
https://ntrs.nasa.gov/search.jsp?R=19770010812 2020-03-22T10:36:42+00:00Z



1. REPORT NO. 12 GOVE~NMENT 

George C. Marshall Space Flig 
Marshall Space Flight Center, 

National Aeronautics and Space Administration I Washington, D.C. 20546 1.1. SPONSORING AGENCY CODE 

I 
15. SUPPLEMENTARY NOTES 
Prepared by Data Systems Laboratory, Science and Engineering 
*Science Applications, Inc. 

**University of Alabama in Huntsville 
16. ABSTRACT 

This report establishes a theoretical background for the compilation process by dividing 
it into five phases and explaining the concepts and algorithms that underpin each. The five 
selected phases are  lexical analysis, syntax analysis, semantic analysis, optimization, and 
code generation. Several methods for both top-down and bottom-up syntax analysis are  illus- 
trated via examples. Graph theoretical optimization techniques are  likewise presented, and 
approaches to code generation are  described for both one-pass and multipass compilation 
environments. Following the initial tutorial sections, more than 20 tools that have been devel- 
oped to aid in the process of writing compilers are  surveyed. Care is taken to categorize each 
according to the theoretical framework just established. A uniform notation is used throughout 
this portion rather than resorting to that notation used by each individual system. Eight of the 
more recent compiler development aids are selected for special attention - SIMCMP/STAGE2, 
LANG-PAK, COGENT, XPL, AED, CWIC, LIS, and JOCIT. The concluding sections assess 
the impact of compiler development aids, describe some of their shortcomings, and inspect 
some of the areas of research currently in progress. 

Compiler writing systems, translator writing 
systems, compiler-compilers, compiler gen- 
erators, compilers, metacompilers, genera- 
tors, context-free grammars, syntax analysis, 
parsers, semantic analysis, global optimiza- 

STAB Category 61 

I $5.00 Unclassified Unclassified 96 

* For sale by the National Technical Information Service, Springfield, Virginia 22161 



ACKNOWLEDGMENTS 

Assembling the material and organizing the text for this report required 
the cooperation of a number of people. The authors are  grateful to Mr. Terry 
Dunbar of Computer Sciences Corporation and Mr. David Abt of Chi Corporation 
for their willingness to discuss the CWS projects in which they were involved. 
Much credit is due Sandra Austin and Pat Ryan of Science Applications, Inc. , 
who were kind enough to carefully analyze the earlier versions and point out 
inconsistencies and shortcomings. We, the authors, are responsible for any 
that remain. Finally, we thank Lynda Suto, also of Science Applications, Inc., 
who exhibited almost limitless patience in the typing and preparation of numerous 
earlier drafts. 

ii 



TABLE OF CONTENTS 

Page 

I . INTRODUCTION .............................. 
II . THE STRUCTURE OF A COMPILER WRITING SYSTEM . . . 
UI . METHODOLOGIES CHARACTERISTIC OF A CWS . . . . . . . .  

A . Lexical Analysis ........................... 
B . SyntaxAnalysis ............................ 
C . Sernan t i cha lys i s  .......................... 
D . Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
E . Code Generation ............................ 

IV . EXPECTEDPERFORMANCERANGEOFACWS . . . . . . . . .  
V . ABRIEFHISTORY ............................ 

VI . CURRENT SYSTEMS ............................ 
A . 
B . 
C . 
D . 
E . 
F . 
G . 
H . 
I . 

SIMCMP/ STAGE2 . . . . . . . . . . . . . . . . . . . . . . . . . .  
COGENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CWIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
AED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
LIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
JOCIT .................................. 
Other Systems ............................. 

LANG.PAK ............................... 
XPL/XCOM .............................. 

VU . THE USER'S PERSPECTIVE ...................... 
Vm . DEPARTURE POINTS FOR FUTURE DEVELOPMENTS .... 
M . CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

REFERENCES .................................... 

1 

1 

5 

6 
6 

23 
30 
35 

41 

42 

46 

47 
50 
54 
57 
59 
62 
64 
66 
69 

71 

74 

78 

79 

iii 



LIST OF ILLUSTRATIONS 

Figure 

1 . 
Title Page 

Typical one-pass compiler ...................... 
Typical multipass compiler ...................... 
Ideal CWS structure ........................... 

2 

3 

4 

4 

11 

14 

15 

17 

19 

21 

22 

32 

33 

34 

39 

42 

2 . 
3 . 

Realistic CWS structure ........................ 4 . 
Example precedence matrix ...................... 5 . 

6 . Top-down parse tree construction . . . . . . . . . . . . . . . . . .  
7 . Bottom-up parse tree construction . . . . . . . . . . . . . . . . .  

Example parse machine ........................ 8 . 
Example production language ..................... 9 . 
Example grammar automaton ..................... 10 . 
Example automaton parser tables . . . . . . . . . . . . . . . . . .  11 . 
Directed graph with three strongly connected regions . . . .  12 . 
Directed graph partitioned into intervals . . . . . . . . . . . . .  
Derived graph from Figure 13 .................... 

13 . 
14 . 

Decision table for code selection . . . . . . . . . . . . . . . . . .  15 . 
CWS performance range spectrum . . . . . . . . . . . . . . . . .  16 . 

17 . SIMCMP/STAGE2 organization . . . . . . . . . . . . . . . . . . .  47 

LANG-PAK organization ........................ 53 18 . 

iv 



LIST OF ILLUSTRATIONS (Concluded) 

Figure Title 

19 . COGENTorganization .......................... 
20 . XPL/XCOM organization ....................... 
21 . CWLCorganization ............................ 
22 . AED organization ............................. 
23 . LIS organization ............................. 
24 . JOCIT organization ........................... 
25 . Comparison of parsing strategies . . . . . . . . . . . . . . . . . .  
26 . Generalized CWS ............................. 

Page 

56 

58 

61 

63 

65 

68 

73 

76 

V 



A SURVEY OF COMPILER DEVELOPMENT AIDS 

1. INTRODUCTION 

As early a s  1960, E. T. Irons was able to construct a compiler in which 
the syntax recognition phase was independent of the source language being 
translated [ 11. This effort encouraged those who speculated that the entire 
compilation process could be automated. The immediate result was a period 
of frenzied activity in the area of programming language syntax analysis, the 
goal being to develop an algorithm applicable to the broadest possible class of 
grammars. Meanwhile, formal studies of semantics lagged behind. A large 
number of aids to the compiler writer emerged [ 21, employing many different 
techniques and designed to reduce the implementation effort of one or more 
phases of a compiler. The structure, performance range, methodologies 

scussed as follows. employed, and other topics concerning these aids are c 

1 1 .  THE STRUCTURE OF A COMPILER WR TING SYSTEM 

Within the computer science community, the generally accepted defini- 
tion of a translator is a processor that automatically converts one language 
(the source language) to another language (the object language). It is also 
generally accepted that a compiler is a translator for which the source language 
is procedural and the object language is an assembly or  machine language. 
Thus, a compiler writing system (CWS) is, strictly speaking, a software 
package that automates the production of compilers. However, the term has 
come to be used with those systems that automate only part of the task and 
provide a framework (and perhaps a philosophy) for the remainder [ 31. There- 
fore, this report will treat the terms compiler writing system, translator 
writing system, compiler-compiler, compiler generator, and metacompiler as  
synonomous. The term host computer (or host) shall refer to the machine on 



which either the CWS or generated compile 
of the CWS or generated compiler, will be stated only when it is not apparent 
from the context. The computer that executes the object language produced by 
the generated compiler will be called the target computer (o r  target) . 

Before launching into the structure of a CWS it is necessary to say some- 
thing about the structure of compilers. Compilers are norm 
into passes. A pass may be loosely defined as a complete examination of the 
source text or  some intermediate form of it. A compiler that generates object 
language concurrently with recognition of phrases in the source language is 
called a one-pass compiler. A typical one-pass compiler configuration is 
shown in Figure 1. The semantic routines depicted are correlated to individual 
phrase types of the source language and have the responsibility of selecting the 
proper object code for each phrase type. A multipass compiler, for which a 
typical configuration is shown in Figure 2, usually converts the source language 
to an intermediate form on the first pass; subsequent passes examine the inter- 
mediate form in its entirety for purposes of optimization or code generation. 
A compilation phase may be even more loosely defined as one pass or some 
distinguishable subset. 

SOURCE 
LANGUAGE 

I--- GI ----- 
I - I 

SEMANTIC 
ROUTINE 

I I 
SYNTAX SEMANTIC I . - 1  ANALYZER - ROUTINE A -  I 

\ e I 

SEMANTIC 
ROUTINE 

} - ~  OBJECT 

Figure 1. Typical one-pass compiler. 
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ANALYZER GENERATOR 

PARSE TREE 

Figure 2. Typical multipass compiler. 

To perform its task a CWS must have a description of the source lan- 
guage (both syntax and semantics) and the object language. A description of 
the characteristics of the target computer is also necessary if  the object lan- 
guage is a machine or assembly language. The descriptive form used is referred 
to as metalanguages (literally, languages for describing other languages). 
Often, several metalanguages or sublanguages are  required, one for each aspect 
of the translation. 

An idealized CWS would exhibit the structure depicted in Figure 3. Under 
this conceptual design the compiler developer would input the descriptions of the 
source language grammar, the object language, and the target computer charac- 
teristics via a single uniform metalanguage. The CWS would then automatically 
generate tables from the descriptive inputs which would reconfigure the gen- 
eralized compiler to accept the described source language programs and output 
object language for the described target computer. Realistically, however, 
neither uniformity nor completeness is characteristic of any single compiler 
writing system now available. Figure 4 illustrates the most common configura- 
tion in which separate definition methodologies are  utilized to describe separate 
compilation phases (denoted as CWS 1, CWS 2, and CWS 3). The block labeled 
"Language/ Computer Dependent Support Procedures" represents functions 
unique to a specific language-computer combination that are beyond the descrip- 
tive capability of the definition methodologies and must be independently 
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I 
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TARGET - 

SOURCE 
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SOURCE 
LANGUAGE 

I 
I 

Figure 4. Realistic CWS structure. 

GENERALIZED 
COMPILER I 

produced for each new compiler. In the illustrations that follow, blocks with 
double-edgedborders denote dependent support procedures and dashedborders 
encircle all components of a final compiler configuration. Components of the 
CWS that are not also part of the resultant compiler are enclosed in hexagons. 
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I I I. METHODOLOG I 

A broad array of tactics has been employed 
based partly on the problem class for which the s 
it is necessary to avoid details in favor of pres 
alternatives, these efforts have been instrumental in shifting the emphasis in 
compiler construction from ar t  to science. 

The phases of compilation selected for examination with respect to 
tactics used by compiler writing systems are: 

Lexical Analysis - Scanning the character string comprising the 
input source language statement and collecting units of information 
(called tokens) including identifiers, operators, numbers, and 
r e  served words. 

Syntax Analysis - Determining the grammatical structure of the 
input source statements. 

Semantic Analysis - Attaching meaning to the input source language 
statements in terms of data attributes (e. g. , type and structure) 
and computer operations. 

Optimization - Seeking memory space and/ or execution time 
improvements for the to-be-generated object language. 

Code Generation - Selecting and emitting code based on source 
language semantics, object language description, and target com- 
puter characteristics. 

The latter three phases shall be referred to as  postsyntactic analysis. 

A specific CWS will often emphasize support in one or  more areas while 
neglecting others. In most cases little help is provided in the lexical analysis 
phase, and resultant compilers are often inflexible in the form of input they will 
accept. It is in the area of syntax analysis that the CWS has been the most 
useful to the compiler writer. A general theory of semantics does not exist; 
thus, a semantic analyzer for the CWS system may not be provided or its use 
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may be optional. In this a r  
minimum effort needs to be 
the resultant compiler will produce ineffici 
extreme, extensive effort needs to be 
including coding parts by hand, b 
code equal to or exceeding those re ??hand-tuned. 

A. Lexical Analysis 

A common approach to lexical analysis is to attach attribute descriptors 
to single character symbols which may be subsequently interrogated by the 
syntax analyzer. Multicharacter symbols such as  reserved words, identifiers, 
or numbers are often built into the syntax definitions where they cannot be 
handled efficiently. Methods have been developed, however, to describe 
symbols of the above type and direct their synthesis into a single unit prior to 
passing them to the syntax analysis phase [ 4,5]. Another method utilizes a 
fixed basic set of multicharacter symbols such as  integers and identifiers to 
which the language designer must adhere [ 31. This is not as inflexible as  it 
might first appear. For example, i f  the basic set includes integers, it is 
possible to define a real value as  being two integers separated by a decimal 
point. As a final resort, the CWS may provide a framework in which the user 
inserts a customized lexical analyzer. I 

B. Syntax Analysis 

Due to the incredible productivity in the area of formal grammar theory, 
the task of classifying compiler writing systems on the basis of syntax analysis 
methodologies is relatively straightforward. Assuming some background is 
required, the following discussion is divided into: (1) definition of the class of 
grammars employed in computer languages, (2) important subclasses of this 
class of grammars, and (3)  the most prevalent syntax analysis (parsing) 
methodologies. Where possible, grammar subclass is related to parsing 
methodology. Neither the subclass categories nor parsing methodologies are 
exhaustive; rather, an attempt has been made to choose those having the 
greatest impact on CWS technology. 

1. Language Implementation System. Chi Corporation, Cleveland, Ohio, 
Undated Report. 
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P = A set of formulas called productions which define each nonterminal 
a s  a string of symbols; there may be more than one definition for 
any nonterminal. 

S = A distinguished member of N called the goal symbol. 

Subsequently, nonterminals will be enclosed within the special brackets, ?ktT 
and '5. ? ?  Productions will  be of the form 

. .  where <a> is a nonterminal, . . = is a symbol which means 9 s  replaced by," 
and B is a string which may be empty or consist of one or more terminals and 

the goal symbol, S, may appear to the right of : : = in no pro 
those in which it 
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<subjecb <predicate> - . .  <sentence> . . - 
<subjecb : = <article> <noun> 

<predicate> . . = <verb> <direct objecb 

<direct objecb : : = <pronoun> 

<article> . . - 
<article> . . 

. .  

a 

the 

boy 

dog 

chased 

had 

him 

it . 

- . .  
. .  

* *  - <noun>. . - 
* *  - <noun>. . - 

- . .  <verb>. . - 
<verb>. . - 
<pronoun>. . - 
<pronoun>. . - 

- . .  
. .  

- . .  
These generate sentences such as rra dog chased him" and "the boy had it." 
In terms of these productions, the other members of the grammar are: 

N = {<sentence>,<subjecb, <predicate>,<direct objecb, <article>, 
<noun>, <verb>, <pronoun>) 

T = {a, the, dog, boy, chased, had, him, it} 

S = <sentence> . 
2. CFG SUBCLASSES 

A context-free language is simply a language which can be generated 
by a context-free grammar. Generally, there exist more than one CFG for 
each language, which lends importance to the concept of CFG subclasses. The 
subclasses discussed in the following are not mutually exclusively, and none 
are capable of generating all the context-free languages. An attempt has been 
made to present each as informally as  the subject matter permits. Sufficient 
references are included for investigation by those more theoretically inclined. 
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The first subclass is the LL(k) grammars desc 
Steams [9]. LL(k) stands for left-to-right 
symbol look-ahead. Informallyrthe LL( k) gram 
those for which, given a sentential form (i. e., s 
phrases replaced by nonterminals) , it is possible to predic 
to be applied by scanning the sentential form from left to right to a length of, 
at most, k symbols into the phrase to be replaced. An interesting subset of 
the LL(k) grammars is those that may be represented in Greibach Normal 
Form [ 101, a form in which the right part of every production begins with a 
terminal symbol. A still more restrictive subset, the LL( 1 ) grammars, 
requires that each production right part begin with a unique terminal. This 
subset is characterized by Korenjak and Hopcroft [ 111. 

An excellent analysis of the LL( k) grammars is given by Rosenkrantz 
and Steams [ 121. Among other things, they give three necessary and sufficient 
conditions for testing a grammar to be of subclass LL(k) for a given value of k. 
They also prove that, in general, whether or not a grammar is LL(k) is 
undecidable unless k is given a priori and that all LL(k) grammars are unambig- 
uous. (A grammar is unambiguous if, for every sentence of the language it 
describes, there exists only one syntactical interpretation. ) 

The next CFG subclass is the simple precedence grammars [ 131. 
Although the authors know of no CWS that directly implements them, the con- 
cept is central to a t  least one such system [ 31, and several parsing methods 
implicitly use the idea that different symbol pairs bind to each other with differ- 
ent strengths [ 14,151. 

A CFG is simple precedence i f  it contains no productions having empty 
or  equivalent right parts and for each pair of symbols, A and B, at most one of 
the following relations hold: 

A B A and B are adjacent in some production. 

A B B is the start symbol of some production and there exists at 
least one sentential form of which AB is a substring. 

A .> B A is the tail symbol of some production and there exists at 
least one sentential form of which AB is a substring. 

A more rigorous definition is given by Ah0 and Ullman [ 161 among others 
[ 2,17-19]. 

9 



The significance of the precedence grammars is that they exhibit simple 
criteria for deciding when and how much of a sentential form to reduce when 
scanning from left to right, namely, the portion between the last 
first a>. (Henceforth, this substring of the sentential form will be called the 
%andle. 
using the precedence relations in Figure 5: 

and the 

For example, the following steps would reduce "the dog chased him" 

Already Scanned 

<.the 

<. <article> 

<. <article> <. dog 

< <article> 2 <noun> 

c <sub jecb 

c- <subject> <. chased 

<*<subject> <.<verb> 

<e  <subject> <.<verb> < a  him 

<- csubjecb <-<verb> A <pronoun> 

<.<subject> 2 <predicate> 

<.<sentence>* > 

Relation 

<* 

* >  

<* 

* >  

*>  

<* 
*> 

<* 

.> 

.> 

e >  

Next Symbol 

the 

dog 

dog 

chased 

chased 

chased 

him 

him 

A mathematical technique for deriving precedence matrices can be found in 
Reference 18. 

The concepts embodied in the simple precedence grammars can be easily 
extended to grammars which have had a more immediate impact on CWS tech- 
nology. The paragraphs that follow introduce the (m,n) precedence, weak 
precedence, operator precedence, and bounded-context grammars using the 
ideas developed for the simple precedence subclass. 

A grammar is said to be (m,n) precedence if the three relations < e ,  A, 
and a >  are defined unambiguously when comparing the last m symbols scanned 
to the following n symbols. Thus, the simple precedence grammars are also 
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Figure 5. Example precedence matrix. 

(1,l) precedence, because, for them, the last symbol is compared to the next 
when scanning left to right. Precedence grammars may have no productions 
with empty or equivalent right parts. 
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The weak precedence gram 
uniquely defined for each pair of 
relations. Thus, in scanning a 
to determine the right boundary of the handle 
decision is made by comparing the tail portion o 
in the production list. The longest production that matches the 
scanned portion is accepted. Naturally, (m, n) weak precedence is analogous 
to (m, n) precedence. 

The operator precedence grammars [22] require that the < e ,  2, and 
relations be defined uniquely only between terminal symbols and that no produc- 
tion has two adjacent nonterminal symbols. During scanning, nonteminal 
symbols in the sentential form ,are, in essence, ignored. This is an increase 
in efficiency, but a t  the cost of the generation of an incomplete parse tree. 
Frequently, this is acceptable because not, all parse steps are semantically 
important to the language. 

All precedence grammars require that productions have .unique right parts. 
This restriction is relaxed for the bounded-conhxt grammars [ 231. A grammar 
is said to be bounded-context of degree (m,n) , if, upon determining a candidate 
for the handle, decisions can be made concerning whether or not it is the handle 
and which production to apply by looking no more than m symbols to the left and 
n symbols to the right of the candidate. It may appear contradictory to state 
that the bounded-context grammars are a subclass of the context-free grammars. 
This is because the word ?tcontext" is not being used uniformly in the two terms. 
A context-free grammar is one for which it is possible to state the definition of 
eaeh nonterminal irrespective of its left or right context; that is, the left part of 
each production is a single nonterminal. A bounded-context grammar is one in 
which, given a substring, it is possible to determine which, if any, nonterminal 
it defines (in a sense, running the production backward) by examining a fixed 
number of symbols to the left and right. 

The final subclass, the LR(k) grammars [24] , include as  subsets all the 
previous subclasses. Although not capable of generating all context-free lan- 
guages, the LR(k) grammars are able to generate practically all the program- 
ming languages in use today [ 251. 

LR( k) stands for left-to-right scan, rightmost reduction with k symbol 
look-ahead. [Compare This definition to chat of the LL( k) grammars. 1 A 
rightmost reduction is one that, a t  each step, replaces the rightmost nonterminal 
with its derivation. The following example depicts both a leftmost and rightmost 
parse for "the dog chased him:?? 
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LL Derivation 

<sentence> 

< subjecb <predicate> 

<article> <noun> <predicate> <subjecb <verb> <pronoun> 

the <noun> <predicate> aub jecb  <verb> him 

the dog <predicate> 

the dog <verb> <pronoun> 

the dog chased epronoum 

the dog chased him 

<subject> chased him 

<article> <noun> chased him 

<article> dog chased him 

the dog chased him 

Every LL(k) grammar is also an LR(k) grammar [ 121. For an extensive com- 
parison of the two, consult Reference 9. A parser that performs the derivation 
steps in the order enumerated previously is called a top-down parser. One that 
performs the steps in the reverse order is bottom-up. 

In practical terms, an LR( k) grammar is one for which the decisions 
associated with left-to-right parsing (i. e. , reducing or  scanning) can always 
be made correctly by considering everything scanned thus far plus the k leading 
symbols of the string to the right of the scan. Thus, it is evident that the LR(k) 
grammars include all of the precedence grammars. For example, an (m,n) 
weak precedence grammar is also an LR(n) grammar. By inspection, it can 
be shown that the sample grammar presented earlier is LR( 0) 

In concluding the discussion of CFG subclasses, it should be noted that 
more detailed descriptions of all of those mentioned (plus others) can be found 
in the standard texts [ 16,18,19,26,27]. In addition, the paper by TJllman [ 171 
describes the LL( k) , LR( k) , and simple precedence grammars. 

3. PARSING ALGORITHMS 

The objective of formulating a rigid grammatical structure and dividing 
that structure into subclasses is the construction of algorithms, called recog- 
nizers or parsers, capable of accepting a particular subclass. These algo- 
r i thms fall into two general categories, top-down and bottom-up. Although a 
particular parser may have aspects of both, those generated by a CWS gen- 
erally are in only one of the two categories. 
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Distinction be 
each constructs a parse 
down parse tree cons 

define it. Nonte 

two can best be e 
Figure 6 illustrate 

read and fie tree already partially constructed. Note that the top-down parse 
produces an LL-derivation and the bottom-up parse produces an LR-derivatim, 
but the final trees are equivalent. A thorough description of top-down parsing 
(under the name syntax-directed analysis) and bottom-up parsing (under the 
name syntax-controlled analysis) is given in Reference 28. 

Genten& Genten+ <sentence> <wnten& 

the boy had it 

(a) 

<subject> A <predicate> 

<article> A <nou’n> 

G u b i e c O  <predicate> 

<sentence> 

G u b i e c O  <predicate> 

<article> A <noun> 

the boy had it 

(b) 

I I I 
the boy had it the boy had it 

(C) (d) 

(rubject> <predicate> 

A I \  
<verb> +ronoun> 

A 
Grticle> <noun> 

G u b j e c O  <predicate> <subject> <predicate> 

A f l  A 
<article> <noun> <verb>Qronoun> <erticle><noun> <verb> <pronoun: 

had it 
I I  

the boy 

(e) 

Figure 6. Top-down parse tree construction. 

I I I  had I I  it 
had it the boy 

I I  
the boy 

( f )  (a) 

Occasionally, a top-down parser will select an incorrect production 
to define a previous subgoal. When the mistake is discovered, it must undo 
the parse and t ry  a different alternative. This action is known as  backtracking 
and can lead to a degradation in performance, However, if the parser is 
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<article> 

<subject> 

Grt icW <noun> <verb> <pronoun> 

I I I I  
the boy had it 

(e) 

I 

<subject> <predicate> 

&rtiele> <noun> <verb> <pronoun> 

I 
it 

I I  
boy had 

I 
the 

(f) 

G e n t e n d  

A <predicate> 
<subject> 

Grticle> <noun> <verb> <pronou3 

I 
it 

I 
had 

I 
boy 

I 
the 

(SI 

Figure 7. Bottom-up parse tree construction. 

permitted to look ahead a few symbols before setting a subgoal and the next 
few symbols will "predict?? the proper production [recall LL( k) grammar 
definition], this inefficiency can be eliminated. This is not to say, however, 
that a top-down recognizer is strictly limited to the LL(k) grammars. Even if 
the grammar is not LL( k) , look-ahead may still be used to eliminate produc- 
tions that could not begin with the next symbols [ 291 . Given backtracking, 
a top-down algorithm will cover a very large set of grammars, generally 
larger than any specific bottom-up technique. Exactly which subclass applies 
to which top-down algorithm is still an unsolved problem. Reference 30 may be 
consulted for an extensive analysis. There is, nonetheless, an exceptional 
circumstance affecting top-down analysis which will be discussed next. 

Left recursion is the bane of the top-down parser. A production is 
directly left recursive if it is of the form 
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where B is any string containing terminals and/or nonterminals. That is, a 
production is directly sive if it defines a nonterminal as being a string of 
symbols beginning wi ame nonterminal. In the above example, a top- 
down parser would continue to set <as as  a subgoal at the next tree level 
infinitum. Fortunately, simple transformations convert any g r  r 
with left recursive productions to an equivalent one without th 
ever, the most frequent device relied upon is a metalanguage 
be presently demonstrated. Incidentally, an LL(k) grammar is never left recur- 
sive [ 321 . 

There are three basic approaches to the top-down algorithm.- The first 
is to translate the grammar to a hierarchical data structure in which there is a 
one-to-one correspondence between nodes in the structure and nonterminals in 
the language [ 331. Each node in the structure enumerates the possible alter- 
native definitions for its nonkrminal, using pointers to other nodes to designate 
other nonterminals within the definition. A generalized a!lgorithm is then pro- 
vided which sets analysis goals, beginning with the root node, and attempts to 
find the subnetwork within the data structure that is the parse tree for the input 
sentence. When all alternatives are exhausted without success, the algorithm 
reports an error. 

The second approach is recursive descent [ 341 , which has been appraised 
as the most widely employed method of syntax analysis [ 351. The basic idea 
behind recursive descent is that there is a one-to-one correspondence between 
nonterminals in the grammar and procedures in the parser. Each procedure is 
responsible for identifying, within the input sentence, the strings that comprise 
itsnonterminal. It reports the success or failure of its endeavor to the higher 
level (i. e., evoking) procedures. A CWS that generates a recursive descent 
parser translates the metalanguage describing the grammar into executable 
procedural statements. 

The third approach, having much in common with recursive descent, 
is the parse machine [ 361. The basic idea is to design a set of recursively 
called interpretive procedures, each identified by a nonterminal and responsible 
for determining if  that nonterminal can be applied to the sentence. Figure 8 
depicts the parse machine for the previous sample grammar. In Figure 8, 
there are two operations: CALL evokes another interpretive procedure and 
has the effect of setting a subgoal; SCAN tries to match the next input text 
symbol with a specific terminal. Either operation may succeed or fail and may 
return a success or  failure flag to an evoking procedure. A second option, 
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<article > 

<noun> 

<verb 7 

RETURN [ yes 1 1 ~ CONTINUE- 1 (pronoun > SCAN [ him I 1 SCAN [ i t 1  1 RETURN [yes] RETURN I no 1 I 

SCAN I a I RETURN [ yes 1 CONTINUE 
SCAN [the I RETURN [ yes I RETURN [no 1 

SCAN [boy 1 RETURN 1 yes 1 CONTINUE 
SCAN [ dog 1 

SCAN [ chased 1 RETURN [ yes 1 CONTINUE 

RETURN [ yes 1 RETURN [ no 1 

SCAN [ had I RETURN I yes I RETURN I no 1 

Figure 8. Example parse machine. 

other than returning, is continuing interpretation at the next line of interpretive 
code. A more realistic example of a parse machine for recognizing a language 
with a grammar expressed in extended BNF would involve from 10 to 15 opera- 
tion types. 

A more varied group of bottom-up algorithms exist. Those that have 
had the greatest impact on CWS technology are the precedence, production 
language, and LR(k) automata techniques. Thus, they are the ones that have 
been chosen for expansion here. Each one is predicated on a single left to right 
scan of the input text, and each is designed to resolve two questions at each 
parse step: (1) What substring of the sentential form should be reduced next? 
and (2) Which production should be used in the reduction? The former question 
may be rephrased as: What is the handle ? 

An understanding of the precedence relations is tantamount to under- 
standing the precedence parser. The input sentence is scanned from left to 
right, and each symbol is placed on a pushdown stack. When the relation 
between the top symbol on the stack and the next s p b o l  in the input string is 
a>, a reduction is made by comparing the top symbols on the stack to a produc- 
tion list. 
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are m terminal and nonte 

requirements may be lessened i f  functions f(x) and g(x) can be found such that 
for symbols a and b: 

f(a) < g(b) if a < *  b 

f(a) = g(b) if a ;  b 

f(a) > g(b) if a b . 

Such functions are called linear precedence functions [ 22,37-391 and, unfor- 
tunately, do not exist for all precedence grammars. 

Production language parsers [ 14,401 will be discussed here in terms 
of bottom-up techniques. The technique itself is quite flexible, however, and 
can be applied to top-down algorithms. It employs a table containing fixed 
form statements (the production language) and a generalized algorithm that 
interprets the table while scanning the input sentence. 

The method is most easily explained in terms of an example such as  that 
for the sample grammar depicted in Figure 9. Interpretation begins at line 1 
of the production language table. As the statement is scanned, the symbols are 
placed on a pushdown stack and the top of the stack is compared to the first 
field of the current production language statement. I€ the compare succeeds, 
several actions may take place: reduction, continue of scan, and selection of 
next production language statement. The ability to evoke an applicable semantic 
routine is not shown. If the compare fails, an error may be reported or a new 
production language statement tried. 

In bottom-up analysis, production languages are  particularly well suited, 
but not limited, to bounded-context grammars. This strength, which is not 
particularly well illustrated by the Ist( 0) sample grammar, is due to the 
inherent ease in scanning past (that is, looking at) several terminals before 
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LINE 
No. 

1 
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3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

- 

- 

io TO LINE: 

2 

4 

4 

6 

6 

7 

9 

9 

11 

11 

12 

exit 

FAILURE 

IRROR? 

-- 
no 

v u  

N) 

V- 

V%S 

no 

Y U  

no 

V%S 

. v u  

v u  - 

0 TO LINE: 

Figure 9. Example production language 

reducing a substring deeper in the stack. However, the interpretive mode of 
operation causes the method to be somewhat less efficient than precedence 
techniques. 

The last selected bottom-up method is that of LR(k) automata, which 
have only recently beccrne practical. The technique was first suggested by 
Knuth [ 241, and the underlying theory was eloquently expounded in a book by 
Hopcroft and Ullman [ 411. However, the first practical algorithms were 
developed independently by DeRemer [ 15,421 and Earley [ 431. Other similar 
methods exist [ 11,44,45], but the ones having the greatest impact on CWS 
technology have been those by Ah0 [46] and DeRemer. It is the latter that has 
been chosen for development here. 

The underlying concept of the LR(k) automata methods is that as  a 
parser scans a sentence, it moves through a series of states for which the next 
state is always uniquely determined by the current state and next symbol. This 
concept is informally implemented in many ad hoc parsers. The formal imple- 
mentation is to convert the metalanguage description of the source language into 
an automaton represented as  a series of tables which, in turn, are interpreted 
by a generalized algorithm. For the sake of brevity, the automaton construc- 
tion techniques are not given here but may be found in the cited references. It 
is sufficient to say that the techniques are amenable to automation [ 47-49] 
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The DeRemer approach divides the automation into states of four basic 
types: 

READ - Scans the next symbol and transition new state depending 
on the symbol value. 

LA - Divides the set of possible next.symbols into two subsets. If the 
next symbol in a sentential form is a member of the first subset, 
LA acts just like a READ state; if the next symbol is a member 
of the second subset, transition is made based on symbol value 
without scanning past the symbol (i. e., LA is a look-ahead 
state). 

POP - Reduces the rightmost symbols in the scanned portion of the 
sentential form. 

EXIT - Signifies completion of parse tree construction. 

These four state types are sufficient i f  the scan is restarted at the beginning 
of the sentential form after each reduction. However, it is desirable to always 
restart the parse at the current scan point, and this can be done if  the automaton 
maintains a record of the states it has thus far occupied. This is done by allow- 
ing READ and LA states to place their names (i. e., state numbers) onto a 
pushdown stack at the time they are  entered. POP states then remove the n top 
names from the stack if  there are n symbols in the rightmost reduction. The 
top name of those remaining on the stack can then be used to determine at which 
state 'to continue the parse. This requires additional states to be added to the 
automaton. These new states are of a fifth type: 

LB - Transitions to a new state based on the value at  the top of the 
name stack (i. e. , LB is a look-back state). 

The LR( 0) sample grammar used heretofore is inadequate for illustrating 
the method. Thus, the following LR( 1) grammar for arithmetic expressions 
is provided in its stead: 

#I. <s> : = +<exp>---f 

#2. <exp> . . =<exp>+<fact> 

#3. <e-> . = <fact> 

. .  

. .  
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#4. <fact> 1 : = <facb*cpri> 

#5. <fact> 1 = <pri> 

#6..  <pri> : : = (<exp>) 

#7. <pri> = i  
. .  

The productions are numbered for reference, and the pad symbols, k __I , 
are added to provide unique start and end symbols. The automaton for this 
grammar is shown in Figure 10. Braces, { } , are used to indicate the look- 
ahead subset; production numbers and the name stack remove count are asso- 
ciated with each POP state. A LA or READ state recognizes an error when 
the next symbol of the sentential form does not correspond to one of its 
transition symbols. 

Figure 10. Example grammar automaton. 
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The tabular representation of this 
An actual implementation would require th 
densely with each column serving multiple purpose 
linear list of all states with attached c 
the transition table (TT) and look-ahead table ( 
transition symbols. The ST references 
number and a count of the applicable consecutive lines. The T 
with each transition symbol the state to 
The LAT is a boolean matrix having one row for each look-ahead subset. Each 
column corresponds to a terminal symbol, and each element is =if the 
corresponding column symbol is a member of the look-ahead subset. 

.INE 
NO. 

O b  
1 (  
2 i  
3 
4 .  
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

- 
STATE 
NAME 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
: T5 

I 16 
1 17 

- 

1 

SCAN TOP GOTC 
SYM SYM ST 

1 
2 
3 
4 
5 
6 
7 

5 8  
15 9 
1 13 
2 13 

10 
2 11 
1 14 

12 
+ 15 
4 16 

17 

STATE TABLE (ST) - 
STAT1 
TYPE 

READ 
READ 
READ 

LA 
READ 
POP 
LB 
POP 
POP 
LB 
READ 

POP 

- 

pop 

LOOK AHEAD TABLE (LAT) 

k 4 + * i ( )  

L I N E 1  f t t f f f t 

Figure 11. Example automaton parser tables. 

The method just described is applicable to most LR( 1) languages. The 
exact set is called Simple LR( 1) or SLR( 1) , which may be described informally 
as those that may be parsed left to right with one symbol look-ahead and ??some" 
left context. They include as a subset the weak precedence grammars. Prac- 
tical methods exist for extension to the SLR(k) grammars where k is small but 
greater than one [ 421 . 
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In summary the LR(k) autom 
languages are indeed LR(1) or almo 
niques exist for transforming LR(k) grammars to 
mations may lead to g rmmars  so 
exist [ 42,43,51%, 521 indicating execution and storage advantage 
parsers, although these frequently make worst case assumptions 
storage requirements for the precedence relations. Further increases .in 
execution efficiency have been obtained by eliminating semantically irrevelant 
reductions [ 25,531. 

The trend in CWS technology has been from top-down to bottom-up 
parsers as  more general bottom-up techniques have been developed and refined. 
However, not all earlier systems were top-down (for example, see Reference 
54), nor are all current systems bottom-up (for example, see Reference 5). 
Undoubtably, this stems from the general belief that bottom-up recognizers 
are  more efficient, as  was first substantiated by GrSffiths and Petrick [ 551. 
In any event, such trust in efficiency may not be entirely justified since Griffiths 
and Petrick also indicated that an equivalent grammar existed for most languages 
that could be parsed top-down nearly as efficiently. Furthermore, in a large 
scale compiler, the time required to construct the parse tree is relatively 
small compared to overall compilation time. 

It may appear that an inordinate amount of space and time has been 
expended here on a compilation phase estimated at  5 to 10 percent of the code 
for a compiler [ 561. The space allotted reflects the efforts of researchers. 
As noted earlier, the application of formal mathematical methods to the symbol 
manipulation aspects of syntax analysis has been instrumental in transforming 
software technology from an art to a science. 

C. Semantic Analysis 

Once the syntactic structure of a source input statement is determined, 
an operational interpretation is necessary. This process is frequently called 
semantic analysis. One might suspect, correctly, that if several grammatical 
definitions were possible for the same language, one form might facilitate 
semantic analysis to a greater extent than the rest. That is, the syntax and 
semantics of a language are not entirely independent. 
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of inte rdependen 

A, B : = el, e2 

means A is to be assigned the value of expression e l  and B is to be assigned the 
value of expression e2. In general, a variable in the list to the left of the 
assignment operator is assigned the value of the expression in the corresponding 
list position on the right. One way to describe the syntax of the concurrent 
assignment statement is 

<assignment> 1 = <variable> : = <expression> 

. .  <assignment>. . = <variable> , cassignmenb , <expression> . 

This is adequate for exposing syntax anomalies, but i f  the parse tree is drawn 
for this example, one finds B and e l  combined in one branch of the tree while A 
and e2 are combined at a higher branch. This complicates semantic interpreta- 
tion. 

A second way to represent the syntax might be 

<assignment> : : = <variable list> = <expression list> 

* .  
<variable lis* . . = <variable> 

<variable lisb . . = <variable list> , <variable> 
. .  

<expression list> 1 : = <expression, 

<expression lis* : = <expression lisb , <expression> . 

Constructing the parse tree of the example using the second grammar would show 
that all variables are  in one subtree and all expressions are in a second. This 
is more tractable semantically, however the syntax is no longer able to deter- 
mine whether the variable list and expression list are balanced. It is probable 
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that this latter grammar would be acc 
of balanced lists be placed in the real 

Questions of importance conce 
organization include: (1) when is se 
control and data passed from the syntax analyzer to the se 
and (3)  How is the semantic interpretation 
represented? These will be addressed in the following paragraphs. 

With respect to when semantic analysis is performed, there are two 
alternatives. The first is after the parse tree is complete. This is advan- 
tageous if a parsing algorithm employing backtracking is utilized, because 
semantic analysis is more difficult to undo than syntactic analysis. The second 
alternative is that of interleaving syntax analysis and semantic actions. This 
approach allows an execution cycle for the semantic analyzer each time the 
sentential form is changed. When coupled with top-down methods, the actual 
execution of the semantic actions may be delayed until the parser is certain the 
correct production has been applied. When interleaved semantic action is 
employed, the parse tree may never be explicitly constructed because the 
semantic routines "consume" it at the same rate it is generated. 

There exists an unlimited number of variations in the manner in which 
information is passed from the syntax analyzer to the semantic analyzer. There 
are, however, several basic methods. The first, providing the entire parse 
tree to the semantic procedures, is an option available only if it is completed 
prior to the first semantic call. Otherwise, the approaches are not limited by 
when semantic interpretation is performed, and it should not be inferred that 
each is mutually exclusive of the others. 

The second and third approaches are similar in that both generally 
assume a single control entry to the semantic analyzer. In the second approach, 
the syntax analyzer passes through this control point the identity of the produc- 
tion applied plus the current sentential form or  part thereof [ 581 
approach requires an extension to the syntax definition metalanguage. A code 
(possibly null) is associated with each production denoting a specific semantic 
action [ 591. In addition, the metalanguage might also provide a method of 
expressing data arguments to accompany the action codes. Such arguments may 
refer to symbols in the source input sentence or to results of previous semantic 
actions. 

The third 
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The fourth approach is somewhat simpler in c 
the specification of the name of an applicable s 
each production [ 601. Data information may consist of the se 
itself or an argument referencing capability similar to that of 

GWS. 

The fifth approach, transduction grammars [ 91, is not dissimilar to the 
third, except perhaps in formality. It is more formal in that its structure is 
based on the grammar and not the software comprising the semantic analyzer. 
With each production is associated a lltransduction. The symbols permitted 
in transductions include all those of the original grammar plus any new terminal 
symbols that are necessary to convey semantics. The new grammar may be 
written as  follows (with the transductions in braces) : 

If, for example, the expression grammar previously presented is rewritten as  
a transduction grammar using the rules, 

1. Nonterminals in each transduction will be sequenced in the same 
manner a s  the corresponding production 

2. Terminals in each transduction will be the same both in sequence 
and value a s  those of the corresponding production except parentheses and pad 
symbols will be omitted 

3. All nonterminals in a transduction will precede the terminals 

the result is 
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#5. <fa& : = <pri> {<Pri>> 

#6. <pri3 : 1 = (<ea>)  {<exp>) . .  #7. <p&> . . = i 

The significancie of the grammar produced by 
demonstrated presently. When a transduction 
syntax analyzer constructs the parse tree by any of the methods previously 
mentioned. As reductions are  made on the sentential form (or alternatives 
applied if top-down) , the parser presents the transductions associated with 
productions to the semantic analyzer. 

Once information is acquired from the syntax analyzer, it must be , 
represented in  a standard form for further processing. One standard form 
might be the bbject code of the target computer, in which case the resultzht 
compiler would correspond to the one-pass translator depicted in Figure 1. 
Languages such a s  FORTRAN and JOVIAL are  amenable to one-pass compila- 
tion, but others such a s  recursive Algol are not. Thus, attention here will be 
directed toward semantic representation for additional internal manipulation in 
a multipass, environment. 

Sudh internal representations are often called intermediate languages 
(IL) . Those frequently used include Polish notation, tree graphs, and tuples. 
Advantages accrue from using a standard representation in that a wealth of 
theory anh methods exist for their manipulation. One variant of Polish notation 
is called Polish postfix. It is a manner of representing the order in which 
operations are to be performed as  an expression without using parentheses. 
The name Polish notation may be credited to its development by the Polish 
logician 5. Lukasiewicz. Examine the expression obtained from the language 
generated by the previous grammar: i*( i-ti) *i. The Polish postfix for this 
expression is i i i -I- * i *. To "execute" the Polish representation, scan it 
from  le^ to right; each time an operator (i. e. , * or +) is encountered, perform 
it on the previous tvvo operands and replace them with the result. 

h the transduction grammar recently described, by applying the produc- 
tions in a manner corresponding to a rightmost derivation of the expression 
just given, one obtains 
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Now, reading the transductions, arrange the terminal symbols in the order 
generated: i i i -k * i * . 

Polish notation itself has been used as the IL of several industrial com- 
pilers (e. g. , DOS/ 360 Fortran 337 [ 611). More importantly, the underlying 
concept - that operations be performed in the order encountered - 1s also the 
basis of tree graphs and tuples. Therefore, a semantic analyzer that does not 
use Polish as the ultimate IL might very well first arrange expressions in 
Polish to assist in IL generation. 

Tree graphs represented as  list structures are  a second and frequently 
used [4,62] form of intermediate language. Trees may be generated directly 
from Polish postifx by scanning from left to right and upon encountering an 
operator: 

1. Creating a new node containing the operator 

2. Attaching the nearest operand to the left a s  the right subtree 
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3. Attaching the next nearest operand to the left 

4. Replacing the operator and operands in the P 
descriptor of the new node. 

The tree graph for the expression i*(i-f-i) is: 

i 

Note that commutative operators permit different but semantically equivalent 
tree graphs for the same expression. This can be advantageous during 
optimization. 

The last form of IL to be discussed is that of tuples, of which there are 
several forms. Three-tuples (or  triples) admit one operator and two operands 
per element [ 631 . Four-tuples (or quadruples) admit one operator and three 
operands [ 641 ; the third operand designates the result of the operation. Free- 
tuples admit one operator and as  maay operands as  apply [ 581. Representing the 
expression i*( i+i) *i in each, one gets: 

Triples Quadruples Free-Tuples 

#1. -I- i i #l. -I- i i Templ #1. -I- i i 

#2. * i (#I) #2. * i Templ Temp2 #2. * i (#I) i 

#3. * (#2) i #3. * Temp2 i Temp 3 

Strictly speaking, the forms shown which permit one line to explicitly reference 
another are called indirect forms. However, no distinction between the direct 
and indirect forms will be made in the following discussions. 
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It should be noted that 
an intermediate language may n 
interpreter. Another aspect to consider is 
responsible for things other than IL generati 
storage tables and ascertain that all operations and 
sistently (i. e. , it must diagn 
mope difficult to perform and more difficult to describe in a generalized fashion 
than the translation itself. A discussion of these issues, a s  well as  a more 
thorough discussion of IL, is contained in Reference 18. 

D. 0 pt i m i za t i on 

There are two categories of optimization. The first, local optimization, 
consists of transformations performed upon the intermediate language that 
require only limited knowledge of the context of each operation. Examples are 
folding (performing a designated operation on adjacent constants at compilation 
time) and unary complement analysis (combining a unary operation with an 
adjacent operation). If local optimization is performed by a CWS generated 
compiler, it may be during (1) semantic analysis, (2) a separate pass over the 
IL, o r  ( 3 )  after code generation. Of course, a combination of these is possible. 
Specifics of local code transformations may be found in References 65 and 66. 

In global optimization, the second category, larger program contexts 
are examined prior to making transformations. This category legitimately 
includes target dependent improvements such as  register allocation, but only 
those that are independent of the target architecture will be considered here. 
Examples of transformations that are not constrained by an architecture are: 

0 Constant Propagation - Replacing variables with their known 
constant values; this may lead to additional opportunities for 
folding. 

Dead Definition Elimination - Eliminating assignments to variables 
which are not used again prior to being reassigned values. 

0 

0 Subexpression Factoring - Saving via temporary variables the 
values of common subexpressions and substituting these variables 
a t  subsequent points where the subexpressions appear. 
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0 Invariant Expres 
an expression whos 
inside the loop. 

e Operator Strength Reducti 
withina loop to a 
transformation could be made from exponen 

It should be noted that (1) ea 
for safety factors and (2) most global optimizations make heuristic, not 
absolute, improvements. With respect to safety, operator strength reduction 
over type real operands may change the resultant code by causing roundoff 
errors not otherwise present. With respect to heuristic, it is possible to devise 
a case of invariant expression factoring in which memory space is not decreased 
and execution time is increased. For a more detailed discussion of global 
optimization transformations, see References 26 and 67 through 70. For an 
excellent discussion of the safety factors involved, see Reference 71. 

Given a set of global optimization strategies, there yet remains the 
decision as  to how to divide the program being compiled into sections within 
which each strategy will be applied. That is, how may the "optimization 
windows" be found? There are two approaches: (1) sectioning the program 
based on explicit semantic characteristics of the language and (2) graph 
theoretical techniques. 

Two techniques of the first approach are block analysis and loop analysis. 
In block analysis, the program being compiled is divided into basic blocks 
(linear code segments that have the property that if the first instruction is 
executed, all others are also executed exactly once). Afterwards, each strategy 
is performed over each basic block with little, if any, optimization over multi- 
block segments. 

Loop analysis is an extension of block analysis whereby those program 
loops defined by explicit language constructs (e. g. , ??DOrr and rrFORff loops) 
are  examined as  multiblock segments. Blocks not within loops are optimized 
individually. Several compiler writing systems and compilers use the loop 
analysis approach [ 63,69,72]. 

31 



One graph theoretical technique is strong1 
analysis. An SCR consists of a subset of nodes wi 
there is at  least one path between each node pair. 
treating the basic blocks as  nodes from which a di 
the program being compiled is constructed. Figure 
a program with three SCR' s. Next, the nodes wi 
optimization is performed on the innermost region first. Optimization over 
nodes not within an SCR is performed on a basic block basis. The authors 
know of at least one compiler [ 641 using SCR analysis, but know of no compiler 
writing systems. 

Figure 12. Directed graph with three 
strongly connected regions. 

There are two weaknesses in the SCR approach: (1) SCR' s do not com- 
pletely partition a program digraph, and (2) there is no systematic manner in 
which to carry optimizations across SCR boundaries unless the regions are 
nested. A second graph theoretical technique, interval analysis [ 61,71,73,74] , 
overcomes these problems. 
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An interval is a digraph construct consisting of an initial node (called 
the head node or h-node) and the set of all nodes that can be reache 
subject to the following restrictions: (1) if the h-node is removed, 
contains no strongly connected regions, and (2) every path containing one of the 
nodes and leading from the entry node to the exit node of the digraph first enters 
the h-node. Figure 13 illustrates a program digraph divided into intervals. 
(The nodes of this figure are labeled arbitrarily. ) An algorithm for determining 
intervals is: 

1. Enter the program entry node as  the first member of a set H. 

2. Remove a node from H and enter it as  the first member of an interval 
set I(h) . 

‘ - #  

Figure 13. Directed graph partitioned into intervals. 
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3. For each node, n, not a member of H or previously assigned to an 
interval set: 

n in I(h) if all of the immediate predec 
members of I( h) 

b, Enter n in H if  some (but not all) of its immediate predecessors 
are  in I( h) . 

4. Repeat steps 2 and 3 until H is empty. 

Each interval will have a single entry and the set af intervals determined by 
this algorithm will uniquely partition the program digraph. 

Once the intervals are established, the optimization strategies are per- 
formed over each interval separately. Once done, the program digraph is 
collapsed by treating each interval a s  a single node and establishing the intervals 
for the new (derived) graph. Figure 14( a) depicts the first derived graph of 
the primary graph in Figure 13. Optimizing and collapsing continues until the 
final derived graph consists of a single node as  shown in Figures 14(b), 14( c )  , 
and 14( d) . Thus, intervals provide a systematic manner of propagating each 
optimization strategy throughout the entire program. 

(a! 

Figure 14. Derived graph from Figure 13. 
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It is not possible to leave interval analysis injecting a comment 
about irreducibility [ 751. Certain digraph construc ly the program 
loop having tvvo entries, will not collapse to a single node. A digraph with this 
condition is said to be Irreducible. Although this phenomenon is relatively rare 
[ 761, allowances must be made for it in a generalized system. It is possible 
to either transform the digraph into a semantically equivalent one by a method 
called node-splitting [ 711 or altering the mathematical procedures used in per- 
forming the optimization strategies [ 771 . 

Other approaches to optimization via graph theoretical analysis exist. 
For example, Kildall [ 781 suggests an interative approach in which all paths 
to a given node are  searched in consecutive order until an information pool 
"converges." By converge, it is meant that the information remains unchanged 
through an iteration. Miller et al. [ 791, for purposes other than optimization, 
embodied the concept in a method of enumerating decision-to-decision paths. 
Paige [ 801 formalized the purely graph theory aspects of the approach. Graham 
and Wegman [ 811 combined it in an algorithm that also included the interval 
notion. Although the iterative method has attracted considerable attention from 
other sources as  well [ 82,831, it has not yet impacted CWS technology. 

Yet another approach is suggested by Wulf et al. in the design of a com- 
piler for the language BLISS [ 841. The method is akin to the iterative approach 
but with a difference. Because BLISS is a language containing only the sequential, 
alternative, and repeat control structures permitted in the structured program- 
ming philosophy, all necessary data flow relationships are explicit in the 
semantic interpretation of the language. Of course, the method lacks the gen- 
erality required of a CWS algorithm. 

Currently, only the more recent and ambitious compiler writing systems 
employ self-contained graph theoretical optimizers. Others, however, provide 
languages and/ or components through which postsyntactic analysis may be per- 
formed, and the user must choose which, i f  any, of the above techniques to 
incorporate. 

E. Code Generation 

Code selection and editing may consume 50 percent or more of the 
implementation effort for a new compiler. Techniques and knowledge in this 
area are less systematic and thus are difficult to classify and analyze. It is 
,the intent of this section to provide a general background from which to expand 
in the following sections. 
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In analyzing techniques used in code gene 
between systems for building one-pass translato 
pass translators. The distinction does not, however, separate the a1 
as  distinctly as  one might wish. For instance, the fusion of se 
and code generation that occurs in a one-pass translato 
previously discussed in the semantic analysis section to be 
versely, some methods discussed here are also applic 
Furthermore, a one-pass CWS generated compiler may be converted to a multi- 
pass configuration by generating "standardff assembly code and adding sub- 
sequent hand-coded passes. 

h 

Nearly all one-pass generators are designed to emit assembly language 
statements. One method allows the attachment of assembly language statements 
to produ.ctions of the grammar for emission when the production is applied. 
This requires the solution of two problems: (1) how to reference operands 
defined in the source language and (2) how to generate and refe-rence internal 
labels used as targets of branch instructions. To understand the solution to 
either, it is necessary to realize that not all calls to code generation or semantic 
routines actually generate code; some perform ancillary functions. With respect 
to the operands referenced by emitted assembly language instructions, there 
may be a number of pushdown stacks defined. Semantic routines are then evoked 
to push the identities of variables, numbers, and other symbols recognized onto 
the stacks. Attached to each assembly instruction is the name of the stack from 
which the operand must be fetched. Generation of internal labels has a similar 
solution. Attached to each assembly instruction requiring a forward reference 
is a Yequest to generate and save a unique internal label. The conditions under 
which the label will be subsequently emitted may be attached to the generation 
request, or there may be a subsequent explicit emit label command. 

This technique may be extended by allowing the compiler writer to 
reference routines that will subsequently be hand-coded and included within the 
resultant compiler. Continuing along this line, the CWS may provide a fixed 
set of built-in code generation functions which the compiler writer may delete 
or augment as  necessary. This method often necessitates major alterations in 
the built-in functions if a new target computer is designated. 

Another method (not necessarily limited to one-pass generators) is to 
provide the compiler writer with a language tailored to code generation. Once 
the code generator is represented in the provided language, the CWS may 
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translate it to executable 
the resultant compiler. A 
statements of the special 1 
pass translators) separgtely 
functions. 

Ignoring, for the moment, that a one-pass 
for a large compiler, there are se 
First, extensive optimization is prohibited. This excludes not only the global 
techniques of the previous section, but also optimal assignment of registers 
for targets that have an array of registers from which to select. A second 
limitation is an inability to handle directly memory addressing that is less than 
straightforward, such as  either fixed-page o r  floating-page relative addressing. 
Of course, this may be overcome by a powerful postcompilation assembler or  
the inclusion of a special hand-coded postprocessor in the resultant compiler. 

A CWS designed to produce multipass translators tends to be more 
flexible at the cost of increased effort in generating the compiler. Here, it is 
even more difficult to be exhaustive. The techniques discussed next are major 
strategies and should be considered neither complete nor mutually disjoint in 
application. 

An assumption applied here to multipass compilers is that the first pass 
includes a distinct semantic analysis phase that generates a well understood 
intermediate language. The function of subsequent passes is to manipulate the 
IL (for purposes of optimization) and to generate object code. It has already 
been alluded that two methods for accomplishing this are: (1) provision of a 
tailored language for IL inspection, o r  (2) provision of ffoff-the-shelPf functions 
that the compiler writer may utilize or  augment by adding functions coded in a 
compatible language. The following methods may serve either as  the conceptual 
framework within which to apply one of the above two methods o r  may be 
incorporated more automatically by the CWS during compiler generation. 

One general method is that of pattern matching followed by action 
sequences. Here, there are similarities with the method of production lan- 
guages for syntax analysis. The semantic interpretation of the source program 
must be through an intermediate language such as triples, Polish notation, or  
others that were mentioned. The code generation metalanguage (or a tailored 
procedural language) provides for the representation of IL patterns and for the 
expression of actions to be performed when a pattern match occurs during code 
generation. 
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the operand attri 
on the part of the 
available for representing actions to be performed upon the 

Actions need not lead directly to code generation. For example, an action may 
result in a rearrangement of IL in a manner achieving local optimization, 

Another technique, not necessarily incompatible with those previously 
mentioned, is a distinct separation of the target dependent and target independent 
aspects of code generation. It may be surprising to learn that a large portion 
of the processing in code generation is not particularly constrained by the target 
architecture. Most notable is the analysis required to determine the order in 
which code is generated. For example, in the emission of data definitions, it 
is usually safe to emit first the variables requiring the greatest storage space 
(e. g. , double precision prior to single precision). Instruction ordering gen- 
erally requires more complex algorithms. 

One algorithm for instruction ordering is that of Sethi and TJllman [ 851 . 
Conceptually, the expressions represented by the IL mQst be in binary tree 
form. (Note that triples and other forms are actually alternate representations 
of a tree structure.) Nodes of the tree are augmented with resource numbers. 
A resource number corresponds to the number of registers it will require to 
generate a value for the subexpression subtended by a node. Resource numbers 
are assigned under the assumption that at least one operand, specifically the 
left one if an operation is not commutative, must be in a register prior to an 
operation. Once resource numbers are assigned, the algorithm traces the 
path through the tree delineated by greatest resource numbers and emits the 
last operation on the path. It then deletes the operation from the tree and 
regenerates the resource numbers for the remaining nodes. 

The idea behind the algorithm just described is that by emitting the 
operations requiring the most resources first, some of the registers utilized 
will be released and thus become reusable in following operations. There is 
another aspect of the algorithm which guarantees that the result of a left sub- 
expression of a noncommutative operation will be available before that of the 
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right subexpressi manipulation of 
resource number gives optimum instruc- 
tion sequences under ideal ere are no external calls, 
and (2)  no operation other circumstances, 
the algorithm gives 

Target dependencies assert themselves at int where assembly or 
machine instruction ration. Such depend- 
encies may be imbe tives which the CWS 
user frequently must write and insert within the code generator of the resultant 
compiler. It is possible, however, to represent the mapping of IL operations 
to machine instructions within a data structure that is largely independent of 
the generating algorithm. One such representation is the decision table method 
reported by Lowry and Medlock [ 641 

The decision table method actually consists of a series of small decision 
tables, each called a skeletal code block (SCB) . There is roughly one SCB per 
IL operation, but if the operation has several quite different candidate instruc- 
tion Sequences based on data type or  other conditions, it may be represented 
by several SCB' s. 

Each SCB consists of a small decision table matrix with rows labeled 
by machine instructions and the columns simply numbered beginning with zero 
(Fig. 15). The code selection procedures generate an internal status vector 
consisting of a series of true/false values. The vector is collected to form a 

LA = LOAD ACCUMULATOR 
FA = FLOATING POINT ADD 
SA = STORE ACCUMULATOR 

BIT MASK 

SELECTS 9th L COLUMN 

Figure 15. Decision table for code selection. 
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binary number (with true - represented by one) cal 
significant bits of the mask constitute an integer 
from the decision table. Accessing the element 
ascending order, instructions (i. e. , row labels) 
manner: 

1. If an element is zero, then the corresponding instruction is skipped. 

2. If an element is one, then the corresponding instruction is emitted. 

3. If an element is greater than one, then the element value is used to 
select a bit from the bit mask (always from the least significant portion) whose 
value determines whether the instruction is to be skipped or emitted. 

(The above procedure differs slightly from that of Lowry) and Medlock but is 
equivalent in concept. ) 

The role of the bit mask can be illustrated easily by an example. Assume 
that the conditions constituting the mask, beginning with the most significant bit, 
are as  follows: 

Bit 0 - The first operand is already in a register. 

Bit 1 - The first operand must be left in a register after the operation. 

Bit 2 - The second operand is already in a register. 

Bit 3 - The second operand must be left in a register after the operation. 

Bit 4 - The result must be stored. 

Figure 15 depicts the selected instructions (designated by circled decision 
table elements) for a floating point addition on a target machine similar to a 
Univac 1108. The conditions leading to the selected instructions of Figure 15 
are: first operand is already in a register, the second operand must be left in a 
register following the operation, and the result must be stored. 

In Figure 15, the codes used for the instruction operands are: Al ,  A2, 
A3 - the first, second, and result operand accumulators, respectively; U1, U2, 
U3 - the base addresses for the first, second, and result operands, respectively; 
and X1, X2, X3 - the index registers for the first, second, and result operands, 
respectively. It falls upon the code selection procedures to maintain content 
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descriptors for all registers in order to make proper substitutions for the A l ,  
A2, A3, X1, X2, and X3 codes when emitting an instruction. Register attributes 
(types of operations permitted, etc.) are m parameter tables that 
may be reconfigured using the code general5 

There is another wrinkle to the decisi method that is worthy of 
notice. Rather than grouping instructions in based on IL operations, 
they may be grouped based on function. For example, register loads may be 
in one SCB, and addition instructions may be placed in a second. Using this 
approach, one of the functions of the bit mask would be selection of the proper 
SCB' s. If there are a large number of conditions comprising the bit mask, 
the previous approach of grouping by IL operation may result in sparse decision 
table matrices. Thus, grouping by function can result in increased storage 
efficiency. 

In concluding this discussion of code generation, it is again appropriate 
to state that it is almost impossible to assemble an exhaustive catalog of 
techniques. It is hoped that the descriptions of actual systems presented in 
some of the following sections will indicate the variations and combinations of 
methods possible. 

I v. EXPECTED PERFORMANCE RANGE OF A CWS 

A particular CWS system will exhibit performance boundaries in two 
contexts: (1) the range of languages for which it is suited and (2)  the range of 
target architectures for which it is suited. With respect to language range, 
CWS systems may be used to generate processors for the scope exteading from 
the simple macrolanguages to those which dynamically induce semantic trans- 
formations ( such as LISP [ 861 ). A macrolanguage is a source language/ object 
language pair for which it is possible to map one onto the other by direct 
string substitution, irrespective of semantic context. A semantics altering 
language is one that can dynamically change the attributes of a defined object 
during execution. A specific CWS will support only a subset of this spectrum, 
a s  depicted in Figure 16. 

The architectural range supported by a particular CWS is generally 
inversely proportional to the level of support it provides. Pure translators 
(i. e. , those providing little postsyntactic support) are effectively unbounded 
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Figure 16. CWS performance range spectrum. 

in range. Meanwhile, those that provide extensive aid for semantic analysis 
may be utilized to the fullest extent for only one architectural family, usually 
the one on which the CWS itself executes. However, perhaps at the cost of 
customized coding for each language, some CWS systems have achieved a 
broader architectural applicability [ 87,881. 

V. A BRIEF HI  STORY 

The evolution of CWS technology has not witnessed the quantum jumps 
that enable one to differentiate between different generations of systems. New 
techniques have arisen steadily, with the more recent advances concentrated in 
postsyntactic analysis. Yet, these have augmented rather than replaced existing 
techniques; thus, an understanding of past efforts can lead to better compre- 
hension of current trends. A more thorough description of most of the systems 
discussed is available elsewhere [ 21 . 

One of the earliest successful compiler writing systems was BMCC 
developed at Manchester University [ 62,89-911. The syntax metalanguage for 
BMCC is similar to BNF. The syntax analyzer for compilers generated by 
BMCC utilizes the top-down approach and constructs a tree in list structure 
form for each input source language sentence. The tree is passed to the 
semantic analyzer a t  intermediate construction steps designated by the user 
within the syntax metalanguage. 

2. Language Implementation System. Chi Corporation, Cleveland, Ohio, 
Undated Report. 
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The semantic analyzer has a single c 
interpret semantic routines supplied by the use 
Each user-supplied semantic routine is identified 
production forming the root of all syntax 
applicable. The interpretive semantic 1 
control flow). Contol flow choices are expressed in terms of conditional 
expressions for which the truth value is based on whether or not a given produc- 
tion was applied at the level being examined. For example, 

IF <facto# : : = <primary>*<primary> THEN GOT0 L1 

will execute the statement at L1 if, at the current tree node, <facto# was 
expanded by the given production. (No attempt has been made in the above 
example or will be made in others to replicate the notation of a given system. 
Rather, notational constructs have been selected which have the greatest 
intuitive meaning. ) Attributes of input symbols may be referenced within the 
semantic language by using the nonterminal producing the symbol. For example, 

ACC : = <variable> 

means load an accumulator with the identifier symbol appearing in the source 
input sentence. Actual selection of target instructions is performed by 
independently written selection primitives that are retrofitted to the semantic 
analyzer. Thus, BMCC is basically a one-pass generator. 

A second very significant early effort was the TGS-11 system [ 92,931. 
It is remarkable for several reasons: (1) a uniform metalanguage, called 
TRANDIR, was defined in which the user describes all phases of compilation; 
(2)  TGS-11 is an application of itself; that is, the difference between TGS-11 
and a compiler generated by TGS-II is that one replaces internal tables describ- 
ing TRANDIR with TGS-11 generated tables describing the source language; 
(3)  TGS-11 was one of the first projects to grapple with the dift'iculty of allowing 
complex and composite data structures to be defined in source languages; and 
(4) TGS-II was one of the earliest systems to incorporate the IL concept. 
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Lexical analysis for TGS-11 generated compil 
does allow the user to incorporate a table of reserve 
is via the production language method. There is a s 
semantic analyzer through which are passed action c 
Arguments are specified via direct references to the syn 
symbol table, and other internal data structures. 
analyzer is to generate IL in the form of triples. 

Like BMCC, TGS-11 is normally used to generate one-pass translators. 
However, the presence of IL permits greater freedom in deciding when code 
should be generated. Several triples may be accumulated and then analyzed for 
optimizations such as  the elimination of common subexpressions. Analysis for 
both optimization and code generation is performed via a pattern matching 
facility in TRANDIR. For example, 

IF BRANCH $LABEL . . THEN EMIT (BRA $LABEL) 

means if the triple operator is %ranch" and the operands are, respectively, 
a reference to the label table and null, then generate an instruction (in assembly 
language) to branch to the symbolic label referenced. Actual code selection is 
contained in user-written primitives that are retrofitted to the semantic analyzer. 

The FSL system [ 541 can best be described by enumerating the similari- 
ties-and differences it shares with TGS-11. Similarities include: (1) FSL is 
basically a one-pass generator; (2) syntax analysis utilizes the production 
language approach; (3) the semantic analyzer has a single control entry; and 
(4) actual code selection is performed by user-written routines retrofitted to the 
semantic analyzer. A further description of the differences is contained in the 
following. 

The first difference is that FSL generated compilers have a built-in 
lexical analyzer. However, it may be replaced by one written by the user. A 
second difference is the manner in which information is passed from the syntax 
analyzer to the semantic analyzer. In FSL, each line of the production language 
program for which semantic action is necessary has an associated semantic 
routine number (written, for example, as  EXEC 12). The semantic routines 
are written in an interpretive language. As  arguments, the semantic routines 
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receive the contents of the 
most recent reduction. An IL does not 
generated based directly on the reducti 
one or more of the user-w 
ence is that FSL limits the source language data types to 
single, and double precision. Of c 
these into composite types such as 
appropriate definitions in the grammar and semantic routines. Iturriaga et al. 
describe a sample FSL application [ 941. 

The META systems 1.95-971 offer quite a different pattern. Lexical 
analysis in META generated compilers consists of recognizing several built-in 
symbols. Syntax analysis is performed via the recursive descent method. 
Semantic analysis/ code generation is performed by attaching symbolic instruc- 
tions to productions (which are emitted when the production is applied) and 
certain predefined functions (such as emit a symbolic label). When a symbol 
is read from the input stream, it is placed on a principal internal pushdown 
stack. From this stack, copies may be placed on up to four auxiliary stacks. 
Operands (and labels) are specified by referencing one of these. Actually, 
members other than the top element may be referenced or  erased; therefore, 
strictly speaking, they are not true stacks. It is possible to add handwritten 
semantic routines and specify when during syntax analysis they are to be called. 
Later versions include a more complete set of hilt-in functions, particularly in 
the area of input/ output handling. 

There were a number of other successful systems developed during the 
1960' s that merit attention. CGS [ 631 preceded TGS-11 and was a product of 
the same research team. Compilers generated by it employ top-down parsing 
strategies to construct a syntax tree. A semantic language is used to generate 
IL (in triple form) from which code (described by a different language) is 
generated. Gargoyle [ 981 is a language in which one writes a syntax analyzer 
using the top-down parse machine approach. Within the action portions of the 
parse machine it is possible to emit assembly instructions, save input stream 
symbols for future reference, o r  set and reset various flags and conditions. 
Additional tests may be imbedded within the action portion to select a particular 
action from the set appropriate to the semantic context. COGENT produced 
compilers [ 991 utilize a grammar representation in list structure form but are 
not strictly top-down parsers. A form of backtracking is necessary, however, 
but it is not performed in the manner of erasing the parse tree and restarting 
as  was previously described. Rather, it constructs all alternatives in parallel, 
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dropping ones that eventually prove infeasible. A list 
i s  constructed and semantic sis is interleaved w i  
when several parse alterna 
delayed until only a single alternative remains. Sem 
eration is performed using a tailored procedural lan 
processing and pattern matching concepts. TMG p 
utilize the parse machine approach to syntax analy 
code generation is performed both by references to built-in functions (to which 
the user may add) and explicit emission of character strings and labels. AMOS 
[ 601 is more total system oriented but accomplishes this by resorting to the 
generation of translators which produce a common IL for which an interpreter 
is provided. The syntax analysis algorithm is that of the top-down parse 
machine. Semantic routines are written in a tailored language for which 
execution is interleaved with parsing. The output of translation is essentially 
Polish notation. The META PI system [ 1011 borrows much in the way of 
notational methods from the META systems from which it derives its name. 
The differences are: (1) it is implemented in extended recursive FORTRAN, 
(2) it is designed to be used in an interactive mode, and (3)  it generates com- 
pilers that are both interactive and incremental. META PI produced compilers 
utilize recursive descent parsing techniques and, like the META systems, 
apply semantic commands attached to productions. Unlike the META systems, 
immediately executable machine code is produced and there are several facili- 
ties available in the metalanguage for handling generzl purpose registers. 

st, in which case se 

corporating list 

VI. CURRENT SYSTEMS 

In many cases, the compiler writing systems in use today have been 
developed by teams composed of, or in communication with, developers of the 
earlier systems. Recent systems surveyed here range from those produced 
in academic environments with a primary purpose of instruction to those 
produced by or for industrial users. If these differ from those of the last 
decade, it is a propensity to provide multipass generators and greater post- 
syntactical support with fewer constraints. However, the simple parser gen- 
erator has far from disappeared. Systems chosen for review were selected on 
the basis of availability and, to a lesser extent, diversity. Judging from past 
developments, it is reasonable to assume that others are extensions, refine- 
ments, o r  variations of the basic patterns presented. 
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A. SIMCMPISTAGU 

Simple Compiler (SIMCMP) [ 1021 and STAGE2 [ 103,1041 are the least 
complex of those systems which may be used to generate language processors. 
It is a macro-based generative system used by its authors (who do not acclaim 
it a CWS) as a research tool for architecture independent programming tech- 
niques. Its operation is shown diagrammatically in Figure 17. 

Figure 17. SIMCMP/ STAGE2 organization. 

The underlying idea is to use a simple macroprocessor to generate a 
more complex macro-based system which may be used to generate yet another 
more powerful processor. The approach of evolving systems by basing their 
development on simpler systems of the same generic type is called bootstrapping. 
(Bootstrapping is frequently employed in the absence of CWS tools for develop- 
ing, from scratch, a compiler for a new language or an assembler for a new 
computer. ) The SIMCMP/ STAGE2 system is highly transportable, since both 
are based on FORTRAN. However, if efficiency so dictates, it is easy to 
generate an assembly language version of STAGE2. The systems, being 
generative rather than analytical, do not possess the syntax, semantic, and 
code generation phases emphasized earlier. SIMCMP will be described by 
illustrating a macro and then outlining its algorithm. 

A SIMCMP macro definition consists of a heading called the template 
by which it is identified and a body representing a character string to be emitted 
when the macro is evoked. Taking some liberties with the macro parameter 
specification notation in order to simplify the explanation, a SIMCMP macro 
definition might appear as: 
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TO ab IF CAR cd = CDR ef (1) 

I = CDR (cd) (2) 

J = CDR (ef) 

IF (CAR(1) - CDR(J)) '$1' , ab , '$1' 

(3) 

(4) 

$1' CONTINUE ( 5) 

END ( 6 )  

Line (1) is the template, lines (2) through (5) are the body, and line (6) 
denotes end of definition. The parameters are the lower case letters a, b, . . . , 
f; that is, each character is a separate parameter. The notation * $1' causes 
an internal reusable numeric label to be generated; up to 10 such labels are 
permitted per macro definition. Should SIMCMP receive the string 

TO 13 IF CAR 17  = CDR 32 , 

which matches the template of line (1) with parameters being compared only for 
equivalent substring length, the following code would be generated: 

I = CDR(17) 

J = CDR(32) 

IF (CAR(1) - CDR(J)) 100,13,100 

100 CONTINUE 

This example illustrates internal label generation and tEe direct character by 
character transposition of arguments into the generated code. Not shown is the 
capability to make simple predefined numeric substitutions for actual arguments 
and to specify dissimilar input and output character codes. 
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In using SIMCMP, one first initializes all macro definitions, which are 
stored internally in tabular form and preceded by a template. Each source 3 

language statement is then compared to the templates in se 
first match causes the corresponding macro to be selected 

SIMCMP is used to generate STAGE2. First Language Under Bootstrap 
(FLUB) is defined, then STAGE2 is programmed using FLUB. Usually, FLUB 
macros (of which there are only 30) are specified in FORTRAN. Once STAGE2 
exists, it is possible to regenerate it in more efficient form by rewriting the 
FLUB macros in the more powerful STAGE2 capabilities. Frequently, the 
second translation is used to create STAGE2 in assembly code form. 

STAGE2 capabilities can best be described by comparison to those of 
SIMCMP. STAGE2 templates are stored in an internal tree rather than in tabular 
form. Source statements are compared to the templates using a series of rules 
that have the effect of selecting the one that maximizes the number of literal 
characters matched. Although templates and macros are specified in the same 
general manner for STAGE2 as  for SIMCMP, the tree matching algorithm makes 
it unnecessary to assume a fixed string length (namely, one) for each parameter 
as  does SIMCMP. STAGE2 allows a portion of a macro body to be iteratively 
emitted by a count that is either prespecified o r  controlled by the source state- 
ment. While SIMCMP allows only the literal translation of parameters o r  sub- 
stitution by predefined numeric values, STAGE2 additionally permits predefined 
character strings, translation time expressions, and insertion of the numeric 
value for parameter string length among other opticns. 

The SIMCMP/STAGE2 combination has been used to generate text 
processors, line editors, and page layout applications. More significantly, it 
has been used to build processors for the intermediate language JANUS [ 1051. 
A program written in JANUS consists of a series of statements, each having one 
operator and one operand plus attached attributes such as arithmetic type. The 
operators are generally recognizable as the directives and instructions available 
in most assembly languages. JANUS code can easily be translated in macro 
fashion to zero-address, one-address, o r  general register targets. The general 
idea is to construct compilers that translate source language to JANUS, then 
utilize a STAGE2/ JANUS processor to obtain object code. 
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LANG-PAK [ 1061 is a parser gener ization in inter- 
active environments. A compiler writer using 
grammar incrementally during one or more sessions at  a terminal. During 
design, the grammar or  any embedded subgrammar may be tested by entering 
and tracing trial statements of the new language. The LANG-PAK metalanguage 
is an extended BNF. Since it incorporates several features common to meta- 
languages of other top-down parser generators, this is an ideal place to introduce 
these extensions. 

Since it will be necessary to add new metasymbols (that is, symbols other 
* .  than the <r >, . . = used thus far), the following BNF extension examples will 

use quotes (") to bracket and distinguish terminal symbols. The first such 
extension is factoring. In BNF, if the nonterminal <e could be composed of 
either substring <b> <c> o r  substring <b> x, it would be expressed as  

where the symbol, I ,  means "or. '? In the LANG-PAK metalanguage, this would 
be expressed as 

with <b> factored from each alternative. This tends to reduce the size of the 
grammar, but, more importantly, it tends to reduce backtracking. For example, 
in the first representation (strict BNF) , assume the parser expanded <a> with 
<b> <c>, recognized <b>, then failed to find <c>. It would then erase the subtree 
below < a ~ ,  expand with <b> x, then proceed to find <b> again. Using the second 
representation (extended BNF) , <b> needs to be recognized only once in 
attempting both alternatives for <a>. 

As has been noted, left recursive definitions cannot be properly handled 
by top-down analyzers. Although any grammar that can be expressed in BNF 
with left recursion can also be expressed without left recursion, the final 
representation may be larger and more awkward. Thus, a BNF extension is a 
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more palatable solution. Sinc 
semantically equivalent nonre 
seek a BNF extensi 
sion. Consider the definition used 
string of digits: 

that utilizes re 

<integer> : = <digib I <integer> <digib 

Using repetitioli in a manner similar to that of LANG-PAK, one obtains 

or even better, 

The construction indicates the preceding definition which is enclosed within 
parentheses may be repeated. The first number following rep is the minimum 
repeat count.; the second number is the maximum. By setting the minimum count 
to zero, it is possible to denote an optional symbol. For example, 

indicates that <number> may be either a signed or unsigned integer value. Other 
metalanguage extensions are related to lexical and semantic analysis and will be 
discussed in due course. 
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The LANG-PAK lexical analyzer auto 
Other terminal symbols are collected 
recognized on a character by char 
directly into the grammar. Option 
points where a userTsupplied lexic 
input symbol. The user-supplier analyzer may return a failure flag to the 
parser if the expected symbol is not found. 

The syntax analyzer is of the parse machine type and generates an output 
stream of control codes defined by the parser and semantic codes specified by 
the compiler writer.  There are several ways by which semantic codes may be 
added Lo the output stream: 

1. Direct insertion by the lexical analyzer upon symbol recognition 

2. Character strings from the source input statement (identifiers, 
etc. ) inserted by the parser upon both recognition and request within the 
grammar definition 

3. Semantic attributes attached to productions by the compiler writer. 

There are two variations of the third method. Assume the production definition, 

<gotostatemenb : : = ??goto" (sem - 1 5) <label> (sem - 'abc'} 

The notation { - sem 1 5} will cause the integers trl'f and ''5'? to be inserted into 
the output stream whenever ?'goto" is recognized. Handling of the second 
semantic specification, (sem - f abc'} , is more complex. First the user sup- 
plies a package called the semantic compiler which is used at the time the 
parsing tables are generated (Fig. 18). During translation of the metalanguage, 
a semantic specification of the form { - sem . . . '} causes the semantic compiler 
to be evoked to process the character string between the apostrophes. The 
semantic compiler returns an array of semantic codes which become part of 
the parse tables generated. Semantic specifications thus translated may be 
arbitrarily complex, depending on the effort the user wishes to expend on the 
semantic compiler. 
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In the resultant compiler, semantic analysis/ code generation is per- 
formed by a user-written package with a single control entry. This package is 
called the semantic machine to distinguish it from the semantic compiler and is 
driven by the output stream produced by the parser. An alternative organization 
allows the parser to return the output stream to an evoking program which may 
then proceed with semantic analysis. 

The first organization is depicted in Figure 18. It is of interest because 
the metalanguage itself is an application of the system. (Recall that TGS-I1 
was similar in this respect. ) In Figure 18, the LANG-PAK parser is shown both 
outside and within the resultant compiler. The only difference between the two 
is that the one outside contains predefined tables for parsing the metalanguage. 
The one within contains the parsing tables produced for the new language. 

The authors of LANG-PAK warn that its use should be confined to the 
generation of processors for T'smallTT grammars such as  are typical for inter- 
active query languages. The supposed limitation is due not to theoretical 
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considerations of language construction but to design philosophy. To maintain 
the broadest possible range of host co 
and PL/I) , certain inefficiencie speed were introduced. Though 
parsers generated by LANG-PAK are relatively large, they are not unreasonably 
so. LANG-PAK can be used to generate parsers for the larger languages. 

(it is coded in both FORTRAN 

C. COGENT 

Compiler Generator (COGENT) is a proprietary product of Virtual Sys- 
tems, Jnc., [ 1071 and is not related to a previous compiler writing tool of the 
same name [ 991. A discussion of it is included at  this point because it is an 
excellent vehicle on which to continue the discussion of BNF extensions begun 
under LANG-PAK. 

The LANG-PAK metalanguage contains extensions (factoring and itera- 
tion) that tend to optimize the top-down parsing algorithm and other extensions 
for embedding semantics. In LANG-PAK, only simple backtracking is per- 
formed. All productions beginning with identical nonterminal symbols must be 
grouped and factored in a manner that allows parsing of any production to proceed 
from left to right without erasing a previously recognized nonterminal directly 
contained within it. The COGENT metalanguage also contains the factoring and 
iteration extensions, but the parsing strategy permits more elaborate backtrack- 
ing. To reduce the amount of redundant information saved during the parse, the 
language designer specifies through the metalanguage the points to which back- 
tracking may be necessary. Consider the productions, 

. .  <goto> . . = - mark<uncongoto> I <assigngoto> 

The mark - metasymbol indicates to the parser that if it is unsuccessful in 
recognizing <uncongoto>, it is to reset the scan and parse tree before attempting 
the next alternative. Of course, this simple example could probably be handled 
more effectively with factoring. 
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More exciting from a language theoretical viewpoi 
to select production alternatives based on the next several 
the input stream. [Recall the definition for LL( k) gr  
this facility, consider a programming language for which 
than assignment begin with a keyword from the set 
Using the look-ahead technique, the syntax for the assignment statement may be 
represented as  follows: 

<id, rT=rr <expression> 

The domain of the - ifnot metasymbol is the alternatives immediately following 
and enclosed within the parentheses. If all the alternatives fail to match the 
next input symbol, then the parser attempts to recognize a sequence corre- 
sponding to <id, rt=cc <expression>. 

The BNF extensions to embed semantics are similar to those described 
earlier for the META systems. This includes: (1) the capability to insert 
literal character strings (usually assembly language statements) into the output 
stream, (2)  access to fields from the symbol table, (3)  generation and explicit 
emission of labels, (4) references to procedures written by the user, and 
(5) references to an internal stack on which input symbols are stored. Access 
to the internal stack is less restrictive than in the META systems. Identities 
may be attached to input symbols as  they enter the stack to facilitate subsequent 
referencing. In addition, arbitrary character strings (such as  instructions to 
be generated at a later point) may be placed on the stack. However the innova- 
tion that probably adds the greatest power to the technique of utilizing an internal 
stack to control output generation is the concept of attributes. Any stack o r  
symbol table element may be assigned an integer value called an attribute. 
(A  simple example of an attribute is an integer from one to five denoting data 
type. ) Attributes may be combined in arithmetic expressions, compared against 
constants or  other attributes, and tested for range. True/false results of 
attribute tests are then used to select among candidate productions or alterna- 
tive output streams. In the event of backtracking, both the stack and output 
stream are restored to their original state along with the scan and parse tree. 
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There are a nurnber of other BNF extensions in the COGENT metalan- 
guage. Some of these enable: 

I 

SOURCE I ,  
LANGUAGE I 

I i 

1. Embedding of syntax error messages in the grammatical description; 
a message that is reused needs to be defined only once. 

COMPl LER 

2. Skipping a portion of the input stream delimited by a given character 
sequence; this is useful in ignoring comments and in skipping to a ttsafe't place 
to restart after a syntax error. 

3. Definition of patterns against which the input stream may be tested; 
this is useful in performing local optimization. 

4. Stepping through the symbol table and applying a rule for each entry 
that meets a given attribute constraint; this is useful in storage allocation. 

5. Column positioning for fixed format languages and statement 
rescanning. 

There is currently insufficient public information to detail the internal 
components of a COGENT generated compiler; thus, Figure 19 is a simple 
generic diagram. The built-in lexical analyzer collects decimal, octal, and 
binary nwbers .  It also recognizes identifiers for which the only restriction 
is that they must begin with an alphabetic character. The set of permissable 
identifier characters following the initial one is specified by the user. The 
s&~tax analyzer employs the recursive descent method. The COGENT system 
is in FORTRAN and, thus, is quite portable. Since it has been described in its 
own metalanguage, rehosting it in assembly language is not difficult and several 
assembly language versions exist. Subsequent releases are expected to possess 
multipass generation capability. 

COGENT 

Figure 19. COGENT organization. 
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D. XPLIXCOM 

The XPL language and its compiler XCOM were developed by McKeeman, 
Horning, and Wortman [ 31 primarily as a research/ teaching tool for syntax 
analysis. In this role it has met resounding success, having become widely 
distributed in a very short time. The XPL language, a derivative of PL/I, 
has reached beyond pedagogical applications as  is attested by its use in the 
development of an HAL translator [ 1081 by Intermetrics, Inc., for NASA. 
(HAL is a procedural language very similar to Algol. It contains vector opera- 
tions and permits a two-dimensional coding format. ) XPL differs from PL/I 
in that it is not recursive, permits only integer arithmetic, and has more 
operations for string input/ output and manipulation. 

Lexical analysis is an XCOM built-in function, but the operators and 
reserved words are contained in a replaceable table. Syntax analysis is per- 
formed by a method developed by its authors called mixed strategy precedence 
(MSP) and may be described in terms of the weak precedence and bounded- 
context methods described earlier. While scanning the input sentence from left 
to right, the syntax algorithm behaves as a (1,l) weak precedence parser 
until it encounters a conflict. At that point, a ( 2 , l )  weak precedence check is 
performed to resolve the ambiguity. Eventually a point in the scan is reached 
at which a decision is made to reduce the sentential form. There the algorithm 
ceases to behave as a weak precedence parser and begins behaving as a Ijounded- 
context parser. However, bounded-context analysis is required only to distin- 
guish between two or  more productions having the same right part. In these 
cases, the MSP algorithm selects the proper production based on a (1,l) 
bounded-context check. 

The semantic analyzer/ code generator must be independently written for 
each language/ target combination. The semantic analyzer has a single control 
entry and has access to the following data items: 

1. The number of the next production to be applied 

2. The portion of the sentential form already scanned 

3. The left and right limits of the portion of the sentential form to be 
reduced 

4. A symbol sequence ordered in the same manner that identifiers occur 
in the sentential form. 
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A typical semantic analyz 
dated in parallel to the one 

tor stacks that are manip- 
is stored. 

In using XCOM, on language using BNF. This 
description is the input to 
erating MSP tables (Fig. 20). The pro les are physically inserted into 
XCOM. The lexical analyzer must then be modified to account for the comment 
conventions, reserved words, and other eccentricities of the new language. 
Last, the semantic analyzer and code emitters must be rewritten. 

ANALYZER, for gen- 

Figure 20. XPL/XCOM organization. 

Leach and Golde [ 1091 describe in detail the history of a project to 
transport the system from its original host, the IBM S/360, to the Honeywell 
Sigma 5. Kamnitzer [ 1101 aided by Murry and Mohr performed a similar 
conversion to the Univac 1100 series. The MSP algorithm in the Sigma version 
was subsequently replaced by one utilizing LR( k) automata techniques. Bahler 
[ 1111 reports on plans to utilize XCOM as  a basis from which to build a multi- 
pass compiler. The first pass generates IL in the form of triples and a sub- 
sequent handwritten pass selects and generates code. Reference 112 describes 
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an effort utilizing a Sigma 9 version to add real arithmetic and formatted input/ 
output to the XPL language. Due to the availability of A ZER, less than 10 
percent of the total required effort was placed on syntax analysis. Approxi- 
mately 90 percent of the work was dedicated to altering the semantic analyzer/ 
code generator. Some modification to the lexical analyzer was also necessary. 

E. CWIC 

Compiler for Writing and Implementing Compilers (CWIC) is a pro- 
prietary product of System Development Corporation [ 113,1141. It descended 
directly fro= the META systems previously described; in fact, several individ- 
uals participated in the development of both. The most significant difference 
is that CWIC is a multipass generator. 

The CWIC generated parser is top-down, and the CWIC metalanguage [5] 
is extended accordingly. Since the most useful extensions are probably becoming 
quite familiar by now, major ones will be enumerated without further comment: 
(1) iteration specification, (2) symbol factoring, (3 )  backtrack marking, and 
(4) look-ahead specification. Metalanguage features that deal with lexical and 
semantic analysis will be discussed more fully. 

The CWIC metalanguage permits three levels of productions; the first 
and second levels specify information for lexical analysis, and the third is the 
normal grammatical specification as used heretofore. The first level, called 
class definitions, is used to group the characters into subsets with similar 
attributes. This production type is distinguished from the others by the use 
of the metasymbolfl:*f, rather than f f : ~ f f .  Two examples are 

<digib : f'O"["l"l. . . l"9" . 

Right side alternatives for a class definition must be either a single character 
o r  another class definition nonterminal as  in 
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The second level, token-making equations, is distingui 
symbol ??. . ??, rather than ??: : =?*, 

d by use of the meta- 

<identifier> . . <letter> (<letter> I<digit>) {z 0 5} 

Alternatives in token-making equations must be expressed in terms of terminal 
symbols and class definition nonterminals. This production level specifies 
sequences of characters to be treated as a unit by the syntax productions. The 
CWIC system generates a more efficient algorithm for their recognition than 
that used for the svntax productions. (It should be mentioned that numbers may 
be converted from character string to value via reference to a built-in function.) 

Semantic extensions to the metalanguage carry forward the concept of 
operand referencing from an internal stack as  in the META systems. However, 
the objective is now to produce IL (in tree-form) rather than assembly language. 
The extensions are part of the third level (syntax) productions. For example, 

. .  
<exp> . . = <term> 'ltTr <term> {sem - ADD #2} 

will cause a node to be created with the operation code "ADD". The top two 
stack elements (designated by #2) will be popped and attached to the node as 
shown in the following diagram. 

A descriptor of the ADD node will then be returned to the stack. Nodes may 
have an arbitrary number of descendents, and provisions .are available for 
creating nodes for which the number of descendents is not immediately known. 
An example in which descendent count uncertainty arises is the parsing of a 
subroutine call followed by a yet unscanned parameter list. 

60 



A typical operational confi 
shown in Figure 21. The 
packages comprising the 
utilizes recursive descent to tr 
that point the compiler w 
[ 1151, to complete the p 

Figure 21. CWIC organization. 

GENERATOR is a very high level language that is based on LISP and 
still bears some LISP characteristics; for example, a variable does not have a 
static type but may contain an integer at one time during execution and a list 
at another. Machine registers may be referenced symbolically, and 
GENERATOR provides some automatio facilities for their allocation and 
deallocation. The typical global strategy for a code generator using 
GENERATOR is to partition the object module into separate sections (data, 
instruction, COMMON, etc. ) into which information is placed and ??flushed?? 
(output) periodically. Specific strategies include providing a single 
GENERATOR procedure for each operation. These procedures employ a 
powerful pattern-matching facility to determine the structure of the input 
parameters in order to select code or call other procedures for suboperations. 
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CWIC generated compilers, like others, require operating system sup- 
port and communication. To accomplish this, a machine oriented language 
with Algol-like syntax called MOL [ 1161 is provided. The support package for 
the CWIC system itself is in MOL, and the entire system was originally imple- 
mented on the IBM S/ 360 and has since been transported to the CDC 6000/ 7000 
series. 

Finally, there exists a CWIC-like compiler writing system hosted by the 
CDC 6000 series computers called SPLIT, SPL Implementation Tool [ 1171, 
SPLIT is designed to generate compilers for various subsets of Space Program- 
ming Language (SPL) , a language tailored to flight applications. SPLIT incor- 
porates the syntax metalanguage and GENERATOR, as well a s  a support package 
correspsnding to MOL. 

F. AED 

Automated Engineering Design ( AED) is a proprietary product of 
Softech, Inc, , containing compiler writing tools [ 881 which are constituents of 
a larger Algol-like language and system [ 1181. The present version, which 
utilizes automata and decision table methods, replaces a prior package [4] which 
used the operator precedence technique. 

The metalanguage for the lexical/ syntax phase is partitioned into the 
three levels previously discussed: character class definition, token-making 
equsltions, and syntax productions. Within the second level , token-making 
equations, one may instruct the system to ignore a string (useful in skipping 

@xclusion rather than class inclusion. Syntax productions are expressed in a 
manner practically equivalent to BNF, as is frequently the case when bottom-up 
parsing methods are employed. Discussion of the second metalanguage (used 
in code generation) is contained within the following operational description. 

ents) , employ a simple form of repetition, o r  designate character class 

The various processing components available within the AED system 
permit flexibility in determining the resultant compiler configuration. Figure 22 
illustrates a possible organization. A finite state machine (FSM) generator 
(similar to the one described by Johnson, et al. [ 1191) utilizes the first and 
second level productions to create the tables used by the lexical analyzer. The 
user may augment the lexical analyzer with procedures to perform such functions 
as string conversion and symbol table construction. 
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Figure 22. AED organization. 

The syntax prodxtions are employed to construct LR(k) automata tables 
for the parser. The technique employed is similar to the automata method pre- 
viously discussed, but is more nearly equivalent to that of Aho and Johnson [46]. 
The specific subset of context-free grammars recognized is the U L R (  1) 
grammars, a superset of the SLR( 1) group. With the grammar, the user 
supplies a dispatch table of semantic procedures (written by the user) indexed 
by production number. It is the responsibility of the parser to call the appro- 
priate semantic procedure whenever a production is applied to reduce the cur- 
rent sentential form. It is the responsibility of the semantic procedures to 
generate IL. 

An optimization phase may optionally be incorporated into a generated 
compiler. The FSM generator is used to construct a pattern recognizer which 
accepts IL as input. Recognition of a pattern results in the evocation of a 
user-written procedure to perform local optimization over the elements of the 
pafkern. 
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Code generation is accomplished partially by the decision table method. 
Decision tables (roughly one per IL operator) are encoded in a manner similar 
to that of Figure 15. However rows of each table are labeled with generic, 
rather than actual, machine i 
via a provided software tool and incorporated within an interpreter also provided. 
Selection of a generic instruction by the interpreter results in a call to a user- 
provided procedure to select the actual target machine instructions. 

ctions. The decision tables are preprocessed 

There are a few additional facets of the implementation that bear men- 
tioning. More than 90 percent of the system is coded in the AED language, and 
the user-written components can easily be added i f  similarly coded. Since the 
system (counting prior versions) has been in existence for a number of years, 
many modular components for user-written sections are available "off the 
shelf. v f  

G. LIS 

The Language Implementation System (LIS) is a proprietary product of 
Chi Corporation. 
characteristics : 

LE and compilers produced by it have several significant 

1. Code generation is almost fully automated. 

2. Global program optimization utilizes advanced graph theoretical 
concepts. 

3. Operating system interfaces are effectively isolated. 

LIS itself is written mostly in the systems implementation language CHILI [ 1201 
with some assembly language procedures. CHILI, in turn, is implemented on 
the UNIVAC 1100 series. 

Figure 23 depicts the operational configuration. The syntax rules (in 
BNF) are used to generate LR(k) automata tables [of type LALR( 1) which are 
then incorporated in an LIS supplied syntax analyzer. The lexical analyzer 
which reads the source statements is written by the user, but work is underway 
to automate this stage and some aids exist already. The semantic procedures 

3. Language Implementation System. ~ Chi Corporation, Cleveland, Ohio, 
Undated Report. 
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Figure 23. LIS organization. 

must also be handwritten. One is called each time a syntax reduction is made 
and the current sentential form is provided by the syntax analyzer. It is the 
responsibility of the semantic procedures to check for semantic misusage and 
generate IL in the form of Polish notation. 

The optimization phase is self-contained within the resultant compiler. 
It performs several passes over the IL but only the first examines the entire 
text. The first separates the code into basic blocks and partitions them into 
intervals; subsequent ones perform the optimization strategies. Among others, 
these strategies include subexp r e s sion factoring, invariant expression factor - 
ing, and dead definition elimination. If desired, the optimization phase can be 
omitted from a compiler by permitting the semantic procedures to format the 
IL in a manner compatible with the code generation phase. 

A second metalanguage (machine description o r  MD) is employed in 
code generation. Encoded within the machine description are the target instruc- 
tions plus the registers with characteristics of each. The MD translator groups 
the instructions into decision tables which are quite different from tihe one 
depicted in Figure 15. Instructions are grouped hierarchically by function. 
For example, all add instructions are placed in the same class then further 
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differentiated on the basis of operand type. Table 
are incorporated within a generator which se 
each operation based on haracteristics a s  1 

Another significant MD translator input is special case routines. One 
purpose of such routines is the generation of code for operati 
dedicated registers (e. g. , subroutine linkage). The code ge 
ically references these procedures when defined in lieu of an instruction descrip- 
tion for an operation. The final constituent of code generati 
is user written. It is the function of this component to select an output medium 
and produce a file which conforms to the conventions prescribed by the link 
editor of the target machine. 

output editing, 

As  mentioned at the beginning of this description, interfaces to the 
operating system are  effectively isolated in resultant compilers. Two functions 
of this category, reading source programs and producing an object file, have 
been alluded to. The others are producing the source listing and intermediate 
(temporary) file storage access. All four of these are written by the user and 
retrofitted to the compiler produced. 

H. JOCIT 

Jovial Compiler Implementation Tool ( JOCIT) was developed by Computer 
Sciences Corporation for the Ai r  Force [ 871. A previously developed CWS, 
GENESIS, was used to develop part of the front end. JOCIT is unique in two 
respects: first, it is language specific but computer architecture reconfigur- 
able; second, it employs the third major method of syntax definition, analytic 
grammars. Limiting the design to a single language achieved several objectives: 

1. By reducing the amount of generalization, it is possible to produce 
compact and efficient compilers to be hosted by smaller computers. 

2. By stabilizing the compiler' s front end, the user can ensure that 
consistent language sets are implemented on different computers. 

3. By restricting the scope to the JOVIAL language, it was feasible to 
allocate more resources to the development of debugging aids and diagnostics. 

The concepts are applicable to other programming languages. 
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string 
Like BNF, analytic gram 

context to a greater exten 

$ ->$ 9 

where $ is a substring those length is at least as great as  
meaning of the rule is: if 21 occurs in the sentential form, it is to be replaced 
by $ . An (only slightly contrived) example is 

<id> * <number> -+ <id> -><facto- + <id> . 

The analytic algorithm does not reduce the sentential form in a strict left-to- 
right manner. The essential steps are: 

1. Find the leftmost substring within the current sentential form that 
matches the left part of a rule. 

2. Use the rule to reduce the sentential form. 

Separate implementations of the algorithm are discussed in the previously cited 
reference by Dunbar i 881 and an article by Hext and Roberts [ 81. 

The JOCIT front end consists of syntax and semantic analysis. The 
syntax analyzer is the analytic system produced by the GENESIS CWS. Semantic 
analysis is performed by a set of procedures called Pragmatic Functions 
(Fig. 24), generally organized around the recognition of syntactic entities. 
However, certain actions to transcend the context of specific source language 
phrases. Communication with the succeeding compilation phases is through IL 
(Polish notation) and various dictionaries such as that for symbols. 

A graph theoretical optimizer is included in each generated compiler 
but in a manner that permits optional evocation for individual compilations. 
The specific flow analysis algorithm employed is linear nested region analysis 
( LNRA) . LNRA [ 611 is intermediate in sophistication, falling between strongly 
connected region analysis and interval analysis. The general idea behind the 
method is to divide the flow graph into basic constructs - strongly connected 
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Figure 24. JOCIT organization. 

region, conditional forward branch, if. .then. . else, and others - and to apply 
specialized techniques to each. Constructs not within the selected basic set 
are ignored except for basic block analysis. Optimization is performed in 
exactly two passes over the IL and flow graph. (This contrasts with interval ~ 

analysis which makes as  many passes as  necessary to collapse the graph to a 
single node. ) The first pass by the LNRA optimizer constructs the flow graph 
and collects the definition points for all variables. The second pass performs 
the .optimization strategies which include constant propagation, subexpression 
factoring, operator strength reduction, and invariant expression factoring. 
Local optimization strategies are performed simultaneously. 

The code generator is divided into a machine independent part provided 
by JOCIT and a machine dependent part, called GENS, provided by the com- 
piler implementer. The machine independent part converts the IL to tree-form 
and sequences the nodes for code emission via the tree weighting algorithm 
described previously. It presents to GENS one operation at a time for which 
code is to be emitted. Typical strategies employed by GENS are selection via 
decision tables and conditional code emission. The latter capability is sup- 
ported by JOCIT via an output editor which is not shownin Figure 24. The 
source document contains an excellent catalog of difficulties to be surmounted 
in generalizing code selection [ 871 . 
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To bind the separate phases o 
must write a control proce 
bilities of this procedure 
for the compiler. The interfaces with 
ized to permit a straightforward imp1 
routines. 

I .  Other Systems 

The fact that all recent systems discussed thus far emanated from 
industrial sources, with the exceptions of SIMCMP/ STAGE2 and XPL/XCOM, 
is an interesting but unplanned phenomenon. Perhaps it reflects success on the 
part of previous researchers who were largely members of academe. Of 
course, some of the systems described were direct extensions of previous 
academic efforts and others received university support. HOWeVer, to correct 
the impression that academic research in this area has ceased, the remaining 
systems selected for description all began as university research projects. 

The Computer System Research Group at the University of Toronto was 
the first to develop an LR(k) automata parser generator [47] following the 
groundbreaking research by DeRemer. Their work led to a generator that 
accepted BNF input and produced LALR( 1) syntax analysis tables. The design 
of this system was the basis for the current version of the parser generator 
in AED. Several optimizations were effected, some being more technical than 
theoretical, and comparisons of size and speed were performed between it, MSP, 
and (1,l) precedence. 

A parser generator employing the production language approach has been 
developed at Brandeis University [ 1211. It is based largely on more funda- 
mental research by Ichbiah and Morse [ 1221 and has been used to develop 
processors for languages of syntax complexity approaching that of Algol. Like 
LANG-PAK, the Brandeis system is designed to operate in an interactive 
environment. It is constructed on a somewhat larger scale than LANG-PAK, 
however, consisting of five separate phases. 

The phase that constructs the parser accepts BNF input, performs 
various ambiguity checks, and produces production language tables for incor- 
poration into the standard syntax analyzer. The analyzer, of which there are 
both FORTRAN and Algol versions, calls a user-written semantic procedure, 
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providing it with an action code associated with the production being applied. 
The user, of course, provides the action code through the metalanguage. The 
second phase constructs the lexical analyzer, allowing the user to attach codes 
to identifiers, numbers, and other symbols at the time they are recognized. 
The third phase is the error routine generator. Its input consists of a set of 
triples, each one correlated to a production language step. Each triple consists 
of: (1) an error message, (2) description of the state in which the parsing 
stack is to be left, and (3) description of the next r'safet? point a t  which the 
scan can continue. The fourth phase accepts BNF input and generates a suf- 
ficient number of typical sentences of the language to use each BNF production 
at least once. This phase is primarily a grammar consistency check and is 
usually executed first. The last phase generates a main program to bind the 
syntax analyzer, lexical analyzer, and error routine into a single system. 

The Parser Generating System ( PGS) is a (1,l) bounded-context 
analyzer developed at Purdue University [ 1231. Recall that during the dis- 
cussion of syntax analysis it was stated that each step in a bottom-up parse 
presented two problems that required solution: (1) what part of the sentential 
form to reduce and (2) which production to apply. Bounded-context analysis 
is adept at solving the latter once the former is given. Resolution of what to 
reduce has led the authors of PGS to a rather unique approach. 

Accepting BNF input, PGS introduces new nonterminals to transform the 
grammar into a normal foi-m. This normal form is capable of representing 
any (1,l) bounded-context grammar and has production rules of only four types, 

A :  : =  - BC(type1) 

A :  = Bx (type 2) 

A :  : =  B (type3) 

A :  : = x (type4) , 

where A, B, and C are nonterminals and x is a terminal. This reduces the 
problem of what to reduce to exactly five cases at each step. That is, 

1. No reduction can be made (i. e. , ERROR) 

2. The top two nonterminals on the parse stack 
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3. The top nonterminal on the parse stack and the next input strin 
terminal 

4. The top nonterminal on the parse stack 

5. The next input string terminal. 

Bounded-context analysis can now be used very effectively in determining which 
case applies, although a look-ahead scan may be necessary to ascertain right 
context. 

In using PGS, one associates a semantics routine with each production 
in the original grammar. It is the belief of subsequent investigators at Purdue 
that for a fixed target machine, one set of generalized semantic primitives can 
be developed to service a broad range of languages [ 1241. Their approach is 
to construct a profile of the semantic characteristics of the range of languages 
to be supported, then design the minimum number of primitives necessary to 
handle all facets of the profile. Examples of semantic characteristics are 
explicit versus implicit variable type declaration, explicit versus implicit type 
conversion in expressions, fixed versus varying array subscript ranges, and 
the names of library routines. 

V I  1 .  THE USER'S PERSPECTIVE 

The goal of the potential CWS user might be stated as "implement com- 
pilers in shorter time and at reduced cost. l 1  For both cost and time, it is 
significant that the authors of both JOCIT and LIS estimate a 50 percent reduc- 
tion during compiler implementation. Most of the recently developed systems 
are placed directly in the hands of the users. However, each requires pro- 
gramming support, primarily that of systems oriented personnel. Table 1 
illustrates the type and magnitude of auxiliary support necessary for several 
of the systems surveyed. 

To clarify further the relative power of several of the parsing strategies 
with respect to the entire domain of context-free languages, consult Figure 25. 
Be warned that the Venn diagram shown is an approximation and can be inter- 
preted too literally. Also, be aware that a continuum of top-down, backtracking 
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Figure 25. Comparison of parsing strategies. 

algorithms exist, extending from those having a domain only slightly larger 
tha9 the LL(k) subclass to those for which the domain is almost all context-free 
languages [ 30,1251. In fact, the top-down strategy has been applied to lan- 
guages outside the context-free class [ 1261 . 

Apart from generating production compilers, the use of compiler writing 
aids can be an invaluable education asset. The volume of information pertaining 
to grammatical subclasses and parsing strategies is indeed impressive. How- 
ever, a frequent objective of a university introductory course in compiler con- 
struction is to have the student fully implement a minilanguage during a single 
semester. Providing sufficient information on the nuances of any one classical 
parsing strategy and requiring it to be implemented before continuing can con- 
sume the better part of a term. Further, this must be done to the detriment of 
other strategies and, more regrettably, other compilation phases. Given at 
least a parser generator, a term project can be well underway shortly after 
introducing the rudiments of grammar and syntax analysis. This more than 
anything else accounts for the broad distribution of XPL/XCOM. 
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VI 1 1 .  DEPARTURE POINTS FOR FUTURE DEVELOPMENTS 

The peak of the creativity explosion in the area of syntax definition and 
analysis has probably passed. The parsing strategies that have evolved are 
sufficiently general to encompass all of the popular procedural languages in use 
today, and these strategies have firm theoretical foundations. More importantly, 
it can be demonstrated that a language for which the grammar can be expressed 
in precedence form or  recognized via a deterministic automation is unambiguous. 
So, barring the introduction of much higher level languages, research here is 
far less critical today. Similar, though more recent, strides have been made 
toward establishing a mathematical foundation for program optimization. How- 
ever, two major problems that have plagued CWS implementors continue to 
exist: generalized approaches to semantic analysis and translation of data 
structures. The two are not entirely disjoint. 

With respect to data structures, most general purpose computers have 
several built-in, or concrete, data types: vector (or  array), a subrange of 
integers, a subset of real numbers, and an extended subset of real numbers 
(i. e. , extended precision). To this concrete set, even the most elementary 
high order languages add several abstract data types such as  boolean (created 
by mapping two symbols onto two integer elements) and character (created by 
mapping a small number of symbols onto a subrange of integers) Many lan- 
guages, most notably PASCAL [ 1271 go much further and allow the dynamic 
creation of new abstract data types which may be arbitrarily complex. Com- 
posite variables called records may themselves be elements of a fixed length 
structure called an array or a variable length structure called a file. Symbols 
may be mapped onto a subrange of integers and henceforward used as scalars. 
To write a specific compiler to, first, capture all the data element inter- 
relationships in an internal symbol table and, second, to allocate storage and 
generate correct access code is not difficult. To generalize the mechanism 
in a manner that does not preclude other abstractions is difficult. Other 
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direct reference to the hardware registers and di 
a variable and the contents of the location d 
dynamically defined data types permitted in 

With respect to semantic analysis, it may help to recall the example 
of the concurrent assignment statement which demonstrated how syntax and 
semantics were sometimes interlocked. However, the point of the example 
was that one manner of syntax definition facilitated semantic analysis to a 
greater degree than did another; it made no mention of how semantic analysis 
was to be performed. Compiler writing aids contribute most to the phases of 
translation that are concerned with the transformation of one string into another 
based primarily on form and structure. It is when the output string produced 
is also dependent on the meaning (semantics) of the input string that the theory 
begins to fail. It is significant that it is this area, interpretation of the parse 
tree, that three of the four multipass generators described - namely, CWIC, 
AED, and LE3 - leave to the compiler implementer. The fourth, JOCIT, avoids 
the problem only by limiting itself to the JOVIAL language. Translation of 
intermediate language to target machine code suffers from the same theory 
gap* 

Measures that may be taken to solve these problems can be divided into 
near-term and long-term approaches. For the near-term approach, allow the 
generic diagram of the "ideal CWS" of Figure 3 to be replaced by the "gen- 
eralized CWS" depicted in Figure 26. In Figure 26, an arbitrary source lan- 
guage is first translated to a standard source language. The standard source 
language must exhibit all the semantic, but not necessarily syntactic, charac- 
teristics of the domain of languages for which the CWS is intended. If there are 
several conflicting semantic characteristics, then only one may be chosen to 
the diminishment of the source language domain. Configuring the standard 
source language would be an exercise in enumerative logic (not the soundest 
mathematical foundation) and the first stage of translation might be patterned 
after the extensions to Purduet s PGS. The second stage of translation would 
be from the standard source to a standard object language. The standard object 
language would be only slightly more complex in structure and semantics than 
an assembly language. Thus, translation to the machine languages of the 
selected range of targets could utilize methods similar to those of the STAGE2/ 
JANUS system. 
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Figure 26. Generalized CWS. 

Long-term solutions must await the development of more powerful 
theories. Currently, the outlook is much brighter in the area of data structures 
than in semantic interpretation. The reason for this is the curyent emphasis on 
data-base systems and recognition of the need to insulate users of such systems 
from the intricacies of internal data representations. That is, it is desirable 
to inform the user of all logical data element interrelationships but undesirable 
to require an understanding of how these interrelationships are physically 
realized. Analogously, it would be desirable for a CWS user to enumerate the 
data attributes for each language - type, name, access method, semantic 
dependencies - but undesirable to require the details of internal (compile- 
time) or external (execution-time) representation. One promising area of 
research that could conceivably produce side effects beneficial to CWS tech- 
nolo’gy is relational data models [ 129,1301. 

In a relational data model, there is asswned to exist a finite number of . . . , S . A relation is defined to be a list 
1’ s2 n not necessarily distinct sets, S 

of ordered n-tuples where each n-tuple is unique and contains one element from 
each set. N-tuple lists may contain much redundant information, but they refer 
only to the logical structure and not to the internal data representation. By 
allowing the user to define new relations and utilize several primitive set 
operations, this simple conceptual framework becomes a powerful data descrip- 
tion facility. It would be presumptuous to claim this is a solution to the data 
structure problem in the compilation process for, indeed, it is not. However, 
it might be a useful illustration to couch the compilation problem in terms of a 
relational model. Assume that a CWS permitted the definition of the sets, S., 

1 
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and the domain of each. Further, via semantic extensions to the metal 
assume the user provides interpretation rules to direct the constrmcti 
tuples and test existing ones to select among candidate output strings. 
two tasks could be isolated from the internal and external tuple repr 
the problem would be solved. 

As stabd, however, generalizing semantic interpretation is far more 
difficult. Again, the ongoing research is not directed specifically toward CWS 
technology. Two diverse systems will be described here to illustrate the 
directions in which these studies are proceeding. The first of these is Vienna 
Definition Language (VDL) VDL [ 131,1321 was originally developed as a 
formal method for describing the semantics of PL/I. In VDL, one divides a 
program into a control (instruction) component and an environment (data) 
component. The two components are represented within separate tree struc- 
tures. ‘The leaves (called elementary objects) of the environment tree are 
data elements, and the leaves of the control tree are instructions. Two primitive 
operations are defined over the structures; select can access any elementary 
object or  subtree, and assign can add o r  delete subtrees o r  change the value of 
an elementary object. Using these two primitives, instructions of two basic 
types are defined: (1) macroinstructions that, when executed, replace them- 
selves with a subtree whose leaves are additional instructions; and (2) value- 
returning instructions that pass a computed value to the next higher control 
tree node with possible side effects on the environment tree. 

The rather simple VDL concepts form a system of considerable subtlety 
and power that has been employed to describe the semantics of languages and 
algorithms [ 1331 . However, it has two drawbacks limiting the applicability to 
compiler writing. First, the primitive operations are too basic to enable 
representation of all possible substrings within a reasonable space. A sub- 
sequent version of the system, BASIS/I [ 1341 , loosens the restrictions but at 
the cost of complete formality. The second and more theoretically significant 
drawback is that VDL is an interpretive system. This means that semantics 
are defined in terms of actions performed upon a given case. The semantic 
problem in compilers is quite different. It is to find a string in one language, 
the target, with semantics equivalent to a string in another language, the 
source. 

Interpreting one string by transforming it into a second string containing 
only well understood terms that are defined via axioms is sometimes called the 
axiomatic approach. The primary difference between an axiomatic and the VDL 
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approach is that in the axiomatic 
the environment (values of variab abstractly. One 
example of research in Scott provides a 
set of primitive function 
domains for each. The domain sets consi storable values, 
storage states, and truth values. (Storab 
further divided into subdomains. 
domains by the primitive functions and several binary operations are understood, 
it is possible to construct formulas representing the semantics of a language 
construct. 

urrent state of 

n elements of the 

It should be noted that an axiomatic system strictly for the description 
of machine instruction sets has been in use for several years [ 137,1381. 

IX. CON CLU S I ON 

This report has partitioned the compilation problem into five phases: 
lexical analysis, syntax analysis, semantic analysis, optimization, and code 
generation. Representative techniques applicable to each phase were described. 
The development of compiler writing aids was traced from the earliest efforts 
to the present. Particular emphasis was placed on the more recent tools in 
deference to the monumental survey previously published by Feldman and Gries 
[ 21 . The final sections concentrated on pending technological developments 
which could impact the manner in which compilers are developed. Perhaps an 
appropriate way to end this survey is to ask: If current research in data 
abstraction and semantic description concludes in the most fortuitous manner, 
what will have been accomplished? The answer is not a compiler-compiler. 

Assume that it is possible to state formally the semantics of both source 
and target languages. It would still be necessary to transform one to the other 
by finding two strings having equivalent semantics. This is not a simple 
exercise. The situation would be analogous to stating a conjecture in mathe- 
matics without being capable of proving it. However, such conjectures become 
well defined problems and well defined problems often attract solutions. 
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