
https://ntrs.nasa.gov/search.jsp?R=19770010812 2020-03-22T10:36:42+00:00Z

1. REPORT NO. 12 GOVE~NMENT

George C. Marshall Space Flig
Marshall Space Flight Center,

National Aeronautics and Space Administration I Washington, D.C. 20546 1.1. SPONSORING AGENCY CODE

I
15. SUPPLEMENTARY NOTES
Prepared by Data Systems Laboratory, Science and Engineering
*Science Applications, Inc.

**University of Alabama in Huntsville
16. ABSTRACT

This report establishes a theoretical background for the compilation process by dividing
it into five phases and explaining the concepts and algorithms that underpin each. The five
selected phases are lexical analysis, syntax analysis, semantic analysis, optimization, and
code generation. Several methods for both top-down and bottom-up syntax analysis are illus-
trated via examples. Graph theoretical optimization techniques are likewise presented, and
approaches to code generation are described for both one-pass and multipass compilation
environments. Following the initial tutorial sections, more than 20 tools that have been devel-
oped to aid in the process of writing compilers are surveyed. Care is taken to categorize each
according to the theoretical framework just established. A uniform notation is used throughout
this portion rather than resorting to that notation used by each individual system. Eight of the
more recent compiler development aids are selected for special attention - SIMCMP/STAGE2,
LANG-PAK, COGENT, XPL, AED, CWIC, LIS, and JOCIT. The concluding sections assess
the impact of compiler development aids, describe some of their shortcomings, and inspect
some of the areas of research currently in progress.

Compiler writing systems, translator writing
systems, compiler-compilers, compiler gen-
erators, compilers, metacompilers, genera-
tors, context-free grammars, syntax analysis,
parsers, semantic analysis, global optimiza-

STAB Category 61

I $5.00 Unclassified Unclassified 96

* For sale by the National Technical Information Service, Springfield, Virginia 22161

ACKNOWLEDGMENTS

Assembling the material and organizing the text for this report required
the cooperation of a number of people. The authors are grateful to Mr. Terry
Dunbar of Computer Sciences Corporation and Mr. David Abt of Chi Corporation
for their willingness to discuss the CWS projects in which they were involved.
Much credit is due Sandra Austin and Pat Ryan of Science Applications, Inc. ,
who were kind enough to carefully analyze the earlier versions and point out
inconsistencies and shortcomings. We, the authors, are responsible for any
that remain. Finally, we thank Lynda Suto, also of Science Applications, Inc.,
who exhibited almost limitless patience in the typing and preparation of numerous
earlier drafts.

ii

TABLE OF CONTENTS

Page

I . INTRODUCTION
II . THE STRUCTURE OF A COMPILER WRITING SYSTEM . . .
UI . METHODOLOGIES CHARACTERISTIC OF A CWS

A . Lexical Analysis
B . SyntaxAnalysis
C . Sernan t i cha lys i s
D . Optimization .
E . Code Generation

IV . EXPECTEDPERFORMANCERANGEOFACWS
V . ABRIEFHISTORY

VI . CURRENT SYSTEMS
A .
B .
C .
D .
E .
F .
G .
H .
I .

SIMCMP/ STAGE2 .
COGENT .
CWIC .
AED .
LIS .
JOCIT
Other Systems

LANG.PAK
XPL/XCOM

VU . THE USER'S PERSPECTIVE
Vm . DEPARTURE POINTS FOR FUTURE DEVELOPMENTS
M . CONCLUSION .

REFERENCES

1

1

5

6
6

23
30
35

41

42

46

47
50
54
57
59
62
64
66
69

71

74

78

79

iii

LIST OF ILLUSTRATIONS

Figure

1 .
Title Page

Typical one-pass compiler
Typical multipass compiler
Ideal CWS structure

2

3

4

4

11

14

15

17

19

21

22

32

33

34

39

42

2 .
3 .

Realistic CWS structure 4 .
Example precedence matrix 5 .

6 . Top-down parse tree construction
7 . Bottom-up parse tree construction

Example parse machine 8 .
Example production language 9 .
Example grammar automaton 10 .
Example automaton parser tables 11 .
Directed graph with three strongly connected regions 12 .
Directed graph partitioned into intervals
Derived graph from Figure 13

13 .
14 .

Decision table for code selection 15 .
CWS performance range spectrum 16 .

17 . SIMCMP/STAGE2 organization 47

LANG-PAK organization 53 18 .

iv

LIST OF ILLUSTRATIONS (Concluded)

Figure Title

19 . COGENTorganization
20 . XPL/XCOM organization
21 . CWLCorganization
22 . AED organization
23 . LIS organization
24 . JOCIT organization
25 . Comparison of parsing strategies
26 . Generalized CWS

Page

56

58

61

63

65

68

73

76

V

A SURVEY OF COMPILER DEVELOPMENT AIDS

1. INTRODUCTION

As early a s 1960, E. T. Irons was able to construct a compiler in which
the syntax recognition phase was independent of the source language being
translated [11. This effort encouraged those who speculated that the entire
compilation process could be automated. The immediate result was a period
of frenzied activity in the area of programming language syntax analysis, the
goal being to develop an algorithm applicable to the broadest possible class of
grammars. Meanwhile, formal studies of semantics lagged behind. A large
number of aids to the compiler writer emerged [21, employing many different
techniques and designed to reduce the implementation effort of one or more
phases of a compiler. The structure, performance range, methodologies

scussed as follows. employed, and other topics concerning these aids are c

1 1 . THE STRUCTURE OF A COMPILER WR TING SYSTEM

Within the computer science community, the generally accepted defini-
tion of a translator is a processor that automatically converts one language
(the source language) to another language (the object language). It is also
generally accepted that a compiler is a translator for which the source language
is procedural and the object language is an assembly or machine language.
Thus, a compiler writing system (CWS) is, strictly speaking, a software
package that automates the production of compilers. However, the term has
come to be used with those systems that automate only part of the task and
provide a framework (and perhaps a philosophy) for the remainder [31. There-
fore, this report will treat the terms compiler writing system, translator
writing system, compiler-compiler, compiler generator, and metacompiler as
synonomous. The term host computer (or host) shall refer to the machine on

which either the CWS or generated compile
of the CWS or generated compiler, will be stated only when it is not apparent
from the context. The computer that executes the object language produced by
the generated compiler will be called the target computer (o r target) .

Before launching into the structure of a CWS it is necessary to say some-
thing about the structure of compilers. Compilers are norm
into passes. A pass may be loosely defined as a complete examination of the
source text or some intermediate form of it. A compiler that generates object
language concurrently with recognition of phrases in the source language is
called a one-pass compiler. A typical one-pass compiler configuration is
shown in Figure 1. The semantic routines depicted are correlated to individual
phrase types of the source language and have the responsibility of selecting the
proper object code for each phrase type. A multipass compiler, for which a
typical configuration is shown in Figure 2, usually converts the source language
to an intermediate form on the first pass; subsequent passes examine the inter-
mediate form in its entirety for purposes of optimization or code generation.
A compilation phase may be even more loosely defined as one pass or some
distinguishable subset.

SOURCE
LANGUAGE

I--- GI -----
I - I

SEMANTIC
ROUTINE

I I
SYNTAX SEMANTIC I . - 1 ANALYZER - ROUTINE A - I

\ e I

SEMANTIC
ROUTINE

} - ~ OBJECT

Figure 1. Typical one-pass compiler.

2

SOURCE

I

I
OPTIMIZATION

SYNTAX
ANALYZER

ANALYZER GENERATOR

PARSE TREE

Figure 2. Typical multipass compiler.

To perform its task a CWS must have a description of the source lan-
guage (both syntax and semantics) and the object language. A description of
the characteristics of the target computer is also necessary if the object lan-
guage is a machine or assembly language. The descriptive form used is referred
to as metalanguages (literally, languages for describing other languages).
Often, several metalanguages or sublanguages are required, one for each aspect
of the translation.

An idealized CWS would exhibit the structure depicted in Figure 3. Under
this conceptual design the compiler developer would input the descriptions of the
source language grammar, the object language, and the target computer charac-
teristics via a single uniform metalanguage. The CWS would then automatically
generate tables from the descriptive inputs which would reconfigure the gen-
eralized compiler to accept the described source language programs and output
object language for the described target computer. Realistically, however,
neither uniformity nor completeness is characteristic of any single compiler
writing system now available. Figure 4 illustrates the most common configura-
tion in which separate definition methodologies are utilized to describe separate
compilation phases (denoted as CWS 1, CWS 2, and CWS 3). The block labeled
"Language/ Computer Dependent Support Procedures" represents functions
unique to a specific language-computer combination that are beyond the descrip-
tive capability of the definition methodologies and must be independently

3

I
'DEFINITION OF

LANGUAGE AND
TARGET -

SOURCE
LANGUAGE

r--- -1

I
cws

l 3

SOURCE
LANGUAGE

I
I

Figure 4. Realistic CWS structure.

GENERALIZED
COMPILER I

produced for each new compiler. In the illustrations that follow, blocks with
double-edgedborders denote dependent support procedures and dashedborders
encircle all components of a final compiler configuration. Components of the
CWS that are not also part of the resultant compiler are enclosed in hexagons.

4

I I I. METHODOLOG I

A broad array of tactics has been employed
based partly on the problem class for which the s
it is necessary to avoid details in favor of pres
alternatives, these efforts have been instrumental in shifting the emphasis in
compiler construction from ar t to science.

The phases of compilation selected for examination with respect to
tactics used by compiler writing systems are:

Lexical Analysis - Scanning the character string comprising the
input source language statement and collecting units of information
(called tokens) including identifiers, operators, numbers, and
r e served words.

Syntax Analysis - Determining the grammatical structure of the
input source statements.

Semantic Analysis - Attaching meaning to the input source language
statements in terms of data attributes (e. g. , type and structure)
and computer operations.

Optimization - Seeking memory space and/ or execution time
improvements for the to-be-generated object language.

Code Generation - Selecting and emitting code based on source
language semantics, object language description, and target com-
puter characteristics.

The latter three phases shall be referred to as postsyntactic analysis.

A specific CWS will often emphasize support in one or more areas while
neglecting others. In most cases little help is provided in the lexical analysis
phase, and resultant compilers are often inflexible in the form of input they will
accept. It is in the area of syntax analysis that the CWS has been the most
useful to the compiler writer. A general theory of semantics does not exist;
thus, a semantic analyzer for the CWS system may not be provided or its use

5

may be optional. In this a r
minimum effort needs to be
the resultant compiler will produce ineffici
extreme, extensive effort needs to be
including coding parts by hand, b
code equal to or exceeding those re ??hand-tuned.

A. Lexical Analysis

A common approach to lexical analysis is to attach attribute descriptors
to single character symbols which may be subsequently interrogated by the
syntax analyzer. Multicharacter symbols such as reserved words, identifiers,
or numbers are often built into the syntax definitions where they cannot be
handled efficiently. Methods have been developed, however, to describe
symbols of the above type and direct their synthesis into a single unit prior to
passing them to the syntax analysis phase [4,5]. Another method utilizes a
fixed basic set of multicharacter symbols such as integers and identifiers to
which the language designer must adhere [31. This is not as inflexible as it
might first appear. For example, i f the basic set includes integers, it is
possible to define a real value as being two integers separated by a decimal
point. As a final resort, the CWS may provide a framework in which the user
inserts a customized lexical analyzer. I

B. Syntax Analysis

Due to the incredible productivity in the area of formal grammar theory,
the task of classifying compiler writing systems on the basis of syntax analysis
methodologies is relatively straightforward. Assuming some background is
required, the following discussion is divided into: (1) definition of the class of
grammars employed in computer languages, (2) important subclasses of this
class of grammars, and (3) the most prevalent syntax analysis (parsing)
methodologies. Where possible, grammar subclass is related to parsing
methodology. Neither the subclass categories nor parsing methodologies are
exhaustive; rather, an attempt has been made to choose those having the
greatest impact on CWS technology.

1. Language Implementation System. Chi Corporation, Cleveland, Ohio,
Undated Report.

6

P = A set of formulas called productions which define each nonterminal
a s a string of symbols; there may be more than one definition for
any nonterminal.

S = A distinguished member of N called the goal symbol.

Subsequently, nonterminals will be enclosed within the special brackets, ?ktT
and '5. ? ? Productions will be of the form

. . where <a> is a nonterminal, . . = is a symbol which means 9 s replaced by,"
and B is a string which may be empty or consist of one or more terminals and

the goal symbol, S, may appear to the right of : : = in no pro
those in which it

7

<subjecb <predicate> - . . <sentence> . . -
<subjecb : = <article> <noun>

<predicate> . . = <verb> <direct objecb

<direct objecb : : = <pronoun>

<article> . . -
<article> . .

. .

a

the

boy

dog

chased

had

him

it .

- . .
. .

* * - <noun>. . -
* * - <noun>. . -

- . . <verb>. . -
<verb>. . -
<pronoun>. . -
<pronoun>. . -

- . .
. .

- . .
These generate sentences such as rra dog chased him" and "the boy had it."
In terms of these productions, the other members of the grammar are:

N = {<sentence>,<subjecb, <predicate>,<direct objecb, <article>,
<noun>, <verb>, <pronoun>)

T = {a, the, dog, boy, chased, had, him, it}

S = <sentence> .
2. CFG SUBCLASSES

A context-free language is simply a language which can be generated
by a context-free grammar. Generally, there exist more than one CFG for
each language, which lends importance to the concept of CFG subclasses. The
subclasses discussed in the following are not mutually exclusively, and none
are capable of generating all the context-free languages. An attempt has been
made to present each as informally as the subject matter permits. Sufficient
references are included for investigation by those more theoretically inclined.

8

The first subclass is the LL(k) grammars desc
Steams [9]. LL(k) stands for left-to-right
symbol look-ahead. Informallyrthe LL(k) gram
those for which, given a sentential form (i. e., s
phrases replaced by nonterminals) , it is possible to predic
to be applied by scanning the sentential form from left to right to a length of,
at most, k symbols into the phrase to be replaced. An interesting subset of
the LL(k) grammars is those that may be represented in Greibach Normal
Form [101, a form in which the right part of every production begins with a
terminal symbol. A still more restrictive subset, the LL(1) grammars,
requires that each production right part begin with a unique terminal. This
subset is characterized by Korenjak and Hopcroft [111.

An excellent analysis of the LL(k) grammars is given by Rosenkrantz
and Steams [121. Among other things, they give three necessary and sufficient
conditions for testing a grammar to be of subclass LL(k) for a given value of k.
They also prove that, in general, whether or not a grammar is LL(k) is
undecidable unless k is given a priori and that all LL(k) grammars are unambig-
uous. (A grammar is unambiguous if, for every sentence of the language it
describes, there exists only one syntactical interpretation.)

The next CFG subclass is the simple precedence grammars [131.
Although the authors know of no CWS that directly implements them, the con-
cept is central to a t least one such system [31, and several parsing methods
implicitly use the idea that different symbol pairs bind to each other with differ-
ent strengths [14,151.

A CFG is simple precedence i f it contains no productions having empty
or equivalent right parts and for each pair of symbols, A and B, at most one of
the following relations hold:

A B A and B are adjacent in some production.

A B B is the start symbol of some production and there exists at
least one sentential form of which AB is a substring.

A .> B A is the tail symbol of some production and there exists at
least one sentential form of which AB is a substring.

A more rigorous definition is given by Ah0 and Ullman [161 among others
[2,17-19].

9

The significance of the precedence grammars is that they exhibit simple
criteria for deciding when and how much of a sentential form to reduce when
scanning from left to right, namely, the portion between the last
first a>. (Henceforth, this substring of the sentential form will be called the
%andle.
using the precedence relations in Figure 5:

and the

For example, the following steps would reduce "the dog chased him"

Already Scanned

<.the

<. <article>

<. <article> <. dog

< <article> 2 <noun>

c <sub jecb

c- <subject> <. chased

<*<subject> <.<verb>

<e <subject> <.<verb> < a him

<- csubjecb <-<verb> A <pronoun>

<.<subject> 2 <predicate>

<.<sentence>* >

Relation

<*

* >

<*

* >

*>

<*
*>

<*

.>

.>

e >

Next Symbol

the

dog

dog

chased

chased

chased

him

him

A mathematical technique for deriving precedence matrices can be found in
Reference 18.

The concepts embodied in the simple precedence grammars can be easily
extended to grammars which have had a more immediate impact on CWS tech-
nology. The paragraphs that follow introduce the (m,n) precedence, weak
precedence, operator precedence, and bounded-context grammars using the
ideas developed for the simple precedence subclass.

A grammar is said to be (m,n) precedence if the three relations < e , A,
and a > are defined unambiguously when comparing the last m symbols scanned
to the following n symbols. Thus, the simple precedence grammars are also

10

Figure 5. Example precedence matrix.

(1,l) precedence, because, for them, the last symbol is compared to the next
when scanning left to right. Precedence grammars may have no productions
with empty or equivalent right parts.

11

The weak precedence gram
uniquely defined for each pair of
relations. Thus, in scanning a
to determine the right boundary of the handle
decision is made by comparing the tail portion o
in the production list. The longest production that matches the
scanned portion is accepted. Naturally, (m, n) weak precedence is analogous
to (m, n) precedence.

The operator precedence grammars [22] require that the < e , 2, and
relations be defined uniquely only between terminal symbols and that no produc-
tion has two adjacent nonterminal symbols. During scanning, nonteminal
symbols in the sentential form ,are, in essence, ignored. This is an increase
in efficiency, but a t the cost of the generation of an incomplete parse tree.
Frequently, this is acceptable because not, all parse steps are semantically
important to the language.

All precedence grammars require that productions have .unique right parts.
This restriction is relaxed for the bounded-conhxt grammars [231. A grammar
is said to be bounded-context of degree (m,n) , if, upon determining a candidate
for the handle, decisions can be made concerning whether or not it is the handle
and which production to apply by looking no more than m symbols to the left and
n symbols to the right of the candidate. It may appear contradictory to state
that the bounded-context grammars are a subclass of the context-free grammars.
This is because the word ?tcontext" is not being used uniformly in the two terms.
A context-free grammar is one for which it is possible to state the definition of
eaeh nonterminal irrespective of its left or right context; that is, the left part of
each production is a single nonterminal. A bounded-context grammar is one in
which, given a substring, it is possible to determine which, if any, nonterminal
it defines (in a sense, running the production backward) by examining a fixed
number of symbols to the left and right.

The final subclass, the LR(k) grammars [24] , include as subsets all the
previous subclasses. Although not capable of generating all context-free lan-
guages, the LR(k) grammars are able to generate practically all the program-
ming languages in use today [251.

LR(k) stands for left-to-right scan, rightmost reduction with k symbol
look-ahead. [Compare This definition to chat of the LL(k) grammars. 1 A
rightmost reduction is one that, a t each step, replaces the rightmost nonterminal
with its derivation. The following example depicts both a leftmost and rightmost
parse for "the dog chased him:??

12

LL Derivation

<sentence>

< subjecb <predicate>

<article> <noun> <predicate> <subjecb <verb> <pronoun>

the <noun> <predicate> aub jecb <verb> him

the dog <predicate>

the dog <verb> <pronoun>

the dog chased epronoum

the dog chased him

<subject> chased him

<article> <noun> chased him

<article> dog chased him

the dog chased him

Every LL(k) grammar is also an LR(k) grammar [121. For an extensive com-
parison of the two, consult Reference 9. A parser that performs the derivation
steps in the order enumerated previously is called a top-down parser. One that
performs the steps in the reverse order is bottom-up.

In practical terms, an LR(k) grammar is one for which the decisions
associated with left-to-right parsing (i. e. , reducing or scanning) can always
be made correctly by considering everything scanned thus far plus the k leading
symbols of the string to the right of the scan. Thus, it is evident that the LR(k)
grammars include all of the precedence grammars. For example, an (m,n)
weak precedence grammar is also an LR(n) grammar. By inspection, it can
be shown that the sample grammar presented earlier is LR(0)

In concluding the discussion of CFG subclasses, it should be noted that
more detailed descriptions of all of those mentioned (plus others) can be found
in the standard texts [16,18,19,26,27]. In addition, the paper by TJllman [171
describes the LL(k) , LR(k) , and simple precedence grammars.

3. PARSING ALGORITHMS

The objective of formulating a rigid grammatical structure and dividing
that structure into subclasses is the construction of algorithms, called recog-
nizers or parsers, capable of accepting a particular subclass. These algo-
r i thms fall into two general categories, top-down and bottom-up. Although a
particular parser may have aspects of both, those generated by a CWS gen-
erally are in only one of the two categories.

13

Distinction be
each constructs a parse
down parse tree cons

define it. Nonte

two can best be e
Figure 6 illustrate

read and fie tree already partially constructed. Note that the top-down parse
produces an LL-derivation and the bottom-up parse produces an LR-derivatim,
but the final trees are equivalent. A thorough description of top-down parsing
(under the name syntax-directed analysis) and bottom-up parsing (under the
name syntax-controlled analysis) is given in Reference 28.

Genten& Genten+ <sentence> <wnten&

the boy had it

(a)

<subject> A <predicate>

<article> A <nou’n>

G u b i e c O <predicate>

<sentence>

G u b i e c O <predicate>

<article> A <noun>

the boy had it

(b)

I I I
the boy had it the boy had it

(C) (d)

(rubject> <predicate>

A I \
<verb> +ronoun>

A
Grticle> <noun>

G u b j e c O <predicate> <subject> <predicate>

A f l A
<article> <noun> <verb>Qronoun> <erticle><noun> <verb> <pronoun:

had it
I I

the boy

(e)

Figure 6. Top-down parse tree construction.

I I I had I I it
had it the boy

I I
the boy

(f) (a)

Occasionally, a top-down parser will select an incorrect production
to define a previous subgoal. When the mistake is discovered, it must undo
the parse and t ry a different alternative. This action is known as backtracking
and can lead to a degradation in performance, However, if the parser is

14

<article>

<subject>

Grt icW <noun> <verb> <pronoun>

I I I I
the boy had it

(e)

I

<subject> <predicate>

&rtiele> <noun> <verb> <pronoun>

I
it

I I
boy had

I
the

(f)

G e n t e n d

A <predicate>
<subject>

Grticle> <noun> <verb> <pronou3

I
it

I
had

I
boy

I
the

(SI

Figure 7. Bottom-up parse tree construction.

permitted to look ahead a few symbols before setting a subgoal and the next
few symbols will "predict?? the proper production [recall LL(k) grammar
definition], this inefficiency can be eliminated. This is not to say, however,
that a top-down recognizer is strictly limited to the LL(k) grammars. Even if
the grammar is not LL(k) , look-ahead may still be used to eliminate produc-
tions that could not begin with the next symbols [291 . Given backtracking,
a top-down algorithm will cover a very large set of grammars, generally
larger than any specific bottom-up technique. Exactly which subclass applies
to which top-down algorithm is still an unsolved problem. Reference 30 may be
consulted for an extensive analysis. There is, nonetheless, an exceptional
circumstance affecting top-down analysis which will be discussed next.

Left recursion is the bane of the top-down parser. A production is
directly left recursive if it is of the form

15

where B is any string containing terminals and/or nonterminals. That is, a
production is directly sive if it defines a nonterminal as being a string of
symbols beginning wi ame nonterminal. In the above example, a top-
down parser would continue to set <as as a subgoal at the next tree level
infinitum. Fortunately, simple transformations convert any g r r
with left recursive productions to an equivalent one without th
ever, the most frequent device relied upon is a metalanguage
be presently demonstrated. Incidentally, an LL(k) grammar is never left recur-
sive [321 .

There are three basic approaches to the top-down algorithm.- The first
is to translate the grammar to a hierarchical data structure in which there is a
one-to-one correspondence between nodes in the structure and nonterminals in
the language [331. Each node in the structure enumerates the possible alter-
native definitions for its nonkrminal, using pointers to other nodes to designate
other nonterminals within the definition. A generalized a!lgorithm is then pro-
vided which sets analysis goals, beginning with the root node, and attempts to
find the subnetwork within the data structure that is the parse tree for the input
sentence. When all alternatives are exhausted without success, the algorithm
reports an error.

The second approach is recursive descent [341 , which has been appraised
as the most widely employed method of syntax analysis [351. The basic idea
behind recursive descent is that there is a one-to-one correspondence between
nonterminals in the grammar and procedures in the parser. Each procedure is
responsible for identifying, within the input sentence, the strings that comprise
itsnonterminal. It reports the success or failure of its endeavor to the higher
level (i. e., evoking) procedures. A CWS that generates a recursive descent
parser translates the metalanguage describing the grammar into executable
procedural statements.

The third approach, having much in common with recursive descent,
is the parse machine [361. The basic idea is to design a set of recursively
called interpretive procedures, each identified by a nonterminal and responsible
for determining if that nonterminal can be applied to the sentence. Figure 8
depicts the parse machine for the previous sample grammar. In Figure 8,
there are two operations: CALL evokes another interpretive procedure and
has the effect of setting a subgoal; SCAN tries to match the next input text
symbol with a specific terminal. Either operation may succeed or fail and may
return a success or failure flag to an evoking procedure. A second option,

16

<article >

<noun>

<verb 7

RETURN [yes 1 1 ~ CONTINUE- 1 (pronoun > SCAN [him I 1 SCAN [i t 1 1 RETURN [yes] RETURN I no 1 I

SCAN I a I RETURN [yes 1 CONTINUE
SCAN [the I RETURN [yes I RETURN [no 1

SCAN [boy 1 RETURN 1 yes 1 CONTINUE
SCAN [dog 1

SCAN [chased 1 RETURN [yes 1 CONTINUE

RETURN [yes 1 RETURN [no 1

SCAN [had I RETURN I yes I RETURN I no 1

Figure 8. Example parse machine.

other than returning, is continuing interpretation at the next line of interpretive
code. A more realistic example of a parse machine for recognizing a language
with a grammar expressed in extended BNF would involve from 10 to 15 opera-
tion types.

A more varied group of bottom-up algorithms exist. Those that have
had the greatest impact on CWS technology are the precedence, production
language, and LR(k) automata techniques. Thus, they are the ones that have
been chosen for expansion here. Each one is predicated on a single left to right
scan of the input text, and each is designed to resolve two questions at each
parse step: (1) What substring of the sentential form should be reduced next?
and (2) Which production should be used in the reduction? The former question
may be rephrased as: What is the handle ?

An understanding of the precedence relations is tantamount to under-
standing the precedence parser. The input sentence is scanned from left to
right, and each symbol is placed on a pushdown stack. When the relation
between the top symbol on the stack and the next s p b o l in the input string is
a>, a reduction is made by comparing the top symbols on the stack to a produc-
tion list.

17

are m terminal and nonte

requirements may be lessened i f functions f(x) and g(x) can be found such that
for symbols a and b:

f(a) < g(b) if a < * b

f(a) = g(b) if a ; b

f(a) > g(b) if a b .

Such functions are called linear precedence functions [22,37-391 and, unfor-
tunately, do not exist for all precedence grammars.

Production language parsers [14,401 will be discussed here in terms
of bottom-up techniques. The technique itself is quite flexible, however, and
can be applied to top-down algorithms. It employs a table containing fixed
form statements (the production language) and a generalized algorithm that
interprets the table while scanning the input sentence.

The method is most easily explained in terms of an example such as that
for the sample grammar depicted in Figure 9. Interpretation begins at line 1
of the production language table. As the statement is scanned, the symbols are
placed on a pushdown stack and the top of the stack is compared to the first
field of the current production language statement. I€ the compare succeeds,
several actions may take place: reduction, continue of scan, and selection of
next production language statement. The ability to evoke an applicable semantic
routine is not shown. If the compare fails, an error may be reported or a new
production language statement tried.

In bottom-up analysis, production languages are particularly well suited,
but not limited, to bounded-context grammars. This strength, which is not
particularly well illustrated by the Ist(0) sample grammar, is due to the
inherent ease in scanning past (that is, looking at) several terminals before

18

-
LINE
No.

1

2

3

4

5

6

7

8

9

10

11

12

-

-

io TO LINE:

2

4

4

6

6

7

9

9

11

11

12

exit

FAILURE

IRROR?

--
no

v u

N)

V-

V%S

no

Y U

no

V%S

. v u

v u -

0 TO LINE:

Figure 9. Example production language

reducing a substring deeper in the stack. However, the interpretive mode of
operation causes the method to be somewhat less efficient than precedence
techniques.

The last selected bottom-up method is that of LR(k) automata, which
have only recently beccrne practical. The technique was first suggested by
Knuth [241, and the underlying theory was eloquently expounded in a book by
Hopcroft and Ullman [411. However, the first practical algorithms were
developed independently by DeRemer [15,421 and Earley [431. Other similar
methods exist [11,44,45], but the ones having the greatest impact on CWS
technology have been those by Ah0 [46] and DeRemer. It is the latter that has
been chosen for development here.

The underlying concept of the LR(k) automata methods is that as a
parser scans a sentence, it moves through a series of states for which the next
state is always uniquely determined by the current state and next symbol. This
concept is informally implemented in many ad hoc parsers. The formal imple-
mentation is to convert the metalanguage description of the source language into
an automaton represented as a series of tables which, in turn, are interpreted
by a generalized algorithm. For the sake of brevity, the automaton construc-
tion techniques are not given here but may be found in the cited references. It
is sufficient to say that the techniques are amenable to automation [47-49]

19

The DeRemer approach divides the automation into states of four basic
types:

READ - Scans the next symbol and transition new state depending
on the symbol value.

LA - Divides the set of possible next.symbols into two subsets. If the
next symbol in a sentential form is a member of the first subset,
LA acts just like a READ state; if the next symbol is a member
of the second subset, transition is made based on symbol value
without scanning past the symbol (i. e., LA is a look-ahead
state).

POP - Reduces the rightmost symbols in the scanned portion of the
sentential form.

EXIT - Signifies completion of parse tree construction.

These four state types are sufficient i f the scan is restarted at the beginning
of the sentential form after each reduction. However, it is desirable to always
restart the parse at the current scan point, and this can be done if the automaton
maintains a record of the states it has thus far occupied. This is done by allow-
ing READ and LA states to place their names (i. e., state numbers) onto a
pushdown stack at the time they are entered. POP states then remove the n top
names from the stack if there are n symbols in the rightmost reduction. The
top name of those remaining on the stack can then be used to determine at which
state 'to continue the parse. This requires additional states to be added to the
automaton. These new states are of a fifth type:

LB - Transitions to a new state based on the value at the top of the
name stack (i. e. , LB is a look-back state).

The LR(0) sample grammar used heretofore is inadequate for illustrating
the method. Thus, the following LR(1) grammar for arithmetic expressions
is provided in its stead:

#I. <s> : = +<exp>---f

#2. <exp> . . =<exp>+<fact>

#3. <e-> . = <fact>

. .

. .

20

#4. <fact> 1 : = <facb*cpri>

#5. <fact> 1 = <pri>

#6.. <pri> : : = (<exp>)

#7. <pri> = i
. .

The productions are numbered for reference, and the pad symbols, k __I ,
are added to provide unique start and end symbols. The automaton for this
grammar is shown in Figure 10. Braces, { } , are used to indicate the look-
ahead subset; production numbers and the name stack remove count are asso-
ciated with each POP state. A LA or READ state recognizes an error when
the next symbol of the sentential form does not correspond to one of its
transition symbols.

Figure 10. Example grammar automaton.

21

The tabular representation of this
An actual implementation would require th
densely with each column serving multiple purpose
linear list of all states with attached c
the transition table (TT) and look-ahead table (
transition symbols. The ST references
number and a count of the applicable consecutive lines. The T
with each transition symbol the state to
The LAT is a boolean matrix having one row for each look-ahead subset. Each
column corresponds to a terminal symbol, and each element is =if the
corresponding column symbol is a member of the look-ahead subset.

.INE
NO.

O b
1 (
2 i
3
4 .
5
6
7
8
9
10
11
12
13
14
15
16
17

-
STATE
NAME

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
: T5

I 16
1 17

-

1

SCAN TOP GOTC
SYM SYM ST

1
2
3
4
5
6
7

5 8
15 9
1 13
2 13

10
2 11
1 14

12
+ 15
4 16

17

STATE TABLE (ST) -
STAT1
TYPE

READ
READ
READ

LA
READ
POP
LB
POP
POP
LB
READ

POP

-

pop

LOOK AHEAD TABLE (LAT)

k 4 + * i ()

L I N E 1 f t t f f f t

Figure 11. Example automaton parser tables.

The method just described is applicable to most LR(1) languages. The
exact set is called Simple LR(1) or SLR(1) , which may be described informally
as those that may be parsed left to right with one symbol look-ahead and ??some"
left context. They include as a subset the weak precedence grammars. Prac-
tical methods exist for extension to the SLR(k) grammars where k is small but
greater than one [421 .

22

In summary the LR(k) autom
languages are indeed LR(1) or almo
niques exist for transforming LR(k) grammars to
mations may lead to g rmmars so
exist [42,43,51%, 521 indicating execution and storage advantage
parsers, although these frequently make worst case assumptions
storage requirements for the precedence relations. Further increases .in
execution efficiency have been obtained by eliminating semantically irrevelant
reductions [25,531.

The trend in CWS technology has been from top-down to bottom-up
parsers as more general bottom-up techniques have been developed and refined.
However, not all earlier systems were top-down (for example, see Reference
54), nor are all current systems bottom-up (for example, see Reference 5).
Undoubtably, this stems from the general belief that bottom-up recognizers
are more efficient, as was first substantiated by GrSffiths and Petrick [551.
In any event, such trust in efficiency may not be entirely justified since Griffiths
and Petrick also indicated that an equivalent grammar existed for most languages
that could be parsed top-down nearly as efficiently. Furthermore, in a large
scale compiler, the time required to construct the parse tree is relatively
small compared to overall compilation time.

It may appear that an inordinate amount of space and time has been
expended here on a compilation phase estimated at 5 to 10 percent of the code
for a compiler [561. The space allotted reflects the efforts of researchers.
As noted earlier, the application of formal mathematical methods to the symbol
manipulation aspects of syntax analysis has been instrumental in transforming
software technology from an art to a science.

C. Semantic Analysis

Once the syntactic structure of a source input statement is determined,
an operational interpretation is necessary. This process is frequently called
semantic analysis. One might suspect, correctly, that if several grammatical
definitions were possible for the same language, one form might facilitate
semantic analysis to a greater extent than the rest. That is, the syntax and
semantics of a language are not entirely independent.

23

of inte rdependen

A, B : = el, e2

means A is to be assigned the value of expression e l and B is to be assigned the
value of expression e2. In general, a variable in the list to the left of the
assignment operator is assigned the value of the expression in the corresponding
list position on the right. One way to describe the syntax of the concurrent
assignment statement is

<assignment> 1 = <variable> : = <expression>

. . <assignment>. . = <variable> , cassignmenb , <expression> .

This is adequate for exposing syntax anomalies, but i f the parse tree is drawn
for this example, one finds B and e l combined in one branch of the tree while A
and e2 are combined at a higher branch. This complicates semantic interpreta-
tion.

A second way to represent the syntax might be

<assignment> : : = <variable list> = <expression list>

* .
<variable lis* . . = <variable>

<variable lisb . . = <variable list> , <variable>
. .

<expression list> 1 : = <expression,

<expression lis* : = <expression lisb , <expression> .

Constructing the parse tree of the example using the second grammar would show
that all variables are in one subtree and all expressions are in a second. This
is more tractable semantically, however the syntax is no longer able to deter-
mine whether the variable list and expression list are balanced. It is probable

24

that this latter grammar would be acc
of balanced lists be placed in the real

Questions of importance conce
organization include: (1) when is se
control and data passed from the syntax analyzer to the se
and (3) How is the semantic interpretation
represented? These will be addressed in the following paragraphs.

With respect to when semantic analysis is performed, there are two
alternatives. The first is after the parse tree is complete. This is advan-
tageous if a parsing algorithm employing backtracking is utilized, because
semantic analysis is more difficult to undo than syntactic analysis. The second
alternative is that of interleaving syntax analysis and semantic actions. This
approach allows an execution cycle for the semantic analyzer each time the
sentential form is changed. When coupled with top-down methods, the actual
execution of the semantic actions may be delayed until the parser is certain the
correct production has been applied. When interleaved semantic action is
employed, the parse tree may never be explicitly constructed because the
semantic routines "consume" it at the same rate it is generated.

There exists an unlimited number of variations in the manner in which
information is passed from the syntax analyzer to the semantic analyzer. There
are, however, several basic methods. The first, providing the entire parse
tree to the semantic procedures, is an option available only if it is completed
prior to the first semantic call. Otherwise, the approaches are not limited by
when semantic interpretation is performed, and it should not be inferred that
each is mutually exclusive of the others.

The second and third approaches are similar in that both generally
assume a single control entry to the semantic analyzer. In the second approach,
the syntax analyzer passes through this control point the identity of the produc-
tion applied plus the current sentential form or part thereof [581
approach requires an extension to the syntax definition metalanguage. A code
(possibly null) is associated with each production denoting a specific semantic
action [591. In addition, the metalanguage might also provide a method of
expressing data arguments to accompany the action codes. Such arguments may
refer to symbols in the source input sentence or to results of previous semantic
actions.

The third

25

The fourth approach is somewhat simpler in c
the specification of the name of an applicable s
each production [601. Data information may consist of the se
itself or an argument referencing capability similar to that of

GWS.

The fifth approach, transduction grammars [91, is not dissimilar to the
third, except perhaps in formality. It is more formal in that its structure is
based on the grammar and not the software comprising the semantic analyzer.
With each production is associated a lltransduction. The symbols permitted
in transductions include all those of the original grammar plus any new terminal
symbols that are necessary to convey semantics. The new grammar may be
written as follows (with the transductions in braces) :

If, for example, the expression grammar previously presented is rewritten as
a transduction grammar using the rules,

1. Nonterminals in each transduction will be sequenced in the same
manner a s the corresponding production

2. Terminals in each transduction will be the same both in sequence
and value a s those of the corresponding production except parentheses and pad
symbols will be omitted

3. All nonterminals in a transduction will precede the terminals

the result is

26

#5. <fa& : = <pri> {<Pri>>

#6. <pri3 : 1 = (<ea>) {<exp>) . . #7. <p&> . . = i

The significancie of the grammar produced by
demonstrated presently. When a transduction
syntax analyzer constructs the parse tree by any of the methods previously
mentioned. As reductions are made on the sentential form (or alternatives
applied if top-down) , the parser presents the transductions associated with
productions to the semantic analyzer.

Once information is acquired from the syntax analyzer, it must be ,
represented in a standard form for further processing. One standard form
might be the bbject code of the target computer, in which case the resultzht
compiler would correspond to the one-pass translator depicted in Figure 1.
Languages such a s FORTRAN and JOVIAL are amenable to one-pass compila-
tion, but others such a s recursive Algol are not. Thus, attention here will be
directed toward semantic representation for additional internal manipulation in
a multipass, environment.

Sudh internal representations are often called intermediate languages
(IL) . Those frequently used include Polish notation, tree graphs, and tuples.
Advantages accrue from using a standard representation in that a wealth of
theory anh methods exist for their manipulation. One variant of Polish notation
is called Polish postfix. It is a manner of representing the order in which
operations are to be performed as an expression without using parentheses.
The name Polish notation may be credited to its development by the Polish
logician 5. Lukasiewicz. Examine the expression obtained from the language
generated by the previous grammar: i*(i-ti) *i. The Polish postfix for this
expression is i i i -I- * i *. To "execute" the Polish representation, scan it
from le^ to right; each time an operator (i. e. , * or +) is encountered, perform
it on the previous tvvo operands and replace them with the result.

h the transduction grammar recently described, by applying the produc-
tions in a manner corresponding to a rightmost derivation of the expression
just given, one obtains

27

Now, reading the transductions, arrange the terminal symbols in the order
generated: i i i -k * i * .

Polish notation itself has been used as the IL of several industrial com-
pilers (e. g. , DOS/ 360 Fortran 337 [611). More importantly, the underlying
concept - that operations be performed in the order encountered - 1s also the
basis of tree graphs and tuples. Therefore, a semantic analyzer that does not
use Polish as the ultimate IL might very well first arrange expressions in
Polish to assist in IL generation.

Tree graphs represented as list structures are a second and frequently
used [4,62] form of intermediate language. Trees may be generated directly
from Polish postifx by scanning from left to right and upon encountering an
operator:

1. Creating a new node containing the operator

2. Attaching the nearest operand to the left a s the right subtree

28

3. Attaching the next nearest operand to the left

4. Replacing the operator and operands in the P
descriptor of the new node.

The tree graph for the expression i*(i-f-i) is:

i

Note that commutative operators permit different but semantically equivalent
tree graphs for the same expression. This can be advantageous during
optimization.

The last form of IL to be discussed is that of tuples, of which there are
several forms. Three-tuples (or triples) admit one operator and two operands
per element [631 . Four-tuples (or quadruples) admit one operator and three
operands [641 ; the third operand designates the result of the operation. Free-
tuples admit one operator and as maay operands as apply [581. Representing the
expression i*(i+i) *i in each, one gets:

Triples Quadruples Free-Tuples

#1. -I- i i #l. -I- i i Templ #1. -I- i i

#2. * i (#I) #2. * i Templ Temp2 #2. * i (#I) i

#3. * (#2) i #3. * Temp2 i Temp 3

Strictly speaking, the forms shown which permit one line to explicitly reference
another are called indirect forms. However, no distinction between the direct
and indirect forms will be made in the following discussions.

29

It should be noted that
an intermediate language may n
interpreter. Another aspect to consider is
responsible for things other than IL generati
storage tables and ascertain that all operations and
sistently (i. e. , it must diagn
mope difficult to perform and more difficult to describe in a generalized fashion
than the translation itself. A discussion of these issues, a s well as a more
thorough discussion of IL, is contained in Reference 18.

D. 0 pt i m i za t i on

There are two categories of optimization. The first, local optimization,
consists of transformations performed upon the intermediate language that
require only limited knowledge of the context of each operation. Examples are
folding (performing a designated operation on adjacent constants at compilation
time) and unary complement analysis (combining a unary operation with an
adjacent operation). If local optimization is performed by a CWS generated
compiler, it may be during (1) semantic analysis, (2) a separate pass over the
IL, o r (3) after code generation. Of course, a combination of these is possible.
Specifics of local code transformations may be found in References 65 and 66.

In global optimization, the second category, larger program contexts
are examined prior to making transformations. This category legitimately
includes target dependent improvements such as register allocation, but only
those that are independent of the target architecture will be considered here.
Examples of transformations that are not constrained by an architecture are:

0 Constant Propagation - Replacing variables with their known
constant values; this may lead to additional opportunities for
folding.

Dead Definition Elimination - Eliminating assignments to variables
which are not used again prior to being reassigned values.

0

0 Subexpression Factoring - Saving via temporary variables the
values of common subexpressions and substituting these variables
a t subsequent points where the subexpressions appear.

30

0 Invariant Expres
an expression whos
inside the loop.

e Operator Strength Reducti
withina loop to a
transformation could be made from exponen

It should be noted that (1) ea
for safety factors and (2) most global optimizations make heuristic, not
absolute, improvements. With respect to safety, operator strength reduction
over type real operands may change the resultant code by causing roundoff
errors not otherwise present. With respect to heuristic, it is possible to devise
a case of invariant expression factoring in which memory space is not decreased
and execution time is increased. For a more detailed discussion of global
optimization transformations, see References 26 and 67 through 70. For an
excellent discussion of the safety factors involved, see Reference 71.

Given a set of global optimization strategies, there yet remains the
decision as to how to divide the program being compiled into sections within
which each strategy will be applied. That is, how may the "optimization
windows" be found? There are two approaches: (1) sectioning the program
based on explicit semantic characteristics of the language and (2) graph
theoretical techniques.

Two techniques of the first approach are block analysis and loop analysis.
In block analysis, the program being compiled is divided into basic blocks
(linear code segments that have the property that if the first instruction is
executed, all others are also executed exactly once). Afterwards, each strategy
is performed over each basic block with little, if any, optimization over multi-
block segments.

Loop analysis is an extension of block analysis whereby those program
loops defined by explicit language constructs (e. g. , ??DOrr and rrFORff loops)
are examined as multiblock segments. Blocks not within loops are optimized
individually. Several compiler writing systems and compilers use the loop
analysis approach [63,69,72].

31

One graph theoretical technique is strong1
analysis. An SCR consists of a subset of nodes wi
there is at least one path between each node pair.
treating the basic blocks as nodes from which a di
the program being compiled is constructed. Figure
a program with three SCR' s. Next, the nodes wi
optimization is performed on the innermost region first. Optimization over
nodes not within an SCR is performed on a basic block basis. The authors
know of at least one compiler [641 using SCR analysis, but know of no compiler
writing systems.

Figure 12. Directed graph with three
strongly connected regions.

There are two weaknesses in the SCR approach: (1) SCR' s do not com-
pletely partition a program digraph, and (2) there is no systematic manner in
which to carry optimizations across SCR boundaries unless the regions are
nested. A second graph theoretical technique, interval analysis [61,71,73,74] ,
overcomes these problems.

32

An interval is a digraph construct consisting of an initial node (called
the head node or h-node) and the set of all nodes that can be reache
subject to the following restrictions: (1) if the h-node is removed,
contains no strongly connected regions, and (2) every path containing one of the
nodes and leading from the entry node to the exit node of the digraph first enters
the h-node. Figure 13 illustrates a program digraph divided into intervals.
(The nodes of this figure are labeled arbitrarily.) An algorithm for determining
intervals is:

1. Enter the program entry node as the first member of a set H.

2. Remove a node from H and enter it as the first member of an interval
set I(h) .

‘ - #

Figure 13. Directed graph partitioned into intervals.

33

3. For each node, n, not a member of H or previously assigned to an
interval set:

n in I(h) if all of the immediate predec
members of I(h)

b, Enter n in H if some (but not all) of its immediate predecessors
are in I(h) .

4. Repeat steps 2 and 3 until H is empty.

Each interval will have a single entry and the set af intervals determined by
this algorithm will uniquely partition the program digraph.

Once the intervals are established, the optimization strategies are per-
formed over each interval separately. Once done, the program digraph is
collapsed by treating each interval a s a single node and establishing the intervals
for the new (derived) graph. Figure 14(a) depicts the first derived graph of
the primary graph in Figure 13. Optimizing and collapsing continues until the
final derived graph consists of a single node as shown in Figures 14(b), 14(c) ,
and 14(d) . Thus, intervals provide a systematic manner of propagating each
optimization strategy throughout the entire program.

(a!

Figure 14. Derived graph from Figure 13.

34

It is not possible to leave interval analysis injecting a comment
about irreducibility [751. Certain digraph construc ly the program
loop having tvvo entries, will not collapse to a single node. A digraph with this
condition is said to be Irreducible. Although this phenomenon is relatively rare
[761, allowances must be made for it in a generalized system. It is possible
to either transform the digraph into a semantically equivalent one by a method
called node-splitting [711 or altering the mathematical procedures used in per-
forming the optimization strategies [771 .

Other approaches to optimization via graph theoretical analysis exist.
For example, Kildall [781 suggests an interative approach in which all paths
to a given node are searched in consecutive order until an information pool
"converges." By converge, it is meant that the information remains unchanged
through an iteration. Miller et al. [791, for purposes other than optimization,
embodied the concept in a method of enumerating decision-to-decision paths.
Paige [801 formalized the purely graph theory aspects of the approach. Graham
and Wegman [811 combined it in an algorithm that also included the interval
notion. Although the iterative method has attracted considerable attention from
other sources as well [82,831, it has not yet impacted CWS technology.

Yet another approach is suggested by Wulf et al. in the design of a com-
piler for the language BLISS [841. The method is akin to the iterative approach
but with a difference. Because BLISS is a language containing only the sequential,
alternative, and repeat control structures permitted in the structured program-
ming philosophy, all necessary data flow relationships are explicit in the
semantic interpretation of the language. Of course, the method lacks the gen-
erality required of a CWS algorithm.

Currently, only the more recent and ambitious compiler writing systems
employ self-contained graph theoretical optimizers. Others, however, provide
languages and/ or components through which postsyntactic analysis may be per-
formed, and the user must choose which, i f any, of the above techniques to
incorporate.

E. Code Generation

Code selection and editing may consume 50 percent or more of the
implementation effort for a new compiler. Techniques and knowledge in this
area are less systematic and thus are difficult to classify and analyze. It is
,the intent of this section to provide a general background from which to expand
in the following sections.

35

In analyzing techniques used in code gene
between systems for building one-pass translato
pass translators. The distinction does not, however, separate the a1
as distinctly as one might wish. For instance, the fusion of se
and code generation that occurs in a one-pass translato
previously discussed in the semantic analysis section to be
versely, some methods discussed here are also applic
Furthermore, a one-pass CWS generated compiler may be converted to a multi-
pass configuration by generating "standardff assembly code and adding sub-
sequent hand-coded passes.

h

Nearly all one-pass generators are designed to emit assembly language
statements. One method allows the attachment of assembly language statements
to produ.ctions of the grammar for emission when the production is applied.
This requires the solution of two problems: (1) how to reference operands
defined in the source language and (2) how to generate and refe-rence internal
labels used as targets of branch instructions. To understand the solution to
either, it is necessary to realize that not all calls to code generation or semantic
routines actually generate code; some perform ancillary functions. With respect
to the operands referenced by emitted assembly language instructions, there
may be a number of pushdown stacks defined. Semantic routines are then evoked
to push the identities of variables, numbers, and other symbols recognized onto
the stacks. Attached to each assembly instruction is the name of the stack from
which the operand must be fetched. Generation of internal labels has a similar
solution. Attached to each assembly instruction requiring a forward reference
is a Yequest to generate and save a unique internal label. The conditions under
which the label will be subsequently emitted may be attached to the generation
request, or there may be a subsequent explicit emit label command.

This technique may be extended by allowing the compiler writer to
reference routines that will subsequently be hand-coded and included within the
resultant compiler. Continuing along this line, the CWS may provide a fixed
set of built-in code generation functions which the compiler writer may delete
or augment as necessary. This method often necessitates major alterations in
the built-in functions if a new target computer is designated.

Another method (not necessarily limited to one-pass generators) is to
provide the compiler writer with a language tailored to code generation. Once
the code generator is represented in the provided language, the CWS may

36

translate it to executable
the resultant compiler. A
statements of the special 1
pass translators) separgtely
functions.

Ignoring, for the moment, that a one-pass
for a large compiler, there are se
First, extensive optimization is prohibited. This excludes not only the global
techniques of the previous section, but also optimal assignment of registers
for targets that have an array of registers from which to select. A second
limitation is an inability to handle directly memory addressing that is less than
straightforward, such as either fixed-page o r floating-page relative addressing.
Of course, this may be overcome by a powerful postcompilation assembler or
the inclusion of a special hand-coded postprocessor in the resultant compiler.

A CWS designed to produce multipass translators tends to be more
flexible at the cost of increased effort in generating the compiler. Here, it is
even more difficult to be exhaustive. The techniques discussed next are major
strategies and should be considered neither complete nor mutually disjoint in
application.

An assumption applied here to multipass compilers is that the first pass
includes a distinct semantic analysis phase that generates a well understood
intermediate language. The function of subsequent passes is to manipulate the
IL (for purposes of optimization) and to generate object code. It has already
been alluded that two methods for accomplishing this are: (1) provision of a
tailored language for IL inspection, o r (2) provision of ffoff-the-shelPf functions
that the compiler writer may utilize or augment by adding functions coded in a
compatible language. The following methods may serve either as the conceptual
framework within which to apply one of the above two methods o r may be
incorporated more automatically by the CWS during compiler generation.

One general method is that of pattern matching followed by action
sequences. Here, there are similarities with the method of production lan-
guages for syntax analysis. The semantic interpretation of the source program
must be through an intermediate language such as triples, Polish notation, or
others that were mentioned. The code generation metalanguage (or a tailored
procedural language) provides for the representation of IL patterns and for the
expression of actions to be performed when a pattern match occurs during code
generation.

37

the operand attri
on the part of the
available for representing actions to be performed upon the

Actions need not lead directly to code generation. For example, an action may
result in a rearrangement of IL in a manner achieving local optimization,

Another technique, not necessarily incompatible with those previously
mentioned, is a distinct separation of the target dependent and target independent
aspects of code generation. It may be surprising to learn that a large portion
of the processing in code generation is not particularly constrained by the target
architecture. Most notable is the analysis required to determine the order in
which code is generated. For example, in the emission of data definitions, it
is usually safe to emit first the variables requiring the greatest storage space
(e. g. , double precision prior to single precision). Instruction ordering gen-
erally requires more complex algorithms.

One algorithm for instruction ordering is that of Sethi and TJllman [851 .
Conceptually, the expressions represented by the IL mQst be in binary tree
form. (Note that triples and other forms are actually alternate representations
of a tree structure.) Nodes of the tree are augmented with resource numbers.
A resource number corresponds to the number of registers it will require to
generate a value for the subexpression subtended by a node. Resource numbers
are assigned under the assumption that at least one operand, specifically the
left one if an operation is not commutative, must be in a register prior to an
operation. Once resource numbers are assigned, the algorithm traces the
path through the tree delineated by greatest resource numbers and emits the
last operation on the path. It then deletes the operation from the tree and
regenerates the resource numbers for the remaining nodes.

The idea behind the algorithm just described is that by emitting the
operations requiring the most resources first, some of the registers utilized
will be released and thus become reusable in following operations. There is
another aspect of the algorithm which guarantees that the result of a left sub-
expression of a noncommutative operation will be available before that of the

38

right subexpressi manipulation of
resource number gives optimum instruc-
tion sequences under ideal ere are no external calls,
and (2) no operation other circumstances,
the algorithm gives

Target dependencies assert themselves at int where assembly or
machine instruction ration. Such depend-
encies may be imbe tives which the CWS
user frequently must write and insert within the code generator of the resultant
compiler. It is possible, however, to represent the mapping of IL operations
to machine instructions within a data structure that is largely independent of
the generating algorithm. One such representation is the decision table method
reported by Lowry and Medlock [641

The decision table method actually consists of a series of small decision
tables, each called a skeletal code block (SCB) . There is roughly one SCB per
IL operation, but if the operation has several quite different candidate instruc-
tion Sequences based on data type or other conditions, it may be represented
by several SCB' s.

Each SCB consists of a small decision table matrix with rows labeled
by machine instructions and the columns simply numbered beginning with zero
(Fig. 15). The code selection procedures generate an internal status vector
consisting of a series of true/false values. The vector is collected to form a

LA = LOAD ACCUMULATOR
FA = FLOATING POINT ADD
SA = STORE ACCUMULATOR

BIT MASK

SELECTS 9th L COLUMN

Figure 15. Decision table for code selection.

39

binary number (with true - represented by one) cal
significant bits of the mask constitute an integer
from the decision table. Accessing the element
ascending order, instructions (i. e. , row labels)
manner:

1. If an element is zero, then the corresponding instruction is skipped.

2. If an element is one, then the corresponding instruction is emitted.

3. If an element is greater than one, then the element value is used to
select a bit from the bit mask (always from the least significant portion) whose
value determines whether the instruction is to be skipped or emitted.

(The above procedure differs slightly from that of Lowry) and Medlock but is
equivalent in concept.)

The role of the bit mask can be illustrated easily by an example. Assume
that the conditions constituting the mask, beginning with the most significant bit,
are as follows:

Bit 0 - The first operand is already in a register.

Bit 1 - The first operand must be left in a register after the operation.

Bit 2 - The second operand is already in a register.

Bit 3 - The second operand must be left in a register after the operation.

Bit 4 - The result must be stored.

Figure 15 depicts the selected instructions (designated by circled decision
table elements) for a floating point addition on a target machine similar to a
Univac 1108. The conditions leading to the selected instructions of Figure 15
are: first operand is already in a register, the second operand must be left in a
register following the operation, and the result must be stored.

In Figure 15, the codes used for the instruction operands are: Al , A2,
A3 - the first, second, and result operand accumulators, respectively; U1, U2,
U3 - the base addresses for the first, second, and result operands, respectively;
and X1, X2, X3 - the index registers for the first, second, and result operands,
respectively. It falls upon the code selection procedures to maintain content

40

descriptors for all registers in order to make proper substitutions for the A l ,
A2, A3, X1, X2, and X3 codes when emitting an instruction. Register attributes
(types of operations permitted, etc.) are m parameter tables that
may be reconfigured using the code general5

There is another wrinkle to the decisi method that is worthy of
notice. Rather than grouping instructions in based on IL operations,
they may be grouped based on function. For example, register loads may be
in one SCB, and addition instructions may be placed in a second. Using this
approach, one of the functions of the bit mask would be selection of the proper
SCB' s. If there are a large number of conditions comprising the bit mask,
the previous approach of grouping by IL operation may result in sparse decision
table matrices. Thus, grouping by function can result in increased storage
efficiency.

In concluding this discussion of code generation, it is again appropriate
to state that it is almost impossible to assemble an exhaustive catalog of
techniques. It is hoped that the descriptions of actual systems presented in
some of the following sections will indicate the variations and combinations of
methods possible.

I v. EXPECTED PERFORMANCE RANGE OF A CWS

A particular CWS system will exhibit performance boundaries in two
contexts: (1) the range of languages for which it is suited and (2) the range of
target architectures for which it is suited. With respect to language range,
CWS systems may be used to generate processors for the scope exteading from
the simple macrolanguages to those which dynamically induce semantic trans-
formations (such as LISP [861). A macrolanguage is a source language/ object
language pair for which it is possible to map one onto the other by direct
string substitution, irrespective of semantic context. A semantics altering
language is one that can dynamically change the attributes of a defined object
during execution. A specific CWS will support only a subset of this spectrum,
a s depicted in Figure 16.

The architectural range supported by a particular CWS is generally
inversely proportional to the level of support it provides. Pure translators
(i. e. , those providing little postsyntactic support) are effectively unbounded

41

MACRO ANTICS
LANGUAGES ERlNG

GUAGES

i Q 3 ' C W S B 4
I I I

I

I
I

I t
1
I I I

C W S A 4

i Q 3 ' C W S B 4
I I I

I I

I
t
I

C W S A d I
I I I

Figure 16. CWS performance range spectrum.

in range. Meanwhile, those that provide extensive aid for semantic analysis
may be utilized to the fullest extent for only one architectural family, usually
the one on which the CWS itself executes. However, perhaps at the cost of
customized coding for each language, some CWS systems have achieved a
broader architectural applicability [87,881.

V. A BRIEF HI STORY

The evolution of CWS technology has not witnessed the quantum jumps
that enable one to differentiate between different generations of systems. New
techniques have arisen steadily, with the more recent advances concentrated in
postsyntactic analysis. Yet, these have augmented rather than replaced existing
techniques; thus, an understanding of past efforts can lead to better compre-
hension of current trends. A more thorough description of most of the systems
discussed is available elsewhere [21 .

One of the earliest successful compiler writing systems was BMCC
developed at Manchester University [62,89-911. The syntax metalanguage for
BMCC is similar to BNF. The syntax analyzer for compilers generated by
BMCC utilizes the top-down approach and constructs a tree in list structure
form for each input source language sentence. The tree is passed to the
semantic analyzer a t intermediate construction steps designated by the user
within the syntax metalanguage.

2. Language Implementation System. Chi Corporation, Cleveland, Ohio,
Undated Report.

42

The semantic analyzer has a single c
interpret semantic routines supplied by the use
Each user-supplied semantic routine is identified
production forming the root of all syntax
applicable. The interpretive semantic 1
control flow). Contol flow choices are expressed in terms of conditional
expressions for which the truth value is based on whether or not a given produc-
tion was applied at the level being examined. For example,

IF <facto# : : = <primary>*<primary> THEN GOT0 L1

will execute the statement at L1 if, at the current tree node, <facto# was
expanded by the given production. (No attempt has been made in the above
example or will be made in others to replicate the notation of a given system.
Rather, notational constructs have been selected which have the greatest
intuitive meaning.) Attributes of input symbols may be referenced within the
semantic language by using the nonterminal producing the symbol. For example,

ACC : = <variable>

means load an accumulator with the identifier symbol appearing in the source
input sentence. Actual selection of target instructions is performed by
independently written selection primitives that are retrofitted to the semantic
analyzer. Thus, BMCC is basically a one-pass generator.

A second very significant early effort was the TGS-11 system [92,931.
It is remarkable for several reasons: (1) a uniform metalanguage, called
TRANDIR, was defined in which the user describes all phases of compilation;
(2) TGS-11 is an application of itself; that is, the difference between TGS-11
and a compiler generated by TGS-II is that one replaces internal tables describ-
ing TRANDIR with TGS-11 generated tables describing the source language;
(3) TGS-11 was one of the first projects to grapple with the dift'iculty of allowing
complex and composite data structures to be defined in source languages; and
(4) TGS-II was one of the earliest systems to incorporate the IL concept.

43

Lexical analysis for TGS-11 generated compil
does allow the user to incorporate a table of reserve
is via the production language method. There is a s
semantic analyzer through which are passed action c
Arguments are specified via direct references to the syn
symbol table, and other internal data structures.
analyzer is to generate IL in the form of triples.

Like BMCC, TGS-11 is normally used to generate one-pass translators.
However, the presence of IL permits greater freedom in deciding when code
should be generated. Several triples may be accumulated and then analyzed for
optimizations such as the elimination of common subexpressions. Analysis for
both optimization and code generation is performed via a pattern matching
facility in TRANDIR. For example,

IF BRANCH $LABEL . . THEN EMIT (BRA $LABEL)

means if the triple operator is %ranch" and the operands are, respectively,
a reference to the label table and null, then generate an instruction (in assembly
language) to branch to the symbolic label referenced. Actual code selection is
contained in user-written primitives that are retrofitted to the semantic analyzer.

The FSL system [541 can best be described by enumerating the similari-
ties-and differences it shares with TGS-11. Similarities include: (1) FSL is
basically a one-pass generator; (2) syntax analysis utilizes the production
language approach; (3) the semantic analyzer has a single control entry; and
(4) actual code selection is performed by user-written routines retrofitted to the
semantic analyzer. A further description of the differences is contained in the
following.

The first difference is that FSL generated compilers have a built-in
lexical analyzer. However, it may be replaced by one written by the user. A
second difference is the manner in which information is passed from the syntax
analyzer to the semantic analyzer. In FSL, each line of the production language
program for which semantic action is necessary has an associated semantic
routine number (written, for example, as EXEC 12). The semantic routines
are written in an interpretive language. As arguments, the semantic routines

44

receive the contents of the
most recent reduction. An IL does not
generated based directly on the reducti
one or more of the user-w
ence is that FSL limits the source language data types to
single, and double precision. Of c
these into composite types such as
appropriate definitions in the grammar and semantic routines. Iturriaga et al.
describe a sample FSL application [941.

The META systems 1.95-971 offer quite a different pattern. Lexical
analysis in META generated compilers consists of recognizing several built-in
symbols. Syntax analysis is performed via the recursive descent method.
Semantic analysis/ code generation is performed by attaching symbolic instruc-
tions to productions (which are emitted when the production is applied) and
certain predefined functions (such as emit a symbolic label). When a symbol
is read from the input stream, it is placed on a principal internal pushdown
stack. From this stack, copies may be placed on up to four auxiliary stacks.
Operands (and labels) are specified by referencing one of these. Actually,
members other than the top element may be referenced or erased; therefore,
strictly speaking, they are not true stacks. It is possible to add handwritten
semantic routines and specify when during syntax analysis they are to be called.
Later versions include a more complete set of hilt-in functions, particularly in
the area of input/ output handling.

There were a number of other successful systems developed during the
1960' s that merit attention. CGS [631 preceded TGS-11 and was a product of
the same research team. Compilers generated by it employ top-down parsing
strategies to construct a syntax tree. A semantic language is used to generate
IL (in triple form) from which code (described by a different language) is
generated. Gargoyle [981 is a language in which one writes a syntax analyzer
using the top-down parse machine approach. Within the action portions of the
parse machine it is possible to emit assembly instructions, save input stream
symbols for future reference, o r set and reset various flags and conditions.
Additional tests may be imbedded within the action portion to select a particular
action from the set appropriate to the semantic context. COGENT produced
compilers [991 utilize a grammar representation in list structure form but are
not strictly top-down parsers. A form of backtracking is necessary, however,
but it is not performed in the manner of erasing the parse tree and restarting
as was previously described. Rather, it constructs all alternatives in parallel,

45

dropping ones that eventually prove infeasible. A list
i s constructed and semantic sis is interleaved w i
when several parse alterna
delayed until only a single alternative remains. Sem
eration is performed using a tailored procedural lan
processing and pattern matching concepts. TMG p
utilize the parse machine approach to syntax analy
code generation is performed both by references to built-in functions (to which
the user may add) and explicit emission of character strings and labels. AMOS
[601 is more total system oriented but accomplishes this by resorting to the
generation of translators which produce a common IL for which an interpreter
is provided. The syntax analysis algorithm is that of the top-down parse
machine. Semantic routines are written in a tailored language for which
execution is interleaved with parsing. The output of translation is essentially
Polish notation. The META PI system [1011 borrows much in the way of
notational methods from the META systems from which it derives its name.
The differences are: (1) it is implemented in extended recursive FORTRAN,
(2) it is designed to be used in an interactive mode, and (3) it generates com-
pilers that are both interactive and incremental. META PI produced compilers
utilize recursive descent parsing techniques and, like the META systems,
apply semantic commands attached to productions. Unlike the META systems,
immediately executable machine code is produced and there are several facili-
ties available in the metalanguage for handling generzl purpose registers.

st, in which case se

corporating list

VI. CURRENT SYSTEMS

In many cases, the compiler writing systems in use today have been
developed by teams composed of, or in communication with, developers of the
earlier systems. Recent systems surveyed here range from those produced
in academic environments with a primary purpose of instruction to those
produced by or for industrial users. If these differ from those of the last
decade, it is a propensity to provide multipass generators and greater post-
syntactical support with fewer constraints. However, the simple parser gen-
erator has far from disappeared. Systems chosen for review were selected on
the basis of availability and, to a lesser extent, diversity. Judging from past
developments, it is reasonable to assume that others are extensions, refine-
ments, o r variations of the basic patterns presented.

46

A. SIMCMPISTAGU

Simple Compiler (SIMCMP) [1021 and STAGE2 [103,1041 are the least
complex of those systems which may be used to generate language processors.
It is a macro-based generative system used by its authors (who do not acclaim
it a CWS) as a research tool for architecture independent programming tech-
niques. Its operation is shown diagrammatically in Figure 17.

Figure 17. SIMCMP/ STAGE2 organization.

The underlying idea is to use a simple macroprocessor to generate a
more complex macro-based system which may be used to generate yet another
more powerful processor. The approach of evolving systems by basing their
development on simpler systems of the same generic type is called bootstrapping.
(Bootstrapping is frequently employed in the absence of CWS tools for develop-
ing, from scratch, a compiler for a new language or an assembler for a new
computer.) The SIMCMP/ STAGE2 system is highly transportable, since both
are based on FORTRAN. However, if efficiency so dictates, it is easy to
generate an assembly language version of STAGE2. The systems, being
generative rather than analytical, do not possess the syntax, semantic, and
code generation phases emphasized earlier. SIMCMP will be described by
illustrating a macro and then outlining its algorithm.

A SIMCMP macro definition consists of a heading called the template
by which it is identified and a body representing a character string to be emitted
when the macro is evoked. Taking some liberties with the macro parameter
specification notation in order to simplify the explanation, a SIMCMP macro
definition might appear as:

47

TO ab IF CAR cd = CDR ef (1)

I = CDR (cd) (2)

J = CDR (ef)

IF (CAR(1) - CDR(J)) '$1' , ab , '$1'

(3)

(4)

$1' CONTINUE (5)

END (6)

Line (1) is the template, lines (2) through (5) are the body, and line (6)
denotes end of definition. The parameters are the lower case letters a, b, . . . ,
f; that is, each character is a separate parameter. The notation * $1' causes
an internal reusable numeric label to be generated; up to 10 such labels are
permitted per macro definition. Should SIMCMP receive the string

TO 13 IF CAR 17 = CDR 32 ,

which matches the template of line (1) with parameters being compared only for
equivalent substring length, the following code would be generated:

I = CDR(17)

J = CDR(32)

IF (CAR(1) - CDR(J)) 100,13,100

100 CONTINUE

This example illustrates internal label generation and tEe direct character by
character transposition of arguments into the generated code. Not shown is the
capability to make simple predefined numeric substitutions for actual arguments
and to specify dissimilar input and output character codes.

48

In using SIMCMP, one first initializes all macro definitions, which are
stored internally in tabular form and preceded by a template. Each source 3

language statement is then compared to the templates in se
first match causes the corresponding macro to be selected

SIMCMP is used to generate STAGE2. First Language Under Bootstrap
(FLUB) is defined, then STAGE2 is programmed using FLUB. Usually, FLUB
macros (of which there are only 30) are specified in FORTRAN. Once STAGE2
exists, it is possible to regenerate it in more efficient form by rewriting the
FLUB macros in the more powerful STAGE2 capabilities. Frequently, the
second translation is used to create STAGE2 in assembly code form.

STAGE2 capabilities can best be described by comparison to those of
SIMCMP. STAGE2 templates are stored in an internal tree rather than in tabular
form. Source statements are compared to the templates using a series of rules
that have the effect of selecting the one that maximizes the number of literal
characters matched. Although templates and macros are specified in the same
general manner for STAGE2 as for SIMCMP, the tree matching algorithm makes
it unnecessary to assume a fixed string length (namely, one) for each parameter
as does SIMCMP. STAGE2 allows a portion of a macro body to be iteratively
emitted by a count that is either prespecified o r controlled by the source state-
ment. While SIMCMP allows only the literal translation of parameters o r sub-
stitution by predefined numeric values, STAGE2 additionally permits predefined
character strings, translation time expressions, and insertion of the numeric
value for parameter string length among other opticns.

The SIMCMP/STAGE2 combination has been used to generate text
processors, line editors, and page layout applications. More significantly, it
has been used to build processors for the intermediate language JANUS [1051.
A program written in JANUS consists of a series of statements, each having one
operator and one operand plus attached attributes such as arithmetic type. The
operators are generally recognizable as the directives and instructions available
in most assembly languages. JANUS code can easily be translated in macro
fashion to zero-address, one-address, o r general register targets. The general
idea is to construct compilers that translate source language to JANUS, then
utilize a STAGE2/ JANUS processor to obtain object code.

49

LANG-PAK [1061 is a parser gener ization in inter-
active environments. A compiler writer using
grammar incrementally during one or more sessions at a terminal. During
design, the grammar or any embedded subgrammar may be tested by entering
and tracing trial statements of the new language. The LANG-PAK metalanguage
is an extended BNF. Since it incorporates several features common to meta-
languages of other top-down parser generators, this is an ideal place to introduce
these extensions.

Since it will be necessary to add new metasymbols (that is, symbols other
* . than the <r >, . . = used thus far), the following BNF extension examples will

use quotes (") to bracket and distinguish terminal symbols. The first such
extension is factoring. In BNF, if the nonterminal <e could be composed of
either substring <c> o r substring x, it would be expressed as

where the symbol, I , means "or. '? In the LANG-PAK metalanguage, this would
be expressed as

with factored from each alternative. This tends to reduce the size of the
grammar, but, more importantly, it tends to reduce backtracking. For example,
in the first representation (strict BNF) , assume the parser expanded <a> with
 <c>, recognized , then failed to find <c>. It would then erase the subtree
below < a ~ , expand with x, then proceed to find again. Using the second
representation (extended BNF) , needs to be recognized only once in
attempting both alternatives for <a>.

As has been noted, left recursive definitions cannot be properly handled
by top-down analyzers. Although any grammar that can be expressed in BNF
with left recursion can also be expressed without left recursion, the final
representation may be larger and more awkward. Thus, a BNF extension is a

50

more palatable solution. Sinc
semantically equivalent nonre
seek a BNF extensi
sion. Consider the definition used
string of digits:

that utilizes re

<integer> : = <digib I <integer> <digib

Using repetitioli in a manner similar to that of LANG-PAK, one obtains

or even better,

The construction indicates the preceding definition which is enclosed within
parentheses may be repeated. The first number following rep is the minimum
repeat count.; the second number is the maximum. By setting the minimum count
to zero, it is possible to denote an optional symbol. For example,

indicates that <number> may be either a signed or unsigned integer value. Other
metalanguage extensions are related to lexical and semantic analysis and will be
discussed in due course.

51

The LANG-PAK lexical analyzer auto
Other terminal symbols are collected
recognized on a character by char
directly into the grammar. Option
points where a userTsupplied lexic
input symbol. The user-supplier analyzer may return a failure flag to the
parser if the expected symbol is not found.

The syntax analyzer is of the parse machine type and generates an output
stream of control codes defined by the parser and semantic codes specified by
the compiler writer. There are several ways by which semantic codes may be
added Lo the output stream:

1. Direct insertion by the lexical analyzer upon symbol recognition

2. Character strings from the source input statement (identifiers,
etc.) inserted by the parser upon both recognition and request within the
grammar definition

3. Semantic attributes attached to productions by the compiler writer.

There are two variations of the third method. Assume the production definition,

<gotostatemenb : : = ??goto" (sem - 1 5) <label> (sem - 'abc'}

The notation { - sem 1 5} will cause the integers trl'f and ''5'? to be inserted into
the output stream whenever ?'goto" is recognized. Handling of the second
semantic specification, (sem - f abc'} , is more complex. First the user sup-
plies a package called the semantic compiler which is used at the time the
parsing tables are generated (Fig. 18). During translation of the metalanguage,
a semantic specification of the form { - sem . . . '} causes the semantic compiler
to be evoked to process the character string between the apostrophes. The
semantic compiler returns an array of semantic codes which become part of
the parse tables generated. Semantic specifications thus translated may be
arbitrarily complex, depending on the effort the user wishes to expend on the
semantic compiler.

52

In the resultant compiler, semantic analysis/ code generation is per-
formed by a user-written package with a single control entry. This package is
called the semantic machine to distinguish it from the semantic compiler and is
driven by the output stream produced by the parser. An alternative organization
allows the parser to return the output stream to an evoking program which may
then proceed with semantic analysis.

The first organization is depicted in Figure 18. It is of interest because
the metalanguage itself is an application of the system. (Recall that TGS-I1
was similar in this respect.) In Figure 18, the LANG-PAK parser is shown both
outside and within the resultant compiler. The only difference between the two
is that the one outside contains predefined tables for parsing the metalanguage.
The one within contains the parsing tables produced for the new language.

The authors of LANG-PAK warn that its use should be confined to the
generation of processors for T'smallTT grammars such as are typical for inter-
active query languages. The supposed limitation is due not to theoretical

53

considerations of language construction but to design philosophy. To maintain
the broadest possible range of host co
and PL/I) , certain inefficiencie speed were introduced. Though
parsers generated by LANG-PAK are relatively large, they are not unreasonably
so. LANG-PAK can be used to generate parsers for the larger languages.

(it is coded in both FORTRAN

C. COGENT

Compiler Generator (COGENT) is a proprietary product of Virtual Sys-
tems, Jnc., [1071 and is not related to a previous compiler writing tool of the
same name [991. A discussion of it is included at this point because it is an
excellent vehicle on which to continue the discussion of BNF extensions begun
under LANG-PAK.

The LANG-PAK metalanguage contains extensions (factoring and itera-
tion) that tend to optimize the top-down parsing algorithm and other extensions
for embedding semantics. In LANG-PAK, only simple backtracking is per-
formed. All productions beginning with identical nonterminal symbols must be
grouped and factored in a manner that allows parsing of any production to proceed
from left to right without erasing a previously recognized nonterminal directly
contained within it. The COGENT metalanguage also contains the factoring and
iteration extensions, but the parsing strategy permits more elaborate backtrack-
ing. To reduce the amount of redundant information saved during the parse, the
language designer specifies through the metalanguage the points to which back-
tracking may be necessary. Consider the productions,

. . <goto> . . = - mark<uncongoto> I <assigngoto>

The mark - metasymbol indicates to the parser that if it is unsuccessful in
recognizing <uncongoto>, it is to reset the scan and parse tree before attempting
the next alternative. Of course, this simple example could probably be handled
more effectively with factoring.

54

More exciting from a language theoretical viewpoi
to select production alternatives based on the next several
the input stream. [Recall the definition for LL(k) gr
this facility, consider a programming language for which
than assignment begin with a keyword from the set
Using the look-ahead technique, the syntax for the assignment statement may be
represented as follows:

<id, rT=rr <expression>

The domain of the - ifnot metasymbol is the alternatives immediately following
and enclosed within the parentheses. If all the alternatives fail to match the
next input symbol, then the parser attempts to recognize a sequence corre-
sponding to <id, rt=cc <expression>.

The BNF extensions to embed semantics are similar to those described
earlier for the META systems. This includes: (1) the capability to insert
literal character strings (usually assembly language statements) into the output
stream, (2) access to fields from the symbol table, (3) generation and explicit
emission of labels, (4) references to procedures written by the user, and
(5) references to an internal stack on which input symbols are stored. Access
to the internal stack is less restrictive than in the META systems. Identities
may be attached to input symbols as they enter the stack to facilitate subsequent
referencing. In addition, arbitrary character strings (such as instructions to
be generated at a later point) may be placed on the stack. However the innova-
tion that probably adds the greatest power to the technique of utilizing an internal
stack to control output generation is the concept of attributes. Any stack o r
symbol table element may be assigned an integer value called an attribute.
(A simple example of an attribute is an integer from one to five denoting data
type.) Attributes may be combined in arithmetic expressions, compared against
constants or other attributes, and tested for range. True/false results of
attribute tests are then used to select among candidate productions or alterna-
tive output streams. In the event of backtracking, both the stack and output
stream are restored to their original state along with the scan and parse tree.

55

There are a nurnber of other BNF extensions in the COGENT metalan-
guage. Some of these enable:

I

SOURCE I ,
LANGUAGE I

I i

1. Embedding of syntax error messages in the grammatical description;
a message that is reused needs to be defined only once.

COMPl LER

2. Skipping a portion of the input stream delimited by a given character
sequence; this is useful in ignoring comments and in skipping to a ttsafe't place
to restart after a syntax error.

3. Definition of patterns against which the input stream may be tested;
this is useful in performing local optimization.

4. Stepping through the symbol table and applying a rule for each entry
that meets a given attribute constraint; this is useful in storage allocation.

5. Column positioning for fixed format languages and statement
rescanning.

There is currently insufficient public information to detail the internal
components of a COGENT generated compiler; thus, Figure 19 is a simple
generic diagram. The built-in lexical analyzer collects decimal, octal, and
binary nwbers . It also recognizes identifiers for which the only restriction
is that they must begin with an alphabetic character. The set of permissable
identifier characters following the initial one is specified by the user. The
s&~tax analyzer employs the recursive descent method. The COGENT system
is in FORTRAN and, thus, is quite portable. Since it has been described in its
own metalanguage, rehosting it in assembly language is not difficult and several
assembly language versions exist. Subsequent releases are expected to possess
multipass generation capability.

COGENT

Figure 19. COGENT organization.

56

D. XPLIXCOM

The XPL language and its compiler XCOM were developed by McKeeman,
Horning, and Wortman [31 primarily as a research/ teaching tool for syntax
analysis. In this role it has met resounding success, having become widely
distributed in a very short time. The XPL language, a derivative of PL/I,
has reached beyond pedagogical applications as is attested by its use in the
development of an HAL translator [1081 by Intermetrics, Inc., for NASA.
(HAL is a procedural language very similar to Algol. It contains vector opera-
tions and permits a two-dimensional coding format.) XPL differs from PL/I
in that it is not recursive, permits only integer arithmetic, and has more
operations for string input/ output and manipulation.

Lexical analysis is an XCOM built-in function, but the operators and
reserved words are contained in a replaceable table. Syntax analysis is per-
formed by a method developed by its authors called mixed strategy precedence
(MSP) and may be described in terms of the weak precedence and bounded-
context methods described earlier. While scanning the input sentence from left
to right, the syntax algorithm behaves as a (1,l) weak precedence parser
until it encounters a conflict. At that point, a (2 , l) weak precedence check is
performed to resolve the ambiguity. Eventually a point in the scan is reached
at which a decision is made to reduce the sentential form. There the algorithm
ceases to behave as a weak precedence parser and begins behaving as a Ijounded-
context parser. However, bounded-context analysis is required only to distin-
guish between two or more productions having the same right part. In these
cases, the MSP algorithm selects the proper production based on a (1,l)
bounded-context check.

The semantic analyzer/ code generator must be independently written for
each language/ target combination. The semantic analyzer has a single control
entry and has access to the following data items:

1. The number of the next production to be applied

2. The portion of the sentential form already scanned

3. The left and right limits of the portion of the sentential form to be
reduced

4. A symbol sequence ordered in the same manner that identifiers occur
in the sentential form.

57

A typical semantic analyz
dated in parallel to the one

tor stacks that are manip-
is stored.

In using XCOM, on language using BNF. This
description is the input to
erating MSP tables (Fig. 20). The pro les are physically inserted into
XCOM. The lexical analyzer must then be modified to account for the comment
conventions, reserved words, and other eccentricities of the new language.
Last, the semantic analyzer and code emitters must be rewritten.

ANALYZER, for gen-

Figure 20. XPL/XCOM organization.

Leach and Golde [1091 describe in detail the history of a project to
transport the system from its original host, the IBM S/360, to the Honeywell
Sigma 5. Kamnitzer [1101 aided by Murry and Mohr performed a similar
conversion to the Univac 1100 series. The MSP algorithm in the Sigma version
was subsequently replaced by one utilizing LR(k) automata techniques. Bahler
[1111 reports on plans to utilize XCOM as a basis from which to build a multi-
pass compiler. The first pass generates IL in the form of triples and a sub-
sequent handwritten pass selects and generates code. Reference 112 describes

58

an effort utilizing a Sigma 9 version to add real arithmetic and formatted input/
output to the XPL language. Due to the availability of A ZER, less than 10
percent of the total required effort was placed on syntax analysis. Approxi-
mately 90 percent of the work was dedicated to altering the semantic analyzer/
code generator. Some modification to the lexical analyzer was also necessary.

E. CWIC

Compiler for Writing and Implementing Compilers (CWIC) is a pro-
prietary product of System Development Corporation [113,1141. It descended
directly fro= the META systems previously described; in fact, several individ-
uals participated in the development of both. The most significant difference
is that CWIC is a multipass generator.

The CWIC generated parser is top-down, and the CWIC metalanguage [5]
is extended accordingly. Since the most useful extensions are probably becoming
quite familiar by now, major ones will be enumerated without further comment:
(1) iteration specification, (2) symbol factoring, (3) backtrack marking, and
(4) look-ahead specification. Metalanguage features that deal with lexical and
semantic analysis will be discussed more fully.

The CWIC metalanguage permits three levels of productions; the first
and second levels specify information for lexical analysis, and the third is the
normal grammatical specification as used heretofore. The first level, called
class definitions, is used to group the characters into subsets with similar
attributes. This production type is distinguished from the others by the use
of the metasymbolfl:*f, rather than f f : ~ f f . Two examples are

<digib : f'O"["l"l. . . l"9" .

Right side alternatives for a class definition must be either a single character
o r another class definition nonterminal as in

59

The second level, token-making equations, is distingui
symbol ??. . ??, rather than ??: : =?*,

d by use of the meta-

<identifier> . . <letter> (<letter> I<digit>) {z 0 5}

Alternatives in token-making equations must be expressed in terms of terminal
symbols and class definition nonterminals. This production level specifies
sequences of characters to be treated as a unit by the syntax productions. The
CWIC system generates a more efficient algorithm for their recognition than
that used for the svntax productions. (It should be mentioned that numbers may
be converted from character string to value via reference to a built-in function.)

Semantic extensions to the metalanguage carry forward the concept of
operand referencing from an internal stack as in the META systems. However,
the objective is now to produce IL (in tree-form) rather than assembly language.
The extensions are part of the third level (syntax) productions. For example,

. .
<exp> . . = <term> 'ltTr <term> {sem - ADD #2}

will cause a node to be created with the operation code "ADD". The top two
stack elements (designated by #2) will be popped and attached to the node as
shown in the following diagram.

A descriptor of the ADD node will then be returned to the stack. Nodes may
have an arbitrary number of descendents, and provisions .are available for
creating nodes for which the number of descendents is not immediately known.
An example in which descendent count uncertainty arises is the parsing of a
subroutine call followed by a yet unscanned parameter list.

60

A typical operational confi
shown in Figure 21. The
packages comprising the
utilizes recursive descent to tr
that point the compiler w
[1151, to complete the p

Figure 21. CWIC organization.

GENERATOR is a very high level language that is based on LISP and
still bears some LISP characteristics; for example, a variable does not have a
static type but may contain an integer at one time during execution and a list
at another. Machine registers may be referenced symbolically, and
GENERATOR provides some automatio facilities for their allocation and
deallocation. The typical global strategy for a code generator using
GENERATOR is to partition the object module into separate sections (data,
instruction, COMMON, etc.) into which information is placed and ??flushed??
(output) periodically. Specific strategies include providing a single
GENERATOR procedure for each operation. These procedures employ a
powerful pattern-matching facility to determine the structure of the input
parameters in order to select code or call other procedures for suboperations.

61

CWIC generated compilers, like others, require operating system sup-
port and communication. To accomplish this, a machine oriented language
with Algol-like syntax called MOL [1161 is provided. The support package for
the CWIC system itself is in MOL, and the entire system was originally imple-
mented on the IBM S/ 360 and has since been transported to the CDC 6000/ 7000
series.

Finally, there exists a CWIC-like compiler writing system hosted by the
CDC 6000 series computers called SPLIT, SPL Implementation Tool [1171,
SPLIT is designed to generate compilers for various subsets of Space Program-
ming Language (SPL) , a language tailored to flight applications. SPLIT incor-
porates the syntax metalanguage and GENERATOR, as well a s a support package
correspsnding to MOL.

F. AED

Automated Engineering Design (AED) is a proprietary product of
Softech, Inc, , containing compiler writing tools [881 which are constituents of
a larger Algol-like language and system [1181. The present version, which
utilizes automata and decision table methods, replaces a prior package [4] which
used the operator precedence technique.

The metalanguage for the lexical/ syntax phase is partitioned into the
three levels previously discussed: character class definition, token-making
equsltions, and syntax productions. Within the second level , token-making
equations, one may instruct the system to ignore a string (useful in skipping

@xclusion rather than class inclusion. Syntax productions are expressed in a
manner practically equivalent to BNF, as is frequently the case when bottom-up
parsing methods are employed. Discussion of the second metalanguage (used
in code generation) is contained within the following operational description.

ents) , employ a simple form of repetition, o r designate character class

The various processing components available within the AED system
permit flexibility in determining the resultant compiler configuration. Figure 22
illustrates a possible organization. A finite state machine (FSM) generator
(similar to the one described by Johnson, et al. [1191) utilizes the first and
second level productions to create the tables used by the lexical analyzer. The
user may augment the lexical analyzer with procedures to perform such functions
as string conversion and symbol table construction.

62

- 1
I
I
I
I
I
L

a b ? +I I
SEMANTIC
ANALYZER

Figure 22. AED organization.

The syntax prodxtions are employed to construct LR(k) automata tables
for the parser. The technique employed is similar to the automata method pre-
viously discussed, but is more nearly equivalent to that of Aho and Johnson [46].
The specific subset of context-free grammars recognized is the U L R (1)
grammars, a superset of the SLR(1) group. With the grammar, the user
supplies a dispatch table of semantic procedures (written by the user) indexed
by production number. It is the responsibility of the parser to call the appro-
priate semantic procedure whenever a production is applied to reduce the cur-
rent sentential form. It is the responsibility of the semantic procedures to
generate IL.

An optimization phase may optionally be incorporated into a generated
compiler. The FSM generator is used to construct a pattern recognizer which
accepts IL as input. Recognition of a pattern results in the evocation of a
user-written procedure to perform local optimization over the elements of the
pafkern.

63

Code generation is accomplished partially by the decision table method.
Decision tables (roughly one per IL operator) are encoded in a manner similar
to that of Figure 15. However rows of each table are labeled with generic,
rather than actual, machine i
via a provided software tool and incorporated within an interpreter also provided.
Selection of a generic instruction by the interpreter results in a call to a user-
provided procedure to select the actual target machine instructions.

ctions. The decision tables are preprocessed

There are a few additional facets of the implementation that bear men-
tioning. More than 90 percent of the system is coded in the AED language, and
the user-written components can easily be added i f similarly coded. Since the
system (counting prior versions) has been in existence for a number of years,
many modular components for user-written sections are available "off the
shelf. v f

G. LIS

The Language Implementation System (LIS) is a proprietary product of
Chi Corporation.
characteristics :

LE and compilers produced by it have several significant

1. Code generation is almost fully automated.

2. Global program optimization utilizes advanced graph theoretical
concepts.

3. Operating system interfaces are effectively isolated.

LIS itself is written mostly in the systems implementation language CHILI [1201
with some assembly language procedures. CHILI, in turn, is implemented on
the UNIVAC 1100 series.

Figure 23 depicts the operational configuration. The syntax rules (in
BNF) are used to generate LR(k) automata tables [of type LALR(1) which are
then incorporated in an LIS supplied syntax analyzer. The lexical analyzer
which reads the source statements is written by the user, but work is underway
to automate this stage and some aids exist already. The semantic procedures

3. Language Implementation System. ~ Chi Corporation, Cleveland, Ohio,
Undated Report.

64

Figure 23. LIS organization.

must also be handwritten. One is called each time a syntax reduction is made
and the current sentential form is provided by the syntax analyzer. It is the
responsibility of the semantic procedures to check for semantic misusage and
generate IL in the form of Polish notation.

The optimization phase is self-contained within the resultant compiler.
It performs several passes over the IL but only the first examines the entire
text. The first separates the code into basic blocks and partitions them into
intervals; subsequent ones perform the optimization strategies. Among others,
these strategies include subexp r e s sion factoring, invariant expression factor -
ing, and dead definition elimination. If desired, the optimization phase can be
omitted from a compiler by permitting the semantic procedures to format the
IL in a manner compatible with the code generation phase.

A second metalanguage (machine description o r MD) is employed in
code generation. Encoded within the machine description are the target instruc-
tions plus the registers with characteristics of each. The MD translator groups
the instructions into decision tables which are quite different from tihe one
depicted in Figure 15. Instructions are grouped hierarchically by function.
For example, all add instructions are placed in the same class then further

65

differentiated on the basis of operand type. Table
are incorporated within a generator which se
each operation based on haracteristics a s 1

Another significant MD translator input is special case routines. One
purpose of such routines is the generation of code for operati
dedicated registers (e. g. , subroutine linkage). The code ge
ically references these procedures when defined in lieu of an instruction descrip-
tion for an operation. The final constituent of code generati
is user written. It is the function of this component to select an output medium
and produce a file which conforms to the conventions prescribed by the link
editor of the target machine.

output editing,

As mentioned at the beginning of this description, interfaces to the
operating system are effectively isolated in resultant compilers. Two functions
of this category, reading source programs and producing an object file, have
been alluded to. The others are producing the source listing and intermediate
(temporary) file storage access. All four of these are written by the user and
retrofitted to the compiler produced.

H. JOCIT

Jovial Compiler Implementation Tool (JOCIT) was developed by Computer
Sciences Corporation for the Ai r Force [871. A previously developed CWS,
GENESIS, was used to develop part of the front end. JOCIT is unique in two
respects: first, it is language specific but computer architecture reconfigur-
able; second, it employs the third major method of syntax definition, analytic
grammars. Limiting the design to a single language achieved several objectives:

1. By reducing the amount of generalization, it is possible to produce
compact and efficient compilers to be hosted by smaller computers.

2. By stabilizing the compiler' s front end, the user can ensure that
consistent language sets are implemented on different computers.

3. By restricting the scope to the JOVIAL language, it was feasible to
allocate more resources to the development of debugging aids and diagnostics.

The concepts are applicable to other programming languages.

66

string
Like BNF, analytic gram

context to a greater exten

$ ->$ 9

where $ is a substring those length is at least as great as
meaning of the rule is: if 21 occurs in the sentential form, it is to be replaced
by $. An (only slightly contrived) example is

<id> * <number> -+ <id> -><facto- + <id> .

The analytic algorithm does not reduce the sentential form in a strict left-to-
right manner. The essential steps are:

1. Find the leftmost substring within the current sentential form that
matches the left part of a rule.

2. Use the rule to reduce the sentential form.

Separate implementations of the algorithm are discussed in the previously cited
reference by Dunbar i 881 and an article by Hext and Roberts [81.

The JOCIT front end consists of syntax and semantic analysis. The
syntax analyzer is the analytic system produced by the GENESIS CWS. Semantic
analysis is performed by a set of procedures called Pragmatic Functions
(Fig. 24), generally organized around the recognition of syntactic entities.
However, certain actions to transcend the context of specific source language
phrases. Communication with the succeeding compilation phases is through IL
(Polish notation) and various dictionaries such as that for symbols.

A graph theoretical optimizer is included in each generated compiler
but in a manner that permits optional evocation for individual compilations.
The specific flow analysis algorithm employed is linear nested region analysis
(LNRA) . LNRA [611 is intermediate in sophistication, falling between strongly
connected region analysis and interval analysis. The general idea behind the
method is to divide the flow graph into basic constructs - strongly connected

67

Figure 24. JOCIT organization.

region, conditional forward branch, if. .then. . else, and others - and to apply
specialized techniques to each. Constructs not within the selected basic set
are ignored except for basic block analysis. Optimization is performed in
exactly two passes over the IL and flow graph. (This contrasts with interval ~

analysis which makes as many passes as necessary to collapse the graph to a
single node.) The first pass by the LNRA optimizer constructs the flow graph
and collects the definition points for all variables. The second pass performs
the .optimization strategies which include constant propagation, subexpression
factoring, operator strength reduction, and invariant expression factoring.
Local optimization strategies are performed simultaneously.

The code generator is divided into a machine independent part provided
by JOCIT and a machine dependent part, called GENS, provided by the com-
piler implementer. The machine independent part converts the IL to tree-form
and sequences the nodes for code emission via the tree weighting algorithm
described previously. It presents to GENS one operation at a time for which
code is to be emitted. Typical strategies employed by GENS are selection via
decision tables and conditional code emission. The latter capability is sup-
ported by JOCIT via an output editor which is not shownin Figure 24. The
source document contains an excellent catalog of difficulties to be surmounted
in generalizing code selection [871 .

68

To bind the separate phases o
must write a control proce
bilities of this procedure
for the compiler. The interfaces with
ized to permit a straightforward imp1
routines.

I . Other Systems

The fact that all recent systems discussed thus far emanated from
industrial sources, with the exceptions of SIMCMP/ STAGE2 and XPL/XCOM,
is an interesting but unplanned phenomenon. Perhaps it reflects success on the
part of previous researchers who were largely members of academe. Of
course, some of the systems described were direct extensions of previous
academic efforts and others received university support. HOWeVer, to correct
the impression that academic research in this area has ceased, the remaining
systems selected for description all began as university research projects.

The Computer System Research Group at the University of Toronto was
the first to develop an LR(k) automata parser generator [47] following the
groundbreaking research by DeRemer. Their work led to a generator that
accepted BNF input and produced LALR(1) syntax analysis tables. The design
of this system was the basis for the current version of the parser generator
in AED. Several optimizations were effected, some being more technical than
theoretical, and comparisons of size and speed were performed between it, MSP,
and (1,l) precedence.

A parser generator employing the production language approach has been
developed at Brandeis University [1211. It is based largely on more funda-
mental research by Ichbiah and Morse [1221 and has been used to develop
processors for languages of syntax complexity approaching that of Algol. Like
LANG-PAK, the Brandeis system is designed to operate in an interactive
environment. It is constructed on a somewhat larger scale than LANG-PAK,
however, consisting of five separate phases.

The phase that constructs the parser accepts BNF input, performs
various ambiguity checks, and produces production language tables for incor-
poration into the standard syntax analyzer. The analyzer, of which there are
both FORTRAN and Algol versions, calls a user-written semantic procedure,

69

providing it with an action code associated with the production being applied.
The user, of course, provides the action code through the metalanguage. The
second phase constructs the lexical analyzer, allowing the user to attach codes
to identifiers, numbers, and other symbols at the time they are recognized.
The third phase is the error routine generator. Its input consists of a set of
triples, each one correlated to a production language step. Each triple consists
of: (1) an error message, (2) description of the state in which the parsing
stack is to be left, and (3) description of the next r'safet? point a t which the
scan can continue. The fourth phase accepts BNF input and generates a suf-
ficient number of typical sentences of the language to use each BNF production
at least once. This phase is primarily a grammar consistency check and is
usually executed first. The last phase generates a main program to bind the
syntax analyzer, lexical analyzer, and error routine into a single system.

The Parser Generating System (PGS) is a (1,l) bounded-context
analyzer developed at Purdue University [1231. Recall that during the dis-
cussion of syntax analysis it was stated that each step in a bottom-up parse
presented two problems that required solution: (1) what part of the sentential
form to reduce and (2) which production to apply. Bounded-context analysis
is adept at solving the latter once the former is given. Resolution of what to
reduce has led the authors of PGS to a rather unique approach.

Accepting BNF input, PGS introduces new nonterminals to transform the
grammar into a normal foi-m. This normal form is capable of representing
any (1,l) bounded-context grammar and has production rules of only four types,

A : : = - BC(type1)

A : = Bx (type 2)

A : : = B (type3)

A : : = x (type4) ,

where A, B, and C are nonterminals and x is a terminal. This reduces the
problem of what to reduce to exactly five cases at each step. That is,

1. No reduction can be made (i. e. , ERROR)

2. The top two nonterminals on the parse stack

70

3. The top nonterminal on the parse stack and the next input strin
terminal

4. The top nonterminal on the parse stack

5. The next input string terminal.

Bounded-context analysis can now be used very effectively in determining which
case applies, although a look-ahead scan may be necessary to ascertain right
context.

In using PGS, one associates a semantics routine with each production
in the original grammar. It is the belief of subsequent investigators at Purdue
that for a fixed target machine, one set of generalized semantic primitives can
be developed to service a broad range of languages [1241. Their approach is
to construct a profile of the semantic characteristics of the range of languages
to be supported, then design the minimum number of primitives necessary to
handle all facets of the profile. Examples of semantic characteristics are
explicit versus implicit variable type declaration, explicit versus implicit type
conversion in expressions, fixed versus varying array subscript ranges, and
the names of library routines.

V I 1 . THE USER'S PERSPECTIVE

The goal of the potential CWS user might be stated as "implement com-
pilers in shorter time and at reduced cost. l 1 For both cost and time, it is
significant that the authors of both JOCIT and LIS estimate a 50 percent reduc-
tion during compiler implementation. Most of the recently developed systems
are placed directly in the hands of the users. However, each requires pro-
gramming support, primarily that of systems oriented personnel. Table 1
illustrates the type and magnitude of auxiliary support necessary for several
of the systems surveyed.

To clarify further the relative power of several of the parsing strategies
with respect to the entire domain of context-free languages, consult Figure 25.
Be warned that the Venn diagram shown is an approximation and can be inter-
preted too literally. Also, be aware that a continuum of top-down, backtracking

71

c .- +.
I-

C

r -
a 0

t

c
TOP43OWN WITHOUT BACKTRACKING

MIXED STRATEGY PRECEDENCE

WEAK PRECEDENCE

PRECEDENCE

OPERATOR PRECEDENCE

Figure 25. Comparison of parsing strategies.

algorithms exist, extending from those having a domain only slightly larger
tha9 the LL(k) subclass to those for which the domain is almost all context-free
languages [30,1251. In fact, the top-down strategy has been applied to lan-
guages outside the context-free class [1261 .

Apart from generating production compilers, the use of compiler writing
aids can be an invaluable education asset. The volume of information pertaining
to grammatical subclasses and parsing strategies is indeed impressive. How-
ever, a frequent objective of a university introductory course in compiler con-
struction is to have the student fully implement a minilanguage during a single
semester. Providing sufficient information on the nuances of any one classical
parsing strategy and requiring it to be implemented before continuing can con-
sume the better part of a term. Further, this must be done to the detriment of
other strategies and, more regrettably, other compilation phases. Given at
least a parser generator, a term project can be well underway shortly after
introducing the rudiments of grammar and syntax analysis. This more than
anything else accounts for the broad distribution of XPL/XCOM.

73

The utility af compiler writin
pilers. Any symbol manipulation probl roduction of one well
formatted string from another is am
Some of the areas in which these tool
restructuring data files, converting engineering units, and translating the names
of organic compounds into two-dimensional

th implementing corn-

s discussed here.
been employed are text editing,

ats.

VI 1 1 . DEPARTURE POINTS FOR FUTURE DEVELOPMENTS

The peak of the creativity explosion in the area of syntax definition and
analysis has probably passed. The parsing strategies that have evolved are
sufficiently general to encompass all of the popular procedural languages in use
today, and these strategies have firm theoretical foundations. More importantly,
it can be demonstrated that a language for which the grammar can be expressed
in precedence form or recognized via a deterministic automation is unambiguous.
So, barring the introduction of much higher level languages, research here is
far less critical today. Similar, though more recent, strides have been made
toward establishing a mathematical foundation for program optimization. How-
ever, two major problems that have plagued CWS implementors continue to
exist: generalized approaches to semantic analysis and translation of data
structures. The two are not entirely disjoint.

With respect to data structures, most general purpose computers have
several built-in, or concrete, data types: vector (or array), a subrange of
integers, a subset of real numbers, and an extended subset of real numbers
(i. e. , extended precision). To this concrete set, even the most elementary
high order languages add several abstract data types such as boolean (created
by mapping two symbols onto two integer elements) and character (created by
mapping a small number of symbols onto a subrange of integers) Many lan-
guages, most notably PASCAL [1271 go much further and allow the dynamic
creation of new abstract data types which may be arbitrarily complex. Com-
posite variables called records may themselves be elements of a fixed length
structure called an array or a variable length structure called a file. Symbols
may be mapped onto a subrange of integers and henceforward used as scalars.
To write a specific compiler to, first, capture all the data element inter-
relationships in an internal symbol table and, second, to allocate storage and
generate correct access code is not difficult. To generalize the mechanism
in a manner that does not preclude other abstractions is difficult. Other

74

abstractions include the conventions of the
direct reference to the hardware registers and di
a variable and the contents of the location d
dynamically defined data types permitted in

With respect to semantic analysis, it may help to recall the example
of the concurrent assignment statement which demonstrated how syntax and
semantics were sometimes interlocked. However, the point of the example
was that one manner of syntax definition facilitated semantic analysis to a
greater degree than did another; it made no mention of how semantic analysis
was to be performed. Compiler writing aids contribute most to the phases of
translation that are concerned with the transformation of one string into another
based primarily on form and structure. It is when the output string produced
is also dependent on the meaning (semantics) of the input string that the theory
begins to fail. It is significant that it is this area, interpretation of the parse
tree, that three of the four multipass generators described - namely, CWIC,
AED, and LE3 - leave to the compiler implementer. The fourth, JOCIT, avoids
the problem only by limiting itself to the JOVIAL language. Translation of
intermediate language to target machine code suffers from the same theory
gap*

Measures that may be taken to solve these problems can be divided into
near-term and long-term approaches. For the near-term approach, allow the
generic diagram of the "ideal CWS" of Figure 3 to be replaced by the "gen-
eralized CWS" depicted in Figure 26. In Figure 26, an arbitrary source lan-
guage is first translated to a standard source language. The standard source
language must exhibit all the semantic, but not necessarily syntactic, charac-
teristics of the domain of languages for which the CWS is intended. If there are
several conflicting semantic characteristics, then only one may be chosen to
the diminishment of the source language domain. Configuring the standard
source language would be an exercise in enumerative logic (not the soundest
mathematical foundation) and the first stage of translation might be patterned
after the extensions to Purduet s PGS. The second stage of translation would
be from the standard source to a standard object language. The standard object
language would be only slightly more complex in structure and semantics than
an assembly language. Thus, translation to the machine languages of the
selected range of targets could utilize methods similar to those of the STAGE2/
JANUS system.

75

Figure 26. Generalized CWS.

Long-term solutions must await the development of more powerful
theories. Currently, the outlook is much brighter in the area of data structures
than in semantic interpretation. The reason for this is the curyent emphasis on
data-base systems and recognition of the need to insulate users of such systems
from the intricacies of internal data representations. That is, it is desirable
to inform the user of all logical data element interrelationships but undesirable
to require an understanding of how these interrelationships are physically
realized. Analogously, it would be desirable for a CWS user to enumerate the
data attributes for each language - type, name, access method, semantic
dependencies - but undesirable to require the details of internal (compile-
time) or external (execution-time) representation. One promising area of
research that could conceivably produce side effects beneficial to CWS tech-
nolo’gy is relational data models [129,1301.

In a relational data model, there is asswned to exist a finite number of . . . , S . A relation is defined to be a list
1’ s2 n not necessarily distinct sets, S

of ordered n-tuples where each n-tuple is unique and contains one element from
each set. N-tuple lists may contain much redundant information, but they refer
only to the logical structure and not to the internal data representation. By
allowing the user to define new relations and utilize several primitive set
operations, this simple conceptual framework becomes a powerful data descrip-
tion facility. It would be presumptuous to claim this is a solution to the data
structure problem in the compilation process for, indeed, it is not. However,
it might be a useful illustration to couch the compilation problem in terms of a
relational model. Assume that a CWS permitted the definition of the sets, S.,

1

76

and the domain of each. Further, via semantic extensions to the metal
assume the user provides interpretation rules to direct the constrmcti
tuples and test existing ones to select among candidate output strings.
two tasks could be isolated from the internal and external tuple repr
the problem would be solved.

As stabd, however, generalizing semantic interpretation is far more
difficult. Again, the ongoing research is not directed specifically toward CWS
technology. Two diverse systems will be described here to illustrate the
directions in which these studies are proceeding. The first of these is Vienna
Definition Language (VDL) VDL [131,1321 was originally developed as a
formal method for describing the semantics of PL/I. In VDL, one divides a
program into a control (instruction) component and an environment (data)
component. The two components are represented within separate tree struc-
tures. ‘The leaves (called elementary objects) of the environment tree are
data elements, and the leaves of the control tree are instructions. Two primitive
operations are defined over the structures; select can access any elementary
object or subtree, and assign can add o r delete subtrees o r change the value of
an elementary object. Using these two primitives, instructions of two basic
types are defined: (1) macroinstructions that, when executed, replace them-
selves with a subtree whose leaves are additional instructions; and (2) value-
returning instructions that pass a computed value to the next higher control
tree node with possible side effects on the environment tree.

The rather simple VDL concepts form a system of considerable subtlety
and power that has been employed to describe the semantics of languages and
algorithms [1331 . However, it has two drawbacks limiting the applicability to
compiler writing. First, the primitive operations are too basic to enable
representation of all possible substrings within a reasonable space. A sub-
sequent version of the system, BASIS/I [1341 , loosens the restrictions but at
the cost of complete formality. The second and more theoretically significant
drawback is that VDL is an interpretive system. This means that semantics
are defined in terms of actions performed upon a given case. The semantic
problem in compilers is quite different. It is to find a string in one language,
the target, with semantics equivalent to a string in another language, the
source.

Interpreting one string by transforming it into a second string containing
only well understood terms that are defined via axioms is sometimes called the
axiomatic approach. The primary difference between an axiomatic and the VDL

77

approach is that in the axiomatic
the environment (values of variab abstractly. One
example of research in Scott provides a
set of primitive function
domains for each. The domain sets consi storable values,
storage states, and truth values. (Storab
further divided into subdomains.
domains by the primitive functions and several binary operations are understood,
it is possible to construct formulas representing the semantics of a language
construct.

urrent state of

n elements of the

It should be noted that an axiomatic system strictly for the description
of machine instruction sets has been in use for several years [137,1381.

IX. CON CLU S I ON

This report has partitioned the compilation problem into five phases:
lexical analysis, syntax analysis, semantic analysis, optimization, and code
generation. Representative techniques applicable to each phase were described.
The development of compiler writing aids was traced from the earliest efforts
to the present. Particular emphasis was placed on the more recent tools in
deference to the monumental survey previously published by Feldman and Gries
[21 . The final sections concentrated on pending technological developments
which could impact the manner in which compilers are developed. Perhaps an
appropriate way to end this survey is to ask: If current research in data
abstraction and semantic description concludes in the most fortuitous manner,
what will have been accomplished? The answer is not a compiler-compiler.

Assume that it is possible to state formally the semantics of both source
and target languages. It would still be necessary to transform one to the other
by finding two strings having equivalent semantics. This is not a simple
exercise. The situation would be analogous to stating a conjecture in mathe-
matics without being capable of proving it. However, such conjectures become
well defined problems and well defined problems often attract solutions.

78

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Irons, E. T.: tax Directed 0. Comm. ACM,
vol. 9, no. 1, January 1961, pp.

Feldman, J. and Gries, D. : Translator Writing Systems. Comm. ACM,
vol. 11, no. 2, February1968, pp. 77-113.

McKeeman, W. M., Homing, J. J., Wortman, D. B. : A Compiler
Generator. Prentice-Hall, Inc. , Englewood Cliffs, N. J., 1970.

Programmer? s Guide for Buildlng Language Processors with the AEDJR
System. Softech, Inc., Softech-R-1, March 1970.

Book, E., Schorre, D. V. , Sherman, S. J. : CWIC User ' s Guide the
Syntax Language. System Development Corporation, TM-L-4185/ 002/ 01,
June 19, 1970.

Naur, P. (ed.) : Revised Report on the Algorithmic Language ALGOL
60. Comm. ACM, vol. 6, no. 1, January 1963, pp. 1-17.

Tanenbaum, A. S. : A General-Purpose Macro Processor as a Poor
Man' s Compiler-Compiler. IEEE Transactions on Software Engineering,
vol. SE-2, no. 2, June 1976, pp..121-125.

Hext, J. B. and Roberts, P. S. : Syntax Analysis by Domolki' s Algo-
rithm. Computer J., vol. 13, no. 3, March 1970, pp. 263-271.

Lewis, P. M. 11 and Stearns, R. E. : Syntax-Directed Transductions.
J. ACM, vol. 15, no. 3, September 1968, pp. 464-488.

Greibach, S. : A Normal-Form Theorem for Context-Free Phrase
Structure Grammars. J. ACM, vol. 12, no. 1, January 1965,
pp. 42-52.

Korenjak, A. J. and Hopcroft, J. E. : Simple Deterministic Languages.
Seventh Annual Symposium on Switching and Automata Theory, vol. 7,
1966, pp. 36-46.

79

REFERENCES (Continued)

12.

13.

14.

15.

16.

17.

18.

19.

Rosenkrantz, D. J. andsteams, R. E.:
Top-Down Grammars. Information and C
pp. 226-256.

Writh, N, and Weber, H. : EULER - A Generalization of ALGOL and
its Formal Definition, Part I. Comm. ACM, vol. 9, no. 1, January
1966, pp. 13-25.

Floyd, R. W. : A Descriptive Language for Symbol Manipulation.
J. ACM, vol. 8, no. 4 , October 1961, pp. 579-584.

DeRemer, F. L.: Simple LR(k) Grammars. Comm. ACM, vol. 14,
no. 7, July1971, pp. 453-460.

Aho, A. V. and Ullman, J. D. : The Theory of Parsing, Translation
and Compiling, Vol. I. Prentice-Hall, Inc., Englewood Cliffs,
N. J., 1972.

Ullman, J. D. : Application of Language Theory to Compiler Design.
Proc. AFIPS Spring Jt. Computer Conf., vol. 40, 1972, pp. 235-242.

Gries, D. : Compiler Construction for Digital Computers. John Wiley
and Sons, New York, 1971.

Lewis, P. M. 11, Rosendrantz, D. J., andseearms, R. E.: Compiler
Design Theory. Addison-Wesley, Reading, Mass., 1976.

20. Zimmer, R. : Weak Precedence. Proc. Intern. Computing Symposium
1970, 1970, pp. 576-587.

21. Aho, A. V . , Denning, P. J., andullman, J. D.: WeakandMixed
Strategy Parsing. J. ACM, vol. 19, no. 2, April 1972, pp. 225-243.

22. Floyd, R, W. : Syntactic Analysis and Operator Precedence. J. ACM,
vol. 10, no. 3, July1963, pp. 316-333.

23. Floyd, R. W. : Bounded Context Syntactic Analysis. Comm. ACM,
vol. 7, no. 2, February 1964, pp. 62-67.

80

REFERENCES (Continued)

24. Knuth, D. E. : On the Translation of Languages from Le
Information and Control, vol. 8, no. 6, 1965, pp. 607-639

25. Aho, A. V. and Ullman, J. D. : A Technique for Speeding Up m (k)
Parsers. SUM J. Computing, vol. 1, no. 2, June 1973, pp. 106-127.

26. Hopgood, F. R. A. : Compiling Techniques. American Elsevier, Inc.,
New York, 1969.

27. Aho, A. V. and Ullman, J. D. : The Theory of Parsing, Translation
and Compiling, Vol. II. Prentice-Hall, Inc., Englewood Cliffs,
N. J., 1973.

28. Floyd, R. W. : The Syntax of Programming Languages-A Survey.
IEEE Trans. on Electronic Computers, vol. EC-13, no. 4 , August 1964,
pp. 346-353.

29. Unger, S. H. : A Global Parser for Context-Free Phrase Structure
Grammars. Comm. ACM, vol. 11, no. 4 , April 1968, pp. 240-247.

30. Birman, A. and Ullman, J. D. : Parsing Algorithms with Backtrack.
Conf. Record of 11th Annual Symposium on Switching and Automata
Theory, 1970, pp. 153-174.

31. Foster, J. M. : Automatic Syntactic Analysis. American Elsevier, Inc.,
New York, 1970.

32. Kurki-Suonio, R. : Notes on Top-Down Languages. BIT, vol. 9, 1969,
pp. 225-238.

33. Cohen, Doren J. and Gotlieb, C. C. : A List Structure Form of
Grammars for Syntactic Analysis, Computing Surveys, vol. 2, no. 1,
March 1970, pp. 65-82.

34. Kanner, H., Kosinski, P., and Robinson, C. L. : The Structure of Yet
Another ALGOL Compiler. Comm. ACM, vol. 8, no. 7, July 1965,
pp. 427-438.

81

REFEREN CES (Con ti nu ed)

35. McClure, R. M. : An Appraisal of C S
Spring Jt. Computer Conf., vol. 40,

36. Knuth, D. E. : Top-Down Syntax Analysis. Acta Information, vol. 1,
1971, pp. 79-110.

37. Bell, J. R. : A New Method for Determining Linear Precedence
Grammars. Comm. ACM, vol, 12, no. 10, October 1969, pp. 567-569.

38. Aho, A. V. and Ullman, J. D. : Linear Precedence Functions for Weak
Precedence Grammars. Intern. J. Computer Math., vol. 3, no. 2,
September 1972, pp. 149-155.

39. Martin, D. F. : A Boolean Matrix Method for Computation of Precedence
Functions. Comm. ACM, vol. 15, no. 6, June 1972, pp. 448-454.

40. Evans, A. , Jr. : An ALGOL 60 Compiler. Annual Review in Automatic
Programming, vol. 4, 1964, pp. 87-124.

41. Hopcroft, J. E. and Ullman, J.- D. : Formal Languages and Their
Relation to Automata. Addison-Wesley, Reading, Mass. , 1969.

42. DeRemer, Franklin Lewis: Practical Translators for LR(k) Languages.
PhD. Thesis, National Technical Information Service, AD 699 501,
October 24, 1969.

43. Early, Jay: An Efficient Context-Free Parsing Algorithm. Comm.
ACM, vol. 13, no. 2, February 1970, pp. 94-102.

44. Vere, S.: Translation Equations. Comm. ACM, vol. 13, no. 2,
February 1970, pp. 83-89.

45. Schkolnick, M. : Labelled Precedence Parsing. ACM Spposiu?m on
Principles of Prgramming Languages, October 1973, pp. 33-40.

46. Aho, A. V. and Johnson, S. C. : LR Parsing. Computing Surveys,
vol. 6, no. 2, June 1974, pp. 99-124.

82

REFEREN CES (Con tin ued)

47.

48

49.

50.

51.

52.

53.

54.

55.

56.

57.

Lalonde, W. R., h e , E. S., andHorn
Generator. Proc. IFIP Congress 71, 1

Anderson, T., Eve, J. and Homing, J. J. : Efficient LR(1) ‘Parsers.
Acta Information, vol. 2, 1973, pp. 12-39.

Shapiro, B. : SLR(1) Parser Generator. National Technical Informa-
tion Service, PB-249 127/2WC, February 4, 1976.

Mickunas, M. D. : On the Complete Covering Problem for LR(k)
Grammars. J. ACM, vol. 23, no. 1, January1976, pp. 17-30.

Homing, J. J. : Empirical Comparison of LR(k) and Precedence Parsers.
University of Toronto, August 1970.

Jolliat, M. L. : On the Reduced Matrix Representation of LR(k) Parser
Tables. Ph. D. Thesis, University of Toronto, 1973.

Jolliat, M, L. : A Simple Technique for Partial Elimination of Unit
Productions from LR(k) Parsers. IEEE Trans. on Computers,
vol. C-25, no. 7, July 1976, pp. 763-764.

Feldman, J. A. : A Formal SemB-ntics for Computer Languages and Its
Application In a Compiler-Compiler. Comm. ACM, vol. 9, no. 1,
January 1966, pp. 3-9.

Griffiths, T. V. and Petrick, S. R. : On the Relative Efficiencies of
Context-Free Grammar Recognizers. Comm. ACM, vol. 8, no. 5,
May 1965, pp. 289-300.

Schorr, H. : Compiler Writing Techniques and Problems. Proc. NATO
Conference on Software Engineering, 1969, pp. 114-122.

Dijkstra, E. W. : A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, N. J., 1976.

83

REFERENCES (Continued)

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

L%u, C. L., Chang, G. D., and Marks, R. E. : The Desi
mentation of a Table Driven Compiler System. Proc. AFIPS Spring
Jt. Computer Conf., vol. 30, 1976, pp. 691-697.

le-

Cheatham, T. E., Jr. and Sattley, K. : Syntax-Directed Compiling.
Proc. AFIPS Spring Jt. Computer Conf., vol. 25, 1964, pp. 31-57.

Pratt, T. W. and Lindsay, R. K. : A Processor-Building System For
Experimental Programming Languages Proc AFIPS Fall Jt. Computer
Conf., 1966, pp. 613-621.

Cocke, J. and Schwartz, J. T. : Programming Languages and Their
Compilers, Preliminary Notes. Second Revised Edition, Courant
Institute of Mathematical Science, New York University, April 1970.

Brooker, R. A., MacCallum, I. R., Morris, D. , and Rohl, J. S. :
The Compiler Compiler. Annual Review in Automatic Programming,
V O ~ . 3, 1963, pp. 229-275.

Warshall, S. and Shapiro, R. M. : A General-Purpose Table-Driven
Compiler. Proc. AFIPS Spring Jt. Computer Conf. vol. 25, 1964,
pp. 59-65.

Lowry, E. and Medlock, C. : Object Code Optimization. Comm. ACM,
vol. 12, no. 1, January 1969, pp. 12-22.

McKeeman, W. M. : Peephole Optimization. Comm. ACM, vol. 8,
no. 7, July 1965, pp. 443-444.

Bagwell, J. T. , Jr. : Local Optimizations. SIGPLAN Notices, vol. 5,
no. 7, July 1970, pp. 52-66.

Allen, F. E. : Program Optimization. In Annual Review in Automatic
Programming, vol. 5, Pergamon Press, New York, 1969, pp. 165-212.

Allen, F. E. and Cocke, J. : A Catalogue of Optimizing Transformations.
Design and Optimization of Compilers, R. Rustin (ed.) , Prentice-Hall,
Englewood Cliffs, N. J. 1972, pp. 1-30.

84

REFERENCES (Continued)

69. Gear, C. W. : High Speed Compilation of EEicient Object Code. Comm.
ACM, vol. 8, no. 8, August 1965, pp. 483488.

70. Geschke, M. C. : Global Program Optimizations. Ph.D. Thesis,
National Technical Information Service, AD 762 621, October 1972.

71. Schaefer,. M. : A Mathematical Theory of Global Program Optimization.
Prentice-Hall Inc., Englewood Cliffs, N. J., 1973.

72.

73.

74.

75.

76.

77.

78.

79.

Busarn, V. A. and Englund, D. E. : Optimization of Expressions in
FORTRAN. Comm. ACM, vol. 12, no. 12, December 1969, pp. 666-674.

Allen, F. E. : Control Flow Analysis. SIGPLAN Notices, vol. 5, no. 7,
July 1970, pp. 1-19.

Allen, F. E. and Cocke, J. : A Program Data End Flow Analysis
Procedure. Comm. ACM, vol. 19, no. 3, March1976, pp. 137-147.

Tarjan, R. : Testing Flow Graph Reducibility. Proc. 5th Annual ACM
Symposium on Theory of Computing, May 1973, pp. 96-107.

Knuth, D. E. : An Empirical Study of FORTRAN Programs. In
Software - Practice and Experience, vol. 1, no. 1, January-March
1971, pp. 105-133.

Earnest, C. : Some Topics in Code Optimization. J. ACM, vol. 21,
no. 1, January 1974, pp. 76-102.

Kildall, G. A. : A Unified Approach to Global Program Optimization.
ACM Sumposium on Principles of Programming Languages, October 1973,
pp. 194-206.

Miller, E. F., Jr., Bardens, J. A., Benson, J. P., Melton, R. A.,
Urban, R. J. and Wisehart, W. R. : Structurally Based Automatic
Testing. Proc. EASCON' 74, October 1974, pp. 134-139.

85

REFEREN CE S (Con ti n ued)

80.

81.

82.

83.

84.

85.

86.

87.

88.

Paige, M. R. : Program Graphs, An Algebra, and Their Implications
for Programming. IEEE Trans. Software Engineering, vol. SE-1,
no. 3, September 1975, pp. 286-291.

Graham, S. L. and Wegman, M. : A Fast and Usually Linear Algorithm
for Global Flow Analysis. J. ACM, vol. 23, no. 1, January 1976,
pp. 172-202.

Hecht, M. S. and Ullman, J. D. : Analysis of a Simple Algorithm for
Global Data Flow Problems. Conf. Record of ACM Symposium on
Principles of Programming Languages, October 1973, pp. 207-217.

Kam, John B. and Ullman, J. D. : Global Data Flow Analysis and
Interactive Algorithms. J. ACM, vol. 23, no. 1, January1976,
pp. 158-171.

Wulf, W. A., Johnsson, R. K. , Weinstock, C. B., and Hobbs, S. 0.:
The Design of an Optimizing Compiler. National Technical Information
Service, AD-773 838, December 1973.

Sethi, R. and Ullman, J. D. : The Generation of Qptimal Code for
Arithxnetic Expressions. J. ACM, vol. 17, no. 4, October 1970,
pp. 715-728.

McCarthy, J., Abrahams, P. W., Edwards, J. J., Hart, T. P.,
and Levin, M. I. : LISP 1.5 Programmer's Manual. M. I. T. Press,
Cambridge, Mass., 1962.

Dunbar, T. L. : JOCIT Jovial Compiler Implementation Tool. National
Technical Infomation Service, AD/A-O05 307, January 1975.

The Compiler Framework. Softech, Inc., vol. 7089, April 1976.

89. Brooker, R. A., Morris, D., and Rohl, J. S. : Compiler Compiler
Facilities in Atlas Autocode. Computer J., vol. 9, no. 2,
February 1967, pp. 350-352.

86

REFERENCES (Conti w e d)

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

Brooker, R. A. , Morris, D., and Rohl, J. S. :
Compiler Compiler. Computer J., vol. 9, no.
pp. 345-352.

Rosen, Saul: A Compiler-Building System Developed by Brooker and
Morris. Comm. ACM, vol. 7, no. 7, July1964, pp. 403-414.

Dean, A. L., Jr. : Some Results in the Area of Syntax Directed
Compilers. Computer Associates, Inc. , CA-64-5-R, December 1964.

Cheatham, T. E. , Jr. : The TGS-11 Translator-Generator System.
Proc. of the IFIP Congress, 1965, pp. 592-593.

Iturriaga, R., Standish, T. A . , K r u b r , R. A. , and Earley, J. C.:
Techniques and Advantages of Using the Formal Compiler Writing
System FSL to Implement a Formula Algol Compiler. Proc. AFIPS
Spring Jt. Computer Conf., vol. 28, 1966, pp. 241-252.

Schorre, D. V. : META 11 A Syntax-Oriented Compiler Writing Language.
Proc. 19th National ACM Conf. , vol. 19, 1964, p. D1.3-1.

Schneider, F. W. and Johnson, G. D. : META-3 A Syntax-Directed
Compiler Writing Compiler to Generate Efficient Code. Proc. 19th
National ACM Conf. , vol. 19, 1964, pp. D1.5-1-D1.5-8.

Oppenheim, D. K. : META5: A Tool to Manipulate Strings of Data.
Proc. 21st National ACM Conf., vol 21, 1966, pp. 465-468.

Garwick, J. V. : GARGOYLE, A Language for Compiler Writing.
Comm. ACM, vol. 7, no. 1, January 1964, pp. 16-20.

Reynolds, J. C. : An Introduction to the COGENT Programming System.
Proc. 20th National ACM Conf., vol. 20, August 1965, pp. 422-436.

McClure, R. M. : TMG-A Syntax Directed Compiler. Proc. 20th
National ACM Conf., vol. 20, August 1965, pp. 262-274.

87

REFEREN CE S 4 Conti n ued)

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

0' Neil, J. T., Jr. : META PI - An On-Line Interactive Compiler-
Compiler. Proc. AFIPS Fall Jt. Computer Conf. , vol. 33,
December 1968, pp. 201-218.

Orgass, R. J. and Waite, W. M. : A Base for a Mobile Programming
System. Comm. ACM, vol. 12, no. 9, September 1969, pp.-507-510.

Waite, W. M. : Building a Mobile Programming System. Computer
J. , vol. 13, no. 2, February 1970, pp. 28-31.

Waite, W. M. : The Mobile Programming System:> STAGEB. Comm.
ACM, vol. 13, no. 7, July 1970, pp. 415-421.

Coleman, S. S. , Poole, P. C. , and Waite, W. M.: The Mobile
Programming System, JANUS. Software-Practice and Experience,
vol. 4, no. 1 , January-March 1974, pp. 5-23.

Heindel, L. E. and Roberto, J. T. : LANG-PAK-An Interactive Lan-
guage Design System, American Elsevier, New York, 1975.

COGENT Compiler Generator User ' s Guide. Virtual Systems, Inc.
1976.

Kole, R. E. , Helmer, P. H. and Holtz, R. L. : HAL/S-360 User's
Manual. National Technical Information Service, N74-25728,
February 18, 1974.

Leach, G. and Golde, H. : Bootstrapping XPL to an XDS Sigma 5
Computer. Software-Practice and Experience, vol. 3, no. 3,
July-September 1973, pp. 235-244.

Kamnitzer, S. H. : Bootstrapping XPL from IBM/ 360 to Univac 1100.
SIGPLAN Notices, vol. 10, no. 5, May 1975, pp. 14-20.

Bahler, R. C. : Steps Toward a Compiler for BLISS-360. National
Technical Information Service, AD 747 530, June 1972.

88

REFEREN CES (Con ti n ued)

112. Storm, Mark W. and Polk, J. A. : Usage of an XPL Based
Generator System. Proc. 14th Annual Southeast Regional ACM Conf.,
1976, pp. 19-26.

113. Book, E. , Schorre, D. V., and Sherman, S. J.: CWIC User ' s Guide:
General Description. System Development Corporation, TM-L-4185/
001/00, May 14, 1969.

114.

115.

116.

117.

118.

119.

120.

121.

Book, E., Sherman, S. J., and Schorre, D. V. : CWIC/ 360 User ' s
Guide. System Development Corporation, TM-4185/ 000/03,
June 30, 1971.

Book, E. , Sherman, S. J., and Schorre, D. V. : CWIC User's Guide:
The Generator Language. System Development Corporation, TM-L-
4185/003/01, March 9, 1971.

Book, E., Schorre, D. V., and Sherman, S. J. : A User ' s Manual for
MOL-360. System Development Corporation, TM-3086/ 003/ 01,
April 22, 1969.

SPLIT User ' s Manual. System Development Corporation, TM4765/
609/01, June 5, 1972.

An Introduction to the Features and Uses of AED. Softech, Inc. ,
vol. 6080, January 1975.

Johnson, W. L., Porter, J. H., AcMey, S. I., and Ross, D. T. :
Automatic Generation of Efficient Lexical Processors Using Finite
State Techniques. Comm. ACM, vol. 11, no. 12, December 1968,
pp. 805-813.

Lynch, W. 6. , Langner, J. W. , and Schwartz, M. S. : Reliability
Experience with Chi/OS. Proc. Intern. Conf. on Reliable Software,
April 1975, pp. 252-259.

Cohen, Jacques: Experience With A Conversational Parser Generating
System. Software-Practice and Experience, vol. 5, no. 2, April-
June 1975, pp. 169-180.

89

REFERENCES (Continued)

122. Ichbiah, J. D. and Mor S . P. : A Technique for Generating
Optimal Floyd-
ACM, vol. 13, no. 8, August 1970, pp. 501-508.

tions for Precedence Grammars.

123. Mkkunas, M. D. and Schneider, V. B. : A Parser Generating System
for Constructing Compressed Compilers. Comm. ACM, vol. 16,
no. 11, November 1973, pp. 669-676.

124. Lancaster, R. H. and Schneider, F. B. : Quick Compiler Construction
Using Uniform Code Generators. Software-Practice and Experience,
vol. 6, no. 1, January-March1976, pp. 83-91.

125. Chartres, B. A. and Florentin, J. J. : A Universal Syntax-Directed
Top-Down Analyzer. J. ACM, vol. 15, no. 3, July 1968, pp. 447-464.

126. Kuno, S . and Oettinger, A. G. ; Multiple-path Syntactic Analyzer.
Information Processing 62, North Holland Publishing C o . , Amsterdam,
1962, pp. 306-311.

127. Jensen, K. and Wirth, N. : PASCAL User Manual and Report.
Springer-Verlag, New York, 1975.

128. Wulf, W. A., Russell, D. B., and Habermann, A. N. : BLISS: A
Language for Systems Programming. Comm. ACM, vol. 14, no. 12,
December 1971, pp. 780-790.

129. Codd, E. F. : A Relational Model of Data for Large Shared Data Banks.
Comm. ACM, vol. 13, no. 6, June 1970, pp. 377-387.

130. Date, C. J. : Relational Data Base Concepts. Datamation, vol. 22,
no. 4, April 1976, pp. 50-53.

131. Lucas, P. and Walk, K.: On the Formal Description of PL/I. Annual
Review in Automatic Programming, vol. 6, no. 3, 1969.

132. Wegner, P. : The Vienna Definition Language. Computing Surveys,
vol. 4, no. 1, March 1972, pp. 5-63.

90

REFEREN CES (Concluded)

133. Lee, J. A. N. : Computer Semantics. hold,
New York, 1972.

134. Beech, D. : On the Definitional Method of Standard PL/I. ACM
Symposium on Principles of Programming Languages, October 1973,
pp. 87-94.

135. Scott, D. : Outline of a Mathematical Theory of Computation. Proc.
Fourth Annual Princeton Conf. on Info. Science and Systems, 1970,
pp. 169-176.

136. Scott, D. : Mathematical Concepts in Programming Language Semantics.
Proc. AFIPS Spring Jt. Computer Conf. , vol. 40, 1972, pp. 225-234.

137. Bell, C. G. and Newell, A. : Computer Structures: Readings and
Examples, McGraw Hill Book Co. , New York, 1971.

138. Barbacci, M. : A User' s Guide to the ISPL Compiler. Carnegie-Mellon
University, May 17, 1975.

91

A P PROVAL

A SURVEY OF COMPILER DEVELOPMENT A I D S

By B. P. Buckles, B. C. Hodges, and P. Hsia

The information in this report has been reviewed for security classi-
fication. Review of any information concerning Department of Defense o r
Atomic Energy Commission programs has been made by the MSFC Security
Classification Officer. This report, in its entirety, has been determined to
be unclassified.

This document has also been reviewed and approved for technical
accuracy.

. T. POWELL iP Director, Data Systems Laboratory

92 NASA-Langley, 1977

