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1. INTRODUCTION 

The object of geodesy is usually defined to be "the determination of 

the shape and gravity field of the earth." Not being happy with the idea of 

devoting ourselves to a hopeless task, we take the liberty of revising the 

definition to-read: "the estimation of the shape and gravity field of the 

earth." Faithful to this definition, this work is about estimation, the 

process of extracting information about parameters and/or functions 

from observational data. To extract any information about the physical 

world from observations, it is first necessary to construct a simplified 

and idealized image of the real world, i.e., a model. 

The complexity of model building is very much dependent on the 

accuracy of the observational techniques. In the presence of large obser

vational errors, the adoption of a simplified model is warranted since an 

elaborate model would not compensate for the loss of information associ

ated with observational errors. 

Indeed, simple geometric models of axiomatic validity have been of 

great use in geodetic work, although observables could not be directly 

identified with their simple counterparts in the model. This problem was 

bypassed by the appropriate a priori reduction of the observations. 

Although uncertainties were present in these reductions, their order of 

magnitude was insignificant compared to the level of observational noise. 

On the other hand, recent advances in observational techniques related to 

geodetic work (VLBI, laser ranging) make it imperative that more consider

ation should be given to modeling problems. Uncertainties in the effect of 

atmospheric refraction, polar motion and precession-nutaton parameters, 
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etc. cannot be dispensed with in the context of "centimeter level geodesy. 

Even physical processes that have generally been previously altogether 

neglected (station motions) must now be taken into consideration. 

The problem,, in-essence, is-.one of -modeling functions. of time or 

space, or at least their values at observation points (epochs). Modeling 

each function value as an independent unknown parameter may be possible 

insome cases (geometric methods in satellite geodesy), though it may 

generally result in overparameterization; and therefore the interdependence 

of function values must obviously be taken into consideration. When the 

nature of the function to be modeled is unknown, one may resort to 

representing the function in terms of a finite number of parameters using 

polynomials, trigonometric series, step functions, etc (polynomial -fitsin 

short arc satellite geodetic techniques, truncated spherical harmonic 

expansions of the gravity field of the earth). The need to include a limited 

number of terms and to a priori decide upon a specific form may result in 

a representation which fails to sufficiently approximate the unknown function. 

An alternative approach of increasing application in several scientific 

disciplines nowadays is the use of stochastic models, i.e., the modeling of 

unknown functions as stochastic processes. Although the functions under 

consideration are not known, they are, in general, not completely unknown 

either. For example, in spite of the fact that the position of the earth

rotation-pole at some current epoch is not exactly known, some places on 

the earth can be considered much more likely candidates than others. This 

situation of relative uncertainty suggests the use of probability as a measure 

of this uncertainty. Thus, stochastic models are means of describing the 

"likely" behavior of the unknown function. 

Relative uncertainty is hardly the usual framework for introducing 

probability concepts. On the contrary, one is usually made aware of these 

concepts through the relative frequency definition [Papoulis, 1965, p. 8]. 

According to this approach, probability theory describes the statistical or 

average behavior of random entities over an infinite ensemble of possible 
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realizations. This poses some disturbing questions about the relevance of 

probabilistic techniques to geodetic problems. Indeed, in geodesy we deal with 

unique functions rather than ensembles of likely-behaving functions whose 

average behavior would call for statistical-probabilistic descriptions. 

Such difficulties are not particular to geodesy and can be circum

vented with the introduction of the concept of ergodicity. A function is 

assumed to behave likely over different parts of its domain of definition so' 

that ensemble averages can be replaced by "time" averages. 

However, the limiting frequency interpretation of probability is not 

the only one. The meaning of probability has been a matter of much con

troversy over thelast twohundred years [Fine, 1973]. Related arguments 

have acquired more practical importance as the use of probabilistic ideas 

has spread into so may scientific activities. We need only mention the 

distinctly different interpretation given by subjectivists who even come to 

the explicit aphorism that "probability does not exist" [Finetti, 1974, p. x]. 

According to this school of thought, the uncertainty that probability is 

meant to describe is our own "subjective" uncertainty about reality and not 

inherent to the physical phenomena themselves. This point of view is indeed 

very comforting to the geodesist eager to use probabilistic techniques; for 

even though it does not answer the question of relevance of probabilistic 

concepts to geodetic work, it nevertheless dispenses with the problem 

altogether. The classification of physical processes into random and 

deterministic ones becomes irrelevant; and since stochastic models are 

meant to describe our own indisputably limited knowledge about physical 

processes, their relevance is obvious. 

In essence, the interpretation of probability, although of relevance 

to geodetic work, is more of a problem in philosophy of science. However, 

the justification for the use of probabilistic tools in applied science relies 

on such an interpretation; and one should feel obligated to be at least aware 

of the questions, if not of giving an answer. 
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*Beyond such philosophical considerations, there are some problems 

of practical importance associated with estimation in geodesy that have to 

be addressed. 

-Within a-"second-order theory"vframework, existimg estimatibn 

techniques call for the a priori specification of the first- and second-order 

statistics (means and covariances) of random parameters and functions 

involved. 

It has been found that the gravity field of the earth cannot be modeled 

as a random field which is both ergodic and Gaussian [Lauritzen, 1973]. 

This would disqualify the use of statistical sampling techniques for obtaining 

an estimate of the relevant covariance function. 

Even in the case of ergodicity, where stochastic models might be 

appropriate, we encounter situations where the functions to be modeled 

cannot be directly observed, thus prohibiting the use of sampling techniques 

for covariance estimation. 

With respect to the first problem, the probabilistic justification of 

estimate optimality is dispensed with by exposing the deterministic aspects 

of the probabilistically derived estimation algorithm, and strictly determin

istic criteria for estimate optimality are established. 

In regard to the second problem, the possibility of parameterization 

of the required statistics of stochastic processes and the simultaneous 

recovery of the relevant parameters along with other unknown parameters 

is investigated. This leads to "adaptive estimation" schemes where the 

stochastic model is adapted to the observational evidence. 

In order to secure the proper use of existing estimation techniques, 

it is considered necessary to bring into light the interrelations (similarities 

and dissimilarities) of such techniques through the use of a unified approach. 

In the hope of contributing to the understanding of estimation techniques, the 

separation between the deterministic aspects of estimation algorithms as 

related to linear best approximation theory and the probabilistic justification 

of estimate optimality criteria are especially emphasized. 
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2. FUNDAMENTAL CONCEPTS 

2. 1 Introductory Remarks 

The purpose of this chapter is to present a short exposition of certain 

fundamental concepts, definitions and results which can be found in a number 

of textbooks of mathematics and probability theory and which are necessary 

for reference in the following chapters. Such an exposition will help to 

avoid a large number of references in the main text, and especially through 

the introduction of a unified notation will hopefully make the following 

chapters easier to read. 

Without trying to conceal or entertain the definite need for more 

mathematical rigor, an honest attempt has been made to bring the discussion 

to a level consistent with the usual mathematical foundation of most geodetic 

work. Whenever a more rigorous treatment is though to be necessary, 

proper references to appropriate works are given. 

2.2 Bandom Variables-Concept and Mathematical Model 

The concept of a random variable is the cornerstone of this entire 

discussion. As already explained in the introduction, our concept of a (real) 

random variable is that of a real valued quantity, where uncertainty exists 

about its true value. This uncertainty reflects limitations of one's subjective 

knowledge about the quantity in question and is completely irrelevant to the 

'"true.nature" of the quantity. This means that an a priori classification of 

physical quantities and processes into deterministic and random ones is 

meaningless. Starting from the fundamental assumption that a "true value" 

exists, such a value is axiomatically deterministic. 6n the contrary, our 

image of reality, based upon our imperfect mental and observational 

capabilities, is always governed by uncertainty and is therefore random. 
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These images, or "mathematicalmodels" to use a more familiar term, are 

always governed by uncertainty, even when this is purposely ignored and a 

deterministic mathematical model is used. 

The mere-assertion-of the--presence -of-uncertainty-falls short f-rom 

justifying the introduction of a mathematical theory of uncertainty. What is 

further needed is a measure of uncertainty, i.e., something that helps to 

distinguish between "much" and "little" uncertainty, including the limiting 

cases of absolute ignorance (total uncertainty) and complete knowledge (zero 

uncertainty). 

This naturally leads to the use of measure theory. Measure is -a 

function m(A), which maps sets A into nonnegative reals, and furthermore 

m(0) = 0, where $ is the empty set, i.e., a set with no elements. 

In its nonmathematical context, measure is one of the first 

"mathematical" concepts that man conceived. It is directly related to notions 

such as long-short, large-small, i.e., to comparison of lengths, volumes, 

time intervals, etc. Unfortunately, in contemporary mathematical educa

tion measure theory is a rather advanced topic and therefore a somewhat 

lengthy discussion appears to be in order at this point. 

Returning to the concept of a random variable, let us think of the 

uncertain set of values that the random variable may obtain. This will be 

a (not necessarily proper) subset S of the set of reals R. The concept of 

measure can now be used to answer questions of the form: "How likely is 

it that the value of the random variable belongs to a certain subset of S?" 

This corresponds to assigning a nonnegative real number to the 

subset in question, or more generally to defining a measure on a collection 

of subsets of S. Following a universal convention, the range of this measure 

will be restricted to the finite interval [0, 1]. This leads to the concept of 

probability measure. The two critical questions about probability measure 

that have to be answered next are the following: 

(a) Should this probability measure be defined for all possible subsets of 

6 



S (the so-called power set 3)(S) of S), or for some other collection of 

subsets ? 

(b) What are the properties that probability measure should have? 

Starting with the second question, some obviously desirable properties 

are: 

Px(O) = 0 
Px(S) = 1



Px(AUB) = Px(A) + Px(B), forA,BCSandAfnB=



where X denotes the random variable, and PX the corresponding probability 

measure on S. 

Another not so obvious property, but nevertheless necessary in 

connection with the concept of limit and convergence of a sequence of random 

variables, is the following: 

Px (A =ZPx(Aj) 

where O AiCSandAifnAj = fori#j. 

We have now arrived at the concept of a countably additive measure. 

This final property makes the definition of such a measure impossible for 

?(S) [Royden, 1968, p. 53]. Another collection of subsets of S must be, 

found as the domain of PX. Such an appropriate collection is a a-algebra 

of subsets of S. 

An algebra (or Boolean algebra) of sets is a collection oof subsets 

of S, such that 

(i) A U B is in ,whenever A and B are, 

(ii) A' = [t: t ES, t A]is inA whenever A is. 

An algebradtof sets is called a u-algebra or a Borel field if every union of 

a countable collection of sets in dis again inX[Royden, 1968, pp. 16-17]. 
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If for simplicity S is identified with R, we are then primarily concerned with 

sets of the form (x; a:x5bl, [x; a <x<b}, ix; a x), Jx; x < bi, etc. 

Such sets can be constructed from complements and countable intersections 

-and unions, of closed. intervals-of R. The -smallest-aalgebra .that-contains.the 

closed intervals of R is called the Borel sets 03of R. We have now constructed 

a triplet R,f, PX, called a (probability) measure space, and consisting of 

the set of possible values R that the random variable X may obtain, and a 

collection 13 of subsets of R, on which a probability measure PX is defined. 

However, the mathematical context of the random variable itself has not 

been defined yet. The idea of a set of values R "obtained" by the random 

variable leads to the identification of R with the range of a function which is 

consequently identified with the random variable. But a function further needs 

a domain, and such a domain is constructed through the introduction of an 

abstract space & of elements W, together with a c-algebra v4of subsets of ( 

and a measure P defined ond, i.e., a probability space LP,,, Pl. 

Now the random variable X can be defined as a function X: Q - R, and 

furthermore a measureable function, i.e., a function satisfying 

X-1 (B) = [t:X(t)GB)E=_A foreveryBE 25 

This means that the inverse image under X of every Borel subset of R 

belongs to the o-algebra dof subsets of 2 measureable under P. Up to now 

we have a mapping 

IC: (0,A47 P1' [11,1 

but the measure P induces a measure PX on , (the measure we have been 

originally interested in) through the relation: 

PX(B) = P(X'(B)) for every BE 

The probability measure PX is called the distribution of the random variable X. 
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2.3 Integration, Expectation and Moments of a Random Variable 

A concept related to measure is that of integration. As a matter of 

fact, it was questions in integration theory that historically gave rise to 

the study of measure theory. An exposition of integration theory is beyond 

the scope of this work, and we shall therefore take for granted knowledge 

of the definition of integrals of the form 

f (w) dP(w) , AE and fsO(W) dP(W) 

A 

where P (W) is a measurable function p: Q -- R. 

Definitions of these integrals and related discussions on integration 

and measure can be found in several texts [Pitt, 1963; Royden, 1968; 

Kolmogorov and Fomin, 1960; Burril, 1972]. For the random variable 

X: tf,A, P3 -4 [R,73, PX}, we have 

f X(w) dP(W) = fx dPx(X) (2.1) 

~R 

the latter being a Lebesgue integral. To transform this integral into a 

Riemann-Stieltjes one, we need a description of the measure %X. Such a 

description becomes possible through the introduction of the distribution 

function FX(,) of the random variable X, defined as 

FX(X) = P[IW; X(W) 9X] = Px(-00, X] 

When FX(X) is properly defined, then PX is defined for all sets of the form 

(-oo, X1, and consequently for every set BEa. This follows from the fact 

that B being a Borel set can be written as a union and/or intersection of as 

many as countable sets or complements of sets of the form (-co, X], and 

from PX being countably additive. 
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Now 	 the expectation of a random variable X is defined as 

+00 

E{I 	 f X(W) dP(w) - fx dPx(X) fX dFx(X) 

92 	 R - (2.2) 

the latter being a Riemann-Stieltjes integral. The definition can lie 

extended to any function P(X), such that the composite mapping PoX: (2 R 

is a measurable function 

E{I(X) = f (X(w)) dP(w) = f (X)dFX() 

- o (2.3) 

In the particular case that fX(X) = FjX) exists and is continuous, 

expectation can be defined by means of a simple Riemann integral 

E I P(X) f o(X) fX (X) d X (2.4) 

-00 

fX(X) is called the (probability) density function of the random variable. 

Among the admissible functions qp(X), the following are of most 

interest: 

(a) 	 The identity function o-(X) = X, giving rise to the mean Px of the 

random variable X 
Ix 	 -=E [X) 

) n, (b) 	 Functions of the form P(X) = (X - .X n = 1, 2, ... , giving rise to 

the nth central moment of X 

MX(n = E[(X - AMx 

For 	 n = 1 we have trivially MX(l> 0, while for n =2 we obtain the 

variance a 2 of X:IX 
&x = E I(X - tx ) J = E [X _ p2 
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* Not any arbitrary function FX(X) , (or fX(>)), corresponds to some random 

variable X. FX(X) must have the properties 

FX(-c ) = 0, FX(+c ) = 1, FX(a)r Fx(b) fora < b 

(i.e., Fx -(X)is nondecreasing), and if ai < < ... < an < ...a2 is a 

sequence of reals with lim an= a, then 

lir Fx(an) = FX(a) 

i. e., Fx is continuous in the left. 

Up to now only a single random variable has been considered. For a 

number of random variables XK, X2, ... , Xn, we can construct a vector 

K [Xi, X2 ... , Xn] T and the mapping X: ( -- Rn is called a random 

vector. 

We have taken here all the random variables X, to be defined on the 

same underlying probability space [1,of, P). 

For a real valued function p (X), (qp: Rb-> R), the corresponding 

composite function p (o (.)), ( ("X: Q R), is a random variable (provided 
p o X is measurable), and its expectation is simply defined as: 

E I P(X)} f P(X(w)) dP(w) (2.5) 

If we define the distribution function 

FR(X) = Fx(X1 ,X 2 ,..,Xn) = P{W; Xl(w)<Xi,..,Xn(w) Xu 

(2.6) 

and if the density function 

- an Fy ( X1 i2,...,k 
f R(X ) = f (Xa,X2 ,..,X ) K (2.7) 

~X1 \X2 .. 

exists, then 
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+oo+oo +oo



E f)--If ... ] (:) f3(0)dX-1 dX2... dX, 

-oo-o - (2.8) 

2.4 Stochastic Processes 

The concept of a random variable is the probabilistic counterpart of 

the deterministic concept of a real valued constant. A similar counterpart 

to the deterministic concept of a function is provided by the concept of a 

stochastic process (or random process, or random function). 

We now introduce the following notational convention: For a given 

function y(t, s) (y: T X S -- Y) of two variables t CT and sE S, we denote5 ~ t5


by yt and y the mappings y : S- Y and yS: T- Y resulting by fixing t or



s respectively in y to a constant value.



A stochastic process J (t, W), t ET, WE n2 is a mapping 4: T Xn-- R, 

where T is an index set and [ , I1a probability space. For every fixed 

t G T, the corresponding mapping 4t: 0( , R is a random variable, while for 

-fixed Wthe mapping T T -: R is an ordinary function with domain T and range 

in R. For the various fixed W values the corresponding deterministic functions 
- 4(t) are called the sample functions of the stochastic process. 

If q) denotes the set of functions p: T -> R, then a stochastic process 

(t, W) can be alternatively viewed as a mapping i: ( -, i.e., as a 

"function valued" random variable. In our discussion we shall take T to be 

the set of reals R or some interval in R. If T is the set of positive integers 

N+, the term random (or stochastic) sequence will be used. If T C R, then 

the corresponding mapping 4(t, w) will be called a random field. 

In a description of a stochastic process, the probability measure P 

corresponding to the probability space [C,4Vt, P) is usually not given. 

Instead the joint distribution function of the random variables t (ti),( (04), 

. (O) is given for any finite set of values ti, t2 , ... , t, in T: 
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Ftlttu ( , 2,..,X) = 

= 3 t'j (W3) A1 ~Z )L 2 , ~ tf() 

(2.9) 

Such a given family of distribution functions corresponds to some stochastic 

process, provided the two following properties are satisfied [Kolmogorov, 

1950]: 

(a) 	 If P1, P21 .... p is a permutation of the indices 1, 2, . n, then 

' 'F 	 ,t ,tp ,.-t(X, X,, .. ,X,) = 

F t t 2V x Xt 

= 	 F, tlt,.,t ,X, ... ,X,) (2.10) 

(b) 	 If we let the variables X j+, X ... , X. approach infinity (1 r j < n), 

then 

= 	 Fctl t2 (,A ,...,X) 	 (2.11) 

The 	above finite dimensional distribution functions of the process determine 

a good deal of the structure of the probability measure P but by no means 

all 	of it. For a discussion on this interesting problem we refer to [Lauritzen, 

1973], where further references to the literature are also given. 

With the help of the distribution functions or the corresponding finite 

dimensional density function (provided it exists), 

'9, t, -,...,tn tltt.. , (2 , 

(2.12) 
aX1 2 ... 
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we can now define a few more useful concepts. 

The mean value function g (t) of a stochastic process 4 (t, W0) is 

defined as 

%(t) = E{ (t,W)} f X dF4,t( X) fX f ,t(X) dX 

R. (2.13) 

t value, the (constant valued) mean jzi of

random variable t(W) is defined in the usual way, and then the function 

is constructed by letting t vary over the whole set T. 

The (auto) covariance function C4 (t, s) is a mapping C: T X.T R, 

defined as 

c (ts) = E { [ ((w) /.LW(t) j [ ) jL(5) ] } 

Strictly speaking, for a fixed ofhthe 

(2.14) 

The (auto)correlation function is a similar mapping defined as 
R (t, s) -E s(w)} (2.15)4t(W) 

A stochastic process with finite (auto)covariance is called a second

order stochastic process. Obviously, 

C0(t,s) = Rc(ts) - 44 (t) N(s) (2.16) 

Given any stochastic process (t, Wo), a new stochastic process (t, 0) 

(t, w0) - 4 (t) can be constructed with the properties 

A-( 0 and C'(t,s) = R'-(ts) 

Given-two stochastic processes x(t, (0) and y(t, W0), their cross-correlation 

and cross-covariance functions are simply defined as 

R y(t,s) = E {xt(w) yS(w) (2.17) 

and C xy(.t,s) = { [ xt(Go) - 41x(t)] [ yS(Go) - py(s) I 

(2.18) 
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The autocovariance function has the following two properties: 

(a) Symmetry: C(t, s) = C (s,t) 

(b) The covariance function is positive in the sense that 

EL a, aj C(ti,ti) 0 

I 3 

for every set ti, ta, ... , tn G T, and any set of constants aL, a2 , 

In a more familiar form, if we consider a matrix C with elements 

n
Cij = Cg (t1 , t3 ) and any constant vector aER , then 

C = C and a T C a z 0, 

i. e., the matrix C is symmetric and nonnegative definite. 

2.5 Stationarity and Ergodicity 

If the index set T of a stochastic process 4 (t, W), t E T is taken to be 

the real line R, and its physical interpretation that of time, then questions 

about the time invariance of the probabilistic structure of the process lead 

to the concept of stationarity. 

A stochastic process 4 (t, 0)) is called strictly stationary if the finite 

dimensional distributions of the process have the property 

F4 , ... ,t,. . Xn) = F ,tr, ... ,t + r. ) 
(2. 19) 

for every r (=T R and every finite set t1 , t2 , ... , 

A second-order stochastic process 4 (t, W)) is called weakly stationary 

(or wide sense stationary, or second-order stationary) if the mean value 

function A,4 (t) and the,(auto)correlation function of the process R4 (t, s) have 

the following properties: 

A M)= 11 (t+T) and R (ts) Rl(t+r',s+ ), foreverytET. 
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This directly implies that (t) = A = const., and that 

R(s) = R (t- s, 0) = R (t-s) 

The same property follows directly for the (auto)covariance function 

2 

CO(t,s) = R(t-s) - C9(t-s) (2.20) 

Every strictly stationary stochastic process is also a weakly stationary 

process, but the converse is not generally true. A class of stochastic 

processes, such that weak stationarity implies also strict stationarity, is 

that of Gaussian stochastic processes. 

A stochastic process g (t, w) is said to be Gaussian if for any set 

ti, t2 , ... , tu G T, the corresponding random variables 

t t 2 , 

have a multivariate Gaussian joint distribution. 

Another important concept associated with the physical interpretation 

of the index set T as time is that of ergodicity. Probabilities, according to 

the limiting frequency approach at least, are associated with infinite ensem

bles of events. However, we frequentlyhave to deal with a unique process and 

not an ensemble of such processes. For stationary processes whose 

probabilistic behavior is invariant with respect to time transformations, an 

infinite ensemble may be conceptually constructed from time shifts of the 

original process. Ensemble averages can thus be replaced by averages over 

the time domain. 

A stochastic process g (t, W ) is ergodic if its probabilistic structure 

can be determined from a single realization W(t). We need concern our

selves here only with the correlation function of the process. An estimate of 

the correlation function of a stationary process can be obtained by averaging 

a single realization over a time interval [-T, T] 
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RT( ) ] (t+T) (t) dt (2.21) 

-T 

Obviously, 

E [R ( ")] = R(T) (2.22) 

and if 

linr RT(T) R( T) (2.23) 

T-4c



the process is said to be ergodic in (auto)correlation. 

2.6 Linear Spaces -- A Geometric Overview 

A great deal of mathematical entities of a diverse natura (real 

numbers, vectors, functions, random variables, etc.) have a lot of structure 

and properties which only appear to be different. Their similarities can be 

brought to light if we deprive them of their particular characteristics and 

study them in a unified way based on their common ones. To identify such 

common characteristics a great deal of abstraction is necessary. Qualify

ing mathematical entities may be viewed as "points" in a "space" which is 

an abstraction of our familiar three-dimensional Euclidean space. The 

abstract counterparts of common geometric notions such as distance, length, 

angle, orthogonality, projection, etc. become then powerful tools of analysis. 

We shall present here only a short account of some basic "geometric" 

results from linear algebra and functional analysis, culminating with the con

cept of a Hilbert space. 
17 



A linear space X is a collection of mathematical entities which we 

shall call elements, x, y, z, ... , together with two operations called 

addition and multiplication by a scalar, satisfying in connection with the 

field -of reals--R-the following axiom-si 

(a) 	 x + y = y + x 

(b) 	 x + (y + z) = (x + y) + z 

(c) 	 there exists an element 0E X, called the null element such that 

x + 0 = x for every x inX 

(d) 	 for every xEX, there exists a unique element (-x) such that 

x + (-x) = 0 
(e) 	 a(bx) = (ab)x for all xEX and a,bG R 

(f) 	 a(x+y) = ax + ay 

(g) 	 (a+b)x = ax +bx 

(h) 	 lx = x, 1CR 

The fundamental property of a linear space is that linear combina

tions of any finite number of its elements are also elements of the space 

(linearity property). 

A set of elements x1 , i = 1, 2, .... n of a linear space is said to be 

linearly independent if the relation 

Z 
21 

ai xi 0 

holds only if aj = 0 for all i. 

A set of elements x1 of a linear space X is said to spantX (or to be a 

spanning set of X) if every element in X can be expressed as a linear combi

nation of the elements xi. 

A set of linearly independent elements which also spans a space X is 

said to be a basis for X. 
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The number of elements in a basis of a linear space X is called the 

dimension of the space. Alternatively, the dimension of a space is the 

maximum number of linearly independent elements in the space. 

A linear space X is called a normed linear space if to each x G X 

corresponds a real number 1x Iihaving the following properties: 

(a) Ix I1 0 

(b) lxii = o ifand onlyif x= 0 

(c) laxil - jal lxijI forevery aGi 

(d) llx+ yl li-li + 11y11 (triangle inequality) 

1xii1 is called the norm of x. 

A metric space is a set of elements such that for every pair of 

elements a real valued function d(x, y) is defined, called the metric of the 

space, and having the following properties: 
>
(a) d(x, y) 0 

(b) d(x, y) = Oifandonlyifx=y 

(c) d(x, y) = d(y, x) 

(d) d(x, y) + d(y, z) d(x, z) 

The metric is an abstraction of the usual concept of distance while the norm 

is an abstraction of length. Every normed linear space is also a metric 

space with the following definition of the metric 

d(x, y) =x -y l 

A linear space X is called an inner product space iffor every pair of 

its elements a function < x, y>, called the inner product of X, is defined with 

the following properties: 

(a)<x+y, z> = <x, z> +<y, z> x, y, zGX 

(b)<x, y> <y, x> 

(c)<ax,y> = a<x, y> aER 

(d)<x,x> 0 and <x,x> =Oifandonlyif x=0 

Every inner product space is also a normed linear space with norm defined 

as 11x 1 = < x, x >i and, consequently, also ametric space. 
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It is essential to realize that the definition of a certain inner product 

(or norm, or metric) is by no means unique for a certain linear space. On 

the contrary, it may be possible to define a number (not necessarily finite) or 

inner products (or norms, or metrics) over one and the same linear space, 

thus giving rise to a number of different inner product spaces (ornormed 

linear spaces, or metric spaces). 

The angle 6 between two nonzero elements x, y of an inner product 

space X is defined by means of 

cos 6 = <x, y>/Ilx[] IIy][ 0 0 7T 

For 6 = 1/2 we have <x, y> = 0, and we say that x and y are mutually 

orthogonal (x I y). 

A set of elements xi of an inner product space X is called an 

orthogonal set if<xi, xj> = 0 for i/ j and <x 1 , x,> # 0. A similar set 

xJ* is called orthonormal if it is an orthogonal set and, in addition, 

< xl*, xi*> = 1. A basis with orthogonal (orthonormal) elements is called 

an orthogonal (orthonormal) basis. 

Given a set of orthonormal elements x1* of an inner product space X 

and an arbitrary element y C X, we call the series 

Xi

the Fourier series of y with respect to the set xi*. For an orthogonal set 

xI, the Fourier series of y is 

< y, x >z Xi 

Given two elements x, y of an inner product space X, we call the element 

1ix - 2 < y, x > x, the projection of y on x. The Fourier series of an 

element y with respect to an orthogonal set xi, is therefore the sum of the 

projections of y on the elements xi. 
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A subset M of a linear space X is called a linear subspace of X, if M 

is itself a linear space. 

Given a sequence x, of elements of a metric space X, we say that the 

sequence converges to an element x of X if lir d(x., x) = 0. This is con
i*m



vergence in metric, and since normed linear spaces are also metric spaces, 

we can also define convergence in norm by lim Ix - xj = 0. 

A sequence of elements x, of a metric space X is called a Cauchy 

sequence, if for every E> 0 there exists an integer NE such that 
<d(x., xi.) E for all in, n t NE. 

A metric space X is called complete if every Cauchy sequence in X 

has a limit also in X, i.e., if it contains the limits of all its Cauchy sequences. 

Since inner product and normed linear spaces are also metric spaces, we can 

define two new types of spaces: 

A complete normed linear space is called a Banach space. 

A complete inner product space is called a Hilbert space. 

Let X be a metric space and S a subspace of X. The closure of S 

denoted by S is the set of all limits of convergent sequences of S. A subset 

S of the metric space X is called closed if = S, i.e., if it contains the 

limits of all its convergent sequences. A subset S of the metric space X is 

called dense inX if 1 = X. A metric space X is separable if there exists a 

countable dense set in it. A separable Hilbert space contains a countable 

number of elements such that the subspace they span is identical to the 

Hilbert space. 

Let H be a (separable) Hilbert space and M a closed linear subspace 

of H. An element x E H is said to be orthogonal to -M (x J-M), if it is 

orthogonal to every element y of M. The set 1lW of all elements of H 

orthogonal to M is a closed subspace of H, called the orthogonal complement 

of M with respect to H. One can show that for every closed M, H is the 

direct sum of the orthogonal subspaces M and M, and we denote this by 

H = M @MW. This means that any element x of H can be decomposed In a 
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tunique way x = X + x , so that x E M and xL' MI. ^ is called the projec

tionofx onM, andwedenotethisby i =%M(x). Wealsohave x'=x-x =PM-(x). 

Let x. be a fixed element of a linear space X, and let xi, i = 1, 2, 

.... ,,n bea.set of linearly independentelements- of X. The -set of-all -linear 

combinations of the form 

Xo + a± x, , a ER (224) 

is called a linear variety of dimension n. A linear variety is the space of 

elements x = x. + x', where x' belongs to M, the subspace of X spanned by 

the set x±. A linear variety Vmay be viewed as a translation of a linear 

subspace M by a fixed element xo, and we write symbolically V = x. + M. 

Let xj be a set of n linearly independent elements of an inner product 

space X and c a set of n real constants. The set of all elements y of X 

satisfying 

<y, x, > = ci for all i (2-25) 

is called a hyperplane P of co-dimension n. 

Let y. be a fixed element of P. For every element y of P we have 

<xi, y-yo> = <xi, y> - <xi, Y.> = cj - c1 = 0. Itfollows that 

y - yo I M, where M is the subspace spanned by the set xi. Every element 

y E P can be written in the form y = y0 + y'wherey' = y - y, EM', and 

thehyperplane P can be viewed as a linear variety P = yo + M'. 

A functional is a mapping with domain a linear space X and range the 

set of reals R. A linear functional is a functional L with the property 

L(ax + by) = aL(x) + bL(y) wherex, yEX anda, b ER. IfX isanormed 

linear space, a linear functional L on X is said to be bounded if there exists 

a constant M (= R, such that L(x) < M i x 11for all x EX. A linear functional 

L over a normed linear space X is said to be continuous if for every sequence 

x, of X converging in norm tox CX, L(x )-) L(x) in the usual sense. A 

linear functional over a normed linear space is bounded if and only if it is 
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continuous. Given a narmed linear space X, the set of all bounded linear 

functionals over X is itself a normed linear space X*, called the normed 

conjugate or dual space of X, with norm defined as 

IL(x) j 
IAL = s u li(2.26)xGx IxI 

For any linear bounded functional L over a Hilbert space H there exists a 

unique element xL of H, called the representer of L, such that L(x) = 

< XL, x > for every x C H. We usually denote the dual space of H by H* and 

write x*, y*, z *, ... for elements of H* with representers x, y, z in H. 

Let H be a Hilbert space with inner product < * , " >, H * its dual, 

and (Q, , P) a probability measure space. A mapping x: (-* H is said to 

be a Hilbert space-valued random variable if 

y (xW) = <xW, y> (2-27) 

is an ordinary random variable for every y* E H* (or equivalently for every 

y EH, where y is, of course, the representer of y*). 

2. 7 Best Linear Approximation and the Normal Equations 

The problem of best linear approximation may be defined as follows: 

Given a normed linear space X and a closed linear subspace M of X, find 

the element Aof M which best approximates a given element x of X, in the 

sense that 
x - y I = m n II x - y II (2.28) 

yEM 

To solve the problem in a Hilbert space, consider the unique decomposition 

of x into itq projections on M and M1 : 

= x Xx x, x HM(X, X PM (X)



For any arbitrary element y G M, we have, takinginto account that x Lx',
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= lxx-yIIx'12+1^-y11 2 (2-29) 

The first term is fixed and the second, nonnegative; and therefore [ix - y 112 

=is minimized by setting y y = x = tM(x). The projection of x on M is 

the closest element to x among all elements of M in the sense of the norm 

of X. Furthermore, the best approximation always exists and it is unique. 

If X is an inner product space and M the span of a finite set of n 

elements xi, the best approximation x to an element x of X from M can 

be written as 

X al xi 

I 

where the n coefficients a± are to be determined. Since x EM and 

x - i E M', we havex '- x x for alli; and<x -x, x> = 0, or 

L a < , x >= <xi, x> (2.30) 

These are the "normal equations," and can be written in matrix form as 

follows: 

>< X1, X, > < X1, X2 .... < X, VxX > al< Xl X > 

>< xZ X1 > < X2, X2 > .... < X2 Xn a2 < X2,X > 

< X,,El > < x,,x 2 > .... < xn 2xn> an < XnX > 

or in compact notation 

Ga = u (2-31) 

vhere G is called the Gram matrix. If M has dimension n then the elements 

x forming a basis for i are linearly independent, and the Grain matrix G is 

nonsingular. A unique set of coefficients can be obtained by 

a = G-2u (2-32) 
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The distance of x from its best approximation i (interpreted as the "error 

of approximation") is provided by the induced metric 

d(x, X) = Ix-xll 

It can easily shown that 

jj1 XZII9_ 112i=JxII X 11 1 a aj <x1,xj > 
i jT T G-1 

112x -a 11,G a = x _ U G' u (2.33) 

If M is of dimension less than n, then the Gram matrix is simgular; and the 

set of coefficients a, cannot be uniquely defined. However, the best approxi

ination exists and is unique; and the normal equations have infinite number of 

solution a,, each of them giving rise to the same best approximation x 

al xi. 
i 

A related problem is that of finding the element of minimal norm 

among the elements of a linear variety or a hyperplane. This can be viewed 

as a problem of best approximating the null element 0 from a linear variety 

or hyperplane. 

Given an inner product space X and a linear variety V = x. + M in X, 

we can decompose each element y of V as 

=Y = +Y, ^ = PM(Y), Y' M.(Y) 

Since y I y', 

11y112 = 2 + Ily'll, (2-34)II9+y,11, +]gll

We can further show that y is the same for every y EV, as follows: 

Consider two elements Yi = x0 + Y1, Y2 = xO + Y2 of V, where Y1, Y2 G M. It 
=follows that yi - y2 y1 - Y 8 M. Decomposing as usual, 

y. = y1+ y, Y2 = Ya + Yy, Y1 2 M, yi, YsM 
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we have that 

y1 - y 2 E M, yi -y2 EM 

and 

=Y1-Y2 (Y-sy) - (Y.-Y2)EM



.
But since yl, Y2 ML, we also have yi - y2 EM This is only possible if 

Y - Y2 = 0, andyi = y2. 

To minimize 

11y11 = IIIl2 + 1y,/1 (2-35) 

where 11/112 is fixed and 112I is nonnegative, we must set g = 0. It follows 

that the element of V with minimal norm is the unique element 

y = Mj"(y) for every y E V. 

In the case of a hyperplane P described by 

<y, Xi> = Ci i= , 2, ... , n yGP 

we can write P as a linear variety P = y, + ML, where y. is a fixed element of 

P and M is the span of the set x1 . The element y' of P with minimal norm is 

then given by the unique projection of any element y E P on (M' )' = M 

Y' =PM (y) 

To determine y', consider any element y of P. Then y' = FOM(Y) = 

S a, xi can be found with the help of the normal equations 

r aj <xj, x3 > = <Xi, y> (2-36)
J 

Since y E P we have < xi, y > = c, so that the normal equations become 

ai <xi, xi > = C (2-37) 

or, in matrix notation, G a = c. The elements xI are linearly independent so 

that a = G1 c uniquely determines y = aI xj. 
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The importance of the normal equations in solving estimation problems 

can hardly be overemphasized. In the next chapter we shall apply them in 

deriving a number of apparently different algorithms. 
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3. ESTIMATION TECHNIQUES

3.1 Introductory Remarks 

The objective of any analysis of geodetic data is to obtain optimal 

values for observables differing from actual observations because of 

measurement errors, for parameters functionally related to the above 

observables, and, in the most general case, functions related to observables 

and/or parameters. The essential question, of course, is what are the 

optimality criteria to be satisfied by such optimal values. 

Before establishing specific optimality criteria, we must notice that, 

in general, the optimal values sought are associated with some corresponding 

"true values." Although such true values are difficult to define and even 

impossible to materialize in practice, we can nevertheless draw the following 

general outline for any reasonable optimality criterion: Optimal values should 

be as close as possible to true values. 

Both optimal and true values may therefore be modeled as elements in 

an abstract mathematical space (i.e., a set of such elements), where, in 

addition, the concept of distance is defined enabling us to determine how "close" 

any two elements of the space are. But such a mathematical model is pro

vided by the concept of a metric space where a metric or distance is defined 

for every pair of elements. The choice of a specific metric corresponds to 

the choice of a specific optimality criterion. 

We shall mostly confine ourselves here to a specific (but nevertheless 

of wide applicability) kind of metric spaces, namely, linear complete'inner 

product spaces (Hilbert spaces), where the metric p (x, y) follows from the 

definition of the corresponding inner product through the relation 

P(xy x-y f{<x-y$x-y >} 
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In such a mathematical setup, we shall find our problem of obtaining optimal 

estimates to correspond to the problem of best approximating an element of 

the space from the elements of some linear subspace. The solution to this 

problem is given by the celebrated normal equations, and computational 

algorithms will always result from applications of this solution. The result

ing algorithms may well be drastically different, but our common approach 

of solution will provide us with a unified view, where similarities ad dis

similarities between what is usually considered to be different estimation 

techniques can be sharply identified. 

Such an analysis can, of course, take place at the algorithm level, 

where by proper algebraic manipulations one can show how different 

algorithms can be derived from a common starting point. Such approaches 

can be found, e.g., in [Liebelt, 1967, Chapter 5] and in the recent work by 

Krakiwsky [1975]. It is our belief, however, that little is to be gained from 

approaches where the connection between different algorithms is explored 

without reference to a unique underlying problem formulation and solution. 

It is hoped that the approach taken here will contribute to the understanding 

of varying estimation techniques, especially since the geometric character 

of Hilbert space techniques is more appealing intuitively, after familiariza

tion with these mathematical tools is attained. 

We have used the term estimation techniques repeatedly here, although 

estimation is usually connected with statistical and probability concepts com

pletely absent from our discussion. Indeed all the probabilistic notions one 

needs can be condensed in the definition of the inner product involved, and 

they are only involved in justifying the optimality of the corresponding metric 

as an appropriate measure of "closeness." 

A more appropriate term might have been "adjustment techniques," 

but unfortunately this term is already connected to some specific algorithms. 

The solutions to our problems are quite independent of the specific 

inner product definition. However, the corresponding computational 

algorithms result by replacing the specific Inner product into the general 
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normal equations solution, and are, therefore, related to both probabilistic 

concepts and deterministic mathematical tools from approximation theory. 

3.2 Least Squares Adjustment 

Among various estimation techniques, least squares adjustment is the 

one most widely used in geodesy since the time of its development by Gauss. 

There is, therefore, very little to be said about algorithms associated with 

least squares. Usually these algorithms are derived from variational 

principles, as solutions to the problem of minimizing a quadratic form. Such 

an approach solves the problem but has little to offer to the understanding of its 

mathematical context and its relation to other techniques. 

Instead, we shall approach here the problem from a Hilbert space 

point of view, and we will show how particular algorithms can be directly 

derived from solutions to problems already considered in Chapter 2. 

The notation will generally follow that of Uotila [1967], with some 

minor changes of signs, so, that our results can be easily compared to the 

variationally derived algorithms if that work. 

3.2.1 Method of Observation Equations (Adjustnent by Elements) 

The problem to be solved here can be described as follows: A finite 

set of unknown observables represented by a vector L* E R , is a priori 

known to be in a linear functional relation 

L* = AX (3.1) 

with a vector X E Ru representing a finite set of unknown parameters, where 

A is a known n X u matrix with n > u. 

A vector L of available (known) observations L differs from L* 

because of the presence of unknown observational errors V, according to 

= =L L* + V or L AX + V (3.2) 

This linear matrix equation (observation equations) is satisfied by an Infinite 
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number of pairs of values of the unknown vectors X, V, since to every element 

X in R corresponds some element V = L - AX in R. Among all such possible 

pairs of solutions X,V, we seek to find one X, V = L - AX, which minimizes 

the quadratic form 

VTPV = (L - AX)QP (L - AX) (3.3) 

where Pis a given positive definite n X n matrix. 

Setting y = AX, .=At, we can reformulate our problem as follows: 

Let - be the n-dimensional complete inner product space (Hilbert space) with 

elements n X 1 real vectors and inner product 

< f, g> = g Tpf f, g E (3.4) 

Let A, denote the ith column of the matrix A. Obviously LEA, ACE/ 

for i = 1, 2, ... , u and since 

AI (3.5)yz A X X i 
 

1=1



it follows that ycA, where M= span (A,, A2 , ... , A,). The least squares 

criterion VTP V = min can now be written as 

VTP V = < V,V > V 112= i L-y II = min
(3.6) 

We seek to find y3 AE such that 

L- mj I L-y II (3.7)rain 
 
yEA 

But this is a problem of best approximating LE I from the elements of the 

linear subspace A.C, 

The solution is well known to be provided by the normal equations 
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<Ai,Ai> <Ai,,A 2 > ..... <Ai,Au> Ii < L,Al > 

<A 2 ,A 1 > <A 2 ,A 2 > ...... < A 2 , A, > X2<L 

<A,,Ai> <Au,A 2 > ..... <Au,Au> Xu < L, Au> 

(3.8) 

To derive a computational algorithm from this solution, we make use of the 

inner product definition; and after replacing < At, Aj > Ai PAj = A PAi 

and < L, At > = AiPL, we obtain 

T TTTA 1 PA AP A 2 ... AIPAu R1 Al P L
 

A 2 PA± ATPA 2 ... ATPAu 2 AP L



: . : : •(3.9) 

APAi A;P A 2 ... A;PA ku ATu P L 

or 

Al A j
 


P Ai A 2 ... Au,] X = P L



AU AUI



or simply 

AT(A 
T'PA)X = PL (3.10) 
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If the columns of A are linearly independed, then Ar PA is a nonsingular 

matrix so that we may obtain 

= ( AT P A)' AT p L 	 (3.11) 

y = A X = A ( AT P A)' AT P L (3.12) 

V = - L - A ( A P A)' A' P L 
(3.13) 

a set of 	 well-known results! Compare, e.g., with [Uotila, 1967, Section 

3. 	 1]. 

The solution is illustrated in Figure 3. 1. The XI's are the coordi

nates of the best approximation y to L, from the subspace.4, with respect 

to the basis [Ai ] in this subspace. We also have .LA as it can easily be 

verified 

ATPAA T4ATPA..,TPAT
V PA [ V=T PA, V P A...... PAu 

T = (		 - LT PA (ATP A)' AT ) PA = 0 (3.14) 

i.e.,VTPA 0 = <A, V> or VA-A 1 i=l, 2, ... ,u, and 

3.2.2 	 Condition Equations 

In this problem a set of unknown observables L* E it Is a priori 

known to satisfy a linear relation 

B L* 0 	 (3.15) 

where B is a known m X n with m < n and rank (B) = m. A corresponding 

set of known available observations L E it differs from L* because of the 

presence of unknown observational errors V E R, according to the relation 

L = L* + V 	 (3.16) 
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V 

Figure 3.1 The Geometry of Least Squares Adjustment 

(Observation Equations) 
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Since B and L are known, the vector W = B L is also known and in view of 

BL* = 0, it satisfies the relation (condition equations) 

BV = W (3.17) 

It can be shown that since rank (B) = m< n, the matrix equation BV = W has a 

solution and, furthermore, an infinite number of solutions. Among all 

vectors V satisfying BV = W, we seek tb find one V which minimizes the 

quadratic form VT P V where P is a given positive definite n X n matrix, 

To reveal the geometry of the problem in a Hilbert space context, 

we use the transformation 

B= 1p' BT



(B is now nX m), so that 

W= BV = BP PV=BPV (3.18) 

t
If Bi denotes the ih column of B, we have 

BPV = (3.19) 

Introducing the Hilbert space L of n X 1 real vectors with inner product 

<f, g> = gT Pf g, fE/ (3.20) 

we can write the above relation in the form 

<B, V> = Wi (3.21) 

=
Since rank (B) m, we also have rank (B) =m and the columns B1 are 

linearly independent. It follows that V satsifies BV = W if it belongs to 

the set 

H = IV;.<Bi, V> =Wfori=1, 2. ...., m (3.22) 

The set H can be directly identified as a hyperplane of co-dimension m in/. 

If N = span [B1 , Bg, ... , Ba 1, then the hyperplane H can be identified with 

a linear variety, with the help of the unique fixed element V0 F (V) for 

every V & H (see Section 2.7), 
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=
H = V; V Vo+V', V'E N'] (3.23) 

For any V in H we have the orthogonal decomposition V = V0 + V', where 

Vo E N isfixed, V' E N ± , and, therefore, Vo L V'. 

Using-the Pythagorean theorem, we may write 

vPv = <v, v> =-IIV2 = ILvo112 +IIv'11 2 (3.24) 

Since Vo is fixed, the above norm is minimized for V' = 0, and our solution 

to V PIV = min is V = Vo. To find explicitly this value, we consider any 

element V G H, and we have 

V = Vo -HN(V) (3.25) 

Since N = span (BI, B, B), this projection is provided by the normalm.., 

equations 

" B1,I 1 > < B1,B2 > ... < ii,B. > al <B1, V > 

<B 2 ,B,.> <B 2 ,B 2 > ... < B,Bm> a2 <B2,V> 

< B,,1> <B,B 2 > ... <B,.,B,> ax <B,,V> 

(3.26) 

and 

V= a1 B (3.27) 

Using the definition of inner product inIand the fact that < B,, V> = 

p V = W, for anyVE H, we obtain 
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B2 P [ B1i,B2,.,B.n] a W, or (B PB) a = W 

(3.28) 

1 BT "Since B = - , and introducing M = BP BT, we get 

BP-PP'BTa = BP'B Ta = Ma W (3.29) 

and 

Bj at = B a = P B a (3.30) 

1=1 

Since the rows of B are linearly independent, M is invertible so that 

a = 1 W (3.31) 

and 
¢= p- BTM 1W (3.32) 

a well known result! Compare, e.g., with [Uotila, 1967, Section 3.2]. 

The solution is illustrated in Figures 3. 2a and 3. 2b. 

3.2.3 Generalized Model 

A more general least squares model is a combination of observation 

and coadition equations of the form 

=W AX + BV (3.33) 

where W is a known nX 1 vector, A and B are known nxu and nXm matrices, 

respectively (rank (B) = n, rank (A) = u, u < n < m), and X and V are unknown 

u X 1 and m XI vectors, respectively. 

Among all possible pairs X, V satisfying AX + BV = W, we want to 
A A A 

find one X, V such that V minimizes the quadratic form VTP V, where P is 
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Figure 3.2 a 	 The Geometry of Least Squares Adjustment 
(Condition Equations) 
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Figure 3.2 b 	 The Geometry of Least Squares Adjustment 

(Condition Equations) 
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a given positive definite n X n matrix. 

We shall solve this problem through the following device: For every 

fixed X we shall find the unique Vx minimizing Vt PV among all V satisfying 

BV = Wx where Wx = W - AX is a fixed vector. Then by letting X vary over 

, we shall find the unique vector V minimizing V PVx among all thee 

previously obtained vectors Vx. In this way V will also minimize VTP V 

= among all vectors V belonging to pairs X, V satisfying AX + BV W. The 

only objection to such an approach is that there might exist two pairs X1, V 

and X2 , V, both satisfying AX + BV = W and with X1 X2. This possibility 

can be ruled out by subtracting AX 2 + BV = W from AX1 + BV = W to obtain 

A(Xi - X2 ) = 0 and noting that Ay = 0 implies y = 0. Indeed, since rank (A) 
n 

= u, the columns Ai of A are linearly Independent and 0 = Ay = 1=Z1 yi A, 
implies y± = 0 for all i, so that y = 0. 

To proceed with the solution we fix X to obtain 

BV = WX where Wx = W - AX (3-34) 

This is simply a condition equations model, and VTP V is minimized by 

=V = P' Bt M' Wx P' BT M-1 (W -AX) (3.35) 

where


1 B T

M =BP-

Introducing 

P' B M-' W and A = P-1 BT M - A 

we obtain 

Vx 1 - AX or L = XX + Vx (3.36) 

This is an observation equations model and the answer to the minimization 

of VT PVx (and consequently of VTPV) is given by V = T_-WX where 
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X (TpA XTpi-

S TAM' B P' p- BT MI A-)- AT M-1B P- PP- B7 V = 

AT M' A)' AT M I W , (3.37) 

and 

L A p-1 BT M-1 W B M-1 A 

= -BT M-1 (W -Ak) (3.38) 

These are exactly the results we obtain through variational approaches as it 

can be seen by a comparison with equations (123), (120) and (122) in 

[Uotila, 1967, p. 57]. 

3.2.4 Probabilisitic Justification of Least Squares 

The philosophy of least squares techniques can be summarized as 

follows: A vector of n observables is a priori known to belong to a set of 

vectors satisfying a certain mathematical model. The linearity of the model 

leads to a linear subspace or hyperplane of R as the set of vectors satisfy

ing the model equations. We shall call this set the "model space." When a 

vector of n observations corresponding to the vector of n observables in 

question is realized, it is in general found to be outside the model space 

because of observational errors. It is only natural then to suggest as an 

estimate of the observables an element of the model space which is as close 

as possible to the observations vector. This approach incorporates the 

anticipation of observational errors being small or at least not arbitrarily 

large. What is more arbitrary is the introduction of a certain metric, which 

depends on an arbitrary symmetric positive definite weight matrix P, through 
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p(x,y) = 11x-y U = <x-y,x-y> = {(x-y) T P (x-y) 

The above P-dependent inner product introduces a certain geometry and 

turns Ii" into a Hilbert space Lp. 

The selection of the estimate of the observables depends on the 

metric, i.e., on the matrix P, and is therefore arbitrary to the extent 

that P is arbitrary. 

The question of metric optimality, i.e., of the selection of an 

optimal weight matrix P, finds an answer when the observational errors 

are modeled as random quantities with zero expectation and finite variance

covariance matrix. We shall examine each particular least squares method 

separately in this respect. 

Observation equations. The model now becomes probabilistic. The 

unknown observables L* E R relate to the unknown parameters X E Ru by 

L* = AX where A is a known n Xu matrix with rank (A) = u. 

The actually-obtained (known) observations 12 relate to the unknown 

= ,observation errors V ) by L L* + V where V' is considered to be an 

outcome (i.e., a value for some fixed W) of a random vector V(W) with zero 

mean E [V) = 0, and known covariance matrix E [Wf TI = S. Accordingly, 

L2 is the outcome of a random vector L(W) =AX + V(W), with unknown 

mean E [L = AX + E[VI = AX, but known covariance matrix 

Et(L -AX)(L AX)T] = E[VVTJ = S (3.39) 

The deterministic model related to outcomes of the relevant random 

variables is 

L0 = AX + V' (3.40) 

where Te, A are known, and X, VO are unknown. This is the usual obser

vation equation model, and minimization of (V c)T PV Wleads to an estimate 

Xp ofX 

X, = 
T

(A TPA)' 
Tp I?

A3PL.41) 
3.1 
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where the subscript P of X pdenotes the dependence of the estimate on the



weight matrix P used. By letting w vary we obtain



Xp(W) = (APA)"'A T PL(w) (3.42) 

= so that XP Xp is the outcome of the corresponding random vector Xp(W). 

Xp (W)has unknown mean 

E t( p(w) (ATP A)'IAT P EtL(u)] = 

_(AT PA)' AT P AX X (3.43) 

but known covariance matrix 

Q [(AT PA)-' ATp] S [(A T P A)-' AT p] 

(AT PA)' AT p S P A (AT P A)' (3.44) 

We say that 4 is an unbiased estimate of X to denote that xt is the outcome 

of a random variable Xe (W) whose expected value equals the true value of X. 

A particular choice of weight matrix P = S"1 leads to an estimate 

X$ of X, which is the outcome (X3 = X.) of a-corresponding random vector 

Xs(W) with 

EfX3 w) = X (3.45) 

and covariance matrix 

(A T S' A ) " Q = ' AT S' S S' A (AT S ' A)' = (AT S'A)' (3.46) 

It can be shown that 

Qs QP for any qualifying P 

in the sense that for two square matrices A and B, A B if the matrix A- B 

is nonnegative definite. See, for example, [Deutsch, 1965, p. 62]. 
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If now q is a scalar parameter linearly related to X 

q = 3 di Xi dT x (3,47) 

we have the following estimates of q and their correspoiding variances: 

qp = d Xp = Qp d 

(3.48) 

qs 
A 

= d 3 S = dT
T 

Qs d 

Since Qp - Qs is nonnegative definite, we have that: 

dT ( Qp - Qs) d 00 

so that 

dTQp d > dT Q 3 d and a2> (3.49) 

This means that the choice of weight matrix P = S =' E [VV T leads to a 

minimum variance estimate for any scalar linear function of the parameter 

vector X. 

Another statistical property shared by any least squares estimate of 

a linear function of X is unbiasedness 

E ( w) = X (3.50) 

=
E f p(a)q^ = E [ d' Xp(w ) 3 dT [ p (d) = dT Id = q 

.51) 
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Condition equations. The deterministic model 

BV' = W' (3.52) 

(B, W3 known, V(O unknown) refers to outcomes of corresponding random 

vectors V(W), W(W). V(W) has zero mean E[VI = 0 and known covariance 
=T = S. It follows that W(W) has zero mean E{W BE[V] = 0matrix EVVU 

and known covariance matrix E fWWTI = BS BT. For any choice of weight 

matrix P = D"1. the least squares estimate of V(O is 

V= V DD B B D BT i l W O (3.53) 

Letting w3 vary, we obtain the related random vector 

T T -1 ( 

V(o) = D B (BD ) W(w) (3.54) 

with E t V(W) I = 0 and covariance matrix 

E 4(3) VT( ; DB TT (.BDBT ) BSBT(BDBT)-B D (3.55) 

The vector Wc is related to observations L° through W' = B L- and L 

corresponds to unknown observables L* by means of LW = L* + V') where 

B L* = 0. An estimate I,* of L* can be obtained by means of 

LL L V (3.56) 

The error of the estimate L* is defined to be 

e * L (L Vt , ) (L L0 V 4)) = _ Va e 

(3.57) 

The corresponding random variable e (63) = V(W) - V(W) has zero mean, and 

its covariance matrix Q, is easily found to be 

=Q, DBT (BDBT )'BSBT (BDB T )'3BD- DBT(BDBT)'IBS 

T ) ' B DSB T (BDB + S (3.58) 
..... "44





Using the matrix identity from [Liebelt, 1967, p. 30, equation (1-53)], 

" ACAT - BAT -	 AB T 	 (A-BC ) C (A-BC )T - BC'BT 

(3.59) 

1" with A - DBT (BDBT) , C BSBT and B -- SBT,	we obtain 

) - SB (B SBT )'] (BSB T )I
Q [DBT (BDB 

[DBT (BDB')' - SB'(BSBT)I] - SB T (BSB T )'BS +-S 

(3.60) 

Vollowing the reasoning of [Liebelt, 1967, Section 5-3, p. 139], Q, can be 

minimized in the sense that yTQ0 y yT (minQ)y for any y G Rn,by a choice 

of P such that 

DBT (BDBT )I _ SBT (BSB ) = 0 	 (3.61) 

i. e., by choosing P = S 1or D = P- = S. For this choice we have an estimate 

of V: 

W TT ).I WW
 

V =V : SB (BSB (3.62) 

and the minimum covariance matrix of the prediction error e(W) becomes 

Qe = S- T (BSBT)I BS 	 (3.63) 

Again the choice P = S'related to the probabilistic structure of V justi

fies the least squares solution as a minimum variance of prediction error 

solution. 
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Generalized least squares model. In this particular case the 

introduction of probabilistic reasoning oversimplifies the derivation of 

the corresponding solution. The deterministic model is 

W-' = AX + BV' (3.64) 

with the corresponding random vector V(w) having zero mean E IV) = 0 

and known covariance matrix E [VVT ] = S. By setting e = BV, we obtain 

a model identical to the case of observation equations 

W(0 = AX + e' (3.65) 

=where the corresponding random vector e(w) has zero mean E (el 
=BE[VI 0 and known covariance matrix E feeT) = BSB T = M. The 

minimum variance solution corresponds to the choice of weight matrix 
T 1P = MA W 

X X = (AT M'A) A M W 

[ AT(BSBT)' A ] AT (BSBr)- WW (3.66) 

This is exactly the solution of the original model 

+ BV= A XW 

.corresponding to the weight matrix choice P = S"1 

3.2.5 Weighted Parameters and Stochastic Processes 

One particular case of least squares is when some or all of the 

parameters are considered to be random quantities with known expectation 

and covariance matrix. In the case of the generalized model we have 

W = A X + -BV= [ A G] = A X + G s + B V 

LI (3.67) 

46





with 	 E V 0, EL V- -VT = 

EL s I s, Et(ss) (s~ =TCa 

settings = U + s 	 (E[s] = 0), we obtain 

W - G s = 	 A X + [ G B] 	 (3.68)-

This can be written 	 after some obvious changes in notation as 

W A X + B V (3.69) 

with 

EEV = = 	 E, 

E LV VT =		 'T
E [Vs' E [VV' CY, CVY 

This is exactly a simple generalized least squares model with minimum 

variance solution 

X A M 1 A)' ATMW, where M= BSB 

(3.70) 

and corresponding covariance matrix 

Cxx = (A M'A) " (3.71) 

Usually the additional assumption Cv = 0 holds, so that 
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M [ G B ] = G C, GT + B CVV BT 
M G 0 CvV rBB 

(3.72) 

and 

)-1 ) " x [AT ( G C,, G' + B Cvv T A AT (G C,. G + BCvv w 

(3.73) 

In the particular case that B = G = I, and with some changes of notation 

- - =-s s, W'>x, V- n, C.s-, Cs, = C, Cvv Cnn D,O 0+D, weobtain 

X= (A T A)' A 6 - x (3.74) 

one of the results of Moritz [1972, p. 15, equation (2-35)], under an approach 

which he calls "least squares collocation," in connection with the model 

x = A X + s' + n (3.75) 

Equation (2-36) in Moritz [1972] can be similarly derived applying results 

from classical least squares (minimum variance) methods. As to the third 

of the results (his equation (2-38)), we will have more to say in Section 

3.3. 

The case where all parameters are random reduces to the method 

of condition equations 

==As+B V, E s s, E IV 0, s -s, 

E Is> 0,, EtssT'= CB., E VVTT = Cvv 

(3.76) 
We rewrite the model as 

W - Ai A s + B V [AB] j (3.77) 

or after some obvious change of notation 
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B V W, with E{V 0, 

(3.78) 

ECVV)}s -] = s 

E(-ST} Et--T c. ,.
LCv. Cv.J 

The solution is 

[jV = S BT( BSB T)I W (3.79) 

In the particular case that Cay = 0, we obtain 
s - C.. AT ( ACBA T + BCv -T1 W (2.80) 

V = Cv T (AC , At + -B On )-y W (3.81) 

Of particular interest is the simple case when A = B I (observing a set of 

random quantities s under additive white noise n (V -n)), 

W = S+n 

with solution • 

" s = CS (Cgs + C) ' W (3.82) 

We shall return to this equation in Section 3.3, in a somewhat different 

context. 

Up to now we have discussed random parameters without reference 

to how they might arise in an actual real life situation. As we have seen, 

unknown random parameters s with known expectation ' and covariance 

matrix can be reduced to random parameters s with zero expectation and 

known covariance matrix. 
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In a least squares context (with minimum variance justification of 

the metric used), the distinction between zero mean random parameters s 

and zero mean random observational errors V is strictly verbal! 

The solution algorithms -we-derived -are exactly based in this lack 

of differentiation between the two. However, the distinction is very real 

in the process of modeling a real life situation, i.e., in the process of 

arriving through scientific reasoning to a least squares probabilistic model. 

The reasoning behind modeling observational errors as random variables 

with zero mean is too familiar to be repeated here, but the case of random 

parameters needs some discussion. A linear least squares model arises 

when a set of observations corresponds to a set of observables known 

(modeled) to be in a linear (or properly linearized) functional relation to a 

set of unknown parameters. Some (or even all) of these parameters may be 

connected to some unknown underlying function (or a number of such functions) 

with a certain domain T. 

If the unknown function is modeled as a second-order stochastic 

process (usually called signal) with known mean value function and (auto)

covariance function, we may reason as follows: The underlying stochastic 

process is viewed as a mapping g: n - b, where [&I, af7, PI is a probability 

space and (D is the space of the sample functions of the process 4 (t, Wt). The 

connection of an unknown parameter sj to the underlying function is mathe

matically provided by the concept of a functional with domain 0), i.e., by a 

mapping l1*: 4 - R. If the composite mapping l" o 4: ( - Ris measurable 

with respect tothe probability space [ C,1 , P, then %'i = lt(C (t, 0)) is a 

random variable. The whole set of such random variables forms a vector 

s; and if the mean and covariance matrix of s can be induced from the known 

mean value function and covariance function of the stochastic process 

(t, w), we have arrived at the models we considered at the beginning of 

the section. 

Of particular interest is the case when the space of sample functions 

4Dis a Hilbert space and the functionals It belong to the dual space ,* i.e., 
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the set of linear bounded (continuous) functional on tD. We will have a chance 

to return to this case later on for a more rigorous treatment of the problem. 

3.3 Linear Least Squares Prediction 

In linear least squares adjustment (observation equations), the 

original estimation problem is mathematically modeled as linear best 

approximation problem. A known element of a space is best approximated 

from the elements of a known subspace. However, the known element to be 

approximated does not appear explicitly in the solution (normal equations). 

Instead, only its inner product with the elements spanning the subspace of 

approximation need to be known. 

We have already exploited this fact in the case of condition equations, 

where we have obtained the solution by best approximating an unknown 

element V from the elements of a subspace N. The additional condition 

that V should belong to a certain hyperplane H provided us with the knowledge 

of the values of the inner product between V and any of the spanning elements 

inN. 

Based upon this key observation, we shall now examine an estimation 

technique where an unknown element is best approximated from the elements 

of a known subspace, and the necessary information for the solution is con

tained in the a priori knowledge of the inner product values between the 

unknown element augi the spanning elements of the subspace. 

Inu the case of least squares adjustment techniques we started with a 

deterministic solution based upon an arbitrary inner product (arbitrary 

weight matrix), and finally the particular choice of a statistically meaningful 

metric (choice of P-1 = E [VVT) led to statistically meaningful results 

(minimum variance solution). Here we shall follow an exactly reversed 

path. We shall start with a statistically meaningful metric (inner product) 

and a minimum variance solution to finally obtain a deterministic solution 

with a corresponding weight matrix. 
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Because of this duality (deterministic-probabilistic prediction), we 

have chosen the title-"linear least squares prediction," instead of the usual 

"minimum variance or minimum mean square error prediction, "also follow

ing the terminology in [Doob, 1953, Chapter 12] and in [Cramer and Lead

better, 1967, Section 5.7]. 

3.3.1 	 Probabilistic Approach (Minimum Variance or Minimum 

Mean Square Error Prediction) 

We shall first present the method in a somewhat abstract context, 

and then proceed to show its connection to real life estimation problems. 

The proper environment for our method is a space with elements 

square integrable real valued random variables (i.e., random variables 

(c) with E (tI(Wc)122 < . ). If the random variables are defined on an 

abstract probability space { ,at, P3, we shall denote this space of square 

integrable random variables by E ((, X, P). This space can be turned into 

a Hilbert space by introducing the inner product 

<x(w), 	 y(w)> = E tx (W)y(c) ) 	 (3.83) 

j4 2 (p,.f, P) can be shown to be a linear space and the correlation of two 

elements can be easily shown to satisfy the defining properties of inner 

product. It can also be shown that )C (f, , P) is a complete space (see 

[McGarty, 1974, p. 136]) and consequently a Hilbert space. 

Given a set of random variables x±($)EZ 2 (t2,s*, P), i = 1, 2, ... , 

n, we denote their. span by MGC 2 ( A, P). For any other random variable 

"'y(W)e ( ,A, p), we want to find the best approximation y( ) to y(w) 

from M. The answer is well known to be 

9(w) 	 = FM(y(W)) 

Since y (W) 8 M, and if we further assume that the random variables x1 (Cc) 

are linearly independent, there exists a unique set of constants a,, such that 
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n 

y(W) a, xi (W) (3.84)



1=1 

The constants a, are determined from the normal equations 

< x1 , Xl > < X1 , X2 > ... < X , X, > al < X, y > 

< X2 Xl > < X2 , X2 > ... <X2, X, > a 2 < xa, y > 

< x,, Xl > < x.,X2 > ... < X, X, > a, <xt, y > 

(3.85) 
Inmatrix notation 

Cxx a = Cxy (C, is nxn, Cr is nxl ) (3.86) 

where Cx = E( xl(w) xj(w) 3 

and [ Cy]i = E( x,(w) y(w) 

Introducing the matrix notation 

'C [ x 2, ... , X ,IT 

we have



Cxx= E iX , C y = E R y), a CO "X C x,



= a, x, a x (3.87) 

A -l 

and y Ccy C xS (3.88)
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Let us now examine how such a problem may arise in practice. 

Suppose we observe the values of a function s(t) at certain points ti, I = 1, 2, 

n, and w6 want to predict its value at some other point tp. The observa

tions -and-the value -to-be-predicted-correspond to-functiona-ls- on some function 

space containing s(t) called evaluation functionas and of the form 

it(s) = s(t) i = 1, 2, ... ,n 

and (3.89) 

1"(s) = s(tP) 

If the unknown function s(t) is modeled as a second-order stochastic process 

s(t, w) (signal), then the evaluation functionals on the sample function space 

define random variables 

it(s) ssti (w) (3.90) 

The observations xi are outcomes of the random variables s (Wc). The 

outcome corresponding to st P (W,)remains unknown and is approximated 

by the outcome corresponding to the projection of st P (Wc) on M = span 

[S (.(W)1 

tit



9P a, x1 aaT j(.1
 

where a = CS Cap and = Ctp CTx 

The elements of the matrices involved are 

[C an IIj E[ st'(w) stJ( w)1 r(ti,t3) 
(3.92) 

[ Cap Ii Et st±(w) st (cc) I = r( t, tp ) 

(3.93) 
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where r(t, s) is the correlation function of the stochastic process s(t, w). If 

s(t, W)has zero mean, then r(t, s)is its covariance function. From a given 

process with known mean value function, we can always construct one with 

zero mean (see Section 2.4), and we will, therefore, assume that the 

stochastic processes involved are zero mean, without loss of generality. 

In the more general case, our model might involve not one but a 

number of second-order stochastic processes of known autocovariances and 

cross-covariances (when correlated). The observations and prediction(s) 

need not necessarily correspond to values of these processes at certain 

points ti, tp. The only conditions on their nature is that the corresponding 

functionals 1* on th6 sample function space Dof the process induce mappings 

1o P: f-* R (P: 9-? 
which are measurable with respect to the probability '), 

2space fc,aE, P1 (i.e., random variables) and also belong toI (fA. P) 

(i.e., they have finite variances). 

The Hilbert space where the approximation of stP(w) from the sub

space M takes place need not necessarily be 2 (n,A, P). It can be replaced 

by a Hilbert space ;2 (s(t, W), t e T) with the same inner product and 

defined as the completion of the space L(s (t, -W), t G T) of all random 

variables u(cc) which may -be written in the form 

k



0 stj c 1 5 R (3.74) 

1=1 

/2 (s (t, W), t ET) contains all elements in/(s (t, W), t ET) and the limits 

of sequences of such elements. For more details, see [P~arzen, 1959, p. 

259]. 

Of particular interest is the case where one of the processes involved 

x(t, W) has sample functions in some Hilbert space H, and any other process 

y (t, c) has sample functions also in H, related to those of x(t, W)through 

a bounded linear operator L:H H 

y = L tx'] (3.95) 
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Any bounded linear functional f* on H has a representer f E H 

f* (x ) = < x, f> (3.96) 

If g is a functional acting on y (t), with representer g, then 

g (y') = <yO, g> = <Lx , g> (3.97) 

If we introduce an operator L* called the adjoint of L (see [Taylor, 1958, 

Section 4.9, p. 249]) and satisfying 

<Lx, y> = <x, L* y> (3.98) 

we obtain 

g*(y) = <Lx, g> <x, L*g> = <x, h> = h*(x) (3.99) 

where 

h = L* [gi 

We need, therefore, deal only with the process x(t, w) and linear bounded 

functionals f* G H*, the dual space of H. 

3.3.2 Deterministic Approach (Collocation) 

In this section we shall examine a deterministic prediction technique 

introduced by Krarup [1969], in relation to the prediction of quantities 

related to the gravity field of the earth, and usually referred to as (exact) 

collocation. We shall follow Tscherning [1973] with a little more emphasis 

on Igeometry. 

Strictly speaking, collocation is a technique for finding a solution to 

a differential equation with insufficient boundary data. The differential 

equation admits an infinity of solutions and sufficient boundary data determine 

a unique solution among all possible ones. Insufficient boundary data restrict 

the candidate solutions to those satisfying the boundary conditions. Colloca

tion is then a technique for determining a solution which is the smoothest, 

in some certain sense, among all solutions satisfying the boundary conditions. 
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Here we shall approach the problem without reference to any 

differential equations. We shall simply assume that we observe the values 

of bounded linear functionals on some unknown function f belonging to a 

Hilbert space H, and we want to find an estimate f of f, such that 

1fftl = rain JIfJl (3.100)
fCP



where P isthe set of functions in H satisfying the conditions imposed by 

the observations. 

Let the observations di, i = 1, 2, ... , n correspond to bounded 

linear functionals lt on H (1E H*) with representers 11 C H 

di = It(f) = <f, I> i=1, 2, ... , n (3.101) 

This set of equations can be directly identified as a restriction that f should 

belong to a hyperplane P in H, which can alternatively be described as a 

linear variety, with the help of the unique element go = PM(f), for every 

f E P (see Section 2.7, p. 25): 

P = fg; g=go+g', g'EM' 1 (3.102) 

where 

M = spanfl, i=1,2, ... , n] 

The situation is now similar to the case of condition equations in linear least 

squares adjustment, and the element fo e P with minimum norm is provided 

by 

f= PM(g) (3.103) 

where g is any element in P (see Figure 3.3). Since fo E M, we have 

fo a 1 (3.104) 

and the coefficients aj are provided by the normal equations: 
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Figure 3.3 The Geometry of Collocation 
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<11,11> <11,12> ... <1 ,I=> a <1 1 ,g> di 

<12,1> <12, 12> ... <12,l> a 2 <1 2 ,g> d2 

. .. , > aI] <lng> d n< I, ll> <i1,12>
L L 114> 

(3.105) 

or, in matrix notation, 

C a = d, with C, = <11,1j> (3.106) 

If the representers Ii are linearly independent, then C is nonsingular 

and 

a = C- d (3.107) 

We have, therefore, estimated the unknown function f by its projection on 

the "data sp ace," i.e., the space generated by the representers of the 

functionals corresponding to the available data. 

We are next interested in estimating the value of some other 

possibly different bounded linear functional 1p* on f. Its true value is 

dp = pM(f) = <if, p> (3.108) 

We can obtain an estimate using the estimate fo of f 

dp = p (fo) = <fo, ip> (3.109) 

The error of prediction is 

dp -dp = <f, lp> - <fo, Ip> = <f - fo, lp> (3.110) 

Since f E P and fo E P, we have that f - fo EM. If we decompose 
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= 'p 'PM + 'PM-- (3.111) 

where 

'PM = 0M (1p) and lpm E M' 

we obtain, taking intraccount-that also fo - M-, 

dp - p= <f-fo, IPM +lPM. > 

= <f-fo,lpM > + <flm- > - <fo,lpM- > 

= <f,lpM > = lM(f 

i. e., only the part of 1p in M" contributes to the error. If 1pM.= 0, i.e., 

1p G M, then dp - dp = 0. Especially when 1p = 11, then obviously l E M, 

and



di - d1 < f-fo,11 > = 0 (3.113) 

We have, therefore, recovered the original observations, i.e., the approxi

mation fo obtains the values observed. This justifies the name collocation 

as in the case of a differential equation solution. 

An alternative way to look upon the estimate is the following 

dp <f 0 ,lp > = <fo,1pM + lpp > <fo,IPM > + <fo,lpm > = 

S<falpM > = <f 0 -f +f, 1 PM > = 

- -< f- f,PM > + <f, PM > = < f, 1 PM > 

Hence 
A * 
dp < f , 1pm > 1pm f (3.114) 
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This means that the prediction corresponds to the true value of a functional 

1pM with representer (see Figure 3.4) 

IP= PM (lp) (3.115) 

Since fo = Z a1 li, we have for, the prediction 

dp <fo,lp> = <I: a 1 l1 ,1> = Z a1 <lI,lp> = 
I 

I 

<11,1P > 

[a. a2 ... a.] aI CP C a = C 0" d 

<In,l P > 

(3.116) 

where 

[ 0, <11,lP> 

To apply the method one must obviously know how to compute inner 

products between elements of the Hilbert space. Furthermore, the function 

f to be approximated is usually known to belong to a linear space which 

becomes a Hilbert space only after the introduction of an inner product. 

The choice of inner product is generally not unique and the same original 

linear space may give rise to different Hilbert space, different'geometries, 

and, consequently, different choices of approximations fo to the original 

function f. 

The problem of inner product choice remains open in a similar way 

as with the problem of choosing a weight matrix in the case of deterministic 
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linear least squares adjustment. Again the answer will be found by intro

ducing probabilistic reasoning to justify metric (inner product) optimality. 

We shall consider this problem in the next section where a link between the 

probabilistic approach (minimum variance prediction) and the deterministic 

approach (collocation) will be established. Before we do this we need to 

introduce the concept of a reproducing kernel in a Hilbert space. 

Let 	 H be a Hilbert space of functions f: T - R. A function 

k: T 	 X T- R is said to be a reproducing kernel k(t, s) for H if 

kt 	 .t	 -> R(a) 	 (s) E H for every t E T (kt (s) = k(t, s) denotes the mapping kt: T 

for fixed t) 

(b) 	 f(s) = < f, ks > for every s E T and every f E H (reproducing property). 

It can easily be shown that k(t, s) is symmetric, i.e., k(t, s) = k(s, t). 

For a Hilbert space H to have a reproducing kernel, it is necessary and 

sufficient that the linear functionals (evaluation functionals) 

= t (M f(t) for every f C H and t E T 

are bounded, i.e., t' E H*. (See [Aronszajn, 1950] and also [Lauritzen, 

1973, Chapter 4]). 

If e, (t), n = 1, 2, ... is an orthonormal basis for H, then 

k(t,s) = Z e,(t) e.(s 	 (3.117) 

We shall next apply the concept of a reproducing kernel to two particular 

cases of collocation. 

Case A: All functionals 1", lp* involved are evaluation functionals 

* 	 * 

1 1 (f) = f(t 1 ), Ip(f) = f(tP) (3.118) 

The representer I(s) of any functional I*G H* is related to the reproducing 

kernel by means of 
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i(s.) 1 (k s ) (3.119) 

For a proof, see [Shapiro, 1971, theorem 6.2.4.1, p. 85]. In particular, 

for evaluation functionals we have 

* ktS 

li(s) = l(k s ) = kS(ti) = (s) (3.120) 

It follows that, in view of the reproducing property and the symmetry 

of k(t, s) 

<11,1> = <ktkt > kti(tj) k(t , tj) (3.121) 

and, similarly, 

<1 i , 1p > = k(tj,t P (3.122) 

i. e., the elements of the matrices C, Cp are obtained by evaluating the 

reproducing kernel at the corresponding points 

Cjj = k(ti,tj), [ Cp] = k(t 1 ,t ) (3.123) 

Case B: The functionals l*, lp involved are of the form 

l(f Lfi)() , 14f) (Lf) 

for some bounded linear operator L: H -- H. 
-* -*g



Let I*, Ip denote the evaluation functionals of the previous case. 

Then 
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l 1 (f) = <Lf,11 > = <f,L li> (3.124) 

where we have made use of the definition of the adjoint operator L* of L. 

It follows that lI*has representer 
s
*-* _* k 

i, = L It = L li( ) = L kt± (3.125) 

Making use of the definition of the adjoint and the reproducing property, 

we obtain 

<11,13> = < L ktL kt > = < LL kt, ktj > 

( L ktt )(t ( LL* k)(tIt) 

(3.126)



In a similar way 

<= ( L L k)(t tP) (3.127) 

(L L k is a shorthand notation for Lt [L* k(t, s)], where subscripts of 

operators denote the variable on which the operators act.) 

The elements of the matrices C and Cp are obtained by applying the 

operator on the reproducing kernel, according to a "law of propagation" of 

the reproducing kernel. The similarity to the law of propagation of 

covariance functions of stochastic processes under linear transformations 

provides a "hint" to a stronger connection to be revealed in the next section. 

3.3.3 Relation Between Probabilistic Approach and Collocation 

I the two previous sections, we examined two ways of modeling and 

solving the problem of prediction of quantities related to an unknown function 

from observations related to the same function. At a first glance the two 
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approaches seem radically different. In the probabilistic approach, the 

unknown function is modeled as a second-order stochastic process s(t, W) 

and the prediction problem becomes an approximation problem in the Hilbert 

space ] (s (t, w)-), t E-T) C/12 -(&,g, P). In the deterministic approach, 

the unknown function is modeled as an unknown element f(t) of a Hilbert 

space H of functions x: T -- R, and the prediction is dominated by the metric 

induced by the inner product in H. Knowledge of the structure of the 

unknown function (e.g., continuity, differentiability) usually gives rise to a 

number of different inner product choices and, consequently, different 

Hilbert spaces H where the prediction takes place. 

The problem of inner product choice is equivalent to the problem of 

covariance function choice in the probabilistic approach. It will be shown 

here how a connection between a certain covariance function and a corres

ponding inner product may reveal the equivalence of the two approaches. 

Our main tools for this purpose are going to be the Moore-Aronszajn-Loeve 

theorem and the Karhunen-Loevo expansion of stochastic processes. 

The Karhunen-Loeve expansion is usually given for intervals of the 

real line, i.e., for stochastic processes (t, W), t E T with T = [a, b] C R. 

A formal exposition can be found in [Papoulis, 1965, p. 457], and a more 

rigorous treatment with an exposition of the conditions 9 (t, a)) must satisfy 

for the expansion to hold can be found in [Gikhman and Skorokhod, 1969, 

p. 188]. We shall give here a more general exposition of the Karhunen-Loeve 

expansion, without restrictions on the specific nature ofT, for the case 

where (t, a)) has sample functions in a Hilbert space and can be viewed as 

a Hilbert-valued random variable. We shall follow [Lauritzen, 1973, 

Chapter 6] and [Rozanov, 1968, Chapter I, Section 3] with a minor shift of 

emphasis from the dual space H* to the Hilbert space H itself, and without 

introducing the restruction of (t, a)) being Gaussian. 

A second-order stochastic process C(t, a)) ( : T x Q-> R) with 

sample functions 40 (t) in a Hilbert space 11 of functions x: T - R can be 

alternttively viewed as a hilbert space-valucd random variable : Q- , If. 
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Assuming without loss of generality that E ( 4 (t, W) ) = 0, the covariance 

function of 4(t, £0) is a mapping r: T X T ->R, defined as r(t, s) = E {t 45 J. 

Now, if we view 4 (t, £0) as a Hilbert-valued random variable, we have 

r(t,s) = E Itt( ) 1,( ) 3 (3.128) 

where It*, 1 E H* are evaluation functionals 

=it (x x(t) for every x E H 
* -* 

Let HT C H denote the set of all evaluation fanctionals in H* and define a 
mapping R* HT* X HT*- R 

* * a 

R (1t , 1. ) = r(t,s) (3z129) 

This mapping can be extended to the whole H* (R*: H* X H* -> R) by 

setting 
* * * 0 * 0 * * * 

R (1, i ) = El l (4 ) 11(4 ) for every l1,1 1H 
(3.130) 

Since each I* E H* has a unique representer 1 E H, we can define a mapping 

A: HX H - Ras 

R(1 1, ) R (lI lI) for everyl, !iEH1 

(3.131) 

can be represented by an operator R: H -* H by means of 

R01 ij) 1< li > (3.132) 

H 

Such a bounded linear operator has the following properties: 

(a) A is symmetric (self adjoint): 

4 
<?x =y> Efx( W) y*(4)] = Efy*(4W) x*(4 1= 

H 

= < ? y, x > = < xRy > (3J133) 
M H 

(See [Taylor, 1958, p. 324].) 
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(b) 	 k is positive (or positive semidefinite, or nonnegative), since it is 

symmetric 	 and 

<n x, x > = E [x*(Q5] 2 L 0 for every x GH. 

(3.134)



(See [Dunford and Schwartz, 1963, p, 906].)



(c) 	 R is a Hilbert-Schmidt operator. For a definition of the term, see



[Dunford and Schwartz, 1963,. p. 1010]. A proof thati is Hilbert-


Schmidt is given in [Grenander, 1963, p. 129], based upon corollary 3,



p. 1011 of [Dunford and Schwartz, 1963]. 

(d) 	 k is compact (completely continuous). For a definition of the term, 

see [Taylor, 1958, p. 274] or [Kolmogorov and Fomin, 1970, p. 239]. 

This property follows directly from the fact that* is Hilbert-Schmidt 

(see [Dunford and Schwartz, 1963, p. 1012, theorem 6]). 

(e) k has finite trace, i.e., if te. ) is a complete orthonormal sequence in 

H [Grenander,. 1963, p. 129]: 

<Re ,e> ~ E j< e. > ]2*! = _,IWI~H o 

n 	 (3.135) 

where t is restricted to the class of second-order Hilbert space-valued 

random variables satisfying the last inequality. 

Such linear bounded operators which are symmetric, positive, and 

have finite trace are called S-operators in the relevant literature [Prokhorov, 

1956, p. 172; Bharucha-Reid, 1972, p. 48;' Grenander, 1963, p. 129; 

Parthasarathy, 1967, p. 154]. 

Since &is symmetric and compact, we have the following theorem 

based on corollary on p. 251 of [Kolmogorov and Fomin, 1970] (see also 

[Taylor, 1958, p. 336, theorem 6.4-B; and Bharucha-Reid, 1972, p. 48]): 

Theorem: khas a sequence of cigenfunctions t en with corresponding elgen

values [X, ], such that fe, I is a complete orthonormal sequence 
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in H, and 

x - X, <x, e > e, for every x E H 
H 

n 
 (3.136) 

It follows from property (e) above that 

< 2e. e, > = < Xf en, e,> = 13 (3.137)
U 21 

n n n



and 
> 0X, -

Since 6 is positive, we also have 

< Xe., e, > = < X. e,, e, > = X 0 (3.138) 
4 H 

We shall refer to from now on as the "covariance operator" of €. 

Strictly speaking, & as defined here is "correlation operator," and becomes a 

covariance operator under the assumption that m =E 03 -0, where the mean 

element m e H of is defined by means of 

X (in) = Ej x(C) 3 for every x E H (3.139) 

If in , we can introduce a covariance operator C by means of 

*W * Ct) 

x,y > = Ef x ( -) y ( -m) 3, x,yEH
H 

(3.140) 

The representer Itof the evaluation functional 

lt(x)= x(t), x EH, 

has a Fourier expansion in H 
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It = en(t) e. (3.141) 

31 

since for every x EH we have 

lt(x) = < x, It > < x, E en(t) en>>HM 
n 

S < x, e, > e. (t) = x(t) (3.142) 
H 

n 

Applying the above theorem (equation (3-136)), we obtain 

Xn nR I t E <l1,e. > e, L X. e (t) e n 

n (3.143) 

It follows that 

r(ts) = < It, I > = < Z Xn en(t)e 3 ,E em(s) e, > 

- EL X31 e3 (t) em(s) < e, ,e, 
H 

- E 4n e.(t) e.(s) 6, = E e,(t) e,(s) 
n a n (3.144) 

have X U22 w Since &is positive we 0, and setting 3 =0 we obtain 

r(t, s) on 0(t) e.(s) (3.145) 
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For any fixed W, e E H and has a Fourier expansion 

S= 1 < , e > e Z C(w) e, (3.146)
H 

The functional dn* (4') =n (Wu) has representer d, = e. since 

< = d (C) . (3.147) 

and, therefore, 

E[ C(w) Cm(W) 3 < R e, e2 > (3.148) 

Since en is an eigenfunction of , we have 

e= )': e, (3.149) 

and consequently 

2 
Ef <~CX, e, e3, > = t < ej, ej > =at 613 

14H 
(3.150) 

The expansion 

4(t,,w) = ,.(w) e.(t)" (3.151) 

n 

*with mutually orthogonal coefficients 

E[ C± 4 = 0 for i/ (3.152) 

and



E[4 a~ 3.n3 

is called the Karhunen-Loeve expansion of 4 (t. Lu).
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We can now restrict ourselves to the study of positive definite 

covariance operators , such that 

<9x, x>H > 0 foreveryxEHandx$0 

Indeed, if Ris simply nonnegative, the Hilbert space-valued random 

variable can be written in the form 

=A + 8 (3.154) 

where 

9A = 9. e, (3.155) 
n, X,> 0 

and 

Ca = e. (3.156) 
n, Xn=0 

It can easily be shown that 

= E [ x*(O) y ('^ i (3.157)ICI 

This means that and CA are indistinguishable with respect to their second 

moments, relevant to prediction problems-and that can be replaced by 9A. 

We can also replace the original Hilbert space H with a new Hilbert space 
H', being the span of the cigenfunctions e. of corresponding to. strictly 

positive eigenvalues X. > 0. The new covariance operator *! of 9A is the 

restriction of R in H and is positive definite. With this in mind, we shall. 

assume from now on that R is positive definite and X, = 0.2 > 0. 

From the Moore-Aronszajn-Loeve theorem [Parzen, 1961, p. 965], 

we know that the covariance function r(t, s) generates a unique Hilbert 

space H(k) of which k(t, s) = r(t, s) is the reproducing kernel. 

We shall next determine the structure (inner product) of H(k) and 

its relation to the Hilbert space H. 
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If E,is an orthonomal system in H(k) and since k(t, s) is the



reproducing kernel, we must have



k(t,s) = or, e2 (t) e.(s) = ,En(t) cn(s) (3.158) 
n 	 n 

We can therefore 	 obtain an orthonormal system in H(k) by setting 

E,= a, en n=, 2, ... (3.159) 

Let f, g E H have 	 Fourier expansions 

f < f, 	 en > en = f. e , g g. en 
n 	 n



so that 

< f'g > n= gn (3.160) 
H



n



Cf, inaddition, f, g G H(k), we have 

< f, g > = < fn en, gk ek > 
H(k) 	 H(k)


n kc



-1 -1



'-E fn gk < an Eg,ak Ek > = 
tk 	 H (k)
 


ak t gk 6.k an gn.(3.161)a2 
n k 	 n



We have thus established a definition of inner product for elements of



11(k) that also belong to H
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>< f'g >() Or < f , e. > < g, e . (3.162) 

n 

We will next show that minimum variance (probabilistic) prediction in the 

sense-of-Section-3. 3.1- is equivalent-to detehfihistic predfction in a Hilbert 

space in the sense of Section 3.3.2. In both cases the prediction is given 

as a linear combination of the vector of observations d, of the form 

P = CT C d (3.163) 

The difference is that in the probabilistic approach 

= ' ' uC, [1( ) ( ) 3, [Cp]i E{l 1 (4 ) 1 ( W) 3 

(3.164) 

where li, l* are observation functionals and 1 the prediction functional, 

while in the deterministic approach 

Ci < 1 , 11[ CP] = < fI, lp >_ (3.165) 
H H 

where 1, 1j, lp are the representers of the i*, ij, i* functionals in some 

Hilbert space H. 

If H is taken to be the Hilbert space H(k) with reproducing kernel 

the covariance function r(t, s) of the stochastic process C(t, CC) involved 

in the probabilistic approach, it will be shown that 

) )E I(* lj( = < I >- (3.166) 

and consequently the results of both prediction approaches are identical! 

To establish the above equality, let x*, y* E H* be two arbitrary 

functionals in H* with representers x, y in H and x , y in H(k), defined 

as 

> (3.167)x (f) < f,x > < f, x 
H X (R) 

y f) = < f, = < f , yk > 
 (3.168) 
H R700


'74 



for every f E Hand also for f G H(k).



Let the Fourier expansions of f, x, y, x, y'in H (assuming X2,



ykHalso) be



f x= Z xne, = y e, 
n U 21 

x xn en, = Y en 

21 n 

Then, using the definition of inner product in H(k), we have 

< f, x > = f, xn = < f, X = Z f Xn (3.169)
(k)SH 

n n 

and similarly 

Z~~ ~y D (3.170) 

It follows that 

X x A = y. (3.171) 

and, consequently, 

-2 k yk j (ax)(aY) = 
<xk k 

y > n2 U n12 x .Y 

- (3.172)2 1 

U 

On the other hand, 

75





E yx () =W)Ef < W, x > < y > 3 = 
HH 

-Ef ( x.C ( 5E-CY k 
n 	 k 

6
E	SE Xn Yk Ef CI k 3 = 5Xn YkI On .k 

U k n k 

2 xn Yn (3.173) 
n n y 

The desired equality follows directly: 

Efx( ) y(C) = < xk ,'Yk > or x yo 
n (3.174) 

Let 1 denote the space of square summable sequences fl, f2 , . 

with 

f2 	 (3.175)
1 

n= 

Then 12 is isometric to the original Hilbert space 11, by the Riesz-Fischer 

theorem [Kolmogorov and omin, 1970, p. 153]. 

The space 12k of sequences fl, f2, . with 

22f < 	 (3.176) 
n1 

is isometric to the Hilbert space H(k). 
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Let us formally consider sequences as infinite vectors 

f [ f£, f ,... ]T 9 [ g, g2 , ... ]T (3.177) 

and also the infinite dimensional matrix P with p, = n 

P1 0 

0 P2 (3.178) 

0 

We can now formally write the inner products in H and H(k) as 

< f, g > = gT f , < f, g > = gT P 
H H(k) 

(3.179) 

This establishes a sort of analogy with inner products in finite dimensional 

spaces appearing in linear least squares adjustment techniques. An 

arbitrary choice of T gives a "weighted least squares" deterministic 

solution. An optimal choice can be made when probabilistic reasoning is 

used and P is taken to be the inverse of an infinite dimensional matrix 9 

=with elements Sj 32 6ij. S can be identified as the covariance matrix 

of the infinite vector 

•= 

of the Fourier coefficients of the corresponding stochastic process 
(t, Cd) 

S = E CT] .(3.180) 
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3.4 Minimum'.Error Bound Prediction 

As shown in the previous section, collocation solutions become 

probabilistically meaningful when the inner product is linked to the known 

covariance function of the stochastic process serving as a model of the 

underlying unknown function. In case such a probabilistic reasoning is not 

justified, or even when we just have no knowledge of the covariance function, 

a prediction can still be carried out with a more or less arbitrary choice of 

'inner product, corresponding to a "model covariance function.?" The result

ing variance of the prediction error is only a "model variance" and should 

not be used in drawing statistical inferences on the prediction. When 

probabilistic reasoning does apply and the true covariance function is 

known, then the prediction error variance answers the question: "How 

good is the prediction?" In a strictly deterministic context, a similar 

answer must be found if the prediction is to be of ,my use at all. We shall 

try to answer this question here. 

In a deterministic solution we cannot use variances (even though 

"model variances" can be computed), but a concept believed to be more 

legitimate is that of a bound of the prediction error. The error certainly 

remains unknown in general, but we might be able to ascertain that it does 

not exceed a certain bound in absolute value. 

Let us first see what a "model variance" of the prediction error 

corresponds to. Probabilistic prediction using a model covariance function 

k(t, s) corresponds to deterministic prediction (collocation) in a Hilbert 

space 11(k) with k(t, s) as its reproducing kernel. The model variance of 

the prediction error p 1' (t) - lp ( W) is given by 

2p E{ [lp( pa CO 2 } 

where 1P is the functional corresponding to the prediction and lp is its 

projection on the data space M* (the span of the function6ls corresponding 

to the observations). 
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As we have already established in the previous section 

H(k) 
(3.182) 

where 1p, are the representers of Ip, F* in H(k).Ap 

Suppose that in general we are given a set of observations corres

ponding to functonals l*,on an unknown deterministic element 4 8 H(k), with 

representers 1± in H(k); and we want to predict the value of a functional lp with 

representer lp in H(k). Knowledge of the values of the observations 

di 1" (C) = < 9,-l1 > (3.183)
'H(k) 

allows us to find the projection Co of g on the data space M = span (1., i = 1, 

2, . n). If x is an arbitrary functional with representer x, we cannot 
hri general compute x* (g) except when x E M. In this case, using the 

deconiposition 

0 , o C M, g' E M (3.184) 

we obtain 

x= <" ',x> = 0 (3.185) 
H(k) 

since 4' - x, and 

x*(g) = x* (Co + g') = x*(go) (3.186) 

We can compute x* (go), since Co is known. 

This leads us to seek a functional x* with representer x in M, so that 

we can compute 

d = x*(4) - (3.187) 

as an approximation'ta the true but unknown value 

dp = l (9) (3.188) 

For any x E M, the prediction error is 
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=Ep = dp-dp ip(t)- (t)= <Ipt > -<x, t > = 

= <l;-x,t > (3.189) 

Using the Schwarz inequality [Davis, 1963, p. 159], we obtain 

= Pl-,> 
H(k) 

12 j1X~~112 111 (3.190) 

and 

EP IlpP Ik II Ilk (3.191) 

We have thus found a bound for the absolute value of the error of prediction. 

An obvious criterion of prediction optimality is to try to make this bound as 

small as possible. t is unknown but fixed and cbnsequently 11t Ikis fixed. It 

remains to minimize 1lip - X Ilk, i.e., to find an elemint ^ G M, which satisfies 

111 - Ilk - in i n 1 1 - x Ilk (3.192) 
xCM 

The solution is well known to be 

A 

X= = M( I ) (3.193) 

This choice differs only in motivation from the collocation approach where 

is apptoximated by to = 2 M ( )' and then the value of any functional le) is 

approximated by p ( o). This follows from the fact already established in 

Section 3.3.2, i.e., 
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ilFo < 1, P ( )>c <.."PM > 

= < C,lp > = lp( ) (3.194) 
x(k) 

This approach explains why and in what sense the approximation Co to 

provides optimal estimates 4p (Co) of quantities Ip(C). The optimality 

criterion is minimization of the error bound 

1i'I!!p I 1 Ilk -

If in some way it is possible to obtain a bound for the norm of 

CIIk Mk (3.195) 

and computing 

2
0p .'lp - lp 2 (3.196) 

we have a bound 

p mk (,pM (3.197) 

When, therefore, a "model covariance function" is used, the computed "model 

variances" of prediction errors must be multiplied by the number M to obtain 

the square of the bound for the absolute value of the prediction error. 

Obviously Mk depends on the inner product in H(k) and consequently on 

the used model covariance k(t, s). 

We shall call Mk the "covariance model error bound number." We 

shall later return to the problem of finding Mlk in the case of predictions 

related to the gravity field of the earth. 
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3.5 Kalman-Bucy Filtering 

A linear filter is a transformation L of functions x, y: T - R, T C R, 

with two properties: linearity, 

L fax +-fly) = UL (x + fL (y (3.198) 

and "time" invariance, if 

y(t) = (Lx)(t) (3.199) 

x'(t) = x(t + T) = (U x)
T (t 

then 

y = Lx' = L x = UTy = UT Lx (3.200) 

and L U. = U L, i.e., the filter commutes with the "shift" transformation 

U.T 

We shall consider here linear filters having a time domain repre

sentation in the form of a convolution integral 

y(t) = (Lx)(t)= J h(u) x(t-u) du (3.201) 

-o 

The filter is completely determined by the kernel h(u), called the impulse 

response function of the filter. 

Linear filters may also be formally considered to transform stochastic 

processes x(t, w), y(t, W). A more rigorous discussion of some particular 

filters will be undertaken in Chapter 5. In the following discussion, we 

consider only stochastic processes; and we can therefore suppress the 

variable w without danger of confusion. 

Given an observed outcome of a stochastic process y(t) related to an 

unkmown stochastic process x(t) to be estimated, the filtering problem is to 

tind an impulse response function h(u), such that the output of the related 

filter with input y(t) 
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f(t) yt) = h(u) y(t-u) du (3.202) 

best approximates the signal x(t), in-the sense of minimizing 

E a[x(t) - X^(t)]2 3 for every t e T. (3.203) 

Since the observed function y(t) cannot be known for future values, we must 

restrict the admissible impulse response functions to those with h(u) = 0 for 

u < 0, for the related filter to be physically realizable. 

For weakly stationary processes x(t), y(t), with 

Et y(t) y(t+r) 3 = 4)'y(T) 

(3.204) 

E x(t) y(t T)T i = 

the answer to the minimization of E [ x(t) - x (t)]2 ) Vs given by the Wiener-

Hopf equation 

f 
a, 

OXY ( = h(s) .ye(r-s)ds . (3.205) 

0 

The concept of a process y(t) continuously observed over all its past history 

is clearly a mathematical idealization. Consider instead a vector y of a 

finite number of observations 

Y, = y(tI) i = 1, 2..., n (3.206) 

and the estimattoft of the value of x(t) at a certain epoch tp, ip = :(tp). The 

filter equati6n 

Xp j h(u) y(tp-u) du (3.207) 

0 
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should be replaced by a summation 

= 2) h(t-t 1 ) y(t) = E h, y1 'h y (3.208) 

In a similar fashion, the Wiener-Hopf equation should be replaced by 

*XY(tp t3 ) 1; h(tp -t 1 ) OyY(t -tj) (3.209) 

or in matrix notation 

CrY h= Cy, 	 (3.210) 

wher.e 

[Cyy1 Jj = *yy(tj-ti) Efy(t) 	 y(t 3) } 

- (3.211) 

[cy% ],Y = (tP -t,) = Ey(t1 ) 	 x(tp) 

and finally 

C CYY
1X y 	 (3.212) 

This is exactly the formula for linear least squares (minimum variance) 

prediction. We can consider the filtering problem and the Wiener-Hopf 

equation as a generalization of minimum variance prediction for continuous 

observations. 

Wiener [1949] and Kolmogorov solved in the early 1940's the problem 

of filtering a signal additively corrupted by noise, under the ass umptions of 

stationarity, ergodicity, and knowledge of the entire past of the observed 

process. Wiener's results were expressed in the frequency domain and 

could not be directly extended to the nonstationary case. The work of 

Kalman and Bucy extended Wiener's results to the nonstationary case and 
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a process observed over a finite time interval only [Kalman, 1960; Kalman 

and Bucy, 1961]. 

Kalman and Bucy considered the vector process to be estimated to be 

the state x(t) of a dynamical system described by a linear differential equation 

d x(t) 
d F(t) x(t) + G(t) u(t), x(t 0 ) = Xod t (3. 213) 

and an observed process

z(t) = H(t) x(t) + v'(t) (3.214)' 

where u(t)*andv(t)'are white noise zero mean stochastic processes with 

covariance matrices 

Ef u(t) uT (s) 3 = Q(t) 8(t-s) 

E £v(t) vT(s) 3 R(t) 6(t-s) (3..215) 

Ef u(t) VT(S)] = 0 

where 6 (t - s) is the Dirac delta function. xo is a random vector with 

E-x 0 3 , E ((x 0 -rm) (x0-rn)Tm j Q , E [xvT(s) 3 0. 

(3.216) 

The solution of the filtering problem *(t) is the minimum variance estimate 

of x(t) based upon the observed process z(t) over the interval [to, t] and is 

given by the solution of the following differential equation. (The most 

*compact notation xt, Ft, etc' is introduced in place of x(t), F(t),.... 

dxt 
S Ft xt + Kt ( - Ht ,t ) x(to) = o 

dt 
(3.217) 
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0 

where 

Rt = EI (Xt-Xt) (xt-x)T ] (3.218)Kt= Pt HTt Pt 

rand the error covar-iance matrix Pt is the-solution of 

dPt F7P t J P T -1P= +-F,= t + P, t - Pt t Rt Ht Pt G~t Qt t P Q

dt I 1 (3.219) 

The continuous observations case is hardly of any interest in geodetic 

problems where observations are discrete and finite in number. With further 

reference to [Bucy and Joseph, 1968; and Sage and Melsa, 1971] for more 

details, we turn our attention to the case of discrete observations, 

y(t 1 ) = H(t,) x(t) + v1 , i-1,2,..,n; Etvv T2 = Rj1 • 
(3.220) 

A solution for minimum variance estimates (ti) of x(t1 ) can be obtained with 

the use of least squares adjustment techniques, if the means and covariances 

of the random variables x(t1 ) were known. Estimates x(t) for epochs other 

than the observation epochs t1 can be obtained from i(tj) by least squares 

prediction• techniques if the mean and the covariance function of the signal 

x(t) were known. The required first- and second-order statistics of x(t) 

can be obtained from those of u(t) and xo. The solution to the state differ

ential equation 

dxt 
- Ft xt + Gt ut (3.221) 

dt 

is of the form 

t 

Xt ' (t,to) X0 + f O(t,.) G u d 

(3.222) 
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The definition of the above integral raises some problems that we shall 

examine in Section 5.2. P (t, s) is the state transition matrix obtained 

by solving the differential equation 

d C(t,to) = F(t) @5(t,t 0 ) , b(t.,to) 1 (3.223)
dt 

and using the transition property 

$(t,t 0 ) = (ts) '(s,to) (3.224) 

The required mean and covariance functions are 

'mt = Efxt =( '(t, to) m0 (3.225) 

=C ,x(t, s) = E t(xt-mt) (x,-n.)T 

min(t, s) 

= (t,to) Q, CT(s,t,) + )(t,) G Q G T(s, )f 
 
(3.226)t o 

Suhe a global approach (in the sense of processing all observations together) 

shows the relation to least squares techniques but has great computational 

disadvantages due to the necessity of inverting large matrices. The alterna

tive is a sequential solution where i (t± I ti), the minimum variance estimate 

of x(t) based upon past observations y(tj) (j = 1, 2, ... , i), is obtained from 

the similarly defined estimate i (t1-1 I ti-1). It is possible to obtain a global 

solution for xk(t1 I ti) using observations up to epoch tj only, and a similar 

global solution for i (t- 1 I ts- ), and then show the relation between the two.1 

However, this involves an enormous algebraic effort, and it is much easier 

to derive directly the one-step solution for obtaining i (ti I ti) from x (ti-1 I 
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First a discrete state model can be obtained 

(+1,i) xi + w1+ (3.227)x = 

by setting 

x, x(ti) (3.228) 

(i, j) = •'(ti, ta), and (3.229) 

ti 

G( ) u( ) d (3.230)W-f'(t 1 ,,) 

ti- 1 

6w1 is a white sequence with E [w± I = 0 and E [w wT I = j where 

tj



Q= f D(tj, ) G( ) Q( ) GT( T(t, d 

t - (3.231), 

A somewhat more general discrete state model is of the form 

xt+1= D(i+1,i) x, + r w 1 +1 (3.232) 

x (i + 1 I i + 1) = X (tj+L I t±+1 ) can be obtained from x (i Ii), the covari

ance matrix P(i I i) of the error in x (i i), and the observation 

y +, = H1 +1 xu+l + v1+1 (3.233) 

with the help of the following algorithm [Jazwinski, 1970, p. 270]: 
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P(i+1 i) = Z(i+1, i) P(i Ii) @,( 1 ~ 1 i) + r Q1+1 

K+= P(iIl H1++i)1 [ +1 P(iji) H+ +1 + R1 +1 

(i jl) = ^(i+li) + K 1 +1 [ Yi+ - H1 +1 x(i+lli)I 

P(i+lli+l ) =[I - K,+, H,+, P(i+lli) 

T 

[I-K+1 Hf+,] P(i+1Ii) [I-K+1 HI+1 ] T + KI+1 + KT+ 

(3.234) 

We shall next derive this algorithm with the use of the least squares



adjustment (condition equations) technique.



Consider that an a priori unbiased estimate i of xi is available, 

and C, is the a priori known covariance matrix of the error x, - xI. An 

a priori unbiased estimate H,+I of x+ I and the a priori covariance matrix 

C+1 of the error 6x+L = x+1 - x +i canabe obtained by simple propagation, 

x+ = (I+1,i) x 

(3.235) 

Cl'+'(i+1,i) Ci (I(i+li) + rQ±+ 1 
-T 

i . = 

The observation equations can be rewritten in the form 

l + yH+ -H+IX1+1 = H1 + 8xil + V+I = [H1+1 1 1 ]i+1 
[ V±+ 1 J 

(3.236) 
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where l1+1 is known and 6 x+ 1 has zero mean and covariance C1+1. Our model 

is of the condition equation type BV W (see Section 3.2.2) and the 

weight matrix of the zero mean vector 

6x1+1 C 1 0 
V= is P = - (3.237) 

L v 1 +1 0 R1+ 

The solution is of the form 

V =PI ' BT M 1 W (3.238) 

with M BP 1 Br. Applying this to our case, we obtain 

M = [ jI+1 I] [j= H+ C+1 J+1+ +[0 R+ 1 j (3.239) 

A 6*1+1 0 1+1M1 I + 

0 (3.240) 

Setting K±+i = Cj+1 Il+1 Mt, we obtain 

8xk+ = K1 +1 I1+3 = K1 +1 ( y1+i - H1±1 x 1 +1 ) 
(3.241) 

- ++I(i+1,i+1)66+ +1 = x i+K+iy(yI+I-H+ 1 x1+) 

K1+1 y +1 + ( I - K1 +1 H I+, ) x1+ 1 (3.242) 
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The covariance of yj+ if R±+i, and by simple propagation the covariance of 

the error inix(i+1 f 1+1) becomes 

=P(i+lli+l) Kj+3. Rj+1 KiT+I + 

T[ I - K +1 Hj+] Cj+1 EI -K1+ 1 H+I+ 1 

(3.243) 

Identifying xi, xi i, Ct, C t+i with x( i I i ), X^(i + 1 i ,P( i I i ) and P(i + 11[ i), 

respectively, the algorithm follows directly. 

This solves the filtering problem of finding an estimate ^ (i I i) of x1 

based upon past observations only. After Xi (nj n) is obtained, the estimates 

x (ij i) must be updated for the effect of future observations y±+a, Y±+B, *.., 

y, to obtain x (i I n). This is the smoothing problem, and finding x(tI n) for 

any other epoch t is the prediction problem. Refer to [Liebelt, 1967, 

Section g-8] for smoothing algorithms. 

Our main point here has been to show that for the case of discrete 

observations Kalman-Bucy filtering techniques are equivalent to the familiar 

least squares (minimum variance) adjustment methods. 
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4. 	 DETERMINISTIC AND STOCHASTIC MODELS OF



-GEODETIC PROCESSES



4.1 Introductory Remarks 

Physical processes related to geodetic work can be loosely divided 

into three categories. The first two correspond to the traditional objectives 

of geodetic research: Determination of the gravitational field "andthe shape 

of the earth. 

The first category thus includes the gravity field of the earth and 

processes that result from transformations of the gravity field such as 

gravity anomalies, geoid undulations, etc. 

The second category includes pr6cesses related to changes of the 

earth's geometric shape with time (station drifts, earth tides, etc. ) as 

well as to changes of the earth's position in inertial space (precession

nutation, polar motion, variations in rotational velocity, etc.). We shall 

coliectively call such processes "earth motion processes. " By similarity 

one might include in.this category processes related to'the motiori of other 

celestial bodies (lunar theory and librations, planetary motions, etc.) 

which might be involved in geodetic work. 

The third category includes "noise processes," i.e., processes which 

although of no direct interest (to the geodesist at least) still appear in experi

ments directed towards the determination of geodetic parameters and processes. 

Having in mind current techniques for obtaining geodetic data, we might 

mention atmospheric refraction, nongravitational accelerations acting on 

artificial satellites, and, of course, observational noises associated with the 

observing instruments themselves. 

The role that modeling of physical processes plays in the estimation of 

geodetic parameters is directly proportional to the accuracy of the available 
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observational techniques. In the presence of large observational inaccuracies, 

simple models, or even complete omission of the effect of the process, may 

be of no significant consequence on data analysis. In fact, advances in obser

vational accuracy made possible the discovery or identification of processes 

whose existence had been preestablished by theory. 

Recent advances in observational techniques necessitate the use of 

more sophisticated models if the objective of a "centimeter level geodesy" is 

to be realized. 

Among models for processes which appear to be of critical importance 

in view of present day observational techniques, we shall outline here the two 

which we consider mostimportant--the gravity field and the rotation of the 

earth. 

4. 2 The Gravity Field of the Earth 

4.2.1 The Model 

The gravity field of the earth is usually divided into two parts: a 

reference field (normal gravity potential) and the anomalous or disturbing 

potential. The disturbing potential T is known to belong to the class of 

functions harmonic outside the surface of the earth and regular at infinity 

(disregarding or including the effect of the atmosphere in the reference field). 

It is also known from Runge's theorem (see [Krarup, 1969]) that T may 

be approximated arbitrarily well, in a certain sense, from members of the 

class of functions harmonic outside a sphere contained in the earth's interior 

(Bjerhammar sphere), and also regular at infinity. Such functions may be 

expanded into a series of spherical harmonics 

ZeZf(P) = e.. (P) (4.1) 

n=O =-n 

where 
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+1 2(2 + ) Pnj(Cos 6p)
em (P) 2 (n+lml8 sin ImI 4 m 0 

.(4.°2). 

where rp, Xp, 6p are the spherical coordinates of the point P, R is the radius 

of the Bjerhammar sphere, and P, (cos Op) are associated Legendre polynomials. 

in view of the relation 

= (4.3)
rR' e.. (P) ekl (P) dap 6Nk 6m, 

SR 

(SR denotes the surface of the sphere of radius R), we can consider a Hilbert 

space of potentials H, with inner product 

<f, g> = jf(P) g(P) f, gCH (4-.4)I dcp, 

SR 
=and with e~m(n 0, 1, ... = -n,.. -1, 0,'I1 , n) as an orthonormal 

basis. (For a more rigorous discussion see [Lauritzen, 1973, Chapter 2].) 

Twofunctions with Fourier expansions 

f(P) - fnm e. (P) and g(P) gnm enm (P) (4.5) 

n M n, m 

have inner product 

<fg>HE fnm gm (4.6) 

In view of Dirichlet's principle [Heiskanen and Moritz, 1967, p. 18], we can 

consider the restrictions of potentials on the surface of the Bjerhammar 

sphere, constituting a Hilbert space H with the above inner product. 
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The disturbing potential T(P) can now be modeled as a random field 

T(P, CC) with sample functions T (P) in H or, alternatively, as a Hilbert-

Tvalued random variable with values in H. The Fourier coefficients mof 

the expansion of T in H are random variables 

T(P, CC) = Tn. (C) e.. (P) (4.7) 
10 m=-n



An additional restriction is that T(P, wC) should be a statistically homogenous 

(isotropic) random field, i.e., that for any set of points PI, i = 1, 2, ..., k, 

the joint probability distribution of the random variables T(P1 , W) is identical 

to that of the random variables T(QI, W), where 

rQ1 = M (4.8) 

rQ1 r Pi are position vectors of points Q1, Pj, and M is a matrix repre

sentation of any rotation on the sphere (MMT = I, det MA = 1). Obukhov [1947] 

has shown that for the random field T(P, W)to be isotropic, we must have 

E T , TklI = O\ 6 nk 6 mi (4.9) 

This implies that the admissible covariance functions for isotropy are those 

-
represented by a covariance operator Z: H H, having e,, (P) as its eigen

functions and with corresponding eigenvalues anm independent of m 

OT e,,(P) = a n(P), (4.10) 

Any appropriate sequence of "coefficient variances" f (i.e., such that 

T(P, CC) is a second-order random field) defines a corresponding covariance 

function 

( P ) e ( Q ) (r(P, Q) = q.2 E e .. .. =E . 2n+ 1~)P.(cos Op) 

Mm(4.11) 
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f(P, Q) = c.- P.(cos p) = r(OpQ-) 	 (4.12) 

n 

We have--used -here-the--addition formula for spherical harmonies [Mijler, 1966, 

p. 10], and we have introduced the "degree variances" c. [Heiskanen and 

4Moritz, 1967, p. 257]. pq is the angular distance of the two points P and Q. 

Lauritzen [1973] has proved that such a random field, under the 

restriction of Gaussianity, is not ergodic; and therefore its covariance 

function cannot be found through sampling by taking averages over the sphere. 

In his words [p. 80]: 

.... This means that, even if we knew gravity all over the 
earth, we would not be able to find the true value of the 
covatiance function .... Somehow the problem is not 
suited for statistical treatment. 

However, one can still use a "model covariance" r(P, Q) and interpret the 

algorithm as deterministic prediction (collocation) in a Hilbert space H(k) 

with r(P, Q) as its reproducing kernel. We have already shown how such 

an approach can be motivated from a "minimum error bound" point of view. 

The application of this concept to prediction problems-related to the gravity 

field of the earth leads to criteria for the optimality of the model covariance 

function and thus opens the way for the solution of the very -important 

problem of the choice of norm (inner product) for the Hilbert space H(k) of 

potentials. 

4.2.2 	 Application of Minimum Error Bound Prediction in Gravimetric 

Geodesy and the Optimum Norm Choice Problem 

Suppose that we want to predict some quantity related to the earth's 

disturbing potential T from observations also related to T. We shall 

symbolically denote this problem by the triplet (D, p, k) where D stands for 

the set of observation ftmctionals, p for the prediction functional, and k for 

the covariance-reproducing kernel of the Hilb rt space 11(k) in which the 
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prediction is taking place. The solution algorithm leads to a model variance 

a2 of the prediction error. We have found that the prediction error is 

bounded by 

lEt aIITlk (4.13) 

where 11T ilk is the norm of T in H(k) 

1Tlk = n2 'T (4.14) 
n, m 

T,,are the coefficients of the Fourier ekpansion of T not in H(k) -butin the 

Hilbert space H with orthonormal basis ea.. r are the coefficients in the 

expansion of the reproducing kernel of H(k) (model covariance function) 

r(P, Q) = k(P, Q) =-a. e., (P)e..(Q) 0,2(2n+1) P.(cos *) 
V,M n (4.15) 

If we could find a bound for each coefficient 

IT.. I " Bm (4.16) 

then a bound Mk of 11T Ilkcan be found: 

IT~~k kA a Ban (4.17) 

A proper place to look for bounds of the potential coefficients is the density 

function p of the mass of the earth which, in the first place, gives rise to 

the potential itself. 

This has already been done by Cholshevnikov [1965 and 1968]. The 

bounds refer to the total harmonic potential of the earth: 

00 n 

V(Q) ~ V.n %.9Q) (4.18) 

ti=O rn=-n 
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In our notation these bounds are (see also [Payne, 1973]): 

47r GPx [awx n+1 

IV..01 i - yYR (4.19) 

V., -I 87r GPmax (am (n -m)n m > 0 (4.20)IV.,o.1 (n+1)8F2n (n+m)'. 

where p is the maximum density of the earth, G is the constant of gravita

tion, R is the radius of the Bjerhammar sphere, and am is the maximum 

distance of the earth surface from the geocenter. Cholshevnikov also gives 

bounds better than those above which, however, depend on the maximum 

variation of density with longitude (X), vx, ma, and with colatitude (e), 

vt, : (t=cos6) as follows: 
1 21 

n+l4 G (2 2) -(r) (2 vt max + P mx) mx 

(n-i) (4.21)(2n+ 1) (n+1) - (2 + 1) (n -1) _R 

Iw,-) i2n+I(n+1)m n(M))> 

(4.22) 

Using the known coefficients of the harmonic part of the reference potential, 

we can compute bounds for every coefficient T,,, find the bound Mk of the 

disturbing potential norm,, and finally the bound of the prediction error 

El ink = a Mk (4.23) 

This bound is independent of the observations and neglects the information 

about T contained in the data 

d, = <T, lIH (k) i=l,2, ... , n (4.24) 

To take this information into account we decompose T as 
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T= m(T) + e0m (T) = To + T (4.25) 

where M is the span of the observation functionals (data space) and M' its 

orthogonal complement in H(k). 

The prediction error now is 

= <4-1, To+T'> = < 1-, T'> (4.26) 

H(k) H(k) 

since LI To; and 
< 
=<lp-4, T'>i 0 -k IT'I k Cr IT'Ilk1 (4.27)-I 
 

H(k) 

where 1 is the representer of the prediction in H(k), and 1k is its projection 

on the data space M. This is a better bound, since from the Pythagorean 

theorem 

I.T I2 = [ITo jj + 1T' k[ and lIT' Ilk IT Ilk (4.28) 

The new bound for the prediction error becomes 

IE I 9 mI = M -lTolrk (4.29) 

The error bound, of course, depends on the choice of kernel in H(k), i.e., 

on the choice of a model covariance function. 

-If k, and k2 are two kernels giving rise to two error bounds 

mkI, mk, we say that kernel 1ct is better thankernel k for 

predicting a certain quantity from a certain data set if mkl 

< mks.



We have thus found a tool for comparing kernels, and the definition of the 

optimal reproducing kernel (or optimal,inner product or optimal model 

covariance function) follows directly: 

-We say that a kernel ko is the best kernel for predicting a 

certain quantity from a certain set of data if the corresponding 

error bound mo satisfies 

mo(D, p, ko) = min m(D, p, k) (4.30) 
kE9
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where in(D, p,k) denotes the dependence of the error bound on the obser

vations D, the prediction p, and the kernel k. X denotes the class of all 

"permissible" kernels. The class X is difficult to define. An obvious 

-necessary condition on mnbers o'f isthat the corresponding bound of 

the disturbing potential norm is finite 

002 
Mk a-2 B.. < (4.31) 

n--0 m-n



It is more reasonable to look for the optimal kernel in a class of kernels 

convenient for computations. Such kernels must be given by closed expres

sions rather than by an infinite sequence n'.One could even try to find a 

closed expres sion including a finite number of parameters, such that the 

family of kernels corresponding to different sets of parameter values is 
"broad" enough in some sense. Then the optimal set of parameters could 

be found as the one giving the smaller prediction error bound. However, 

the dependence of the bound on the kernel is quite complex: 

n(D, p, k) = a (D, p; k) [TMt(k) - I To112 (D, k) (4.32) 

2where M2 depends on the kernel, ITo 11 on the kernel and the observations, 

and aY on kernel, observations, and prediction. More specifically 

or Co-C; C-1 C, Co (4.33)
H(k) 

with 

(CP = < l= > CI < l, P > (4.34) 
H (k) H (k) 

where I',, 14 are the representers of the observation and prediction 

functionals in H(k). We also have 

To a Za~l~(4.35) 

1=1 

where the coefficients ai are found r'om the solution of the normal equations 

(see Section 3.3. 2) 100 
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a = C-1 d (4.36) 

It follows that 

n n 

1IToV12 Y a,i <tP ' > = a' Ca d C'd (4.37) 
_. H(k)



i=1 a=1



The final equation for the prediction error bound is 

M = iCo C ' Cp n Bn dT C d (4.38) 

Another point to be made is that one is usually interested not in one but in a 

number of predictions, and the idea of applying a different optimal kernel for 

each particular prediction is not appealing, in view of the computational effort 

involved. In this case, one might instead introduce a risk function, e.g. , a 

nonnegative function L(-) of the vector of prediction error bounds Ui, with 

the following properties [Jazwinski, 1970, p. 147]: L(0)2 = 0, L(ul) L(u2 ) 

0forIuiI [u21, whereluI = (u' u). The optimal kernel may now be 

defined as the one minimizing the risk function rather than any of each 

individual bounds. 

The objective of our discus sion here has been not to give any final 

answers, but rather to provide guidelines and motivation for more work on 

the question of norm optimality in gravimetric collocation. An interesting 

and motivating discussion on this problem can be found in [Eeg and Krarup, 

1975, especially Section 5]. 

Our approach is novel and, what is more important, completely 

independent of any probabilistic reasoning. The findings of Lauritzen 

(nonergodicity) stand in support of a purely deterministic approach such 

as ours and have actually motivated our work. Our criterion of prediction 

accuracy (error bound m) shares the same nice asymptotic behavior with 

probabilistic techniques: If the prediction functional approaches the data 

space M (in the sense that 1 - Pm (1k) Ilk - 0), then the variance of the 

101 



prediction error tends to zero (a 2 -. 0), and also m -) 0 since a is one of the 

product terms in m. 

In a probabilistic technique, the variance U2 is independent of the 

actual outcomes of the observations! It only depends on what we have 

observed and what we want to predict. In our approach m depends on the 

outcomes of the observations through 11Toll, the norm of the known component 

of the potential T (its projection on the data space). The closer T is to the 

data space, the larger ITo 11becomes, and the smaller the bound m of the 

prediction error. The main defect of our approach is the neglect of the 

effect of observational noise. An extension is obviously needed, either in a 

deterministic sense introducing bounds for the observational errors too, or 

by means of some combination of deterministic and probabilistic concepts. 

4.3 The Rotation of the Earth 

4.3. 1 Choice of Reference Frame and Parameterization 

of Earth Rotation 

In this Section we are concerned with the modeling of the motion of the 

earth with respect to an inertial system within the framework of classical 

mechanics. Depending on the type of available observations, the inertial 

system is realized with the help of the dynamics of the solar system, the 

stars (taking care of proper motions), or extragalactic radio sources. The 

motion of the earth can be mathematically described by an infinite set of 

functions 

X (t), -t (t), (t)M 

for all points i of the earth with inertial coordinates Xi, Y1, Z1. In reality 

only the motion of points on the surface of the earth is directly observable, 

and practical reasons confine us to a finite system of points i= 1, 2, 

n (network stations). The vector valued function 

X(t) = [XI Y ZI X2 .1 . . X11 Y1,.Znr (t) (,1.:39) 

[02





gives the state of the point network for each epoch t and provides a descrip9 

tion of its motion. 

Any arbitrary time dependent transformation matrix M(t) (i.e., such 

that M(t) MT (t) I and det M(t) = 1 for every t), together with a vector 

valued function 6 (t), defines a new moving reference frame x, y, z. The 

coordinates of the network points in the new system are given by 

yj = M(t) Y + (t) (4.40) 

Hi (t) :[EJ(t) 
or 

r, (t) = M(t) [R, (t) + 6(t)] (4.41) 

We can group all possible such frames into classes through the following 

definition: Two given reference frames defined by 

r1 (t) M1 (t) £R(t) + 6 1 (t) 1 (4.42) 

2(t)= M2 (t) [1(t) + 62 (t) 3 

are said to be equivalent or rigidly connected if there exists a constant 

transformation matrix M12 and a constant vector 612 such that 

F2 (t) = M12 f71(t) + 1]2 (4.43) 

If the earth, or just the network of points in question, were rigid, it 

would have been possible to find a class of equivalent reference frames such 

that the coordinates of the points with respect to any of them would be time 

independent. For a nonrigid network, a reasonable choice is a class of 

equivalent frames such that the relative motions of the points are minimized 

in some certain sense, for examaple, 

2 4Z (f 2+ (dy\2 + /dz ) 
in (4.44)dtfd 
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We can, furthermore, eliminate translatory motions by moving the


origin of the inertial frame to the geocenter, taking into account the corres

ponding effects on the observations (e. g.-,- secular and annual aberration,


annual parallactic displacement, relativistic effects). We can also identify


a particular frame from the optimal class with a frame of the same class with 

origin at the geocenter and axes parallel to the former. By identification here 

we simply mean that the rotation of both systems are described by the same 

set of parameters, and we can therefore take advantage of the simplifications 

in the equations of rotation when referred to a geocentric frame. 


Alternative choices for a frame fixed, or rather attached, to a net


work of points on the earth can be based on physically meaningful geometric 

characteristics of the earth such as the geocenter and the principal axes of 

inertia. Such choices become relevant only when available observations are 

sensitive to such a physically appealing choice of frame as, for example, in 

the case of satellite observations in orbits governed by the gravity field of 

the earth. It is well known [Heiskanen and Moritz, 1967, p. 62] that the 

geocenter and principal axes of inertia are connected to the first- and second

degree spherical harmonic coefficients in the expansion of the attraction 

potential of the earth. 

Even for strictly geometric observations involving both "earth" 

points and "inertial" points (stars, quasars, points on the moon, etc.), the 

directions of the principal axes of inertia appear implicitly in the equations 

of the motion of the earth. However, the little sensitivity of present observa

tions to such natural geometric characteristics of the earth and the uncertainty 

present in the relevant equations of motion seem to justify the use of an 

"arbitrary" frame, especially since relative motions of network points can 

now be estimated to a comparatively high degree of accuracy. 

The problem of connection between an arbitrary frame and a physically 

meaningful one can be treated separately when sufficient observations for this 

purpose are available. 
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Our choice of an arbitrary "earth-fixed" frame from a properly 

defined optimal class of equivalent frames (more precisely its geocentric 

parallel from the same class) coincides with the concept of "geographic 

axes," "attached in a prescribed way to the observatories," as discussed in 

[Munk and MacDonald, 1960, p. 11]. 

The rotational time dependent transfotrmation between the arbitrary

geographic geocentric frame-and the quasi-inertial geocentric frame can be 

described with the help of three parameters defining the transformation 

matrix M(t). Among possible choices, a traditional one is that of the Eulerian 

angles P, 6, 4)[Goldstein, 1950, p. 107] 

M(t) 	 = Ei(4t)) RI,(e (t) ) R ((P (t)) 	 (4.45) 

where RI, Rs are rotation matrices about the x and z axes respectively, 

and M(t) transforms inertial into earth-fixed vectors as follows 

(4.46) 
= M(t) 	 YXz11(t)I 	 z (t) 

4.3.2 	 The Dynamics of the Rotation of the Earth, The Liouville 

Equation 

The instantaneous rotation vector of the earth Wwith respect to the 

earth-fixed system is connected to the Eulerian angles through the geometric 

Euler's equations [MacMillan, 1960, p. 185]wI[ine0 sin 0 cos4) 01 1 
s ; [sin e cos4) -sin4 (4.47) 

W3s co 0 

or 

S = S (- , = 6 	 (4.48) 
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The rotational motion of the earth is governed by the Liouville 

equation [Munk and MacDonald, 1960, p. 9] 

dt {'2(t) (t) + No ii(t) { (t) '(t) ! ht)} L()(4.49) 

where 

[WA] = 0s0 -aW] (4.50) 

-W9 2 W91 W2 

and-

C [ A -F IEl [92+2 -xy -xz1 

C B -D -xy xe +az -yz dm 

[E -D earth -xz -yz x2 (45 

is the matrix of moments (A, B, C) and products (D, E, F) of inertia 

(matrix representation of the inertia tensor C±). 

= - d1 (T= [X y zT) (4.52)f 
 
earth 

is the relative angular momentum vector,- and L is the vector of torques 

exerted on the earth. 

Replacing ( from Euler's geometric equations into the Liouville 

equation, we obtain the following second-order nonlinear differential 

equation 

cs e+ S +CS()e +h+ [(S( e)A] {CS(O e+ 
(T)~ ~+ ~+ 6 =T 

+h} = L (4.53) 

To find an analytical solution ( to the above deterministic equation for known

C(t), h(t), L(t) and initial conditions c(to), e(to) appears to be an impossible 

task without the help of some simplifying approximations. 
I1O( 
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We can write Liouville's equation symbolically as 

:fe (t) = T(t) (4.54) 

where Z stands for the relevant differential operator. In reality, the 

functions C(t), h(t), T(t) are only partially known, and they should be rather 

modeled as stochastic functions C(t, O), h(t, w), T(t, WO). Liouville's 

equation now becomes a random equation 

0(44) I e(t) I = T t, G) (4.55) 

where -) is a random operator. (See [Bharucha-Reid, 1972, p. 71] for 

relevant definition and discussion.) The proper mathematical theory for the 

treatment of such a random equation is probabilistic functional analysis. 

The solution is a stochastic process 1(t, GO) whose distribution depends on 

the (possibly random) initial conditions 1(to), e(to) and the distributions of the 

random functions C(t, G), h(t, G), L(t, O). The introduction of probabilistic 

concepts can only increase the difficulties in solviig the above equation. 

Alternatively, if we set 7(t) [(t) e(t)]T, we can rewrite the Liouville 

equation in the form 

e 
dt. .
--(c) {[c_ + C s]e + h + [(se)A] (CSe +h) + L 

(4.56) 

or shortly 

= f(y(t), t) (4.57) 
dt 

The stochastic analogue of this differential equation is 

dt f ((t, Go), t, GO) (4.58) 
dt 

Upon integration we obtain a random nonlinear integral equation of the 

Volterra type [Bharucha-Reid, 1972, p. 187]: 
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t 

y(t, 	 C) = y(to, w) + f s, ) ds (4.59) 

to 

Because of the complexity of the functionf, both the stochastic differential 

equation and its integral counterpart fall outside the types extensively 

studied by mathematicians. We shall therefore have to introduce some 

linearization giving rise to a sufficiently accurate approximate equation of 

a simpler form. To do this we need to introduce a more convenient set of 

parameters than -, t describing the rotational state of the earth. 

4.3.3 Alternative Parameterization of the Rotation-of the Earth 

In view of Euler's geometric equations, an alternative set of state 

parameters is [T c]T . The rotation vector Cc can be transformed into the 

same vector (i with respect to the inertial frame, with the help of the 

transformation 

(2(t) = R5 (4)(t)) R1(6 (t)), RS(w (t)) a5(t) = R( (t)) " (t) (4.60) 

We can now introduce an alternative parameterization which conforms to 

the traditional separation of the earth's rotation into three parts: 

(a) 	 Variation of the direction of the vector with respect to the inertial 

frame (precession-nutation). 

(b) 	 Variation of the direction of the vector W with respect to the earth

fixed frame (polar motion). 

(c) 	 Variation in the magnitude of the rotation vector, i.e., variation in the 

angular velocity of the rotation of the earth (length-of-day variations). 

The matrix M(t) of transformation from the inertial to the earth-fixed system 

can be written in the form 
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t 

/ 2 /- ~ f1~ 

to 

1Hi (tan 2 (tan 2 1 	 (4.61) 

This representation differs from the classical one [Mueller, 1969]: 

M(t) = 	 H(-xp) Ri (-yp) Rs(GAST) Ri (- - Ac) B3 (-A0) Ri(E) 

Ha (-z) R 2 }() 1a (-Co) (4.62) 

by the fact that no differentiation is made between precession and nutation, 

and the % part in the precession-nutation transformation has been included 

into the initial epoch angle eo of the diurnal rotation. 

The earth-fixed system can be chosen to be sufficiently close to the 

instantaneous rotation axis (at least for quite a long time interval where 

secular polar motion causes no problem) so that 

" _ = W1tan' W1 
(4.63) 

tan -tn W2 CC W2 W2-:__- 2 
 

22 2 
 W 

where 
1 

~II=(W2+CC1+W31) 2 	 (4.64)-

The same approximation is not valid for I because of its variation with 

respect to the inertial frame. 

Introducing a new geocentric moving frame X, Y, Z connected to the 

inertial one X, Y, Z through the precession-nutation theory transformation 
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YI R1 (-E-AE) Ra(-A) RI(E) 8%(-z) %2 G)RaCo) 
 [2


= N(t) P(t) (4.65) 

the rotation vector - with respect to X, Y, Z is near the Z axis. With the 

help of the same approximations as for ZZ, we obtain 

t 

M(t) = Q , +f (s) ds) (-, a) N(t) P(t) 

to 
(4.66) 

where for small angles p, q 

Q(p, q) = R2 (-P) Ri(q) = 0 1 (4.67) 

-q-p 

4.3.4 The Linearized Liouville Equation 

Since the rotation vector cc is close to the z axis, it can be approxi

mated to the first order by a vector (To = [0 0 OR] T , where 2 R is an 

approximate constant reference value for the angular velocity of rotation 

((t). We can introduce a vector T"f of small quantities defined as

ol
=6 w+ 6-i + Ck Rrn (t) (4.68) 

In a similar way, the inertia tensor (matrix) can be approximated by a 

constant matrix 

li0 



[A0 0
 

co 0 A J (4.69) 

and a small correction matrix c(t) can be defined as 

0(t) = Co + c(t) (4.70) 

Munk and MacDonald [1960, p. 38, Section 6.1] show that with the help of the 

above approximations and neglecting terms of products and squares of the 

small dimensionless quantities cij/C, mi, and hi/(R C), the Liouville equa

tion can be written in the following linearized form: 

m(t) = ar 1 0 (t + r i(t)j = UrPi (t) +f M(t) 

0 0 0jt (t)1 (4.71) 

where U C ArA-A QR is the Eulerian frequency (period -r 10 months) 

and 

[Tr 92 [A'( ORC23- Cs+ h2 - a - ,+ f4-1L1 )1


•* I . = C-(3aco - h1 - Q aRb + 0'4L 2 )J 


Lo-C+ 
-

633 R + R11)j 
=
 

- cg U.PO - + PE - O + (4.72) 

with = [cO c 2 3 C3]3'. 

Matrix notation is more convenient for computations, but we will al' o 

use complex notation for its analytical advantages. In complex notation, the 

first two of the Liouville equations become 

1m +r = ( (4.73) 

with 

in = m1 +. im 2 
(4.74)= Pi + i 12 



-Setting fl* + 1f2, wehave f * and 

In = iii 	 + 	 (4.75) 

We shall call 	 f-* the total excitation function in discrepancy with Munk and 

MacDonald who call ( the excitation function. 

Of primary importance is the part of the excitation function F, due to 

the rotational deformation of the earth. Rotational deformation gives rise to 

the following changes in the products of inertia: 

cce 	 - k(4e .76 ) 

-i k 
C 3 = 	 A nR r -m 

where k is one of the Love numbers and 14 the corresponding "fluid" Love 

number [Munk and MacDonald, 1960, Chapter 5]. Using these product of 

inertia changes, we obtain the excitation due to rotational deformation 

S rw [ 1 -- r3 P_ 	 (4.77) 

Setting T* = fD + f, where Tis the remaining, or simply the excitation, 

function, we obtain 

m = OPt- ar-Pif+ 	 (4.78) 
-t -


= 
 
0 + fm oP	 (4.79) 

where go = ar (1 - k/k) is the Chandler frequency (period 2 _ 14 months). 

In complex notation we have, after settingf = f1 + if2 , 

M = ion 	 +f (4.80) 

The solution of the above equation with f - 0 gives rise to a circular motion 

of the rotation axis with frequency a0, (Chandler wobble). To explain the 
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broadening of the spectral peak corresponding to the Chandler frequency, it 

has been suggested that the earth should be regarded as a damped linear 

oscillator tuned to the Chandler frequency and irregularly excited [Rochester, 

1970, p. 9]. 

To account for damping, a new linear term can be added to the 

linearized Liouville equation 

SaoPUT 
1 

- -D U! + T (4.81) 
with 

D 1 (4.82) 

00 0



where r is the relaxation time associated with the damping. In complex 

notation we can introduce the concept of a complex frequency aiv = go + i/r 

to obtain [Smylie et al., 1973, p. 395], 

In = O + (4.83) 

4.3.5 Solution of the Linearized Liouville Equation 

We are concerned here with the solution of the linearized Liouville 

equation without damping 

m(t) = goaP TH (t) + f(t) (4.84) 

The last of the above three equations has the obvious solution 

t 

ma(t) = mg (to) + f fa(s) ds (4.85) 

to 

while the first two can be written in complex form 

m(t) = i(Torm(t) + f(t) (4.86) 

with general solution [Munk and MacDonald, 1960, p. 46, equation (6. 7.1)] 
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t 

M(t) e iCrot 0 + ff(T) dT (4.87) 

-00 

Setting t = to and solving for fito we obtain 

to 

mno = e m-(to) - f e f( ) d7- (4.88) 

-x 

Setting this value in the general solution, we have 

t 
i (o(r - ) i Oro (t-- ) T) d" 

i (t) = etUO(tto) iii(to) + ie f(r) dr (4.89) 

to 

Separating real and imaginary parts and combining with the solution for 

ms (t) into matrix notation, we finally have 

t 

MM(t) - la[-Uo (t-to)] '(to) + f% [-ao(t--r)] T(,r) dr (4.90) 

to 

It is well known [McGarty, 1974, Section 2.2] that the solution to a linear 

differential equation 

dx(t) = A(t) x(t) + y(t) (4.91) 
dt 

is of the form 

t 

x(t) D +f ID(t, 7) y(T)dT 
 (4.92)4(t, to) X(to) 


to



where 4) (t, s), called the state transition matrix, is the solution of the 

diffcrential equation 
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d )(t, to) = A(t) ((t, to) (4.93) 

=
with initial condition 4 (to, to) I, the identity matrix. 

In our cash it is easy to show that 

$ (t, s) =H [-Ro (t - s)] (4.94). 

Differentiating with respect to t, we obtain 

d ( d 
dt 4,(t, to) R3[- 0 (tP-to)] = go P Rs [-Co (t-to)] (4.95) 

and also the initial condition is satisfied, since 

=
4)(t, t) = Rs[--o (t-t)] Ra(O) = I (4.96) 

for any t. R3 [-ao (t-s)] also satisfies the transition property 

11(ti, t2) D(t2 , t3 ) = R3 [- 0 (t1-t2)] R3 [-ao (t2 -t3)] = 

= R3 [-o((tj-t 2 +t2-ta)] = R3 [-Oo(t 1 -t3 )] = (t1 , tb) (4.97) 

and the property 

1 (t, s) = R3 [-co(t-s)] = Rs [--o (s- t)] = 

= cP(s, t) .= DT (t, s) (4.98) 

4.3.6 Stochastic Solutions of the Linearized Liouville Equation 

Because of the uncertainty about the exact form of the excitation 

function, it is not possible to obtain a solution for !H(t) in terms -of a finite 

numberof parameters to be estimated from sufficient observational data. 

Instead, a stochastic model for T(t) is more appropriate to account for 

existing uncertainties. 

We shall assume that the excitation function is modeled as a 

second-order stochastic process f(f, w) with known mean value function 

(t) = E [f-(t, c)1 (4.99) 
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and correlation matrix 

Rfr(t, s) = E ff(t, W)TT (s, w)3 (4.100) 

The solution is'also a stochasti cprocess--u (t, w)-with-mean value-function 

t 

T9.(t) = R 3 [-ao(t-to)]ii(to) + R 3 [-go (tT)j Me (T) dT 

to (4.101) 

and correlation matrix Rmm (t, s). To avoid complicated formulas we 

introduce 

Y(t) = Rs[-o(t-to)]W(to) 
(4.102) 

Y(t, ) = ii(t, d) -(t) 

with 

t 

ly(t) = E [(t, C) =f R 3 [-co(t-T)] f"(T) T (4.103) 

to 

We now have 

TE (t) = z(t) + 'Y(t) (4.104) 

and 

+R,.(t, s) = i(t)VT(s) + jY(t) jT(s) 

+ z(t) 7iYT (s) + IY (4.105) 

where 

t s 

R3) )] 

,i=to C=tc (4.106) 

Ry(t, s) = f f R3 [ro (-t)] Rff( , R[ao (s- d dC 

The covariance matrix of m (t, Cd) can easily be found to be 

Cmm(t, s) = Rw(t, s) - !.(t) -g T(s) = Ry,(t, S) - Thy(t) g (S) 

(4.107) 
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We have assumed here that the initial value H!(to) is deterministic, i.e., 

either completely known or completely unknown (a parameter to be determined 

from observations). If some a priori estimate of !H(to) is available, it can be 

modeled as a vector random variable with mean T' and correlation matrix 

Ro. Under the additional assumption that - (to, WV)is uncorrelated to T(t, W), 

so that E [ ! (to, oV) T(t, (0) 0 for every t, we obtain 

t 

=R [-.cr 2 (7) d'r 

to 

= z(t) + Y(t) (4.108) 

11m(t) 3 [-cr 0(t-to)go + R3 (t -'T)] 9P 

R.(t, s) Rs[-uo(t-to)] Ro R2 a o(s-.to)] +


t s



+ f f Rs3[-rob(t-C)] Rer(C) Hs3[Co(s-C)1 d~dC 

-to C=to (4..109) 

and 

Cm(t, s) = R=(t, s) - r(t) T!M (s) (4.110) 

From the mean and correlation of M(t, W0), the corresponding mean and 

correlation of the rotation vector W(t, WV) can be found with the help of the 

the transformation o = o 0 + n R m 

0 + O2R ji4(t) (4.111)I 
and



R0 (t,(s) 1


s= 0 /At(s) + m(t,m s)
 

AMIMt An,2(t) I + AmS(t A:m(s) 


(4.112) 
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We have parameterized the rotation-of the earth in terms of c 1 /Q, w2/C, 

(0, i/t, O /Q. These parameters can be sufficiently approximated by 

wi/C!R=ml, 2/QiRnm2 , 3s=(R(l+Ms), ti/R, O2/ respectively. 

Setting M1 = %1/R, M2 = O2I/QR, the rotation transformation becomes 

t



M(t) = Q(ml, m 2 ) Rs[Go+ OR(t-to) + OR fms()dT]



to 

QT (M1 , M2 ) N(t) P(t) (4.113) 

In addition to mi, m 2 , ms, we also need the statistics of M, and M2 . As an 

intermediate step we need to obtain the mean and covariance function of the 

rotation vector with respect to the inertial frame (-I from the mean and 

covariance of the vector Zj'. Unfortunately, this requires' the solution of 

the nonlinear stochastic differential equation 

dt) F(e, -w) = S' (e)Wa (4.114) 
dt 

Even approximate solutions involve computationally tedious numerical 

integrations. We can use the mean value function 110o of 'Z to obtain 

through numerical integration an approximate solution To of the deterministic 

equation 

d- (o) Aw (4.115) 

A linearization is now possible through Taylor series expansion about 

eo, w and neglect of second- and higher-order terms. Introducing 
6T= e-eo, 6Z = U- j1, we obtain 

d 6 -(t) = A(t) 6 (t) + B(t) 6 W(t) (4.116) 
dt 

where 
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A _ 6a ) 	 (4.117) 

and 

B(t = S-(Co) 	 ;(4.118) 

Numerical integration of 

d 
; $'D(t, to) = A(t) 'P,(t, to) 	 (4.119) 

with 

4(to, to) = I (4.120) 

yields the state transition matrix 4) (t, s), which can be used to find the 

mean T and correlation K(t, s) of 6*(t) 

t 

",(t) = 'P(t, to) i (to) + f 4)(t, T) B(V).g 6 o,(7) dT . (4.121)6 

to 

K(t, s) = 4(t, to) Eli 6U(to) 6G to)3 (T(S, to) +


t s



+ 	 4(t,ID C)B(C) E[610(C 6'jT(C] B' (C)4DT(s,C)dC dC 

C=to C=to (4.122) 

A 	similar linearization of the equation 

=
nI R(e)W = Rs(O) RI(8) Rs(p) 15 	 (4.123) 

leads to approximate statistics for nI with the use of the known mean and 

covariance functions of i and T, and finally to those of ( and M1, AL. 

Such a laborious propagation might be of some value despite the approxi

mate linearizations involved if the true mean and covariance function of 

the excitation function were known. However, this is not the cage at present. 

To obtain such "true" statistics one should identify all physical processes 
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contributing to the total excitation function, and also estimate their mean 

and covariance functions. The present uncertainties about mechanisms 

with effects on the earth's rotation [Rochester, 1973] limit the feasibility 

of such an approach. The alternative is to use a simple model covariance 

function for the excitation function, which is computationally tractable and 

hopefully approximates the true one. In this case the propagation from the 

statistics of in1 , m 2 , ma to those of Mi, M2 , simply offers model consistency. 

which might be questionable in view of the approximations involved in the 

linearizations. An independent simple covariance model for M1, M2 may 

serve our purpose and also considerably reduce the computational effort 

involved. 

Some more or less obvious properties that one might postulate on 

the excitation function are zero mean and stationarity of the covariance 

function. 

A zero mean function gives rise to a circular motion of the pole 

with the Chandler frequencg, corresponding to the "expected" behavior of 

the polar motion. Other irregularities superimposed on the Chandler wobble 

are accounted for by the fluctuations of the actual excitation function about 

its mean value function. However, the linearized Liouville equations holds 

for an.arbitrary reference frame, while changes in reference frame cause 

changes in the excitation function. With this in mind, the zero mean condition 

on the excitation function must obviously hold for only one particular 

reference frame. Since 

Cof = P C+ h_ 
C -E -Y+ h L " (4.124) 

and, assuming, 

E = h = Elf) = - (4.125) 

the condition E IT) TWimplies 

E f ) 0, i.e., Elc1 l] 0, i=1, 2,3 (4.126) 
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For this to be true it is necessary that the direction of the z-axis 'inthe 

earth-fixed frame coincide with the "expected" direction of the correspond

ing principal axis of inertia zI. If such an estimate is not available, the 

,introduction of two additional parameters of rotation from the z,to the 

z-axis 
1 0 

1 XIR0L)(= 0(-X)X0 _X (4.127) 

leads to a new excitation function f (the old one being Tj with E [?2

with



ET} = o (4.128) 

The frequency 0o inplace of the original one ar = A (C-A)OR accounts for 

the compensation of the difference inthe rotational deformation part of the 

total excitation function. Use of the above mean value function results in



the following mean value of the solution



E fiw(t)] = 6 + R [-Q.(t-to)] [E [!H(to) - 6] (4.129) 

where 

T
6 = [j o] (4.130) 

It can be seen by plotting the solution on the xy-plane (see Figure 4.1) that 

the difference is only in a translation corresponding to the change of direc

tion of the z-axis. 

The mean value function, except from the above effect due to the 

deviation of the z-axis from the principal axis of inertia, may also include 

periodic terms already identified from past experience in polar motion 

data analysis (annual, semiannual terms, etc.). 
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R3 ()(m- ) / 

M--6 +R3 (6 ) (mo-8) 

o d 0o(t-t ) 

Figure 4.1 Effect of the Change of Origin in the Liouville Equation 

122





The stationarity assumption of the covariance function corresponds 

to the concept of regularity in the physical processes giving rise to earth 

rotation, at least for periods of time Which are short on a geological time 

scale. This regularity is essential in introducing the concept of ergodicity, 

which legitimizes the very use of probabilistic models. 

4.3.7 Solution of the Linearized Liouville Equation with Damping 

To include the effect of damping, a linear term is added to the 

linearized Liouville equation 

1

fi(t) = 0 PnM(t) Di(t) + T(t) (4.131) 

with 

= i o (4.132) 

00 0



The only difference appears in the first two.equations which in complex 

notation read 

m(t) = i a, n (t) +t(t) (4.133) 

with 

io0 a 0 + _ (4.134) 

The general deterministic solution is 

i (Y -i -a, 

m(t) = eL t [u 0 + (f e d ] (4.135) 
-00 

Setting t = to, solving for M-0, and replacing it in the above equation, we 

finally obtain 
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t 

(t) 	 = e (tmt (to) +f eid 4



to,



t 

= ie 0 (t-to) e-(t'-to)/T in(to) + f ero (t- ) 

to 

-(t- d (4.136) 

Combining with the unchanged solution of ms(t) in matrix notation we have. 

t, 

i(t) = Rs[-o(t-to)] Q(t-to) iRi(to)- f Rsf-ao(t- ) Q(t- )T( ) dt 

to 	 (4.137) 

where 

Q(a) = e a 	 (4.138) 

0 ~01 

is the "damping" matrix with the property_ 

Q(a) Rs(6) = R s(0) Q(a) (4.139) 

The corresponding state transition matrix obviously is 

ID(t, s) = Rs -o(t-s)] 	 Q(t-s) 	 (4.140% 

In the absence of any excitation, the corresponding free motion 

(on the xy-plane) is a contracting spiral whose center is the inertia 

symmetry axis [Rudnick, 1956, p. 137]. Since the Chandler wobble is known 

to be maintained, the mean value function of the excitation must be such that 

=(t) E fm-(t) ea 	 (4.141) 

This implies that 
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d iAM= iao e Oo (t - to) a - or , Il (4.142)iAcm + 

and, therefore, 

A ?iaT(t) = = 1 0 (t -to) (4.143) 

The above condition must hold for proposed models of the excitation function. 

The damping-excitation hypothesis, put forward as an explanation 

of the broadening of the spectral peak corresponding to the Chandler fre

quency, poses to this day two outstanding problems in polar motion analysis. 

The first problem is the nature of the damping or dissipation mechanism, 

manifested in our equations by the uncertainty in the value of the decay 

time T. The second problem, the nature of the excitation of the Chandler 

wobble, has been the matter of much controversy, mostly centered about 

the role of seismic activity and initiated by the work of Mansinha and Smylie 

[1967]. A detailed account of the problem can be found in [Dahlen, 1971]. 

In general, the excitation function may be considered to consist of 

two parts 

f = f+F± (4.144) 

a continuous-one f0 and a discontinuous one 4, the latter associated with 

abrupt changes of the earth's inertia tensor caused by earthquakes. 

The discontinuous ,excitation function is of the form 

=P Co (OR PZ 


= [c1 c2 c ]T (4.145)



The first two components in complex 'notation are 

= f1 + fp i = 1 fi ORC+ t (4.146) 

o = c1+ic2 

If Au- (AZc) denotes the change in - caused by the jth earthquake after some 

initial epoch to, occurring at epoch tj, we have [Mansinha and Smylie, 1967, 
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p. 4733; Dahlen, 1971, p. 162] 

S(t) = ATJ u(t-tj) 

j (4.147) 

C (t Y, -j6 (t-t j) 

where 0 t< tj 

u(t-tj) = is'the Heaviside step function 
1 t >;- tj 

0O t tj



6(t-tj) 1 . is the Dirac delta function 
=I t tj 

The excitation function becomes 

_i aR ~ U" 1A # Aec' u( -tj) - A AZ3 (4-tj) (4.148) 

j a 

Inserting'p -into the solution of the Liouville equation with damping, we 

arrive after formal integration to 

i CY (t-to) A2 e (t-t) 

m(t) = e mno) + AU cje 

j A (4.149) 

Separating real from imaginary parts and combining with the solution of 

the third component 

t 

m3 = m o) + f j()d6 = 

to 

t 

= nis(to) jf [ItZ e"z 6 (&t')] d 

to 

S1 

1tA Cal 
Ma(to) (4.150)

j 2C
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In matrix notation 

i (t) Rs [-Oo (t -to)] Q(t-to) in(to) + +BA+ 

+ R [-o(t-t)] Q(t-tj) Ad (4.151) 

where 

-OA(a +t 2) L a t (a +rg + 0-2 (4.152) 

0 01 

B - N~72 [-/A a/ 413FOroo/A 1/TA 01 
0 -1/



(Note that all matrices Q, B, G, R 3 (0) commute.) 

The above equation is a solution to the deterministic problem when the 

occurrence epochs and the effect of the earthquakes on the inertia tensor 

of the earth are known. It can also be viewed as the solution correspond

ing to a sample function in the stochastic case where uncertainty is present 

in both the occurrence epochs tj and the inertia tensor changes Agj. A 

stochastic model can be constructed with the help of two stochastic processes, 

the (homogenous) Poisson count process and the filtered Poisson process. 

Refer to [Parzen, 1962, Chapter 4; Snyder, 1975, Chapters 2 and 4] for the 

relevant rigorous definitions. 

The Poisson count process N(t) refers to the number of earthquakes 

occurring in the interval [to, t] (N(to) = 0 w.p.1), and it is characterized 

by the probability 

PIN( -N m] = e-x - ( t> s>t (4.154) 
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where X > 0 is called the intensity (or mean rate) of the.process, in view of 

E [N(t). = E £N(t) -N(to) = (t-to) (4.155) 

A filtered -Poissonprocess is a stochastic process of-the form 

N (t) 

(t) = (t, ti, Yj) (4.156) 

3=1 

where Vj is a sequence of independent random vectors identically distrib

uted with a random vector Y. 

The part of the damping-excitation solution iT (t) of the Liouville 

equation, independent of the initial state M11(to) 

N (t ) 

X(t) = [B + G Rs - goa(t-ti) Q(t-t)] AW3 (4.157) 

J=1



is a filtered Poisson process with 

(t, tj, A~j) = [B + GR3 - ao(t-tj) Q(t-tj)2 AUj (4.158) 

provided that earthquakes occur with a probability distribution such as 

described by the Poisson count process and the corresponding inertia 

tensor changes AUj are identically distributed. 

If E [AU = E [A-] andE fAZj Aj T = E (AU AT] are known, 

the mean value and correlation of X(t) can be found with the help of 

•t



E [X(t)] = "xf E [g(t, T, AT) d (4.159) 

-and 
to 

-

E{X(t)X T (S)3 = 

min ( 

X f 
t, s) 

E[-g(t, r, Ac)j T (S, r, AT)] dr 

to (4.160) 

128 



A usual simplification is to replace the epochs tj as described by N(t), with 

a sequence of equidistant epochs, such that 

tj+1 - tj = At =X 1 (4.161) 

in which case the filtered Poisson process is replaced by a random walk 

in le [Mansinha and Smylie, 1967, p. 4739]. 
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5. ADAPTIVE ESTIMATION 

5.1 Introductory Remarks 

Perhaps the most intriguing problem in least squares estimation, 

is the determination of weights. Both least squares adjustment and pre

diction are based upon the a priori knowledge of means and covariances 

of random parameters and stochastic processes (signals). The presence 

of functions with uncertainties significant compared to the level of observa

tional noise, necessitates the inclusion of their effect in modeling. One way 

to circumvent this problem is to include only the values of the function at 

observation points (epochs) as unknowns and to secure enough observations 

to estimate all the unknowns. This is actually done in geometric methods 

of satellite geodesy, where simultaneity of observations increases, the 

number of observations without a similar increase in unknowns (satellite 

positions). However, this is not always possible and treating each function 

value as an independent unknown generally results in overparameterization. 

One way to avoid this problem is to represent the unknown function(s) 

in terms of a finite number of parameters, using polynomials, trigonometric 

series, step functions, etc. Although with a sufficient number of terms it is 

possible to approximate a wide class of functions arbitrarily well with the 

help of such representations, the fact that the function to be approximated 

is unknown poses some serious problems. One has to determine the number 

of terms to be included; and even then some of the coefficients of-the terms 

included might be very poorly determined from the available observations, 

thus giving rise to singularities and computational problems. 
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The a ternative approach is to model unknown functions as stochastic 

processes such that their' probability distributions determine the "likely" 

behaviour of the unknown functions. When the functions to be modeled are 

not directly observable, statistical sampling techniques for obtaining 

estimates of their means and covariances are not applicable. In this case. 

proper mean and covariance models have to be determined from the only 

available source of information, the observations themselves. We say in 

this case that the stochastic model is "adapted" to-the observational data 

and the resulting adaptive estimation techniques are the subject of this 

chapter. 

5.2. Review of the Continuous -Discrete Kalman - Buoy Filter 

The problem in question is the estimation of the state vector X(t) 

of a dynamical .system whose evolution in time is described by the (contin

uous) linear differential equation 

d d X(t) = A(t) X(t) + G(t) u(t, W) (5.1) 

from a finite number of observations (discrete observations) 

y(t±) = Hi X(t 1 ) + n(t 1 , w) i=l, 2,..,m (5.2) 

A(t), G(t), H 1 are known matrices, the forcing term u(t, w) is a given 

vector stochastic process, and n, ( w) = n(t1 , w) is a given sequence of 

random vectors. 

The term filtering refers to the estimation of X(t .) and the term 

smoothing to the estimation of X(tj), i=1,2, .. ,m-1, from all the obser

vations. The more general term prediction refers to the estimation of 

X(t) for any epoch t, not necessarily coinciding with any of the observation 

epochs t,. 
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If the random variables .in X(t 1 , w), n ( w) are second -order with 

known means and covarianees, the filtering -7,smoothing problem can be 

solved with the help of classical least squares adjustment techniques 

(condition equations) and with a minimum variance criterion for estimate 

optimality. 

If a set of completely unknown parameters is involved, the general

ized least squares method is to be used. 

The prediction problem can be separately solved afterwards with the 

help of the estimates of X(ti) -obtained, and the mean and covariance function 

of X(t), as a minimum variance least squares prediction problem. 

The problem has therefore been reduced to one of obtaining first and 

second order statistics for'X(t, to) from those of u(t, o) and'the initial 

value X(to, wo) (in case it is modeled as a vector of random variables and 

not a s a vector of unknown parameters). 

Usual assumptions are that u(t), X(to), n, are mutually independent 

and that n I is a sequence of Gaussian independent random vectors. 

If u(t) is a known stochastic process, so is G(t) u(t) and we can 

drop the coefficient matrix G(t) without any loss of generality. The state 

differential equation can now be formally integrated with the help of the state 

transition matrix (P(t, s), to obtain 

t 

X(t,o) = V(t, to) X(to, W) + f c(t, )u( , w) d 
to (5.3) 
to 

Since u(t, w) is a stochastic process the integral 

t 

y~t ) f4(t, u(, ) d (5.4) 

to 
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cannot be trivially defined as a Riemann integral in the general case. 

The most trivial case appears when u(t, w) belongs-to the restricted class 

of processes with Riemann integrable sample functions. We may relax the 

integrability condition for sample functions u0(t) with w E A C 0, when 

P (A) = 0. In this case We say that almost all sample functions are Riemann 

integrable, or that u(t, w) is Riemann integrable w p. 1 (with probability 

one). A more wide class of stochastic processes may be obtained by 

requiring that the above integral exists in the mean square sense (see 

[Jazwinski, 1970, p. 66] for definition). Mean square Riemann integrability 

of u(t, w) is equivalent to .Riemann integrability of its mean, correlation 

and covariance functions [ Jazwinski, 1970, theorem 3.7 and corollary 1, 

pp. 66 & 67]. In this case the propagation from first and second order 

statistics of u(t, w) to those of y(t, WO)can be carried out with the help of 

the (deterministic -ordinary) Riemann integrals. 

t 

Efy(t, w)] = f (t, t) E u(C, wo) d (5.5) 

to 

t *S



Ety(t,W) yT (SW)3 fjJ @t,g) Etu( ,w)uR(C,W)1 41 (s,C) d dC 

(5.6)t=to C=t o 

A stochastic process attracting considerable attention because of its 

applicability to engineering problems is the Gaussian white noise process, 

with zero, mean, and covariance matrix 

E{u(t, w) u T(s, W) = Q(t) 6(t-s) (5.7) 

where 6 (t- s) is the Dirac delta function. The white noise process has 
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everywhere discontinuous sample functions and fails to be Riemann mean 

square integrable. There is no shortcoming on the part of.mathematical 

theory here, for white noise is not a physically realizable process, but only 

an -idealization introduced mostly for the simplifying integration properties 

of the Dirac delta function. It is possible to formally represent u(t, w) as 

the derivative of the Wiener process W (t, w) [ MeGarty, 1974, p. 80] 

u(t, w) d W(t, W) (5.8)dt



In view -of this relation' one might attempt to-define an integral of the form 

dtf G (t) u(t,.w0) 

a

as a Stieltjes integral with the help of the Wiener process 

b



f G(t) dW(t,w) 

a 

This does not solve the problem because although almost all of the sample 

functions W((t) are unifor-mly continuous, they are not of bounded-varia

tion [ McGarty, 1974, Section 3. 3]. Among various definitions of the 

above integral, the one more widely used is that due to K. Ito. We shall 

refer to [ Jazwinski, 1970, Chapter 4 ] for details, restricting ourselves to 

the formal rule for obtaining the covariance of the process 

t 

Y (t, w) = f.(t,4 ) dW( ,w) (5.9) 

to 
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min(t, s). 

Ery(t,W) y t (s )) fT(s, .Q() ) d (5.106 

to 

This rule agrees with the definition of y(t, w) as an Ito stochastic integral 

and may also be formally derived from the covariance Q(t) 6(t-s) of the 

corresponding white noise process using the integration properties of the 

Dirac delta function. 

We have succeeded in writing the solution of the state differential 

equation for X(t) driven by white noise, in the form 

X(t) = I'(t, to) X(tc) + y.(t) - (5.11) 

From the known first and second order statistics of X(to) and y(t), those 

of X(t) can be easily derived and used to solve the filtering- smoothing and 

prediction problem, either globally by standard least squares adjustment 

and prediction techniques or, most often, by means of a sequential refor

mulation of the solution algorithm. The solution is similar when u( t, W) is 

a process with Riemann integrable sample functions or simply a Riemann 

mean square integrable process. 

5.3 Modeling of Stochastic Processes 

In real life problems, when the state of a dynamical system (such as 

the orbit of an artificial satellite or the rotation of the earth) is generated 

by a differential equation, the forcing term u(t) is in most cases an unknown 

function. The modeling of u(t) as a stochastic process u(t, w) presuppo

ses that although u(t) is not precisely known, it is not completely unknown 

either. This situation of relative uncertainty about u(t) is manifested in 

the probability distribution of the stochastic process model u( t, w) which 

roughly tells us what u(t) is "likely" to be, by means of a description of 
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its "average!' .behaviour. 

Since we are not concerned with an ensemble of functions [-u 1 (t) I 
but rather with a unique function u(,t), the averaging has to take place over 

different parts of the function u(t) itself. This presupposes that the function 

possesses some regularity properties,, such-that different pieces, (i. e., the 

function over different time intervals) can be. considered as samples with the 

same "statistical" behaviour,--and their comparison yields the "average" 

behaviour of the function. These intuitive concepts are expressed within the 

probability theory framework-by the ergodicity property of.the stochastic 

process u(t, w) serving as a model for the real (and in a sense determin

istic) function u(t). Ergodicity presupposes stationarity, and before such 

a more or less restrictiveassumption is imposed, one.should make certain 

that the process is irreducible, in the sense that it cannot be expressed as 

a transformation of some other original process. This simply means that 

a stationary - ergodic model should be used for unmodeled accelerations and 

the excitation function, rather than the orbit of the satellite or the rotation 

of the earth. 

If the function u(t) can be directly observed, the problem is a statis

tical one of determining distributions (means and covariances are sufficient 

for our purpose) from samples. However, we are primarily concerned here 

with the case when the function u(t) cannot be directly observed, or it is 

practically impossible to do so, a situation common in geodetic work. 

In this case one can only construct an empirical stochastic model with the 

help'of available mathematical tools. Before constructing such a model 

one must first wonder whether the necessary tools are available in the first 

plkce. To ask the question in a different way, suppose that i stocha~tic 

process u(t, W)'exists which is an appropriate model for the unknown 

function. What are our chnces'of empirically arriving at such a model ? 

- Indeed, tPe mathematical literature 'isalmost exclusively devoted to 

the study of a nunber of elementary processes (white noise, Wiener, 
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-Poisson) and processes derived from transformations of such processes. 

The answer is to be found in connection with the inverse problem, already 

studied by mathematicians: Given an arbitrary stochastic process, is it 

possible to express it in terms of some simple elementary processes 7 

This is a problem of representation that has been given considerable 

attention. A collection of papers on this subject can be found in 

Ephremides and Thomas, 19731. 

For a wide cliss of stochastic processes called purely nondetermin

istic or linearly regural (see [Cramer, 1964, p. 170; or Cramer, 1971, 

p. 7] for definition) it is possible to obtain a representation (Cramer-Hida 

canonical representation) of the form 

t 

X(tW) E fj g.(t, s) dz,(s,w) (5.12)> 
in=1 -a 

where z . (s, w) are N mutually independent stochastic processes with 

orthogonal increments. In simple engineering terms, X(t).can be consi

dered as the sum of the outputs of N linear filters with inputs white noise 
dz n



processes _ . The smallest number N for which such a representation 
dt 

exists is called the (spectral) multiplicity of the process X(t). The class 

of second -order stationary processes we are concerned with here has 

spectral multiplicity one [Cramer, 1965, p. 218]. This ascertains the 

possibility of constructing a wide class of stationary models with the help 

of the white noise process. 

Another aspect of modeling is the necessity of parametrization of the 

mean and covariance functions, of the empirical model. The optimal values 

of such parameters must be determined from the observations available, 

since the non-observability of the function modeled excludes the use of 

sampling techniques,. 

Empirical models are much in use in time series analysis techniques, 
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when a function u(t) is observed at equidistant epochs t (t1 -t 1 -1 = At for 

all i). if u(t) is modeled as a stochastic process u(t, w), the sequence of 

random variables u ,1 (w) = u(t j, w) is a new discrete parameter- stochastic 

process. Three usually used models are constructed with-the help of a 

discrete parameter white noise process, i.e., a sequence of independent 

identically distributed random variables nI with 

nj 0t2E(n± 0 and En 

These are Koopmans, 1974, Chapter 7] the moving average model: 

1 

uk = a3 nk- (5.13) 

3=-n 

the autoregressive model: 

q 

Uk + b3 Uk-j = k' E-tulnkl=O for l<k, 

J= (5.14) 

and the mixed autoregressive - moving average model: 

P 

3 U = -- cl nk- (usually do= col). (5.15) 

.1=0 1=0 

These are finite parameter models and the first two can be extended to 

infinite by letting n, m, q--) and introducing the conditions 

+13



a, ,ia< 

http:nk-(5.13


Of particular importance is the one - sided moving average model 

Ux ajnk-j(5.16) 

3=0 

which possesses the property of physical casuality since the state uk of the 

process at epoch tk depends only on past values nk.j of the exciting white 

noise process, and not on future ones. It can be shown that the solution to 

a finite autoregressive model is an one - sided (infinite) moving average 

[Koopmans, 1974, Section 7.3 ]. 

A purely nondeterministic second -order stationary stochastic pro

cess X(t) satisfying certain conditions (see [Cramer, 1965, p. 219] for 

details) has multiplicity one, and canonical representation ofthe form 

t 


X(t) = g(t-s) dz(s) (5.1?)f 
An approximation of the above integral by a summation leads to 

k k 
Xk= X(tk)= g(tk-tj) [z(tj)-z(tj-j)] g,- n, 

S=-w -(5.18) 

=
Wehaveset z(t1)-z(t_)= n1, with EfnI 0 and EnnjT=a 2 
31 , 

inview of E[dz =0, EfIdz(t) 12 I=dt (z(t1)-z(t1_.)Pdz) and the fact that 

z(t) has orthogonal increments. A simple change of the summation index 

from itoj=k-i gives 

X= n,(5.19) 

3=
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which is an one - sided moving average model. 

Without any approximation it can be shown that a discrete parameter 

zero mean weakly stationary stochastic process can be expressed as the sum 

of a purely deterministic and a purely nondeterministic zero mean pkiobesses 

(Wold decomposition), the latter having an one- sided (infinite) moving 

average representation [ Koopmans, 1974, p. 255 ]. This connection with 

the Cramer - Hida representation establishes the importance of the one 

-sided moving average and the autoregressive' scheme (whose solution is an 

one - sided'moving average) in modeling stationary stochastic processes. 

Passing from the discrete to the continuous time case and restric

ting ourselves to the autoregressive'model in view of its finite number of 

parameters, we have 

dt n dt' dt 

where W I(t) is the Wiener process. Generalizing to a vector process u(t) 

arld allowing the coefficient matrices to be functions of time we obtain the 

n b order autoregressive model 

d t u(t) da-lu(t) du(t) 
-- + B 1 (t) + . . . + B,_ 1 (t) - + B (t) u(t)= 

-dte dt ' dt 

d W (t) 
- G(t) (5.21) 

Sdt 

The solution u(t) of the above differential equation has multiplicity one and 

is a Gaussian Markov process [ Ephremides and Thomas, 1973, p. 13 ]. 

We shall limit ourselves to the first order (nl) autoregressive process-and 

we shall investigate conditions for u(t) to be stationary. 
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The use of the Wiener process instead of any other process with 

independent increments restricts us to Gaussian processes. The 

"Gaussianity" assumption is essential in making possible statistical 

inference on final Gaussian estimates, since means and covariances 

completely specify in that case the corresponding probability distributions. 

Another important independent increment process is the Poisson 

(count) process and the generalized Poisson process [McGarty, .1974, 

pp. 83- 86 ]. The formal derivative of the generalized Poisson process is 

also a white noise process, although non-Gaussian. For the study of 

Poisson driven Markov processes we refer-to [ Snyder, 1975, Section 4.21. 

5.4 Construction of Exponentially Correlated Stationary Stochastic 

Processes from White Noise . 

The most simple continuous time autoregressive model is the first 

-order one-dimensional one with constant coefficients, 

dx(t) dW(t) 
+ p x(t) EfW(t) W(s) = cr2 6(t-s) 

dt dt 
(5.22) 

dW 
where W = - . This is a linear stochastic differential equation 

dt 
with state transition function 

(t,s) = -p(t-s)e523 (5.23) 

and solution 

t 

x(t) = e P(t-t) + f e p(t_ dW(e) 24) 

to 

We can differentiate between two types of solution according to whether 
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x (to) is a deterministic constant or a random variable: 

A. 	 For x(t 0 ) = c o = const., we have 

m(t) ='E{x(t)3 = e-p(t-t ° ) CO 

.- P~-o -p(S-to)+R(t,s) =:Efx(t) x(s)j, = 'ee-p(t-t 0 ) e sCo 

min(t, s) 

p ( t ) )+ aY 2 / e - e-p(s- d. -

to 

° 0 2 p e p(t s) e 2 pt + 2- p e

(5.26) 

The 	 covariance function of x(t) is 

C(t,s) = R(t,s) -m(t) m(s) = 

2 	 02 - t l - a e + e ~ (.e -p(t+s) e2pto - Pt (5.27)

2p 2p 

and therefore x(t) is nonstationary. 
2 

B3. 	 For x(to) = xo(w), with E[x.) = co, Etxo = 0 o and 

Ex 0 (t)] = 0, we have 

e - p	 	( t - t ) Com(t) = 	 (5.28) 

S0 P(t+s) e2 pto + a- (5.29) 

R(t,s) = [ao- 2p 

2 - 2 2s o 2pto a -pit-si 
=r cc -~t e _+--, - e ItC(t,s) 	 

2 p 	 2p (5.30) 

The 	 solution x(t) is in general a nonstationary process. It is possible to 
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obtain a stationary process by setting c o = 0 (so that E f x(t)1 0 = const.) 

and go = /2p so that 

a - PIt-s I 
C(t,s) = - e (5.31) 

2p 

We have succeeded in constructing a stationary stochastic process 

from white noise. With appropriate selection of the parameters a 2 , p we 

can obtain every such process from the class of exponentially correlated 

processes with covariance functions of the form 

C(r) = C0 exp[-II/ T ] , 7t-s, T> 0 (5.32) 

where C. = C(0) is the variance of xt (w) for every t, 'and T is the 

'correlation time" related to the "sharpness" of C(7- ). The smaller the 

correlation time T is, the more the covariance function is concentrated 

about the C(T) axis. 

To extend these results to more dimensions consider the vector 

stochastic process X(t) generated by a general first order autoregressive 

model of the form 

d X(t) = A(.t) X(t) +--W(t) (5.33) 
dt dt 

=with E[fW(t) W T(s)3 = Q(t) (t-s), EfX(to)] Xo 

EtX(to) XT(to) = R o , EfW(t) XT(to)j = 0 

The solution is 
t 

X(t) Ntto) X(to) + f c(t, ) d-W(C) (5.34) 

to 



m(t) = E[X(t)1I (t,to) X0 	 (5.35) 

and covariance function 

min(t, s) 

C(t,s) = (t, to)[ Ro-Xo XT] tT(s to) + 	 f £(t,.) Q(4) T (st) d


to 
 (5.36) 

The necessary and sufficient conditions for stationarity are m(t) = const. 
=(implying Xo 0), and C(t, s) = C(t-s). It can be shown (see for example 

[Buoy and Joseph, 1968, p. 25]) that K(t) = C(t,t) is the solution of the 

differential equation 

dt



X T
with initial condition K(to) =Co = Re -

In the stationary case K(t) = K(O) = K(to) = Ro is constant and therefore 

-R = O = A(t) R0 + R o ATt) + Q(t) (5.38) 
dt"



This is a necessary but not sufficient condition for stationarity. We can 

obtain sufficient conditions (without claims to necessity) by setting 

A(t) = A = const., Q(t) = Q = const., X o = 0, and 

A R o + R o AT + Q = 0 	 (5.39) 

This is equivalent to the condition 2 p z 	 = a in the one-dimensional 

case. An additional condition corresponding to p > 0 is that the eigen

values of A must have negative real parts (see [Arnold, 1974, p. 1331). 

If X(to) is also inultivariate Gaussian, X(t) is a Gaussian process. 
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5.5 The Dynamic Model Compensation (DMC) Algorithm 

,,Ingram and Tapley [ 1974] have deviced a method for the estimation 

of the state of a spacecraft in the presence of unmodeled.accelerations which 

they call the "Dynamic Model Compensation" (DMC) algorithm. With the 

help of material from [Ingram, 1970, Tapley, 1973; and Ingram and Tapley, 

1974 ] we shall give a somewhat generalized version of this technique. One 

part of our generalization is the consideration of an unspecified dynamical 

system with state governed by a linear differential equation 

d
-x(t) A(t) x(t) + u(t) (5.40)dt 

in, place of the specific equations of spacecraft motion. u(t) is a vector 

stochastic process serving as a model for unknown (unmodeled) forcing 

terms, and generated by another first order differential equation 

d- u(t) = B(p) u(t) + n(t) (5.41) 
dt 

where the coefficient matrix B(p) depends on a vector p of unknown para

meters. The unspecified nature of the dependence of B on p is the second 

aspect of our generalization. Ingram and Tapley consider a diagonal matrix 

B, and p has elements the negative inverses of the diagonal elements of B. 

n(t) is a vector white noise process with E [ n(t) n T(s) 3 = G(t) 6(t-s), serving 

as a formal representation in place of the mathematically precise Ito 

stochastic differential equation 

du(t) = B(p) u(t) + dW(t) (5.42) 

The lack of a coefficient matrix in fron of n(t) poses no restriction since the 

corresponding effect can be trivially incorporated in the covariance matrix 
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G(t) by means of a simple propagation. The constant vector p can be also 

trivially modeled by the differential equation' 

d- P 0 (5.43) 

dt 

Summarizing, and after some obvious change' to a more compact notation, 

our-state-model becomes 

XAt A t xt +-ut (5.44a) 

Ut = B(p) u t + nt (5.44b) 

Pt 0 (5.44c) 

Integrating with the'help of initial values p (t1 ) = I,u(t ) = Ii, 

x(t x ,we obtain 

Pt = Pi (5.45a) 

t 

ut = u(t,ti)(pi) u, + f (t,)() n dg = 

t 

i 

. = 1,p
 (5.45b)
.(t,ti) ( ) ut, + 11(t,t 1 ) 


t



xt = 41.(t,ti) x1 + f Z'(t, ) u6 d = 

tI



t



='Zytti) X1 + cZI~tu(t) u1 + f l1 (c) d 

ti (5.45c)



1-6 



where 
t 

(D.(t,ti) f 41.x(t, ) 41,( ,tj) d (5.46) 

t, 
 -


Introducing 

OX(t~t'i~xfulPO) = (t,t) x1 + (D(t,t,Pi) U1 (5.47a) 

6u(t,ti,u 1 ,pi) -" (tto)(p) u (5.47b) 

6p (ps) = Pt (5.47c) 

and 

)p = 0 (5.48a) 

SUi(t~ti,pl)= 1(t,tipi) (5.48b) 

t 
??xl(t,ti,Pl) f ] ,(t, ) lj( ,tj,pi ) d 54c 

we arrive at 

X t = G(t,t,Xi) + 7 1 (t,t 1 ,X1 ) (5.49) 

where 

For t=t +1 we have 

Xl+l = O(t ltl,Xl) + t?(t1+l,ti,X 1 ) (5.50) 

This is a discrete state model and can be used together with a set or 
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observations (assuming linear dependence on the state for simplicity) 

Yj = H, Xj I v,,, E[v1 ]=0, E[vlv =Rj'61j (5.51) 

to solve the prediction- smoothing problem. However, there are some 

difficulties associated with this model. One of them is the nonlinearity of 

o with respect to p , which we can overcome by linearization. The decond 

is the dependence of the state noise ?71 on the state XI (actually only on p 1), 

and the final one is the non-whiteness of the sequence 17,i) . If the values 

[P1 ] are considered t6 be constants, it can be easily seen that 

E?17 1 ) = 0 and E(? 1 , 77') =0 for ij (5.52) 

However, p1 is part of the state X, and as such it is a random vector. In 

view of Pi+i = P1, we have 

Efp1 )= E[poj and E[pp] Ej pop 1 $0 (5.53) 

Because of the complex. dependence of 7 , on p it is difficult to evaluate 

Ff171 'n 1 , but the two vectors are in general correlated since p1 and p3 

are. To overcome these difficulties the sequence 37is approximated byI 

a new sequence [ p13, which does not depend on the state (p1 )'and is also 

white (Ef171 1] = 0 for i/ j). 

The approximati6n, which is essential to the resulting algorithm, is 

to replace 1 (t+ 1,t I,p 1 ) by a random vector it such that E f11 = 0 and 

Ef11 l = Ef11 1j/ 613. This we can achieve with the help of a white 

sequence n 1 , suchthat Efn1 J= 0 and Efnnhl= I 61j, by setting 

K I= ni (5.54) 

where K1 t 11 T3,.and the expectation is taken by treating pi as a 

nonrandom constant, 
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tiI 

K1 =. (t+ 1 , ) G(C) IT(t+1 ,j) d = K(tt,tj,p) (5.55) 

ti



K1 depends on p, since tP depends on p,. It follows easily that 

Eiil-K 1i Efnn (KiY Kfl (Kft)T61 = K1 8j (5.56) 

By setting i+ 

7 = li, 77 = [., £P(t+,t) dc ii S it 

^T 
 -T ^T



and 77 j [ xj 77 0], wehave 

E Qt60 and Q (5.57) 

where 

St KI S[ S, K, 0 

Q = K, Si K1 0 = Qt(P 1 ) (5.58) 

0 0 0 

We have now arrived at the state model 

Xt+ = (t 1 +1 ,tiX+) 77t (5.59) 

such that the smoothing - prediction problem can be solved with the help of 

standard techniques (extended Kalman- Buoy filter, see [ Jazwinski, 1978, 

p. 278; and Tapley, 1973, p. 411]),except for the dependence of the state 

noise covariance matrix Q j (pl) on part of the state. Ingram and Tapley 

simply write Q (P,) without specifying which value-of p is used (T., Ty, 

T. in their notation). It is natural to assume that p1 is replaced 

149 



by its current estimate p1 based upon all past observations Y r (r=1,2,.. 1). 

The central point in the derivation of the algorithm is the approxima

tion of 1! by 1,. Ingram [1970] offers no explanation or motivation about 

this approximation. Further reference is given to [ Jordan, 1966 1 (to which 

we had no access with theremark [Ingram, 1970, p. 22] that the original 

white noise process n(t) is considered constant over the interval [t 1 ,t+ 11. 

This, at least mathematidally, is absurd. The very essence of the white 

noise process is the everywhere discontinuity of its sample functions, and 
n(4) - n(C), 4, ~E[t,t,+1 ], is unbounded no matter how small Itf+t-tI is. 

It must be pointed-out that the same white sequence m?may be 

obtained by a much simpler argument. The random vector P (t) is approx

imated over the interval [t1 ,t+,f] by a constant nonrandom vector equal to 

its current estimate P1 %basedupon past observations up to the epoch t1 . 

Inthis case we replace 1,(t+ 1,t1,p, ) by 11(t1+1,t,01 ),so that E[111Tif 

= Kj(p, ), and proceed to obtain the white sequence 77 with E{(J) = Q1 (P). 

Assuming for a moment that despite the approximations involved, the 

final solution (after smoothing where state noise covariance matrices are 

also updated) is sufficiently close to the "true" solution of the original model 

= At, xt + ut (5.44a) 

ut = B(p) ut + nt (5.44b) 

(5.44c)
Pt 0 

we may identify the problem with the one described by 

xt = At xt + ut (5.60a) 

• -u 1t = B(p .) ut + nt (5.60b) 

where p is the final optimal estimate of p based upon all the observations. 
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In this case we can directly model u t as a stochastic process with known 

mean and covariance function, spec. fe.d by the solution of eq. (5.60b) and 

the initial value uo = u(to). 

For the specific choice of 

2 
ax 0 0-.-p " 0 0 

p -1 2 
B(p) 0 -PY 0 Efnt nf]= 0 o, 0 8(t-s) 

0 0 -0 0 o 

each component of ut is an independent stochastic process with mean 

E[u,(t)] etto) l, [u (t 0 )1 (5.61) 

an.- covariance 

C~t~s -~ (7a2 1 g(t+s)P 2t. p'
C(t[s) Efu2X(to)J P. e + 

* ~2 -jt-sjp +: 

- e (E[u (t 0 )) (5.62) 

with similar expressions for uy(t) and uz(t) . 

Ingram [1970, p. 22] claims stationarity of u ,(t), recognizing the 

necessity of px being a constant, but not the special relation between p, 

and the initial value u (to) statistics also necessary for stationaritv 

(see Section 5.3). The initial values are modeled as random variables with 

Efu(to) uT(to)] - Uo UT = 2
E[u(t)] = o, 

0 I [Ingram, 1970, pp.76-77].j 0 

If uo 0, then E(utt const., and u t is certainly nonstationary. if 

u = 0, then, to secure stationarity one must set 

S 
2 ao 

2 
where c.= 

2 Efuo(t 0 ) (5.63) 

a2P151 

151 



in which case p . should-be a fixed constant and not a parameter under 

estimation. Ingram and Tapley [ 1974, p. 195 ] mention that the initial 

conditions are unknown. If this implies that uo is a deterministic constant 

to be -estimated simultaneously, we again arrive to a nonstationary solution 

in general (see Section 5.3). 

In view of the reported success of the DMC algorithm, its adaptivity 

must be looked for in the approximations themselves rather, than in the 

original rigorous state equations. If p has been fixed, the state noise 

matrix Q(tk+ 1,tk, p) should have been a priori defined. On the other hand, 

the state noise matrix Q(t,+ 1, tk,Pk ) is allowed to vary in the filtering 

algorithm, according to the current estimate Pk of the parameter p. 

Although Pk = Pk-1 in the discrete state model, the same equality does 

not hold for the corresponding estimates 

Pk i' Pk-1 (5.64) 

where pi is the estimate of p based upon past observations y, up to the 

present epoch (j=1, 2,..., i), and the one additional observation yl pro

duces in general a change on the new estimate Pk of p. 

The concept of an exponentially correlated forcing term can still be 

maintained within each interval [t ,t+ ] where p, is treated as a constant 

and corresponds to a "local covariance function" formulation designed to fit 

the local behavior of the unknown disturbing function. On the whole time 

interval [t 1 ,tn], however, the variation of the estimates p$ of p used, 

gives rise to a nonstationary stochastic'process u(t). 

5.6 "AdaptiVe Estimation in General 

The general adaptive estimation problem may be defined as follows: 

The evolution in time of the state x t of a dynamical system is described by 

a differential equation of the form 

xt f(xt,t, Ct) (5.65) 
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where Et represents a function of unknown disturbances. It is possible to 

model Et, not as a single stochastic process ut, -but as a whole class of 

stochastic processes generated with the help of some other known process 

n t and a set of unspecified parameters p, 

ut = g(ut,t,nt,p) (5.66) 

Every set of parameters p specifies a different stochastic process u t, and 

an optimal set p* is sought, such that the resulting stochastic process u 

is.an optimal model (in a sense that remains to be specified) of the unknown 

disturbances Et, for the purpose of estimating the state x t (and possibly 

another set of parameters a) from a finite set of observations 

y, = h 1 (xt ,t1 ,a) + v, (5.67) 

where vi is a sequence of zero mean random vectors with known covari

ances. 

It is essential to realize that the differential equation (5.66) does not 

model any physically realizable dynamical system, but merely serves as an 

artificial means for constructing a class of stochastic processes u t (P). 

The nature of this class must be a priori specified (by means of selecting a 

certai process n t and a certain function g(u t ,-t, n t , p) ), and its appropria

teness must be justified by considerations related to the nature of the 

unknown disturbances Et to be modeled. 

Since p is a vector of constants, we have p = 0, and through a 

technique called "vector augmentation" we may rewrite our model as 

xt f(xt,t, ut) 

k = u = g(ut,t,nt,p) = F(Xt,t, nt) (5.68) 

Pt 0 

The solution to the above stochastic differential equation Is by no means 
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trivial because of the nonlinear dependence of F(Xt,t,nt) on Xt and nt. 

The simplest linear model correspond to 

f(xt,t,nt) - A' xt + ut (5.69a) 

g(ut,t,nt,p) = Bt ut + Dt p + nt- (5.69b) 

In this case the solution ut is of the form 

Ut cb(t,to) u0 + f I(t,) ne dg + [I4)(tt) Dc d ] P 

= Uit + Dt P = ult + uat (5.70) 

u t is now the sum of a known stochastic process u , t and a parametrized 

deterministic function u a t (p) vhich does not contribute to the covariance of 

ut. Itis possible to include the known mean of ut in U2 t, so that ut is 

modeled as a stochastic process with known covariance and parametrized 

mean. This is a well known technique (see for example [ Parzen, 1961]), 

but deviates from our main objective which is the adaptivity (param6triz'a

tion) of the coVariance function also. 

'The next simple7 model is similar to the one in the DMC algorithm, 

obtained by setting 

g(ut,t,nt,p) = B(p) ut. + at (5.71) 

the only nonlinearity being with respect to p. 

Returning to the general nonlinear stochastic differential equation 

(5. 68), let us assume that a solution has been somehow obtained. Such a 

solution is a stochastic process Xt with mean and covariance depending on 

those of nt and the initial values X0 (Xo ,uopo) modeled as random var

ables.. Assuming for simplicity linear observations and no parameters, 

154





we have 

Y1y = HI x i + v i , i1,2,..-. ,n (5.72) 

Let X denote the vector of all states x1 , 

]
XI = [x T ... 

U that of u1 , and P = Po, since all states p1 are the same. From the 

known mean and covariance of the solution process Xt it is possible to 

obtain the mean and covariance of the vector 

XT U p],Z =[ 

X X - 6X SXX SXU SXP 

E[Z U U - 8U , EZZT- ZZT= SUX SUU SUP 

P P - 6P SPX SPU SPP 

The observation equations can be written in the following matrix form:, 

Y = H X + V or L Y - H X [H I] [J 

Solving this least squares adjustment (condition equations) problem we 

obtain an estimate 6X and X = X + 6X. The effect of the observations 

on the nonobservable parts of the state U and P can be evaluated through 

least squares prediction, 

-1 : 

=8P S Xs 8X , P = P + 8 

and similarly for U. X, the final estimate of the state at observation epochs 

does not depend at all on the final estimate p of p, but only on the mean and 

covariance function of the solution process X t and consequently on the mean 

and covariance of the initial value Pc. In fact there is no adaptivity of the 
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mean and covariance function of the state noise process ut in the vector 

augmentation technique. The solution differs from one with fixed parame

ters p, only in the fact that the uncertainty in an original estimate Po of p 

has been taken into account. 

Adaptivity can be introduced by resolving the problem, fixing p to the 

value of the obtained estimate p, evaluating mean and covariance function 

of ut, and using only the first part of the state equations 

Xt = f(xt,t,ut) 

The optimality of the estimate p is hard to define. This estimate 

depends on the observations (through X being a function of, Y),, and to this 

extend is adapted to the observational data, but it also largely depends on 

the mean and covariance of the initial estimate po. Because of this, the 

vector augmentation technique fails to provide a solution to the following 

more idealized problem: 

Given the mean and covariance of the state noise ut within a set of unknown 

parameters p, find among all permissible values of p the hne which is 

optimal in a sence to be defined. 

The solution xt of the state differential equation has mean and cova

riance function depending on the unspecified parameters p. The vector X 

corresponding tostates at observational epochs has mean TC (p) and cova

riance matrix S (p), both depending on p. For linear observations the 

model for the adjustment is 

6X T ] L(p) = Y - H X(p) = H 6X + V, E[6X = S(p) 
AA 

and the final estimate X (p) = X (p) + 6X (p) depends also on p. 

A simple way to define optimality of X (p) is the minimization of the vari

ance"of any scalar linear function of X 

q =b T X 
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i. e., to find the optimal vector p which minimizes 

bTq(p) = [ EX(p) XTip)3 - X(p) XT(p) I b = 

= b E 6X(p) 6X T(p)] b -

Such a criterion however, can be justified only when the variance to be 

minimized is the "true" variance based upoh "true" a priori statistics of 

both the observational errors and the signal 6X. The result is the minimi

zation of the nominal rather than the true variances of estimates and the 

appropriateness of such an optimality criterion is questionable. 

I A more reasonable criterion of-optimality is to be found through 

intuitive reasoning, rather than in any rigorous definition. In essence, the 

role of estimation is to separate the useful signal related to the states of the 

dynamical system from the unwanted observational noise. If such a separa

tion has not taken place because of the use of an incorrect model, the effect 

is to be seen on the estimates of the observational residuals v1 . If the. 

residuals are too small, too much signal has been taken out. If they are too 

large, or they just show some systematic pattern, then part of the signal 

has not been detected. In general, the inconsistency of residuals with their 

a priori statistics strongly indicates the use of an inappropriate model. 

This effect manifests itself during computations associated with filtering in 

what is commonly called "filter divergence" [ Jazwinski, 1970, p. 302]. 

In a global (nonsequential) solution, the parameters p determining 

the statistics of the unknown disturbing function ut must be varied by "trial 

and error" until consistency of residuals with their a priori statistics is 

reached. This presupposes that first, the parameters p give rise to a class 

of statistics for the process ut which is wide enough, so as to contain an 

element close to the "true" statistics. The second assumption is that the 

a priori statistics of the observational errors are accurately known through 

calibration and standard statistical techniques. 
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Related to global adaptivity are t~chniques, such as the DMC algo

rithm, of local or real time adaptivity. These techniques aim at modifying 

the state noise covariance matrix during each step of the filtering process, 

in order to overcome -the-filter divergence, problem. -Such-techniqu-es are 

discussed in [Jazwinski, 1970, Chapter 8, especially Section 11; and Gelb, 

1974,'Sectidns 8.1 and 9.1]. 

Jazwinski [1969] considers a discrete linear dynamical system model-

xk+ = + Xk + Gk (5.73)W k 
 

with observations 

Yk = Hk xk + v k (5.74) 

-.where the state noise w k is a zero mean white Gaussian sequence, 

accounting for errors made in modeling the dynamics of the system. The 

state noise covariance matrices Q k are considered to be the same over 

every N observations 

Qk+i = QkN ,2,...,N 

and an algorithm is devised for determining Q k,N So that the produced 

residuals are consistent with their a priori statistics. 

Another approach very much similar to-the DMC algorithm, is 

given in [Jazwinski, -1974]. The adopted system model is 

Sx =. f(xt,t) +- G ut (5.75)t 
 

and ut ismodeled over each interval [t1,ti+ 1] between observations as 

Ut = Ut + j (t-t1) (5.76) 

where f1 is a sequence of random variables with fixed a priori uncertainty. 
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The discrete state equations of the form 

xi+ = F(x±,ut) ti t t 1 (5.77) 

are augmented by 

u1 = ui + gi (t+ 1 -t) - (5.78a) 

= = 0 for t, t t1 +1 ) (5.78b) 

and the problem is solved with the help of the extended Kalman filter 

algorithm. 
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-6. SUMMARY AND"RECOMMENDATIONS 

The objective of this work has been twofold: First, to clarify the 

mathematical and probabilistic background of standard linear estimation 

techniques used in geodesy and to reveal their interrelationship. Secondly, 

to address what weconsidered to be the two most important estimation 

problems in geodesy: the norm choice problem in gravimetric collocation, 

and the adaptive determination of the stochastic models for not-directly 

observable physical processes. 

Linear least squares adjustment and linear least squares prediction 

have been shown to reduce to linear best approximation problems. In the 

former, the observations are best approximated from elements of the 

"model space,," while in the latter, the unknown parameters are best 

approximated from elements of the "data space." Probabilistic concepts 

in least squares adjustment have been shown to refer only to the definition 

of the metric for the approximation, while in least squares prediction the 

structure of the approximation space itself (space of second-order random 

variables) in addition relies on probabilistic ideas. However, for the case 

of Hilbert space valued random variables, least squares prediction has been 

related to deterministic (exact) collocation. Estimate optimality criteria 

(minimum error bounds) have been identified for the single parameter predic

tion as opposed to the global minimum norm solution for the unknown function. 

Kalman-Bucy filtering techniques have been shown to reduce in the 

case of dis.crete observations to least, squares -adjustment (for filtering

smoothing) and least squares prediction (for prediction). 

The useof stochastic models has, been investigated for the two most 

important physical processes related to geodetic work: the gravity field 

and the rotation of the earth. Motivated by Lauritzen's proof of nonergodicity 
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for the gravity field of the earth, a deterministic criterion for optimality of 

related predictions 'has been introduced leading to a proposed solution of the 

optimal norm choice problem in (exact) collocation. In the case of -the rotation 

of the earth, the relation of stochastic models for polar motion and diurnal 

rotation to those for the excitation function has been shown,. through the use 

of the linearized Liouville ,equation for both cases:with and without damping. 

The possibility of constructing simple stochastic models from white 

noise has been explored, and the conditions for stationarity of the output of 

first-order autoregressive models, excited by white noise, have been 

established. 

The Dynamic Model Compensation algorithm has been generalized, 

and its adaptive structure and inherent approximations have been clarified. 

Other possibilities for adaptively estimating both state and unknown effects 

on dynamical systems and the nature of the optimality of such estimates 

have been explored. - , 

'Of course a great deal has yet to be done both with respect to. 

gravinfetric problems nd to the adaptive estimation in geometric

dynamic geodesy. 

The computational feasibility of obtaining an optimal model covariance 

or norm, using minimum error-bound criteria, remains to be demonstrated. 

A way must be found to include the effect of observational errors. 

Adaptive estimation techniques, because of their vary nature 

(adaptivity to observational evidence), can only be compared and justified in 

connection with real problems. The success of the Dynamic Model Compensa

tion algorithm in estimating unmodeled accelerations on satellites encourages 

the use of this and similar adaptive algorithms, especially for VLBI observa

tions when estimating the unknown excitationf function giving rise to earth 

rotation. 

161





REFERENQES 

Arnold," L. (197'4). Stocha'tic Differentidl Equations: Theory and',Applica
tions, New York: Wiley-Intersci6nce. 

Aronszajn, N. (1950). "The Theory of Reproducing Kernels,'" Trans. 
Amer. Math. Soc., Vol. 68, pp. 337-404.: 

Bharucha-Reid, A.T. (1972). Random Integral Equation's, New York: 
- Academic Press. 

Bucy, R.S.'and P:D. Joseph. (1968). "Filtering for*St6chastic Processes 
with.Application to Guidance, New York: Wiley.-Interscience. 

Burril, d. W. (1972). Measure, Integration and Probability 'New York: 
McGraw-Hill. 

dholshevnik6v, K.V.' (1965).' "On the Values of the Coefficients in the
, Expansion'of-thePotential" (in Russian), Proc. Univ, Leningrad, 

Series on Math., Mech., & Astronomy, No. 13, pp. 155-158. 

Cholshevnikov, K.V. (1968). "On the Value of the Tesseral Harmonic 
Coefficients" (in Russian), Proc. Univ. Leningrad, Series on Math., 

* Mech., & Astronomy, 1, pp. i49-153. 

Cramer, H. (1964). "Stochastic Processes as Curves in Hilbert Space," 
Theory of Probability and Its Applications, V61. 9, 'No. 2, pp. 
169-179., 

Cramabr, I. (1965). "A: Contribution to the Multiplicity The'orf of Stochastic 
Processes,'! Proc. 5th Berkeley Symposium on Statistics -and Applied 
Probability, Vol. 2, pp. 215-221. 

Cramer, H. (1971). . Structural and Statistical Problems for a Class of. 
Stochastic Processes, Princeton: Princeton Univ. Press. 

Cramer, H. and M.R. Leadbetter. (1967). Stati6nary-9nd Related Stochastic 
Processes, New York: John Wiley. 

162 



Dablen, F.A. (1971). "The Excitation of the Chafidler Wobble by Earth-
Quakes;" Geoph. J. Roy. Astr. Society, Vol. 25, pp. 157-206. 

Davis, P.J. (1963). Interpolation and Approximation, New York: Dover. 

Deutsch, R. (1965). Estimation Theory, Englewood Cliffs, N.J.: Prentice-
Hall. 

Doob, J.L. (1953). Stochastic Processes, New York: John Wiley. 

Dunford, N. and J.T. Schwartz. (1963). Linear Operators, Part II, 
New York: Wiley-Interscience. 

Eeg, J. and T. Krartip. (1975). "Integrated Geodesy, " from Mathe
matical Methods in Physical Geodesy Lecture Notes, Ramsau, 
1973 published in: Brosowski, B. and E. Martensen, eds., 
Methoden und Verfahrcn der mathematischen Physik/Band '13, 
Bibliographisches Institut, Manheim. 

Ephremides, A. and J.B. Thomas (eds.). (1973)." Random Processes: 
Multiplicity Theory and Canonical Decompositions, Stroudsburg,
Pa.: Dowden Hutchinson and Ross.' 

Fine, T.L. (1973). Theories of Probability, New York: Academic Press. 

Finetti, B. de. (1974). Theory of Probability, Vol. 1, New York: John 
Wiley. 

Gelb. A. (1974). Applied Optimal Estimation, Cambridge, Mass.: 
The MIT Press. 

Gikhman, 1.1. and A.V. Skorokbod. (1969). Introduction to the Theory 
of Random Processes, Philadelphia: W. B. Saunders Co. 

Goldstein, H. (1950). Classical Mechanics, Reading, Mass.: Addison-
Wesley Publ. Co. 

Grenander, U. (1963).' Probabilities on Algebraic Structures. New York: 
John Wiley. 

Heiskanen, W. and H. Moritz. (1967). PhysicalGeodesy, San Francisco: 
W.H. Freeman and Co. 

Ingram, D.S. (1970). Orbit Determination in the Presence of Unmodoled 
Accelerations, 3ill) i)isset'tAitlon, Tho Ihtilvotslty of Texas, Austin. 

163 



Ingrai, D.S. and B.,D. Tapley. (1974)., "Lunar Orbit Determination in the 
Presence of Unmodeled Accelerations, " Celestial Mechanics, Vol. 9, 
pp. 191-211. 

Jazwinski, 
475 

A.H. 
-485. 

(r969). "Adaptive Filtering, "tA'utbmatica, Vol. 5, pp. 

Jazwinski, A. H. (1970). Stochastic Processes and Filtering Theory, 
New York: Academic Press. 

Jazwinski, A. H. (1974). "Adaptive Sequential Estimation with Applica
tions, " Autorhatica, Vol. 10, pp. 203-207. 

Jordan, J. F. (1966). Optimal Stochastic Control Theory Applied to 
Interplanetary Guidance, PhD Dissertation, The University of 
Texas, Austiri. 

Kalman, R.E. (1960). "A New Approach to Linear Filtering and Predic
tion Problems, "J. Basic Eng., ASME, 82, pp. 35-45. 

Kalman, R.E. and, R.S. Bucy. (1961). "New Results in Linear Filtering 
and Prediction Theory," J. Basic Eng., ASME, Ser.. D, 83, pp. 95
108. 

Kohnogorov, A. N. (1950). Foundations of the Theory of Probability, New 
York: Chelsea Publ. Co. 

Kohnogorov, A. N. and S.V. Fomin. (1960). Measure Lebesgue Integrals 
and Hilbert Space, New York: Academic Press. 

Kolmogorov, A. N. and S.V. Fomin. (1970). Introductory Real Analysis, 
New York: Prentice-Hall. New York: Dover Reprint, 1975. 

Koopmans, L.H. (1974). The Spectral Analysis of Time Series, New 
York: Academic Press. 

Krakiwsky, E .J. (1975). "A Synthesis of Recent Advances in the Method of 
Least Squares, " Lecture Notes, No. 42, Dept. of Surv. Eng., Univ. 
of New Brunswick, Fredericton, N. B., Canada. 

Krarup, T. (1969). "A Contribution to the Mathematical Foundation of 
Physical Geodesy," Danish Geodetic Inst., Meddelelse No. 44, 
Copenhagen. 

164





tauritzen, S.L. (1973). "The Probabilistic. Background of Some Statistical 
Methods in Physical Geodesy, "Danish Geodetic Inst., Meddelelse 
No. 48, Copenhagen., 

Liebelt, P.B.. (1967). An Introduction to Optimal Estimation, Reading, 

Mas s. Addison-Wesley Publ. Co. 

MacMillan, W.D. (-1960). Dynamics of Rigid Bodies, New York: Dover. 

McGarty, T.P. (1974). Stochastic Systems and State Estimation; New 
York: John Wiley. 

Maisinha, I. and D.E. Smylie. (1967). "Effect of Earthquakes in the Chandler 
Wobble-and the Secular.Polar Shift," J.. of Geophysical Research, 

'Vol. 72, No. 1 8,_ pp.'473 1-4 7 4 3 . 

Mbritz,'H.I (f972)>- "Advanced Least Squares Methods," Reports of the 
-Dept. of Geodetic Science, No. 175, The Ohio State Univ., Columbus. 

Mudlleit, 1.1. (1969). Spherical and Practical AsronomyAs-Applied- to 
Geodesy, New York: Frederick Ungar Publ. Cd. 

Miller, C." (1966). "Spherical' Harmonics," Lecture Notes in Mathematics 
No. 17, Berlin: Springer-Verlag; 

Munk,W.H. and G.J.F. MacDonald; (1960); The Rotation of the Earth, 
London: Cambridge Uni rersity Press; 

Obukhov, A.M. (1947). "Statistically Homogenous Random Fields on a 
Spherel"(in Russian), Uspekhi Mat. Nauk, Vol. 2, No. 2, pp. 196
198.



Papoulis, A. (1965). Probability, Random Variables and Stochastic 
Processes, New York: McGraw-Hill. 

Parthasarathy, K.'R. (1967). Probability Measures on -Metric Spaces, 
New York: Academic Press. 

Parzen,.E. (1959). "Statistical Inference on Time Series by Hilbert Space 
Methods, I," Technical Rept. No. 23, Dept. of Statistics, Stanford 
Univ.



Parzen, F: (1960). "An Approach to Time Series Analysis," The Annals 
of Math. Statistics, Vol..32, No. 4, pp. 951*-989. 

165 



Parzen, E. (1962). Stochastic Processes, San Franciscoi Holden-Day. 

Payne, M.H. (1973). "Estimation of Bounds for the Geopotential 
Ceofficients," Rept. 73-28, Analytical Mechanics. Associates, 
Inc., Jericho, N.Y. 11753. 

Pitt, H.R. (1963). Integration Measure and Probability, New York:


Hafner Pubi. Co.



Prokhorov, Yu. V. (1956). "Convergence of Random Processes and Limit 
Theorems in Probability Theory," Theory of Probability and Its 
Applications, Vol. 1, No. 2, pp. 157-21.4: 

Rochester, M.G. (1970). "Polar Wobble and Drift: A Brief History." 
In: L. Mansinha, D.E. Smylie and A.E. Beck (eds.), Earthquake


Displacement Fields and the Rotation of the Earth, pp. 3-13,


New York: Springer-Verlag/Dordrecht, Holland: D. Re idel Publ.


Co.



Rochester, M.G. (1973). "The Earth's Rotatibn," EOS, Trans. Amer. 
Geoph. Union, Vol. 54, No. 8, pp. 769-781. 

"Royden, H.L. (1968). Real Analysis, London: The Macmillan.Co. 

Rozanov, J.A. (1968). Infinite Dimensional Gaussian Distributions, 
Proc. of the Steklov Inst. of Math., No. 108. English transla
tion by Amer. -Math. Soc., Providence, R.I.., 1971. 

Rudnick, P. (1956). "The spectrum of the Variation in Latitude," Trans. 
Amer. Geoph. Union, Vol. 37, No. 2, pp. 137-142. 

Sage, A.P. and J.L. Melsa. (1971). Estimation Theory with Applications 
to Communication Theory and"Control, New York: McGraw-Hill.' 

Shapiro, H.S. (1971). "Topics in Approximation Theory," Lecture Notes 
in Mathematics, No. 187, Berlin: Springer-Verlag. 

Smylie, D.E., G.K.C. Clarke and T.J. Ulrych. (1973). "Analysis of 
Irregularities in the Earth's Rotation," Methods of Computational 
Physics, -Vol. 13, pp. 391-430. 

Snyder, D.L. (1975). Random Point Processes, New York: John Wiley. 

Tapley, B.D. (1973). "Statistical Orbit Determination Theory," Recent 
Advances in Dynamical Astronomy, B. D. Tapley and V. Szebehely 
(eds.), pp. 396-425, Dordrecht, Holland: D. Reidel Publ. Co. 

166 

http:Macmillan.Co


Taylor, A. E. (1958). Introduction to Functional Analysis, New York: 
John Wiley. 

Tscherning, C.C. (1973). "Application of Collocation. Determination of a 
Local Approximation to the Anomalous Potential of the Earth Using 
'Exact' 	 Astrogravimetric Collocation," from Mathematical Methods 
in Physical Geodesy Lecture Notes, Ramsau, 1973 published in: 
Brosowski, B. and E. Martensen, eds., Methoden und Verfahren 
der mathematischen Physik/Band 14, Bibliographisches Institut, 
Manheim. 

Uotila, 	 U.A. (1967). Introduction to Adjustment Computations with Matrices, 
Lecture Notes, Dept. of Geodetic Science, The Ohio State Univ., 
Columbus. 

Wiener, N. (1949). Extrapolation, Interpolation and Smoothing of Stationary 
Time Series with Engineering Applications',. New York: John Wiley. 

167




