00 & 12.50 \\
\hline 921:00 & 14.00.000 & 10.00 \\
\hline \(\cdots 27.90\) & 1450.00 & 15.00 \\
\hline 75.20 & 1450.00 & 12.50 \\
\hline 5.00 & \(1500 \cdot 00\) & 16.40 \\
\hline \(40.60{ }^{\circ}\) & \(1500 \cdot 00\) & 12.50 \\
\hline 87.90 & 1500.00 & 10.00 \\
\hline 170.40 & 1500.00 . & 9.00 \\
\hline 614.90 & 1500.00 & 7.00 \\
\hline 28:70 & 1550.00 & 10.00 \\
\hline
\end{tabular}

Figure I.-Input data for \(^{\text {Case }} 1\).

LEAST-SQUARFS REGRESSION PROGRAM FOR PARAMETRIC
ANALYSIS OF CRESP-RUPTURE DATA
SET DATA SET
OPTION CARD OPTION CARD
INPUT=1
IOUT = 0
\(T A=\quad-5000\)
\(R A=\quad .2000\)
CASF CONTROL CARDS
PARAMETER CODE NO. COEFFICIENTS
1
2
3
4
5
4
4
4
4
3

Figure 2.-Output for Case 1.

LEAST-SQÚARES REGRESSION PROGRAM FOR PARAMETRIC

\section*{ANALYSIS OF CREEP-RUPTURE DATA}
\[
\begin{aligned}
& \text { DATA SET } \\
& \text { PARAMETER }
\end{aligned}
\]

REGRESSION VALÜUS

                    ALLOY 9
```

 316 STAINLESS STE=L
    ```
DATA SET
PARAMETER SELECTED
PARAMETER SELECTED
ND. OF EBSERVATIONS
ND. OF CBSERVATIONS
NO. OF INDEPENDENT VARIABLES
ND. OF INDEPENDENT VARIABLES
RESIDUAL DEGRE \(S\) OF FREEDOM
RESIDUAL DEGRE S OF FR
F - VALUE
RESIDUAL MEAN CQUARE
STANDARD ERRDR
RESIDUAL SSUM QF SQUARFS
RESIDUAL SUM QF SQUARFS
TOTAL. SUMS OF SQUARFS
TOTAL SUMS OF SQUARFS
MULT. CORREL. COEF. SQUARED
                    L-M
38
                        38
3
34
                    34
476.8
\(2.1495 \mathrm{E}-02\)
\(1.4661 \mathrm{E}-01\)
\(1.4661 E-01\)
\(7.3083 E-01\)
\(7.3083 E-01\)
\(3.1476 E+01\)
\(3.1476 \mathrm{E}+01\)
                                .9768

VARIABLE CODE
    \(S=\) LOG STRESS
        \(T=\) TEMPFRATURE
        \(D T=T-T A\)
        \(i=T=T-T A\)
\(L=S T R E S S\)
    95 PERCENT PREDICTION INTERVAL STATISTICS
                    LOG TIME
                                    REAL TIME FACTOR (ANTILOG WIDTH)
\begin{tabular}{lll} 
AVERAGE WIDTH & .621 & 4.2 \\
MAXIMUM WIDTH & .741 & 5.5
\end{tabular}

Figure 2。-Continued.

EAST-S̃QUARES REGRESSION PROGRAM FOR PARAMETRIC
ANALYSIS OF CREEP-RU'PTURE DATA
\(\qquad\) - 'REGRF́SSION VALUES

GATA'SET . ALLOY. '9
PARAMETER.SELECTED
NO. OF INDEPENDENT VARIABLES NO. OF NGEGRES DF FREEDOM ESIDUAL OEGRES SE FEDOL FFEIVALUE MEAN "SQUARE \(\cdot\)
RESIDUAL MFAN
STANDARD ERROR
STANDARD ERROR
RESIDUAL SUM OF SQUARES
* \(\begin{array}{r}575.9 \\ 7867 \mathrm{E}-02\end{array}\)
+ \(\quad .1 .7867 \mathrm{E}-02\)
RESIDUAL SUM OF SQUARE
\(1.3367 E=01\)
\(\therefore 6.0748 \mathrm{E}=01\)
- \(3.147 .6 \mathrm{E}+01\)

MULT. CORREL. .CDEF FE.. SOUARED."
\(7.6 E+01\)
. .9807
MIN \(Y=4.325-01 ;\) MAX \(Y=4.2 \dot{O} 5+00 \quad Y\) RANGE \(=3.77 E+00 \quad\) MEAN \(Y=2.45 E+00\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline VARIABLE & COEFAP(I) & & E.COEF. & T & MEAN X(I) & MIN X (I) & MAX X 111 & RAN X(I) & RINF & PSUM & CERR \\
\hline - \({ }^{\text {a }}\) & \(-1.5630 E+01\) & & & & \(1.011 \mathrm{E}-03\) & 8.965-04 & 1.10E-03 & 2.06E-04 & 1.15 & . 333 & -. 00 \\
\hline 1/t & 2:1117E +04 & & \(5.27 \mathrm{~F}+02\) & . 07 & \(1.011 E-03\) & 8.45E-01 & \(1.48 \mathrm{E}+00\) & \(6.32 \mathrm{E}=01\) & . 25 & . 658 & .00 \\
\hline S & \(1.5077 \mathrm{E}+00\) & & 2. \(22 \mathrm{~F}+00\) & . 75 & \(1.228 E+00\)
\(1.533 E+00\) & 7.14E-01 & 2.18E+00 & i. \(47 \mathrm{E}+00\) & \(-1.30\) & . 009 & .00 \\
\hline
\end{tabular}
variable code
S=LDG STRESS
T=TEMPERATURE
DTET-TA
\(\mathrm{L}=\mathrm{STRESS}\)
95 PERCENT PREDICTICN INTERVAL STATISTICS TME FACTOR (ANTILOG WIDTH)
\begin{tabular}{lll} 
AVER AGE WIDTH & .567 & 3.7 \\
MAXIMUM WIDTH & .593 & 3.9
\end{tabular}

Figure 2.-Continued.

```

Least-Squares regression prigram for parametric analysis of Creeprrupture data

```


Figure 2.-Continued.

\section*{LFAST-SQUAPES REGRESSION PROGRAM FOR PARAMETRIC} ANALYSIS OF CREEP-RUPTURE DATA


Figure 2.-Continued.

```

 LEAST-SQUARES REGRESSION PRCGRAN FOR PARAMETRIC
 ANAIYSIS OF CREEP-RUPTURE DATA
 DATA SET
 REGRESSION VALUES --N--ニー-
 TATA SET ALLDY 9 316 STAINLESS STEEL
PARAMETER SELECTED
NO. OF NBSERYATIONS
NO. OF INDEPENDENT VARIABLES
NO. OF INDEPENDENT VARIABLES
F- VALUE
RESIDUAL. MEAN SQUARE
RESIDUAL SUH OF SQUARES
TOTAL SUMS OF SQUARES
TMTAL SUMS OF SQUARES
ALLDY 9 等 316
220.4
RABOTNOV CONSTANT (RA) = .05630

MIN	$Y=1.06$	E＋00 MAX Y	1．72E +	$0{ }^{+}$	ANGE $=6$.	E－01	$\mathrm{N} \mathbf{Y}=$	8E＋00			
1	VARIABLE	COEF．P（I）	S．E．COEF．	T	MEAN X $\mathrm{X}(\mathrm{I})$	MiN X（I）	MAX X 11	RAN X（I）	RINF	PSUM	CERR
3	varyable	8．7594E－01									
1	1／L＊	$-3.6886 E+04$	$2.06 E+03$	17．94	$4.693 \mathrm{E}-05$	$2.78 \mathrm{E}-05$	$9.52 E-05$	$6.75 \varepsilon-05$	-3.74	$.092$	0.00
2	1／1＊T＊＊2	6．3869E＋07	3．19E＋06	20.01	$3.505 \mathrm{E}-08$	2．04E－08	$6.35 \mathrm{E}-08$	$4.31 E-08$	4.13	$.908$	
VAP TABLE	CODE										
	$S=L$ OG STRESS$\mathrm{T}=$ TEMPERATURE										
	$O T=T-T A$										
	$L=S T R E S S$										
95	PERCENT PREDICTION INTERVAL STATISTICS										
	Percent pr	LOG TIME		AL TI	FACTOR IANT	OG WIOTH					
AVFRAGE	WIDTH	1.088			12.3						
MAXIMUM	HIDTH	1.350			22.4						

Figure 2.-Concluded.

```
\begin{tabular}{llll}
0 & 0 & \(-5000 \cdot 0\) & 0.2 \\
2 & 3 & & \\
2 & 4 & & \\
2 & 5 & & \\
2 & 6 & & \\
2 & 7 & &
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Alloy 9 & 316 STAINLESS & STEEL \\
\hline 3142.90 & 1175.00 & 25.00 \\
\hline 74.60 & 1200.00 & 30.00 \\
\hline 213.00 & 1200.00 & 28.00 \\
\hline 656.20 & 1200.00 & 25.00 \\
\hline 3476.10 & \(1200 \cdot 00\) & 22.00 \\
\hline 6825.30 & 1200.00 & 20.00 \\
\hline 10076.50 & 1200.00 & 18.50 \\
\hline 15790.80 & 1200.00 & 17.00 \\
\hline 290.90 & 1225.00 & 25.00 \\
\hline 186.50 & 1250.00 & 25.00 \\
\hline 81.50 & 1275.00 & 25.00 \\
\hline 36.50 & 1300.00 & 25.00 \\
\hline 104.10 & 1300.00 & 22.00 \\
\hline 228.20 & 1300.00 & 20.00 \\
\hline 258.10 & 1300.00 & 19.00 \\
\hline 319.00 & 1300.00 & 18.00 \\
\hline 377.50 & \(1300 \cdot 00\) & 17.00 \\
\hline 753.70 & 1300.00 & 16.00 \\
\hline 785.30 & \(1300 \cdot 00\) & 16.50 \\
\hline 1232.50 & \(1300 \cdot 00\) & 15.00 \\
\hline 1854.60 & 1300.00 & 13.60 \\
\hline 2421.00 & \(1300 \cdot 00\) & 13.00 \\
\hline 4078.30 & 1300.00 & 12.00 \\
\hline 6258.10 & 1300.00 & 11.00 \\
\hline 21.50 & 1325.00 & 25.00 \\
\hline 9.90 & \(1350 \cdot 00\) & 25.00 \\
\hline 2.70 & 1400.00 & 25.00 \\
\hline 83.30 & 1400.00 & 15.00 \\
\hline 251.20 & 1400.00 & 12.50 \\
\hline 921.00 & 1400.00 & 10.00 \\
\hline 27.90 & 1450.00 & 15.00 \\
\hline 75.20 & 1450.00 & 12.50 \\
\hline 5.00 & \(1500 \cdot 00\) & 16.40 \\
\hline 40.60 & \(1500 \cdot 00\) & 12.50 \\
\hline 87.90 & 1500.00 & 10.00 \\
\hline 170.40 & 1500.00 & 9.00 \\
\hline \[
614.90
\] & 1500.00 & 7.00 \\
\hline \[
28.70
\] & 1550.00 & 10.00 \\
\hline
\end{tabular}

Figure 3.-Input data for Case 2.
```

LEAST-S QUARES REGRESSION PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA

```


Figure 4.-Continued.

LEAST-SQUARÉS REGRESSION PROGRAM FOR PARAMETRIC
- ANALYSIS DF CREEP-RUPTURE DATA


Figure 4.-Continued.

Figure 4.-Continued.
```

 LEAST-SQUARFS REGRESSION PRCGRAM FDR PARAMETRIC
 ANALYSIS OF CREEP-RUPTURF DATA
 OATA SET REGRFSSION VALUFS ALLLOY %
 PARAMETER SELECTED , *
NO. OF OBSERVATIONS
O-S-D
38
NO. OF INOEPENDENT VARIABLES
QESIDUAL DEGREES OF FREEDOM
F ~ value
RESIDUAL MEAN SQUARE
STANDARD ERROR
RESIDUAL SUM OF SQUARES
TITAL SUMS OF SQUARES
MULT. CORREL. COEF. SQUARED
MIN $Y=4.31 E-01 \quad$ MAX $Y=4.20 E+00 \quad Y R A N G E=3.77 E+00 \quad$ MEAN $Y=2.45 E+00$

1	VARIABLE	COEF.P(1)	S.E.COEF.	T	MEAN X(1)	MIN X(I)	$\operatorname{MaX} \times(\mathrm{I})$	RAN X(I)	RINF	PSUM	CERR
0		$-1.0736 E+02$									
1	$1 / T$	2.1161F +04	4. $09 \mathrm{E}+02$	51.77	1.011E-03	8.96E-04	$1.10 E-03$ $1.48 E+00$	$\begin{aligned} & 2.06 E-04 \\ & 6.32 E-01 \end{aligned}$	$\begin{array}{r} 1.15 \\ 58.47 \end{array}$.330 .652	-.00
2	S	$3.4852 \mathrm{E}+02$	$1.28 \mathrm{E}+192$	2.72	$1.228 E+00$	8.45E-01	$1.48 E+00$ $2.18 E+00$	$6.32 E-01$ $1.47 E+00$	58.47 -190.05	. 6009	-.00
3	5**2	-4.8780E +02	1.69F+02	2.89	$1.533 \mathrm{E}+00$	$7.14 \mathrm{E}-01$	$2.18 E+00$	$1.47 E+00$. 005	-.00
4	S**3	2.9592E +02	9.76E+01	3.03	1.9425+00	6.04E-01	3.22E+00	$2.62 E+00$	205.77 -75.36	. 003	-.00 -.00
5	S**4	$-6.6787 E+01$	2.10E+01	3.18	2.492F+00	5.10E-01	$4.76 \mathrm{E}+00$	$4 \cdot 25 E+00$	-75.36	.003	$\cdots .00$

VARIABLE CODE
S=LOG STRESS
T=TEMPERATURE
OT=T-TA
L=STRFSS
95 PERCENT PREDICTION INTERVAL STATISTICS
LOG TIMF REAL TIME FACTOR (ANTILOG WIDTH)

AVERAGE HIDTH	.444	2.8
MAXIMUM HIDTH	.560	3.6

```

Figure 4.-Continued.

FAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC
ANALYSIS OF CREEP-RUPTURE DATA

\(\qquad\) 316 STAINLESS STEEL \(316 S\)
\(0-5-0\)
38
6
6
31
484.8
\(1.0708 \mathrm{E}-02\)
\(1.0348 \mathrm{E}-01\)
\(3.3194 \mathrm{E}-01\)
3. \(1476 \mathrm{E}+0\)

95 PERCENT PREDICTION INTERVAL STATISTICS
\begin{tabular}{lll} 
AVFFAGE HIDTH & .454 & 2.8 \\
MAXIMUM WIDrH & .590 & 3.9
\end{tabular}

Figure 4.-Concluded.
\begin{tabular}{|c|c|c|}
\hline 33 & \(-5000 \cdot 0\) & 0.2 \\
\hline 26 & & \\
\hline Alloy 9 & 316 STAINLESS & STEEL \\
\hline 3142.90 & 1175.00 & 25.00 \\
\hline 74.60 & 1200.00 & 30.00 \\
\hline 213.00 & 1200.00 & 28.00 \\
\hline 656.20 & \(1200 \cdot 00\) & 25.00 \\
\hline 3476.10 & \(1200 \cdot 00\) & 22.00 \\
\hline 6825.30 & 1200.00 & 20.00 \\
\hline 10076.50 & 1200.00 & 18.50 \\
\hline 15790.80 & 1200.00 & 17.00 \\
\hline 290.90 & 1225.00 & 25.00 \\
\hline 186.50 & 1250.00 & 25.00 \\
\hline 81.50 & 1275.00 & 25.00 \\
\hline 36.50 & 1300.00 & 25.00 \\
\hline 104.10 & 1300.00 & 22.00 \\
\hline 228.20 & \(1300 \cdot 00\) & 20.00 \\
\hline 258.10 & 1300.00 & 19.00 \\
\hline 319:00 & 1300.00 & 18.00 \\
\hline 377.50 & \(1300 \cdot 00\) & 17.00 \\
\hline 753.70 & 1300.00 & 16.00 \\
\hline 785.30 & 1300.00 & 16.50 \\
\hline 1232.50 & 1300.00 & 15.00 \\
\hline 1854.60 & \(1300 \cdot 00\) & 13.60 \\
\hline 2421.00 & \(1300 \cdot 00\) & 13.00 \\
\hline 4078.30 & 1300.00 & 12.00 \\
\hline 6258.10 & 1300.00 & 11.00 \\
\hline 21.50 & 1325.00 & 25.00 \\
\hline 9.90 & 1350 .00 & 25.00 \\
\hline 2.70 & 1400.00 & 25.00 \\
\hline 83.30 & 1400.00 & 15.00 \\
\hline 251.20 & 1400.00 & 12.50 \\
\hline 921.00 & 1400.00 & 10.00 \\
\hline 27.90 & 1450.00 & 15.00 \\
\hline 75.20 & 1450.00 & 12.50 \\
\hline 5.00 & 1500.00 & 16.40 \\
\hline 40.60 & 1500.00 & 12.50 \\
\hline 87.90 & \(1500 \cdot 00\) & 1.0 .00 \\
\hline 170.40 & \(1500 \cdot 00\) & 9.00 \\
\hline 614.90 & 1500.00 & 7.00 \\
\hline 28.70 & 1550.00 & 10.00 \\
\hline
\end{tabular}

Figure 5.-Input data for Case 3.

LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC
ANALYSIS OF CREEP-RUPTURE DATA
DATA SET ALLOY 9316 STAINLESS STEEL OPTION CARD INPUT= 3
I DUT \(=3\)
TA= -5000
\(R A=\)
.2000
CASE CONTROL CARDS parameter code

2
NO. CDEFFICIENTS
6

Figure 6.-Output for Case 3.
\begin{tabular}{|c|c|c|c|}
\hline NO. INPUT & TIME & STRESS & TEMPERATURE \\
\hline 1 & 3142.90 & 25 & 1175 \\
\hline 2 & 74.60 & 30 & 1200 \\
\hline 3 & 213.00 & 28 & 1200 \\
\hline 4 & 656.20 & 25 & 1200 \\
\hline 5 & 3476.10 & 22 & 1200 \\
\hline 6 & 6825.30 & 20 & 1200 \\
\hline 7 & 10076.50 & 18 & 1200 \\
\hline 8 & 15790.80 & 17 & 1200 \\
\hline \(?\) & 290.90 & 25 & 1225 \\
\hline 10 & 186.50 & 25 & 1250 \\
\hline 11 & 81.50 & 25 & 1275 \\
\hline 12 & 36.50 & 25 & 1300 \\
\hline 13 & 104.10 & 22 & 1300 \\
\hline 14 & 228.20 & 20 & 1300 \\
\hline 15 & 258.10 & 19 & 1300 \\
\hline 16 & 319.00 & 18 & 1300 \\
\hline 17 & 377.50 & 17 & 1300 \\
\hline 18. & 753.70 & 16 & 1300 \\
\hline 19 & 785.30 & 16 & 1300 \\
\hline \(2)\) & 1232.50 & 15 & 1300 \\
\hline 21 & 1.854 .60 & 14 & 1300 \\
\hline 22 & 2421.00 & 13 & 1300 \\
\hline 23 & 4078.30 & 12 & 1300 \\
\hline 24 & 6258.10 & 11 & 1300 \\
\hline 25 & 21.50 & 25 & 1325 \\
\hline 26 & . 9.90 & 25 & 1350 \\
\hline 27 & 2.70 & 25 & 1400 \\
\hline 28 & 83.30 & 15 & 1400 \\
\hline 29 & 251.20 & 13 & 1400 \\
\hline 30 & 921.00 & 10 & 1400 \\
\hline 31 & 27.90 & 15 & 1450 \\
\hline 32 & 75.20 & 13 & 1450 \\
\hline 33 & 5.00 & 16 & 1500 \\
\hline 34 & 40.60 & 13 & 1500 \\
\hline 35 & 87.90 & 10 & 1500 \\
\hline 36 & 170.40 & 9 & 1500 \\
\hline 37 & 6.14 .90 & 7 & 1500 \\
\hline 38. & 28.70 & 10 & 1550 \\
\hline
\end{tabular}

Figure 6.-Continued.
```

FAST-SOUARES REGRESSION PROGRAM FOR PARAMETRIC
ARALYSIS GF GREEP-RUPTURE DATA

```
\(\qquad\)
``` gegress ion values
DATA SET
PARAHETER SELECTED
NO. OF OBSERVATIONS
NO. of INDEPENDENT VARIABLES
```

$\qquad$

```
NES OF INDEPENDENT VARIABLES
c - VALUE
RES IDUAL M=AN SQUARE
STANDARD ERROR
CSIDUAL SUM OF SQUARES
TרTAL SUMS GF SOUARES
\(\begin{array}{lr}\text { TYTAL SURS GF SOUARES } & \text { M. } \\ \text { MULT. CORREL. COEF. SQUARED } & .98944\end{array}\)
```


## 316 STAINLESS STEEL

```
0-S-0
33
33
5
32
594.8
594.8
\(1.0472 \mathrm{E}-02\)
\(1.0233 \mathrm{E}-01\)
\(1.0233 \mathrm{E}-01\)
3. \(3509 \mathrm{E}-01\)
MIN \(Y=4.31 E-01 \quad\) MAX \(Y=4.20 F+00 \quad Y\) RANGE \(=3.77 E+00 \quad\) MEAN \(Y=2.45 E+00\)
```



```
VADIABLE CODE
\(S=L\) OG STRESS
T=TEMPERATURE
\(O T=T-T A\)
\(\mathrm{L}=\mathrm{STRESS}\)
95 PERCENT PREDICTION INTERVAL STATISTICS
ION INT ERV
LIME
REAL TIME FACTOR (ANTILOG WIDTH)
AVERAGE WIDTH
MAXIMUM WIDTH
.444
2.8
3.6

Figure 6.-Continued.

RAACKTRANSFDRMED RESTDUALS - RFAL SPACE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 735 & \(r\) ness & Y CALC & RESIDUAL & PCTERF & QROER & CIMIN & CIMAX & PIMIN & PIMAX \\
\hline & 1 & 3.143F+0.2 & 1.8465+03 & 1.297F+03 & 41.3 & 4 & 1.580E+03 & 2.156E+03 & 1.113E+J3 & \(3.061 E+03\) \\
\hline & 2 & 7.460\% +01 & 7.571E+01 & -1.1085+00 & -1.5 & 32 & 5.428E+01 & \(1.056 \mathrm{E}+02\) & 4.217E+01 & 1.359E+02 \\
\hline & 3 & 2. \(2305+02\) & 2.1435+02 & -1.322E+00 & -. 6 & 26 & 1.723E+02 & \(2.665 \mathrm{E}+02\) & \(1.264 E+02\) & 3.635E+02 \\
\hline & 4 & 6. \(262 F+02\) & 8.223F+02 & \(-1.6 E 1=+02\) & -25.3 & 5 & \(7.155 E+02\) & \(9.451 E+02\) & 4.982E+02 & \(1.357 \mathrm{E}+03\) \\
\hline & \(=\) & 3.476F+03 & 2.523E+03 & 9.527ㄷ02 & 27.4 & 8 & \(2.174 \mathrm{E}+03\) & 2.928E+03 & \(1.525 E+03\) & \[
4.176 E+03
\] \\
\hline & \(\stackrel{1}{6}\) & \(6.825 F+{ }^{\text {c }} 3\) & \(4.875^{5}+03\) & 1.9E1F+03 & 28.6 & 6 & 4.153E+03 & 5.722ㄷ+03 & \(2.935 E+33\) & \(8.096 E+03\) \\
\hline & & L. \(0085+04\) & 7. \(8065+03\) & 2. \(2705+03\) & 22.5 & 11 & \(6.611 E+03\) & 9.218E+03 & 4.691E+03 & 1.299Et04 \\
\hline & 8 & 1. \(5795+04\) & 1. \(2535+34\) & \(3.2585+03\) & 20.6 & 12 & 1.353E+04 & \(1.4915+04\) & 7.513E+J3 & 2.091 Et04 \\
\hline & \(\bigcirc\) & 2.909\%+n2 & \(3.753 F+02\) & -8.4385+01 & -29.0 & 5 & 3.300E+02 & \(4.268 E+02\) & 2.280E+02 & \(6.176 \mathrm{E}+02\) \\
\hline & :0 & 1. \(8655+02\) & 1.752E+02 & 1.126E+01 & 6.0 & 24 & 1. \(547 \mathrm{E}+02\) & 1.986E+02 & \(1.066 \mathrm{E}+32\) & 2.881E+02 \\
\hline & 11 & \(8.150 F+01\) & \(8.365 E+01\) & -2.1495+00 & -2.6 & 30 & \(7.359 \mathrm{E}+31\) & \(9.508 E+01\) & \(5.083 \mathrm{E}+01\) & \(1.376 E+02\) \\
\hline & 12 & \(3.650 \mathrm{~F}+01\) & \(4.078 \mathrm{E}+01\) & -4.276E+00 & -11.7 & 18 & 3.556E+01 & \(4.676 E+01\) & 2.472E+j1 & 6.726E+01 \\
\hline & 13 & \(1.041^{6+}+2\) & 1.251E+02 & -2.103E+01 & -20.2 & 13 & \(1.096 \mathrm{E}+02\) & 1.428E+02 & 7.595E+01 & 2.061E+02 \\
\hline & 1.4 & 2.282=+02 & 2.417E+02 & \(-1.353 E+01\) & -5.9 & 25 & 2.121E+02 & 2.755E+02 & 1.468E+02 & 3.981E+02 \\
\hline & 15 & \(2.581 \overline{+}+22\) & \(3.3115+02\) & \(-7.304 E+01\) & -28.3 & 7 & 2.917E+1)2 & 3.759E+02 & 2.013E+02 & \(5.447 \mathrm{E}+02\) \\
\hline & \(1{ }^{1}\) & 3.1905+02 & \(4.526 E+02\) & -1.336E+02 & -41.9 & 3 & \(4.009 \mathrm{E}+02\) & \(5.109 E+02\) & 2.755E+02 & \(7.435 \mathrm{E}+02\) \\
\hline & 17 & \(3.7755+32\) & \(6.2155+32\) & -2.440E+02 & -64.6 & 1 & \(5.532 \mathrm{E}+02\) & 6.982E+02 & \(3.7875+02\) & \(1.0205+03\) \\
\hline & 18 & \(7.5375+32\) & \(8.642=+32\) & \(-1.105 E+02\). & -14.7 & 15 & 7.701E+02 & \(9.699 \mathrm{E}+02\) & \(5.268 \mathrm{E}+02\) & \(1.418 \mathrm{E}+03\) \\
\hline \[
\cdots
\] & \(\underline{1}\) & 7.853 \(=02\) & \(7.313 ミ+02\) & \(5.399 E+01\) & 6. 9 & 21 & \(6.517 E+02\) & 8.207E+02 & \(4.458 \mathrm{E}+32\) & 1.200E+03 \\
\hline \[
\infty
\] & \(2{ }^{-}\) & \(1.232=+13\) & 1.228 +03 & \(4.0875+00\) & . 3 & 37 & 1:089E+03 & 1.385E+03 & \(7.479 E+02\) & \(2.018 \mathrm{E}+03\) \\
\hline & 21 & \(1.8555+33\) & 2.127F+03 & -2.727E+02 & \(-14.7\) & 14 & 1.852E+03 & \(2.443 E+03\) & \(1.289 E+93\) & \(3.510 \mathrm{E}+03\) \\
\hline & 22 & 2.421F+n2 & 2.7665+0 3 & -3.445F+02 & -14.2 & 16 & \(2.383 E+03\) & \(3.210 E+03\) & 1.671E+03 & \(4.577 \mathrm{E}+03\) \\
\hline & 23 & +.0785+03 & \(4.4795+03\) & -4.010E +02 & -9.8 & 19 & \(3.784 E+03\) & 5.302E+03 & \(2.6905+03\) & 7.459E+03 \\
\hline & 24 & \(6.2585+53\) & \(7.7345+73\) & \(-1.476 E+03\) & -23.6 & 10 & \(6.399 E+03\) & 9.347E+03 & \(4.610 E+03\) & 1.297E+04 \\
\hline & 25 & 2. \(150 \%+01\) & \(2.028=+01\) & 1.219E+00 & 5.7 & 26 & \(1.745 E+01\) & \(2.257 E+01\) & \(1.225 \mathrm{E}+01\) & \(3.358 E+01\) \\
\hline & -6 & 9.900 \({ }^{\text {c }}+00\) & 1.0285+01 & -3.842 -01 & -3. 9 & 28 & \(8.739 \mathrm{E}+05\) & \(1.214 \mathrm{E}+01\) & \(6.180 E+30\) & 1.711E+01 \\
\hline & 27 & \(2.700=+00\) & \(2.793=+00\) & -9.325E-02 & -3.5 & 29 & 2.279E+00 & \(3.423 E+00\) & \(1.656 \mathrm{E}+00\) & \(4.710=+00\) \\
\hline & 24 & 8. \(330=+01\) & \(8.4155+01\) & -8.487E-01 & -1.0 & 33 & 7.397E+01 & \(9.572 E+01\) & \(5.113 \mathrm{E}+01\) & 1.385E+02 \\
\hline & 3 & 2.512=+:2 & \(2.3935+22\) & 1. \(1905+01\) & 4.7 & 27 & 2.394E+.72 & \(2.734 \mathrm{E}+02\) & \(1.452 \mathrm{E}+02\) & 3.943E+02 \\
\hline & 30 & 9. \(210=+02\) & \(9.781=+02\) & \(-5.7075+01\) & -6.2 & 23 & \(8.302 E+02\) & \(1.152 E+03\) & \(5.882 \mathrm{E}+02\) & \(1.626 E+03\) \\
\hline & 31 & \(2.799=+71\) & \(2.447^{c}+91\) & \(3.4305+00\) & 12.3 & 17 & 2.089F+01 & 2.866E+01 & \(1.474 \mathrm{E}+01\) & \(4.061 \mathrm{E}+01\) \\
\hline & 32 & 7. \(520^{\circ}+91\) & 5.959E+01 & \(5.614 \mathrm{E}+00\) & 7.5 & 20 & \(6.004 E+01\) & \(8.064 E+01\) & \(4.206 E+01\) & 1.151E+02 \\
\hline & 33 & 5. \(200=+00\) & \(4.663 E+00\) & 3.367E-01 & 6.7 & 22 & \(3.777 E+00\) & \(5.757 \mathrm{E}+00\) & \(2.757 \mathrm{E}+00\) & \(7.887 \leq+00\) \\
\hline & 34 & \(4.0605+01\) & 2.1555+01 & 1.905E+01 & 4E. 9 & 2 & \(1.813 E+01\) & \(2.561 \mathrm{E}+01\) & \(1.292 E+01\) & 3.594E+01 \\
\hline & 35 & \(8.790=+31\) & \(8.8095+01\) & -1.8785-01 & -. 2 & 38 & 7.442F+01 & \(1.043 E+02\) & 5.290E+J1 & \(1.467 \mathrm{~F}+02\) \\
\hline & 36 & 1.794=+32 & \(1.7196+02\) & \(-1.5105+00\) & -. 9 & 34 & \(1.418 \mathrm{E}+02\) & 2.083E+02 & \(1.024 E+02\) & 2.887E+02 \\
\hline & 27 & \(6.1495+02\) & \(6.030 E+02\) & 1.192E+01 & 1.9 & 31 & \(3.928 E+02\) & \(9.257 E+02\) & \(3.165 \mathrm{E}+32\) & 1.149E+03 \\
\hline & 38 & \(2.870 \mathrm{~F}+21\) & \(2.8925+01\) & -2.208E-01 & \(-.8\) & 35 & 2.398E+01 & \(3.488 \mathrm{E}+01\) & \(1.725 E+01\) & \(4.848 \mathrm{E}+01\) \\
\hline
\end{tabular}

Figure 6.-Continued.

Figure 6.-Concluded.```

[^0]: $1_{\text {Publitshed }}$ in proceedings of International Conference on Creep and Fatigue in Elevated Temperature Applications, Philadelphia, PA, September 1.973 and Sheffield UK, April 1974; Conference publication 13, Institution of Mechanical Engineers.

[^1]: *References are given in Appendix 1.

[^2]: *The prediction interval (6) is used to make a statement about the anticipated value of the dependent variable (y) for a future single observation at a specific value of the independent variable (x) or variables ($x_{j}, x_{j}, x_{k} \ldots$); for example, y will be between 2 and 6 for 95 percent of all future single observations taken at $x=3$. The more familiar confidence interval, on the other hand, is used to make statements about the true mean value of y; for example, there is a 95-percent probability that the true mean value of y at $x=3$ is between 3 and 5. The prediction interval limits are wider since these include both the sampling errors and the uncertainties in estimating the mean value of y.

[^3]: ${ }^{\text {a }}$ Evidence of 111 -conditioned solution for seven term model.

