(NASA-TM-X-74330) CREEF-RUPTURE LATA ANALYSIS - ENGINEERING AFFLICATION CF REGRESSION TECHNIQUES Ph.D. Thesis - North Carolina State Univ. (NASA) 166 p HC A08/MF CSCI 13M G3/39 15873

# CREEP-RUPTURE DATA ANALYSIS -

ENGINEERING APPLICATION OF REGRESSION TECHNIQUES

by

Donald R. Rummler

A thesis submitted to the Graduate Faculty of North Carolina State University at Raleigh in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

DEPARTMENT OF MATERIALS ENGINEERING

RALEIGH

1976

APPROVED BY:

w.c

Chairman of Advisory Committee

| REPRODUCED BY<br>NATIONAL TECHNICAL |                  |
|-------------------------------------|------------------|
| INFORMATION SERVICE                 | ,                |
| U. S. DEPARTMENT OF COMMERCE        | 1                |
|                                     | <del>, _</del> ' |

#### ABSTRACT .

RUMMLER, DONALD ROBERT. Creep-Rupture Data Analysis -Engineering Application of Régression Techniques (Under the direction of HAYNE PALMOUR III).

The creep and rupture behavior of materials can control the design of structures which operate at elevated temperatures. In lieu of an adequate fundamental understanding, current design practice makes use of a variety of empirical techniques to predict creep behavior.

The results of investigations to apply regression techniques to the development of methodology for creep-rupture data analysis are presented. Regression analysis techniques are applied to the explicit description of the creep behavior of materials for space shuttle thermal protection systems. A regression analysis technique is then compared to five parametric methods for analyzing three simulated and twenty real data sets. Finally, a computer program for the efficient evaluation of creep- rupture data with five parametric methods is presented.

### BIOGRAPHY

Donald R. Rummler was born **provided** in **provide**, , the son of a master tailor. He received his elementary and secondary education in Cheraw, South Carolina and Belmont, North Carolina, graduating from Belmont Abbey Preparatory School in 1955.

He received his Bachelor of Science degree in Civil Engineering in 1959 and his Master of Science degree in Ceramic Engineering in 1966, both from North Carolina State University at Raleigh.

Since 1959, he has been a member of the technical staff at the National Aeronautics and Space Administration - Langley Research Center. His primary duties during this time have been concerned with the structural application of advanced materials systems to aerospace vehicles.

ii

## ACKNOWLEDGMENTS

The author wishes to express his appreciation to the National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia, for permitting him to conduct this research as part of his work assignment. The advice and guidance of Professor H. Palmour III, Chairman of his Advisory Committee, has been invaluable in the completion of this study. A special thank you is extended to Professor Emeritus W. W. Kriegel for his continuing interest and counsel. Appreciation is also extended to the other members of the committee, including Professors R. J. Hader, H. H. Stadelmaier, and J. K. Whitfield. Gratitude is expressed to B. A. Stein for many informative discussions.

The author also expresses heartfelt thanks to his parents who stimulated and encouraged his curiosity. Finally, the author expresses his thanks to his wife, Mary, and children, Mark, Kathy, and Karen, for their patience and constant support.

iii

# TABLE OF CONTENTS

•.

.

-

|      |        |              |          |                |                       |             |             |                    |                                         |            |              | •                             |            |            |               |        |            |     | . • |     |            | ,            |   |
|------|--------|--------------|----------|----------------|-----------------------|-------------|-------------|--------------------|-----------------------------------------|------------|--------------|-------------------------------|------------|------------|---------------|--------|------------|-----|-----|-----|------------|--------------|---|
| GENE | RAL    | INTE         | ODU      | CT:            | ION                   | ٠           | •           | •                  | ••                                      | •          |              | ••                            | ÷          | •          | •             | •      | • •        | , , | •   | • 1 | •          | vi           | , |
| ADDT | TOAD   | TON          | ្រដា     | ਹਿਯ            | apr                   | aai         |             | т <i>і</i>         | Λ <b>λ</b> Τ Λ                          | T.N        | 701          | rq                            | ШO         | n.         | ਸ਼ਾ           | σъ     | ່ຼົ        | Ģ   | QD  | ٨٢  | יגר        |              |   |
| MITT | UTU5   |              | MAT.     | יםנות<br>נכיסו | TAT                   | а<br>РЮ1    | LOI         |                    | 71473                                   |            | - 0-1        | LD,                           |            | , U.       | 1110.         |        | U1         |     | OT. | дС  |            | ٦            |   |
| 4    | onua   | CTTTTT       | MAT      | Cn.            | тчп                   | a           | •           | ٠                  | •                                       | •          | ٠            | -•                            | •          | •          | •             | •      | • •        | • ` | •   | •   | •          | ль.          |   |
|      | Abst   | ract         |          | •              |                       |             |             |                    | •                                       |            | •            |                               | •          | • *        | •             | •      | • •        |     | •   | •   | •          | 1            |   |
|      | Sync   | ppsis        |          | •              |                       | •           |             |                    |                                         | •          | •            |                               |            | •          | •             | •      |            | ,   |     |     | •          | <u>,</u> 1   |   |
|      | Symt   | ols          | •        | •              | • •                   | •           | •           |                    | •                                       |            |              |                               | •          | •          | •             | ,      |            |     |     | •   |            | 1            |   |
|      | Inti   | roduc        | tio      | 'n             |                       | •           |             |                    |                                         |            | •            | •                             | •,         | •          |               | •      |            |     | •.  | •   |            | 2            |   |
|      | Anal   | lvsis        | Pr       | •00            | edu                   | res         | 5           |                    | •                                       |            |              |                               |            |            | <u> </u>      |        | <u> </u>   | •   | •   | ÷.  |            | 3            |   |
|      |        | Deve         | lon      | me             | nt                    |             |             |                    |                                         | ÷          |              |                               |            |            |               |        |            |     |     |     |            | ,<br>Š       |   |
|      |        | Appl         | ica      | 1:1            | on                    | •           |             |                    | •                                       |            |              |                               | •          |            |               |        |            |     |     |     |            | 7            |   |
|      | Resi   | nppi<br>ilte | and      |                | ise                   |             | .ir         | ົກ                 | •                                       | •          |              | •                             |            |            |               |        |            |     |     |     |            |              |   |
|      | 11000  | IIGO<br>IIGO | of       | ເມ.<br>ເຈີາ    | mnl                   | ۵D۱<br>۵ 1  | 0<br>2<br>2 | /11<br>f776        | •                                       | •<br>• • • | •<br>\n      | •                             | •          | •          | •             | •      | • •        |     | •   | •   | •          | Ř            |   |
|      |        |              | of       | 271            | шрт<br>л <del>+</del> | 5 I<br>7 I  |             | 5- 0               | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 500        | ,,,<br>,,,   | •<br>• •                      | •          | •          | •             | ٠      | • •        | •   | •   | ٠   | ٠          | ากั          |   |
|      | 0.0.0. | 050          | 01       | mu.<br>Dec     | 101<br>101            | рте         | 5 I         | - <del>-</del> - E | 31.e                                    | :5:        | 510          | л                             | ٠          | •          | •             | •      | • •        | •   | •   | •   | •          | 15           |   |
|      | Cond   | Luai         | .ng      | Rei            | mar                   | ĸs          | ٠           | ٠                  | ٠                                       | ٠          | ٠            | ٠                             | ٠          | •          | •             | •      | • •        | •   | •   | •   | •          | 15           |   |
|      | ACKI   | JOMTE        | αge      | eme            | nts                   | ٠           | ٠           | ٠                  | ٠                                       | ٠          | ٠            | ٠                             | • •        | ٠          | •             | •      | •          | •   | •   | ٠   | ٠          | 10           |   |
|      | Reit   | erend        | es       |                | • •                   | ٠           | ٠           | ۰,                 | ٠                                       | ٠          | ٠            | ٠                             | ٠          | ٠          | •             | •      | • •        | •   | •   | ٠   | ٠          | 10<br>1.0    |   |
|      | Figi   | ires         |          | ٠              | • •                   | ٠           | •           | ٠                  | ٠                                       | ٠          | ٠            | ٠                             | •          | •          | •             | •      | •          | •   | •   | •   | ٠          | ΤO           |   |
|      |        | •            |          |                |                       |             |             |                    |                                         |            |              |                               |            |            |               |        |            |     |     |     |            |              |   |
| STRE | ESS-I  | RUPTU        | IRE      | DA             | TA                    | COI         | RRE         | SLI                | AT I                                    | 101        | ι.           | - (                           | EN         | ER         | AL            | ΙZ     | ED         | R   | EG  | RF  | ISS        | SION         |   |
|      | ANA    | LYSIS        | 5 -      | AN             | AL                    | TEI         | RNI         | <b>\</b> Τ?        | IVE                                     | 2 7        | FO           | $\mathbf{P}_{\boldsymbol{k}}$ | ARA        | ME         | $\mathbf{TR}$ | IC     |            |     |     |     |            |              |   |
|      | METI   | HODS         |          |                | •                     | •           | •           |                    | • •                                     |            | • ,          |                               |            |            |               |        |            |     |     |     | ,          | 1            |   |
|      |        |              | _        | -              | -                     | -           | -           |                    | •                                       |            |              |                               |            |            |               |        |            |     |     |     |            |              |   |
|      | Abst   | tract        | ;        |                |                       |             | •           |                    | •                                       | -          |              | •.                            | •          |            |               |        |            | •   |     |     |            | 1            |   |
|      | Tnti   | roduc        | tic      | 'n             |                       |             |             |                    |                                         |            | Ì            |                               | -          |            |               |        |            |     | •   |     |            | 2            |   |
|      | Data   | a for        | Ar       | าลไ            | vsi                   | s           | ÷           | ÷                  |                                         |            |              |                               |            |            |               |        |            |     | •   | -   | •          | 4            |   |
|      | 2000   | Sim          | 1 at     | ed             | °.da                  | ta          |             |                    |                                         |            | Ì            |                               | -          |            |               |        |            |     |     |     |            | 4            |   |
|      |        | Real         | s fo     | ita            |                       | -           | •           |                    |                                         |            |              | •                             |            |            | -             |        |            |     |     |     |            | 5            |   |
|      | Ana    | lveid        | . Ω.<br> | 200            | •<br>uha              | <b>n</b> _4 | •           | •                  | •                                       | •          | •            | •                             |            | •          |               |        | •          |     |     | Ţ   | •          | ĥ            |   |
|      | Alla.  | TADTC        | mot      | . 00<br>- 20 i | o M                   | 101<br>101  | bor         | •<br>• •           | •                                       | •          | •            | •                             | •          | •          | •             | •      | •          | •   | •   | •   | •          | ň            |   |
| ,    |        | T GT C       |          | , T. T         | с н<br>стт            | 4 4 4       | 200         | 4.0<br>. +         | •<br>М                                  | •          | •            | <b>•</b>                      | •          | •          | •             | •      | •          | •   | •   | •   | ٠          | ő            |   |
|      |        | M.L.M.       | .mun     |                | onin                  | T ~ 1       | 1101<br>1   | 10                 | 1110<br>6-4-0                           | 101        | .100<br>~~ 1 | u<br>II o i                   | •<br>• • • | <b>h</b> 1 | •             | •<br>M | •<br>• + 1 | •   | å   | •   | <b>,</b> • | 10           |   |
|      |        | Gene         | D-1      | 112            | eu                    | 111         | reı<br>r    | a                  | 202                                     | -115       | 5            | val                           | L.T.G      | UL.        | 62            | 1.1    | E 01       | .10 | u   | *   | •          | 10           |   |
|      |        |              | Dev      | /er            | opn                   | len<br>1    | 6           | •                  | ٠                                       | <b>●</b> r | ٠            | ٠                             | •          | •          | •             | •      | •          | •   | ٠   | •   | ٠          | 10           |   |
|      | _      |              | Apr      | 211            | çat                   | 101         | n.          | •                  | ٠                                       | ٠          | •            | ٠                             | ٠          | ٠          | •             | ٠      | •          | •   | €1  | ٠   | ٠          | 12<br>12     |   |
|      | Resi   | ults         | anc      | i D            | isc                   | us          | si          | on                 | ٠                                       | ٠          | •            | ٠                             | ٠          | ٠          | •             | • >    | •          | •   | ٠   | ٠   | ٠          | 73           |   |
|      |        | Simu         | llat     | ed             | da                    | .ta         | ٠           | ٠                  | ٠                                       | ٠          | ٠            | i                             | ٠          | ٠          | ٠             | •      | •          | •   | ٠   | ٠   | ٠          | _ <u>Τ</u> ζ |   |
|      |        | Real         | l da     | ata            | •                     | ٠           | ٠           | ٠                  | ٠                                       | ٠          | ٠            | ٠                             | ٠          | ٠          | ٠             | •      | •          | •   | ٠   | ٠   | ٠          | 10           |   |
|      | Con    | clusi        | lons     | 3              | • •                   | •           | ٠           | ٠                  |                                         | ٠          | ٠            | ٠                             | •          | •          | •             | •      | •          | •   | •   | •   | ٠          | 21           |   |
|      | App    | endiz        | сA,      | ,              | Par                   | am          | eti         | ci                 | c I                                     | \na        | <b>al</b> ;  | ys:                           | i s        | to         | E             | st     | ab.        | li  | sh  | L   |            |              |   |
|      |        | Simu         | llat     | ed             | Da                    | .ta         | Se          | et:                | s                                       |            |              |                               | •          | ٠          | ٠             | •      | •          | •   |     | •   | ٠          | -22          |   |
|      | App    | endia        | сB.      |                | Sup                   | pl          | eme         | en.                | tai                                     | гу         | A١           | na                            | lys        | is         | 0             | f      | Cop        | rr  | el  | at  | ;ic        | n            |   |
|      |        | Meth         | lods     | 5              |                       | -<br>•      | •           |                    |                                         | •          |              | •                             | •          | •          |               |        |            | •   | •   | •   | •          | 24           |   |
|      | Tab    | les          |          |                |                       |             | •           | •                  | •                                       | •          | •            | •                             | •          | •          | • ·           |        | •          | •   | •   | •   | •          | 28           |   |
|      | Ref    | erend        | es       | -              |                       | -           | •           | -                  |                                         | -          | -            | •                             |            |            | •             |        |            | •   | •   | •   | •          | 41           |   |
|      | Figu   | ures         |          |                |                       | -           | -           | -                  | -                                       | -          | -            | -                             | <u>.</u>   | •          | •,            |        | •          | •   | •   |     |            | 45           |   |
|      |        |              | -        | -              |                       |             | •           | •                  | -                                       | •          | -            | •                             | -          | •          | - ·           | -      | -          |     | -   | -   |            | -            |   |

.

.

.

| COMPUTER PROG<br>DATA .                       | RAM FOR                               | PARA                            | METRI                   | C ANAL                        | YSIS C | F CREED        | ?-RUPT<br>• • | URE<br>1         |
|-----------------------------------------------|---------------------------------------|---------------------------------|-------------------------|-------------------------------|--------|----------------|---------------|------------------|
| Abstract<br>Summary<br>Introduct<br>Program D | ion                                   | •••<br>•••                      | ••••                    | · · ·                         | ••••   | • • •          | •••           | 1<br>2<br>3<br>4 |
| Analysis<br>Program U<br>Input                | sage                                  | • •<br>• •                      | ••••                    | · · · ·                       | ••••   | · · · ·        | •••           | -<br>5<br>7<br>7 |
| Outpu<br>Sample Ca<br>Concludin               | t<br>ses<br>g Remari                  | ks .                            | • • •                   | • • •                         | •••    | • • •<br>• • • | •••           | 11<br>16<br>18   |
| Appendix<br>Appendix                          | A. Soul<br>B. Lang<br>Subi<br>C. Deve | rce L<br>gley<br>routi<br>eloom | Resea<br>nes .<br>ent o | g of Pi<br>rch Cei<br>f Parai | nter S | ystem<br>Model | •••           | 20<br>46         |
| Equat<br>Reference<br>Figures                 | ions .<br>s                           | • •                             | •••                     |                               | • • •  | • • •          | • •           | 54<br>58<br>60   |

# GENERAL INTRODUCTION

The creep-rupture behavior of materials can and does control the design of many structural components. Designers and analysts in the nuclear power generation, aerospace turbine, and chemical processing industries, for example, are required to design structural components which must operate reliably for periods up to forty years in complex, high temperature environments. Unfortunately, the current state of our understanding of the creep process does not allow the use of "first principles" for sizing components and predicting their service behavior. Consequently, the creep-rupture design techniques used today can at best be called "enlightened. empiricism." There is no generally accepted method of analysis for the prediction of creep-rupture behavior. In fact, a method which works well for one material very often will not work well for a different material.

The purpose of the investigations reported herein was to explore the application of regression analysis techniques to the analysis of creep-rupture data of interest in aerospace applications. They constitute a part of a continuing effort, begun in 1970, to provide the materials related methodology necessary to design efficient aerospace vehicles.

The first paper deals with the application of regression analysis to the creep of space shuttle materials. Regression

vi

techniques are used as a tool (1) to assess the effects of sheet thickness and oxygen partial pressure on the steady-state creep behavior, (2) to analytically describe the low creep strain behavior, and (3) to assess the effects of data scatter for materials where data are limited.

The third paper describes the development and use of a computer program for parametric analysis of creep rupture data. The program includes provisions for the analysis of five different parameter methods. Sample problems to aid the user in setting- up a problem are presented.

# APPLICATION OF REGRESSION ANALYSIS TO CREEP OF

# SPACE SHUTTLE MATERIALS<sup>1</sup>

.

.

Donald R. Rummler

NASA Langley Research Center Hampton, Virginia

<sup>&</sup>lt;sup>1</sup>Published in proceedings of International Conference on Creep and Fatigue in Elevated Temperature Applications, Philadelphia, PA, September 1973 and Sheffield UK, April 1974; Conference publication 13, Institution of Mechanical Engineers.

#### APPLICATION OF REGRESSION ANALYSIS TO CREEP OF

#### SPACE SHUTTLE MATERIALS

Donald R. Rummler

# NASA Langley Research Center Hampton, Virginia

#### ABSTRACT

Regression analysis techniques were used to assess the effects of sheet thickness and oxygen partial pressure and to develop constitutive creep equations. Application of prediction intervals is emphasized.

## 1 SYNOPSIS

Metallic heat shields for Space Shuttle thermal protection systems must operate for many flight cycles at high temperatures in low-pressure air and use thin-gage ( $\leq 0.65$  mm) sheet. Available creep data for thin sheet under those conditions are inadequate. To assess the effects of oxygen partial pressure and sheet thickness on creep behavior and to develop constitutive creep equations for small sets of data, regression techniques are applied and discussed.

> 2 SYMBOLS  $\epsilon$  = creep strain t = time, hours th = sheet thickness, mm T = temperature, K  $\sigma$  = stress, MN/m<sup>2</sup> x, y, z, D,  $\phi$  = dummy variables

#### 3 INTRODUCTION

Recent Space Shuttle technology research and development studies ((1)<sup>\*</sup> and (2)) have indicated that the creep behavior of high-temperature alloys may control the design and reusability of metallic heat shields for radiative thermal protection systems (TPS). The heat shields function as lightly loaded aerodynamic surfaces, and they must efficiently utilize thin-gage sheet to avoid weight penalties. Loads are applied at high temperature, when the local partial pressure of oxygen is low. In general, creep strains must be limited to less than 0.005 to avoid excessive panel deflections.

The creep data which exist for candidate superalloys are for steady-state creep tests run on relatively thick specimens at atmospheric pressure. These data are presented as time to a given strain level for various combinations of stress and temperature (see, for example, Refs. (3) and (4)). Attempts to use this type of data to predict the cyclic creep deformation of simple tensile specimens or for the preliminary design of heat shields underestimated the experimental creep strains by as much as a factor of 10 ((1) and (2)). These predictions typically utilized one of the parameter methods (5) combined with a life fraction approach to sum the cyclically accumulated strains. This failure to predict the experimental creep strains could be the result of one or both of the following:

(1) The data upon which calculations were based were for the creep of relatively thick specimens at atmospheric pressure, and may not be applicable to thin specimens at low pressure.

<sup>\*</sup> References are given in Appendix 1.

(2) No analytic expression was available which could account for both the nonlinear primary and linear secondary creep stages.

The purpose of this paper is to present the results of an investigation to determine the applicability of regression analysis techniques to predict creep behavior when data are limited. Three applications of regression techniques which address the aforementioned shuttle TPS creep problems are discussed. Regression techniques are used as a tool (1) to assess the effects of sheet thickness and oxygen partial pressure on steady-state creep behavior, (2) to analytically describe the low creep strain behavior, and (3) to assess the effects of data scatter for materials when data are limited.

#### 4 ANALYSIS PROCEDURES

## 4.1 Development

To evaluate trends in creep data and to predict creep behavior, explicit expressions for the mean and the expected upper and lower bounds for creep strain data as a function of stress, temperature, and time were desired. Little information is available about the form of these expressions for the candidate materials at low levels of creep strain. Consequently, two computer programs were written and applied to develop the desired expressions. Both programs utilize standard linear regression techniques (6). One program was of the form:

$$w = b_0 + b_1 \mu$$
(1)  

$$w = \log (\text{stress})$$
  

$$u = \log (\text{time})^{\prime}$$

where

This program was used to generate coefficients, mean value estimates, and 95 percent prediction intervals<sup>\*</sup> for data at specific values of strain and temperature.

The second program was used to develop models for creep strain as a function stress, temperature, and time. For this multiple regression program, the equation form assumed was:

$$f(y) = g\left\{ \left( a_{1}x_{1}^{2} + b_{1}x_{1} + c_{1} \right) \left( a_{2}x_{2}^{2} + b_{2}x_{2} + c_{2} \right) \left( a_{3}x_{3}^{2} + b_{3}x_{3} + c_{3} \right) \right\}$$
(2)

where y,  $x_1$ ,  $x_2$ , and  $x_3$  are, respectively, functions of creep strain, stress, temperature, and time.

Provision for transformation of y,  $x_1$ ,  $x_2$ , and  $x_3$  was included in the program. The transformations, which included many of those found useful for analysis of creep data (7) were as follows:

<sup>&</sup>lt;sup>\*</sup>The prediction interval (6) is used to make a statement about the anticipated value of the dependent variable (y) for a future single observation at a specific value of the independent variable (x) or variables  $(x_i, x_j, x_k \dots)$ ; for example, y will be between 2 and 6 for 95 percent of all future single observations taken at x = 3. The more familiar confidence interval, on the other hand, is used to make statements about the true mean value of y; for example, there is a 95-percent probability that the true mean value of y at x = 3 is between 3 and 5. The prediction interval limits are wider since these include both the sampling errors and the uncertainties in estimating the mean value of y.

| Transformation<br>Code (TCj) | Transformation $(0 \le i \le 3)$        |
|------------------------------|-----------------------------------------|
| 0                            | $x_i = z_i$                             |
| 1                            | $x_i = \log (z_i)$                      |
| 2 ′                          | $x_i = 1/z_i$ .                         |
| 3                            | $x_{i} = \log (1/z_{i})$                |
| 4                            | $x_i = ln(z_i)$                         |
| · 5                          | $x_{i} = (z_{i})^{1/2}$                 |
| ę                            | $\mathbf{x}_{i} = \mathbf{z}_{i} + 1.0$ |
| 7                            | $x_{i} = \log (z_{i} + 1.0)$            |
| 8`                           | $x_{i} = (z_{i})^{1/3}$                 |

where the  $z_i$  are specific values of stress, temperature, or time. Similar functional transformations (y = f(D)) were used for strain. Each transformation combination was assigned a four-digit transformation number where the digits are the transformation code values for y,  $x_1$ ,  $x_2$ , and  $x_3$ , respectively.

Thus transformation 1025 used the following transformations:

y = log D = log (c) x<sub>1</sub> = z<sub>1</sub> =  $\sigma$ x<sub>2</sub> = 1/z<sub>2</sub> = 1/T. x<sub>3</sub> = (z<sub>3</sub>)<sup>1/2</sup> = (t)<sup>1/2</sup>

Creep data sets usually include a wide range of times, typically three orders of magnitude, whereas the ranges for creep strain, stress, and temperature are seldom in excess of one order of magnitude. Early analysis of nultiple regression computer runs revealed that the combination of the wide range in the variables associated with creep data sets and equation forms which include terms that can be highly colinear, such as x and  $x^2$ , led to ill-conditioned normal equations which were subject to significant round-off errors during a matrix inversion operation. In order to minimize these errors, the data were scaled from 1 to 10 after transformation of the primary variables (y,  $x_1$ ,  $x_2$ ,  $x_3$ ) as follows:

$$y_{i} = 9.0 (y_{i} - y_{min}) / (y_{max} - y_{min}) + 1$$
$$x_{ij} = 9.0 (x_{ij} - x_{i min}) / (x_{i max} - x_{i min}) + 1$$

where  $y_{\min}$  and  $y_{\max}$  are the minimum and maximum values of the transformed strain. The x and x have similar definitions as they apply to the transformed values of stress, temperature, and time.

After transforming and scaling the primary variables, Equation (2) was expanded and new independent variables, defined as follows, were introduced:

$$y = a_{1}a_{2}a_{3}\left(x_{1}^{2}x_{2}^{2}x_{3}^{2}\right) + a_{1}a_{2}b_{3}\left(x_{1}^{2}x_{2}^{2}x_{3}\right) + \dots = \sum_{j=1}^{k} \phi_{j}z_{j}$$
(3)

This procedure results in an equation with 27 terms having linear coefficients  $(\phi_i)$ .

Some values of  $\phi_j$  were set equal to zero so that, in Equation (3), the order (degree of interaction) for the number of terms in the regression analysis could be reduced as follows:

| k  | Order | (Allowed term types)                                        |
|----|-------|-------------------------------------------------------------|
| 23 | 4th   | $\left(x_{l}x_{m}x_{n}^{2}$ and $x_{l}^{2}x_{m}^{2}\right)$ |
| 17 | 3rd   | $(x_{l}x_{m}x_{m} \text{ and } x_{l}^{2}x_{m})$             |
| 10 | 2nd   | $(x_2 x_m)$                                                 |
| 4  | lst   | (x <sub>l</sub> )                                           |

(Note that the reduced form can no longer be factored back to Equation (2).)

## 4.2 Application

To perform a multiple regression analysis using Equation (3), the order of the equation (k value) was selected first. Next, the transformations to be used on the primary variables were selected. Each observation of the data set was transformed, then scaled. The transformed and scaled values for strain, stress, temperature, and time were then used to generate values for the additional variables in Equation (3). This data set was then used in the regression analysis. The mean values of creep strain were calculated from the coefficients derived during a multiple regression analysis. Explicit functions for the upper and lower bounds (95 percent prediction intervals) were calculated by treating either the upper or lower prediction limit calculated for each observed value of strain during the initial regression as another set of observed strain values; two additional regression analyses provided the desired coefficients. The residual mean square (RMS) for the prediction interval "data" sets were always extremely small ( $\approx 10^{-7}$  times that of the original data set analysis). This suggests that the errors involved in these approximations for the original prediction intervals were not large.

After a regression analysis was performed, all variables and residuals were descaled and back-transformed. Several quasi-statistical parameters were then calculated to aid model development and "best-equation" selection. These parameters are described as they are introduced.

#### 5 RESULTS AND DISCUSSION

The following examples illustrate how regression techniques were applied to three areas of creep behavior which are of interest in Space Shuttle TPS creep studies. These areas are typical of those which can occur during the preliminary design phases of any program when extensive creep data are not available.

## 5.1 Use of Simple Regression (Equation (1))

Haynes alloy H-188 is a cobalt base alloy which has excellent oxidation resistance and moderate elevated temperature strength. It is a candidate material for TPS application up to 1250 K. The creep data base consists primarily of the work reported in (4). This work includes creep tests on H-188 sheet from 10 production heats and for thicknesses ranging from 0.51 to 2.03 mm. All creep tests were run in air at standard pressure.

Figure 1 presents the data at 1144 K at a strain level of 0.002. A regression analysis was performed on the data set with sheet thickness  $\leq 0.84$  mm. These data will be defined herein as the "standard data," against which data from future observations will be compared. The regression line and the 95-percent prediction interval for the standard data are also shown on the figure. The results shown in Figure 1 allow the following statements to be made:

8.

(1) Ninety-five (95) percent of all future observations made under the same test conditions are expected to fall within the prediction interval for sheet thicknesses between 0.51 and 0.84 mm. If creep data from tests at lifferent test conditions generally fall outside of the prediction interval, shen the new test conditions have probably changed the creep behavior of the naterial.

(2) Most of the data for the > 0.84 mm fall well within the prediction interval for the "standard data." Thus, the  $\epsilon = 0.002$  creep strength of laynes alloy H-188 at 1144 K is not significantly different for sheet thicklesses from 0.51 to 2.03 mm. This is in contrast to the results presented in (4) where creep rupture strengths of sheet  $\leq 1.27$  mm thick were lower than those for sheets >1.27 mm thick.

The prediction interval and mean line from Figure 1 for the "standard lata" are shown in Figure 2. Also shown in Figure 2 are the results of preep tests run in another laboratory on thin-gage H-188 at both standard and reduced pressures of air. The focus provided by the prediction interval indipates that the  $\epsilon = 0.002$  creep strength of H-188 for sheet thicknesses between 0.51 and 0.64 mm both at standard atmospheric and reduced pressures was not significantly different from that previously established for 0.51 to 0.84 mm sheet at standard atmospheric pressure. However, for thinner sheet (0.254 mm) at reduced pressure creep, strength was significantly higher as indicated by the many test data points (open circles) above the prediction interval. Similar results were observed for other strain leyels at 1144 K.

The conclusions drawn from Figure 2 could have been reached with far fewer tests (as few as 2 or 3 for any of the test conditions shown). The use of prediction intervals data appears to be an efficient technique to explore

9'

the effects of "nonstandard" creep conditions and to compare creep data from different sources. This is particularly useful during the preliminary design phases of a program when the consequences of "nonstandard" conditions, such as thin gage or low air pressure, must be assessed rapidly and maximum use of existing data base for thicker material at atmospheric air pressure is necessary.

# 5.2 Use of Multiple Regression (Equation (3))

To explore the effects of primary creep and various hardening rules, such as strain hardening, on the accumulation of cyclic creep strain, it is useful to have a constitutive relationship for steady-state creep strain. This is particularly true when the data base is limited and does not include a large number of test stresses and temperatures.

The data set (8) for René sheet (solution treated at 1450 K and aged at 1172 K) was selected to demonstrate the application of multiple-regression techniques to develop a constitutive creep equation. Creep tests were conducted at 1005, 1089, and 1172 K. Tests were not replicated. For this study, 142 strain-time data points (observations) with strain levels from 0.0005 to 0.005 were selected as input for the multiple regression analyses.

In addition to a normal regression analysis, the program numerically solved the resulting equation to estimate the time  $(t_{\epsilon})$  required to reach each input strain level. To assure compatibility with a strain-hardening cyclic-creep analysis, all equation forms which did not permit efficient solutions (less than 500 iterations) for all  $t_{\epsilon}$  were rejected. The program also rejected all equation forms which calculated either a negative strain or time. Early computer runs revealed that the multiple correlation coefficient square  $(R^2)$  and the residual mean squared error (MSE), commonly used (7) to

rapidly evaluate a large number of equation alternatives were poor discriminators for this data set and these variable transformations. The following parameters were determined from the descaled and back-transformed calculated values of strain and time:

- EMSE (strain mean squared error)
- E/TO (maximum calculated strain at t = 0.001 h)
- T/EO (maximum calculated time at  $\epsilon = 0.000001$ )
- AE (average strain error)
- ATP (average time error, percent)

These parameters have recognizable consequences in the preliminary design sense and were considered useful discriminators for the selection of a "best" equation. Numerous variable transformations were evaluated in a single computer run. Typically, 200 different transformations were examined in a single 600-second computer run.

Analysis of several "best" equations during early computer runs indicated that the equations were often unstable near time = zero. This unstable behavior is illustrated in Figure 3 for typical values of stress and temperature. This failure to predict  $\epsilon = 0$  at t = 0 was eliminated by assuming an unrecorded data point ( $\epsilon = 0.000001$ , t = 0.001 h) for each creep test reported in (8). These assumed data points were added to the initial data set to yield the 167 data points and were included in all further regressions. The dashed line in Figure 3 shows that a typical predicted creep curve using the additional assumed points is reasonable, although the fit to the original data (open circular symbols) is not as good.

Even with the addition of the assumed data points, none of the variable transformations yielded a satisfactory prediction equation for the k = 27

version of Equation (3). The model was unstable when projected on log-stress, log-time plots. At the lowest test temperature (1005 K) and short test times ( $\approx$  10 h) these equation forms began to predict longer times for a particular level of creep strain as the stress was increased. For this particular data set, run 4124 with k = 23 produced the "best" model equation. This run produced the lowest values of EMSE, AE, and ATP and computed  $E/TO \leq 0.000001$ and  $T/EO \leq 0.01$  hr. The use of fewer terms in the model (k < 23) significantly increased the EMSE, AE, and ATP values calculated with the original 142 observations. This is illustrated in the following table:

|                         | 23   | $\frac{k}{10}$ | _7   |
|-------------------------|------|----------------|------|
| emse (× 10 <sup>7</sup> | 6,71 | 7.25           | 9.14 |
| AE (× 10 <sup>3</sup> ) | 550  | 622            | 730  |
| ATP (0/0)               | 33   | 37             | 74   |

Thus for this data set, the inclusion of the higher order interaction terms in the model significantly improved the model's ability to fit the data.

The degree of fit typically provided by "best" model equation is illustrated in Figure 4 for  $\epsilon = 0.002$ . The symbols are the data taken from (8), the solid lines are the mean stress and the 95-percent prediction interval calculated from a regression of log time on log stress using only those data points shown for each temperature. The dashed lines are the mean stress values and the 95-percent prediction intervals calculated by run 4124, k = 23 which included all of the 167 data points available in the data set. Agreement between the two calculated mean stress values is considered good. More importantly, however, this figure illustrates that the calculated 95-percent prediction intervals from run 4124, k = 23 are consistent with those obtained from the linear regressions on the data for each temperature. This indicates that the model is probably as good as the data scatter warrant and that the consequences of this scatter can be adequately assessed in a steady-state creep analysis by utilizing the coefficients determined by run 4124 to calculate mean creep strains and the coefficients determined for the lower bounds of the prediction interval shown in Figure 4 to calculate maximum creep strains. For instance, a "best" model equation could be used to calculate creep strains at intermediate values of temperature to compare with other creep data obtained by other investigators.

Figure 5 illustrates some typical mean creep curves calculated with the coefficients determined for the "best" equation. The shapes of these curves are consistent with those obtained by fairing through the original data points. More importantly, the curvilinear nature of the creep curves demonstrate that the model equation applies even when creep strain does not accumulate linearly as a function of time. Therefore, the model is functionally capable of accounting for the effects of primary stage creep in a strain-hardening analysis of cyclic creep.

To further assess the applicability of the regression analysis, the standard deviations for the average percentage time error for strain levels 0.001, 0.0015, and 0.002 were calculated. These standard deviations were compared to similar results obtained from three optimized "C" value Larson-Miller analyses (5) of the data at these strain levels with the following results.

Comparison of Standard Deviation of Percent Time Errór

|        | Larson-Miller | Run 4124, $k = 23$ |
|--------|---------------|--------------------|
| 0.001  | 44.2          | 20.4               |
| 0.0015 | 46.7          | 20.8               |
| 0.002  | 36.3          | 33.5               |

This comparison suggests that the "best" regression equation, which includes all strain levels, predicts the observed creep behavior at least as well as the family of Larson-Miller curves which would be required to cover a similar range of strain levels.

Multiple regression techniques can also be applied to fit "faired" data to estimate mean values for creep strain. This is illustrated in Figure 6. First, linear regressions of log time on log stress (Eq. (1)) were run on the original data set (8) for each level of strain and temperature. The results of several of these regressions are shown as solid lines in the figure. Next, the mean times to a given level of strain were calculated from the regression equations of the solid lines. Finally, these calculated mean times and the appropriate values of creep strain, stress, and temperature were used as input data for a multiple regression analysis (Eq. (3)). The dashed lines in Figure 6 were calculated from the results of a run 4121, k = 27, using these calculated mean times as input data. The k = 27 version of Equation (3) was not unstable with the "faired" data set, whereas, as noted before, this version was unstable with the "raw" data.

Often creep data are presented in the literature as families of faired curves for specific levels of strain and temperature. No individual creep curves are available for the material of interest.

14;

As can be seen from this example, multiple regression techniques can be used to obtain a single equation which will coalesce families of curves. However, a prediction interval is no longer applicable because the calculations are no longer based on scattered data.

### 6 CONCLUDING REMARKS

Frequently, creep data are limited during the preliminary design phases of a program such as the design of Space Shuttle thermal protection systems. The examples presented herein illustrate the applicability of regression techniques for (1) evaluating the effects of "nonstandard" creep conditions such as sheet thickness or low oxygen partial pressure on creep behavior and (2) developing analytical expressions to predict creep behavior from limited data. The use of prediction intervals to evaluate the design consequences of the data scatter has been discussed.

### 7 ACKNOWLEDGMENTS

The author expresses his appreciation to Bland A. Stein for numerous technical discussions and encouragements and to Dick M. Royster for furnishing unpublished creep data.

#### APPENDIX 1

#### REFERENCES

- (1) Harris, H. G. and Morman, K. N., Jr. 'Creep of Metallic Thermal Protection Systems,' NASA TM X-2273, Vol. II, April 1972. National Aeronautics and Space Administration, Washington, D.C.
- (2) Black, W. E. et al. 'Evaluation of Coated Columbium Alloy Heat Shields for Space Shuttle Thermal Protection System Application,' NASA CR-112119, June 1972.
- (3) Moon, D. P. et al. 'The Elevated-Temperature Properties of Selected Superalloys,' ASTM Data Series DS 7-Sl (American Society for Testing and Materials, 1968).
- (4) Tackett, J. W. 'The Creep Rupture Properties of Haynes Alloy No. 188,' Report No. 8020, Cabot Corporation, Kokomo, Ind., November 4, 1971.
- (5) Conway, J. B. 'Stress-Rupture Parameters: Origin, Calculation and Use 1969,' 1st Edition (Gordon and Breach, New York, New York).
- (6) Draper, N. R. and Smith, H. 'Applied Regression Analysis 1966' (John Wiley and Sons, Inc., New York, New York).
- (7) Conway, J. B. 'Numerical Methods for Creep and Rupture Analysis 1967'(Gordon and Breach, New York, New York).
- (8) McBride, J. G. et al. 'Creep-Rupture Properties of Six Elevated Temperature Alloys,' WADD-TR-61-99, August 1962, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio.
- (9) Royster, Dick M. and Lisagor, W. Barry. 'Effect of High-Temperature Creep and Oxidation on Residual Room-Temperature Properties for Several

Thin-Sheet Superalloys,' NASA TN D-6893, November 1972, National Aeronautics and Space Administration, Washington, D.C.

(10) Royster, Dick M. Unpublished Data, Langley Research Center, NASA,
 Hampton, Virginia, December 1972.







:.. 18



Fig. 2. Effect of sheet thickness and test pressure on creep strength of H-188 at 1144 K, e = 0.022



.



Fig. 3. Effect of 'zero' data points on a typical calculated creep curve for René 41



Symbols: experimental (8)

------ : linear regression at each temperature, mean and 95 per cent prediction interval

---: run 4124, k = 23, mean and 95 per cent prediction interval

Fig. 4. Comparison of experimental and calculated creep strength for Rene 41, *e* = 0.002



Fig. 5. Typical calculated creep curves for Rene 41, run 4124, k = 23

•





Fig. 6. Comparison of experimental and calculated mean creep strengths for René 41

.

STRESS-RUPTURE DATA CORRELATION -GENERALIZED REGRESSION ANALYSIS AN ALTERNATIVE TO PARAMETRIC METHODS<sup>1</sup>

.

By

Donald R. Rummler

<sup>1</sup>This manuscript has been submitted to the ASTM for publication in the proceedings of the ASTM Symposium on Reproducibility and Accuracy of Mechanical Tests, St. Louis, Missouri, May 5, 1976.

.

# STRESS-RUPTURE DATA CORRELATION -GENERALIZED RECESSION ANALYSIS AN ALTERNATIVE TO PARAMETRIC METHODS

By ' Donald R. Rummler

ABSTRACT: The applicability of multiple regression analysis techniques to stress-rupture data correlation has been investigated. A generalized interacting variable (GIVAR) method of data correlation is proposed and evaluated. The GIVAR method is compared to six parameter methods of data correlation on three sets of simulated data and twenty sets of real data. In all cases, the GIVAR method provided the best data correlation. Application of prediction intervals and correlating variables in addition to temperature and stress is also discussed.

# INTRODUCTION

Since 1952 when the first paper [1] introducing the concept of a time-temperature parameter (TTP) was published, the need to correlate and extrapolate stress-rupture data has continued unabated. The importance of stress-rupture data analysis has led to a large number of papers which either propose new parametric approaches [2-5], offer detailed comparisons of analysis techniques [5-7], and/or provide state-of-the-art surveys [8-12]. Although the development of some parametric methods can be related to creep behavior and fundamental processes, most parametric methods have been empirically derived. Most also make the assumption that there is a simple functional relationship between temperature and time-to-rupture which will yield a constant value of the parameter at a given level of applied stress. Consequently, the selection of a particular parameter to use for data analysis imposes rigid requirements on the nature of the allowable interactions between time-to-rupture, applied stress, and temperature. Methods for the selections of a particular parameter for the analysis of data sets are given in the previously cited survey papers. The application of these methods to real data sets is often difficult. Often the analyst is required to use data sets which are inadequate in terms of stress or temperature range to allow a clear selection of the parametric method best suited for data correlation. Data scatter further compounds the difficulty of selecting an analysis technique and often forces the analyst to "smooth" or approximate

. 26

his data in order to conform reasonably to the functional requirements of a particular parametric representation.

An attempt to overcome some of the difficulties has led to the concept of minimum commitment [7, 10, 13]. This method (MCM) proposes the use of a general time-temperature functional relationship. The MCM method has recently been evaluated during an investigation concerned primarily with its extrapolative characteristics [7]. Although the MCM showed promise during the evaluation, its clear superiority over other forms of parametric analysis was not demonstrated. In addition, in its present form, the MCM does not provide the analyst with an explicit form of parametric representation directly nor is it completely general in the allowed functional interactions between the primary variables of time-to-rupture, stress, and temperature.

The empirical nature of the data analysis techniques currently available is the direct result of the lack of understanding of the stress-rupture process particularly in complex engineering alloys. Until better theoretical models of creep-rupture behavior are developed, the engineer or analyst is faced with the task of establishing a functional relationship which will describe and correlate the data at hand. Regression analysis has been found to be a useful tool for the analysis of multifactor data particularly when the physical factors which control the response to be predicted are understood only in general terms. Such is currently the case in the analysis of stressrupture data.
The purpose of this paper is to present the results of an investigation to determine the applicability of multiple regression analysis techniques to stress-rupture data correlation. The particular regression techniques developed are first compared to several parametric methods using both simulated and real stress-rupture data sets. The potential of the developed regression techniques is further explored by subjecting a large number of real data sets to a preliminary analysis designed to select the functional form of an equation to be used for detailed analysis. These results are also compared to several parametric methods.

#### DATA FOR ANALYSIS

Both simulated and real data sets were used to assess the capabilities of multiple regression analysis techniques for stress-rupture data correlation.

#### Simulated Data

Simulated data sets were derived from data for Timken 35-15 stainless steel taken from reference [8]. These data were fitted by the method of least squares to transformations of the following parametric expressions:

Larson-Miller

 $T(C + \log t_r) = b_0 + b_1 \log \sigma$ Örr-Sherby-Dorn

 $\log t_r - \Delta H/2.3RT = b_0 + b_1 \log \sigma$ . Rabotnov

$$\sigma(1 + A t_r^b) = b_0 + b_1/T + b_2/T^2$$

where R = universal gas constant t<sub>r</sub> = time to rupture T = temperature σ = stress C. AH. A. b. b. b. b. = con

C,  $\Delta H$ , A, b, b<sub>0</sub>, b<sub>1</sub>, b<sub>2</sub> = constants determined by least squares

The Larson-Miller [1] and the Orr-Sherby-Dorn [2] expressions are familiar time-temperature parameters which assume that the parameter (left side of equation) is constant for a given stress. The parameter can be considered a temperature compensated time. The Rabotnov [12, 14] expression is a time-stress parameter which assumes that the value of the parameter (left side of equation) is a constant for a given temperature. The parameter represents a time compensated stress. Although the Rabotnov expression was originally developed for correlation of creep data, its use for creep-rupture correlation has been suggested [12] as an alternative to TTP methods.

The values of the constants determined by the regression analysis for each parametric expression were used with the experimental stress and temperature levels to calculate "exact" times for each simulated data set. The simulated data sets are referred to as L-M Exact, O-S-D Exact, and RAB Exact. Additional details of the fitting procedures and tabulation of the real and simulated data are presented in Appendix A.

#### Real Data

All real data were taken from a recent evaluation of para-

metric methods for extrapolation [7]. Careful attention was paid to the adequacy of the data in terms of range of stress and temperature exposure and long times to rupture. The data included a wide range of materials. The material types and number of observations in each data set are shown in Table 1. The data set numbering in reference [7] has been retained in this investigation. Tables 2 and 3 present the data for the two data sets (4 and 16) which are analyzed in detail. Reference [7] lists the data for the other data sets analyzed.

#### ANALYSIS PROCEDURES

The three types of analysis techniques used during this investigation (1) parametric, (2) minimum commitment (MCM), and (3) Generalized Iteracting Variables (GIVAR) are discussed in this section

#### Parametric Methods

A number of different parametric techniques have been suggested for correlating stress-rupture data. The equation forms used for multiple regression analysis of the parametric techniques selected for this investigation were as follows:

Larson-Miller (L-M)

$$Y = \log t_{r} = b_{0} + b_{1}/T_{R} + b_{2}S/T_{R} + b_{3}S^{2}/T_{R} + b_{4}S^{3}/T_{R} + b_{5}S^{4}/T_{R} + b_{6}S^{5}/T_{R}$$

$$\frac{Drr-Sherby-Dorn (0-S-D)}{Y = \log t_{r} = b_{0} + b_{1}/T_{K} + b_{2}S + b_{3}S^{2} + b_{4}S^{3} + b_{5}S^{4} + b_{6}S^{5}$$

$$\frac{Manson-Succop (M-S)}{Y = \log t_{r} = b_{0} + b_{1}T_{F} + b_{2}S + b_{3}S^{2} + b_{4}S^{3} + b_{5}S^{4} + b_{6}S^{5}$$

$$\frac{\text{Manson-Haferd (M-H)}}{\text{Y} = \log t_r = b_0 + b_1 T_0 + b_2 T_0 S + b_3 T_0 S^2 + b_4 T_0 S^3 + b_5 T_0 S^3 + b_6 T_0 S^4 + b_6 T_0 S^5}$$

$$\frac{\text{Rabotnov (RAB)}}{\text{Y} = t_r^a = b_0 + b_1 / \sigma T_F + b_2 / \sigma T_F^2 + b_3 / \sigma T_F^3 + b_4 / \sigma T_F^4 + b_5 / \sigma T^5}$$
where
$$t_r = \text{time to rupture, hours}$$

 $t_r = time to rupture, nours$   $S = \log \sigma$   $\sigma = applied stress, ksi$   $T_F = temperature, {}^{O}F$   $T_K = temperature, Kelvin$   $T_R = temperature, Rankin$  $T_O = offset temperature = T_F - T_A$ 

 $b_i$ ,  $T_A$ , a = constants estimated by method of least squares. Both the M-H and RAB techniques required the use of iterative, non-linear multiple regression techniques to estimate all of the constants.

In all cases, some function of time to rupture was considered the dependent variable whose variance was minimized. High order polynomials which are functions of stress have often been used to correlate stress-rupture data [7, 8]. Although a sufficiently high order polynomial can approximate any function, it can also result in unrealistic waviness in plots of the dependent variable versus any one of the independent variables. For these reasons, the parametric model equation forms were also analyzed in functional forms which included only second or third order

7

.

polynomials in the stress function.

In addition to estimating the required constants and predicted values of log time to rupture, the parametric analysis procedures produced the following summary values to aid data correlation and parameter comparison:

$$\overline{RMS} = \left(\frac{\Sigma(OTR - PTR)^2}{N}\right)^{1/2}$$

$$\overline{STD} = \left(\frac{\Sigma(OTR - PTR)^2}{N - K - 1}\right)^{1/2}$$

$$\overline{DPAVG} = \frac{\Sigma(PIMAX - PIMIN)}{N}$$

DPMAX = maximum value of PIMAX - PIMIN where

OTR = observed log time to rupture PTR = predicted log time to rupture N = number of observations in data set K = number of constants in regression model PIMAX, PIMIN = upper and lower bounds of 95% prediction

interval for each observation in a data set

The root mean square (RMS) provides an overall comparison of data correlation including both random error and functional bias. It does not, however, reflect the increases in the regression standard deviation which can occur when high order polynomial terms are included in the model equation. The added high order terms may be highly correlated with the other independent variables already in the equation and consequently may not reduce the residual sum of squares enough to account for the loss in degrees of freedom [15]. For all regressions which used log time to rupture as the dependent variable the calculated value of STD

8

is equivalent to the standard deviation of the regression.

The average width (DPAVG) and the maximum width (DPMAX) of the 95% prediction interval are considered useful indicators of the expected scatter for a future observation taken from the same material under the same testing conditions. The prediction interval [16, 17] is used to make a statement about the expected value of the dependent variable (log time to rupture) for a single future observation at specific values of the independent variables (functions of stress and temperature). The prediction interval is wider than the more familiar confidence interval on the mean, since it includes both sampling errors and the uncertainties in estimating the mean value of the dependent variable.

#### Minimum Commitment Method

The minimum commitment method (MCM) of parametric analysis [7, 10] was developed to minimize the dependence of the data analyst on the particular model equation forms of the generally used parameter methods. The MCM concept is to utilize a parameter model equation general enough to encompass most of the popular parameter methods. The parametric equation chosen has the form:

 $\log t (1 + AP) + P = G$ 

where

t = time to rupture

A = constant

P = function of temperature

G = function of stress

The functions P and G are "station functions" which are defined by their values at selected levels of temperature and stress. Since it is not necessary for P and G to be explicitly expressed, there is no commitment on the part of the analyst to a particular parametric form. MEGA (Manson-Ensign Generalized Analysis) is the computer program developed to implement the MCM [13]. The particular version of MEGA used during this investigation utilized three stations of temperature to define P and three stations of stress to define G. In addition, the first and second derivatives of the G function at the mid station were included in the analysis. The analysis, therefore, involved the calculation of eight constants [7].

The parametric equation form which has been selected for the MCM does not readily lend itself to a least squares method of solution with log of time to rupture as the dependent variable. Consequently, the MEGA computer program in its current form does not yield least squares statistics such as the standard deviation of the solution (regression). The lack of appropriate statistics necessitated the use of RMS as the evaluator when comparing the MCM method to other methods of stress-rupture data correlation. Generalized Interacting Variables Method

Development - The basic concept for the generalized <u>interacting variables (GIVAR) method of data correlation was</u> developed for the analysis and correlation of creep data [18]. Simply stated, it is assumed that the functional relationship between the dependent variable and independent variables can be

described by a low order polynomial in each independent variable. For stress-rupture data correlation, this concept leads to a model response equation of the general form:

 $f(y) = g[(a_1 + b_1X_1 + c_1X_1^2)(a_2 + b_2X_2 + c_2X_2^2 + d_2X_2^3)]$ where y, X<sub>1</sub>, and X<sub>2</sub> are respectively functions of time to rupture, temperature, and stress. Because complex interactions between time, temperature, and stress are known to occur during the creep-rupture process, the model equation is completely general and allows all interaction terms which result from the combination of the low order polynomials specified for each independent variable. Additional independent variables can be readily introduced into the general model form by the inclusion of additional low order polynomials,

f(y) = g[(A) (B) (C) (D)]where A, B, C, D are low order polynomials of the independent correlating variables.

The computer program to implement the GIVAR method includes provision for transformation of y and  $X_i$ . For this investigation, the majority of data correlations were performed with the following transformations

| Variable       | Allowed Transformations                                        |
|----------------|----------------------------------------------------------------|
| У              | log t                                                          |
| xl             | T, 1/T, log T                                                  |
| х <sub>2</sub> | $\sigma$ , $\sigma^{1/3}$ , log $\sigma$                       |
| where t,       | T, $\sigma$ are respectively time to rupture, temperature, and |

stress. After transformation of the primary variables, the model

equation form is expanded and new independent variables, defined as follows, are introduced to yield a response equation for a multiple regression analysis:

 $y = a_1a_2a_3 + b_1X_1 + b_2X_2 + b_1b_2X_1X_2 - - - = \sum_{j=1}^{k} \phi_jZ_j$ The resulting model equation form for the multiple regression analysis is linear in the coefficients  $(\phi_j)$  and is simply an extension of equation forms which have been used to determine optimum conditions in multifactor environments [19], for example, to determine the conditions necessary to maximize the output of a chemical process.

Application - To perform a GIVAR correlation of stress rupture data, the orders of the independent variable polynomials were selected and the general equation form expanded. A second order polynomial in temperature and a fifth order polynomial in stress were used for the majority of data correlations. When a  $\sigma^{1/3}$  transformation was selected, a sixth order polynomial in stress was used. Temperature and stress interaction terms above third order  $(X_1^2X_2)$  were deleted from the polynomial expansions. Next, the transformations of each prime variable which would be allowed were selected. The computer program, using these control inputs plus the original data set, then analyzed all combinations of the variable transforms and printed out summary results for each analysis. The variable transforms which produced the lowest standard deviation of the regression were then resubmitted and the number of terms in the regression model was reduced using a technique known as a tki-directed search [15].

12

When there are M potential variables in a regression model, there are  $2^{M}$  possible regression equations. The  $t_{k,i}$  directed search technique has been proposed as an alternative to stepwise regression techniques [16] to reduce the number of variables in a regression model. The  $t_{k,i}$  directed search uses the ratio of each  $b_{i}$  to its standard error as follows:

$$t_{k,i} = \frac{b_i}{S(b_i)}$$

where  $b_i$  and  $S(b_i)$  are the values of the coefficient and the standard error for ith variable. Following a regression on the full model equation, the variables in the full regression model are arranged in decreasing order of their  $t_{k,i}$  values. Successive regressions reduce the number of variables until a "basic set" is found. The program then analyzes all model equations which can be constructed including all of the basic set of variables plus all possible combinations of the previously dropped variables. The "best" equation is selected on the basis of the lowest standard deviation of the regression.

Finally, the "best" reduced variable regression equation was analyzed in detail to verify its adequacy. If the model was to be used for significance tests or if a statistical interval such as the prediction interval were to be used, verification included careful examination of residual plots [15, 16, 20] to assess departures from the assumptions of the linear regression model. RESULTS AND DISCUSSION

### Simulated Data

The purpose of the simulated data sets was to assess the functional capability of the GIVAR method and its associated computer program without the confusing influence of the large scatter normally associated with stress-rupture data.

The results of the simulated data set analyses are summarized in Table 4 which shows the calculated values of STD for each of the six methods of data correlation for the three simulated data sets. For each data set, the generalized interacting variables method (GIVAR) produced the lowest value of STD. Of equal importance to the significantly better correlation was the fact that the GIVAR computer program selected the most correct of the prime variable transformations for the L-M and O-S-D Exact data The tki search quickly reduced the original nine term sets. model equations to the correct three term equations. The value of STD calculated for these two cases is due primarily to rounding off the calculated exact times for these data sets. For the RAB Exact data, log t, log T, and log  $\sigma$  were selected as the best prime variable transformations. In this case, the original eleven term model equation was reduced to nine terms during the t<sub>k.i</sub> search.

Table 4 also illustrates the general futility of adding higher order polynomial terms to improve correlation for the restricted models. For the four commonly used parameters, no significant improvement can be seen when expanding the model equation from four terms to seven terms (from a second order to a fifth order equation in stress). A similar lack of correlation improvement

14

has been reported on real data [5].

The correlations produced by the M-H and GIVAR methods for the RAB Exact data are shown in Fig. 1. The GIVAR method correlation is noticeably better than the M-H correlation. It is important to remember that in both analyses, log time to rupture was the dependent variable and consequently, minimization of differences between observed and calculated times to rupture was the regression criteria. For these data, neither of the two methods shown had model equation forms which would exactly duplicate the governing equation for the RAB Exact data generation. This is a comparable situation to most real data where correlation models seldom represent a material's behavior exactly. Since for most real data either correlation would probably be considered . satisfactory, the calculation of a statistical interval such as the prediction interval to assess uncertainty about a future observation would be a natural extension of these correlations.

The residuals of the M-H and GIVAR correlations for the RAB Exact data are presented in Fig. 2. The M-H residuals clearly exhibit curvature as a function of the predicted log time to rupture. The residuals are not randomly distributed with respect to the dependent variable (predicted log time to rupture). This type of behavior indicates that the regression model is inadequate and needs additional terms. What has happened is that the M-H model equation, even with a fifth order polynomial in stress, was functionally incapable of correctly approximating the Rabotnov expression which was used to generate these data. The

15

random distribution of the GIVAR correlation which includes interaction terms does not suggest any functional inadequacy. An examination of the cumulative normal distribution of the residuals for the GIVAR correlation failed to indicate that the residuals were not normally distributed. Since the GIVAR correlation equation of these data does not appear to violate any of the basic regression assumptions, the calculation and use of a statistical interval would be in order [16].

#### Real Data

The results of the GIVAR correlation on alloy 4 (a plain carbon steel) are presented in Fig. 3. As for all GIVAR correlations, log time to rupture was the dependent variable. The prime variable transformations selected by the computer program are shown. The original eleven term model equation was reduced to seven terms during the  $t_{k,i}$  search. The GIVAR mean fit seems to satisfactorily correlate this complex behavior. The STD value of the GIVAR correlation for these data was 40 percent lower (0.103 versus 0.146) than a third order M-H model which was the best of the parameter models.

To minimize the computer time, the 95% prediction interval about each observation is normally calculated during the computer run which performs the regression on the model equation. The upper and lower bounds of the 95% prediction are listed along with the calculated time to rupture. For these data, the calculated prediction interval called attention to a possible outlier, i.e., an atypical observation. This data point is shown

16

with the filled symbol. Examination of the residual plot with respect to predicted log time to failure (Fig. 4) suggested that the residuals were randomly distributed, had a mean of zero, and exhibited constant variance with the single exception of the residual for the possible outlier. The cumulative normal distribution plot of these residuals (Fig. 5) also appeared normal with the exception of the single suspect data point. Although there are many schemes for outlier rejection [21, 22], the present purpose is to demonstrate that the prediction interval provided a useful tool for focusing attention on a possible outlier which may have otherwise been overlooked. For other data sets, the calculated prediction interval has called attention to data transcription errors which had gone undetected because of large data scatter. It should be pointed out that the use of the prediction interval to provide a focus for possible outliers is not strictly correct in the statistical sense. Its proper use is to make estimates of the bounds which can be expected from a single future observation from the same population. Dismissing the outlier for the moment, we can say that 95% of the time a future single observation will fall within the bounds shown in Fig. 3. The implications of this kind of statement for acceptance testing, quality control, or determining the significance of a new test variable are obvious.

Temperature and stress are usually considered the prime variables for stress rupture correlation. Some authors [5], however, have been able to improve correlation by the use of an

additional variable such as elastic modulus to normalize stress. Table 5 summarizes the results of correlation analyses on alloy 16 (a nickel base alloy) to evaluate the effect of additional variables. The listing includes the analysis method, the prime variable transformations, and the calculated values for STD, DPAVG and DPMAX. The units of DPAVG and DPMAX are log (time to rupture, hours). For these data, the M-S and M-H methods were the best (lowest STD) of the parameter methods. However, the use of elastic modulus (E) to normalize stress did not significantly improve the fit in either case. Using just temperature and stress, the GIVAR method resulted in a significantly lower value of STD than the best parameter method. When second order polynomial expressions for elastic modulus and ultimate tensile strength at the test temperature were incorporated into a generalized interacting model equation, a significant further correlation improvement was achieved. The significance of the better correlation provided by the GIVAR method is more easily appreciated when it is realized, that within the average prediction interval bounds, the predicted time to rupture varies by a factor of 3 for the best parameter method and by a factor of 1.6 for the GIVAR method. For the maximum width of the prediction intervals, these values are 4.5 and 1.8, respectively. It should be pointed out that the GIVAR model equation did not allow interactions to occur between elastic modulus or ultimate tensile strength and temperature, since they are both highly correlated with temperature. In this case, the original 21 term

18

model equation was reduced to 13 terms during the tk,i search.

The best M-H and GIVAR correlations of the alloy 16 data are presented graphically in Fig. 6. The GIVAR fit is noticeably superior. Even with a fifth order polynomial in log stress, the M-H model equation appears to be functionally inadequate to correlate the complex behavior of alloy 16. This functional inadequacy is further demonstrated in Fig. 7 which presents the residuals as a function of the predicted log time to failure. The M-H residuals are not randomly distributed and definitely display a curvilinear tendency suggesting the need for interaction terms. The GIVAR residuals appear to be randomly distributed and do not suggest any inadequacies in the model equation form. The cumulative normal distribution of the residuals for the GIVAR solution (not shown) did not reveal any gross departures from normalcy. Since none of the basic assumptions of the linear regression appear to have been violated, the making of significance statements or the calculation of statistical intervals for this solution would be in order.

In order to further assess the generality of the GIVAR method, all of the data sets of reference [7] were correlated with the five parameter methods, the MCM method and the GIVAR method. The independent variables for these analyses were limited to functions of temperature and stress. For the parameter methods, second, third, and fifth order model equation forms were examined. The lowest RMS values for the five parameter methods,

19

MCM and GIVAR methods are tabulated in Table 6 and presented graphically in Fig. 8. RMS was selected as the basis of comparison in order to include the MCM analyses. Additional details and other summary values for these analyses are presented in Appendix B.

In Fig. 8, a range band is shown for the five parameter methods. The MCM and GIVAR method are shown with symbols. For each of the twenty data sets analyzed, the GIVAR method produced the lowest value of RMS. The GIVAR method on the average porduced a 19% lower RMS value than the MCM which was on the average the best of the other methods examined. Examination of Table 6 reveals that the GIVAR solution in several cases required less terms in the model equation than the best parameter model equation. The MEGA computer program used to implement the MCM required the determination of eight constants. Table 6 also shows that the Rabotnov method was in all cases the worst of the parametric methods. It should be pointed out, however, that a polynomial in 1/T was the only function of temperature investigated and that other functions of temperature might provide better correlations. With the exception of the GIVAR method, none of the other methods consistently produced the lowest RMS value for all twenty alloys. The failure of any single method to be consistently superior was also observed in reference [7] where the primary emphasis was on the extrapolative characteristics of the various parametric methods with these sets of data.

20

#### CONCLUSIONS

An investigation has been made to assess the applicability of a generalized interacting variable (GIVAR) multiple regression analysis method for the correlation of stress-rupture data. The GIVAR method was compared to six other methods of stress-rupture data correlation on twenty sets of data. The following conclusions are made from the analyses presented herein.

1. For all data sets examined, the GIVAR method produced the best correlation (lowest RMS value).

2. It was shown that the GIVAR method has the functional generality to satisfy criteria necessary for the calculation of statistical intervals.

3. The GIVAR method readily accepts the inclusion of correlating variables in addition to stress and temperature.

4. The prediction interval was shown to be useful for the detection of possible data outliers.

#### APPENDIX A

Parametric Analysis to Establish Simulated Data Sets

The purpose of simulated data sets was to evaluate the functional capabilities of the various correlation methods without the confounding influences of the large scatter normally associated with real data. Creep rupture data are seldom the result of a statistically designed experiment. The data are seldom balanced in variable space. In addition, temperature and stress are often highly correlated. Because of testing economics, low stresses are usually associated with high temperatures and high stresses are usually associated with low test temperatures. In order to include this type of inbalance in the simulated data sets, the data for Timken 35-15 stainless steel [8] were fitted to a first order Larson-Miller and Orr-Sherby-Dorn expressions and to a second order Rabotnov expression by the method of least squares. The equation forms and the fitted coefficients were as follows:

Larson-Miller

 $(Tx10^{-4}) (C + \log t_r) = b_0 + b_1 \log \sigma$ where T = test temperature, <sup>O</sup>R C = iteratively determined constant = 13  $t_r$  = time to rupture, hours  $b_0 = 6.39038$  $b_1 = -0.90584$  $\sigma$  = stress, psi

Orr-Sherby-Dorn  
log 
$$t_r - \frac{\Delta H_R}{2.3RT} = b_0 + b_1 \log \sigma$$
  
where  
 $t_r$  = time to rupture, hours  
 $\Delta H_R$  = apparent activation energy, iteratively calculated =  
58000  
R = universal gas constant = 1.986  
T = temperature, K  
 $b_0$  = 4.46410  
 $b_1$  = -4.60029  
 $\sigma$  = stress, psi  
Rabotnov  
 $t^a = b_0 + b_1/\sigma T + b_2/\sigma T^2$   
where  
t = time to rupture, hours  
a = constant iteratively determined = 0.3637  
 $b_0$  = -1.62434  
 $b_1$  = -2.44083 x 10<sup>5</sup>  
 $\sigma$  = stress, ksi  
T = temperature, <sup>O</sup>F  
 $b_2$  = 4.88958 x 10<sup>8</sup>

The rupture times which were calculated for each of the three solution methods were substituted for the experimental times to rupture to form the "exact" simulated data sets. These calculated times and the original data for the Timken 35-15 stainless steel are presented in Table 7.

#### APPENDIX B

Supplementary Analysis of Correlation Methods

The purpose of this appendix is to supplement the correlation method comparison presented in the main body of the paper on the twenty real sets of data.

The results of the parametric correlations are summarized for the L-M, O-S-D, M-S, M-H and RAB in tables 8 through 12, respectively. The tables present values of RMS, STD, DPAVG and DPMAX which were calculated for each level of polynomial model equation which was evaluated. For the L-M, O-S-D, M-S, and M-H methods, second, third, and fifth order expressions in stress required 4, 5, and 7 terms, respectively. The RAB method required 3, 4, or 6 terms to develop second, third, and fifth order expressions. Table 13 presents a summary of the GIVAR method for these twenty data sets.

Parametric methods

In all cases for the L-M, O-S-D, M-S, and M-H methods, a fifth order expression produced the lowest value of RMS for a given alloy. In some cases, however, the high correlation of the power terms in stress resulted in ill-conditioned solutions which were not reliable (see Table 8, alloy 14, for example). Such was not the case for the RAB solutions (Table 12) where third order expansions (4 terms) of temperature fit better than fifth order in a number of cases (alloys 4, 6, 8, 11A, 11B, 17A).

The calculated values of STD, which for the L-M, O-S-D, M-S, and M-H methods were equivalent to the standard deviation of the

regression, did not follow the trend of better correlation with increasing degree of stress polynomial. The increased STD values reflect the fact that added variables did not reduce the residual sum of squares enough to account for the loss in degrees of freedom. These cases included the following:

| Alloy | Method(s)            |
|-------|----------------------|
| 1     | Ľ.⊷M                 |
| 4     | L-M, O-S-D, M-S, M-H |
| б     | L-M, O-S-D, M-S, M-H |
| 8     | L-M, M-S, M-H        |
| 11A   | L-M, O-S-D, M-S, M-H |
| 11B   | L-M, O-S-D, M-S      |
| 12    | L-M, O-S-D, M-S, M-H |

This behavior, larger values of STD with a higher order polynomial, was also exhibited for several of the alloys during the RAB method correlations (Table 12). The poorer correlation provided by the higher order polynomials can be better appreciated when we recall that the units of DPAVG and DPMAX are log time. Taking the best parametric method correlation in terms of RMS for alloy 4 (Table 11), we see that the average predicted time within the 95% prediction interval varies by a factor of 4.9 for a seven term equation and by 4.5 for a five term equation. The comparable values for the maximum width of the prediction interval are 6.4 and 5.4. In this case the use of a fifth order expression has significantly degraded the correlation. In addition to providing more sensitivity to

25

changes in the "goodness" of correlation, the values of DPAVG and DPMAX as preliminary evaluators of correlation have the feature of allowing all methods to be compared on an equal basis. Values of DPAVG and DPMAX can be backtransformed and averaged if necessary to accommodate different transforms of the dependent variable. They can thus provide the analyst with a "feeling" for the scatter and uncertainty in the data and its correlation.

It is beyond the scope of this paper to summarize the results of all of the analyses which were performed by the GIVAR method on the real data. Table 13 summarizes the "best" model equation results for each alloy. In most cases, the "best" equation was selected after the examination of summary computer results for nine different model equation forms. Log T and  $\sigma^{1/3}$ transformations of temperature and stress were selected for several of the alloys (Table 13). These transformations are not suggested by any of the standard parametric methods. As expected, not only did the GIVAR method produce the lowest value of RMS for each of the alloys, but it also produced the lowest value of the other preliminary correlation evaluators STD, DPAVG, and DPMAX (Tables 8 through 13).

It is rare that stress-rupture data have the replicated observations that are necessary to provide an internal estimate of data scatter. The data for alloy 13 [7] was such an exception. There were seventeen experimental conditions which were replicated. These replicated observations had an average standard deviation of 0.232 with a spread of from 0.024 to 0.476,

26

in terms of log time. The best GIVAR correlation of these data (Table 13) had a standard deviation of 0.280 indicating that the fit was comparable to the data scatter. This value is somewhat lower than the best (M-H) parameter method STD of 0.293 (Table 11).

#### Summary

1. Higher order polynomial model equations do not always provide the best correlations of stress-rupture data.

2. The standard deviation of the regression (STD) is a better correlation evaluator than RMS.

3. The average and maximum width of the 95% prediction interval (DPAVG and DPMAX) are sensitive preliminary evaluators for stress-rupture data correlations.

TABLE 1---Real data sets examined.

| ALLOY      | MATERIAL               | NUMBER OF    |
|------------|------------------------|--------------|
|            | :                      | OBSERVATIONS |
|            | ,                      |              |
| 1          | 1100-0 ALUMINUM        | 64           |
| 2          | 5454-0 ALUMINUM        | , <b>7</b> 5 |
| <b>4</b>   | PLAIN CARBON STEEL     | . 26         |
| 5          | lCr-1Mo STEEL          | 33           |
| 6          | lCr-lMo- 0.25 V STEEL  | 26           |
| 7          | 304 STAINLESS STEEL    | . 52         |
| 8          | 304 STAINLESS STEEL    | 39           |
| 9          | 316 STAINLESS STEEL    | . 38         |
| 11A, 11B   | 347 STAINLESS STEEL    | 42,44        |
| 12         | A286 IRON-NICKEL       | 24.          |
| 13         | INCO 625 IRON-NICKEL   | 99           |
| <u>1</u> 4 | INCO 718 NICKEL-BASE   | 26           |
| 15         | RENÉ 41 NICKEL-BASE    | 37           |
| 16         | ASTROLOY R NICKEL-BASE | . 33         |
| 17A, 17B   | UDIMET 500 NICKEL-BASE | 103,105      |
| 18A, 18B   | L-605 COBALT-BASE      | 100,104      |
| 19         | 6061-T651 ALUMINUM     | 99           |
|            |                        |              |

TOTAL = 20 DATA SETS •

A

J

.

52

.

-

.

| Temperature<br><sup>O</sup> F | Stress<br><u>ksi</u> | Time to Rupture<br><u>Hours</u> |
|-------------------------------|----------------------|---------------------------------|
|                               |                      |                                 |
| 752                           | 40.3                 | 752                             |
| 752                           | 38.1                 | 1696                            |
| 752                           | 35.8                 | 3973                            |
| 752                           | 33.6                 | 6134 ·                          |
| 752                           | 31.4                 | 10422                           |
| 752                           | 29.1                 | 20227                           |
| 842                           | 33.6                 | 65                              |
| 842                           | 31.4                 | 441                             |
| 842                           | 26.9                 | 1341                            |
| 842                           | 24.6                 | 3023                            |
| 842                           | 22.4                 | 3934                            |
| 842                           | 17.9                 | 12985                           |
| 842                           | 15.7                 | 18648                           |
| 842                           | 13.4                 | 34753-                          |
| 932                           | 22.4                 | 63                              |
| 932                           | 20.2                 | 247                             |
| 932                           | 17.9                 | 430                             |
| 932                           | 15.7                 | 1317                            |
| 932                           | 13.5                 | 2958                            |
| 932                           | 11.2                 | 3202                            |
| 932                           | 9.0                  | 7558                            |
| 932                           | 6.7                  | 22707                           |
| 1022                          | 13.5                 | 43                              |
| 1022                          | 11.2                 | 142                             |
| 1 <u>022</u>                  | 9.0                  | <sup>4</sup> 96                 |
| 1022                          | 6.9                  | 1935                            |

# TABLE 2--Stress-rupture data for alloy 4.

| Temperature    | Stress         | Time to Rupture   | Tensile Strength <sup>(a)<sup>.</sup></sup> | Elastic Modulus <sup>(b)</sup> |
|----------------|----------------|-------------------|---------------------------------------------|--------------------------------|
| ° <sub>F</sub> | ksi            | . • Hours         | ksi                                         | 10 <sup>-6</sup> psi           |
| -              |                |                   |                                             |                                |
| *              | *              | •                 | ۰,                                          |                                |
| 1400           | 101.0          | 12.8              | 150                                         | 25.80                          |
| 1400           | 86.0           | 59.0              | 150                                         | 25.80                          |
| 1400           | 80.0           | 176.6             | 150                                         | 25.80                          |
| 1400           | 74.0.          | 400.7             | 150                                         | 25.80                          |
| 1400           | . 70.0.        | - 577.0           | 150                                         | 25.80                          |
| 1400           | 61.0           | 2279.8            | 150                                         | 25.80                          |
| - 1400         | 55.0           | 4,063.2           | 150                                         | 25.80                          |
| 1500           | 75.0           | 30.5              | 130                                         | 25.05                          |
| 1500           | 64.0           | 142.2             | 130                                         | 25.05                          |
| 1500           | ,50.0          | 351.3             | 130                                         | 25.05                          |
| 1500           | -52.0<br>Mrr 0 | 712.0             | 130                                         | 25.05                          |
| 1500           | 45.0           |                   | 130                                         | 25.05                          |
| 1500           | 39.0           | 222(•4<br>11202 h | 120                                         | 25.05                          |
| 1500           | 31.U           | • 4393•4          | 130                                         | 25.05                          |
| 1600           | 04.U<br>56 5   | 10.5              | 110                                         | 24.50                          |
| 1000           | 50.5<br>h6 F   | 20.0<br>1/15 8    | 011                                         | 24.00                          |
| 1600           | 40.5<br>Jun 0  | 252 0             | 13.0                                        | 24.50                          |
| 1600           | 41.U           | 200+0<br>525 7    | 110                                         | 24.00<br>DH ED                 |
| 1600           | 21 0           | 888 0             | 110                                         | 24.50                          |
| 1600           | うエ•O<br>う上 - F | 2800 7            | 110                                         | 24.50                          |
| 1600           |                | . 6331 0          | 11.0                                        | 24.50                          |
| 1700           | 41.0           | 11.5              | 80                                          | 23,30                          |
| 1700           | 33.5           | 44. 2             | -80                                         | 23,30                          |
| 1700           | 29.0           | 120.9             | · 80                                        | 23.30                          |
| 1700           | 24.0           | 342.7             | 80                                          | 23.30                          |
| 1700           | 21.0           | 746.7             | 80                                          | 23,30                          |
| 1700           | 17.5           | 1768.7            | 80                                          | 23,30                          |
| 1700           | 14.5           | 2838.7            | 80                                          | 23.30                          |
| 1800           | 29.5           | 6.1               | 40                                          | 22,15                          |
| 1800           | 20.5           | 49.3              | 40                                          | 22.15                          |
| 1800           | 17.0           | 174.0             | 40                                          | . 22.15                        |
| 1800           | 14.5           | 340.7             | 40                                          | 22.15                          |

•

TABLE 3--Stress rupture data for alloy 16.

(a) Estimated from reference [23](b) From reference [5]

· · 2

30

-

|            |              |                             |              | -        |      |      |       |      |           |                   |             |        |          |      |      |          |      |                |                                                                  |                                                   |
|------------|--------------|-----------------------------|--------------|----------|------|------|-------|------|-----------|-------------------|-------------|--------|----------|------|------|----------|------|----------------|------------------------------------------------------------------|---------------------------------------------------|
| Dat<br>Set | 5 <b>8</b> . | No. of<br>equation<br>terms | 4            | ь—м<br>5 | 7    | 4    | 0-5-D | 7    | Para<br>4 | meter<br>M-S<br>5 | Method<br>7 | s<br>4 | м-н<br>5 | 7    | 3    | RAB<br>4 | 5    | Gene:<br>GIVAR | valized Interacti<br>No. of varia-<br>bles in "best"<br>equation | ng Variables<br>Prime variable<br>transformations |
| 0-6<br>Exe | S-D          |                             | .045         | .045     | .045 |      |       |      | -092      | .095              | .096        | .027   | .023     | .024 | .317 | .046     | .003 | .00003         | 3                                                                | log t, 1/T, log s                                 |
| L-l        | Mact         |                             |              |          |      | .046 | •047  | .047 | .052      | .054              | .055        | .027   | .024     | .025 | .202 | .052     | .051 | .00002         | 3                                                                | log t, 1/T, log σ                                 |
| RA:<br>Ex  | B<br>act     |                             | <b>.11</b> 7 | .118     | .119 | .145 | .149  | .150 | .083      | .084              | .085        | .044   | .042     | .044 |      |          |      | .010           | <b>9</b> ,                                                       | log t, log Τ, log σ                               |
|            |              |                             |              |          |      |      |       |      |           |                   |             |        |          |      |      |          |      |                |                                                                  |                                                   |

TABLE 4--Comparison of STD values for simulated data.

•

|   | TABLE | 5Effect | of | additional | variables | on | correlation |
|---|-------|---------|----|------------|-----------|----|-------------|
| • |       | -       |    |            | $\sim$    |    |             |

alloy 16 - Astroloy®

| ANALYSIS<br>METHOD | PRIME<br>VARIABLES                                   | STD  | PREDICTION<br>AVERAGE | INTERVAL<br>MAXIMUM |
|--------------------|------------------------------------------------------|------|-----------------------|---------------------|
| ĮM                 | l/T <sub>R</sub> , log σ                             | .142 | .631                  | •756                |
| 0-S-D              | l/T <sub>K</sub> , log σ                             | .148 | .661                  | .824                |
| M-S                | Τ <sub>F</sub> , log σ                               | ,118 | .527                  | ,657                |
| M-S                | Τ <sub>F</sub> , log σ/E                             | .114 | .506                  | .648                |
| M-H                | T <sub>F</sub> , T <sub>A</sub> log σ                | .116 | •517                  | .660                |
| M-H                | T <sub>F</sub> , T <sub>A</sub> , log σ/E            | .110 | .489                  | .652                |
| RAB                | l/T <sub>F</sub> , σ                                 | •373 | 1.159                 | 4.140               |
| GIVAR              | .l/T <sub>F</sub> , σ                                | .061 | .279                  | •353                |
| GIVAR              | $\log T_F, \frac{1}{\sigma_{TU}}, \sigma^{1/3}, 1/E$ | .044 | .213                  | .256                |
|                    | •                                                    |      |                       |                     |

ະ ເບັ

•

56

•

.

•

|         | Number<br>of Data | т              | M    | 0-5            | <b>_</b> D | м_             | q     | M              | ч    | PA    | в    | мс  | м    | CTU   | <b>A D</b> |
|---------|-------------------|----------------|------|----------------|------------|----------------|-------|----------------|------|-------|------|-----|------|-------|------------|
| Alloy   | Points            | Terms          | RMS  | Terms          | RMS        | Terms          | RMS   | Terms          | RMS  | Terms | RMS  | A   | RMS  | Terms | RMS        |
| ı       | 64                | 7              | .159 | 7              | .139       | 7              | .220  | 7              | .153 | 6     | .209 | 0   | .127 | 9     | .106       |
| 2       | 75                | 7              | .082 | 7              | .086       | 7              | .160  | 7              | .074 | 6     | .245 | 0   | .077 | 11    | ,055       |
| 4       | 26                | 7              | .161 | 7              | .149       | 7              | .161  | 7              | ,128 | 4     | .247 | 15  | .109 | · 7   | .088       |
| 5       | 33                | 7              | .063 | 7              | .050       | 7              | .089  | 7              | .054 | 3     | .304 | 0   | .054 | 9     | .043       |
| 6       | 26                | 7              | .097 | 7              | .057       | 7              | .124  | 7              | .045 | 4     | .298 | 05  | .043 | 6     | .042       |
| 7A      | 52                | 7              | .140 | 7              | .131       | 7              | .179  | 7              | ,121 | 6     | .256 | 0   | .131 | 10    | .091       |
| 8       | 39                | 7              | .178 | 7              | .131       | 7              | .233  | 7              | .137 | 4     | .291 | 05  | .115 | 10    | 074        |
| 9       | 38                | 7              | .111 | 7              | .094       | 7              | .141  | 7              | .111 | 6     | .148 | .15 | .078 | 8     | .068       |
| 11A     | 42                | 7              | .134 | 7              | .142       | 7              | .122  | 7              | .113 | 4     | .179 | 10  | .109 | 7     | .100       |
| 11B     | 44                | 7              | .132 | 7              | .139       | 7              | .122  | 7              | .111 | . 4   | .218 | 05  | .111 | 9     | .099       |
| 12      | 24                | 7              | .183 | 7              | .191       | 7              | .178  | 7              | .178 | • 6   | .385 | 10  | .175 | 6     | .166       |
| 13      | 95                | 7              | .288 | 7              | .291       | 7              | .291  | 7 .            | .282 | 6     | .363 | 05  | .290 | 8     | .268       |
| 14      | 26                | 5 <sup>a</sup> | .064 | 5 <sup>a</sup> | .074       | 5 <sup>a</sup> | .073  | 5 <sup>a</sup> | .059 | 6     | .293 | 0   | .056 | 10    | .037       |
| 15      | 37                | 7              | .088 | 7              | .092       | 7              | .100  | 7              | .088 | ~ 6   | .321 | 0   | .096 | 7     | .068       |
| 16      | 33                | 7              | .126 | 7              | .132       | 7              | .105  | 7              | .103 | • 6   | .344 | 15  | .072 | 9     | .052       |
| 17A     | 103               | 7              | 202  | 7              | .232       | 7              | .201, | 7 '            | .200 | 4     | .461 | 0   | .198 | 9     | .191       |
| 17B     | 105               | 7              | .200 | 7              | .228       | 7              | .201  | 7              | .198 | 4     | .477 | 0   | .201 | - 7   | .196       |
| 18A     | 100               | 7              | .216 | 7              | .251       | 7              | .182  | 7              | .182 | 6     | .381 | 0   | .186 | 8     | .173       |
| 18B     | 104               | 7              | 214  | 7              | .252       | 7              | .180  | 7              | .180 | 6.,   | .410 | 0   | .187 | 8     | .171       |
| 19      | 100               | 7              | .265 | 7              | .253       | , <b>7</b>     | •308  | 7              | .276 | 6     | .452 | 0   | .350 | 10    | .225       |
| Average | •                 |                | .155 |                | .156       |                | .169  |                | .140 |       | 314  |     | .138 |       | .116       |

#### TABLE 6---Summary of <u>RMS</u> comparisons.

.

<sup>a</sup>Evidence of ill-conditioned solution for seven term model.

57

.

,

|                                                                                                                                                                                      | Experimenta                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Calculated                                                                                                                                                                                                               | l time to rup                                                                                                                                                                                                                 | ture, hours                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\operatorname{Temp}_{F}$ .,                                                                                                                                                         | Stress,<br>ksi                                                                                                                                                | Time to<br>Rupture<br>Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L-M<br>Exact                                                                                                                                                                                                             | 0-S-D<br>Exact                                                                                                                                                                                                                | RAB<br>Exact                                                                                                                                                                                                           |
| 1200<br>1200<br>1200<br>1200<br>1300<br>1300<br>1300<br>1300<br>1400<br>1400<br>1400<br>1500<br>1500<br>1500<br>1500<br>1600<br>1600<br>1600<br>1600<br>1800<br>1800<br>1800<br>1800 | 21.0<br>19.0<br>18.0<br>13.0<br>16.0<br>13.0<br>11.0<br>7.5<br>8.5<br>7.0<br>6.0<br>6.0<br>4.9<br>3.5<br>6.0<br>4.0<br>3.0<br>2.5<br>3.0<br>2.0<br>1.5<br>1.3 | 120     170     300     975     60     160     300     120     400     900     120     300     120     300     120     300     120     300     120     100     100     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000     1000 | 81.36<br>140.47<br>188.67<br>1114.10<br>46.89<br>136.51<br>322.53<br>2315.56<br>166.00<br>427.33<br>905.32<br>138.89<br>354.14<br>1676.99<br>25.56<br>152.03<br>538.66<br>1200.88<br>21.84<br>110.91<br>351.35<br>623.51 | 149.16<br>236.38<br>303.14<br>1354.55<br>52.16<br>135.58<br>292.38<br>1702.62<br>122.73<br>299.80<br>- 609.27<br>.96.32<br>.244.54<br>1149.68<br>18.21<br>117.62<br>441.81<br>1022.11<br>24.58<br>158.75<br>596.31<br>1151.78 | 77.21<br>110.82<br>134.11<br>401.32<br>71.44<br>150.14<br>265.00<br>910.22<br>228.84<br>434.31<br>711.23<br>252.30<br>490.24<br>1409.44<br>73.96<br>302.83<br>765.48<br>1349.54<br>30.82<br>139.88<br>369.08<br>585.77 |

.

## TABLE 7--Experimental and calculated stress-rupture data for Timken 35-15 stainless steel.

.

\*

.

## TABLE 8--Summary of Larson-Miller method correlations.

|        | 71/2  |         |           |          |         | 9<br>T  |          |        | DPAYG       |        | DPMAX  |        |        |        |
|--------|-------|---------|-----------|----------|---------|---------|----------|--------|-------------|--------|--------|--------|--------|--------|
| Number | of    | terms   | 4         | нла<br>5 | 7       | 4       | 5        | 7      | 4           | 5      | 7      | 4      | 5      | 7      |
|        | All   | оу      | c 1960    | 6 16 10  | 0 1546  | 6 1903  | 0.1671   | 0.1680 | 0.7937      | 0,7020 | 6.7159 | 0.8455 | 0.7960 | 0.9100 |
|        |       | 1       | 1 1042    | 0.1004   | 0.1007  | 0 1514  | 0.0921   | 0.0858 | P.6287      | 0.3849 | 0.3632 | 0.6633 | 0.4218 | 0.4410 |
|        |       | 2       | 0 1 7 7 5 | 0.1490   | 0 1604  | 6 1952  | n.1811   | 0.1882 | 0.8497      | 9.8029 | 0.1654 | 0,9488 | 0.9214 | 1.0204 |
|        |       | 4       | 0.1790    | 0.1620   | 0.0000  | 0.1278  | 0 0795   | 0.0704 | 0.3750      | 0.3443 | 0.3131 | n,4068 | 0.4077 | 0.4036 |
|        |       | 5       | 0.0823    | 0.0752   | 0.0070  | 0 1100  | 0 1097   | 0 1135 | 0.5153      | 0.4818 | 0.5223 | 0.5700 | 0.5662 | 0.6494 |
|        |       | 6       | 0 1000    | 0.0977   | 0.0970  | 0.1070  | 0 1001   | 0 1609 | 0 7714      | 0.6797 | 0.6497 | 0.0091 | 0.7370 | 0.7530 |
|        |       | 7       | 0.1709    | 6.1257   | 0.1404  | 0.1007  | 9.1000   | 0.1962 | n 6009      | n 4219 | 0.8597 | 0.2631 | 0.9337 | 1.0632 |
|        |       | 8       | 0 1791    | 0.1791   | 0.1777  | 0,1841  | 0,1914   | 0,1933 | 0 4214      | 0 5631 | 0.5410 | 0.7412 | 0.7294 | 1.7116 |
|        |       | ā.      | 0.1387    | 0,1224   | 0.1114  | 0,1466  | 0,1515   | 0.1203 | 0 6 7 1 9 7 | 0 4176 | 0.6386 | 0.6664 | 0.6786 | 0.7051 |
|        | 11    | á       | 0.1395    | 0.1358   | 6.1337  | 0.1467  | 0.1447   | 0.1464 | 0.6170      | 0.61/0 | 0.6000 | 0.7014 | 0.7087 | 0.7229 |
|        | - î î | R       | 6.1397    | 0.1340   | 0.1317  | 0.1465  | 0,1424   | 0.1436 | (1.01/9     | 0.0750 | 1 0142 | 1 4289 | 1,2125 | 1.2280 |
|        |       | 2       | 0,2356    | 0,1861   | n,1833  | 0.2581  | 0.2091   | 0.2175 | 1,1520      | 0,9339 | 1 0510 | 1 5049 | 1 5613 | 1 6586 |
|        |       | 2       | 0.3313    | 0.305?   | 0.2681  | 0,3385  | n.3137   | 0.2993 | 1,3945      | 1.2985 | 1.02   | 0 7570 | 0 3772 | -a     |
|        |       | -)<br>1 | 0.0677    | 0.0643   | a       | (+,0736 | ካ.በ716   | a      | 0.3201      | 0.3172 |        |        | 0.5772 | 0 5750 |
|        | 1     | .4      | 0.1497    | 0.0996   | r.167r  | 0,1585  | 0,1072   | 0,0973 | 0.6729      | 0.4606 | 0.4282 | 0.7275 | 0.0277 | 0.0000 |
|        | -     | 2       | 0.1663    | 0.1342   | 0.1257  | 0.1774  | n.1457   | 0.1417 | 0.7577      | 0.6309 | 0,6303 | 0,404  | 0.7362 | 0.0062 |
|        | 1     | 10      | 0 2374    | 0.2064   | 3.2020  | 0.2426  | 0.2116   | 0.2092 | n.9951      | 0.8725 | C.8711 | 1,0364 | 0.9428 | 1.0415 |
|        | - 17  | A       | 0 2526    | 0 2046   | 0.1999  | 0.2575  | 0.2090   | Panš.0 | 1.0554      | 0.8607 | 0.8602 | 1,1363 | 1.0042 | 1,1186 |
|        | 17    | B       | 0 2304    | 0 2245   | 0 2161  | 0.2356  | 0.2303   | 0.2241 | 0.9679      | 0,9510 | 0.9344 | 1,0056 | 1.0292 | 1,1236 |
|        | 18    | 3a      | 0.2007    | 0.0061   | 0 21 30 | 0 2327  | 6.2338   | 0.2215 | 0.9541      | 0,9631 | 0.9212 | 1,0288 | 1.1120 | 1,1542 |
|        | 18    | 3B      | 0.720     | 1 arci   |         | 6 4485  | 0 7628   | 0.2751 | 1_8096      | 1.4981 | 1.1473 | 1.003  | 1.5931 | 1.2681 |
|        |       | 19      | 0.4516    | 1.9225   | H. SC00 | 0,440   | <b>.</b> |        |             |        | -      |        |        |        |

<sup>a</sup>Evidence of 111-conditioned solution.

ORIGINAL PAGE IS OF POOR QUALITY

#### TABLE 9 --- Summary of Orr-Sherby-Dorn method correlations.

|        | RMS      |        |        |        |        | STD     |        |         | DPAVG  |        | DPMAX  |        |        |
|--------|----------|--------|--------|--------|--------|---------|--------|---------|--------|--------|--------|--------|--------|
| Number | of terms | 4      | 5      | 7      | 4      | 5       | 7      | 4       | 5      | 7      | 4      | 5      | 7      |
|        |          |        |        |        | -      |         |        |         |        | •      |        |        |        |
|        | Alloy    |        |        |        |        |         |        |         |        |        |        |        |        |
|        | l        | 0.1892 | 0.3417 | 0.1387 | 0.1954 | 0.1476  | 0.1470 | 0.8149  | 0.6202 | 0,6264 | 0.8619 | 0.6899 | 0.7806 |
|        | 2        | 0.2025 | 0.1072 | 0,0860 | (+2081 | 0.1109  | 0.0903 | 0.8643  | 0.4636 | 0.3823 | 0.9103 | 0.4950 | 0.4450 |
|        | 4        | 0.1819 | 0.1510 | 0.1493 | 0.1978 | 0,1680  | 0.1746 | 0.8608  | C.7452 | 0.8036 | 0.9502 | 0.8133 | 0.9189 |
|        | 5        | 0.6818 | 0.0611 | n.0495 | 0.0872 | 0.0663  | 0.0557 | 0.3727  | 0.2876 | 0.2482 | 0.3975 | 0.3029 | 0.3043 |
|        | ē        | 0.0661 | 0.0574 | 0.0566 | 0.0718 | 0.0639  | 0.0662 | 0.3128  | 0.2834 | 0.3045 | 0.3282 | 0.3110 | 0,3688 |
|        | 7        | 0.1582 | 0.1456 | 0,1306 | 0.1647 | 0,1531  | 0.1404 | 0,6907  | 0,6480 | 0,6048 | 0,7184 | 0,6680 | 0,6624 |
|        | ė        | 0.1389 | 0.1374 | 0.1308 | 0.1466 | 0,1472  | 0.1444 | 0,6209  | 0,6308 | 0.6329 | 0 6616 | 0,6944 | 0,7589 |
|        | ġ.       | 0.1204 | 0.1077 | 0.0935 | 0 1337 | 0.1156  | 0.1035 | 0.5668  | 0.4962 | 0.4541 | 0.5925 | 0.5693 | 0.5902 |
|        | llÁ      | 0.1511 | 0.1437 | 0.1424 | 0.1582 | 0.1531  | 0.1560 | 0.6707  | 0.6539 | 0,6803 | 0.7124 | 0.6901 | 0.7378 |
|        | 118      | 0.1568 | 0.1413 | 0.1393 | 0.1644 | 0,1501  | 0.1519 | 0,6930  | 0,6393 | 0,6605 | 0,7803 | 0.7149 | 0,7542 |
|        | 12       | 0.2689 | 0.1940 | 0.1914 | 0.2945 | 0.2180  | 0.2275 | 1.2931  | 0.9767 | 1,0607 | 1.4279 | 1.1902 | 1.3414 |
|        | 13       | 0.3420 | 0.3193 | 0,2910 | 0,3503 | 0,3281  | 0.3023 | 1.4425  | 1.3578 | 1.2643 | 1.5942 | 1.6033 | 1,5184 |
|        | ĩ4       | 0.0873 | 6.0738 | a      | 0.0949 | 0.0821  | a      | n.4131  | 0.3642 | a      | 0.4261 | 0.3991 | a      |
|        | 15       | 0.1742 | 0.0990 | 0,0923 | 0.1844 | °.1073° | 0.1025 | 0,7830  | 0.4614 | 0,4516 | 0.8225 | 0.4857 | 0.5349 |
|        | īć       | 0.1797 | 0.1416 | 0,1317 | Õ 1917 | 0,1537  | 0.1484 | 10,8191 | 0.6661 | 0,6605 | 0.8540 | 0.7447 | 0.8237 |
|        | 17A      | 0.2864 | 0.2370 | 0.2322 | 0.2921 | 0,2429  | 0.2405 | 1,1982  | 1.0016 | 1.0013 | 1,2249 | 1.0250 | 1,1031 |
|        | 17B      | 0.3181 | 0.2329 | 0,2284 | 0 3243 | 0.2387  | 0.2364 | 1,3290  | 0.9830 | 0,9830 | 1,3996 | 1.0309 | 1,1771 |
|        | 18A      | 0.2658 | 0.2650 | 0.2505 | 0.2713 | 0.2719  | 0.2597 | 1.1145  | 1,1226 | 1,0832 | 1,1424 | 1,1523 | 1,2127 |
|        | 18B      | 0 2702 | 0,2661 | 9,2520 | 0.2755 | 0,2727  | 0.2609 | 1,1297  | 1.1238 | 1.0855 | 1,1678 | 1.1764 | 1.2777 |
|        | 19       | 0.5102 | 0.4067 | 0.2533 | 0:5207 | 0.4173  | 0.2627 | 2.1390  | 1.7232 | 1.0957 | 2,1995 | 1.7714 | 1,1595 |

.

,

36

# <sup>a</sup>Evidence of ill-conditioned solution.

|           |       | RMS     |        |        |           | STD    |          |        | DPAVG    |        | DPMAX  |        |        |
|-----------|-------|---------|--------|--------|-----------|--------|----------|--------|----------|--------|--------|--------|--------|
| Number of | terms | 4       | 5      | 7      | 4         | 5      | 7        | 4      | 5        | 7      | 4      | 5      | 7      |
| Allo      | у     |         |        |        |           |        |          |        |          |        |        |        |        |
| 1         |       | 0,2417  | 0.2256 | 0.2204 | 0.2496    | 0,2350 | 0.2335   | 1.0412 | 0.9873   | 0,9951 | 1.1062 | 1.0916 | 1.2462 |
| 2         |       | 6.2042  | 0,1679 | 0,1602 | 0.2098    | 0.1738 | 0.1682   | 0.8714 | 0.7264   | 0.7119 | 0.9425 | 0.8035 | 0.8258 |
| 4         |       | 0.1776  | 0.1628 | 0.1610 | 0,1930    | 0.1812 | 0.1883   | 0.8404 | 0.8036   | 0.8666 | 0.4913 | 0.8661 | 0.9908 |
| 5         |       | 0.1055  | 0.0941 | 0.0886 | 0.1126    | 0,1022 | 0.099A   | 0,4809 | 0.4429   | 0,4446 | 0.4988 | 0,4680 | 0.5449 |
| 6         |       | 0.1264  | 0.1239 | 0.1235 | 0.1376    | 0.1378 | 0.1445   | 0,5990 | 0.6111   | 0.6647 | 0.6761 | 0.6824 | 0.8050 |
| 7         |       | 0.2025  | 0.1830 | 0.1788 | 0.2105    | 0,1925 | 0.1922   | 0.8830 | 0.8145   | 0.8279 | 0,9291 | 0.8500 | 0,9079 |
| 8         |       | 0.2329  | 0.2339 | 0.2330 | 0.2469    | 0.2505 | 0.2572   | 1,0455 | 1.0735   | 1,1276 | 1,1286 | 1,1731 | 1,3518 |
| ŏ         |       | 0.1639  | 0.1516 | 0 1409 | 0,1733    | 0,1627 | 0.1559   | 0,7348 | 0,6981   | 0.6844 | 0.7706 | 0,7975 | 0,8895 |
| 114       |       | 0.1302  | 0.1241 | 0 1219 | 0.1369    | 0.1322 | 0.1336   | 0 5779 | 0.5646   | 0,5826 | 0.6197 | 0,5990 | 0,6316 |
| 118       |       | 0.1317  | 0.1249 | 0 1217 | 0.1381    | 0.1327 | 0.1329   | 0.5822 | 0.5652   | 0.5778 | 0.6514 | 0.6310 | 0.6609 |
| 10        |       | 0.235   | 0.1821 | 0.1779 | 0.2579    | 0.2046 | 0.2114   | 1.1325 | 0.9167   | 0.9858 | 1,2058 | 1.1163 | 1,2468 |
| 13        |       | 0.3492  | 0.3056 | 0.2914 | 0.356A    | 0.3140 | 0.3027   | 1.4688 | 1.2996   | 1.2661 | 1.6739 | 1,5537 | 1.5409 |
| 10        |       | 0.6885  | 6.0728 | a      | 0.0875    | 0.0810 | a        | 0.3810 | 0.3591   | a      | 0.3928 | 0.3936 | a      |
| 15        |       | 0.1673  | 0.1153 | 0.0999 | 0.1771    | 0.1240 | 0.1110   | 0.7520 | 0.5331   | 0.4889 | 0.7838 | 0.5629 | 0.5796 |
| 10        |       | 1559    | 6.1157 | 0.1051 | 0.1663    | 0.1256 | 0.1184   | 6.7106 | 0.5443   | 0.5268 | 0.7567 | 0.6055 | 0.6570 |
| 174       |       | 6 26.55 | 6 2184 | 0 2012 | 6.2736    | n 2239 | 0.2085   | 1,1222 | 0.9231   | 0.8679 | 1 1497 | 0 9447 | 0.9559 |
| 175       |       | 0 2745  | 0 2205 | 0 2007 | 0.2849    | 0.2260 | 0.2077   | 1.1677 | 0.9307-  | 0.8637 | 1,2206 | 0.9689 | 1.0323 |
| 184       |       | 0 1944  | 0 1942 | 0 1022 | 0 1989    | 0.1992 | 0.1889   | 0.8171 | 0.8227 - | 0.7878 | 0.8378 | 0.8482 | 0.8827 |
| 104       |       | 0 1987  | 0 1954 | 0 1805 | 0 2027    | 0.2003 | 0.1567   | 0.8309 | 0.8253   | 0.7768 | 0.8621 | 0.8620 | 0.9142 |
| 100       |       | 6 4141  | 6 3640 | 0 3076 | 0 4 2 4 7 | 0.3735 | 0.3192   | 1.7446 | 1.5423   | 1.3313 | 1.8299 | 1.6135 | 1.4131 |
| 19        |       | 0.416)  | 0,0040 |        | 0.7277    | 0.0100 | V. 01 /r |        |          | ~      |        |        |        |

,

.

#### TABLE 10---Summary of Manson-Succop method correlations.

<sup>a</sup>Evidence of ill-conditioned solution.

.

•

•

.

•

.

| TABLE 11 | Summary | of | Manson-Haferd | method | correlations. |
|----------|---------|----|---------------|--------|---------------|
|----------|---------|----|---------------|--------|---------------|

. •

|        |      |       | RMS    |        |        |        | STD    |        |         | DPAVG  |        | DPMAX  |         |        |  |
|--------|------|-------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|---------|--------|--|
| Number | of   | terms | 4      | 5      | 7      | 4      | 5      | 7      | 4       | 5      | 7      | 4      | 5       | 7      |  |
|        | A1)  | Loy   |        |        |        |        |        |        |         |        |        |        |         | •      |  |
|        |      | 1     | 0,2122 | 0.1653 | 0,1533 | 0,2192 | 0.1722 | 0.1624 | 0.9144  | 0.7235 | 0.6921 | 0.9716 | 0.7998  | 0.8466 |  |
|        |      | 2,    | 0.1893 | 0.1145 | 0.0741 | 0.1946 | 0.1185 | 0.0779 | 0.8040  | 0,4954 | 0.3295 | 9 P668 | 0.5535  | 0.3452 |  |
|        |      | 4     | 0.1722 | 0.1312 | 0.1284 | 6,1872 | 0.1460 | 0.1502 | P. 814A | 0.6472 | 0.6908 | 0.9018 | €0.7294 | 0.8072 |  |
|        |      | 5     | 0,0930 | 0.0597 | 0.0541 | 0.0992 | 0.0649 | 0.0610 | 0.4239  | 0.2809 | 0.2712 | 0.4677 | 0.3406  | 0.3510 |  |
|        |      | 6     | 0,0481 | 0.0455 | 0.0448 | 0.0523 | 0.0507 | 0.0525 | 0.2277  | 0.2247 | 0.2413 | 0.2468 | 0.2594  | 0.2988 |  |
|        |      | 7     | 0.1475 | 0.1294 | 0,1212 | 0.1535 | 0.1361 | 0.1303 | 0.6437  | 0.5759 | 0.5608 | 0.6907 | 0.6429  | 0.6534 |  |
|        |      | 8     | 0,1524 | 0.1390 | 0,1365 | 0.1609 | 0.1489 | 0.1507 | 0.6813  | 0.6380 | 0.6605 | 0.7561 | 0.7468  | 0.8061 |  |
|        |      | 9     | 0.1476 | 0,1299 | 0.1111 | 0.1560 | 0.1394 | 0.1231 | 0.6611  | 0.5975 | 0.5397 | 0.8048 | 0.7819  | 0.7105 |  |
|        | 11   | A     | 0,1248 | 0.1143 | 0,1128 | 0.1312 | 0,1217 | 0.1235 | 0 5540  | 0.5196 | 0.5388 | 0.5985 | 0.5721  | 0.5898 |  |
|        | 11   | в     | 0,1287 | 0.1144 | 0.1111 | 0.1350 | 0.1215 | 0.1212 | 0.5689  | 0.5172 | 0.5266 | 0.6492 | 0.6060  | 0.6095 |  |
|        | 1    | 2     | 0.2176 | 0,1821 | 0.1779 | 0.2384 | 0.2046 | 0.2114 | 1.0455  | 0.9157 | 0.9847 | 1.3147 | 1.1877  | 1.2502 |  |
|        | 'ī   | 3     | 0.3448 | 0,3041 | 0.2819 | 0.3523 | 0.3124 | 0.2929 | 1,4505  | 1.2929 | 1.2244 | 1.6561 | 1.5899  | 1.6379 |  |
|        | 1    | 4     | 0,0773 | 0,0587 | a      | 0.0840 | 0.0654 | а      | 0.3655  | 0.2896 | a      | P.4131 | 0.3481  | a      |  |
|        | ้า   | 5     | 0.1673 | 0.1015 | 0.0883 | 0.1771 | 0.1091 | 0.0980 | 0.7520  | 0.4690 | 0.4315 | 0.8203 | 0.5505  | 0.5441 |  |
|        | ī    | 6     | 0.1557 | 0.1148 | 0,1032 | 0,1660 | 0.1247 | 0.1162 | 0 7093  | 0.5398 | 0.5172 | 0.7821 | 0.6419  | 0.6600 |  |
|        | 17   | 'A    | 0.2677 | 0.2170 | 0.1998 | 0.2730 | 0.2224 | 0.2069 | 1.1199  | 0.9170 | 0.8614 | 1.1706 | 0.996Å  | 1.0388 |  |
|        | 17   | 'B -  | 0.2758 | 0,2179 | 0.1984 | 0.2012 | 0.2232 | 0.2054 | 1.1525  | 0.9193 | 0.8537 | 1.2466 | 1.0843  | 1 1137 |  |
|        | īġ   | Ā     | 0,1946 | 0,1936 | 0.1822 | 0,1986 | 0.1986 | 0.1889 | 0.8158  | 0.8200 | 0.7878 | 0.0540 | 0.0953  | 0 9548 |  |
|        | - 18 | B     | 0,1967 | 0.1948 | 0,1804 | 0,2006 | 0.1997 | 0.1868 | r.8224  | 0.8226 | 0.7769 | 0.8926 | 0.9539  | 0 9775 |  |
|        | ĩ    | .9    | 0,4129 | 0.3619 | 0,2760 | 0.4214 | 0.3713 | 0.2862 | 1,7310  | 1,5331 | 1,1934 | 1.0026 | 1.6363  | 1.3242 |  |

•

<sup>a</sup>Evidence of ill-conditioned solution.

.

.

.

.

62

ĸ



.

. TABLE 12--Summary of Rabothov method correlations.

|        |             | RMS     |        |                 |         | STD               |        |          | DPAVG   |        |         | DPMAX   |          |  |
|--------|-------------|---------|--------|-----------------|---------|-------------------|--------|----------|---------|--------|---------|---------|----------|--|
| Number | of terms    | 3       | 4      | 6               | .3      | 4                 | 6      | 3        | 4       | 6      | 3       | 4       | 6        |  |
|        | Alloy       |         |        | natu "          | • •     | -                 |        |          |         |        |         |         |          |  |
|        | 1           | 0.4387  | 0.2185 | 0,2091          | 0.4494  | 0.2257            | 0.2178 | 0.0000   | 0.0000  | 0.9158 | 0_0000  | 0.0000  | 1,0270   |  |
|        | 2           | 0.3800  | 0.245ė | 0.2452          | 0.3879  | 0,2526            | 0,2538 | 1,8936   | 1,0257  | 1.0269 | 3,5595  | 1.6010  | 1.6469 . |  |
|        | 4           | 0.3033  | 0.2473 | 0.2644          | 0.3225  | 0.2688            | 0.2942 | 1,4867   | 1,4262  | 1,4309 | 3,4359  | 3.8611  | 5.3300   |  |
|        | 5           | 0.3040  | 0.3053 | 0,3132 `        | 0,31'88 | 0.3257            | 0.3400 | 1.7321   | 1.6602  | 1.7328 | 3,1460  | 2,9195  | 3.2385   |  |
|        | 6           | 0.3228  | 0.2975 | 0,3425          | 0.3432  | 0.3235            | 0.3811 | 1.6292   | 1.6693  | 1.6632 | 4.3534  | 4.2000  | 4 4432   |  |
|        | 7           | 0.4090  | 0,2674 | 0.2561          | 0:4214  | 0.2783            | 0,2694 | 1,9803   | 1.3364  | 1,3095 | 6.4589  | 4.1598  | 3.6349   |  |
|        | 8 .~        | 0,5865  | 0.2912 | 0.3257          | 0.6105  | 0.3074            | 0.3489 | 2,9696   | 1.6791  | 1,9132 | 12,1315 | 3,4606  | 5.8765   |  |
|        | 9           | 0,2364  | 0,1523 | 0,1478          | 0;2464  | 0.1610            | 0,1611 | 1,0881   | 0.7106  | 0,7195 | 1.3500  | 1.0488  | 1.1497   |  |
|        | <b>1</b> 1A | 0,5037  | 0,1791 | 0,1915          | 0.5227  | 0,1882            | 0,2040 | 1.4762   | 0.8855  | 0,9193 | 3,7275  | 2.4518  | 2.8222   |  |
|        | 11B ·       | 0.4127  | 0,2180 | 0.2326          | 0.4276  | 0.2287            | 0.2471 | 1.8748   | 1.0452  | 1,0775 | 4,8993  | 3,7546  | 4.5071   |  |
|        | 12          | 0.4197  | 0;3891 | 0.3854          | 0.4487  | 0.4262            | 0.4332 | • 2.4168 | 1,8572  | 1,9490 | 6.8192  | 3,1121  | 3,1838   |  |
|        | 13          | 0.8140  | 0,3982 | 0.3626          | 0.8272  | 0.4068            | 0.3746 | 3,7109   | 2.0841  | 1,9390 | 7,4721  | 5,0910  | 3.7243   |  |
|        | 14 -        | 0,3240  | 0.2945 | ~0 <b>;2927</b> | 0.3445  | 0.3202            | 0.3257 | · 0.0000 | 1.4057  | 1,4524 | 0,0000  | 1.5688  | 1.5985   |  |
|        | 15          | 0.3249  | 0,3306 | 0.3210 -        | 0.3389  | 0.3501            | 0.3451 | 1,6262   | 1,6262  | 1.4666 | 3.4998  | 5,7345  | 4.5364   |  |
|        | 16          | 0.5893  | 0,3604 | 0.3438 .        | 0,6181  | 0,3845            | 0.3732 | 1,2650   | 1.1264  | 1,1590 | 6,0260  | 3.8238  | 4.1400   |  |
|        | 17A         | JO.4785 | 0,4608 | 0.4638          | 0.4857  | _0, <b>,</b> 4700 | 0.4755 | 2,8635   | 2,2600  | 2.3512 | 13.3286 | 7.2185  | 8.4388   |  |
|        | 17B         | 0.4892  | 0,4770 | 0.4770          | 0.4963  | 0.4863            | 0.4887 | 2.8288   | 2.4270  | 2.4692 | 13,1340 | 10.3149 | 10.8394  |  |
|        | 18A         | 0,3896  | 0,3921 | 0.3807          | 0.3955  | 0.4002            | 0.3906 | 1.7884   | -1.8021 | 1.8257 | 5.3525  | 5.8298  | 11.8130  |  |
|        | 18B         | 0.4168  | 0,4116 | 0.4101          | 0.4229  | 0.4198            | 0.4203 | 1.9422   | 1.7542  | 1.8609 | 16,9520 | 5.7573  | 14.9843  |  |
|        | 19          | 0.6105  | 0,4668 | 0.4516          | 0.6196  | 0.4764            | 0,4634 | 3,4160   | 2.0914  | 2.0226 | 10,1529 | 3.4808  | 3,1542   |  |

<sup>a</sup>Based upon backtransformed log time values.

. • 4

\*-

.

39
| -  | • •     | · ,               | TABLE 1                            | 3Summary                            | of GIV                 | JAR method co              | rřelatior | 15.           |                    |                |
|----|---------|-------------------|------------------------------------|-------------------------------------|------------------------|----------------------------|-----------|---------------|--------------------|----------------|
|    | Alloy . | No. of<br>Observ. | Prime V<br>Transfo<br><u>Temp.</u> | ariable<br>rmation<br><u>Stress</u> | No. of<br><u>Start</u> | Variables<br><u>"Best"</u> | RMS       | <u>st</u> d   | DPAVG              | DPMAX          |
|    | 1 ,     | 64                | 1/T                                | <sub>0</sub> 1/3                    | 12                     | 9                          | .1060     | .1130         | .4921              | .6387          |
|    | 2       | • 75              | log T                              | <sub>0</sub> 1/3                    | 12                     | J]                         | .0551     | .0592         | .2548              | .3099          |
|    | 4       | 26                | 1/T                                | <sub>0</sub> 1/3                    | 12                     | 7                          | .0883     | .1033         | .4754              | •5273 <i>,</i> |
|    | 5       | 33                | log T                              | σ                                   | 11                     | 9                          | .0426     | .0499         | •2284              | .2799          |
|    | 6       | 26,               | 1/T                                | log σ                               | 9                      | б                          | .0418     | .0476         | ,2150              | .2485          |
|    | 7       | 52                | log T                              | $\sigma^{1/3}$                      | 12                     | 10                         | .0910     | .1013         | .447ı              | ,5155          |
|    | 8       | 39                | 1/T ·                              | σ                                   | 11                     | 10                         | .0744     | ,0863         | .3910.             | .4971-         |
|    | 9       | 38                | log T                              | σ                                   | 11                     | 8                          | •0677     | .0762         | •3384              | .4169          |
|    | 11A     | 42                | 1/T                                | <sub>d</sub> 1/3                    | 12                     | 7                          | .0997     | .1092         | .4764              | •5360          |
| 40 | 11B     | 44                | 1/T                                | σ.                                  | 11                     | 9                          | .0985     | .1104         | .4894              | •5686          |
|    | 12      | 24                | 1/T                                | σ                                   | 11                     | б                          | .1664     | <b>.</b> 1921 | .8784              | 1.0377         |
|    | 13      | 95                | 1/T .                              | log σ                               | 11                     | 8                          | .2677     | •2797         | 1,1756             | 1.4435         |
|    | 14 ·    | 26                | log T                              | $\sigma^{1/3}$                      | 12                     | 10                         | •0368     | .0456         | ,2218              | .2547          |
|    | 15      | 37                | log T                              | σ                                   | lļ                     | 7                          | .0683     | .0758         | 3337               | . <u>4</u> 185 |
|    | 16      | 33                | 1/T                                | σ                                   | 11                     | . 9                        | .0520     | .0610         | .2788              | •35 <u>2</u> 9 |
|    | 17A     | 103               | 1/T                                | σ                                   | 11                     | 9.                         | .1913     | .2002         | , <sup>8</sup> 417 | .9649          |
|    | 17B     | 105               | 1/T                                | $\sigma^{1/3}$                      | 12                     | 7                          | .1963     | .2032         | <b>.</b> 8450      | .9053          |
| ,  | 18A     | 100               | l/T                                | σ,                                  | 11                     | 8 ,                        | .1726     | .1799         | •754l              | .8583          |
|    | 18B     | 104               | 1/T                                | σ <sup>1/3</sup>                    | 12                     | 8                          | .1712     | .1782         | •7451              | .8174          |
| 64 | 19      | 100               | 1/T                                | $\sigma^{1/3}$                      | 12                     | 10                         | .2248     | •2369         | 1.0028             | 1.0978         |

.

64

•

.

#### References

- [1] Larson, F. R. and Miller, J., Transactions, American Society of Mechanical Engineers, Vol. 74, 1952,
   p. 765.
- [2] Orr, R. L., Sherby, O.D., and Dorn, J.E., Transactions,American Society for Metals, Vol. 46, 1954, p. 113.
- [3] Manson, S. S. and Haferd, A. M., "A Linear Time-Temperature Relation for Extrapolation of Creep and Rupture Stress Data," NACA Report TN-2890, National Advisory Committee for Aeronautics, Washington, D.C., March 1953.
- [4] Manson, S. S., and Succop, G., "Stress Rupture Properties of Inconel 700 and Correlation on the Basis of Several Time-Temperature Parameters," American Society for Testing and Materials Symposium on Metallic Materials for Service at Temperatures Above 1600°F, 1955, p. 40.
  - [5] Goldhoff, R. M. and Hahn, G. J., "Correlation and Extrapolations of Creep-Rupture Data of Several Steels and Superalloys Using Time-Temperature Parameters," American Society for Metals Publication D8-100, American Society for Metals, Cleveland, OH, 1968, p. 199.
  - [6] Larke, E. C. and Inglis, N.P., Proceedings Joint International Conference on Creep, 1963, p. 6.

41

6.5

- [7] Goldhoff, R. M., Journal of Testing and Evaluation,
   American Society for Testing and Materials, Vol. 2,
   No. 5, September 1974, pp. 387-424.
- [8] Conway, J. B., "Stress-Rupture Parameters: Origin, Calculation, and Use," Gordon and Breach, New York, 1969.
- [9] Van Leeuwen, H. P., "Predicting Material Behavior Under Load, Time and Temperature Conditions," NATO-AGARD Report 513, North Atlantic Treaty Organization - Advisory Group for Aeronautical Research and Development, Paris, June 1965, pp. 73-141.
- [10] Manson, S.S., "Time-Temperature Parameters A Re-evaluation and Some New Approaches," ASM publication D-8-100, American Society for Metals, Cleveland, OH, 1968, pp. 1-115.
- [11] Grounes, M., J. of Basic Engineering, Series D, Transactions, American Society of Mechanical Engineers, Vol. 91, March 1969, pp. 59-62.
- [12] Penny, R. K. and Marriott, D. L., "Design for Creep," McGraw-Hill Book Company (UK), Ltd, Maidenhead, Berkshire, England, 1971.
- [13] Manson, S. S. and Ensign, C. R., "A Specialized Model for Analysis of Creep-Rupture Data by the Minimum. Commitment Station Function Approach," NASA Report TM X-52999, National Aeronautics and Space Administration, Washington, DC, 1971.

- [14] Rabotnov, Yu, N., "Creep Problems in Structural Members," North Holland Publishing Company, A Wiley Interscience Division, Amsterdam, 1969.
- [15] Daniel, C. and Wood, F.S., "Fitting Equations to Data," John Wiley and Sons, Inc., New York, 1971.
- [16] Draper, N.R. and Smith, H., "Applied Regression Analysis," John Wiley and Sons, Inc., New York, 1966.
- [17] Hahn, G. J., "Statistical Intervals for a Normal Population," General Electric Report No. 69-C-382, General Electric Research and Development Center, Schenectady, New York, November 1969.
- [18] Rummler, D.R., "Application of Regression Analysis to Creep of Space Shuttle Materials," Conference Publication 13, International Conference on Creep and Fatigue in Elevated Temperature Applications, Institution of Mechanical Engineers (U.K.), 1973.
- [19] Davies, O.L., "Design and Analysis of Industrial Experiments," Hafner Publishing Co., New York, 1967.
- [20] Harris, R. J., "A Primer of Multivariate Statistics," Academic Press, New York, 1975.
- [21] Matrella, M.G., "Experimental Statistics," National Bureau of Standards Handbook 91, August 1963.

- [22] Anon., "Recommended Practice for Dealing With Outlying Observations," ASTM Standard El78-68, American Society for Testing and Materials, 1971.
- [23] Lyman, Taylor; Editor, "Metals Handbook Properties and Selection of Metals," Vol. 1, 8th Ed., American Society for Metals, 1961.



Fig. 1-Correlation of Rabotnov simulated data set.



Fig. 2---Comparison of regression residuals for Rabotnov simulated data set.

,





Fig. 4--Regression residuals for alloy 4, GIVAR analysis.

•

48





Fig. 6-Comparison of M-H and GIVAR correlations for alloy 16.



Fig. 7---Comparison of regression residuals for alloy 16.

•

Ч



Fig. 8-RMS values for various methods of analysis.

ប ខ

.

# COMPUTER PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA<sup>1</sup>

By , ,

Donald R. Rummler

<sup>1</sup>This manuscript will be submitted to the National Aeronautics and Space Administration for publication as a Technical Memorandum.

.

## COMPUTER PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA<sup>1</sup>

Bу

Donald R. Rummler

#### ABSTRACT

A computer program which uses several parametric model equations to analyze creep-rupture data is presented in detail. The model equations include the Larson-Miller, Orr-Sherby-Dorn, Manson-Succop, Manson-Haferd, and Rabotnov parameter methods. Standard multiple regression techniques are used to analyze data with respect to each model equation. In addition to the usual regression statistics, the program calculates statistical intervals including confidence and prediction intervals. Graphical output includes a residual plot with respect to the dependent variable and a cumulative distribution of the residuals. The computer input and output, in printed and plotted form, for sample problems are presented to aid the user in setting up and running the program.

#### SUMMARY

A computer program which uses several parametric model equations to analyze creep-rupture data is presented in detail. The model equations include the Larson-Miller, Orr-Sherby-Dorn, Manson-Succop, Manson-Haferd, and Rabotnov parameter methods. Standard multiple regression techniques are used to analyze data with respect to each model equation. In addition to the usual regression statistics, the program calculates statistical intervals including confidence and prediction intervals. Graphical output includes a residual plot with respect to the dependent variable and a cumulative distribution of the residuals. The program, its subroutines and their variables are listed and defined. The computer input and output, in printed and plotted form, for sample problems are presented to aid the user in setting-up and running the program. The development of the parameter model equations and the use of statistical intervals is discussed. , • \*

### INTRODUCTION

The importance of creep-rupture data analysis has led to a large number of papers which either propose new parametric analysis approaches (refs. 1, 2, 3, and 4, for example) or offer detailed comparisons of different parametric methods (refs. 4, 5, and 6). Most parametric methods for creep-rupture data analysis are empirical. Consequently, it is common practice for the data analyst to fit the creep-rupture data at hand to a variety of parametric model equations to select the most appropriate analysis method.

Although several analysis methods have been presented in general terms (ref. 6, for example), there is no widely used, efficient computer program tailored specifically to the parametric analysis of creep-rupture data. In addition, most methods do not include generation of statistical intervals to aid in the selection of the "best" parametric model equation for a particular set of data.

This paper describes the development and use of a computer program for the parametric analysis of creep-rupture data. The program includes provisions for the analysis of five different parameter methods. The parametric equations used and the statistical quantities calculated are discussed. The computer program input and output, in printed and plotted form, for three sample problems are presented to aid the user in setting up and running a problem with the program.

. 3

#### PROGRAM DESCRIPTION

The computer program (PARAM) was developed to analyze and correlate creep-rupture data utilizing a variety of parametric method model equations. For each model equation, a function of the time to a particular creep event (such as time to 0.005 strain) is the dependent variable. Functions of stress and temperature are the only correlating independent variables. The major features of the program are as follows:

(1) The method of least squares is used to establish the coefficients for the parametric model equation selected for analysis.

(2) Provisions are made for analysis with four widely used time-temperature methods (Larson-Miller, Orr-Sherby-Dorn, Manson-Succop, and Manson-Haferd) and one time-stress (Rabotnov) method.

(3) Polynomial forms of the parametric model equations up to the fifth order are included.

(4) Multiple analyses can be accomplished during a single computer run.

(5) In addition to the usual regression statistics, the program calculates the maximum and minimum value of each independent variable, as well as its range and average value.

(6) The program also calculates the relative influence, contribution to the sums of squares, and warns of coefficient solution errors for each independent variable.

(7) Listings are made of the observed and fitted values of

4

the dependent variable in both regression and real variable coordinates.

(8) Two statistical intervals, the 95 percent confidence and the 95 percent prediction, are approximated and calculated for each observation.

(9) Residual plots are made to indicate how the regression residuals are distributed over all of the fitted values of the dependent variable and whether they are normally distributed.

PARAM was written in FORTRAN IV language for the Control Data 6000 series digital computer under the SCOPE 3.0 operating system. The program is dimensioned for a maximum of 5 input variables, a maximum of 10 derived independent variables and a maximum of 200 observations for each data set. It requires approximately 60,000 octal locations of core storage. A source listing of the main program and its subroutines is presented in appendix A. A detailed description of the matrix equation solution subroutine MATINV and the plotting subroutines PSEUDO, DDIPLT and CALPLT are presented in appendix B.

#### ANALYSIS

The analysis utilizes standard least squares multiple regression analysis techniques (refs. 7 and 8) to solve parametric equations of the following form:

 $Y = b_0 + b_1 X_1 + b_2 X_2 + --- + b_1 X_1$ (1) where Y = fitted value of dependent variable

 $X_1, X_2$  . . . ,  $X_i$  = independent variables

 $b_0 = estimated Y intercept when all <math>X_i = 0$ 

b<sub>1</sub>, b<sub>2</sub>, - - - b<sub>i</sub> = estimated coefficients of independent variables

Specifically, the equation forms chosen for each of the parametric methods selected are as follows:

,6

$$\begin{split} \mathbf{T}_{\mathrm{F}} &= \mathrm{temperature, }^{\mathrm{O}}\mathbf{F} \\ \mathbf{T}_{\mathrm{K}} &= \mathrm{temperature, Kelvin} \\ \mathbf{T}_{\mathrm{R}} &= \mathrm{temperature, Rankine} \\ \mathbf{T}_{\mathrm{O}} &= \mathrm{offset \ temperature = } \mathbf{T}_{\mathrm{F}} - \mathbf{T}_{\mathrm{A}} \\ \mathbf{b}_{1}, \ \mathbf{T}_{\mathrm{A}}, \ \mathbf{a} &= \mathrm{constants \ estimated \ by \ method \ of \ least \ squares.} \end{split}$$

Both the M-H and RAB techniques require the use of iterative, non-linear multiple regression techniques to estimate all of the constants.

Each parametric equation can be analyzed in truncated form since the number of equation terms (LLO) is selected with input case control cards.

The development of each of the parametric method model equations is presented in appendix C.

#### PROGRAM USAGE

To submit a problem, information is normally entered on punched cards. Four types of information cards (option, case control, data set identification, and data) are the only input required. Output includes listings and plots.

## Input

The option card controls both the printed and graphic output of the program. It also establishes the initial values to be used for the iteratively modified constants for the Manson-Haferd and Rabotnov parametric analyses. The case control cards determine the parametric equation forms to be evaluated and their

:7

degree of truncation. A data identification card and the data cards complete the deck set up. The input card order, format, permitted values and comments follow:

| <u>Option</u> | card             | (215, 2 | F10.0) |               |               |
|---------------|------------------|---------|--------|---------------|---------------|
| Column        | FORTRAN Variable | Val     | ue     | Co            | omments       |
| 5             | INPUT            | (       | No     | listing of    | input cards   |
| 1             |                  | -       | Li     | st data set   | I.D., option, |
|               |                  |         | an     | d case conti  | rol cards     |
|               |                  | ,<br>,  | Li     | st l + data   | observa-      |
|               |                  |         | ti     | ons           |               |
|               |                  | -       | Li     | st 2 + regre  | ession varia- |
|               |                  |         | bl     | es for first  | t five        |
| `             |                  |         | ob     | servations    |               |
| 10            | OUTPUT           | (       | No     | listing of    | residuals     |
| ,             |                  | :       | . Li   | st regression | on residuals  |
|               |                  |         | 1      | + list back   | transformed   |
|               |                  |         | re     | siduals       |               |
|               |                  |         | 2      | + regression  | n residual .  |
|               |                  |         | pl     | ots           |               |
| ll to 2       | 20 TA            |         | In     | itial value   | for constant  |
|               |                  |         | in     | non-linear    | M-H equation; |
|               |                  |         | _      |               |               |

3 2 + regression residual plots Initial value for constant in non-linear M-H equation; A value of -5000.0 is recommended Initial value for constant in non-linear RAB equation; A value of 0.2 is recommended.

21 to 30

RA

| Column | FORTRAN Variable | Value | Comments                     |
|--------|------------------|-------|------------------------------|
| 5      | NPAM(I)          |       | Parametric expression to     |
|        |                  |       | be evaluated                 |
|        |                  | l     | Larson-Miller                |
|        |                  | 2     | Orr-Sherby-Dorn              |
|        |                  | 3     | Manson-Succop                |
|        |                  | 4     | Manson-Haferd                |
|        |                  | 5     | Rabotnov                     |
| 10     | LLO(I)           | 2to6  | Number of coefficients to    |
|        |                  |       | be determined for parametric |
|        |                  |       | expression selected, see     |
|        |                  |       | ANALYSIS section of          |
|        |                  |       | paper.                       |

The program is dimensioned for a maximum of 20 case control cards. During a single computer run, a data set can be evaluated with 20 different parametric model equation forms. A blank card must follow the last case control card.

Blank Card

Column

| Data | identification | card | (8A10)      |
|------|----------------|------|-------------|
|      |                |      | <pre></pre> |

FORTRAN Variable

Comment ·

l to 80 TYPE

Data I.D. Any characters in columns 1 to 80. This title is included in all listed output

9

.

| Data cards     | (3F12.0)          |                                  |
|----------------|-------------------|----------------------------------|
| Column         | FORTRAN Variables | Comments                         |
| 1-12           | RS(I,1)           | Time to a particular creep event |
| 13 <b>-</b> 24 | RS(I,3)           | Temperature, <sup>O</sup> F      |
| 25 <b>-</b> 36 | RS(I,2)           | Applied stress                   |

The program is dimensioned for a maximum of 200 observations in a data set. Round-off errors can be minimized by limiting the range of the variables. This range reduction is helpful since most creep-rupture data is ill-conditioned (see refs. 7 and 8). Last data card must be followed by a blank card.

### Blank card

More than one set of data may be analyzed with a single set up of the option and case control cards. To analyze additional data sets during a single computer run, assemble the deck as follows:

### Option card

Case control cards

Blank card

First data set

### Data identification card

Data cards

Blank card

## Data identification card

Data cards Second data set
Blank card

### Data identification card

<u>Data cards</u>

Third data set

Blank card

As many data sets as desired may be analyzed during a single computer run with this type of deck setup.

#### Output.

Examples of printed and plotted output are presented in the discussion of sample problems. Most of the output headings are self-explanatory or standard statistical terms (refs. 7 and 8). Some headings are abbreviations of standard terms and/or require additional description. These headings and brief descriptions, in the order of their appearance for the printed output are as follows:

<u>Heading</u> <u>Description</u> STANDARD ERROR Standard error of estimate is square root of residual mean square, sometimes called residual root mean square

MULT. CORREL.

COEFF. SQUARED The multiple correlation coefficient squared, sometimes called coefficient of determination

11 '

,

| MIN        | The minimum value of indicated variable;        |
|------------|-------------------------------------------------|
|            | independent variables are in tabular form       |
| MAX        | The maximum value of indicated variable         |
| Y          | Tabulated values of independent variable        |
| Xl-X(L2)   | Tabulated values of independent variables;      |
|            | L2 is number of variables in case               |
| VARIABLE   | Transformation required for parametric          |
|            | method being evaluated                          |
| COEF. P.I. | Calculated coefficients for the fitted          |
|            | equation, indexed by I starting with b          |
| S.E. COEF. | Estimated standard error of the coeffi-         |
| ·          | cient                                           |
| Т          | COEF.P(I)/S.E. COEF.                            |
| RAN X(I)   | Range of independent variable                   |
| RINF(I)    | Relative influence of independent               |
|            | variable, $\frac{(COEF.P(I)(RANX(I))}{Y RANGE}$ |
| PSUM       | The fraction of the total sums                  |
|            | of squares explained by an inde-                |
|            | pendent variable; corrected for                 |
|            | those independent variables which               |
|            | preceed it in the listing                       |

,

,

| CERR . | The percentage difference     |
|--------|-------------------------------|
|        | between MATINV and Gaussian   |
|        | elimination solutions for     |
|        | coefficient; values in excess |
|        | of 0.01 suggest round-off     |
|        | errors due to ill-conditioned |
|        | normal equations              |

.

-

| 95 PERCENT       | The 95 percent prediction interval for         |
|------------------|------------------------------------------------|
| PREDICTION       | a single future observation is estimated       |
| INTERVAL         | for each observation in regression             |
| STATISTICS       | variable space; these values are back          |
|                  | transformed into log time space to calcu-      |
|                  | late average and maximum values; values        |
|                  | for the t distribution are approximated        |
|                  | with a third order polynomial in log           |
| REAL TIME FACTOR | (degrees of freedom)<br>10. <sup>(WIDTH)</sup> |

| RESIDUALS - | Values listed under this heading are      |
|-------------|-------------------------------------------|
| REGRESSION  | in terms of the regression dependent      |
| SPACE       | variable coordinates                      |
| RESIDUAL    | Observed value of dependent variable-cal- |
|             | culated value of dependent variable       |
| PCTERR      | (100)(RESIDUAL)<br>Y                      |

13

1

,

.

| ORDER | The rank order of the residual in regression |
|-------|----------------------------------------------|
|       | coordinates; the rank order of the           |
|       | PCTERR in real space coordinates;            |
|       | ordered with respect to the largest          |
|       | absolute value.                              |
| CIMIN | Estimated lower limit of 95% confidence      |
|       | interval for the mean                        |
| CIMAX | Estimated upper limit of the 95%             |
|       | confidence interval for the mean             |
| PIMIN | Estimated lower limit of 95% prediction      |
|       | interval for a single future observation     |
| PIMAX | Estimated upper limit of the 95%             |
|       | prediction interval for a single future      |
|       | observation                                  |

TVALUE =  $(10.0)^{T1}$ 

where

T1 =  $0.86186 - 0.98427 \text{ DF} + 0.58495(\text{DF})^2$ -  $0.11594(\text{DF})^3$ 

DF = residual degrees of freedom for regression.

The graphical output of the program includes a plot of the residuals with respect to the calculated value of the dependent variable (FITTED Y) and a cumulative normal distribution of the residuals (ZP NORMAL). For the ZP NORMAL plot, the plotting points for the abscissa, P, are in terms of the inverse of the standardized normal distribution and are calculated in the following manner:

for FZ = 0  $\neq$  0.5 ZP<sub>1</sub> = 1.0451 + 4.3598XP + 3.4606(XP)<sup>2</sup> + 1.9088(XP)<sup>3</sup> + 0.5446(XP)<sup>4</sup> + 0.0608(XP)<sup>5</sup>

where XP = log FZ

, . -3. FZ = (j - 3/8)/(N + 1/4)

j = 1, 2, - - N when the residuals are arranged in order of increasing magnitude.

for FZ =  $0.5 \Rightarrow 1.0^{-1}$ 

$$XP = \log (1-FZ)$$
$$ZP_2 = -ZP_1$$

The ZP expression approximates the inverse of the standard normal distribution.

### SAMPLE CASES

Three sample cases are presented to illustrate operation of the computer program and a method for rapidly selecting the most applicable parametric equation for a single set of creep-rupture data. The data are for a type 316 stainless steel (ref. 5). The three sample cases described in this section required a total of 10.9 seconds of CDC 6600 CPU time to compile and run.

## Case 1

For this case, all five parametric methods in second degree form were used to correlate the data. The purpose of this case was to quickly scan the parametric models to select a single parameter for further study. Output was minimized by using INPUT = 1 and IOUT = 0. The program input and output for case 1 are presented in Figures 1 and 2, respectively.

When compared to the other four parameter methods, the O-S-D method had the highest MULT. CORREL. COEF. SQUARED, the lowest AVERAGE and MAXIMUM WIDTH of the 95% prediction interval. It also had the lowest STANDARD ERROR of the four time-temperature parameters.

#### Case 2

Based upon the results of case 1, the Orr-Sherby-Dorn parameter (NPAM = 2) was selected for further evaluation. The purpose of this case was to quickly determine the degree of the O-S-D expression which would provide the best correlation of the data. Once again, output was minimized (INPUT = 0, IOUT = 0).

16

The program input and output for case 2 are presented in Figures 3 and 4, respectively.

With respect to MULT. CORREL. COEF. SQUARED, there is no appreciable improvement in the correlation produced by increasing the degree of the polynomial expression. However, the STANDARD ERROR shows a steady decrease as additional variables are added up to the fifth order expression where it increases slightly. The T values for this fifth order expression clearly illustrate the inflation of the standard error of the coefficients which this high level of co-linearity produces. The CERR value for I = 2 (X(I) = LOG STRESS) suggests that the solution matrix was ill-conditioned because the two methods of solution do not agree.

The RESIDUAL SUMS OF SQUARES for the fourth order expression is approximately 30 percent lower than the third order expression. Although significant differences between the other correlation indications are not apparent, the fourth order expression is selected for further evaluation.

#### Case 3

Final verification of the fourth order expression selected in case 2 requires the full output capabilities of the program (INPUT = 3, IOUT = 3). The input and output for this case are presented in figures 5 and 6. The output includes a listing of the first 5 values of the regression variables, residuals and statistical intervals in regression and back transformed coordinates and plots of residuals with respect to the

17

calculated dependent variable (Y FITTED) and with respect to the normal cumulative distribution. The most important part of the verification of the fourth order expression is the examination of the residual plots. These plots suggest that the residuals have a zero mean and are randomly distributed with respect to the FITTED Y and that their cumulative distribution is normal. These two characteristics of the residuals are necessary for the calculation of valid statistical intervals.

The method selected for determining the "best" parametric equation for a set of data was used primarily to demonstrate the capabilities of the computer program PARAM. For other methods see references 4, 5, and 6. For a further discussion of the use of statistical intervals, the reader is referred to references 7 and 11.

#### CONCLUDING REMARKS

A computer program specifically developed for the parametric analysis of creep-rupture data has been discussed. The equations used for the analysis of five parametric methods and the computer program used to implement the analysis are given.

The computer program is versatile, allows rapid assessment of parametric methods for creep-rupture data, and has a relatively small core storage requirement. In addition to the statistics which are usually calculated and output by multiple regression programs, the program outputs the 95% confidence interval on the mean and the 95% prediction interval for a

18

future observation. Residual plots are provided to assess the validity of the calculated statistical intervals.

•

•

## APPENDIX A

## SOURCE LISTING OF PROGRAM PARAM

,

 $\mathbf{i}$ 

|     | PROGRAM PARAM(INPUT+OUTPUT+PUNCH+TAPE5=INPUT+TAPE6=OUTPUT+<br>1TAPE7=PUNCH) | 00000001<br>00000002 |
|-----|-----------------------------------------------------------------------------|----------------------|
| С   | PARAM                                                                       | 0000003              |
| Ć   | PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA                       | 00000004             |
| С   | COEFFICIENTS FOR PARAMETRIC MODEL EQUATIONS ARE DETERMINED BY               | 00000005             |
| С   | METHOD OF LEAST SQUARES                                                     | 00000006             |
| С   | Y= B0+B1X1+B2X2                                                             | 00000007             |
| С   | PARAMETRIC METHODS INCLUDE                                                  | 0000008              |
| с   | LARSON-MILLER(L-M)                                                          | 0000009              |
| С   | ORR-SHERBY-DORN(0-S-D)                                                      | 00000010             |
| с   | MANSON-SUCCOP (M-S)                                                         | 00,000011            |
| с   | MANSON-HAFERD (M-H)                                                         | 00000012             |
| с   | RABOTNOV (RAB)                                                              | 00000013             |
| с   | DONALD R. RUMMLER                                                           |                      |
| С   | NASA-LANGLEY RESEARCH CENTER . HAMPTON . VA 1976                            | •                    |
| Ć C | ARRAYS WHICH DEPEND ON NUMBER OF OBSERVATIONS IN DATA SET (L1)              | 00000016             |
|     | DIMENSION AA( 200)CY( 200).CIMAX( 200).CIMIN( 200)                          | 00000017             |
|     | DIMENSION ERRPER( 200), F( 200,10), IPERM( 200), PYMAX( 200)                | 00000018             |
|     | DIMENSION PYMIN( 200), RIS( 200), RS( 200,5), TEMP( 200), Y( 200            | )00000019            |
|     | DIMENSION ZP (200)-                                                         | 00000020             |
| С   | ARRAYS WHICH DEPEND ON NUMBER OF VARIABLES IN REGRESSION MODEL              | 00000021             |
| С   | NUMBÈR OF INDEPENDENT VARIABLES (L2)                                        | 00000022             |
|     | DIMÉNSION CERR'(10) + PAR(10)                                               | 0000023              |
|     | DIMENSION PAR1(10), SB(10); SSR(10), SUMA(10), SUMB(10)                     | 00000024             |
|     | DIMENSION, SUMP2(10,10), SUMX(10), SUMXY(10,10), SUMX1(10,10)               | 00000025             |
|     | DIMENSION _ SUMX2(10), T(10), XMAX(10), XMIN(10), XRAN(10)                  | 00000026             |
|     | DIMENSION XMEAN(10)                                                         | 00000027             |
| С   | NUMBER OF COEFFICIENTS DETERMINED (L3)                                      | 00000028             |
|     | DIMENSION $D(11,11) + DD(11,11) + E(11,1) + G(11,1) + INDEX(11,2)$          | 0000029              |
|     | DIMENSION IPIVOT(11) X(11)                                                  | 00000030             |
| С   | NUMBER OF COEFFICIENTS +1 (N3)                                              | 00000031             |
|     | DIMENSION A(12,12), B(12,12)                                                | 00000032             |
| С   | ARRAYS WHICH DEPEND UPON OTHER FACTORS                                      | 00000033             |
|     |                                                                             | +                    |

20

.

.

,

•

•

|                                                                                    | •          |
|------------------------------------------------------------------------------------|------------|
|                                                                                    |            |
|                                                                                    | •          |
|                                                                                    | •          |
| · · ·                                                                              | 0000034    |
| NUMBER OF CASES                                                                    | 0000035    |
| DIMENSION LLO(20) · NPAM(20)                                                       | 0000036    |
| MISC NAR(20) DAM(5)                                                                |            |
| DIMENSION TYPE (8) IN (2) VAR (3()) PAM (3)                                        | 0000038    |
| DATA ( $PAM(I) \cdot I = 1 \cdot 5$ )/ 3HL-M · 5HO-S+U · 3HM-S · 5HM-H · 5HS+A/T · | 0000039    |
| DATA(VAR(I),I=1,30)/3H1/T,3H5/1,5H5**2/1,6H5**3/1,6H5**4/1,                        | 0000040    |
| 16HS**5/T •                                                                        | 00000041   |
| 23H1/T+1HS+4HS**2+4HS**3+4HS**4+4HS**5+                                            | 00000042   |
| 31HT,1HS,4HS**2,4HS**3,4HS**4,4HS**5,                                              | 00000043   |
| 42HDT+4HDT*S+7HDT*S**2+7HDT*S**3+7HDT*S**4+7HDT*S**5+                              | 00000046   |
| 55H1/L*T+8H1/L*T**2+9H1/L*T**3+9H1/L*T**4+8H1/L*T**5+9H1/L*T**6                    | 0000045    |
| L1 = NUMBER OF OBSERVATIONS IN DATA SET                                            | 00000045   |
| LI IS DETERMINED BY PROGRAM                                                        | 0000043    |
| L2 = NUMBER OF VARIABLES INPARAMETRIC EQUATION SELECTED                            | 0000047    |
| L3 = NUMBER OF COEFFICIENTS TO BE DETERMINED, INCLUDES BU                          | 00000048   |
| L3 = L2+1                                                                          | 00000049   |
| CALL PLOT VECTOR FILE ONLY WHEN OUTPUT INCLUDES PLOTTING                           | 0000085    |
| CALL PSEUDO                                                                        | и <b>ж</b> |
| CALL LEROY                                                                         |            |
| COMPLETE DATA DECK SETUP INCLUDING OPTION AND CASE CONTROL CARDS                   | ** •       |
| FOR EACH DATA SET ARE REQUIRED IF 1 - CONTINUE CARD IS HERE                        |            |
| 1 CONTINUE                                                                         | 00000081   |
| READ INPUT AND OUTPUT OPTIONS AND                                                  | ,          |
| INITIAL VALUES OF M-H AND RAB CONSTANTS                                            |            |
| IPUT = INPUT LISTING OPTIONS                                                       | 00000053   |
| 0 - NO INPUT LISTING                                                               |            |
| 1 - CASE CONTROL VARIABLES                                                         |            |
| 2 - + DATA SET OBSERVATIONS                                                        |            |
| 3 + TRANSFORMED REGRESSION VARIABLES FOR FIRST                                     |            |
| FIVE OBSERVATIONS                                                                  |            |
| OUTPUT = OUTPUT OPTIONS                                                            | 0000058    |
| 0 - NO RESIDUALS                                                                   |            |
| 1 - RESIDUALS REGRESSED SPACE                                                      | 0000060    |
|                                                                                    | +          |
|                                                                                    |            |
| · · ·                                                                              |            |
| •                                                                                  | •          |
| ·                                                                                  | ,          |
| · · · ·                                                                            | •          |

| с |     | 2 - 1 + REAL SPACE RESIDUALS                                 | 00000061 |
|---|-----|--------------------------------------------------------------|----------|
| č |     | 3 - 2 + RESIDUAL PLOT IN REGRESSED SPACE                     | 00000062 |
|   |     | READ(5,4) INPUT, IOUT, TA,RA                                 | 00000051 |
|   | 4   | FORMAT(215+2F10+0)                                           | 00000052 |
|   |     | IF(EOF+5)900+9                                               |          |
|   | 9   | CONTINUE                                                     |          |
| с |     | READ CASE CONTROL CARDS                                      | 00000063 |
| с |     | PUT BLANK CARD AFTER LAST CASE CARD                          | 00000064 |
| с |     | LLO = TOTAL NUMBER OF VARIABLES FOR CASE                     | 00000069 |
| c |     | NPAM = PARAMETRIC EXPRESSION TO BE EVALUATED                 | 00000070 |
| с |     | 1 - LARSON-MILLER (LM)                                       | 00000071 |
| с |     | 2 - ORR-SHERBY-DORN (OSD)                                    | 00000072 |
| с | c   | - MANSON-SUCCOP (MS)                                         | 00000073 |
| с |     | 4 - MANSON-HAFERD (MH)                                       | 00000074 |
| с |     | , 5 - RABOTNOV (RAB)                                         | 00000075 |
|   |     | I3=1 ·                                                       | 00000067 |
|   | 3   | READ (5.2) NPAM(13).LLO(13)                                  | 00000068 |
|   |     | IF(LL0(13)) 7.8.7                                            | 00000076 |
|   | 7   | Ì3=I3+1                                                      | 00000077 |
| - |     | GO TO 3                                                      | 00000078 |
|   | 2   | FORMAT (215)                                                 | 00000079 |
|   | 8   | 13=13-1                                                      | 00000080 |
| С |     | ONLY ONE SETUP OF OPTION AND CASE CONTROL CARDS ARE REQUIRED |          |
| с |     | FOR MANY DATA SETS IF 1 - CONTINUE CARD IS HERE              |          |
| с | 1   | CONTÎNUE                                                     |          |
| С |     | READ DATA SET IDENIFICATION (TYPE)                           | 00000082 |
|   |     | READ(5,777)(TYPE(I),I=1.8)                                   | 00000083 |
|   | 777 | FORMAT (BA10)                                                | 00000084 |
|   |     | IF(EOF+5) 900+6                                              | 00000085 |
|   | 6   | 1=1                                                          | 00000086 |
| с |     | READ IN OBSERVATIONS                                         | 00000088 |
| С |     | IF NUMBER OF CORRELATING VARIABLES CHANGES.                  |          |
| С |     | CHANGE STATEMENTS 5 AND 10                                   |          |
| С |     | RS(I,1) = RUPTURE TIME                                       | 00000091 |
| С |     | RS(1,2)= APPLIED STRESS,PSI                                  | 00000092 |
| С |     | RS(1,3) = TEST TEMPERATURE, DEGREES F                        | 00000093 |
|   |     |                                                              | L.       |

.

99

.

-

. 22
| С |     | PUT BLANK CARD BEHIND LAST DATA CARD                              | 00000089 |
|---|-----|-------------------------------------------------------------------|----------|
|   | 10  | READ(5+5) RS(1+1)+ RS(1+3)+ RS(1+2)                               | 00000090 |
|   |     | IF(E0F.5) 900,901                                                 | 00000094 |
|   | 901 | CONTINUE                                                          | 00000095 |
|   |     | IF (RS(I+1)-0+) 11+12+11                                          | 00000096 |
|   | 11  | I = I + 1                                                         | 0000097  |
|   |     | GO TO 10                                                          | 00000098 |
|   | 5   | FORMAT(3F12.0)                                                    | 00000099 |
|   | 12  | L1 = I - 1                                                        | 00000100 |
|   |     | IF(INPUT-1)301,300,300                                            | 00000101 |
| С |     | INPUT = 1 LISTING                                                 | 00000102 |
|   | 300 | WRITE(6+414)                                                      | 00000103 |
|   |     | WRITE(6,220)                                                      | 00000104 |
|   |     | WRITE(6+221)                                                      | 00000105 |
|   |     | WRITE(6,502)(TYPE(I),I=1,8)                                       | 00000106 |
|   | 302 | FORMAT( 10x+*DATA SET*/10x+ BA10/)                                | 00000107 |
|   |     | WRITE(6,299)                                                      | 00000108 |
|   | 299 | FORMAT(* OPTION CARD*)                                            | 00000109 |
|   |     | WRITE(6,303)INPUT,IOUT, TA,RA                                     | 00000110 |
|   | 303 | FORMAT (* INPUT= *+11/* IOUT= * +11/* TA= *+F10+0/* RA= *+F10+4/) | 00000111 |
|   |     | WRITE(6+304)                                                      | 00000112 |
|   | 304 | FORMAT(* CASE CONTROL CARDS*/5X+* PARAMETER CODE*+5X+             | 00000113 |
|   | 1   | 1*NO. COEFFICIENTS*/)                                             | 00000114 |
|   |     | WRITE(6,305)(NPAM(I),LLO(I),I=1,I3)                               | 00000115 |
|   | 305 | FORMAT(10X+15+15X+15)                                             | 00000116 |
|   | 301 | CONTINUE                                                          | 00000117 |
| С |     | INPUT = 2 LISTING                                                 | 00000118 |
|   |     | IF(INPUT-2) 309,308,308                                           | 00000119 |
|   | 308 | WRITE(6,414)                                                      | 00000120 |
|   |     | WRITE(6,306)                                                      | 00000121 |
|   |     |                                                                   | +        |
|   |     |                                                                   |          |

|    |   |     | ٤                                                              | •        |
|----|---|-----|----------------------------------------------------------------|----------|
|    |   | 306 | FORMAT(5X,*INPUT DATA OBSERVATIONS*/ 3X.*NO.*.14X.* TIME*. 5X. | 00000122 |
|    |   |     | 1 *STRESS*, 5X,*TEMPERATURE*)                                  | 00000123 |
|    |   |     | WRITE(6+307)(I+RS(I+1)+RS(I+2)+RS(I+3) + I=1+L1)               | 00000124 |
|    |   | 307 | FORMAT(15+10x+F10+2, F8+0 + 4X+F10+C)                          | 00000125 |
|    |   | 309 | CONTINUE                                                       | 00000126 |
|    | С |     | START CASE LOOP (I3)                                           | 00000127 |
|    | С |     | 13 = NUMBER OF CASES (PARAMETRIC EQUATIONS) TO BE EXAMINED     |          |
|    | Ç |     | FOR EACH DATA SET                                              | 00000130 |
|    |   |     | DO 350 KK = 1 • 13                                             | 00000130 |
|    |   |     |                                                                | 00000131 |
|    |   |     |                                                                | 00000132 |
|    |   |     |                                                                | 00000133 |
|    |   |     | LAST=0                                                         | 00000134 |
|    |   |     | BMSE= 1000000.                                                 | 00000135 |
|    |   |     |                                                                | 00000136 |
|    |   |     |                                                                | 00000137 |
|    |   |     | 1FG=0                                                          | 00000138 |
| 40 |   |     | L = NPAM(KK)                                                   | 00000139 |
|    |   |     | IF (L-4)22,21,20                                               | 00000140 |
|    | _ | 20  | CONTINUE                                                       | 00000141 |
|    | С |     | RABOTNOV CONSTANTS                                             | 00000142 |
|    |   |     | C=RA                                                           | 00000143 |
|    |   |     | DEL =0.1                                                       | 00000144 |
|    | , |     | DELMIN=0.001                                                   | 00000145 |
| -  |   |     | GO TO 23                                                       | 00000146 |
|    | С |     | MANSON-HAFERD CONSTANTS                                        | 00000147 |
| •  |   | 21  | CONTINUE                                                       | 00000148 |
|    |   |     | C=TA                                                           | 00000149 |
|    |   |     | DEL = 1000.0                                                   | 00000150 |
|    |   |     | DELMIN=10.                                                     | 00000151 |
|    |   |     | GO TO 23                                                       | 00000152 |
|    |   | 22  | LAST=2                                                         | 00000153 |
|    |   | 23  | CONTINUE                                                       | 00000154 |
|    |   |     |                                                                | · +      |

**、** .

|   |     | ۰<br>۲                         |          |          |
|---|-----|--------------------------------|----------|----------|
|   | 57  | CONTINUE                       |          | 00000155 |
| С |     | SELECT PARAMETRIC FORM FOR REC | GRESSION | 00000156 |
|   |     | L=NPAM(KK)                     |          | 00000157 |
|   |     | GO TO (61.62.63.64.65).L       |          | 00000158 |
|   | 61  | CALL LM(Y+RS+F+L1)             |          | 00000159 |
|   |     | GO TO 66                       |          | 00000160 |
|   | 62  | CALL OSD(Y+RS+F+L1)            |          | 00000161 |
|   |     | GO TO 66                       |          | 00000162 |
|   | 63  | CALL MS(Y+RS+F+L1)             |          | 00000163 |
|   |     | GO TO 66                       |          | 00000164 |
|   | 64  | CALL MH( Y+RS+F+L1+C )         |          | 00000165 |
|   |     | GO TO 66                       |          | 00000166 |
|   | 65  | CALL RAB (Y+RS+F+L1+C)         |          | 00000167 |
|   | 66  | CONTINUE                       |          | 00000168 |
|   | ,   | SSER=0.0                       |          | 00000169 |
| С |     | ZERO'A+B+SUMX1 ARRAYS          |          | 00000170 |
|   |     | DO 473 M=1+12                  |          | 00000171 |
|   |     | DO 473 J=1.12                  |          | 00000172 |
|   |     | A(M,J)=0.0                     |          | 00000173 |
|   |     | B(M+J)=0+0                     |          | 00000174 |
|   | 473 | SUMX1 (M+J)=0+0                |          | 00000175 |
|   |     | DO 105 MF1+L2                  |          | 00000176 |
|   |     | SUMX(M)=0.0                    |          | 00000177 |
|   |     | D0105I=1+L1                    |          | 00000178 |
|   | 105 | SUMX(M) = SUMX(M) + F(I + M)   |          | 00000179 |
|   |     | DO 106 M=1+L2                  |          | 00000180 |
|   |     | DO 106 J=1+L2                  |          | 00000181 |
|   |     | SUMP2(M+J)=0+0                 |          | 00000182 |
|   |     | D0106I = 1 + L1                |          | 00000183 |
|   | 106 | SUMP2(M+J)=SUMP2(M+J)+F(I+M)*F | F(I+J)   | 00000184 |
|   |     | SUMY=0.0                       |          | 00000185 |
|   |     | SUMY2=0.0                      |          | 00000186 |
|   |     | D0107I=1.L1                    |          | 00000187 |
|   |     |                                |          | +        |

|     | SUMY=SUMY+Y(I)                                             |
|-----|------------------------------------------------------------|
| 107 | SUMY2=SUMY2+Y(I)**2                                        |
|     | DO 108 M=1+L2                                              |
|     | SUMXY(M)=0.0                                               |
|     | D0108I=1+L1                                                |
| 108 | $SUMXY(M)=SUMXY(M)+F(I \cdot M)*Y(I)$                      |
|     | DO 109 M=1+L2                                              |
|     | DO 109 J=1.L2                                              |
| 109 | SUMX1(M,J)=SUMP2(M,J)-(SUMX(M)*SUMX(J))/XN                 |
|     | DO 110 M=1.L2                                              |
| 110 | SUMX1(M+L3)=SUMXY(M)-(SUMX(M)*SUMY)/XN                     |
|     | SUMX1(L3+L3)=SUMY2-(SUMY**2)/XN                            |
|     | D042M=1+L3                                                 |
| 42  | $SUMX1(L3 \cdot M) = SUMX1(M \cdot L3)$                    |
|     | N3=L3+1                                                    |
|     | D0161=1.L3                                                 |
|     | SUMX1(I+N3)=0+0                                            |
|     | D016M=1,L3                                                 |
| 16  | $SUMX1(I \cdot N3) = SUMX1(I \cdot N3) + SUMX1(I \cdot M)$ |
| •   | D017J=1.N3                                                 |
| 17  | A(1,J)=SUMX1(1,J)                                          |
|     | SUMB(1)=C.O                                                |
|     | DO1EJ=1+N3                                                 |
|     | B(1+J)=A(1+J)/A(1+1)                                       |
| 18  | $SUMB(1) = SUMB(1) + B(1 \cdot J)$                         |
|     | SUMB(1) = SUMB(1) - B(1, N3)                               |
|     | D0115I=2+L3                                                |
|     | D0115J=1.N3                                                |
|     | NIX=I-1                                                    |
|     | TEMP=0.0                                                   |
|     | D011611=1+NIX                                              |
| 116 | TEMP=-A(I1+I)*B(I1+J)+TEMP                                 |
|     | A(I,J)=TEMP+SUMX1(I,J)                                     |
|     |                                                            |

-

÷

.

.

.

.

,

| 115        | $B(I \bullet J) = A(I \bullet J) / A(I \bullet I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00000221   |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|            | D029I=1.L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000222   |
| 29         | SSR(I) = A(I + L3) + B(I + L3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00000223   |
|            | REGSS=SUMX1(L3,L3)-A(L3,L3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00000224   |
|            | SSER=A(L3+L3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000225   |
|            | CORC=REGSS/SUMX1(L3+L3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00000226   |
|            | XN1 = L1 - L2 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00000227   |
|            | XMSFR=SSER/XN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00000228   |
|            | ZIP=XMSER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00000229   |
|            | STD=SQRT(XMSER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000230   |
|            | XMRSS=RFGSS/L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000231    |
|            | ETDSS=XMRSS/XMSER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00000232   |
|            | $TOTSUM=SUMX1 (I 3 \cdot I 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000233    |
| c          | ITERATE ON LOWEST 1-CORC FOR RABOTNOV SOLUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00000234   |
| C.         | TF(NPAM(KK) + FQ + 5) ZIP=1 + 0-CORC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000235   |
| C          | LOOP AROUND ITERATION FOR L-M.O-S-D. AND M-S SOLUTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00000236   |
| C          | $I = ND\Delta M (KK)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000237   |
|            | I = (1 - 1 - 4) = 0 = 1439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000238   |
|            | 17(1.05T+1) = 51.52.1439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00000239   |
| <b>E</b> 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000240   |
| 51         | CALL ITER(C +CBEST+ZIP +BMSE+IEG+ICT+ DEL+DELMIN+LIM+LAST)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000241   |
|            | CALC ITER(C) + COES(C) = C + C + C + C + C + C + C + C + C + C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00000242   |
| 50         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000243   |
| 52         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0000,0244  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000245   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 00000246 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000247   |
| 1439       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000248   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000249   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000250   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000251   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000252   |
| 11-        | = SUMR(x) = SUMR(x) + R(x) + | 00000253   |
| 114        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +          |

27 C

•

'n

. 104

•

|   |     | D0801=1+12                                             | 0000254         |
|---|-----|--------------------------------------------------------|-----------------|
|   |     | D080J=1+L2                                             | 00000255        |
|   | 80  | $D(1 \cdot J) = SUMX1(1 \cdot J)$                      | <u>00000256</u> |
|   | 00  | DD(1+1) = L1                                           | 00000257        |
|   |     | 0072 M=1+L2                                            | 00000258        |
|   |     | I = M + 1                                              | 00000259        |
|   | 72  | $DD(I \bullet I) = SUMX(M)$                            | 00000260        |
|   |     | D073 K=1.12                                            | 00000261        |
|   |     | J=K+1                                                  | 00000262        |
|   | 73  | DD(1+J) = SUMX(K)                                      | 00000263        |
|   |     | D074 M=1+L2                                            | 00000264        |
|   |     | I ≈ M + 1                                              | 00000265        |
|   |     | D074 K=1+12                                            | 00000266        |
|   |     | J=K+1                                                  | 00000267        |
|   | 74  | $DD(I_{\bullet}I) = D(M_{\bullet}K)$                   | 00000268        |
| c | сни | INGE 19 WHEN YOU REDIMENSION PROGRAM                   | 00000269        |
| C | 011 |                                                        | 00000270        |
|   |     | CALL MATINV(19.L3.DD.0.G.1.DETERM.ISCALE.IPIVOT.INDEX) | 00000271        |
|   |     | D0811#1+1.2                                            | 00000272        |
|   | 81  | $F(I \cdot I) = SUMX1(I \cdot L3)$                     | 00000273        |
|   |     | CALL MATINV(L9.L2.D ,1.E.1.DETERM.ISCALE.IPIVOT.INDEX) | 00000274        |
|   |     | PAR(1) = B(1,2,1,3)                                    | 00000275        |
|   |     | M3=1 2                                                 | 00000,276       |
|   |     | K3=L2                                                  | 00000277        |
|   |     | D0113I=2+L2                                            | 00000278        |
|   |     | $MI \times = I - I$                                    | 00000279        |
|   |     | M3=M3-1                                                | 00000280        |
|   |     | TEMP1=0.0                                              | 00000281        |
|   |     | D0114I1=1+MIX                                          | 00000282        |
|   |     | TEMP1=-PAR(I1)*B(M3+K3)+TEMP1                          | 00000283        |
|   | 114 | K3=K3~1                                                | 00000284        |
|   |     | PAR(I) = TEMP1 + B(K3) + B(K3)                         | 00000285        |
|   | 113 | K3=L2                                                  | 00000286 '      |
|   |     |                                                        | +               |

22 8

.

•

105

|   |      | D047M=1.L2                                          | 00000287 |
|---|------|-----------------------------------------------------|----------|
|   | 47   | SUMX2(M)=SUMX(M)/XN                                 | 00000288 |
|   |      | SUMY3=SUMY/XN                                       | 00000289 |
|   |      | K4=L2                                               | 00000290 |
|   |      | D0216I=1+L2                                         | 00000291 |
|   |      | PAR1(K4)=PAR(I)                                     | 00000292 |
|   | 216  | K4=K4-1                                             | 00000293 |
|   |      | PARO=0.0                                            | 00000294 |
|   |      | D0217I=1+L2                                         | 00000295 |
|   | 217  | PARO=PARO-PAR1(1)*SUMX2(1)                          | 00000296 |
|   |      | PARO=PARO+SUMY3                                     | 00000297 |
|   |      | N5=L1-L2-1                                          | 00000298 |
|   |      | XN1 = N5                                            | 00000299 |
|   |      | XMSER=SSER/XN1                                      | 00000300 |
|   |      | IF (XMSER .GT. 9.0E+100) GO TO 350                  | 00000301 |
| N |      | D049I=1+L2                                          | 00000302 |
| 9 |      | 1F(D(I,I)+LT+0+0)WRITE(6+1100)(I+D(I+1))            | 00000303 |
|   |      | IF(D(I.I).LT.0.0) NEGSB=NEGSB+1                     | 00000304 |
| • | С    | AVOID MODE 2 DUMP ABORT CASE 3/3/76                 | 00000305 |
|   |      | IF(D(I+I)+LT+ 0+0) GO TO 350                        | 00000306 |
|   | 1100 | FORMAT(//+5X+****NEGATIVE SB(I)+I=*+I3+*DI=*+E20+8) | 00000307 |
|   | 49   | SB(I)=SQRT(ABS(D(I,I) *XMSER))                      | 00000308 |
|   |      | D0118I=1.L2                                         | 00000309 |
|   |      | T(I) = PARI(I) / SB(I)                              | 00000310 |
|   | 118  | T(I) = ABS(T(I))                                    | 00000311 |
|   | C    | CY(I)= SOLUTION IN REGRESSION SPACE                 | 00000312 |
|   |      | D01221=1.L1                                         | 00000313 |
|   |      | SUMCY =00                                           | 00000314 |
|   |      | TEM=Q•O                                             | 00000315 |
|   |      | -D0123M=1+L2                                        | 00000316 |
|   | 123  | TEM=TEM+PAR1(M)*F(I+M)                              | 00000317 |
|   |      | SUMCY ≓SUMCY+TĘM                                    | 00000318 |
|   | 122  | CY(I)=SUMCY +PARO                                   | 00000319 |
| ~ |      |                                                     | +        |

· · ·

.

•

`

| CALL MINMAXYMIN, YMAX, YRAN, YMEAN, Y,L1)       00000321         D0 95 K=1+L1       00000323         96 X(K)=F(K,1)       00000324         CALL MINMAX(XMIN(1), XMAX(1), XRAN(1), XMEAN(1), XXL1)       00000326         95 CONTINUE       00000327         95 CONTINUE       00000326         95 CONTINUE       00000327         WRITE(6,220)       00000328         WRITE(6,221)       00000330         220 FORMAT(5x+X LAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC*)       00000331         221 FORMAT(5x+X ANALYSIS OF CREEP-RUPTURE DATA*)       00000333         WRITE(6,526)       00000335         502 FORMAT(7* REGRESSION VALUES*)       00000336         WRITE(6,502)(TYPE(1),IE1+8)       00000337         WRITE (6,506)/DAM(MM)       00000337         WRITE (6,507)(L1)       *,1X,8A10)       00000337         WRITE (6,506)(L2)       00000337         WRITE (6,506)(L2)       00000341         S06 FORMAT(* NO. OF INDEPENDENT VARIABLES *, 8X, 14)       00000342         S08 FORMAT(* NO. OF INDEPENDENT VARIABLES *, 8X, 14)       00000342         S08 FORMAT(* RESIDUAL DEGREES OF FREEDOM *, 8X, F4)       00000344         S09 FORMAT(* RESIDUAL DEGREES OF FREEDOM *, 8X, F4)       00000345         WRITE(6,545)(XNSER)       00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С |     | CALCULATE MIN. MAX. RANGE, MEAN         |                |                  | 00000320         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|-----------------------------------------|----------------|------------------|------------------|
| D0 95 1=1.L2       00000322         D0 95 K=1.L1       00000323         95 X(K)=F(K:I)       00000324         CALL MINMAX(XMIN(I), XMAX(I), XRAN(I),XMEAN(I),X.L1)       00000326         95 CONTINUE       00000326         c       PRINT REGRESSION STATISTICS       00000327         wRITE(6.414)       00000326         wRITE(6.221)       00000326         220 FORMAT( 5X.* LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC*)       00000331         221 FORMAT( 5X.* LEAST-SQUARES REGRESSION VALUES*)       00000335         wRITE(6.526)       00000335         526 FORMAT(* A NALYSIS OF CREEP-RUPTURE DATA*)       00000336         wRITE(6.502)(TYPE(I)+I=1+8)       00000336         526 FORMAT(* DATA SET       *.1X.8A10)       00000336         526 FORMAT(* NO. OF OBSERVATIONS       *.8X.14)       00000337         wRITE(6.507)(L1)       00000338       00000339         wRITE(6.508)(L2)       00000344       00000344         507 FORMAT(* NO. OF INDEPENDENT VARIABLES       *.8X.14)       00000344         508 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *.8X.F4)       00000344         509 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *.8X.F4)       00000345         504 FORMAT(* RESIDUAL MEAN SQUARE       *.E12.4)       00000347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ť |     | CALL MINMAX (YMIN, YMAX, YRAN, YMEAN, Y | +L1)           |                  | 00000321         |
| D0 96 K=1,L1 0000323<br>96 X(K)=F(K,I) 00000324<br>CALL MINMAX(XMIN(I), XMAX(I), XRAN(I),XMEAN(I),X+L1) 00000325<br>95 CONTINUE 00000326<br>95 CONTINUE 00000326<br>WRITE(6,414) 00000327<br>WRITE(6,220) 00000329<br>WRITE(6,221) 00000330<br>220 FORMAT( 5X+& LAAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC*) 00000331<br>221 FORMAT( 5X+& ANALYSIS OF CREEP-RUPTURE DATA*) 00000332<br>WRITE(6,526) 00000335<br>526 FORMAT( X REGRESSION VALUES*) 00000335<br>527 FORMAT( A REGRESSION VALUES*) 00000335<br>528 FORMAT(* DATA SET *.1X+8A10) 00000335<br>529 FORMAT(* DATA SET *.1X+8A10) 00000336<br>WRITE(6,506)PAM(MM) 00000337<br>WRITE(6,506)PAM(MM) 00000337<br>S06 FORMAT(* NO. OF OBSERVATIONS *.8X, 14) 00000340<br>WRITE(6,508)(L2) 0000340<br>WRITE(6,509)(XN1) 00000341<br>WRITE(6,509)(XN1) 00000341<br>WRITE(6,514)(FTRSS) 00000342<br>S08 FORMAT(* RESIDUAL DEGREES OF FREEDOM *.8X, F4) 00000343<br>WRITE(6,514)(FTRSS) 00000344<br>WRITE(6,545)(MSER) 00000347<br>WRITE(6,545)(MSER) 00000347<br>WRITE(6,545)(MSER) 00000347<br>WRITE(6,545)(MSER) 00000347<br>WRITE(6,545)(MSER) 00000347<br>WRITE(6,545)(MSER) 00000347<br>WRITE(6,545)(MSER) 00000347<br>WRITE(6,545)(MSER) 00000347<br>WRITE(6,545)(MSER) 00000347<br>WRITE(6,545)(MSER) 00000347<br>WRITE(6,547)(SER) + E12.41) 00000347<br>WRITE(6,547)(SER) + C12.41) 00000350<br>546 FORMAT(* RESIDUAL MEAN SQUARE *. E12.41) 00000347<br>WRITE(6,547)(SER) + C12.41) 00000351<br>WRITE(6,547)(SER) + C12.41) 00000351<br>WRITE(6,547)(SER) + C12.41) 00000352 |   |     | DO 95 I=1+L2                            |                |                  | 00000322         |
| 96 X(K)=F(K,1)       00000324         CALL MINMAX(XMIN(1), XMAX(1), XRAN(1), XMEAN(1), X,L1)       00000325         95 CONTINUE       00000326         C       PRINT REGRESSION STATISTICS       00000328         WRITE(6,414)       00000328         WRITE(6,220)       00000329         WRITE(6,221)       00000330         220 FORMAT(Sx,* LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC*)       00000331         221 FORMAT(S,* LEAST-SQUARES REGRESSION VALUES       00000333         wRITE(6,526)       00000335         502 FORMAT(/*       REGRESSION VALUES       00000335         502 FORMAT(* DATA SET       *,1X,8A10)       00000336         mm=NPAM(KK)       00000336       00000337         wRITE(6,502)(TYPE(1),1=1,8)       00000337       00000337         S06 FORMAT(* DATA SET       *,1X,8A10)       00000336         mm=NPAM(KK)       00000337       00000337         wRITE(6,506)(L2)       00000334       00000334         S06 FORMAT(* NO. OF DBSERVATIONS       *, 8X, 14)       00000340         S07 FORMAT(* NO. OF INDEPENDENT VARIABLES       *, 8X, 14)       00000342         S08 FORMAT(* NO. OF INDEPENDENT VARIABLES       *, 8X, F4)       00000343         wRITE(6,514)(FTRS)       00000345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |     | D0 95 K=1+L1                            |                |                  | 00000323         |
| CALL MINMAX(XMIN(1), XMAX(1), XMAN(1), XMEAN(1), X,L1)       00000325         95 CONTINUE       00000326         C       PRINT REGRESSION STATISTICS       00000327         WRITE(6,414)       00000329         WRITE(6,220)       00000330         220 FORMAT(5X:* ANALYSIS OF CREEP-RUPTURE DATA*)       00000331         221 FORMAT(5X:* ANALYSIS OF CREEP-RUPTURE DATA*)       00000332         WRITE(6,526)       00000333         526 FORMAT(*/**)       00000334         WRITE(6,502)(TYPE(1),I=1+8)       00000335         502 FORMAT(*/* DATA SET       *.1X.8A10)         MRINPAM(KK)       00000337         WRITE (6,506)PAM(MM)       00000336         504 FORMAT(* NO. OF OBSERVATIONS       *. 7X. A8)       00000334         507 FORMAT(* NO. OF INDEPENDENT VARIABLES       *. 8X. 14)       00000342         508 FORMAT(* NO. OF INDEPENDENT VARIABLES       *. 8X. 14)       00000342         509 FORMAT(* ROSIL) L2       00000345       00000345         509 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *. 8X. F4)       00000345         509 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *. 8X. F4)       00000345         514 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *. 82.41       00000345         514 FORMAT(* RESIDUAL MEAN SQUARE       *. E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | 96  | $X(K) = F(K \cdot I)$                   |                |                  | 000 <b>00324</b> |
| 95 CONTINUE       00000326         C       PRINT REGRESSION STATISTICS       00000327         WRITE(6,414)       00000328         WRITE(6,220)       00000329         WRITE(6,221)       00000330         220 FORMAT( 5X:* LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC*)       00000331         221 FORMAT( 5X:* ANALYSIS OF CREEP-RUPTURE DATA*)       00000332         WRITE(6.526)       00000333         526 FORMAT( /* REGRESSION VALUES*)       00000336         502 FORMAT(* DATA SET *.1X:8A10)       00000336         MM=NPAM(KK)       00000337         WRITE (6.502)(TYPE(1):1=1:8)       00000336         502 FORMAT(* DATA SET *.1X:8A10)       00000336         503 FORMAT(* PARAMETER SELECTED *.1X:8A10)       00000337         WRITE (6.507)(L1)       00000337         504 FORMAT(* NO: OF OBSERVATIONS *.8X, 14)       00000341         WRITE(6.508)(L2)       00000342         505 FORMAT(* NO: OF INDEPENDENT VARIABLES *.8X, 14)       00000343         WRITE(6.514)(FTRSS )       00000345         504 FORMAT(* RESIDUAL DEGREES OF FREEDOM *.8X, F4)       00000344         509 FORMAT(* F - VALUE *.F12:1)       00000345         504 FORMAT(* RESIDUAL MEAN SQUARE *.F12:4)       00000347         505 FORMAT(* RESIDUAL MEAN SQUARE *.E12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |     | CALL MINMAX(XMIN(I) + XMAX(I) + XRAN    | (I) + XMEAN(I  | ) • X • L 1 )    | 00000325         |
| C       PRINT REGRESSION STATISTICS       00000327         WRITE(6+414)       00000328         WRITE(6+220)       00000330         220 FORMAT( 5X+* LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC*)       00000331         221 FORMAT( 5X+* LEAST-SQUARES REGRESSION VALUES 0000332       00000332         WRITE(6+526)       00000333         526 FORMAT( /* REGRESSION VALUES*)       00000336         502 FORMAT(* DATA SET *.1X+8A10)       00000336         504 FORMAT(* DATA SET *.1X+8A10)       00000337         WRITE(6+506)FAM(MM)       00000337         505 FORMAT(* NO+ OF OBSERVATIONS *.1X+8A10)       00000339         WRITE(6+508)( L2)       00000341         507 FORMAT(* NO+ OF INDEPENDENT VARIABLES *.8X, 14)       00000342         508 FORMAT(* NO+ OF INDEPENDENT VARIABLES *.8X, 14)       00000343         WRITE(6+509)(XN1)       00000343         WRITE(6+514)( FRSS )       00000343         S08 FORMAT(* RESIDUAL DEGREES OF FREEDOM *.8X, F4)       00000344         S09 FORMAT(* RESIDUAL DEGREES OF FREEDOM *.8X, F4)       00000345         S09 FORMAT(* RESIDUAL DEGREES OF FREEDOM *.8X, F4)       00000347         WRITE(6+545)(XMSER)       00000346         S45 FORMAT(* RESIDUAL MEAN SQUARE *. F12•1)       00000347               WRITE(6+546)( STD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 95  | CONTINUE                                |                |                  | 00000326         |
| WRITE(6+414)       00000328         WRITE(6+220)       00000320         WRITE(6+221)       00000330         220 FORMAT(5X+* LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC*)       00000331         221 FORMAT(5X+* LEAST-SQUARES REGRESSION VALUE DATA*)       00000332         WRITE(6+526)       00000333         526 FORMAT(* DATA SET       *.1X+8A10)         WRITE(6+502)(TYPE(1)+1=1+8)       00000336         502 FORMAT(* DATA SET       *.1X+8A10)         WRITE(6+502)(TYPE(1)+1=1+8)       00000337         WRITE(6+502)(TYPE(1)+1=1+8)       00000336         502 FORMAT(* DATA SET       *.1X+8A10)         WRITE(6+502)(TYPE(1)+1=1+8)       00000337         WRITE(6+502)(TYPE(1)+1=1+8)       00000338         506 FORMAT(* DATA SET       *.1X+8A10)         WRITE(6+507)(L1)       00000338         506 FORMAT(* PARAMETER SELECTED       *.7X+A8)       00000341         WRITE(6+508)(L2)       00000341         508 FORMAT(* NO+ OF INDEPENDENT VARIABLES       *.8X, 14)       00000342         508 FORMAT(* NO+ OF INDEPENDENT VARIABLES       *.8X+F4)       00000345         WRITE(6+514)(FTRSS)       00000345       00000345         WRITE(6+545)(XMSER)       00000345       00000346         545 FORMAT(* RESIDUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | с |     | PRINT REGRESSION STATISTICS             |                |                  | 00000327         |
| WRITE(6,220)       00000329         WRITE(6,221)       00000330         220 FORMAT(5x:* LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC*)       00000331         221 FORMAT(5x:* ANALYSIS OF CREEP-RUPTURE DATA*)       00000332         WRITE(6,526)       00000333         526 FORMAT(7* REGRESSION VALUES*)       00000335         502 FORMAT(* DATA SET       *.1X:8A10)       00000336         504 FORMAT(* DATA SET       *.1X:8A10)       00000336         505 FORMAT(* PARAMETER SELECTED       *.7X: A8)       00000339         WRITE(6:507)(L1)       00000340       00000340         507 FORMAT(* NO. OF OBSERVATIONS       *.8X: 14)       00000341         WRITE(6:508)(L2)       00000341       00000342         508 FORMAT(* NO. OF INDEPENDENT VARIABLES       *.8X: 14)       00000342         508 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *.8X: F4)       00000344         509 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *.8X: F4)       00000345         WRITE(6:5451)(KMSER)       00000345       00000345         S45 FORMAT(* RESIDUAL MEAN SQUARE       *. E12.4)       00000349         WRITE(6:546)(STD)       00000351       00000351         S46 FORMAT(* STANDARD ERROR       *. E12.4)       00000351         WRITE(6:547)(SSER) </td <td>Ŭ</td> <td></td> <td>WRITE(6+414)</td> <td></td> <td></td> <td>00000328</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ŭ |     | WRITE(6+414)                            |                |                  | 00000328         |
| WRITE(6,221)       00000330         220 FORMAT( 5x,* LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC*)       00000331         221 FORMAT( 5x,* ANALYSIS OF CREEP-RUPTURE DATA*)       00000332         wRITE(6,526)       00000333         526 FORMAT( /* REGRESSION VALUES*)       00000335         502 FORMAT(* DATA SET       *.1X.8A10)       00000336         mm=NPAM(KK)       00000337         wRITE(6,506)PAM(MM)       00000337         S06 FORMAT(* PARAMETER SELECTED       *.7X, A8)       00000339         wRITE(6,507)(L1)       00000341       00000342         S08 FORMAT(* NO. OF INDEPENDENT VARIABLES       *.8x, 14)       00000343         wRITE(6,509)(XN1)       00000344       00000345         S09 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *.8x, F4)       00000345         wRITE(6,5514)(FTRSS)       *.912.1)       00000346         S14 FORMAT(* R ESIDUAL DEGREES OF FREEDOM       *.8x, F4)       00000347         wRITE(6,545)(XMSER)       00000347       00000347         S45 FORMAT(* RESIDUAL MEAN SQUARE       *. E12.4)       00000349         wRITE(6,546)( STD)       00000350       00000351         S46 FORMAT(* STANDARD ERROR       *. E12.4)       00000351         wRITE(6,547)( SSER)       *. E12.4) <t< td=""><td></td><td></td><td>WRITE(6,220)</td><td></td><td></td><td>00000329</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |     | WRITE(6,220)                            |                |                  | 00000329         |
| 220 FORMAT( 5X** LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC*)       00000331         221 FORMAT( 5X** ANALYSIS OF CREEP-RUPTURE DATA*)       00000332         WRITE(6+526)       00000333         526 FORMAT( /* REGRESSION VALUES*)       00000335         502 FORMAT(* DATA SET       *+1X*8A10)         MM=NPAM(KK)       00000336         WRITE(6+502)(TYPE(1)*I=1*8)       00000337         502 FORMAT(* DATA SET       *+1X*8A10)         MM=NPAM(KK)       00000336         WRITE(6+506)PAM(MM)       00000337         506 FORMAT(* NO* OF OBSERVATIONS       *+ 7X* A8)       00000339         WRITE(6*507)(L1)       00000340         507 FORMAT(* NO* OF OBSERVATIONS       *+ 8X* 14)       00000341         WRITE(6*508)(L2)       00000343       00000343         S08 FORMAT(* NO* OF INDEPENDENT VARIABLES       *+ 8X* 14)       00000344         509 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *+ 8X* F4)       00000345         WRITE(6*509)(XN1)       00000347       00000347         S08 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *+ 8X* F4)       00000345         S09 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *+ 8X* F4)       00000347         WRITE(6*545)(XMSER)       00000347       00000347         S45 FORMAT(* RESIDUAL MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |     | WRITE(6.221)                            |                |                  | 00000330         |
| 221       FORMAT( 5X,* ANALYSIS OF CREEP-RUPTURE DATA*)       00000332         wRITE(6,526)       00000333         526       FORMAT( /* REGRESSION VALUES*)       00000334         wRITE(6,502)(TYPE(1),II=1,8)       00000335         502       FORMAT(* DATA SET *,1X+8A10)       00000336         mm=NPAM(KK)       00000336         wRITE (6,506)PAM(MM)       00000337         sofe FORMAT(* DATA SET *,1X+8A10)       00000336         mm=NPAM(KK)       00000337         wRITE (6,506)PAM(MM)       00000338         506       FORMAT(* NO. OF OBSERVATIONS *, 8X, 14)       00000340         507       FORMAT(* NO. OF INDEPENDENT VARIABLES *, 8X, 14)       00000341         wRITE(6,509)(XN1)       00000341       00000343         swRITE(6,509)(XN1)       00000344       00000345         509       FORMAT(* RESIDUAL DEGREES OF FREEDOM *, 8X, F4)       00000344         509       FORMAT(* F - VALUE *, F12.1)       00000345         wRITE(6,545)(XMSER)       00000347         545       FORMAT(* RESIDUAL MEAN SQUARE *, E12.4)       00000349         wRITE(6,546)( STD)       00000351         546       FORMAT(* STANDARD ERROR *, E12.4)       00000351         wRITE(6,547)( SSER)       00000351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 220 | FORMAT( 5X+*   FAST-SQUARES REGRESS     | ION PROGRAM    | FOR PARAMETRIC*) | 00000331         |
| WR ITE (6,526)       00000333         526 FORMAT( /* REGRESSION VALUES*)       00000334         WR ITE (6,502) (TYPE (1), I=1,8)       00000335         502 FORMAT(* DATA SET *.1X+8A10)       00000336         MM=NPAM(KK)       00000337         WR ITE (6,506)PAM(MM)       00000337         S06 FORMAT(* PARAMETER SELECTED *.7X+ A8)       00000339         WR ITE (6,507) ( L1)       00000340         507 FORMAT(* NO+ OF OBSERVATIONS *. 8X, I4)       00000342         S08 FORMAT(* NO+ OF INDEPENDENT VARIABLES *. 8X, I4)       00000342         S08 FORMAT(* RESIDUAL DEGREES OF FREEDOM *. 8X, F4)       00000344         509 FORMAT(* RESIDUAL DEGREES OF FREEDOM *. 8X, F4)       00000345         WR ITE (6,514) ( FTRSS )       00000347         WR ITE (6,545) (XMSER)       00000347         S45 FORMAT(* RESIDUAL MEAN SQUARE *. E12.4)       00000347         WR ITE (6,546) ( STD)       00000347         WR ITE (6,546) ( STD)       00000351         S46 FORMAT(* STANDARD ERROR *. E12.4)       00000351         WR ITE (6,547) ( SSER)       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 221 | FORMAT( 5X+* ANALYSIS OF CREEP-RUP      | TURE DATA*)    |                  | 00000332         |
| 526       FORMAT( /* REGRESSION VALUES*)       00000334         WRITE(6,502)(TYPE(1),I=1,8)       00000335         502       FORMAT(* DATA SET *,1X,8A10)       00000336         MM=NPAM(KK)       00000337         WRITE (6,506)PAM(MM)       00000338         506       FORMAT(* PARAMETER SELECTED *, 7X, A8)       00000339         WRITE (6,507)( L1)       00000340         507       FORMAT(* NO. OF OBSERVATIONS *, 8X, 14)       00000341         WRITE(6,508)( L2)       00000342         508       FORMAT(* NO. OF INDEPENDENT VARIABLES *, 8X, 14)       00000344         S09       FORMAT(* RESIDUAL DEGREES OF FREEDOM *, 8X, F4)       00000345         WRITE(6,514)( FTRSS )       00000345       00000345         514       FORMAT(* RESIDUAL MEAN SQUARE *, F12.1)       00000347         WRITE(6,546)( STD)       00000349       00000349         545       FORMAT(* RESIDUAL MEAN SQUARE *, E12.4)       00000350         546       FORMAT(* STANDARD ERROR *, E12.4)       00000351         WRITE(6,547)( SSER)       00000351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |     | WRITE (6.526)                           |                |                  | 00000333         |
| WRITE(6.502)(TYPE(I))I=1.8)       00000335         502       FORMAT(* DATA SET       *.1X.8A10)       00000336         MM=NPAM(KK)       00000337       00000337         WRITE(6.506)PAM(MM)       00000338         506       FORMAT(* PARAMETER SELECTED       *.7X.AB)       00000339         WRITE(6.507)(L1)       00000340         507       FORMAT(* NO. OF OBSERVATIONS       *.8X.14)       00000342         508       FORMAT(* NO. OF INDEPENDENT VARIABLES       *.8X.14)       00000342         509       FORMAT(* RESIDUAL DEGREES OF FREEDOM       *.8X.F4)       00000345         509       FORMAT(* RESIDUAL DEGREES OF FREEDOM       *.8X.F4)       00000345         S09       FORMAT(* RESIDUAL DEGREES OF FREEDOM       *.8X.F4)       00000345         S14       FORMAT(* RESIDUAL MEAN SQUARE       *.F12.1)       00000348         S45       FORMAT(* RESIDUAL MEAN SQUARE       *.E12.4)       00000349         WRITE(6.546)( STD)       00000350       00000350         546       FORMAT(* STANDARD ERROR       *.E12.4)       00000351         WRITE(6.547)( SSER)       00000351       00000351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 526 | FORMAT( /* REGRESSION V                 | ALVES          | ~- <u>-</u> +* } | 00000334         |
| 502       FORMAT (* DATA SET       *.1X.8A10)       00000336         MM=NPAM(KK)       00000337         WRITE (6.506)PAM(MM)       00000338         506       FORMAT (* PARAMETER SELECTED       *.7X.A8)       00000399         WRITE (6.507) (L1)       00000340         507       FORMAT (* NO.OF OBSERVATIONS       *.8X.14)       00000341         wRITE (6.508) (L2)       00000342         508       FORMAT (* NO.OF INDEPENDENT VARIABLES       *.8X.14)       00000342         508       FORMAT (* RESIDUAL DEGREES OF FREEDOM       *.8X.F4)       00000343         wRITE (6.514) (FTRSS)       00000345       00000346         514       FORMAT (* F - VALUE       *.F12.1)       00000347         wRITE (6.545) (XMSER)       00000347       00000347         545       FORMAT (* RESIDUAL MEAN SQUARE       *.E12.4)       00000349         wRITE (6.546) (STD)       00000350       546       GOMAT (* STANDARD ERROR       *.E12.4)       00000351         546       FORMAT (* STANDARD ERROR       *.E12.4)       00000351       00000351         wRITE (6.547) (SSER)       wRITE (6.547) (SSER)       *.       00000351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 520 | WRITE(6+502)(TYPE(1)+I=1+8)             |                |                  | 00000335         |
| MM=NPAM(KK)       00000337         WRITE (6.506)PAM(MM)       00000338         506 FORMAT(* PARAMETER SELECTED       *, 7x, A8)       00000339         WRITE(6.507)(L1)       00000340         507 FORMAT(* NO. OF OBSERVATIONS       *, 8x, 14)       00000341         WRITE(6.508)(L2)       00000342         508 FORMAT(* NO. OF INDEPENDENT VARIABLES       *, 8x, 14)       00000343         WRITE(6.509)(XN1)       00000344         509 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *, 8x, F4)       00000344         509 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *, 8x, F4)       00000346         514 FORMAT(* F - VALUE       *, F12.1)       00000348         WRITE(6.545)(XMSER)       00000348       00000349         S45 FORMAT(* RESIDUAL MEAN SQUARE       *, E12.4)       00000349         WRITE(6.546)(STD)       00000350       546 FORMAT(* STANDARD ERROR       *, E12.4)       00000351         546 FORMAT(* STANDARD ERROR       *, E12.4)       00000351       00000352       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 502 | FORMAT (* DATA SET *                    | ,1X,8A10)      |                  | 00000336         |
| WRITE (6,506)PAM(MM)       00000338         505       FORMAT(* PARAMETER SELECTED       *, 7x, A8)       00000339         WRITE(6,507)(L1)       00000340         507       FORMAT(* NO* OF OBSERVATIONS       *, 8x, 14)       00000341         WRITE(6,508)(L2)       00000342         508       FORMAT(* NO* OF INDEPENDENT VARIABLES       *, 8x, 14)       00000343         WRITE(6,509)(XN1)       00000344       00000345         509       FORMAT(* RESIDUAL DEGREES OF FREEDOM       *, 8x, F4)       00000345         WRITE(6,514)(FTRSS)       00000346       00000347         S14       FORMAT(* F - VALUE       *, F12+1)       00000348         WRITE(6,545)(XMSER)       00000348       00000349         S45       FORMAT(* RESIDUAL MEAN SQUARE       *, E12+4)       00000349         WRITE(6,546)(STD)       00000350       00000350         S46       FORMAT(* STANDARD ERROR       *, E12+4)       00000351         WRITE(6,547)(SSER)       00000351       00000352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |     | MM=NPAM (KK)                            |                | ·                | 00000337         |
| 506       FORMAT(* PARAMETER SELECTED       *, 7x, AB)       00000339         WRITE(6,507)(L1)       00000340         507       FORMAT(* NO. OF OBSERVATIONS       *, 8x, 14)       00000341         WRITE(6,508)(L2)       00000342         508       FORMAT(* NO. OF INDEPENDENT VARIABLES       *, 8x, 14)       00000343         WRITE(6,509)(XN1)       00000344         509       FORMAT(* RESIDUAL DEGREES OF FREEDOM       *, 8x, F4)       00000345         WRITE(6,514)(FTRSS)       00000346         514       FORMAT(* F - VALUE       *, F12.1)       00000347         WRITE(6,545)(XMSER)       00000348         545       FORMAT(* RESIDUAL MEAN SQUARE       *, E12.4)       00000350         546       FORMAT(* STANDARD ERROR       *, E12.4)       00000351         WRITE(6,547)(SSER)       00000351       00000352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |     | WRITE (6,506)PAM(MM)                    |                |                  | 00000338         |
| WRITE(6,507)(L1)       00000340         507 FORMAT(* NO. OF OBSERVATIONS       *. 8x. 14)       00000341         WRITE(6,508)(L2)       00000342         508 FORMAT(* NO. OF INDEPENDENT VARIABLES       *. 8x. 14)       00000343         WRITE(6,509)(XN1)       00000344         509 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *. 8x. F4)       00000345         WRITE(6,514)(FTRSS)       00000345         514 FORMAT(* F - VALUE       *. F12.1)       00000347         WRITE(6,545)(XMSER)       00000348         545 FORMAT(* RESIDUAL MEAN SQUARE       *. E12.4)       00000349         WRITE(6,546)(STD)       00000350         546 FORMAT(* STANDARD ERROR       *. E12.4)       00000351         WRITE(6,547)(SSER)       00000352         *       ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 506 | FORMAT (* PARAMETER SELECTED            | *,             | 7X, A8)          | 00000339         |
| 507       FORMAT(* NO• OF OBSERVATIONS ** Bx, 14)       00000341         WRITE(6*508)(L2)       00000342         508       FORMAT(* NO• OF INDEPENDENT VARIABLES **, 8x, 14)       00000343         WRITE(6*509)(XN1)       00000344         509       FORMAT(* RESIDUAL DEGREES OF FREEDOM **, 8x, F4)       00000345         WRITE(6*514)(FTRSS)       00000345         514       FORMAT(* F - VALUE ** F12*1)       00000348         545       FORMAT(* RESIDUAL MEAN SQUARE ** E12*4)       00000349         WRITE(6*546)(STD)       ** E12*4)       00000350         546       FORMAT(* STANDARD ERROR ** E12*4)       00000351         WRITE(6*547)(SSER)       00000351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |     | WRITE(6,507)( L1)                       | ę              |                  | 00000340         |
| WRITE(6,508)(L2)       00000342         508 FORMAT(* NO* OF INDEPENDENT VARIABLES       *, 8x, 14)       00000343         WRITE(6,509)(xN1)       00000344         509 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *, 8x, F4)       00000345         WRITE(6,514)(FTRSS)       00000345         S14 FORMAT(* F - VALUE       *, F12*1)       00000347         WRITE(6,545)(xMSER)       00000348         545 FORMAT(* RESIDUAL MEAN SQUARE       *, E12*4)       00000349         WRITE(6,546)(STD)       00000350         546 FORMAT(* STANDARD ERROR       *, E12*4)       00000351         WRITE(6,547)(SSER)       00000352         +       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 507 | FORMAT (* NO. OF OBSERVATIONS           | *•             | 8x. 14)          | 00000341         |
| 508       FORMAT(* NO. OF INDEPENDENT VARIABLES       *, 8x, 14)       00000343         WRITE(6.509)(xN1)       00000344         509       FORMAT(* RESIDUAL DEGREES OF FREEDOM       *, 8x, F4)       00000345         WRITE(6.514)(FTRSS)       00000346         514       FORMAT(* F - VALUE       *, F12.1)       00000347         WRITE(6.545)(XMSER)       00000348         545       FORMAT(* RESIDUAL MEAN SQUARE       *, E12.4)       00000349         WRITE(6.546)(STD)       00000350       00000351         546       FORMAT(* STANDARD ERROR       *, E12.4)       00000352         WRITE(6.547)(SSER)       4       00000352       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |     | WRITE(6,508)( L2)                       |                |                  | 00000342         |
| WRITE(6,509)(XN1)       00000344         509 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *, 8x, F4)       00000345         WRITE(6,514)(FTRSS)       00000346         514 FORMAT(* F - VALUE       *, F12.1)       00000347         WRITE(6,545)(XMSER)       00000348         545 FORMAT(* RESIDUAL MEAN SQUARE       *, E12.4)       00000349         WRITE(6,546)(STD)       00000350         546 FORMAT(* STANDARD ERROR       *, E12.4)       00000351         WRITE(6,547)(SSER)       00000352         +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 508 | FORMAT (* NO. OF INDEPENDENT VARIA      | BLES *,        | 8x, 14)          | 00000343         |
| 509 FORMAT(* RESIDUAL DEGREES OF FREEDOM       *, 8x, F4)       00000345         WRITE(6,514)(FTRSS)       00000346         514 FORMAT(* F - VALUE       *, F12.1)       00000347         WRITE(6,545)(XMSER)       00000348         545 FORMAT(* RESIDUAL MEAN SQUARE       *, E12.4)       00000349         WRITE(6,546)(STD)       00000350         546 FORMAT(* STANDARD ERROR       *, E12.4)       00000351         WRITE(6,547)(SSER)       00000352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |     | WRITE(6,509)(XN1)                       |                | •,               | 00000344         |
| WRITE(6,514)(FTRSS)       00000346         514 FORMAT(* F - VALUE       *, F12.1)       00000347         WRITE(6,545)(XMSER)       00000348         545 FORMAT(* RESIDUAL MEAN SQUARE       *, E12.4)       00000349         WRITE(6,546)(STD)       00000350         546 FORMAT(* STANDARD ERROR       *, E12.4)       00000351         WRITE(6,547)(SSER)       00000352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 509 | FORMAT (* RESIDUAL DEGREES OF FREE      | DOM *,         | 8X, F4)          | 00000345         |
| 514 FORMAT(* F - VALUE       ** F12*1)       00000347         WRITE(6*545)(XMSER)       00000348         545 FORMAT(* RESIDUAL MEAN SQUARE       ** E12*4)       00000349         WRITE(6*546)( STD)       00000350         546 FORMAT(* STANDARD ERROR       ** E12*4)       00000351         WRITE(6*547)( SSER)       00000352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |     | WRITE(6,514)(FTRSS)                     |                | •                | 00000346         |
| WRITE(6,545)(XMSER)       00000348         545 FORMAT(* RESIDUAL MEAN SQUARE       *, E12.4)       00000349         WRITE(6,546)(STD)       00000350         546 FORMAT(* STANDARD ERROR       *, E12.4)       00000351         WRITE(6,547)(SSER)       00000352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 514 | FORMAT(* F - VALUE                      | *•             | F12+1)           | 00000347         |
| 545 FORMAT(* RESIDUAL MEAN SQUARE       *, E12.4)       00000349         WRITE(6.546)(STD)       00000350         546 FORMAT(* STANDARD ERROR       *, E12.4)       00000351         WRITE(6.547)(SSER)       00000352         +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |     | WRITE(6,545)(XMSER)                     | ،              |                  | 00000348         |
| WRITE(6,546)(STD)       00000350         546 FORMAT(* STANDARD ERROR       *, E12.4)       00000351         WRITE(6,547)(SSER)       00000352         +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 545 | FORMAT (* RESIDUAL MEAN SQUARE          | ¥.             | E12+4)           | 00000349         |
| 546 FORMAT(* STANDARD ERROR *+ E12+4) 00000351<br>WRITE(6+547)( SSER) 00000352<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |     | WRITE(6,546)( STD)                      |                |                  | 00000350         |
| WRITE(6,547)( SSER) 00000352 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 546 | FORMAT (* STANDARD ERROR                | <del>×</del> • | E12.4)           | 00000351         |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |     | WRITE(6,547)( SSER)                     |                |                  | 00000352         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |     |                                         |                |                  | +                |

|   | 547 | FORMAT(* RESIDUAL SUM OF SQUARES             | *• F12.4)               | 00000353          |
|---|-----|----------------------------------------------|-------------------------|-------------------|
|   |     | WRITE(6, 548)(TOTSUM)                        |                         | 00000354          |
|   | 548 | FORMAT (* TOTAL SUMS OF SQUARES              | *• E12•4)               | 00000355          |
|   |     | WRITE(6, 549)(CORC)                          |                         | 00000356          |
|   | 549 | FORMAT(* MULT. CORREL. COEF. SQUARED         | *• F12•4/)              | 00000357          |
| с |     | WRITE(6,320)                                 |                         | 00000358          |
| - | 320 | FORMAT(/)                                    |                         | 00000359          |
|   |     | IF (MM.EQ.4) WRITE (6.432) CBEST             | •                       | 00000360          |
|   |     | IF (MM.EQ.5) WRITE (6.433) CBEST             |                         | 00000361          |
|   | 432 | FORMAT (* MANSON - HAFERD CONSTANT (TA) =*.F | 10+1/)                  | 00000362          |
|   | 433 | FORMAT(* RABOTNOV CONSTANT (RA) =*.F10.5/)   |                         | 00000363          |
|   |     | WRITE(6,492)(YMIN,YMAX,YRAN,YMEAN)           |                         | 00000364          |
|   | 492 | FORMAT (5 X * MIN Y =* E11.2.3X * MAX Y =*.  | E11.2,3X,* Y RANGE =*.  | 00000365          |
|   |     | E11.2.3X* MEAN Y =*.E11.2/)                  |                         | 00000366          |
| С |     | INPUT= 3 LISTING                             |                         | 00000367          |
| - |     | IF (INPUT-3)311,310,311                      |                         | 00000368          |
|   | 310 | WRITE(6,312)                                 |                         | 00000369          |
|   | 312 | FORMAT (/ 5X. *FIRST 5 OBSERVATIONS - TRANSF | ORMED VARIABLES*/       | 00000370          |
|   |     | $15X_{*}Y_{*}18X_{*}X_{1} - X(L^{2}) *)$     |                         | 00000371          |
|   |     | DO 313 I=1+5                                 |                         | 00000372          |
|   |     | DO 315 J=1,L2                                |                         | 00000373          |
|   | 315 | TEMP(J) = F(I,J)                             |                         | 000 <b>0</b> 0374 |
|   |     | WRITE(6+314)(Y(I)+(TEMP(J)+J=1+L2))          |                         | 00000375          |
|   | 313 | CONTINUE                                     |                         | 00000376          |
|   | 314 | FORMAT(8E15.5)                               |                         | 00000377          |
|   |     | WRITE(6,320)                                 |                         | 00000378          |
|   | 311 | CONTINUE                                     |                         | 00000379          |
|   |     | WRITE(6,422)                                 |                         | 0 <b>00003</b> 80 |
|   | 422 | FORMAT(3X,* I *,2X,*VARIABLE*, 4X,*COEF      | •P(I)*•3X• *S•E•COEF•*• | 00000381          |
|   |     | 1 4X, *T*, 5X, *MEAN X(I)*, 3X,              | *MIN X(I)*+ 3X+*MAX X(I | 00000382          |
|   | 2   | 2*•3X• *RAN X(I)*• 4X•*RINF*• 3X• *PSUM*• 3  | X•*CERR*)               | 00000383          |
|   |     | WRITE(6,535)(PARO)                           |                         | 00000384          |
|   | 535 | FORMAT(6x,*0*,11x,E14.4)                     |                         | 00000385          |
|   |     |                                              |                         | +                 |

31

•

```
00000386
     M = NPAM(KK) * 6 - 6
                                                                           00000387
     DO 420 I=1+L2
                                                                           00000388
     CERR(I)=100.0*((PAR1(I)-E(I))/PAR1(I))
                                                                           00000389
     RINF=(XRAN(I)*PAR1(I)+1.0E-30) /YRAN
                                                                           00000390
     SSRR=SSR(I)/REGSS
     WRITE(6+421)(I+WAR(I+M)+PAR1(I)+ SB(1)+T(I)+XMEAN(I)+
                                                                           00000391
    1 XMIN(I), XMAX(I), XRAN(I), RINF, SSRR, CERR(I))
                                                                           200000392
                                                                           00000393
 420 CONTINUE
                                                                           00000394
                  17. 4X.A8.1X. E12.4. E11.2. F7.2.
 421 FORMAT(
                                                                           00000395
             E13.3, 3E11.2, F8.2, F7.3, F7.2)
                                                  5
     1
                                                                           00000396
      WRITE(6+424)
 424 FORMAT( /* VARIABLE CODE*/10X,*S=LOG STRESS*/10X,*T=TEMPERATURE*
                                                                           00000397
                                                                           00000398
     1/10x,*DT=T-TA*/10X,*L=STRESS*/)
                                                                           00000399
      CUMERR=0.0
                                                                           00000400
      RR15=0.0
                                                                           00000401
      SRIS2=0.0
                                                                           00000402
      EMAx=0.0
                                                                           00000403
      EMAXP=0.0
                                                                           00000404
      NZERO=0
                                                                           00000405
      SDP=0.0
                                                                           00000406
      SSDP=0.0
                                                                           00000407
      DPMAX = -10.0
                                                                           00000408
       XDF=ALOG10(XN1)
      T6=0.8618559 -0.9842715*XDF+0.5849466*XDF**2-.1159365*XDF**3
                                                                           00000409
                                                                           00000410
      T6=10+**T6
                                                                           00000411
CCCC **** START 333 LOOP*****
                                                                           00000412
      D0333M=1+L1
                                                                           00000413
      X(1) = 1 \cdot 0
                                                                           00000414
      DO 92 K=1.L2
                                                                           00000415
      I = K + 1
                                                                           00000416
      X(I)=F(M+K)
  92
                                                                           00000417
      DO 100 J =1.L3
                                                                           00000418
        TEMP(J) = 0.0
```

+

 $\sim$ Ø 9

|      | $00,100,1,\pm1.13$                                                | 00000419  |
|------|-------------------------------------------------------------------|-----------|
| •    | $TEMP(J) = TEMP(J) + X(1) * DD(1 \cdot J)$                        | 00000420  |
| 100  | CONTINUE                                                          | 00000421  |
|      | ANS =0.0                                                          | 00000422  |
|      | DO 200 J=1.L3                                                     | 00000423  |
|      | ANS= ANS +TFMP(J)*X(J)                                            | 0000424   |
| 200  | CONTINUE                                                          | 00000425  |
|      | XMER = XMSER                                                      | 00000426  |
|      | XMER= ABS(XMER)                                                   | 00000427  |
|      | ANS = ABS(ANS)                                                    | 00000428  |
| .C   | CALCULATE 95 PERCENT STATISTICAL INTERVALS                        | 00000429  |
|      | DELTA=T6*SQRT(XMER*ANS)                                           | 00000430  |
|      | CIMAX(M)=CY(M)+DELTA                                              | 00000431  |
|      | CIMIN(M) = CY(M) - DELTA                                          | 00000432  |
|      | DELTA=T6*SQRT(XMER*(1+ANS))                                       | 00000433  |
|      | PYMAX(M)=CY(M)+DELTA                                              | 00000434  |
|      | PYMIN(M)=CY(M)-DELTA <sup>-</sup>                                 | 00000435  |
|      | RIS(M) = CY(M) - Y(M)                                             | 00000437  |
| С    | AVOID DUMP WHEN Y=0 2/25/76                                       | 00000438  |
|      | IF(Y(M)+EQ+0+0) Y(M)=0+000001                                     | 00000439  |
|      | $ERRPER(M) = RIS(M)/Y(M) \times 100$                              | 00000440  |
|      | IF ( $ABS(RIS(M)) \bullet GT \bullet ABS(EMAX))EMAX = RIS(M)$     | 00000441  |
|      | RIS2 =RIS(M)**2                                                   | 00000442  |
|      | SRIS2=SRIS2+RIS2                                                  | 00000443  |
|      | RRIS=RRIS+ABS(RIS(M))                                             | 00000444  |
|      | $IF(ABS(ERRPER(M)) \cdot GT \cdot ABS(EMAXP)) FMAXP = FRRPER(M)$  | 00000445  |
|      | CUMERR=CUMERR+ABS(ERRPER(M))                                      | 00000446  |
| 333  | CONTINUE                                                          | 00000447  |
| CCCC | ***** END 333 LOOOP \$\$\$\$**                                    | 00000448  |
| с    | FIND OBSERVATIONS OUTSIDE OF 95 PERCENT PREDICTION INTERVAL       | 00000449  |
| 401  | FORMAT(/* OBSERVATIONS OUTSIDE OF 95 PERCENT PREDICTION INTERVAL* | /00000450 |
|      | 15x,*0BS.*, 5x,*CALC Y*, 5x,*PYMIN*, 5x,*PYMAX* /)                | 00000451  |
|      | IBAD=0                                                            | 00000452  |
|      | •                                                                 | +         |
|      |                                                                   |           |
|      |                                                                   |           |
|      |                                                                   |           |
|      |                                                                   |           |

ω

|   |     |                                                                      | 00000050   |
|---|-----|----------------------------------------------------------------------|------------|
|   |     | IF(CY(I)-PYMIN(I)) 402,399,399                                       | 00000454   |
|   | 399 | CONTINUE                                                             | 00000455   |
|   |     | IF(CY(I)-PYMAX(I)) 400,400,402                                       | 00000456   |
|   | 402 | IBAD=IBAD+1                                                          | 00000457   |
|   |     | IF(IBAD+EQ+1) WRITE(6+401)                                           | 00000458   |
|   |     | WRITE(6+403)( I+ CY(I)+PYMIN(I)+PYMAX(I) )                           | 00000459   |
|   | 400 | CONTINUE                                                             | 00000460   |
|   | 403 | FORMAT ( 15,3E16.6)                                                  | 00000461   |
| С |     | DETERMINE DP STATISTICS IN TERMS OF LOG TIME TO RUPTURE              | 00000462   |
| - |     | DPSUM=0.0                                                            | 00000463   |
|   |     | DPMAX = -100.0                                                       | 00000464   |
|   |     | IF (NPAM(KK)-5) 404,406,404                                          | 00000465   |
|   | 404 | DO 405 I=1.L1                                                        | 00000466   |
|   |     | DP=PYMAX(I)-PYMIN(I)                                                 | 00000467   |
|   |     | IF (DP.GT.DPMAX) DPMAX=DP                                            | 00000468   |
|   |     | DPSUM= DPSUM+DP                                                      | 00000469   |
|   | 405 | CONTINUE                                                             | 00000470   |
|   |     | GO TO 408                                                            | . 00000471 |
| с |     | RABOTNOV DP                                                          | 00000472   |
| - | 406 | DO 407 I=1+L1                                                        | 00000473   |
| С |     | AVOID NEGATIVE PY DUMP                                               | 00000474   |
| - |     | $IF(PYMIN(I) \bullet LT \bullet 0 \bullet 0) PYMIN(I) = 1 \bullet 0$ | 00000475   |
|   |     | $IF(PYMAX(I) \bullet LT \bullet 0 \bullet 0) PYMAX(I) = 1 \bullet 0$ | , 00000476 |
|   |     | PP1 = PYMAX(1) * * (1.0/CHEST)                                       | 00000477   |
|   |     | RP2=PYMIN(I)**(1,0/CBEST)                                            | 00000478   |
|   |     | DP = ALOG10(RP1) - ALOG10(RP2)                                       | 00000479   |
|   |     | IF (DP+GT+DPMAX)DPMAX=DP                                             | 00000480   |
|   |     | DPSUM=DPSUM+DP                                                       | 00000481   |
|   | 407 | CONTINUE                                                             | 00000482   |
|   | 408 | DPAVE = DPSUM/L1                                                     | 00000483   |
|   |     |                                                                      | 000004Ř4   |
|   |     | RP2=10.***DPMAX                                                      | 00000485   |
|   |     |                                                                      |            |

-

DO 400 I=1+L1

111

+

,

-

-

| ,                                                                               |          |
|---------------------------------------------------------------------------------|----------|
| WRITE(6+410)                                                                    | 00000486 |
| 410 FORMAT( 5X+* 95 PERCENT PREDICTION INTERVAL STATISTICS*/25X+                | 00000487 |
| 1*LOG TIME*,10X,*REAL TIME FACTOR (ANTILOG WIDTH)*/)                            | 00000488 |
| WRITE(6,409)(DPAVE, RP1, DPMAX, RP2)                                            | 00000489 |
| 409 FORMAT (* AVERAGE WIDTH *, 5x, F10.3,19x, F10.1/* MAXIMUM WIDTH*,           | 00000490 |
| 1 6X • F10 • 3 • 19X • F10 • 1 )                                                | 00000491 |
| C ORDER RESIDUALS - LARGEST TO SMALLEST                                         | 00000492 |
| L1NEG = -L1                                                                     | 00000493 |
| DO 2100 1=1+L1                                                                  | 00000494 |
| TEMP(I) = 0.0                                                                   | 00000495 |
| 2100 TEMP(I)= ABS(RIS(I))                                                       | 00000496 |
| CALL AORDER(TEMP + L1NEG, IPERM)                                                | 00000497 |
| DO 1202 I=1.L1                                                                  | 00000498 |
| J = IPERM(I)                                                                    | 00000499 |
| TEMP(J) = I                                                                     | 00000500 |
| 1202 CONTINUE                                                                   | 00000501 |
| C OUTPUT = 1 OR GREATER                                                         | 00000502 |
| C RESIDUALS IN REGRESSED SPACE                                                  | 00000503 |
| IF(IOUT -1) 413,412,412                                                         | 00000504 |
| 412 CONTINUE                                                                    | 00000505 |
| WRITE(6+414)                                                                    | 0000506  |
| WRITE(6,415)                                                                    | 00000507 |
| 414 FORMAT(1H1)                                                                 | 00000508 |
| 415 FORMAT(* RESIDUALS - REGRESSION SPACE*/)                                    | 00000509 |
| WRITE(6,416)                                                                    | 00000510 |
| WRITE(6,417)(I,Y(I),CY(I),RIS(I),ERRPER(I), TEMP(I),                            | 00000511 |
| 1 $CIMAX(I) \cdot CIMIN(I) \cdot PYMIN(I) \cdot PYMAX(I) \cdot I = 1 \cdot L1)$ | 00000512 |
| 417 FORMAT(15, 1X, 3E12.3, , F10.1, 8X, F5, 4X, 4E12.3)                         | 00000513 |
| 416 FORMAT( 2X+*OBS*+ 7X+*Y OBS*+ 6X+*Y CALC*+5X+ *RESIDUAL*+6X+                | 00000514 |
| 1 *PCTERR *, 1x,*ORDER*,7X ,*CIMIN*, 7X,*CIMAX*,7X,                             | 00000515 |
| 2 *PIMIN*,7X ·*PIMAX*/)                                                         | 00000516 |
| 413 CONTINUE                                                                    | 00000517 |
| XMRSS=REGSS/L2                                                                  | 00000518 |
| ······································                                          | ·<br>+   |
|                                                                                 |          |

-

 $\frac{\omega}{5}$ 

```
00000519
      FTRSS=XMRSS/XMSER
                                                                          00000520
      DPAVE= SDP/L1
                                                                          00000521
      DPSIG=(L1*SSDP-SDP**2)/(L1*(L1-1•0))
                                                                          00000522
      DPSIG=SQRT(DPSIG)
                                                                          00000523
      STD=SQRT(XMSER)
                                                                          00000524
      PLOTTING ROUTINE
С
                                                                          00000525
      PLOT RESIDUALS WITH VARIAN ON LINE PLOTTER
С
                                                                          00000526
      IF (IOUT -3)445,440,440
                                                                          00000527
  440 CONTINUE
                                                                          00000528
      IN(1) = 5HPARAM
                                                                          00000529
      IN(2) = 4HPLOT
                                                                          00000530
      N=L1
                                                                          00000531
      ISYMD=12
                                                                          00000532
      IEC=1
                                                                          00000533
      CALL MINMAX(YL,YH,YRAN,YMEAN,RIS,L1)
                                                                          00000534
      YL=1.8*YL
                                                                          00000535
      YH=1.8*YH
                                                                          00000536
      XL=0.0
                                                                          00000537
      XH=0.0
                                                                          00000538
      NXM = 1
                                                                          00000539
      NYM = 1-
                                                                          00000540
      YNOTE= 10H RESIDUAL
                                                                          00000541
      XNOTES = 10HZP NORMAL
                                                                          00000542
      XNOTE6= 10H FITTED Y
                               .
      CALL VDIPLT(IEC, IN, N, CY(1), RIS(1), XL,XH,YL,YH,NXM,
                                                                          00000543
                                                                          00000544
     1 XNOTEG. NYM. YNOTE. ISYMD)
                                                                          00000545
      CALL AORDER(RIS+L1+IPERM)
                                                                          00000546
      DO 430 I=1.L1
                                                                          00000547
      J=IPERM(I)
                                                                          00000548
      TEMP(I) = RIS(J)
                                                                          00000549
      XI = I
                                                                          00000550
      FZ=(X1-.375)/(L1+.25)
                                                                          00000551
      IF(FZ-0.5)570.570.571
```

+

| 5        | ZP(I) = 1.04505 + 4.35979*XX + 3.46057*XX**2+ 1.90878*XX**3<br>1 + 0.54456*XX**4+ 0.0608*XX**5<br>GO TO 572<br>571 XX=ALOG10(1.0-FZ)<br>ZP(I) = 1.04505 + 4.35979*XX + 3.46057*XX**2+ 1.90878*XX**3<br>1 + 0.54456*XX**4+ 0.0608*XX**5<br>ZP(I) = -ZP(I)<br>572 CONTINUE<br>530 CONTINUE | 00000553<br>00000554<br>00000555<br>00000556<br>00000557<br>00000558<br>00000559 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 5        | 1 + 0.54456*XX**4+ 0.0608*XX**5<br>G0 T0 572<br>571 XX=ALOG10(1.0-FZ)<br>ZP(I)= 1.04505 + 4.35979*XX + 3.46057*XX**2+ 1.90878*XX**3<br>1 + 0.54456*XX**4+ 0.0608*XX**5<br>ZP(I)=-ZP(I)<br>572 CONTINUE<br>530 CONTINUE                                                                   | 00000554<br>00000555<br>00000556<br>00000557<br>00000558<br>00000559             |
| 5        | GO TO 572<br>GO TO 572<br>ZP(I)= 1.04505 + 4.35979*XX + 3.46057*XX**2+ 1.90878*XX**3<br>1 + 0.54456*XX**4+ 0.0608*XX**5<br>ZP(I)=-ZP(I)<br>G72 CONTINUE<br>G72 CONTINUE                                                                                                                  | 00000555<br>00000556<br>00000557<br>00000558<br>00000559                         |
| 5<br>4   | 571 XX=ALOG10(1.0-FZ)<br>ZP(I)= 1.04505 + 4.35979*XX + 3.46057*XX**2+ 1.90878*XX**3<br>1 + 0.54456*XX**4+ 0.0608*XX**5<br>ZP(I)=-ZP(I)<br>572 CONTINUE<br>530 CONTINUE                                                                                                                   | 00000556<br>00000557<br>00000558<br>00000559                                     |
| 5        | <pre>ZP(I)= 1.04505 + 4.35979*XX + 3.46057*XX**2+ 1.90878*XX**3 1 + 0.54456*XX**4+ 0.0608*XX**5 ZP(I)=-ZP(I) 572 CONTINUE 50 CONTINUE 50 CONTINUE</pre>                                                                                                                                  | 00000557<br>00000558<br>00000559                                                 |
| 5        | 1 + 0.54456*XX**4+ 0.0608*XX**5<br>ZP(I)=-ZP(I)<br>572 CONTINUE<br>530 CONTINUE                                                                                                                                                                                                          | 00000558<br>00000559                                                             |
| 5        | ZP(I) = -ZP(I)<br>572 CONTINUE<br>530 CONTINUE                                                                                                                                                                                                                                           | 00000559                                                                         |
| 5        | 572 CONTINUE                                                                                                                                                                                                                                                                             |                                                                                  |
| 4        | 130 CONTINUE                                                                                                                                                                                                                                                                             | 00000560                                                                         |
|          |                                                                                                                                                                                                                                                                                          | 00000561                                                                         |
|          | $YI = 0 \bullet 0$                                                                                                                                                                                                                                                                       | 00000562                                                                         |
|          | YH=0.0                                                                                                                                                                                                                                                                                   | 00000563                                                                         |
|          | CALL VDIPLT(IFC, IN, N, ZP(1), TEMP(1), XL, XH, YL, YH, NXM,                                                                                                                                                                                                                             | 0000564                                                                          |
|          | 1 XNOTES, NYM, YNOTE, ISYMD)                                                                                                                                                                                                                                                             | 00000565                                                                         |
| 4        | 45 CONTINUE                                                                                                                                                                                                                                                                              | 00000566                                                                         |
| с        | OUTPUT. = 2 OR GREATER                                                                                                                                                                                                                                                                   | 00000567                                                                         |
| C        | REAL SPACE RESIDUAL OUTPUT                                                                                                                                                                                                                                                               | 0000568                                                                          |
| 37<br>37 | BACKTRANSFORM SOLUTION AND PREDICTION INTERVALS                                                                                                                                                                                                                                          | 00000569                                                                         |
| -        | MX=NPAM (KK)                                                                                                                                                                                                                                                                             | 00000571                                                                         |
|          | DO 441 $M=1 + L^{1}$                                                                                                                                                                                                                                                                     | 00000572                                                                         |
|          | GO TO(201,201,201,201,203),MX                                                                                                                                                                                                                                                            | 00000573                                                                         |
| 2        | 201 CY(M) = 10.0**CY(M)                                                                                                                                                                                                                                                                  | 00000574                                                                         |
|          | PYMAX'(M)=10.0**PYMAX(M)                                                                                                                                                                                                                                                                 | 00000575                                                                         |
| -        | PYMIN(M)=10.0**PYMIN(M)                                                                                                                                                                                                                                                                  | 00000576                                                                         |
|          | $CIMAX(M) = 10 \cdot 0 * * CIMAX(M)$                                                                                                                                                                                                                                                     | 0000577                                                                          |
| ٠        | CIMIN(M)=10.0**CIMIN(M)                                                                                                                                                                                                                                                                  | 0000578                                                                          |
|          | GO TO 205                                                                                                                                                                                                                                                                                | 00000579                                                                         |
| 2        | 203 CONTINUE                                                                                                                                                                                                                                                                             | 00000580                                                                         |
| С        | AVOID NEGATIVE TO A POWER DUMP                                                                                                                                                                                                                                                           | 00000581                                                                         |
|          | $IF(PYMIN(M) \bullet LE \bullet 0 \bullet 0) PYMIN(M) = 1 \bullet 0$                                                                                                                                                                                                                     | 00000582                                                                         |
|          | IF(PYMAX(M)+LE+ 0+0) PYMAX(M)=1+0                                                                                                                                                                                                                                                        | 0000583                                                                          |
|          | $IF(CIMAX(M) \bullet LE \bullet 0 \bullet 0) CIMAX(M) = 1 \bullet 0$                                                                                                                                                                                                                     | 00000584                                                                         |
|          | $IF(CIMIN(M) \bullet LE \bullet 0 \bullet 0) CIMIN(M) = 1 \bullet 0$                                                                                                                                                                                                                     | 00000585                                                                         |
|          |                                                                                                                                                                                                                                                                                          | +                                                                                |

|   | $IE(CY(M) \rightarrow E \rightarrow 0 \rightarrow 0) CY(M) = 1 \rightarrow 0$ | 00000586   |
|---|-------------------------------------------------------------------------------|------------|
|   | $CY(M) = CY(M) * (1 \cdot 0 / CBEST)$                                         | 00000587   |
|   | PYMAX(M) = PYMAX(M) * * (1.0/CBEST)                                           | 0000588    |
|   | $PYMIN(M) = PYMIN(M) * * (1 \cdot 0 / CBEST)$                                 | 00000589   |
|   | $CIMAX(M) = CIMAX(M) * (1 \cdot 0 / CBEST)$                                   | 00000590   |
|   | $CIMIN(M) = CIMIN(M) * * (1 \cdot 0 / CBEST)$                                 | 00000591   |
|   | 205 CONTINUE                                                                  | 00000592   |
|   | RIS(M) = RS(M+1) - CY(M)                                                      | 00000593   |
|   | $FRPPFR(M) = (RIS(M)/RS(M \cdot 1)) * 100 \cdot$                              | 00000594   |
|   | 441 CONTINUE                                                                  | 00000595   |
|   | C ORDER REAL SPACE RESIDUALS                                                  | 00000596   |
|   | $DO 425 I=1 \cdot L1$                                                         | 00000597   |
|   | TEMP(I)=0.0                                                                   | 00000598   |
|   | 425 TEMP(I)=ABS(ERRPER(I))                                                    | 00000599   |
|   | CALL AORDER (TEMP+LINEG, IPERM)                                               | 00000600   |
| 8 | DO 1203 I=1+L1                                                                | 00000601   |
|   | J=IPERM(1)                                                                    | 00000602   |
|   | TEMP(J)=I                                                                     | 00000603   |
|   | 1203 CONTINUE                                                                 | 00000604   |
|   | IF(IOUT+LT+2) GO TO 350                                                       | 00000605   |
|   | WRITE(6,414)                                                                  | 0000606    |
|   | WRITE(6,431)                                                                  | 0000607    |
|   | 431 FORMAT (* BACKTRANSFORMED RESIDUALS - REAL SPACE*/)                       | 00000608   |
|   | WRITE(6+416)                                                                  | 00000609   |
|   | WRITE(6,417)(I,RS(I,1),CY(I),RIS(I),ERRPER(I),TEMP(I),                        | 00000610   |
|   | 1 CIMIN(I), CIMAX(I), PYMIN(I), PYMAX(I), I=1,L1)                             | 00000611   |
|   | 350 CONTINUE                                                                  | 00000612   |
|   | GO TO 1                                                                       | 00000613   |
|   | 900 CONTINUE                                                                  | 00000614   |
|   | C CALL CALPLT ROUTINE ONLY WHEN PLOTTING                                      | 00000615   |
|   | IF(IOUT •GE•3) CALL CALPLT(0,0,999)                                           | 00000616   |
|   | STCP                                                                          | 00000617   |
|   | END                                                                           |            |
| ~ | SUBROUTINE AORDER (AA+N+IPERM)                                                | 00000610   |
| ~ |                                                                               | · <b>T</b> |

|    | C      | THIS SUBROUTINE ORDERS VALUES IN AA AND STORES ORDER IN IPERM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00000619  |
|----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    |        | IN IS NUMBER OF VALUES IN AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000621  |
|    |        | IPERM IS ORDERED WITH RESPECT TO ECCATION OF VALUES IN SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000000   |
|    |        | IPEDM(N) HAS LOCATION OF LARGEST VALUE IN AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000623  |
|    |        | IPERMIN HAS EVENTION OF EAROLOF VALUE IN SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00000624  |
|    | C<br>c | IF N IS NEGATIVE IPERM IS ORDERED BY EDGATION OF EAROEST TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00000625  |
|    | C      | SMALLEST VALUES IN AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00000626  |
|    | C      | ARRAY AA IS NUT CHANGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000627  |
|    |        | DIMENSION AA(I), IPERM(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00000628  |
|    |        | LOGICAL SWITCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00000629  |
|    |        | NABS = IABS(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00000629  |
|    | 100    | DU 100 I=I+NADS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000000531 |
|    | 100    | IPERM(I) = I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000632  |
|    | 000    | IF ( NADS (LI)) REFURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00000633  |
|    | 200    | SWITCH = •FALSE•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000634  |
|    |        | DUBUU I- ZINADS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00000000  |
|    |        | I = IPERM(I = 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000636  |
| 39 |        | JJ = IPERM(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00000637  |
|    |        | 1F( NOLID US GO TO 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00000000  |
|    | 200    | IF (AA(II) • LE • AA(55)) 60 (0 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000000639 |
|    | 300    | I[EMP=IPERM(I=1)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000839  |
|    |        | IPERM(I=I) = IPERM(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00000640  |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00000041  |
|    |        | SWIICH = •IRVE•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00000642  |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00000643  |
|    | 400    | $\frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) \right) = \left( \frac{1}{2} \right) $ | 000000645 |
|    | 500    | CUNTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00000045  |
|    | 000    | DETUDN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00000647  |
| •  | 900    | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00000047  |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00000648  |
|    | ~      | SUBROUTINE LM (1+RS+F+LI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00000049  |
|    |        | CONVERTS TIMETSTRESSTAND TEMPERATURE TO FORMAT REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000651  |
|    | C      | FUR LINEAR SULUTION OF LARSON-MILLER EXPRESSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10000001  |
| 1  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •         |
|    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |

.

116

.

|   |   | C. | SOLUTION ALLOWS FIFTH ORDER EXPANSION OF LOG STRESS           | 00000652   |
|---|---|----|---------------------------------------------------------------|------------|
|   |   | C  | Y = B0 + B1(X1) + B2(X2) B6(X6)                               | 00000653   |
|   |   | С  | WHERE Y = LOG(RUPTURE TIME)                                   | 00000654   |
|   |   | С  | S = APPLIED STRESS IN PSI                                     | COOO0655   |
|   |   | С  | T = TEST TEMPERATURE IN DEGREES F                             | 00000656   |
|   |   | С  | X1 = 1/(T+460)                                                | 00000657   |
|   |   | С  | X2 = LOG(S)/(T+460) = S/TK                                    | 00000658   |
|   |   | С  | X3= S**2/TK                                                   | 00000659   |
|   |   | С  | X4= S**3/TK                                                   | 00000660   |
|   |   | С  | X5= S**4/TK                                                   | 00000661   |
|   |   | С  | X6= S**5/TK                                                   | 00000662   |
|   |   | С  | C.BO-B6 = CONSTANTS DETERMINED BY LINEAR LEAST SQUARES METHOD | 00000663   |
|   |   | С  | BO= OPTIMUM L-M CONSTANT (C)                                  | 00000664   |
|   | • |    | DIMENSION Y(200), RS(200,5), F(200,10)                        | 00000665   |
|   |   |    | DO 10 I=1+L1                                                  | 00000666   |
|   | 4 |    | Y(I) = ALOG10(RS(I+1))                                        | 00000667   |
|   | 0 |    | S = ALOG10(RS(1+2))                                           | 00000668   |
|   |   |    | T = (RS(1+3)+460+0)                                           | 00000669   |
|   |   |    | $F(I_{\bullet}I) = 1_{\bullet}O/T$                            | 00000670   |
|   |   |    | F(I,2) = S/T                                                  | 00000671   |
|   |   |    | F(1,3) = S**2/T                                               | 00000672   |
|   |   |    | F(I,4) = S**3/T                                               | 00000673   |
|   |   |    | F(1,5) = S**4/T                                               | 00000674   |
|   | • |    | F(I,6) = S**5/T                                               | 00000675 / |
| • |   |    | 10 CONTINUE                                                   | 00000676   |
|   |   |    | RETURN                                                        | 00000677   |
|   |   |    | END                                                           | 00000678   |
|   |   |    | SUBROUTINE OSD(Y,RS,F,L1)                                     | 00000679   |
|   |   | с  | CONVERTS TIME, STRESS, AND TEMPERATURE TO FORMAT REQUIRED     | 00000680   |
|   |   | с  | FOR LINEAR SOLUTION OF ORR-SHERBY-DORN EXPRESSION             | 00000681   |
|   |   | С  | SOLUTION ALLOWS FIFTH ORDER EXPANSION OF. LN STRESS           | 00000682   |
|   |   | С  | WHERE Y = LOG(TIME TO CREEP EVENT)                            |            |
|   |   | c  | S = APPLIED STRESS IN PSI                                     | 00000684   |
|   |   |    |                                                               |            |

117

+

|       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000685  |
|-------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|       | С | T = TEST TEMP IN DEGREES F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0000686  |
|       | Ċ | X1 = 1/TK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000687  |
|       | C | X2=LN(S) = SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000688  |
|       | C | X3= SL**2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000689  |
|       | С | X4= SL**3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000690  |
|       | С | X5= SL**4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000691 |
|       | С | X6= SL**5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000692 |
|       | С | BO-B6= CONSTANTS, DETERMINED BY LINEAR LEAST SQUARES METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000693  |
|       | С | B1= DELH/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00000694 |
|       | С | DELH= APPARENT ACTIVATION ENERGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00000000 |
|       | C | R= UNIVERSAL GAS CONSTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000696  |
|       |   | DIMENSION Y(200), RS(200,5), F(200,10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00000697 |
|       |   | DO 10 I=1+L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000698 |
|       |   | Y(I) = ALOGIO(RS(I,I))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000699  |
|       |   | S = ALOG10(RS(1,2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000700 |
| 4     |   | T = (5 + 79 + ) * (RS(1 + 3) - 32 + ) + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + 273 + | 00000701 |
| сці с |   | F(I,1) = 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00000702 |
|       |   | $F(1 \cdot 2) = S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000703 |
|       |   | F(1,3) = 5 * * 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000704  |
|       |   | $F(1 \cdot 4) = S \cdot * \cdot 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000705 |
|       |   | F(1,5) = 5**4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000706  |
|       |   | F(1,6) = 5**5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000707  |
|       |   | 10 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000708  |
|       |   | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00000709 |
|       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00000710 |
|       | _ | SUBROUTINE MS(Y)RS)F(L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00000711 |
|       | С | CONVERTS TIME STRESS AND TEMPERATORE TO FORMAN RECOVIDED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00000712 |
|       | С | FOR LINEAR SOLUTION OF MANSON-SOCCOP EXTRESPON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000713 |
|       | C | SOLUTION ALLOWS FIFTH ORDER EXPANSION OF EUG STREED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000714 |
|       | С | BI = OPTIMOM M=3 CONSTRUCT(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00000715 |
|       |   | DIMENSION Y(200) RS(200) DIA T(200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000716 |
|       |   | DO I 0 I=I+LI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00000717 |
|       |   | Y(1) = ALUGIO(RS(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +        |

•

| с с с с с с с с с с | 10 | <pre>S= ALOG10(RS(I,2))<br/>T= RS(I+3)<br/>F(I,1)=T<br/>F(I,2)= S<br/>F(I,3)= S**2<br/>F(I,4)= S**3<br/>F(I,5)= S**4<br/>F(I,6)= S**5<br/>CONTINUE<br/>RETURN<br/>END<br/>SUBROUTINE MH(Y+RS+F+L1+CMH)<br/>FOR NONLINEAR SOLUTION OF MANSON-HAFERD EXPRESSION<br/>CMH = TEMPERATURE OFFSET (TA)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000718<br>00000720<br>00000721<br>00000723<br>00000723<br>00000724<br>00000725<br>00000725<br>00000726<br>00000727<br>00000728<br>00000729<br>00000730<br>00000731<br>00000732<br>00000733<br>00000735<br>00000735<br>00000736<br>00000737<br>00000738<br>00000739<br>00000740<br>00000740<br>00000742 |
|---------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| с<br>С              |    | X4= DT*S**3<br>X5= DT*S**4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00000735                                                                                                                                                                                                                                                                                                 |
| С                   |    | X6= DT*S**5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00000738                                                                                                                                                                                                                                                                                                 |
| С                   | ,  | SOLUTION IS ITERATED TO FIND CMH WHICH PRODUCES BEST FIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00000739                                                                                                                                                                                                                                                                                                 |
|                     |    | DIMENSION Y(200), RS(200,5), P(200,10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000740                                                                                                                                                                                                                                                                                                 |
|                     |    | $\frac{1}{2} \frac{1}{2} \frac{1}$ | 00000741                                                                                                                                                                                                                                                                                                 |
|                     |    | $S = \Delta \log \log (RS(1+2))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00000742                                                                                                                                                                                                                                                                                                 |
|                     |    | DT = RS(1,3) - CMH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00000743                                                                                                                                                                                                                                                                                                 |
|                     |    | F(I,I) = DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00000744                                                                                                                                                                                                                                                                                                 |
|                     |    | F(I,2) = DT*S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00000745                                                                                                                                                                                                                                                                                                 |
|                     |    | F(1,3)= DT*S**2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000746                                                                                                                                                                                                                                                                                                 |
|                     |    | F(1+4)= DT*S**3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000747                                                                                                                                                                                                                                                                                                 |
|                     |    | F(I+5)= DT*S**4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000748                                                                                                                                                                                                                                                                                                 |
|                     |    | F(1+6)= DT*S**5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00000749                                                                                                                                                                                                                                                                                                 |
| -                   | 10 | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +                                                                                                                                                                                                                                                                                                        |
|                     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          |

42

•

. .

. 119

| , |                                                                 | •          |
|---|-----------------------------------------------------------------|------------|
|   |                                                                 | 00000751   |
|   |                                                                 | 00000752   |
|   | SUBROUTINE ITER(C, BC,X,PBX,IFG,ICT, DEL, DELMIN, LIM,LAST)     | 00000753   |
| c | ITERATES CONSTANT (C) TO MINIMIZE VALUE (X)                     | 00000754   |
| ĉ | BC = VALUE OF CONSTANT ASSOCIATED WITH LOWEST (BEST) X VALUE    | 00000755   |
|   | DEV- REST PREVIOUS VALUE OF X                                   | 00000756   |
| ć | JEG TELAG TO CONTROL INCREASING OR DECREASING C FOR NEXT ITERAT | ION0000757 |
|   | DEC -CONTROLS SIZE OF C INCREMENT                               | 00000758   |
|   | LOT TALLOWS O TO INCREMENT BEYOND BC BEFORE CHANGING            |            |
|   | INCOMMENT SIZE. ITERATION STOPS WHEN DEL .LE. DELMIN            |            |
| C | INCREMENT SIZET FRENTION STOLD WHEN DED TEMPET                  | 00000761   |
| C | LIM = COURTER FOR TTERATIONS                                    | 00000762   |
| С | LASTEEND TTERATION FLAG                                         | 00000763   |
| _ |                                                                 | 00000764   |
| С | INCREASING C                                                    | 00000765   |
|   | 5 LIM = LIM+1                                                   | 00000766   |
| С | NEXT CARD PREVENTS NEGATIVE X PROMIBEING DEDITA VALOU           | 00000767   |
|   |                                                                 | · 00000768 |
|   | IF (PBX +G1 + X) BC=C                                           | 00000769   |
|   | IF (PBX •GI• X) PBX=X                                           | 00000770   |
|   | IF (PBX •EQ• X) ICT=U                                           | 0000771    |
|   | $IF(X \circ GT \circ PBX) = ICI=ICI+I$                          | 00000772   |
|   | IF (DEL •LE•DELMIN) GO TO 40                                    | 00000773   |
| С | IF(ICT+LT+2) GO TO IO                                           | 00000774   |
|   | IF( ICT+LT+10) GO TO 10                                         | 00000775   |
|   | DEL = 0.3*DEL                                                   | 00000776   |
|   | ICT=0                                                           | 00000777   |
| С |                                                                 | 00000778   |
|   |                                                                 | 00000779   |
|   |                                                                 | 00000780   |
|   |                                                                 | 00000781   |
|   |                                                                 | 00000782   |
|   | GO TO SU                                                        | 00000783   |
| С | DECREASING CONSTANT                                             | +          |

,

120

÷

|          | 30   | LIM =LIM+1                                                    | 0000784  |
|----------|------|---------------------------------------------------------------|----------|
|          | С    | NEXT CARD PREVENTS NEGATIVE X FROM BEING BEST X VALUE         | 00000785 |
|          |      | IF(X.LE. 0.0) GO TO 35                                        | 0000787  |
|          |      | IF(PBX •GT• X) BC=C                                           | 00000787 |
|          |      | IF(PBX •GT• X) PBX=X                                          | 00000788 |
|          |      | IF (PBX +EQ+ X) ICT=0                                         | 00000789 |
|          |      | IF(X •GT• PBX) ICT=ICT+1                                      | 00000790 |
|          |      | IF(DEL.LE.DELMIN) GO TO 40                                    | 00000791 |
|          |      | IF( ICT+LT+10) GO TO 35                                       | 00000792 |
|          |      | DEL=0.3*DEL                                                   | 00000793 |
|          |      | ICT=0                                                         | 00000794 |
|          |      | C=BC-5.0*DEL                                                  | 00000795 |
|          |      | IFG=0                                                         | 00000796 |
|          | 35   | C=C-DEL                                                       | 00000797 |
| •        |      | GO TO 50                                                      | 00000798 |
|          | 40   |                                                               | 00000799 |
|          | 50   | CONTINUE                                                      | 00000800 |
| 4        |      | RETURN                                                        | 00000801 |
| -+       | -    | END                                                           | 00000802 |
|          | ·e-• | SUBROUTINE RAB(Y,RS,F,L1,A)                                   | 00000803 |
| ·        | c,   | FOR NONLINEAR SOLUTION OF RABOTNOV EXPRESSION                 | 00000804 |
|          | c    | SOLUTION ALLOWS FIFTH ORDER EXPANSION OF TEMPERATURE FUNCTION | 00000805 |
|          | č    | WHERE Y= RUPTURE TIME **A                                     | 0000806  |
|          | Č.   | T= TEST TEMPERATURE IN DEGREES F                              | 00000807 |
| -        | č    | $x_1 = 1/ST$                                                  | 00000808 |
|          | č    | A= ITERATED CONSTANT                                          | 00000809 |
| <u>,</u> | Č    | S= STRESS IN PSI                                              | 00000810 |
|          | Ŭ    | DIMENSION Y(200), RS(200,5), F(200,10)                        | 00000811 |
|          |      |                                                               | 00000812 |
|          |      | $Y(1) = (RS(1 \cdot 1)) * * A$                                | 00000813 |
|          |      | $S = RS(1 \cdot 2)$                                           | 00000814 |
|          |      | $T = RS(1 \cdot 3)$                                           | 00000815 |
|          |      | F(1,1) = 1,0/(S*T)                                            | 00000816 |
|          |      |                                                               | +        |

|     |                                                      | 00000817 |
|-----|------------------------------------------------------|----------|
|     | $F(1,3) = 1 \cdot ((S*T**3))$                        | 00000818 |
|     | $F(1, 0) = 1 \cdot ((S + T + 2 \cdot 0))$            | 00000819 |
|     |                                                      | 0000820  |
|     |                                                      | 00000821 |
|     |                                                      | 00000822 |
| 10  |                                                      | 00000823 |
|     | REIURN                                               | 00000824 |
|     |                                                      | 0000825  |
|     | SUBROUTINE MINMAX (CMIN, CMAX, CRAIN, CMEAN, CONT,   | 00000826 |
|     | CALCULATES MINIMUM, MAXIMUM, RANGE, AND MEAN OF COTT | 0000827  |
|     | WHERE N= NUMBER OF OBSERVATIONS                      | 00000828 |
|     | DIMENSION C(I)                                       | 00000829 |
|     | CMAX=-1.0E+100                                       | 00000830 |
|     | CMIN=1+0E+100                                        | 00000831 |
|     | CSUM=0.0                                             | 00000832 |
|     | DO 5. I=1•N                                          | 00000833 |
|     | CSUM=CSUM+C(I)                                       | 0000033  |
|     | , IF( C(I)-CMIN) 2.3.3                               | 00000834 |
| . 2 | 2 CMIN=C(I)                                          | 00000835 |
|     | 3 IF( C(I)-CMAX)5+5+4                                | 00000836 |
| 4   | 4 CMAX=C(I)                                          | 00000837 |
| 4   | 5 CONTINUE ···                                       | 0000838  |
|     | CMEAN=CSUM/N                                         | 00000839 |
|     | CRAN=CMAX-CMIN                                       | 00000840 |
|     | 7 CONTINUE                                           | 00000841 |
|     | RETURN <sup>1</sup> - 1                              | 00000842 |
|     | END                                                  | 00000843 |
|     | •                                                    | +        |

54

c c

# APPENDIX B LANGLEY RESEARCH CENTER SYSTEM SUBROUTINES

•

SUBROUTINE MATINV

| LANGUAGE : | FORTRAN                                           | ·<br>•                                                                                                                                                                                                                                                           |
|------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PURPOSE:   | To invert a re<br>equation AX =<br>and by an opti | al square matrix A, solve the matrix<br>B, where B is a matrix of constant vectors,<br>on evaluate the determinant.                                                                                                                                              |
| USE:       | CALL MATINV(MA                                    | X,N,A,M,B,IOP,DETERM,ISCALE,IPIVOT,IWK)                                                                                                                                                                                                                          |
|            | MAX                                               | An input integer specifying the maximum<br>order of A as stated in the dimension<br>statement of the calling program.                                                                                                                                            |
|            | N                                                 | An input integer specifying the order of A; $l \leq N \leq MAX$ .                                                                                                                                                                                                |
|            | A                                                 | An input/output two-dimensional array of the coefficients. On return to the calling program, $A^{-1}$ is stored in A. A must be dimensioned in the calling program with first dimension MAX and second dimension at least N. The original A matrix is destroyed. |
|            | М                                                 | An input integer specifying the number of<br>column vectors in B. $M = 0$ signals that<br>the subroutine is used solely for inversion;<br>however, in the call statement an entry                                                                                |

corresponding to B must be present.

An input/output two-dimensional array of the constant vectors. On return to the calling program, the solution X is stored in B. B should have its first dimension MAX and its second dimension at least M. The original B matrix is destroyed.

В

ISCALE

IOP Compute the determinant option. IOP = 0, Compute the determinant. IOP = 1, Do not compute the determinant.

DETERM For IOP = 0, in conjunction with ISCALE, represents the value of the determinant of • A as follows:

DET(A) = (DETERM)10<sup>100</sup>(ISCALE)

For IOP=1, the determinant is set to 1. The determinant is set to zero for a singular matrix, for both IOP = 0 or 1 option. Upon return from MATINV, DETERM should be tested or written out in the calling program.

(See Other Coding Information)

For IOP = 0, the scale factor is computed by the subroutine to avoid overflow or underflow in the computation of the quantity, DETERM. For IOP = 1, ISCALE may be a dummy argument.

. .

124

IPIVÓT ,

A one-dimensional array used by the subprogram to store pivotal information. It should be dimensioned at least N. In general the user does not need to make use of this array.

IWK

An integer array of temporary storage, dimensioned at least 2 x N.

METHOD: Jordan's method is used to reduce a matrix A to the identity matrix I through a succession of elementary transformations:  $l_n, l_{n-1}, \dots, l_1$ . A = I. If these transformations are simultaneously applied to I and to a matrix B of constant vectors, the results are  $A^{-1}$  and X where AX = B. Each transformation is selected so that the largest element is used in the pivotal position.

ACCURACY: Total pivotal strategy is used to minimize the rounding errors; however, the accuracy of the final results depends upon how well-conditioned the original matrix is. A return with DETERM  $\neq$  0 does not guarantee accuracy in the solutions or inverse.

REFERENCE: Fox, L., An Introduction to Numerical Linear Algebra. Oxford University Press, New York, 1965.

STORAGE: 516<sub>8</sub> locations

## SUBROUTINE DDIPLT

•

•

| LANGUAGE: | FORTRAN                                                                                |                                                                                                                                                                                                                                                                     |
|-----------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PURPOSE:  | To provide<br>routine wa<br>the DD80 p<br>to use on<br><u>be used on</u><br>plays shou | a one-call method of preparing plotting. This<br>s originally designed for recording plots on<br>lotter only; however, it has been redesigned<br>any plotter. This one-call routine should not<br>any new jobs; new jobs requiring one-call dis-<br>ld use INFOPLT. |
|           | These disp<br>figures.                                                                 | lays will not meet specifications for final                                                                                                                                                                                                                         |
| USE:      | CALL DDIPI                                                                             | T(IEC, IN, N, XDATA, YDATA, XMIN, XMAX, YMIN, YMAX,<br>NXM, XM, NYM, YM, ISYMD)                                                                                                                                                                                     |
|           | where                                                                                  | is the code for terminating the frame                                                                                                                                                                                                                               |
|           | •                                                                                      | 0 frame incomplete<br>1 frame complete with this data. The frame<br>change is built in and the plotter will be<br>spaced for the next frame.                                                                                                                        |
|           | IN                                                                                     | is a two-word array. Each word contains 10<br>Hollerith characters for plot identification.                                                                                                                                                                         |
|           | N;                                                                                     | is the number of points to be plotted.                                                                                                                                                                                                                              |
|           | XDATA                                                                                  | is the name of the array containing the floating point values of X to be plotted.                                                                                                                                                                                   |
|           | YDATA                                                                                  | is the name of the array containing the floating point values of Y to be plotted.                                                                                                                                                                                   |
|           | XMIN                                                                                   | is the minimum value for X.                                                                                                                                                                                                                                         |
|           | XMAX                                                                                   | is the maximum value for X.                                                                                                                                                                                                                                         |
|           | YMIN                                                                                   | is the minimum value for Y.                                                                                                                                                                                                                                         |

-

.

YMAX is the maximum for Y.

The routine checks for the first call only to determine if either (XMAX-XMIN) or (YMAX-YMIN) is equal to zero. When either is zero, the routine will scan the X and/or Y array to determine the limits. For multiple curves per display, the limits must be specified on the first call to include all curves since the limits from the first call will be used for all curves.

If any data falls outside the limits, it will be eliminated; but a count will be kept of all points dropped and written at top of the plot.

Minimum/maximum values are next checked to see that the range is not zero. When it is, the specified values are adjusted by 10 percent of the minimum or set equal to ±1.0 in cases where minimum and maximum are equal to zero.

| NXM | is the number of central memory words in the  |
|-----|-----------------------------------------------|
|     | message for the horizontal annotation. Maxi-  |
|     | mum number of words is 13; each word contains |
|     | 10 characters. If NXM and NYM are both neg-   |
|     | ative, tic marks will be generated instead of |
|     | grid.                                         |

- XM is the name of array containing the label for the horizontal annotation.
- NYM is the number of words in the message for the vertical annotation. Maximum number of words is 13.
- YM 'is the name of array containing the label for the vertical annotation.
- ISYMD is the integer code specifying the symbol or mode to be used for plotting the data values.

| ŀ | Circle         | 0          | 8   | Fan          | Q           |
|---|----------------|------------|-----|--------------|-------------|
| 2 | Square         | Õ          | 9   | Long diamond | $\diamond$  |
| 3 | Diamond        | $\diamond$ | 10  | House        | $\triangle$ |
| 4 | Triangle       | Δ          | 11  | Circled dot  | $\odot$     |
| 5 | Right Triangle | $\nabla$   | 1.2 | Х            |             |
| 6 | Quadrant       | Δ          | 13  | Dot          |             |
| 7 | Dog House      | $\square$  | 14  | Vectors      |             |

| RESTRICTIONS: | The following arrays must be spe | cified in | a DIMENSIC | N         |
|---------------|----------------------------------|-----------|------------|-----------|
|               | statement of the calling program | 1: IN(2), | XDATA(N),  | YDATA(N), |
|               | XM(NXM), YM(NYM).                |           |            |           |

Each curve on a display requires a separate entry to the routine. X and Y coordinates for plotting must be in separate arrays of single precision, floating point data. Frame control is specified by the IEC code in the calling sequence for the routine.

METHOD: Data are scaled and plotted; axes are drawn and annotated, and grid lines or tic marks are generated.

> Minimum/maximum values are adjusted to provide a range when all values of an array are equal. Adjustment is also made where needed to improve the appearance of the plot.

ACCURACY: Approximately three significant figures may be read in either direction.

REFERENCES:

STORAGE: 3021<sub>A</sub> locations

SUBPROGRAMS USED: CALPLT, NOTATE, NUMBER, PNTPLT, NFRAME

OTHER CODING A call to PSEUDO (1.4.1) must precede the first call INFORMATION: A call to PSEUDO (1.4.1) must precede the first call to DDIPLT. An entry called VDIPLT with the same parameters as DDIPLT is available which packs 8 6" x 6" plots per frame for the Varian postprocessor.

#### SUBROUTINE PSEUDO

#### LANGUAGE: COMPASS

PURPOSE: To create and write an appropriately named Plot Vector File. Through linkages set up by an initial call to PSEUDO, all subsequent graphics data generated by the user will be routed through one of the PSEUDO entry points and written on the Plot Vector File. The PSEUDO processor is designed for use with the frame dependent postprocessors described in Section 1.3, Volume IV, of the Computer Programing Manual.

use:

### CALL PSEUDO

•

or

CALL PSEUDO(FN)

file name left-justified with zero fill. Default file name is SAVPLT.

Example:

ŦΝ

### CALL PSEUDO

This will establish a Plot Vector File named SAVPLT.

CALL PSEUDO(6LMYFILE)

This will establish a Plot Vector File named MYFILE.

- NOTE: The Plot Vector File (or Files) will usually be written to disk (as opposed to tape) and may be postprocessed following user program termination via appropriate specification of one or more PLOT control cards (see Section 1.3, Volume IV, Computer Programing Manual).
- RESTRICTIONS: (1) An initializing call to PSEUDO (with or without a file name argument) must be made prior to any calls to CALPLT or any other graphics output routine.

- (2) Every Plot Vector File should be terminated with a 999 pen code, CALL CALPLT(0.0,0.0,999). The transmission of the 999 code will cause an EOF write on the Plot Vector File, and the file will temporarily be closed. Thus, any given Plot Vector File will contain only one 999 pen code and/or one EOF.
- (3) To continue plotting execution following transmission of a 999 code to a current Plot Vector File, the user program must call the PSEUDO processor to create new Plot Vector File (i.e., CALL PSEUDO(6LMYFIL2)).

METHOD: In addition to entry PSEUDO, this processor contains two other entry points, namely PLT9999 and PLT9998. An initializing call to PSEUDO will set PLT9999 into the processor switching mechanism (PLOTSW). Subsequent plot data generation will then be routed via CALPLT, PLOTSW, and PLT9999 and written on the Plot Vector File. The entry PLT9998 is used to record special purpose data from routines NFRAME and PLTSTOP.

ACCURACY:

REFERENCES: See Section 1.3, Volume IV, Computer Programing Manual.

STORAGE: 2155<sub>8</sub> locations total for direct subprograms

SUBPROGRAMS USED: NUMARG, PLOTSW

### APPENDIX C

## DEVELOPMENT OF PARAMETRIC MODEL EQUATIONS

This appendix presents the development of the parametric model equations used in the computer program PARAM. The Larson-Miller, Orr-Sherby-Dorn, Manson-Succop, and Manson-Haferd expressions are familiar time-temperature parameters. These parameters assume that the value of the parameter (a function of stress) is a constant for each value of the temperature compensated time parameter. The Rabotnov parameter (refs. 9 and 10) is a time-stress parameter which assumes that the value of the parameter (a function of temperature) is a constant for each value of the time compensated stress parameter. Time to a given creep event and a polynomial in the parameter function (stress or temperature) were respectively the dependent and independent variables all regression model equation forms used in PARAM. The following presents the development of these five equation forms:

Larson-Miller Parameter

 $P = T_{R} (\log t + C) = f (\sigma)$   $T_{R}(\log t + C) = b_{1} + b_{2} \log \sigma + b_{3}(\log \sigma)^{2} + b_{4}(\log \sigma)^{3} + b_{5}(\log \sigma)^{4} + b_{6}(\log \sigma)^{5}$ assuming  $b_{o} = -C$  $\log t = b_{o} + b_{1}/T_{R} + b_{2} \log \sigma/T_{R} + b_{3} (\log \sigma)^{2}/T_{R} + b_{4} (\log \sigma)^{3}/T_{R} + b_{5} (\log \sigma)^{4}/T_{R} + b_{6} (\log \sigma)^{5}/T_{R}$ 

where P = the Larson-Miller parameter  $T_{R} = temperature, ^{O}R$ t = time to a particular creep event C = Larson-Miller constant  $\sigma$  = applied stress  $b_0 - - b_6 = coefficients$  estimated by method of least squares. Orr-Sherby-Dorn Parameter  $P = t \exp(-\Delta H/RT_{K}) = g(\sigma)$  $\log t - K (\Delta H/RT_K) = f (\log \sigma)$ assuming  $b_1 = K\Delta H/R$  $\log t = b_0 + b_1/T_K + b_2 \log \sigma + b_3 (\log \sigma)^2 + b_4 (\log \sigma)^3$  $+ b_5 (\log \sigma)^4 + b_6 (\log \sigma)^5$ where P = Orr-Sherby-Dorn parameter t = time to a particular creep event  $\Delta H$  = apparent activation energy R = universal gas constant  $T_{K}$  = temperature, Kelvin  $\sigma$  = applied stress  $b_0 - b_6 = coefficients$  estimated by method of least squares. Manson-Succop Parameter  $P = \log t + CT_F = f(\sigma)$  $\log t = -C T_F + f (\sigma)$ assuming  $b_1 = -C$ 

$$\begin{split} \log t &= b_0 + b_1 T_F + b_2 \log \sigma + b_3 (\log \sigma)^2 + b_4 (\log \sigma)^3 \\ &+ b_5 (\log \sigma)^4 + b_6 (\log \sigma)^5 \end{split}$$
 where P = Manson-Succop parameter  
t = time to a particular creep event  
C = Manson-Succop constant  
T\_F = temperature, <sup>O</sup>F  
 $\sigma$  = applied stress  
 $b_0 - b_6$  = coefficients estimated by method of  
least squares.

## Manson-Haferd Parameter

•

•

$$\begin{split} P &= (\log t - \log t_{a})/(T_{F} - T_{A}) = f(\sigma) \\ \log t &= \log t_{a} + (T_{F} - T_{A}) f(\sigma) \\ \text{assuming } b_{o} &= \log t_{a} \\ D &= T_{F} - T_{A} \\ \log t &= b_{o} + b_{1}D + b_{2} D \log \sigma + b_{3} D (\log \sigma)^{2} \\ &+ b_{4} D (\log \sigma)^{3} + b_{5} D (\log \sigma)^{4} + b_{6} D (\log \sigma)^{5} \\ \text{where } P &= \text{Manson-Haferd parameter} \\ t &= time to a particular creep event \\ t_{a} &= offset time \\ T_{F} temperature, ^{O}F \\ T_{A} &= offset temperature, ^{O}F \\ \sigma &= applied stress \\ b_{o} &= b_{6} &= coefficients estimated by method of \\ &= least squares which iteratively searched values \\ &= of T_{A} to determine best fit. \end{split}$$

Rabotnov Parameter

$$\begin{split} \mathbf{P} &= \sigma(\mathbf{1} + \mathbf{A}\mathbf{t}^{\alpha}) = \mathbf{f}(\mathbf{T}) \\ \mathbf{t}^{\alpha} &= -\mathbf{1}/\mathbf{A} + \mathbf{1}/\mathbf{A}\sigma \ [\mathbf{C}_{\mathbf{1}} + \mathbf{C}_{2}/\mathbf{T} + \mathbf{C}_{3}/\mathbf{T}^{2} + \mathbf{C}_{4}/\mathbf{T}^{3} + \mathbf{C}_{5}/\mathbf{T}^{4} \\ &+ \mathbf{C}_{5}/\mathbf{T}^{5} + \mathbf{C}_{6}/\mathbf{T}^{6}] \\ \text{assuming } \mathbf{b}_{0} &= -\mathbf{1}/\mathbf{A} \\ &\mathbf{b}_{\mathbf{i}} &= \mathbf{C}_{\mathbf{i}}/\mathbf{A} \\ \mathbf{t}^{\alpha} &= \mathbf{b}_{0} + \mathbf{b}_{\mathbf{1}}/\sigma\mathbf{T} + \mathbf{b}_{2}/\sigma\mathbf{T}^{2} + \mathbf{b}_{3}/\sigma\mathbf{T}^{3} + \mathbf{b}_{4}/\sigma\mathbf{T}^{4} + \mathbf{b}_{5}/\sigma\mathbf{T}^{5} \\ &+ \mathbf{b}_{6}/\sigma\mathbf{T}^{6} \\ \text{where } \mathbf{P} &= \text{Rabotnov parameter} \\ \sigma &= \text{applied stress} \\ \mathbf{A}, \alpha &= \text{constants} \\ \mathbf{t} &= \text{time to a particular creep event} \\ \mathbf{T} &= \text{temperature, } ^{O}\mathbf{F} \\ \mathbf{b}_{0} - \mathbf{b}_{6} &= \text{coefficients estimated by method of least} \\ &= \text{squares which iteratively searched values of } \alpha \\ &= \text{to determine best fit.} \end{split}$$

# REFERENCES ,

- Larson, F. R.; and Miller, J.: A Time-Temperature Relationship for Rupture and Creep Stresses. Trans. ASME, vol. 74, 1952, pg. 765.
- Orr, R. L.; Sherby, O.D.; and Dorn, J.E.: Correlations of Rutpure Data for Metals at Elevated Temperatures. Trans. ASM, vol. 46, 1954, pg. 113.
- Manson, S.S.; and Haferd, A.M.: A Linear Time-Temperature Relation for Extrapolation of Creep and Rupture Stress Data. NACA TN-2890, 1953.
- 4. Goldhoff, R. M.; and Hahn, G. J.: Correlation and Extrapolation of Creep-Rupture Data of Several Steels and Superalloys Using Time-Temperature Parameters. ASM publication D8-100, American Society for Metals, 1968, pg. 199.
- 5. Goldhoff, R. M.: Towards the Standardization of Time-Temperature Parameter Usage in Elevated Temperature Data Analysis. J. Testing and Evaluation, ASTM, vol. 2, no. 5, Sept. 1974, pp. 387-424.
- Conway, J. B.: Stress-Rupture Parameters: Origin,
   Calculation, and Use. Gordon and Breck, 1969.
- 7. Draper, N.R.; and Smith, H.: Applied Regression Analysis. John Wiley and Sons, Inc., 1966.
- Daniel, C.; and Wood, F. S.: Fitting Equations to Data. John Wiley and Sons, Inc., 1971.
- 9. Penny, R.K.; and Marriott, D. L.: Design for Creep. McGraw-Hill Book Co. (UK), Ltd. (Maidenhead, Berkshire, England), 1971.
- 10. Rabotnov, Yu. N.: Creep Problems in Structural Members. North Holland Publishing Co. (Amsterdam), 1969.
- 11. Hahn, G. J.: Statistical Intervals for a Normal Population. GE Report No. 69-C-382, General Electric Research and Development Center, Schenectady, New
  - York, Nov. 1969.

| 1           | 0                | -5000 | •0            |     | 0.2  |       |
|-------------|------------------|-------|---------------|-----|------|-------|
| 1           | 4                |       |               | •   |      |       |
| 2           | 4                | •     |               |     | -    |       |
| 3           | 4                |       |               |     |      |       |
| . 4         | 4                |       |               |     |      |       |
| 5           | 3                |       |               |     |      |       |
|             | g                | 316   | s st          |     | SS S | STEEL |
| 3142        | .90              | 1     | 175.          | 00  |      | 25.00 |
| 74          | .60              | 12    | 200.          | 00  |      | 30.00 |
| 213         | •00              | . 12  | 200•          | .00 |      | 28.00 |
| 656         | •20              | 12    | 200+          | 00  |      | 25.00 |
| 3476        | •10              | 12    | 200•          | 00  |      | 22.00 |
| 6825        | •30              | 12    | 200•          | 00  |      | 20.00 |
| 10076       | •50              | 12    | 200•          | 00  |      | 18.50 |
| 15790       | <b>.</b> 80      | 12    | 200•          | 00  |      | 17.00 |
| 290         | •90              | 12    | 225•          | 00  |      | 25.00 |
| 186         | •50              | 12    | 250•          | 00  |      | 25.00 |
| 81          | .50              | 12    | 275•          | 00  |      | 25.00 |
| 36          | • 50             | 1.    | 300•<br>200   | 00  |      | 23.00 |
| 104         | • 10             | 1.    |               | 00  |      | 20.00 |
| 220         | • 20             | 1-    | 300.          | 00  |      | 19.00 |
| 200         | .00              | 1.    | 300           | 00  |      | 18.00 |
| 377         | •50 <sup>/</sup> | 13    | 300           | .00 |      | 17.00 |
| 753         | .70              | 1     | 300.          | 00  |      | 16.00 |
| 785         | .30              | 1.5   | 300.          | 00  |      | 16.50 |
| 1232        | •50              | 1     | 300-          | 00  |      | 15.00 |
| 185,4       | •60              | 10    | 300.          | 00  |      | 13.60 |
| 2421        | •00              | 13    | 300•          | 00  |      | 13.00 |
| 4078        | •30              | 13    | 30 <b>0</b> • | 00  |      | 12.00 |
| 6258        | •10              | 13    | 300.          | 00  |      | 11:00 |
| - 21        | 50ء              | 2 13  | 325.          | 00  |      | 25.00 |
| · · 9       | •90              | 13    | 350.          | 00  |      | 25.00 |
| 2           | •70              | 14    | 100.          | 00  |      | 25+00 |
| . 83        | .30              | 14    | 10 <b>0</b> • | 00  |      | 15.00 |
| · 251       | •20              | 14    | 100.          | 00  |      | 12.00 |
| , 251       | . 00             | 1     | +.00.4        | 00  |      | 15.00 |
| · 2 /<br>75 | . 20             | 1     | 150           | 00  |      | 12.50 |
| רי<br>ה     | -00<br>-00       | 1.4   | 50 <b>0</b> • | 00  |      | 16.40 |
| ر<br>۵۵     | •60 <sup>°</sup> | · 19  | 500           | 00  |      | 12.50 |
| 87          | 90               | 1 1   | 500           | 00  |      | 10.00 |
| 170         | 40               | - 14  | 500           | oð. |      | 9.00  |
| 614         | .90              | 19    | 500           | 00  |      | 7.00  |
| 28          | • 70             | 1     | ō50.          | 00  |      | 10.00 |
|             |                  |       |               |     |      |       |

.

.

.

۲

κ.

.

Figure 1.-Input data for Case 1.

ĸ

137

r

| ΟΔΤΔ     | SFT           |       | ALLOY 9      | 316 STAINLESS STEEL |
|----------|---------------|-------|--------------|---------------------|
| OPT I ON | CARD          |       | ,            | •                   |
| INPUT=   | 1             |       |              | •                   |
| IOUT=    | 0             |       |              |                     |
| TA=      | -5000         |       |              |                     |
| R A=     | •2000         |       |              |                     |
| CASE C   | ONTROL CARDS  |       |              |                     |
| Р        | ARAMETER CODE | NO. C | COEFFICIENTS |                     |
|          | 1             |       | 4            | •                   |
|          | 2             |       | 4            |                     |
| •        | 3             |       | 4            |                     |
|          | 4             |       | 4            |                     |
|          | 5             |       | 3            |                     |

Figure 2.-Output for Case 1.

.

•

19

LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA ----- REGRESSION VALUES \_\_\_\_ ALLOY DATA SET 9 316 STAINLESS STEEL PARAMETER SELECTED L-M NO. OF OBSERVATIONS 38 NO. OF INDEPENDENT VARIABLES 3 RESIDUAL DEGRE S OF FREEDOM 34 F - VALUE 476.8 RESIDUAL MEAN SQUARE 2.1495E-02 1.4661E-01 STANDARD ERROR 7.30836-01 RESIDUAL SSUM OF SQUARES 3.1476E+01 TOTAL SUN'S OF SQUARES .9768 MULT. CORREL. COEF. SQUARED 4.20E+00 MEAN Y = 2.45E+00 MIN Y = 4.31F-01 MAX Y = Y RANGE = 3.775+00 CERR MIN X(1) MAX X(I) RAN XELL RINE PSUM COEF.P(I) S.E.COEF. Ŧ MEAN X(1) VARIABLE Ŧ -1.8792E+01 0 6.12E-04 1.145-04 1.44 .335 .00 4.988-04 1/T 4.7642E+04 2.98E+03 16.00 5-613E-04 1 -.46 4.315-04 8-905-04 4.596-04 .663 .00 6.9295-04 S/T -3.7957E+03 4.14E+03 .92 2 9.50E-04 -.83 .003 -.00 1.31E-03 8.6898-04 3.64E-04 3 S\*\*2/T -3.29796+03 1.69E+03 1.95 VARIABLE CODE S=LOG STRESS T=TEMPERATURE DT=T-TA L=STRESS 95 PERCENT PREDICTION INTERVAL STATISTICS REAL TIME FACTOR (ANTILOG WIDTH) LOG TIME AVERAGE WIDTH .621 4.2 MAXIMUM WIDTH .741 5.5

,

Figure 2.-Continued.

62

4

LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA ALLOY. 9 316 STAINLESS, STEEL ALLOY. 9 DATA SET . . 0-S-D ~ • • PARAMETER SELECTED -- 38 ND. OF OBSERVATIONS .- -~ 3 NO. OF INDEPENDENT VARIABLES RESIDUAL DEGREES OF FREEDOM F - VALUE + 34 \*\*\***3**\*\*, \*\* \* 575.9 -1.7867E-02 RESIDUAL MEAN SQUARE STANDARD ERROR 4~ ' 1.3367E-01 °6.0748E-01 RESIDUAL SUM OF SQUARES . Al-3.1476E+01 TOTAL SUMS OF SQUARES. ۰ د .9807 MULT. CORREL. COEF. SQUARED - 1 2.45E+00 MEAN Y = Y RANGE = 3.77E+00 4.205+00 HAX Y = MIN Y = + 4.31-01 • . RINF. PSUM CERR RAN X(I) MAX X(I) MEAN X(1) MIN X(I) COEF-P(I) - S.E.COEF. т VARIABLE 1 \_\_\_1.5630E+01 --+00 .333 . . 1.15 Ð 2.06E-04 1.10E-03 8.965-,04 5.27F+02 1.0116-03 40.07 2:1117E+04 1/T .00 1 . •25 .658 6.32E-01 1.48E+00 8.455-01 1.2288+00 2+02F+00 .75 1.5077E+00 2. 36E-01 S . ' -1.30 .009 .00 2 2+18E+00 1.47E+00 7.14E-01 1.5336+00 3.99 -3.3333E+00 3 S\*\*2 VAPIABLE CODE S=LOG STRESS T=TEMPERATURE DT=T-TA ' L=STRESS 95 PERCENT PREDICTION INTERVAL STATISTICS REAL TIME FACTOR (ANTILOG WIDTH) UHIGINAL PAGE IS OF POOR QUALITY LOG TIME 3.7 .567 AVERAGE WIDTH 3.9 .593 MAXIMUM WIDTH

Figure 2.-Continued.

۰.

σ ω .

.

| LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC                                        |
|----------------------------------------------------------------------------------------|
|                                                                                        |
| DATA SET REGRESSION VALUES                                                             |
| PARAMETER SELECTED M-S                                                                 |
| NO. OF OBSERVATIONS 38                                                                 |
| NO. OF INDEPENDENT VARIABLES 3                                                         |
| RESIDUAL DEGREES OF FREEDOM 34                                                         |
|                                                                                        |
| KESIDAL MEAN SQUARE J. 7326E-01                                                        |
| AFSTDUAL SUM OF SQUARES 1.0206E+00                                                     |
| TOTAL SUMS OF SQUARES 3.1476 E+01                                                      |
| NULT. CORREL. COEF. SQUARED .9676                                                      |
| MIN Y = 4.31E-01 MAX Y = 4.20E+00 Y RANGE = 3.77E+00 MEAN Y = 2.45E+00                 |
| I VARIABLE COEF.P(I) S.E.COEF. T MEAN X(I) MIN X(I) MAX X(I) RAN X(I) RINF PSUM CER    |
| 0 2.2556E+01<br>                                                                       |
| 1                                                                                      |
| 3 S**2 -2.3794E+00 1.09E+00 2.19 1.533E+00 7.14E-01 2.18E+00 1.47E+0093 .0050          |
|                                                                                        |
| VARIABLE CODE<br>S=LOG STRESS<br>T=TEMP" RATURE<br>DT=T-TA<br>L=STRESS                 |
| 95 PERCENT PREDICTION INTERVAL STATISTICS<br>Log time real time factor (antilog width) |
| AVERAGE WIDTH .735 5.4<br>MAXIMUM WIDTH .771 5.9                                       |

۰

•

.

Figure 2.-Continued.

•

.

۰.

,

## LEAST-SQUAPES REGRESSION PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA

----- REGRESSION VALUES ------316 STAINLESS STEEL ALL OY 9 DATA SET M-H PARAMETER SELECTED 38 ND. OF OBSERVATIONS NO. OF INDEPENDENT VARIABLES 3 34 RESIDUAL DEGREES OF FREEDOM 419.8 F - VALUE RESIDUAL MEAN SQUARE 2.4334E-02 STANDARD ERROR 1.5599E-01 8.2737E-01 RESIDUAL SUM OF SQUARES 3.1476E+01 TOTAL SUMS OF SQUARES MULT. CORREL. COEF. SQUARED +9737

.805

MANSON - HAFERE CONSTANT(TA) = 302.0

2.45E+00 3.77E+00 MEAN Y = Y RANGE = MINY = 4.31E-01MAX Y = 4-20E+00 . CERR RAN X(I) RINF PSUM MEAN X(I) MIN X(I) MAX X(I) S.E.COEF. COEF.P(I) Т VARIABLE I 1.4509E+01 0 8.75E+02 1.01E+03 3.75E+02 -1.06 .328 -.00 1.25E+03 -1.0686E-02 8+48 1.028E+03 DT. 1.26E-03 ł .68 •651 -.00 1.54E+03 5.24E+02 2.15E-03 1.251E+03 DT\*S 4-8648E-03 2.26 2 .021 -1.59 -.00 2.15E+03 1.29E+03 8.57E+02 9.028-04 5.13 1.548E+03 DT\*S\*\*2 -4.6243E-03 3

VAPIABLE CODE

MAXIMUM WIDTH

S=LOG STRESS T=TEMPERATURE DT=T-TA L=STRESS

95 PERCENT PREDICTION INTERVAL STATISTICS REAL TIME FACTOR (ANTILOG WIDTH) LOG TIME .661 4.6 AVERAGE WIDTH 6.4

Figure 2.-Continued.

ちん

LEAST-SQUARES REGRESSION PRCGRAN FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA • ----- REGRESSION VALUES -----ALL OY 9 **316 STAINLESS STEEL** DATA SET PARAMETER SELECTED RAB 38 ND. OF OBSERVATIONS 2 NO. OF INDEPENDENT VARIABLES RESIDUAL DEGREES OF FREEDOM 35 . 220.4 F - VALUE RESIDUAL MEAN SQUARE STANDARD ERROR 2.1137E-03 . 4.59758-02 RESIDUAL SUM OF SQUARES 7.39796-02 1.0058E+00 TOTAL SUMS OF SQUARES MULT. CORREL. COEF. SQUARED •9264 RABOTNOV CONSTANT (RA) = .05630 1.72E+00 Y RANGE = 6.66E-01 MEAN Y = 1.38E+00 MAX Y = MIN Y = 1.06E+00CERR RAN X(I) RINF PSUM MAX X(I) COEF.P(I) S-E-COEF. MEAN X(I) MIN X(I) 1 VARIABLE Т 8.7594E-01 Э -3.74 0.00 2.06E+03 17.94 4.693E-05 2.78E-05 9.52E-05 6.758-05 +092 -3.6886E+04 1 1/L\*T 2.046-08 6.356-08 4.31E-08 4.13 .908 0.00 3.505E-08 3.19E+06 20.01 2 1/1\*T\*\*2 6.3869E+07 VAP TABLE CODE S=LOG STRESS T=TEMPERATURE DT=T-TA L=STRESS 95 PERCENT PREDICTION INTERVAL STATISTICS REAL TIMÉ FACTOR (ANTILOG WIDTH) LOG TIME 12.3 AVERAGE WIDTH 1.088 22.4 MAXIMUM WIDTH 1.350

URIGINAL PAGE IS OF POOR QUALITY

Figure 2.-Concluded.

|              | ) -5<br>3<br>5<br>5 | 000.0     | 0•2       |   |
|--------------|---------------------|-----------|-----------|---|
| ALLOY        | 9                   | 316 STAIN | ESS STEEL |   |
| 3142         | 90                  | 1175.00   | 25.00     |   |
| 74.          | 60                  | 1200.00   | 30.00     |   |
| 213          | 00                  | 1200.00   | 28.00     | - |
| 656          | 20                  | 1200.00   | 25.00     |   |
| 3476.        | 10                  | 1200.00   | 22.00     |   |
| 6825         | 30                  | 1200.00   | 20.00     |   |
| 10076.       | 50                  | 1200.00   | 18.50     |   |
| 15790.       | 80                  | 1200.00   | 17.00     |   |
| 290.         | ,90                 | 1225.00   | 25.00     |   |
| 186.         | 50                  | 1250.00   | 25.00     |   |
| 81.          | 50                  | 1275.00   | 25.00     |   |
| 36.          | 50                  | 1300+00   | 25.00     |   |
| 104•         | 10                  | 1300.00   | 22.00     |   |
| 228.         | 20                  | 1300.00   | 20.00     |   |
| 258.         | 10                  | 1300.00   | 19.00     |   |
| 319.         | 00                  | 1300.00   | 18.00     |   |
| 377.         | 50                  | 1300+00   | 17.00     |   |
| 753          | 70                  | 1300.00   | 16.00     |   |
| 785          | ,30                 | 1300.00   | 16.50     |   |
| 1232.        | ,50                 | 1300+00   | 15.00     |   |
| 1854.        | 60                  | 1300.00   | 13.60     |   |
| 2421.        | 00                  | 1300.00   | 13.00     |   |
| 4078         | ,30                 | 1300+00   | 12.00     |   |
| 6258.        | .10                 | 1300.00   | 11.00     |   |
| 21.          | 50                  | 1325+00   | 25.00     |   |
| 9.<br>2      | 70                  | 1350.00   | 25.00     |   |
| 2 •<br>8 2 • | 30                  | 1400.00   | 25.00     |   |
| 261          | 20                  | 1400-00   | 12.50     |   |
| 201 e        | 00                  | 1400+00   | 10.00     |   |
| 27.          | 90                  | 1450.00   | 15.00     |   |
| 75.          | 20                  | 1450.00   | 12.50     |   |
| 10.<br>5-    | 00                  | 1500+00   | 16+40     |   |
| 40           | 60                  | 1500.00   | 12.50     |   |
| 87.          | 90                  | 1500.00   | 10.00     |   |
| 170.         | 40                  | 1500.00   | 9.00      |   |
| 614-         | 90                  | 1500+00   | 7.00      |   |
| 28.          | 70                  | 1550.00   | 10.00     |   |

.

Figure 3.-Input data for Case 2.

LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA ----- REGRESSION VALUES -----316 STAINLESS STEFL ALLOY 9 DATA SET 0-S-D PARAMETER SELECTED . -38 NO. OF OBSERVATIONS 2 NO. OF INDEPENDENT VARIABLES 35 RESIDUAL DEGREES OF FREEDOM 600.Í F - VALUÉ 2.54816-02 PESIDUAL MEAN SQUARE . " 1.5963E-01 STANDARD ERROR 8.9183E-01 RESIDUAL SUM OF SQUARES 3.1476E+01 TOTAL SUMS OF SQUARES .9717 MULT. CORREL. COEF. SQUARED 4.20E+00 . Y RANGE = 3.77E+00 MEAN Y = 2.45E+00 MIN Y = 4.31E-01MAX Y = MIN X(I) MAX X(I) RAN X(I) RINF PSUM CERR MÉAN'X(I) S.E.COEF. ٠T VARIABLE COEF.P(I) I -1.1091E+01 Э, 0.00 .336 8.96E-04 1.10E-03 8.45E-01 1.48E+00 2.06E-04 1.16 1.011E-03 6.26E+02 34.09 2.1335E+04 1 1/1 -1-10 .664 -00 6.32E-01 2.316-01 28.22 1.228E+00 -6.5279E+00 2 S . VAFTABLE CODE S=LOG STRFSS T=TEMPFRATURE DT=T-TA . L=STRESS 95 PERCENT PPEDICTION INTERVAL STATISTICS REAL TIME FACTOR (ANTILOG WIDTH) LOG TIME 4.7 •66B AVERAGE WIDTH 5.0 MAXIMUM WIDTH .703

Figure 4.-Continued.

.

•

LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA ----- REGRESSION VALUES -----316 STAINLESS STEPL ALLOY 9 DATA SET 0-5-0 - PARAMETER SELECTED . NO. OF OBSERVATIONS 38 NO. OF INDEPENDENT VARIABLES 3 34 RESIDUAL DEGRERS OF FREEDOM 575.9 F - VALUE 1,78678-02 PESIDUAL MEAN SQUARE 1.3367E-01 STANDARD ERROR RESIDUAL SUM OF SQUARES 6.0748E-01 TOTAL SUMS DE SQUARES 3.1476E+01 - MULT. CORREL. COFF. SQUARED .9807 MEAN Y = 2.45E+00Y RANGE = 3.77E+00 MAX Y = 4.20E+00MTN Y = 4.31E-01 PSUM GERR MIN X(I) MAX X(I) RAN X(I) RINF S.E.COEF. Ť MEAN X(I) VAR LABLE COEF.P(I) 1 -1.5630E+01 - 0 1.15 .333 -.00 1.10E-03 2.06E-04 1.0119-03 8.965-04 1/T 2.1117E+04 5.278+02 40.07 1 +00 6.328-01 .25 .658 1.48E+00 8.458-01 2.028+00 .75 1.22BE+00 1.5077E+00 S 2 .009 +00 2.18É+00 -1.30 1.5339+00 7.14E-01 1.47E+00 8.36F-01 3.99 -3.3333E+00 3 S\*\*2 VAPIABLE CODE S=LOG STRESS T=TEMPERATURE DT=T-TA L=STRFSS 95 PERCENT PREDICTION INTERVAL STATISTICS RÉAL TIME FACTOR (ANTILOG WIDTH) LOG TIME 3.7 .567 AVERAGE WIDTH 3.9 . .593 MAXIMUM WIDTH

Figure 4.-Continued.

46

LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA ----- REGRESSION VALUES ------316 STAINLESS STEEL ALLOY 9 DATA SET PARAMETER SELECTED 0-8-0 NO. OF OBSERVATIONS 38 NO. OF INDEPENDENT VARIABLES 4 33 RESIDUAL DEGREES OF FREEDOM 580.4 F - VALUE RESIDUAL MEAN SQUARE 1.3367E-02 1.1562F+01 STANDARD ERROR RESIDUAL SUM OF SQUARES 4.4113F-01 3.1476E+01 TOTAL SUMS OF SQUARES . .9860 MULT. CORREL. COEF. SQUARED 2.45 2+00 Y RANGE = 3.77E+00 MEAN Y = 4-205+00 MIN Y = 4.31E-01 MAX Y = RINE PSUM CERR MIN X(I) MAX X(I) RAN X(1) MEAN X(1) VARIABLE COEF.P(I) S.F.COEF. Т I 6.7051E+00 0 .331 2.065-04 1.14 .00 45.87 1.011E-03 8.965-04 1.10E-03 4.57E+02 1/T 2.0982E+04 1 6.32E-01 -.00 8.455-01 1.48E+00 -9.60 .654 3.42 1-228E+00 1.67E+01 2 S '-5.7228E+01 7.14E-01 2.185+00 1-47E+00 18.58 .009 -.00 1.533E+00 1.45E+01 3.29 4.7687E+01 3 S\*\*2 -.00 3.225+00 2.62E+00 -10.13 .005 6.048-01 -1.4563E+01 4.13F+00 3.53 1.942E+00 4 S\*\*3 VARIABLE CODE S=LOG STRESS T=TEMPERATURE DT=T-TA L=STRESS 95 PERCENT PREDICTION INTERVAL STATISTICS REAL TIME FACTOR (ANTILOG WIDTH) LOG TIME 3.1 AVERAGE WIDTH .496 3.7 MAXIMUM WIDTH .569

OF POOR QUALITY

Figure 4.-Continued.

LEAST-SQUARFS REGRESSION PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA ----- REGRESSION VALUES ------316 STAINLESS STEEL ALLOY 9 DATA SET . Ŋ−S−D PARAMETER SELECTED ~ -38 NO. OF OBSERVATIONS • 5 NO. OF INDEPENDENT VARIABLES RESIDUAL DEGREES OF FREEDOM . 32 **بر**م 594.8 F - VALUE 1.0472E-02 RESIDUAL MEAN SQUARE . . 1.0233E-01 STANDARD ERROR 3.3509E-01 RESIDUAL SUM OF SQUARES 3.1476E+01 TOTAL SUMS OF SQUARES - .9894 MULT. CORREL. COEF. SQUARED MEAN Y = 2.45E+00 MIN Y = 4.31E-01 MAX Y = 4.20E+00 Y RANGE = 3.77E+00 MEAN X(I) MIN X(I) MAX X(I) RAN X(I) CERR RINE PSUM VARIABLE COEF.P(I) S.E.COEF. T Ť -1.0736E+02 O. 2.06E-04 1.15 .330 -.00 8.965-04 1.105-03 4.09E+02 51.77 1.0116-03 17T 2.11615+04 1 .652 -.00 8.45E-01 1.48E+00 6.326-01 58.47 1.2285+00 1.286+02 2.72 3-4852E+02 2 S -.00 2.18E+00 1.47E+00 -190.05 +009 7.14E-01 2.89 1.533E+00 1.69F+02 S\*\*2 -4.8780E+02 3 2.625+00 205.77 .005 -.00 6.045-01 3.22E+00 1.9425+00 9.76E+01 3.03 2.95926+02 4 S\*#3 4.255+00 -75.36 .003 **~.**00 2.492E+00 5.108-01 4.76E+00 2.10E+01 3.18 -6.6787E+01 5 S\*\*4 ٠ VARIABLE CODE S=LOG STRESS T=TEMPERATURE DT=T-TA L=STRFSS 95 PERCENT PREDICTION INTERVAL STATISTICS REAL TIME FACTOR (ANTILOG WIDTH) LOG TIME 2.8 .444 AVERAGE WIDTH 3.6 MAXIMUM HIDTH .560

Figure 4.-Continued.

.

OF POOR QUALITY LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA ----- REGRESSION VALUES -----316 STAINLESS STEEL DATA SET 9 ALLOY 0-S-D PARAMETER SELECTED 38 NO. OF OBSERVATIONS NO. OF INDEPENDENT VARIABLES 6 PESIDUAL DEGREES OF FREEDOM 31 484.8 F - VALUE 1.0708E-02 PESIDUAL MEAN SQUARE 1.0348E-01 STANDARD FRRDR 3.31946-01 PESIDUAL SUM OF SQUARES TOTAL SUMS OF SQUAPES 3.1476E+01 MULT. CORRTL. COEF. SQUARED .9895 MEAN Y = 2.45E+00 Y RANGE 👳 3.77E+00 4.205+00 MAX Y = MIN Y = 4.315-01 CERR MAX X(1) RAN X(I) RINE PSUM S.E.COEF. MEAN X([) MIN X(I) T VARIABLE COEF.P(I) T 4.7690E+01 ٦ .330 .00 2.068-04 1.16 1.10E-03 4-15E+02 51.03 1.011E-03 8.96E-04 2.11815+04 1 :/T 6.32E-01 -56.65 .652 .01 1.48E+00 1.2285+00 8.45E-01 1-27E+03 .27 ~3.3766E+02 2 S 1.47E+00 278.50 .009 +00 1.533E+00 7.148-01 2.18E+00 7.1482F+02 2.22E+03 .32 S\*\*2 3 .005 .00 ( 04E-01 3.22E+00 2.62E+00 -520.10 1.9426+00 -7.47985+02 1.93E+03 .39 4 S\*\*3 4.25E+00 431.24 .003 .00 2.4926+00 5.10E-01 4.76E+00 8.28E+02 •46 5 S\*\*4 3.82185+02 .000 .00 4.31E-01 7.03E+00 6.60E+00 -134.18 .54 3.2352+00 -7.6572E+01 1.41E+02 6 S\*\*5 VAPIABLE CODE S=LOG STRESS T=TEMPFRATURE DT=T-TA L=STRESS 95 PERCENT PREDICTION INTERVAL STATISTICS REAL TIME FACTOR (ANTILOG WIDTH) LOG TIME 2.8 AVEPAGE WIDTH .454 .590 3.9 MAXIMUM WIDTH

Figure 4.-Concluded.

,

| 3          | з              | -5000.0   | 0.2             | 1    |
|------------|----------------|-----------|-----------------|------|
| 2          | 6              |           |                 |      |
|            |                |           |                 |      |
| ALL        | OY S           | 9 316 STA | INLESS STE      | EL   |
| 31         | 42.90          | 1175+0    | 0 25            | • 00 |
|            | 74.60          | 1200•0    | 0 30            | • 00 |
| 2          | 13.00          | 1200.0    | 0 28            | • 00 |
| 6          | 56.20          | 1200+0    | 0 25            | •00  |
| 34         | 76.10          | 1200+0    | 22              | •00  |
| 68         | 25.30          | 1200+0    | 10 20           | •00  |
| 100        | 76.50          | 1200+0    |                 | • 50 |
| 15/        | 90.80          | 1200.0    |                 | •00  |
| 2          | 90.90          | 1225+0    | 25              | •00  |
| 1          | 86.50          | 1250+0    | 0 25            | •00  |
|            | 81.50          | 1275•0    | 25              | •00  |
| . <b>.</b> | 36.50          | 1300+0    | 0 25            | •00  |
| 1          |                | 1300+0    |                 | •00  |
| 2          |                | 1300+0    |                 | •00  |
| 2          | 28.10          | 1300+0    |                 | •00  |
| 3          | 19.00<br>77.50 | 1300+0    | 10 17           | •00  |
|            |                | 1300+0    | 10 16           | •00  |
| 7          |                | 1300+0    |                 | •50  |
| 12         | 32.50          | 1300-0    | 10 10<br>10' 15 | •00  |
| 18         | 52.50          | 1300+0    | 10 13           | •60  |
| 24         | 21.00          | 1300+0    | i 13            | • 00 |
| 40         | 78.30          | 1300.0    | 10 12           | •00  |
| 62         | 58.10          | 1300•0    | 0 11            | •00  |
|            | 21.50          | 1325.0    | 0 25            | .00  |
|            | 9.90           | 1350+0    | 0 25            | •00  |
|            | 2.70           | 1400.0    | 0 25            | •00  |
|            | 83.30          | 1400+0    | 0 15            | •00  |
| 2          | 51.20          | 1400+0    | 0 12            | •50  |
| 9          | 21.00          | 1400+0    | 10 10           | •00  |
|            | 27.90          | 1450.0    | 0 15            | •00  |
|            | 75.20          | 1450.0    | 12 00           | • 50 |
|            | 5.00           | 1500•0    | 10 16           | •40  |
|            | 40.60          | 1500+0    | 0 12            | •50  |
| 1          | 87.90          | 1500+0    | 10              | •00  |
| 1          | 70.40          | 1500•0    | 9               | •00  |
| 6          | 14.90          | 1500•0    | 0 7             | •00  |
| :          | 28,70          | 1550.0    | 0 10            | •00  |

Figure 5.-Input data for Case 3.

## LEAST-SQUARES REGRESSION PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA 316 STAINLESS STEEL ALLOY 9 DATA SET OPTION CARD INPUT= 3 10UT = 3 TA= -5000 **-**2000 R A= CASE CONTROL CARDS PARAMETER CODE NO. COEFFICIENTS

6

2

.

.

ц.2

6

Figure 6.-Output for Case 3.

٠

| INPUT        | DATA | OBSERVATIONS |        |             |
|--------------|------|--------------|--------|-------------|
| NO.          |      | TIME         | STRESS | TEMPERATURE |
| 1            |      | 3142.90      | 25     | 1175        |
| 2            |      | 74.60        | 30     | 1200        |
| 3            |      | 213.00       | 28     | 1200        |
| 4            |      | 656.20       | 25     | 1200        |
| 5            |      | 3476.10      | 22     | 1200        |
| 6            |      | 6825.30      | 20     | 1200        |
| 7            |      | 10076.50     | 18     | 1200        |
| 8            |      | 15790.80     | 17     | 1200        |
| 9            |      | 290.90       | 25     | 1225        |
| 10           |      | 186.50       | 25     | 1250        |
| 11           |      | 81.50        | 25     | 1275        |
| 12           |      | 36.50        | 25     | 1300        |
| 13           |      | 104.10       | 22     | 1300        |
| 14           |      | 228.20       | 20     | 1300        |
| 15           |      | 258.10       | 19     | 1300        |
| 16           |      | 319.00       | 18     | 1300        |
| 17           |      | 377.50       | 17     | 1300        |
| 18-          |      | 753.70       | 16     | 1300        |
| 19           |      | 785.30       | 16     | 1300        |
| 20           |      | 1232.50      | 15     | 1300        |
| 21           |      | 1854.60      | 14     | 1300        |
| 22           |      | 2421.00      | 13     | 1300        |
| 23           |      | 4078.30      | 12     | 1300        |
| 24           |      | 6258.10      | 11     | 1300        |
| 25           |      | 21,50        | 25     | 1325        |
| 26           |      | 9,90         | 25     | 1350        |
| 27           |      | 2.70         | 25     | 1400        |
| 28           |      | 83.30        | 15     | 1400        |
| 29           |      | 251.20       | 13     | 1400        |
| 30           |      | 921.00       | 10     | 1400        |
| 31           |      | 27.90        | 15     | 1450        |
| 32           |      | 75.20        | 13     | 1450        |
| · <b>3</b> 3 |      | 5.00         | 16     | 1500        |
| 34           |      | 40.60        | 13     | 1500        |
| 35           |      | 87.90        | 10     | 1500        |
| 36           |      | 170.40       | 9      | 1500        |
| 37           |      | 614.90       | 7      | 1500        |
| 38.          |      | 28.70        | 10     | 1550        |

ı.

.

Figure 6.-Continued.

\*

LFAST-SQUAPES REGRESSION PROGRAM FOR PARAMETRIC ANALYSIS OF CREEP-RUPTURE DATA

~

| DATA SE<br>PARAMETI<br>NO. OF<br>ND. OF<br>RESIDUA<br>F - VALI<br>REŞIDUA<br>STANDARI<br>SESIDUA<br>TATAL S<br>MULT. C | - REGR<br>T SELE<br>OBSERVA<br>INDEPEN<br>L DEGRE<br>L H=AN<br>D ERROR<br>L SUM<br>UMS OF<br>ORREL- | FSSION VALUES<br>ALL<br>TIONS<br>DENT VARIABLES<br>ES OF FREEDOM<br>SQUARE<br>OF SQUARES<br>SOUARES<br>COEF. SQUARED    | <br>GY 9 316<br>0-5<br>1.0472E-<br>1.0233E-<br>3.3509E-<br>3.1476E-<br>.99                | STAIN<br>-D<br>38<br>5<br>-2<br>-32<br>-02<br>-01<br>-01<br>-01<br>-01<br>-01<br>-01<br>-01<br>-01 | LESS STEEL                                                            |                                                                         |                                                     |                                      |         |      |      |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|---------|------|------|
| MIN                                                                                                                    | Υ =                                                                                                 | 4.315-01 MAX Y                                                                                                          | = . 4.20F+0                                                                               | Y 00                                                                                               | RANGE = 3                                                             | .77E+00 ME                                                              | AN Y = 2                                            | •45E+00                              |         |      |      |
| FIRS<br>Y<br>3.497<br>1.872<br>2.328<br>2.817<br>3.541                                                                 | T 5 NBS<br>337+00<br>74:+00<br>385+00<br>045+00<br>09-+00                                           | FRVATIONS - TRANS<br>X1 - X(L<br>1.101325-03<br>1.08473E-03<br>1.38473E-03<br>1.08473E-03<br>1.98473E-03<br>1.98473E-03 | FOR MED VAR 12<br>1.39794E+00<br>1.47712E+00<br>1.44716E+00<br>1.39794E+00<br>1.34242E+00 | ABLES<br>1.<br>2.<br>2.<br>1.<br>1.<br>1.<br>1.                                                    | 95424 <b>6+00</b><br>181896+00<br>094276+00<br>954246+00<br>802106+00 | 2.7319LE+00<br>3.2229LE+00<br>3.03073E+00<br>2.7319LE+00<br>2.41918E+00 | 3.81904<br>4.76063<br>4.38595<br>3.81904<br>3.24756 | E+00<br>E+00<br>E+00<br>E+00<br>E+00 |         |      |      |
| I                                                                                                                      | VARIA                                                                                               | BLE COEF.P(I)                                                                                                           | S.E.COEF.                                                                                 | ۲                                                                                                  | MEAN X(I)                                                             | MIN X(I)                                                                | MAX XEED                                            | RAN XEI I                            | RINF    | PSUM | CERR |
| 0                                                                                                                      |                                                                                                     | -1.0736E+02                                                                                                             | 6 005402                                                                                  | E1 77                                                                                              | 1 0115-03                                                             | 8 965-04                                                                | 1.305-03                                            | 2 - 06E÷04                           | 1.15    | -330 | 00   |
| 1                                                                                                                      | 1/1                                                                                                 | 2-11616+04                                                                                                              | 4.096+02                                                                                  | 21.11                                                                                              | 1 2205400                                                             | 0.455-01                                                                | 1 495+00                                            | 6.325-01                             | 58.47   | -652 | 00   |
| 2                                                                                                                      | S                                                                                                   | 3-4852-+02                                                                                                              | 1-205+02                                                                                  | 2+16                                                                                               | 1 5225400                                                             | 7.145-01                                                                | 2.185+00                                            | 1-47E+00                             | -190-05 | -009 | 00   |
| د                                                                                                                      | 5442                                                                                                | ~4+8780E+02                                                                                                             | 1.075+02                                                                                  | 2.07                                                                                               | 1 0425+00                                                             | 6.04E-01                                                                | 3.22E+00                                            | 2+62E+00                             | 205.77  | -005 | 00   |
| 4                                                                                                                      | 6**C<br>A**2                                                                                        | 2+9594=+02                                                                                                              | 2.105+01                                                                                  | 3.18                                                                                               | 2.4925+00                                                             | 5.108-01                                                                | 4.76E+00                                            | 4.25E+00                             | -75.36  | .003 | 00   |
| VAPIABLE                                                                                                               | CODE<br>S=LOG<br>T=TEMF<br>DT=T-1<br>L=STRE                                                         | STRESS<br>PERATURE<br>IA<br>ESS                                                                                         | TATIST                                                                                    | ICS                                                                                                |                                                                       |                                                                         |                                                     |                                      |         |      |      |
| 40                                                                                                                     | FERGEN                                                                                              | LOG TIME                                                                                                                | R                                                                                         | EAL TIM                                                                                            | E FACTOR (AN                                                          | TILOG WIDTH)                                                            |                                                     |                                      |         |      |      |

.

URIGINAL PAGE IS OF POOR QUALITY

| AVERAGE WIDTH | •444 | 2.8 |
|---------------|------|-----|
| MAXIMUM WIDTH | .560 | 3.6 |

,

,

Figure 6.-Continued.

.

76

153

SESIDUALS - REGRESSION SPACE

-

| 'n۲        | Y OBS     | Y CALC    | RESIDUAL     | PCTERR | ORDER | CIMIN       | CIMAX     | PIMIN     | PIMAX     |
|------------|-----------|-----------|--------------|--------|-------|-------------|-----------|-----------|-----------|
| ,          | 3 4075+00 | 3 3665+00 | -7.3126-01   |        | 2     | 3.334E+00   | 3.199F+00 | 3.0468+00 | 3.486E+00 |
| . 1        | 1.8735+00 | 1.879F+00 | 6.4058-03    | .3     | 32    | 2.024E+00   | 1.735E+00 | 1.625E+00 | 2.133E+00 |
| 5          | 2 2295+00 | 2 2215400 | 2.6875-03    | -1     | 36    | 2+426E+00   | 2.236E+00 | 2.102E+00 | 2.561E+00 |
| ,          | 2.020-100 | 2.0165.00 | 0 7005-02    | 3.5    | 11    | 2.975E+00   | 2.855E+00 | 2.6976+00 | 3.1338+00 |
| 4          | 2.5415400 | 3.4025+00 | -1.391E-01   | -3.9   | 6     | 3.467E+00   | 3.3378+00 | 3.183E+00 | 3.621E+00 |
| ż          | 3 9345400 | 3 6885+00 | -1.462E-01   | -3.8   | 5     | 3.758E+00   | 3.6185+00 | 3.468E+00 | 3.908E+00 |
| 7          | 4 0035+00 | 3.8925+00 | -1.109F-01   | -2.8   | 7     | 3.965E+00   | 3.820E+00 | 3.6712+00 | 4.114E+00 |
| 8          | 4 1985+00 | 4.098E+00 | -1.004E-01   | -2.4   | LÓ    | 4.173E+00   | 4.0235+00 | 3.876E+00 | 4.320E+00 |
| c<br>c     | 2.464E+00 | 2.5745+00 | 1-106E-01    | 4.5    | 8     | 2.6305+00   | 2.518E+00 | 2.358E+00 | 2.791E+00 |
| ۰ <u>،</u> | 2.2712+00 | 2.2445+00 | - 2. 704E-02 | -1.2   | 23    | 2.298E+00   | 2.189E+00 | 2.028E+00 | 2.460E+00 |
| 11         | 1.9115+00 | 1.922F+00 | 1-130E-02    | .6     | 30    | 1_978F+00   | 1,8675+00 | 1.706E+00 | 2.139E+00 |
| 12         | 1 5625+00 | 1.6105+00 | 4.811E-02    | 3.1    | 18    | 1.670E+00   | 1.5510+00 | 1.393E+30 | 1.828E+00 |
| 12         | 2.317E+00 | 2.0975+00 | 7.9909-02    | 4.0    | 13    | 2.1556+00   | 2.040F+00 | 1.8815+00 | 2.314E+00 |
| 14         | 2.3585+00 | 2.383E+00 | 2.501E-02    | 1.1    | 26    | 2.440E+00   | 2.326F+00 | 2-167E+00 | 2.6005+00 |
| 15         | 2.4125+00 | 2.5205+00 | 1-082E-01    | 4.5    | 9     | 2.5758+00   | 2.465E+00 | 2-304E+00 | 2.736E+00 |
| 16         | 2.5045+00 | 2-656F+00 | 1.5195-01    | 6.1    | 4     | 2+708E+00   | 2.603E+00 | 2.440E+00 | 2.8715+00 |
| 17         | 2.5775+00 | 2-7935+00 | 2.1655-01    | 8.4    | 3     | 2.844E+00   | 2.743E+00 | 2.578E+00 | 3.0098+00 |
| 18         | 2-8775+00 | 2-9375+00 | 5-943E-02    | 2.1    | 15    | 2.9876+00   | 2.887E+00 | 2.722E+00 | 3.1528+00 |
| 10         | 2.895=+00 | 2.8645+00 | ~ 3- 0935-02 | -1.1   | 21    | 2.914E+00   | 2.814E+00 | 2.6496+00 | 3.079E+00 |
| 21         | 3,0915+10 | 3.0895+00 | -1.443E-03   | 0      | 37    | 3.142E+00   | 3.037E+00 | 2.874E+00 | 3.305E+00 |
| 21         | 3,2685+00 | 3.328E+00 | 5.9575-02    | 1.8    | 14    | 3,.388E+00  | 3.268E+00 | 3.110E+00 | 3.545E+00 |
| 22         | 3.384E+00 | 3.4425+00 | 5.778E-02    | 1.7    | 16    | 3.506E+00   | 3.377E+00 | 3.223E+00 | 3.661E+00 |
| 22         | 3.6105+00 | 3.651=+00 | 4.073E-02    | 1.1    | 19    | 3.724E+00   | 3.578E+00 | 3.430E+00 | 3.873E+00 |
| 22         | 3.7966+00 | 3.8885+00 | 9-1955-02    | 2.4    | 12    | 3.971E+00   | 3.8066+00 | 3.664E+00 | 4-113E+00 |
| 2=         | 1.3325+00 | 1.3075+00 | -2.534E-02   | -1.9   | 25    | 1.372E+00   | 1.242E+00 | 1.088E+00 | 1.526E+00 |
| 26         | 9.956F-01 | 1.012F+00 | 1.6545-02    | 1.7    | 28    | 1.084E+00   | 9.4005-01 | 7.910E-01 | 1.233E+00 |
| 27         | 4-314=-01 | 4.461E-01 | 1.475E-02    | 3.4    | 29    | · 5.344E-01 | 3.578E-01 | 2.192E-01 | 6.730E-01 |
| 2.4        | 1.9215+00 | 1,9255+00 | 4.402E-03    | •2     | 33    | 1.981E+00   | 1.869E+00 | 1.709E+30 | 2.141E+00 |
| 20         | 2-400F+00 | 2.379E+00 | -2.108E-02   | 9      | 27    | 2.437E+00   | 2.321E+00 | 2.162E+00 | 2.596E+00 |
| 30         | 2.964F+00 | 2.990F+00 | 2.6115-02    | .9     | 24    | 3.062E+00   | 2.919E+00 | 2.7705+00 | 3.211E+00 |
| 31         | 1.446F+00 | 1.3895+00 | -5.697E-02   | -3.9   | 17    | 1.457E+00   | 1.320E+00 | 1.169E+00 | 1.609E+00 |
| 32         | 1.876 +00 | 1.8435+00 | -3.369E-02   | -1.8   | 20    | 1.907E+00   | 1.778E+00 | 1.624E+00 | 2.061E+00 |
| 33         | 6.990E-01 | 6.687E-01 | - 3.0285-02  | -4.3   | 22    | 7.6028-01   | 5.7728-01 | 4.405E-31 | 8.969E-01 |
| - 4        | 1.609F+00 | 1.333E+00 | -2.750F-01   | -17.1  | 1     | 1.408E+00   | 1.259E+00 | 1.111E+00 | 1.5562+00 |
| 25         | 1.9445+00 | 1.945E+00 | 9.2715-04    | •0     | 38    | 2.018E+00   | 1.872E+00 | 1.723E+00 | 2.166E+00 |
| 34         | 2.2317+00 | 2.235 +00 | 3.8316-03    | .2     | 34    | 2.319E+00   | 2.152E+00 | 2.010E+00 | 2.460E+00 |
| ŝ,         | 2.789-+00 | 2.7805+00 | -8.500E-03   | ~.3    | 31    | 2.966E+00   | 2.594E+00 | 2.500E+00 | 3.0602+00 |
| 38         | 1.458 +00 | 1.461E+00 | 3.328E-03    | • 2    | 35    | 1.543E+00   | 1.380E+00 | 1.237E+00 | L.686E+00 |

.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 6.-Continued.

٠

٠

ς.

PCTERF 79S Y 085 Y CALC RESIDUAL ORDER. CIMEN CIMAX P IMIN PIMAX L 3.143F+03 1.846=+03 1+297F+03 41.3 4 L-580E+03 2.156E+03 1.1138+03 3.061E+03 ž 7.460\*+01 7.5716+01 -1-108E+00 -1+5 32 5+4282+01 1.056E+02 4.217E+01 1.359E+02 2.1305+02 2.143 +02 -1.322E+00 -.6 1.7235+02 36 2-665E+02 1.264E+02 3.635E+02 -25.3 5 6.562F+02 8-2235+02 7-1558+02 9.451E+02 -1+661=+02 4.982E+02 1.357E+03 3-476F+03 8 2.174E+03 2+5235+03 9-5275+02 2.928E+03 1.525E+03 4.176E+03 6.825F+^3 28.6 4.875-+03 1.951F+03 6 4.153E+03 5.7225+03 2.935E+03 8.0965+03 L.008F+04 7.8065+03 22.5 6-GI1E+03 2.2705+03 11 9.218E+03 4.691E+03 1.2998+04 . я. īž 1+053E+04 1.5795+04 1+2535+04 3.258 +03 20.6 1.4915+04 7.513E+33 2.091E+04 ç 2.909=+02 3.753=+02 -8.4385+01 -29.0 5 3.300E+02 4.268E+02 2.280E+02 6.1765+02 1.8655+02 1.752E+02 1.1265+01 6.0 24 ·1.547E+02 1.986E+02 1.066E+02 10 2.881E+02 -2.6 -11.7 11 8.1505+01 8.365E+01 30 9.508E+01 5.083E+01 -2-1495+00 7.359E+01 1.376E+02 3-5565+01 1-096E+02 3.650F+01 12 4.078E+01 ~4.2762+00 18 4.676E+01 2.4728+01 6.726E+01 1.4285+02 1.041=+~2 13 1.251E+02 -2.103E+01 -20.2 13 7.595E+01 2.0615+02 -5.9 14 2.282=+02 2.4175+02 -1.3535+01 25 2.121E+02 2.755E+02 1.468E+02 3-9815+02 3.311E+02 7 2.917E+02 4.009E+02 15 2.5815+92 -7+304E+01 -28.3 2.J13E+02 3.759E+02 5.447E+02 3.190F+02 4.526E+02 -1.336E+02 -41.9 14 5.1092+02 3 2.755E+02 7.435E+02 6.982E+02 9.699E+02 17 3.775-+02 6.2155+02 -2.4405+02 -64.6 5-532E+02 3.7875+02 1.0205+03 ~1.1055+02 7.701E+02 7.5375+32 8.642=+92 -14.7 18 15 5.268E+02 1.418E+03 1 . 7.853=+02 7.3135+02 5.399E+01 6.9 21 6.517E+02 8.207E+02 4.458E+J2 1+2005+03 2-1.2325+33 1,228#+03 4.0875+00 • 3 37 1:089E+03 1.385E+03 7.479E+02 2.018E+03 1.8555+03 2.127F+03 -14+7 21 -2.7275+02 14 1.852E+03 2-443E+03 1.289E+03 3.510E+03 2.421=+03 -14-2 -9-8 2-383E+03 3-210E+03 22 2.7665+03 -3.445F+02 16 1.671E+03 4.577E+03 4.479=+03 -4.010E+02 23 4.0785+03 19 3.7848+03 5.302E+03 2.6905+03 7-459E+03 24 6.258=+33 7.7345+03 -1.4765+03 -23.6 10 6.399E+03 9.347E+03 4.610E+03 1+2976+04 5.7 ~3.9 2 = 2.150 +01 1.745E+01 8.709E+00 2.028=+01 1.219E+00 26 28 2.357E+01 1.225E+01 3.358E+01 1.214E+01 <sup>~</sup>6 9.900 +00 1.028=+01 -3.842--01 6.180E+00 1.7116+01 2.279E+00 7.397E+01 27 2.700 +00 2.793=+00 -9.325E-02 -3.5 29 3.423E+00 1.656E+00 4.710=+00 33 27 8.330=+01 8.415 +01 -1.0 9-572E+01 28 -8,4875-01 5.113E+01 1.3855+02 29 2.512-+-2 2+3935+)2 1.1900+01 4.7 2.094E+02 2.734E+02 1.452E+02 3-9435+02 23 17 9.210=+02 9.781-+02 -5.7078+01 -6-2 30 8.302E+02 1.152E+03 5.882E+02 1.626E+03 12-3 31 2.790=+71 2,4475+91 3.4305+00 2.089F+01 2.866E+01 1.474E+01 4.061E+01 7.520"+01 5.9595+01 5.614E+00 7.5 20 22 6.0045+01 8.064E+01 1.151E+02 32 4.206E+01 33 5.000=+00 3-777E+00 4.663E+00 3.367E-01 6.7 5.757E+00 2.757E+00 7.8875+00 1.813E+01 7.442E+01 4.060=+01 46.9 2 2.1555+01 1.905E+01 34 2.561E+01 1.2928+01 3-5945+01 35 8.790=+31 8.8095+01 -1.8785-01 -.2 38 1.043E+02 5.2906+01 1.467E+02 ~.9 36 1.794-+32 1.7195+02 -1.5105+00 34 1.418E+02 2.083E+02 1.0248+02 2.887E+02 1.9 -.8 37 6.149=+02 6.0305+02 1.1925+01 31 3.9282+02 9-257E+02 3.165E+02 1.149E+03 38 2.870F+01 2.8929+01 -2.2088-01 2.398E+01 35 3.488E+01 1.725E+01 4.848E+01

÷.

BACKTRANSFORMED RESIDUALS - REAL SPACE

Figure 6.-Continued.





.



Figure 6.-Concluded.