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SUMMARY

Numerical results illustrating the capabilities of an advanced aerody--
namic surface paneling method are presented. The method is applicable to both
subsonic and supersonic flow, as represented by linearized potential flow
theory. The method is based on linearly varying sources and quadratically
varying doublets which are distributed over flat or curved panels. These
panels can be applied to the true surface geometry of arbitrarily shaped
three-dimensional aerodynamic configurations. The method offers the user a
variety of modeling options and is both stable and accurate, the numerical
results displaying a marked insensitivity to panel arrangement.

INTRODUCTION

This paper summarizes the general features of an advanced aerodynamic
surface paneling method and gives results for both subsonic and supersonic
steady flow. The work was originally motivated by limitations in the Woodward-
type aerodynamic method used in FLEXSTAB. Although the FLEXSTAB aerodynamic
model has several unique capabilities for three-dimensional configurations
(e.g., subsonic and supersonic flow, steady and low-frequency unsteady motion
(ref. 1)), it also has several faults that are typical of other paneling
schemes. For example, results are often sensitive to the manner in which the
paneling is laid out, and localized changes in panel density often require
corresponding changes to be made over the entire planform. Equally important,
the aerodynamic model for fuselage-type components is based on a slender body
of revolution plus an interference shell, as shown in figure 1(a). This model-
ing restriction often results in crude approximations to the geometry of air-
craft, especially fighter-type aircraft.

The goal of this development work is to produce a reliable subsonic/
supersonic panel method that accurately represents the actual surface geometry
of realistic aircraft as shown in figure 1(b). To produce such a method

'This work was performed under contract NAS2-7729 for NASA Ames Research
Center.
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requires flat and curved panels that can be arbitrarily oriented in space
(e.g., panels should incline toward the flow direction and panel side edges
should not have to be parallel to the flow). To be usable and reliable, the
method must produce accurate results that are not sensitive to the size, shape,
and arrangement of the paneling; in turn, this capability makes automated
paneling practical. In addition, the method must be efficient. The results
indicate that these requirements can be met for both subsonic and supersonic
analysis problems (specify shape, solve for pressure) and for subsonic design
problems (specify pressure, solve for shape).

SYMBOLS

Values are given in SI units. The calculations were made in U.S. cus-
tomary units.

Aid	 influence coefficient matrix relating singularity strength
parameters to perturbation velocities, m-1

b	 wing span, m

Ed]	
matrix relating doublet strength coefficients and doublet

singularity parameters

CL	lift. coefficient

CL	lift curve slope
a

Cm	pitching moment coefficient

P - P^
C  =	 pressure coefficient

q.

ACp = 
CP

P. - Cp
Q u

c	 local chord

c Q	section lift coefficient

K	 kernel function in equation (4), m-2

k	 panel number

L	 body length, m

M	 Mach number

N	 number of singularity parameters associated with panel K;
also, number of chordwise and streamwise panels in
figure 5.
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No	aerodynamic center location as fraction of local chord

n	 unit normal to aerodynamic surface

P^	 the set of N points corresponding to the u j in
equation (2)

p	 pressure, N/m2

q	 dynamic pressure, N/m2

R	 see equation (3)

r body radius, m

Sk area of integration over panel	 k, m2

U"' free-stream velocity vector, m/sec

U. =	 I U' 1

V total velocity vector, m/sec

vi(J)
perturbation velocity vector at field point 	 i	 due to the

N	 singularity parameters	 u j	associated with panel	 k,
m/sec

W^ weighting values used in equation (3)

x,y coordinates in chordwise and spanwise directions, respec-
tively, m

C1 angle of attack, degrees or radians

I bound circulation

u(,p) doublet strength distribution, m2/sec

uj doublet singularity parameter, m2/sec

uo ,	 ...	 u
TIn

coefficients in the expression for	 u(C,q)

local orthogonal coordinate axes associated with individual
panels, m

perturbation potential, m 2 /sec; also, circumferential angle
in figures 15 and 16

P	 fluid density, kg/m3

o(^,n)	 source strength distribution, m/sec
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Subscripts:

i	 field point

j	 singularity parameter or singularity parameter point

Q	 lower surface

u	 upper surface

Co	 free-stream value

Operator:

V	 gradient (with respect to field point coordinates), m-1

GENERAL FEATURES OF THE METHOD

The approach is fundamentally the same for both subsonic and supersonic
flow. (More specific details of the mathematics are given in refs. 2 and 3.)
As in several other methods, it is based on the singular source and doublet
solutions to the linearized subsonic and supersonic potential flow equations.
The primary differences in the present method are (1) the use of higher order
forms for the spatial distribution of these singularity strengths, and (2) the
retention of curvature effects for the panels on which these singularities are
distributed. Specifically, the sources are assumed to have a linear strength
distribution and the doublets have a quadratic strength distribution over the
panels. (Both triangular and quadrilateral panels are allowed.) The panels
can be used for both actual surface paneling, or for mean surface paneling as
indicated in figure 1(b). Velocity or mass flux (ref. 3) type boundary condi-
tions can be imposed on either the mean or actual surface boundary; alter-
nately, potential-type boundary conditions can be imposed on the interior of
closed bodies. These alternatives are sketched in figure 2, and are illus-
trated by later examples. Initial results indicate the modeling technique
of figure 2(b) is generally the best choice for closed bodies — it gives
accurate results and requires considerably fewer calculations than velocity-
type boundary conditions.

For both subsonic and supersonic flow, the integrations giving the panel
influence coefficients have been obtained in closed form. This has the follow-
ing advantages over a numerical integration form:

1. The influence coefficients can generally be computed faster and more
accurately. This is especially true for regions in which the integral is
singular.

2. The coding is much simpler, especially for nonstreamwise side edges.
In the supersonic case, all Mach cone/panel intersections are automatically
treated.
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CHARACTER OF THE NUMERICAL MODELS

Networks

For user convenience, the numerical model is cast in the form of panel
networks. These networks are a collection of either source or doublet panels
and are independently defined over various portions of the aircraft surface as
illustrated in figure 3.

Associated with each network are discrete sets of standard points. As
described later, some points are used for expressing the source and doublet
singularity strength distributions in terms of singularity parameters whose
values are to be determined. An equal number of points are used as control
points. Control points located at panel centers are used to impose local
boundary conditions expressed in terms of either velocity or velocity poten-
tial. Additional control points along network edges are used to match the
flow properties along common edges of adjacent networks.

The edge control points are also used to impose auxiliary conditions such
as the Kutta condition at subsonic trailing edges and for the design case to
ensure the proper closure of surfaces (e.g., to specify trailing edge
thickness).

Four basic network types are used: source/analysis, doublet/analysis,
source/design and doublet/design. In addition, variations of these four types
are used for special purposes such as wake paneling. The features that dis-
tinguish one network type (and variations thereof) from another are the number
and location of the singularity parameter points and the control points
(ref. 2, appendices B and C). Particular combinations of singularity parameter
points and control points are selected for their ability to produce stable
numerical results for the boundary value problem under consideration.

To apply the method, the user must represent the aircraft surface (and the
wake for subsonic flow) as a collection of paneled networks, and specify the
network type(s) and appropriate boundary conditions. For each network, the
code then sets up.all the proper singularity parameter and control point
locations.

Singularity Strength and Singularity Parameters

A brief description of the singularity strength definition for both
source and doublet networks is given in reference 2. An expanded explanation
is given here for the specific case of a doublet/analysis network.

Figure 4(a) shows a network comprised of 25 panels. (The surface shape of
these panels is obtained by least square fitting a paraboloid to corner points
of neighboring panels (ref. 2). Also shown are the locations of the 49 singu-
larity parameter points; one point is at the center of each panel and the
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other points are distributed along the network edges. For this particular
network, the control points are arranged in a nearly identical fashion.1

Associated with each panel k of the network is a six-degree-of-freedom
quadratic-doublet strength distribution of the form

uk (^,n) = u ok + P Ck ^ + u nk n+ 2 u ^ ^2 + urn En 
+ 2 1Jk 

n 2	 (1)2

In equation (1), ^ and n are local orthogonal coordinates that lie in
a reference plane associated with panel k, as illustrated in figure 4(b).
(This plane is tangent to the curved panel at the panel center and is nearly
parallel to the plane passing through the midpoints of the line segments con-
necting the corner points of the curved panel.) For each panel, the six
coefficients in equation (1) are expressed in terms of selected subsets of the
network singularity parameters. For panel k, this subset consists of N
singularity parameters uj that are associated with panel k and with the
panels directly adjacent to panel k. 3 For convenience, the N points at
which these singularity parameters are defined are designated P j . In equa-

tion form,

u0 k

u^
k

u

	

n 
k	 6XN	 NX1

	

_ [C]	
^ 

u • 1	 (2)

	

uU	
k	 J k

k
uEn

k
u ml

Thus, for panel 13 of figure 4(a), k= 13, N= 9, and j = (17-19, 24-26, 31-33).

The linear relationship given by equation (2) is determined by the method
of weighted least squares. That is, for each panel k, the expression

Rk = 2 Z taj Luk (E j ,n j ) - 
11j]2	 (3)

j
1 The only difference is that the edge control points are inset slightly

from the network edge; this is done to prevent the influence coefficients
from becoming infinite.

2The symbol k is a superscript, not an exponent.
3 0nly these neighboring points are used in order to localize any irregu-

larities that may appear in the total solution.
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is minimized with respect to the six coefficients appearing in uk(Ej,nj).
The summation in equation (3) ranges over the points P j . The weight
Wk is given a much larger value than the weights W j #k . This forces the
least squares fit of equation (1) (to the N singularity parameters at points
Pj) to be best at panel k. This is illustrated in figure 4(c) for k = 13.
(In practice Wk = 10 8 and W j #k = 1 are used.)

Note that the sole reason for the above least squares procedure is to
express the assumed panel doublet strength distribution in terms of a neigh-
boring subset of the unknown singularity parameters. This procedure is
required because the higher order form for u k (S,n) given by equation (1)
associates more than one coefficient with a single panel. If a constant
strength distribution were chosen, that is, u k (C,n) = pok , then there would be
only one coefficient per panel. Consequently, the coefficients u ok them-
selves could be taken as the basic unknowns. (In fact, this is the concept
employed by the Woodward constant pressure panels.)

Because of the least squares formulation, the singularity strength
pk (C,n) of a panel is defined beyond the panel boundary. For the purpose of
computing influence coefficients, however, the range of E and n is con-
fined to the panel interior and boundary. This range is illustrated in
figure 4(c) by the solid portion of the curve for

Note that the doublet singularity strengths of adjacent panels are not
forced to be continuous at the panel edges. For sufficiently dense paneling,
however, the strengths are nearly continuous. Thus, the appearance of doublet
strength mismatches at panel edges provides a valuable indicator of locally
inadequate paneling. (This is illustrated below by the results for the ran-
domly paneled swept wing.)

Influence Coefficients and Determination of the
Singularity Parameters

Having each of the panel singularity strength distributions expressed in
terms of the unknown singularity parameters enables the perturbation potentials
and velocities to be computed in terms of these parameters. Imposing boundary
conditions then yields a set of influence coefficient equations from which the
singularity parameters can be computed. The discussion below illustrates this
for boundary conditions expressed in terms of velocity.

The symbolvi, y is used to denote the perturbation velocity at field
point i due to panel k; the subscript (j) indicates that the velocity
depends on several singularity parameters p j (at points P j ). This velocity
is computed from the doublet singularity strength p k (^,n) and the doublet
velocity potential K(E i -	 ni - n) by an integral of the form (ref. 4,
p. 166)

vi(j)

 jf, 
k ( ,n) VK(E - E, ni - n)dE do	 (4)

Sk
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where (C i ,g i) is the field point i, and the gradient operator is taken with
respect to the field point coordinates (i.e., a/a^ i , etc.). The expression
for the velocity kernel K differs for subsonic and supersonic flow, as does
the region of integration S k . For subsonic flow, Sk is the entire panel
area. For supersonic flow, S k is that portion of the panel that lies in the
upstream Mach cone emanating from the field point.

The result of the integration in equation (4) is that the right-hand side
of the equation becomes a linear algebraic equation in the network singularity
parameters u j . 4 For the single network of figure 4(a), the total velocity at
any control point i, due to all the panels, is given by

}	 }	 k=25
Vi = U^ + E vi (j) - Vi(uj)

k=1

where U. is the free-stream velocity vector. Imposing the boundary condi-
tion Vi . ni = 0, where ni is the unit normal vector at control point i,
gives

25

•	 _	 _
vi (j)	

ni	-U^ ni	i	 1,	 49
k=1 

When cast in matrix form, this equation becomes

49 x49	 u1	

IU00

	 n1

[Aij 1	 (6)u 49	 °°	 n49
Each row i of the influence coefficient matrix Aij represents a

boundary condition imposed at one of the 49 control points. Each column j
corresponds to one of the 49 singularity parameters u j . The matrix Aij is
constructed one row (control point) at a time. For each row, one cycles
through the panels and enters the contributions of each panel to the appro-
priate columns of Ai j . For example, panel 13 of figure 4(a) would contribute
a value to columns 17-19, 24-26, and 31-33. (Other panels would also contrib-
ute values to some of these same columns, and these values would be added to
those from panel 13.)

For more than a single network, the procedure is exactly the same except
that the matrices in equation (6) expand in size so as to incorporate all the
panels, all the singularity parameters, and all the control points of every
network. (At this point the networks effectively lose their distinct identi-
ties.) The general form of equation (6) is then

4This integration, and a similar one for the linear source distribution,
has been carried out analytically for both subsonic and supersonic flows. See
references 2 and 3, respectively.

(5)
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MXM MX1	 MX1

[A] {u} _ {b}
	

(7)

where M is the total number of singularity parameters (and control points)
for all the networks. Hence {p} can be solved for, and then the velocities
can be calculated from V i (p j ) as indicated by equation (5). (The value
k = 25 appearing in equation (5) would be replaced with the total number of
panels in all the networks.) Knowing the velocities, the pressures can then
be calculated from appropriate velocity-pressure relationships.

RESULTS AND DISCUSSION

The following numerical results are presented to illustrate the various
capabilities of the method.

Subsonic Flows

Localized panel density changes.- Figure 5 shows the right half of an
aspect-ratio-two wing modeled as three doublet/analysis mean surface networks
and two wake networks. The panel density in wing networks I and II is held
fixed while the panels in wing network IV vary from 4 to 144, with correspond-
ing changes made to the trailing wake network (number V). The lift curve
slope and chordwise center of pressure location N o are only slightly affected
by this large change in local panel density. Another feature illustrated by
this example is that panel edges from adjacent networks are not required to be
aligned. For N = 4 in fact, none of the panel edges internal to network IV
are aligned with those from networks I and II.

When this set of cases was first run it was expected that only cases
N = 2 and N = 6 would be successful because these are the only arrangements
in which network IV has edge control points directly opposite those of net-
works I and II. It was somewhat surprising to discover how forgiving the
numerics actually are to such network mismatches.

Convergence behavior.- The aspect-ratio-two wing was also used to study
solution convergence behavior. In this case, single doublet/analysis networks
were used for the wing. One network used uniform panel spacing and the other
used cosine spacing, as shown in figure 6(a). The variation in lift coeffi-
cient with number of panels is shown in figure 6(b), along with the highly
accurate and converged solution of Rowe (ref. 6). The convergent character of
the panel solutions is clearly seen. The cosine spacing probably converges
faster than the uniform spacing because of the greater panel density at the
wing leading edge and tip where pressure gradients are largest. Chordwise
variations in AC  = C  - C p at y/ (b/2) = 0.5 are shown in figures 6(c)

Q	 u

5All the cases shown are for incompressible flow. The method is easily
extended to compressible flow by stretching the aircraft geometry in the
streamwise direction by the Prandtl-Glauert rule (ref. 5, p. 84).
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and 6(d) for the cosine and uniform spacing cases, respectively, along with
results from reference 6. Again, cosine spacing gives more accurate results
than uniform spacing for a given number of panels.

Insensitivity to panel arrangement.- Figure 7 illustrates the insensitiv-
ity of the method to extremes in panel size, shape and arrangement. A swept
wing has been paneled in a regular and in a random fashion, and the vortex
spline method of reference 7 was used to calculate results for the regular
paneling. A doublet/analysis network of the present method was used for the
random paneling. The spanwise lift distributions computed by the two methods
are nearly identical as seen in figure 7(b). Chordwise pressure distributions
at y/(b/2) = 0 are plotted in figure 7(c). Here, the results of the present
method differ from those of the reference solution towards the leading edge
where the pressure gradient becomes large. Note that the pressures predicted
by the present method are actually discontinuous at panel edges. When the
panel density is sufficiently fine, these discontinuities essentially vanish.
The large mismatches are an indication of locally inadequate panel density
over the forward portion of the wing. This agrees with figure 7(a), where it
is seen that only two panels are used between the leading edge and about the
30% chord line.

The above examples of random paneling and of localized panel density
changes (fig. 5) demonstrate the extreme forgiveness of the method to irregu-
lar paneling, a feature that greatly enhances its practical usability for
applications involving complex geometries where regular, evenly spaced panel-
ing cannot always be constructed.

Alternative surface paneling models.- The preceding examples of lifting
surfaces are all mean surface models. In figure 8, results are presented for
three different upper and lower surface paneling models of an aspect-ratio-
two, 12% thick rectangular wing.

The first model was somewhat similar to that of the reference solution
and employed a source/analysis network on the wing surface combined with a
doublet/analysis network lifting system on the camber surface. Zero normal
velocity was prescribed at control points of both networks. The second model
used a doublet/analysis network on the wing surface with zero total potential
specified on the interior side of the surface. For this formulation it was
necessary to close the wing by paneling the tip. The third model (pioneered
by Morino (ref. 8) employed superimposed source/analysis and doublet/analysis
networks on the wing surface. Zero perturbation potential was specified on
the interior side of the wing surface and the source strengths were set equal
to the negative of the normal component of free-stream velocity (see fig. 2(b).
This model appeared to be somewhat more forgiving than the previous model
regarding closed surfaces and it was unnecessary to panel the tip.

The last two models have certain advantages over the first. The influ-
ence coefficients require the computation of a scalar ^ rather than a vector
0^; moreover, the scalar is a lower order expression, which is cheaper to com-
pute. The influence coefficients need not be saved for postprocessing since
surface velocities can be calculated directly from doublet strength gradient.
This fact also implies that velocities may be calculated everywhere on the
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surface, not just at control points, which, in turn, allows more accurate
calculation of forces. Note that the use of superimposed source and doublet
networks in the third model is only modestly more expensive than the use of a
doublet network alone since source strength is prescribed and terms common to
both the source and doublet influence coefficients need be computed only once.

Efficiency of analysis networks.- Figure 9 is an illustration of wing
body surface paneling with results computed from the present method and from
the method of reference 9. Figure 9(a) shows the surface paneling used by the
present method. A total of 160 curved, linear-strength source/analysis panels
were used for the half airplane, 96 on the body and 64 on the upper and lower
wing surfaces. An additional 32 doublet/analysis panels were placed on the
wing camber surface and 13 wake panels were also used (some of which extended
the wing doublet panels to the centerline, i.e., y = 0).

Results from the method of reference 9 were obtained using 936 flat,
constant-strength source panels and 12 lifting elements. This is typical of
the number of panels required by this method for wing-body applications.

Upper and lower wing surface pressures predicted by the two methods are
shown in figure 9(b) for two span stations. The agreement is excellent at
y/(b/2) = 0.68 and at two additional inboard stations which are not shown.
The discrepancy at y/(b/2) = 0.90 is possibly due to the fact that the
method of reference 9 underestimates spanwise velocities near wing tips, and
may also be partly caused by the large width used for the outboard panels in
the present method. The table in figure 9 shows that the lift and pitching
moment coefficients are also in close agreement.

The table in figure 9 also gives the CPU times for the two methods. The
present method enjoys a better than 20-to-1 advantage over the method of
reference 9 due to the large reduction in the number of panels required.

Even on a panel-by-panel basis, the higher order singularity panels of
the present method are competitive with the constant strength panels of
reference 9. Figure 10 gives an estimate of CPU time comparisons between the
pilot code of the present method and the highly optimized TEA230 program of
reference 9. The CPU time represents time for setting up panel geometry,
singularity strength and control point quantities, calculation of influence
coefficients, and equation solving. The range of CPU times for a given number
of panels reflects differences between sources and doublets and between near-
field and far-field calculation times.

Wing design in presence of fixed fuselage geometry.- Figure 11 illus-
trates the three-dimensional design capability of the method. 6 This example
shows how design-type panel networks are able to reproduce an original
geometry from a modified geometry, using the pressure distribution of the
original geometry as boundary conditions. ? The pressure distributions

6Another application of the design networks is given in reference 10,
which treats separated leading edge vortex flow.

7 1n an actual application, the desired geometry corresponding to a speci-
fied pressure distribution would of course not be known a priori.
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calculated from the original geometry are shown by the solid curves in fig-
ure 11(b). A modified geometry and the corresponding pressures are shown by
the dashed curves in figures 11(c) and 11(b), respectively. By replacing the
analysis network in the modified geometry region with a design network, the
desired geometry corresponding to the specified pressure distribution was then
computed. After two iterations, the designed geometry and corresponding pres-
sures are nearly identical to the originals, as shown by the circles in
figures 11(b) and 11(c).

Supersonic Flow

Flow over spindles.- Figures 12 through 16 show results for flow over
axisymmetric spindles and illustrate several features of the linear source
panels.

Figure 12 shows a 0.1 fineness ratio spindle with a random paneling
arrangement. Because of this extreme panel layout, and the use of only flat
panels, the resultant surface is somewhat distorted. For example, surface
indentations can be seen in the front view. Even so, the predicted pressures
at panel control points, given by the dots in figure 12, are in remarkably
good agreement with the exact method of characteristics solution.

Figure 13 is for the same spindle as in figure 12 but the paneling is
laid out in a regular fashion. This paneling was used to compute source panel
solutions for both a constant strength and the linearly varying strength dis-
tribution of the present method. These solutions are shown in figure 13,
along with an axisymmetric line source solution. For this particular config-
uration, the results from all three methods are in good agreement with the
exact solution.

Figure 14 is for the same configuration as figure 13, except that the
fineness ratio has been halved. In this case the present linear source panels
and the axisymmetric line source give the same results, but the constant-
strength source panels show considerable differences, indicating a loss of
accuracy.

Another indication that the linear source panels are more reliable than
constant strength panels is provided by figures 15 and 16. Here, the 0.05
fineness ratio spindle of figure 14 is at a = 5° and pressures are given at
three circumferential angles. Figure 15 is for constant-strength source
panels, while figure 16 is for the linearly varying source panels of the
present method (both cases are for the paneling shown in figure 13). The
oscillations that occur in the constant-strength source panel solution are a
clear indication of numerical stability problems. Note that the linear source
panel solutions do not exhibit this oscillatory behavior.

Wing with subsonic and supersonic leading edges.- Figure 17 shows results
for a wing having both a subsonic and a supersonic leading edge. Results
predicted by a single network of planar doublet/analysis panels are in good
agreement with the exact linearized theory solution in reference 11. By using
two networks, with the special Mach line on the left as a network boundary,

36



the discontinuity in pressure at the Mach line can be represented even more
accurately. For this case (not shown), the pressure remains exactly constant
in the region between the supersonic leading edge and the special Mach line.

It should also be noted that the present method does not require artifi-
cial "diaphragm" panels between the subsonic leading edge and the right-hand
side special Mach line.

Upper and lower surface paneling of thin wing.- Figure 18 shows the upper
and lower surface paneling used on a 3% thick arrow wing (wing number 2 of
refs. 12 and 13). This is a particularly severe test of the method due to the
presence of internal waves, which for a source-paneled wing can repeatedly
reflect from the closely spaced upper and lower wing surfaces with increasing
intensity. To suppress these internal waves, separate source and doublet
networks having identical paneling were superimposed, that is, each panel
shown in figure 18 represents both a source and a superimposed doublet.
Boundary conditions of the type shown in figure 2(b) were employed so that the
modeling was the same as for the third model of the AR = 2, 12%-thick rec-
tangular wing of figure 8.

Predicted and experimental upper and lower surface pressure distributions
are shown in figure 19 for four spanwise stations. The predicted pressure
distribution is smooth and compares well with the experimental data except in
the tip region. The oscillations at the tip are thought to be caused by the
combined effect of the discontinuous doublet strength (at panel edges) and the
special Mach line emanating inboard from the leading edge of the wing tip.
The discontinuity in doublet strength is equivalent to a concentrated line
vortex, which produces infinite singularities propagating along Mach cones.
This is perhaps causing the oscillations in the predicted wing tip flow field.
It is anticipated that this problem will be overcome by the implementation of
a new doublet network currently under development. This doublet network
achieves exact continuity of doublet strength across panel edges by splitting
each (quadrilateral) panel into four triangles via the panel diagonals. A
different quadratic doublet distribution is defined on each triangle with the
provision that doublet strength and gradient must be continuous across triangle
edges within the panel. This leads to a doublet distribution on each quadri-
lateral panel with eight degrees of freedom versus the original six — enough
to produce continuity of doublet strength (and in most cases gradient) across
panel edges. Such a formulation would seemingly increase the number of influ-
ence coefficient computations for each panel by a factor of 3 (the increase in
the number of edges). In fact this is not the case because the enhanced con-
tinuity properties of the new doublet distribution allow one to neglect terms
that would cancel analytically. (With the present network, the lack of strict
continuity requires the terms to be retained.) Such terms account for
approximately 70% of the influence coefficient operation count.

Also, a more efficient version of the two separate but superimposed
source and doublet panel networks is being developed. This will result in a
single "composite" panel network for which certain terms in the influence
coefficients will only have to be computed once, instead of twice as is done
in the superimposed case.
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Forebody pressures on B-l.- Figure 20 shows the paneling used on the
forebody section cf the B-1 bomber. The modeling technique was the same as in
the preceding example. Pressure coefficient results at M = 1.6 are shown
in figure 21 along the upper and lower fuselage lines. Also shown are the
experimental data and finite difference results reported in reference 14. The
panel method results are in good agreement along the lower fuselage line and
along the upper fuselage line up to the canopy region. In the region aft of
the canopy, the comparison is poorer; this again may be due to the discontin-
uity in doublet strength across panel edges discussed in the previous example.

The CPU time for the finite difference calculations on the forebody took
about 55 min on a CDC 7600 (ref. 14). The panel method results took about
1 min, also on a CDC 7600.

Superinclined panel.- The current source and doublet panels must be
inclined at angles less than that of the Mach cone. Currently under develop-
ment is a "superinclined" panel that can be inclined ahead of the Mach angle.
With this capability it will be possible to place panels at nacelle inlets
and exhausts for:

1. closing the nacelle volume so that potential-type boundary conditions
can be specified in the interior.

2. sealing off inlets to prevent the propagation of waves into the
interior (which can degrade numerical accuracy).

3. specifying exhaust mass flows.

These features are illustrated in figure 22.

The superinclined panels represent an initial value problem type of
behavior and require two boundary conditions on the downstream panel side.
Although these panels look like blunt surfaces, they do not influence the
upstream flow.

CONCLUDING REMARKS

A higher order panel method for linearized subsonic and supersonic flow
has been described. Numerical results illustrate the following features:

1. The paneling can be applied to the true surface geometry of arbitrar-
ily shaped aerodynamic configurations.

2. Both supersonic and subsonic analysis, and subsonic design problems
can be solved. In the design mode, the geometry required to produce a speci-
fied pressure distribution is determined. One or more components of a con-
figuration can be designed in the presence of other components whose geometri-
cal shapes are fixed.
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3. The method offers the user a variety of modeling options. For
example, with wing-like components, all the usual thin surface approximations
are available. For more accurate results, the paneling and boundary condi-
tions can be applied to the wing upper and lower surfaces. For closed bodies,
either velocity or potential-type boundary conditions can be imposed.

4. For subsonic flow, the method is both stable and accurate. Unlike
many other methods, the numerical results display a marked insensitivity to
the size, shape, and arrangement of panels. Good accuracy is obtained with
relatively sparse panel densities; convergence to highly accurate results
occurs at moderate panel densities. For supersonic flow, spurious oscilla-
tions in pressure sometimes occur. It is anticipated that this problem can
be solved by eliminating the-discontinuity in doublet strength at panel edges.

5. The method is efficient. Individual panel influence coefficient cal-
culation times are competitive with existing body surface paneling methods
that use lower order singularities, and overall matrix sizes are much smaller
because of the reduced number of panels required. In addition, the influence
coefficient integrals are all evaluated in closed form.
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Figure 20.- Paneling on forebody of B-1
bomber.
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Figure 21.- Centerline pressures on forebody
of B-1 bomber; a = 20 , M = 1.6.
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Figure 22.- Combined use of composite panels and
superinclined panels.
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