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NQMENCLATU^tE

a	 Speed of sound

A

	

	 Coefficients of the inviscid e^uat^.ons i^x nonconservatxve 	 '
form

e	 Total energy per unit volume	 - i

E	 x-dependent conservative variable	 ^

E',E	 n--dependent conservative variables

F	 y-dependant conservative variable

F',F	 ^-dependent conservative variables

i,j	 Unit vectors in Cartesian system

I	 Incident shuck impingement point

^'	 .Tacobian oz the transfaz-mativn 	
`s

M	 Incident shack Mach number
s

p	 Pressure

q	 Velocity vector

q	 Primitive var^.able vector

t	 Time

u,v	 Velocity compaa.ents in x, y directions

U	 t-dependent conservative variable

U',U	 T--dependent conservative variables

x,y	 Independent variab^.es in stationary Cartesian frame

x',y'	 Independent variables in moving Cartesian frame

y	 liati.o of specific heats

d	 Turning angle	
a

L	 ^-.---	
L.



iv

Qz	 Integration step size

8	 Ramp angler
^	 Shock angle

{z,p,^)	 Transformed independent variables	 r

a	 Eigenvalues of the gasdynamic equations	 1

x	 Triple point trajectory angle

p	 Density

Subscripts:

b	 Body surface

j	 Grid point location in r^--direction

k	 Grid point location in ^-direction

max	 Maximum	 ;

M	 kFach stem.

R	 Reflected shock	 i

s	 Shock

ss	 5e^.f-similar

x.,2,3,4	 Faun regions of the triple point	 '

Superscripts:

n	 Tir^te level	 A
3

^	 Zim7.ting value	 ^
'i
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CHB.PT^R T . II^TRODFJCTION

For well over a quarter of a century experimentalists (X.-8) and

theoreticians (9-25) have been studying the problem of shack wave

diffraction, that is, the deflection of a shock wave whose normal path
f.

.

	

	 has been impeded by some obstacle. Current interest zn this problem has

been generated by researchers {26) investigating the nuclear blast fields

around aerospace vehicles and around flush-mounted structures (Figure 1)

in an attempt to accumulate a database for survivability ar^d vulnerability

studies. Such parametric information can be used to determine the nanuni-

form dynamic loading to be applied in structural analysis programs for the

design of present day or future generic aerospace systems.

The interaction of a spherical blast wave with a planar surface, such 	 ^

as the examples shown in figure ^., results in the complete range of shock

reflections; that is, from regular reflection at 0° incidence of the

blast wave with the surface (Figure 2a) to Mach reflection at 90 ° incidence

(Figure 2b). The determination and the understanding of this interaction 	
3̂

is of importance not only to the structural designer interested in the

transient blast loading effects but also the aerodynamicist interested
!^

in the mechanics of the flow field.

The simplest laboratory experiment designed to study the shock

diffraction problem consists of a two-dimensional wedge ar ramp mounted

on the wall of a shock tu3^e (see Figure 3). Flepending . on the angle o£

inclination of the ramp with respect to the shock tube wall O r and the

strength of the planar .shock {with Mach number M s},. either regular reFlec-

tiara or one of the several types of Mach reflection occurs as shown in
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Figure 3. Regardless of the type of reflection process, this shock

diffraction prob] .etn is self—similar with respect to time since there is

no characteristic length associated with the groblem.

When the ramp angle is sufficiently large (50° <_ @ r < 90°) regular	 ^

reflection results. As the ramp angle is gradually decreased, the

shock incident angle { 90 °--@ r} increases and the regular reflection first

transitions to a double Mach stem confi.guratian with two triple points

(see Figure 3). The second triple point disappears as the ramp angle is

decreased further and the curvature oi: the reflected shock reverses. This

curvature reversal disap^ears with further decrease in the ramp angle

and a single Mach stem with a smooth reflected shock appears. For very

small ramp angles the reflected shock is attached to the ramp edge as

shown in Figure 3.

The reason for the formation of a double Mach stem configuration

during the transition stage from regular to single Mach reflection can. be

explained by a careful examination of the flow field shown in Figures 4a

and 4^b. Let @r be the limiting angle for regular reflection. That is, 	 ^

when @ = @^^' regular reflection results and when @ = @^ 	 a tiny
r	 r	 r	 r

Mach stem is farmed which striIces the tamp perpendicularly. The pressure

behind the tiny Mach stem (point ^ in Figure 4b) is cansi_derahly lower

than the pressure at point A in the limiting regular reflection case. Far

example, at an incident shock Ma.eh number of 4.71 the pressure at point A

for the limiting regular reflection case is 1^7, while the pressure

behind the tiny Mach stem {point B in Figure fib) is 52 . 5. Thus, one Mach

stem is not sufficient to produce a pressure jump which maeches the
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limiting reflection value. A second Mach stem is formed such that the

pressure increase across the second Mach stem matches with the limiting

regular reflection value. The formation of the second Mach stem is not 	 j

well understood yet.
i

The goal of this study is to obtain numerical results for the cases

	

	 ^^
i^l^

of regular reflection and sing:f.e Mach reflection with a smooth reflected

shock. The double Mach stem case is not included in the present study.

AZI the discontinuities thac appear in the flow field are fitted using

special logic. The reflected shock and the Mach stem are fitted using

the "sharp shock" technique (27,28). A floating discontinuity fitting

scheme in conjunction with the method of characteristics is employed to

fit the slip surface.. In the regular reflection as well as the single

Mach stem case there exists two self--similar stagnation points, that is,

goir►ts at whzrh the self-sifn3.lar velocity components u-xt and v-y/t are

zeta; the first is located at the juncture of the wall and the ramp

(saddle singularity), and the second, termed a vortical singularity, is

located at some poiEtt along the ramp (nodal singularity). In the Mach

reflection case the slip surface terminates at the vortical singularity

on the ramp. All streamlines in the self-similar plane converge at the

nodal singularity, and therefore, the entropy is multivalued. At the

saddle singularity the streamlines turn away, aad the entropy is single-

valued. The level of entropy on the stagnation streamline and along

the ramp up to the vortical singularity is equal to that behind the nvxs^tal

part of the reflected shack. Zn the regular reflection case the .level. of

entropy between the vortical singularity and the incidei;t shock impingement

^.
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I	 '

point is equal to that behind the straight part of the reflected shock.

Tn the case^of'single Mach reflection the level of entropy behind the vorti-

cal. singularity and the Mach foot is equal to that behind the Mach foot.

From an analysis of the equations governing the flaw behavior in the

vicinity of conical, self-similar stagnation points (11,29), it can be

shown that the pressure is a local maximum at the saddle point of stream--

lines {juncture of the wall and the ramp}, and this point corresponds

to a center paint of isobars. Similarly it can be shown that the pressure

is a local minimum at the nodal point of streamlines (vortical singularity}

which corresponds to a saddle point of isobars.

Tn the present study, the two-dimensional, time-dependent Eu1er

equations which govern these flows are solved with initial conditions that

result in either regular reflection or single Mach reflection of the

incident shock. The hyperbolic partial differential equations are first

transformed to include the self-similarity of the problem. Secondly, a

normalization procedure is incorporated to align. the discontinuities as

computational boundaries to implement tha "sharp shack" technique. The

self-similar transfarmatian reduces these equations from an unsteady to an

egsivalent steady set of mixed elliptic-hyperbolic equations. The

equations are made totally hyperbolic by =_•eintroducing a time-like ar

residual. term which should approach zero in the converged solution. The

final set of equations is written in strong conservation-law form (30,31)

and then solved using MacCormack r s (32} second-order, finite-difference

algorithm.

_ ^	 s,

=	 r

^a-
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Unlike previous solutions (12,23,3.5,22-24) the reflected shark, the

Math stem and the slip surf^ate axe all treated as sharp discontinuities

thus resulting in a more accurate description of the inva^scxd flow field.

'the resulting numerical solutions axe compared with av'a^,lahle experimental

data (5} and existing first--order, shack-^tapturing numerical solutions

(15,`2) .

1

„ice	
fR	 ._^.	 L.
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CIi^'TER II.	 REGULAR R.BF^,ECTIQN

When a spherical blast wave str_kes a planar surface, regular

reflection occurs first and then transitions to Mach reflection as the

shack incident angle increases (Figure 2}. 	 In this chapter regular j

reflection of a planar shock is studied as a prelude to understanding f

more about regular reflection of a spherical incident shock. 	 The simplest

Laboratory experiment designed to study the shock diffraction problem

consists of a two-dimensional ramp mounted on the wall of a shack-tube

(Figure 3).	 The resulting flow field is self-similar because there is na

characteristic length associated with the problem. 	 Zt consists of only

the reflected shock (Figure 5) which is straight up to the sonic circle

and then, curves to become perpendicular to the shock tube wall. 	 Between

the sonic circle and the shock impingement point 1 the flaw field is

uniform.	 The flow field linearly grows with time in the physical plane.

In this problem, there exists two self-similar stagnation points,

that is, points at which the self-similar velocity components 	 u-x/t and

v-y/t	 are zero; the first is located at the juncture of the wall and the
a

ramp (saddle singularity), and the second, termed a vortical singularity,

is Located at some point along the ramp (nodal singularity). 	 ALl self-

similar streamlines converge at the nodal point or the vortical singularity,

and therefore, the entropy is.multivalued. 	 At the saddle point the

streamlines turn away, and the entropy is regular. 	 'Phe ^.evel of entropy
a

on the stagnation streamline and along the ramp up to the vortical

singularity is equal to that behind the normal part of the reflected shock, -
.;

.;

i^	 --	 -	 —	 -	 -	 -	 -	 ------
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while the ,level of entropy between the vortical singularity and the

shack impingement point is equal to that behind the straight part of the

reflected shock.

Tw.o popular techniques fqr solving supersonic flow problems are

currently being used. One is the "shock-capturing" method (2$), and the

other is the "discontinuity-fitting" (27,33) method. The first method does

not require any special logic to treat the discontinuity and hence yields

inferior solutions. The discontinuity--fitting procedure requires special

txeatment for all the discontinuities in the flaw field (shocks, slip

surfaces, vortical singularities, etc.}. This mattes the scheme more

complicated and involved, but yields a much better solution compared to

:tshack-capturing" results.

in the present wor'^ the "discontinuity--fitting" procedure is adapted

and the resulting numerical solutions are compared with available

experimental data (5} and existing first-order, shack--capturing xzumerical

solutions (15,22}.

The Transformed. Governing Equations

A Cartesian coordinate system is used in the problem formulation, the

origin of which is located at the juncture of the wall and the ramp. The

x-axis is aligned with the wall and the y--axis is normal to the wall and

in the direction of the ramp {Figure 6a). IInder the assumptions of an

inviscid, nonheat-conducting, ideal gas, the fluid dynamic equations in

strong conservation-law form (30,31) for the independent variable

transformation T = t, ^ _ ^(^c,y,t), and ^ - ^(x,y,t) are

i-i	 ^.^.__...._....... 	 .....
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where U,E, and ^ are the conservative variables in the. Cartesian

coordinate system. J is the Jacobian of the transformation. Expressions

for II,E,F, and .T along with the derivation of Equation (1} are presented

in Appendix A.

In a shvck^fitting procedure the shuck is treated as one of the

computational boundaries, so that jump conditions across the shock can be

easily app^.ied. This is done through a normalizing transformation. For

the regu^.ar ref3.ection prob^.em, the fa^.lawing functions are used for T,

r^ and ^ which include the self--similarity of the problem and a normali--

nation of the distance between the ramp and the reflected shock:

T = t

X - 
p 

{y}

^ = ^

where xb (y) represents the equation of the ramp, and xs (y,t} represents

the equation flf the reflected shock. The geometric derivatives nx , ny,

nt , fix, ^y , and ^t corresponding ta- the transformation above axe used.

in Equation (1). They are derived in Appendix A (see. Equations (A13)).

The self-similar transformation tv n and ^ reduces the unsteady

gasdynamic equations ^. the Cartesian system (.Equation (A1)), which are.

hyperbolic, to an equivalent steady set of mixed e^.liptic-hyperbolic

a

_--.	
.^- ':	 ^_
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equations, that is, in the region between the wall and the sonic circle

(see p̂ ig^.re 6a) they are elliptic, while above the sonic circle they are

hyperbolic. .The equations are made totally hyperbolie by reintroducing

a time-like or residual term {U/J'} T which should approach zero as the

solution converges. That is, the transformed Eu1er equations (Equation {l}),

which are hyperbolic with. respect to T, are solved u.-ing a time

asymptotic approach. Because of the self--similarity of the problem, the

term ;U/3)
x
 approaches zero as z gets large thus establishing a

convergence criterion.

Initial Conditions

The transformation given by Equation {2) results in the computational

plane shown in Figure bb. It is bounded by the reflected shock and outer

boundary, bath of which are permeable surfaces, and by the wail and the

ramp. The region between the wall and the outer boundary is divided into

(k^x - 1) equal intervals and the region between the ramp and the

reflected shock is divided into (jmax - I) equal intervals. The inter-

sections of constant-r^ and constant--^ la.nes generate the discrete

computational grid used in the finite-difference formulation air the

problem., Initial conditions (either in terms of flow variables or conser-

votive variables} are to be specified at all grid points in order to

initiate the integration of the transformed Equation {l} using ^iacCormack^s

(32} scheme (Appendix B}.

z To initialize the flow field at time T = 1 given the incident shock

Mach number Ms and ramp angle 6 r , the pressure and density in region

{see Figure 6a} are first set equal to unity. The flow conditions in

^^

^.,^	
r..	 ^^
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l

region ^2 which are used as the upstream conditions for the reflected 	 I y

shock are calculated from the fallawi.ng equations far a moving shuck:

	

2y s^ -- (y -- 1}	
.

p2 - pl	 y .^- 1	
{3}

p	
p	 _	 i

I 1	 1

	

s	 1

v ^ 0	 (6)
2

u 2

	

P2	PZ 2
e2	 y - l + 2	

{7)

The subscript 2 in the above equations refers to region 2O . The position 	 y

and the slope of the reflected shock along with the uniform flow conditions

in region 3O (above the sonic circle in Figure 6a) are then determined

Pram the equivalent steady, regular shock reflection equations.^Thi.s

procedure is outlined i.n Appendix C. The conditions in regi.ort ( 3 )

a.^termine the position of the sonic circle at time T = 1. At all points

along the. sonic circle the self--similar velocity is sonic. That i.s,

	

^	 z
Xsc	 ysc	 2 = ^3	 $

fJ

where u^, v 3 , and a 3 are known in the uniform flaw region, ^ .

Salving Equation ($) gives the ordinate (xsc , ysc ) of any paint lying on

	

the sonic circle. Nora, the outer boundary is chosen such that it falls	 ,

above the sonic circle but below the shock impingement point 1 (see

,^

_.
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Figure ba). Since the outer boundary lies in the unifax-m flow region

the conditions at grid paints along this boundary are exactly known

using the solution developed in Appendix C,

'i'he intersection of the sonic circle with the reflected shocic is

determined by simultaneously solv^.zzg Equat^.an (8} and the slope equation

for the reflected shock ^. region ^	 Between this intersection poit2t

{YP in Figure. 6a) and the wall a cubic is used to approximate the

reflected shock shape. KnouTing the shock shape and assuming a self-similar

flaw, that is, xsr = x s/'r (xs^ is the shack speed}, the flow variables

behind the reflected shock are given by the following equations, which

inc3.ude the Rankine-Hugoniot relations

i--xs j
^ =	

Y _
	 (4}

s	 1 +xs
Y

:^

i ^

'	 ^

qZ = u2i + v21 (1Q}

u2

u2
^ 

q2 ^ ^s -.	 1 + x2sy

(Il)

a2 =	 Yp2/P2 {12)

xs = xs	+ xs yT (13)
T t	 y

xs
4s/cos ¢ (14)

t

R ^ tanrl xs (l^}
y

i

^	 `,.... ^.

^_
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^	 {16)xsy = xs^ 
y

u2 --q

	

s	
(17)x - a2

Ps_ 2YXz - (Y-^-)

P	 Y ^' ^-	 (18)2

p s — CY + 1) x^
(19)

P2 (Y - 1) xZ + 2
1/2

	u s - qs	 (y - x)M ^^ + 2
M =	 _	 (20)
y	 as	 2yM ^2 -- {y - 1)

(us - u2)
us = u2 +

	

	 (22)
]. + xs

Y

{^s - u2)xs
v = -	 y	 (23)

s	 1 + xs
Y

P	 P (u ^ +v 2)
es = ^ s ^ + s s ^	 s	 (2^t)

-^	 -^
where ns ^.s the inward normal, qs is the velocity of the shock in its

normal direction (see Figure 7), u 2 is the velocity of the flow in the

direction normal to the shock in reg^.on ^, xs is tae shock speed in
T

the computational plane, x s is the shack speed in the physical plane,
t

and xs is the shock slope. ^.`he quantity x s in equation (1.G) is
Y	 ^

.^

f

•a

^	 _.
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determined numerically us^.ng a second-order central difference formula.

The subscript s refers to flow condi.txans behind the reflected shock.

To ix^^.t^.a^.ize the fJ.ow fie^.d between the ramp and the reflected shock,

the conditions at the stagnation point (point 0 in B'igure ba) are first

computed based on the flow conditions behind the normal part of the

reflected shock (point A xn Figure 6a}.

uo = ^	 (25)

vo = 0	 (26)

Y

,._	 PA	 ^	
2	 A

3.

^o - ^l + Y 2 l MA2 Y- ^	 (28)

A

Po
eo = Y W l	 29)

P
so = sA ^ Y	 (3d}

Po

2	 zu +vA	 A
MA ^ - YPA1`PA	

{3l)

Along the ramp between the stagnation point and the sonic czrcle, a

parabolic approximation of the flow variables is assumed. The field points

{l < k < max' l < 3 < j m^} are then initiala.zed by a linear interpo].atina

of the flow variaTil.es at the ramp and the reflected shock. Based on the

r

_	 r- "	 - -- -—	
^^

^^^
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initial flaw field, conservative variables U,E,F, and the geometric

deriv^^.tives rit , nx' ny' fit' fix' and ^y
 that are needed in Equation {1),

axe formulated and snored at each of the grid points.

Starting with this initialized flocs field, Equation {1) is integrated

{subject to certain boundary conditions discussed in the next section)

using the explicit, second-order, predictor-corrector MacCormack's {32)

scheme. Using a one-dimensional, amplification matrix, stability analysis

{34) of MacCormack's scheme, a governing integration step size is

obtained. The integration procedure and step size calculations are

presented in Appendix B.

Boundary Conditions

The computational region is bounded. by the reflected shock and the

outer boundary, both of which are permeable surfaces, and by the wall and

the ramp, both of which are impermeable surfaces. The boundary condition

procedures applied at each of these surfaces are d^.scussed below.

EeflectQd shock

The position and the shape of the reflected shock wave are determined

at each step of the time--asymptotic, integrat^,an procedure. The vari.ab^.es

x , xs , and xs which appear in the conservative variables of Equa-s	 y	 t
Lion {1) along with the flow variables at the shock can. be determined by

employing an unsteady variation of the 'Thomas' "pressure approach"

{27,28) for propagating shack waves. In this approach, it is only

necessary to irnow the pressure behind the shock in order to alter its

posit^.on for the next time level. The required pressure is obtained by
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using the normal field paint predictor-corre ctor algorithm at the shock

but with one-sided differences away from the shack or in the r1-direct^.on.

The shock speed (see Figure 7) and remairsing flow variables are given. by

the following equations, which include the Rankine-Huganiot relations:

1/2

x	 ^Y ^P2

`	
u^	

(33)
u2

^, + x^v
J

_
x	 — x s^^Y

(34)

sy

a 2 = ^YP2 IA2
(35}

^s — uZ — a^ ^
(36}

_ ^s (37)x	 Tst cos ^

S ='tan ^'	 xs (^$)

3'

(Y + ') x2	 ^ (39)

us = qs + yas
(^+Q)

as =	 YPS/FS
{4l)

1/7.
^Y - 1) X2 + z (^Z)

y

^,i:a'-^^^D^cISIIai^^TY cF 'NHL

^:

^-_'#
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us = u2 
+ us - u2

{43)

^. -^- x^

y

_	 {us - u2)xs

v - -- -	
y	

(44)s	 ^.+xs
Y

u 2 + v 2
es = ,^ 

1?s 1 
+ ps 

s 
2s	 {45)

The c^uanti t;^ xs in Equation (34) is determined numerically asing a

second-order central difference formula. The subscript 2 refers to

flow conditions zn the uniform region ^ and the subscript s refers to

flow conditions behind the reflected shock (along k=k Il^ iii Figure 6a},

The actual propagation of the shock wave in the numerical procedure

is accomplished by using a second--order Euler predictor/modified Euler

corrector

x 
n+l	

x n + xn O^r	 predictor	 (46)
a	 s	 s	 s,^

xs+l = xso' + 2 ^x^ + xs +1̂ AT ; corrector	 (47)
T	 T

where

xs ^ xs + xs y^	 {48)
z	 t	 y

'3.he integration step size ^^ is obtained from a stability analysis

described in Appendix B.

:.^

f

t

^. ..-' ---__.
	 _r
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i

The above equations are used in the following manner:

Initially at time step n all flow variables at the shock are known

including the shock speed and the shape, The pressure behind the shack

is predicted using the first step of Ma.cCormack's scheme. The shack wave

	

is then moved using Equation. (^6). The predicted position permits the	
. ^

shuck derivatives xs to be computed front Equation {34). The shock
Y

speed, and other flaw variables are then calculated from Equations (32}-(45).

The same procedure is followed an the corrector step except that the second

step of MacCormack T s scheme is used to get the pressure behind the shock

and Equation {47} is used to correct the shock position.

Im^exmeable boundaries

The impermeable boundaries ^.n the shock diffraction problem consist of

the wall surface and the ramp surface. Each of these surfaces is aligned

with a constant coordinate line as a result of the self--similar, normalizing

transformation. Because of this alignment, and the fact that the flow

must be tangent to these boundaries, the only variable required at the body

to advance the field points using Equation (I) is the pressure, However,

determination of the remaining flaw variables and the position of the vorti-

cal singularity an the ramp is essential in computing the correct surface

pressure. Discussed below axe two different boundary condition procedures

that were tested for satisfying she tangency condition and determining the

flow variables along the wall and the. ramp.

In the first, a simple Euler predictor/modified Eider corrector with

one--sides€ ^^-derivatives at the wall. and r^-derivatives at the ramp for

Equation (l) is used. The tangency condition itself, that is, v = 0 at

3.	 -- _	 _.
^y



z5

the wall and v = u tan Br along the ramp, is unposed-after the corrector

step. Having determ^..ned the velocity components from this procedure, the

self-sunilar velocities u--x/t and v-y/t are used to locate the vortical

singularity by noting at what point along the ramp they are identically

zero. Knowing this location, the appropriate entropy levels are assigned

to the surface grid paints. As mentioned in the Introduction, the level

of entropy at grid paints along the wall and on the ramp up to the

vortical si.ngulari.ty is equa.I to that behind the normal part of the

reflected shock, while the level of entropy at grid points between the

vortical singuJ,arity and the ^.ncident shock impingement point is equal that

behind the straight part of the reflected shock. The corresponding body

density is obtained from the fallowing expression by using the pressure

computed by the one-sided finite-difference scheme:

P	 ^$^ 1/Y
	

(^^)

where s is an appropriate measure of entropy level. The total energy

e is then, recomputed from

e = ^ ̂ -E-A u Zv
2	 2

(50)

The second boundary condition procedure tested was that of Kentzer

(3S). Tt is based on a method of characteristics approach in combination

with one-sided finite-differences. Here, the goal is to derive an

expression far pT and uT valid at the impermeable boundary grid points

'

	

	 which can be integrated to obtain the surface pressure and-_the u-component

of velocity. This procedure is well outlined in Appendix D. Having the

>_...	 _	 -
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u-velocity component, the v-velocity component is computed from the

surface tangency condition. ^`he self-similar velocities, position of the

vortical. singularity, and the body density are computed in the same way as

descxibed for the previous botua.dary condition procedure.

Using the self-similar property of the flow field in conjunction with

the surf ace. tangency condition,. it can be shown from the normal momentum

equation that 8p/8n {where n is the direction normal. to each surface)

is zero at the wall and xamp suxfaces. Neither Rentzex's scheme nor

the Eisler predictor/modified Eisler corrector method satisfy this condition

exactly because of the approximate one--sided, finite-differences involved.

'l.'herefore, after the converged solution is obtained using either. of the

above boundary condit^.on procedures, the pressure at the body is recomputed

after the corrector step to satisfy ^p/an ^ 0. 'his is done in the fol-
	 1

].owing manner. First, the surface normal is drawn and its intersection

with the first grid line above is found (paint R ar Ld in Figure 8) . 'fhe

pressure at the intersection point (p W ox pR) is then obtained from a

simple linear interpolation of the data at two neighboring grid points.

A simple first-oxder extrapolation of the xozm

p i,k - pR 1
(51)

Pj ^^ = pW J

satisfies 8p/8n = 0 to the zeroth oxder. At the stagnation point both

pn and p^ are zero. Making use of this condition, the pressure at the

stagnation point is obtained by taking an average of the two extrapolated

pressures, one alar^g the wall and the other along the ramp.

3

-- -x,-	 - -_.. __........ 	..	 .._	 _	 _	 ..a
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I ^p2 7 1 - p3,1	 ^p3.,2 - p1,3p l 1 = 2^	 3	
+	

3	
^	 (52)	 r

	A comparison of the different boundary condition schemes is presented 	 ^

in the Result section.

Outer boundary	 `

The voter boundary (see Figure 6a) is positioned beyond the sonic

circle (defined by Rquati.on (8)} so that the flow conditions are supersonic

along it. This allows flow conditions along the outer boundary to be

specified initially and held fixed during the entire 3.ntegration procedure.

Results

The computational grid for a typical regular reflective case

consisted of 11 points in the n-direction and 27 points in the ^-direction.

An average of 300 iteration was required to obtain a converged solution.

and these consumed approximately 15 minutes of computer time on an

IBM 360/67.

Numerical results an the form of pressure and density contour plots

are qualitatively compared w^.th the first-order shock-Capturing results

of Rusanav {15} and 5chneyer (22) in Figures 9 and i0, respectively.

Rusanvv^s solution was obtained using Godunov^s method for an incident

shock Mach number of 1.89 ^.mpinging on a 65° ramp. Most of the contours

which appear in Figure 9a lie within the captured shock wave, and very few

describe the flow field between the ramp and reflected shock in comparison

with the contours of Figure 9b.

1

_^	 . _
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In studying the Mach reflection phenomenon, Schneyer {22) used a

twa-dimensional, Eulerian, hydrodynamic Cade to obtain the regular

reflection result shown in Figure 10a. The incident shock Mach number was

2.0 and the ramp angle was 63.41°. His result exhibits the same quali-

tative behavior as does R^3sanov r s. The present result far the same case

is shown in Figure lOb. The results of both Schneyer and Rusanov fail

to reveal the presence of the vortical singularity.

I,aw (5) performed a series o:E experiments on the shock diffraction

problem for various gases using a Mach-Zehnder interferogram. He tested

a Mach 4..71 incident shock striking a 60° ramp in oxygen; the result tags

regular reflection. This case in addition to others at the same incident

shock Mach number but for different ramp angles was obtained numerically

to demonstrate the flow field behavior in the regular reflection regime.

The results are presented in Figures 11-1b.

The density and pressure distributions along the wall and the ramp

are shown in Figure 11. At the stagnation paint (point C of Figure 11},

the density and pressure reach a local minimum, tahile at the vortical

singularity (point A of Figure 11), the pressure is continuous and at a

local minimum, and the density is discontinuous. A partial plat (see

Figure 12} of fire self-similar velocity along the ramp reveals the two

self-similar stagnation points at A (puncture of the wa11 and the ramp)

and B {vortical singularity}.

Tn Figure l3, results from the different body boundary condition

procedures are compared. Both the Euler predictor/modified Euler

corrector and Kentzer's scheme yield very nearly the same results. The

__	 _.._ .w_ _ _ _.	 _ .._	 ,_ _ e..^,_

.+-	 - - - -	 -
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oscillations near the stagnation point are a result of the one-sided,

finite--differences used in these schemes. Imposing 2p/8n - 0 seems to

yield a much better solution without any oscillations in the flow variables

near the stagnation point.

Pressure and density contour plots of these computational region are

shown in Figure l4. The tentexpoint of isobars near the wall-ramp inter-

section point, and the saddle point of isobars near the vortical

singularity (for which moving away from the vortical singularity the

pressure increases along the ramp and decreases perpendicular to the ramp)

can be clearly observed in the figure. Tn the densit} contour plot, the

convergence of the various isopycnics at the vortical singularity can be

observed. The behavior of the flow near the stagnation points in this

unsteady two-dimensional self-similar problem exhibits the same bQhavior

as the steady, self-similar, three-dimensional flow about an external

axial corner (36},

The self-similar streamline pattern can be visualized by observing

the velocity vector directional glut of the computational plane shown in

Figure 15. Notice that all the streamline converge at the vortical

singularity.

A comparison of the interfero^;ram obtained by bow (5) with the

numerically computed shock shape i^ stzown in Figure 16. Tf an overlay of

the two results were made by matching shock impingement points, .the

experimental shock location would fa11 inside the numerical solution.

The reason for the discrepancy is probably twofold: First, the viscous 	 ,

effects (the majority of which can be observed near the wall-ramp

j^Jj

J S^

r. .. 	 _	 _.



34

F

intersection point) might have the effect of decreasing the ramp angle as

a result of the boundary lager growth with distance from the shock

impingement point, The reduced ramp angle in turn results in a smaller

shack standoff distance. Second, the computed solut^.on assumes flow of an

ideal gas (y = l.4). Thus, high temperature effects on the internal

energy such as molecular, vibrational excitation are nv^i taken into account.

The effect of varying the ramp angle for a given shack Mach number

of 4.71 on the shock standoff distance { rso), position of the vortical

singularity (rvs), location of the sonic circle (rSe), and shock impinge-

ment paint (ri) are shown in Figure 17. The standoff distance exhibits

almost a linear variation, with ramp angle between the limit for regular

reflection and the last computed case of 9 r W 85°. The vortical singular-

ity moves towards the wall with increasing ramp angle and actually attaches

itself to the wall forvalues of 9r gzeater than 77°. The location of

the sonic circle along the ramp, and the shack. impingement point are

identical at the limit far regular reflection. As 6 r increasas

the sonic circle moves toward the wall while the impingement point moves

away from the wall.

.^ ^	 ,,.

i
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CHAPTER III.- SINGZE MACH REFLECTIQ?^

A typical single Mach reflection of an incident shock is shown in

T^'igure l8. The self--similar flow field is somewhat complicated in this

case by the existence of a triple point at which the reflected shock, the

Mach stem and the incident shock meet. Emanating from the triple point

is a slip surface which intersects the ramp at the vortical singularity.

Tr. Figure 18, Mss denotes the self--similar Mach number. A sonic line

exists in most of the single Mach reflection cases in the regian.^between

the reflected shock and the slip surface. Below this sonic lin g_ (region T

in Figure 18) and in the region between the Mach stem and the slip surface

(region III) the self-similar Mach number is subsonic (Mss < 1), while

above the sonic line (region IT} it is supersonic (M ss > ^.}.

Tn this problem, there are two self--similar stagnation points, that

',	 is, points at which the self--similar velocity components u-x/t and v-y/t

are zero; the first is located at the puncture of the wall and the ramp

(saddle point), and the second, termed a vortical singularity, is located.

at the point where the slip surface meets the ramp (nodal singularity).

All the self-similar streamlines converge at the vortical singularity and

t.ie entropy is multivalued. ^"%-_ ra,iu^ of entropy on the stagnation

streamline and along the ramp up to the vortical singularity is equal to

that behind the normal part of the reflected shock, while the entropy

between the vortical singularity and the Mach foot is the same as that

behind the foot of the Mach stem.

Tn the present work, the reflected shock and the Mach stem (including

the triple point) are fitted using tha "sharp shock" (27,33) technique.

__- ,. ^^. ^	 ,_ r-'
._	 _	 ___	 ^^^ ^^ ^^,^
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A floating discontinuity-fitting scheme in conjunction with the method of

characteristics is developed to fit the slip surface.

Double Normalization Procedure

A Cartesian coordinate system is used in the problem formulation with 	 ;

the origin located at the juncture of the wall and the ramp. The x-axis ^.s	 j

aligned with the wall and the y-axis is normal to the wall (Figure 19a).

The gasdynamic equations in this Cartesian system are given by Equation (AI)

for the assumptions stated in Appendix A. 	 _

In order to apply the "sharp shock" technique, the reflected shock and

the Mach stem are used as computational boundaries. This is done by means

of a double noxma .lizing transformation. The following functions are used

far ^, ^, and ^ which include the self -similarity of the problem, a normal-

ization of the distance between the ramp and the reflected shack and a

normalization of the distance between the wall and the Mach stem:

r = t

^ r Xs(n,^}

.	 where xb (^,T) represents the equation of the ramp, Xs (^,T) represents

the equation o€ the reflected shock and Y S (T1,'C) repres^:nts the equation of

the Mach stem. Note that the ramp and the shock shapes are defined i.n

terms of the computational variables r^, ^, and T and not in terms of

x, y, and t. From Figure l9a it can be seen that such a representation
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is necessary because constant n and constant ^ lines are not parallel

to the Cartesian x and y axis, respectively.

.	 The equations corresponding to the independent variables ^, r^, and

^ are given by Equation (^.} in strong conservation--law form. The geometric

derivatives r1t , r^x, rty , fi t , fix , and. ^y appearing in this equation are

derived in Appendix A (see Equations (A15) and (A16)).

The self-sx.milar transformation to r^ and ^ reduces the unsteady

gasdynamic equations in x, y, and t s^rstem, which are hyperbolic, to an

equivalent steady set of mixed elliptic-hyperbolic equations: they are

elliptic in regions of subsonic self-similar velocity (M ss ^ 1) and

hyperbolic in regions of supersonic self-similar velocity (M ss > 1). The

equations are made totally hyperbol^.c by reintroducing a tune-like or

residual-term ((U/.T) T ). Because of the self-similar nature of the flow

field this time-li.ke term should approach zero in the converged solution.

Initial Conditions

The transformation given by Equation (53) results in the computational

plane shaven: in Figure 19b. It is bounded by the reflected shack and the

Mach stem, bath of which are permeable boundaries, and by the wall and the

ramp. The coordinate n, is zero at the ramp and equal to one at the

reflected shock. Similarly ^ is zero at the wall and equal to one at

the Mach stem. The slip surface floats within the mesh generated by the

double normalization {Figure 19a}. The region between the ramp and the

reflected shock is divided :into 
{
max - 1) equal intervals and the

region between the wa11 and Che Mach stem is divided into (kmax - l}

equal intervals. This determines the mesh spacings 6r^ and rr^. The

^^
_..

^	 `,..
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intersections of constant ^ and constant ^ lines generate the discrete

computational grid used in the finite--difference formulation of the problem.

lnitial conditions are specified at all grid points in order to initiate

the . integration of the transformed Equation (1) using MacCormacic^s (32)

scheme (see Appendix B).	
r

To initialize the flow field at time ^ = 1 given the incident shock

Mach number Ms and the ramp angle A r, the pressure and the density in

region ^ (see Figure 2p} are first set equal to unity. The flow condi-

t^.ons in region ^ , which are used as the upstream conditions for the

reflected shock are calculated from Equations (3} to (7). Referring to

Figure 2Q, an initial value fo.r the triple point trajectory angle (x)

is assumed. Corresponding to this assumed va gue of x, the triple point

solution is computed from an equivalent steady approach described in

Appendix E. This gives the flow conditions at pv^.nts 3 and 4 lying an

e^.ther side of the slip surface at the triple point (see Figure 20). The

reflected shock slope ($ R}, the Mach stem slope (^M) and the sl^.p surface

angle c^ are also obtained from the triple paint solution.

Assuming some standoff distance far the reflected shock (distance

Q-A) at time z ^ 1, a cubic is used to approximate the reflected . shock

shape between the triple point and the wall. This cubic satisfies the

conditions that the shock be noru^al to the wall at point A and the slope

at the triple point be equal to that determined by the triple point

solution (tan ^R). Similarly, assuming some value for the distance between

the origin 0 and the Mach foot B, a cubic is used to approximate the Mach

stem between the triple point and the ramp. This cubic satisfies the

^	 ^ r
	 ^ ...:._
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conditions th=at the Mach stem be normal to the ramp at the foot and the

slope at the triple point be equal to that determined by the triple point

solution {tan ^M). The slip surface is initially approximated by a

straight line Yaith a slope tan (90°--a). This straight slip surface meets

the ramp at the paint denoted by V5 in Figure 20.

Even though the double normalization requires that both the reflected

shock and the Mach stem be represented in terms of the computational

variables r1, ^, and ^ the calc^slation of the flow variables behind them

and their actual propagation requires a representation in terms of the

physical variables x, y, and t. The reflected shock is represented by

x = Xs {^^ T )	 xs LYl' r^=1st) ^t^	 {54}

where xs [y,t) is the representation in terms of the physical variables.

Similarly, the Mach stem is represented by

where ys {x, t) is the representation in terms of the physical variables.

Knowing the initial reflected shock shage and assuming a self-similar

flow, that is,

xs{^,^)
^s (^, r) _	 ,^	 (55)

T

the flow variables behind the reflected shock are given by the following

equations, which include the Rankine -Hugoniot relations (see Figure 21):

^^
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k

9'

II2
u3s -- qs 	(y - 1}M^ 2 + 2

(66)

	

y3	 a3s	 2yM^2 - (y -- 1}

a3s =	 Yp 3s /P 3s	 (67}

i

C^3$ ^ `^2 ) ^s	 i
Y

u3s = u2 +	 {68)

]. -^- x2s
Y

(u3s - u2)^s
vas = -	 _	

y	
(69}

1 -}- xs 2

2	 2
e W pas + ^3s(u3s + v3s}

	

ss	 y - 1	 z	 (70)

where ns is the inward reflected shock normal, qs is the velocity of

the shock i_n its normal direction, u2 is the velocity of the flow normal

to the shuck in region ^ , XS is the shock speed in the computational
T

plane, xs is the shock speed in the physical plane, and ^s is the
t	 y

shock slope. The quantity Xs {^,^) appearing in Equation (61) is

computed numerically using a second-order cent^:al difference formula,

The subscript 3s ref.ers to flow conditions behind the reflected shack

(along n = 1 in Figure 19b).

The. flaw conditions behind the Mach stem are computed in a similar

fashion knowing the initial shape and assuming a self-similar Elaw

{see Figure 22)..
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u4s 
_ 

-qs + x4a4s	 {82)

a4s ^ Yp4s /p 4s	 ($3}	
`

(u4s - ul}ys

u4s =
	

X	
(84)

1+y2
S	 ^x

v = ^ u4s _ u^
	

(85}
4s

-,_ + y2
Sx

2	 2

e = 
Yp^sl + 

p4s^ u4s 
2 

v4s 1	
(86}

4s

where ns is the outward Mach stem nnrmal, q s is the velocity of the

Mach stem in its normal direction, Ys is the shnck speed in the
T

computational plane, ys is the shock speed in the physical plane, and
t

y	 is the Mach stem slope. The quantity appearing in Equation (76) is
sX
computed numerically using a central difference formula. The subscript l

refers to flow conditions in re ;ion ^ , and the subscript 4s refers to

flow conditions behind the Mach stem (along ^ = 1 in Figure 14b).

^1ith 'the flow conditions behind the reflected shock and the Mach stem

known, all the field points (I < k < max' 1 < J < dmax) are now initialized.

The conditions at the stagnation point (point 0 in Figure 2 p ) are computed

from Equations (2S) to (31) based on the normal part of the reflected

shock (point A}. The point where the slip surface meets the ramp is a

vortical singularity where the self-similar velocity components are zero. 	 -

Thus, initially the velocities at point US (see Figure 20) are assumed to be

^^

c 'x	 .^" ^L
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,F:

{

V6u	 --
vs	 r

(87}

v yvs
vs	 ^

A1ang the ramp between point 0 and point VS and between point V5 and

point B (Mach foot) the velocities are linearly interpolated and the

pressure is approximated by a parabola. Along the wall {A-0) a parabolic

approximation of the flaw variables is used. The entropy along the wall

and the ramp up to the p^^int VS i.s equal to that behind the normal part

of the reflectr^d shack, and between VS and the Mach foot it is equal to

that behind the foot of the Mach stem. With pressure and entropy known

along the ramp and the wall, the density is computed foam

s	 a

s1

where s is an appropriate measure of the entropy level. The total

energy a zs then computed. The ^•ressure at the field points (1 < k ` max'

1 < j < jmax) are obtained by a 13.^^.ear interpolation of the pressure at

the reflected shack and the ramp. The pressure along the slip surface is

then obtained by a linear ^,nterpolation us^.ng the values at the neighboring

grid points. The side of the slip surface facing the reflected shack is

denoted by "a" (see Figure 20) and the side facing the Mach stem is

denoted by "b•" The pressure an either side of the slip surface is the

same but the velocities are not. The velocity components along the slip

surface on side "a" are obtained by linear interpolation using the values

at paint VS and point 3 at the triple point. Similarly the velocity

Yom , F^ ^:
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__

components along the slip surface on side nb rr are obtained by linear

interpolation using the values at point VS and paint 4 at the triple

point. The u-velocity component along the slip surface on side "a" is

recomputed to satisfy the jump condition

(ua - ub ) tan {90° - a} = a -- v.^	 {g^)

The entropy along the slip sux'face on side "a" and side "b" is equal to

s 3 and s^ respectively (the slip surface is a self--similar streamline along

which the entropy is constant). Knowing the entropy and the pressure, the

density along the slip surface is computed. Based on the flaw conditions

along the slip surface on side "a" and the reflected shock, the field

paints lying in region T (k'igure 2a) are initialized. Similarly, based

on the flow conditions along the slip surface on side "b" and the Mach

stem, the field points lying in region IZ are initialized using l^.near

interpolation.

Starting with this initialized flow field, Equation (1) is integrated

(subject to certain boundary conditions discussed in the next section)

using the explicit, second-c yder, MacCormack's (32) scheme. Since the slig

surface floats within the n,^ mesh system a floating-fitting scheme in

conjunction with the method of characteristics is developed to propagate

the slip surface. Under this scheme differencing across the slip surface

is forbidden. Thus, special one-sided differencing formulas (37) are used

at grid points neighboring the slip surface. The floating-fitting scheme

along with the special differencing formulas are explained in a later

section.

r	 i
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Boundary Conditions

The computational region is bounded by the reflected shock, the Mach

4	 stem, the wall. and the ramp. The boundary condition procedures used at

each of these surfaces are discussed below.

Reflected shock

The position, shape and the speed of the reflected shock wave are

determined at each step of the time -asymptotic integration procedure.

The variables Xs (^,T), X$ (^,T), and Xs (^,r) which appear in Equation (^.)
^	 T

along with the f^.ow variables behind the shack are determined by employing

the unsteady version of the Thomas' "pressure approach" (27,28} for

propagating shock waves. As mentioned in Chapter TT, in this approach

it is necessary to know only the pressure behind the reflected shock

{pas) in order to alter its position fax the next time level. This required

pressure is obtained by using the normal field point predictor--corrector

algorithm at the reflected shack but with one-sided differences in the

n-direction. As mentioned in the previous section (Iu^tial Conditions)

in order .to compute the shack speed X s (^,T), it i.: necessary to define an

equivalent reflected shack shape in terms of the physical variables

t, x, and y. Such a representation is given by Equation (54). Knowing

pressure the remaining flaw variables are given by the fallowing equations,

which include the Rankine-Hugoniot relations.

i^2
P

x2 - ^2y ^ P s {Y + 1) -^' {Y 1)^^	 {90)
2

qs = u2 - a^Mxz 	(4l}

i

^.

^z r ^	 _-- -	 ^



a2 = YP2/P 2	 {92)

(y + ^.)M^

	

_	 x2
(g3}

P 3s - P^ (Y - 1)Mx2 + 2

	

3 -
	

(g^}y	
2yMX2 - (Y - ^-)

u3s y3a3s + qs	 (g^)

a3s = Yp 3s/P 3s	 (96)

The velocity components u 3s anal vas and the total energy 
e3s are then

computed from Equations (G8) to (70). The actual propagation of the

reflected shocic a^.ong with the Mach stem is presented under a separate

subheading .

Mach stem

The variables Ys (t1,^r), Ys (r1,^r), and Xs (rl,'r} along with the flow
n	 z

variables behind the Mach stem are determined from pressure (p is ) using

the same Thomas ` "pressure approach" employed for the reflected shocic.

The pressure behind the Mach stem (p is ) is obtained from the finite-

difference algorithm using one-sided differences in the ^-direction. The

remaining flow variables are given by the fallowing equations:

1^2

a^ _ ^	 (99)

•i

^^



A

{100}

p4sTQ1 (y`-ljMyl+2

1/2

M =	 (101)x4	 2yMy1 --(y - 1.}

u^ts -qs + ^4a4s	
(102)

ads = YP^s/P^s	{103)

The velocity components u ps and vas and the total. energy ens are

computed from Equations ($4^) to (86) .

Impermeable boundaries

The boundary condition procedure used at the wall and the ramp is

exactly the same as that used for the regular reflection case except that

Kentzer's scheme (35) was not used because it gives the same results as

one-sided finite-differences,

Shock Speed Calculations

The actual propagation of the reflected shock and the Mach stem

in the numerics]. procedure is accomplished by using a second-order Eider

predictor/modi.f^.ed Euler corrector. For the reflected shock it is given by

xs-^1 (^r T) - 
Xsn

{^^ T) ^' X$ {^^ T )^T 	(^-^^F).
T

XS+^(^s T) = Xsn (.^^ T } + 2 ^XS..(^^^).+ XS+^(^^i)^ ^T	 (l05)

^	 r	 _. .	 .^



6a

For the Mach stem.

^5-^-1
(^t^T) _ 

^sn
{^^ z) + YS (n^T)^1T	 (106)

T

YS+^ (n ^ T) = Y5^{^,, ^r} + Z rYs (n, T) + Xs+a. (n ^ T)^ aT	 (ZOO)
L T	 T

Equations (3.04) anal (X06) are the predictor step and Equations (IQS) and

(3.07) are the. corrector step. It is necessary to represent the shocks in

terms of the physical variables ^.n order to evaluate the shock speeds

Xs {^, T} and Ys (r^ , T) . l'liey' are evaluated in the following manner :
T	 T

Xs (^,T) = XS {y, t) '^^ s yT ^	 (108)

^	 t	 y
s7=1

d

YS (n^T) = ys (x,t) + ys xT ]	 (log)
z	 t	 x 1	 ,

^_^

rahere

xs C^,T)

x	 --	 ^	 (ll0}
^y	 y^

^S Cn,T)

y = n	 (Ill)
s	 x
x	 n

yT ^	 _ ^Ys (l, T) 	(Zl2)
n=1	 T

x I _ = nX (l ^ T) + .{l — n)^ {l^ T) 	 (113)
T	

^T	 T
—^

..	 .T	 _	 _	 _	 ......__	 . _. ... _...	 .,	 _.._^ ....._ ,_i	
-	 -
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...

0Xb (l,T) = tan (90 — 6r) Ys {O,z)	 {114)

T	 T

xn
 ^

— Xs (l, z)	 Xb (l, z)	 (1.15}	 ^	 ^

^ Z

y	 = Ys (l,T)	 C116}

^ rr=^

x and y	 are evaluated from Equations (60) and (75), respectively.

	

st	 st

It can be seen from. Equation (108) that evaluation of X s (^,z) requires
T

	yz ^	 which in turn requires Ys (l,z}. Similarly, evaluation, of
^=1	 T

Ys (n, z) requires Xs (1,T) which is the reflected shuck speed at the

	

z	 T
triple point. Since the triple point moves with a Mach number Ms , Xs {l,z)

rt

is simply the speed of the incident shuck wave.

gs (Z,T) = Ms^	 (117)
z

Substituting rl = 1 in Equation (1.09) an expression for Ys (1,T) is
T

ob taixzed

Ys {l,z) = ys + ys Xs (l,T)	 (118}

'C	 t	 X T

In Equation (11S) ys and ys axe evaluated at the triple point.
t	 x

This completes the calculation of shock speeds. Knowing Xs {^,T) and
T

Ys (^,z) the reflected and the Mach stem are advanced using Equations (104)
T

tv (107) .

r

- ^'.
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F1.oatyng-Fxttxxfg ]procedure for the S^.ip Surface

In a usual. discontinuity-fatt3.ng procedure, the discontinuity is

transformed into a computational boundary by means of a normalizing

transformation. According to Moretti (37} this is not necessary. His

floating-fitting procedure allows one tv float the discontinuity within

the existing mesh and still fit it by using special one-sided differencing

at grid paints neighboring the discontinuity. The idea as not to allow

differencing acxass the discontinuity. The actual propagation o^ the

discontinuity S.n Moretti's approach is done using Kentzer's scheme. Tn

the present analysis, Moretti's floating-fatting idea is used to treat

the slip surface. znstead of using Kentzer f s scheme, the method of

characteristics is used to compute the flaw conditions along the slip

surface on either side {3$).

k'igure 19a shaves the slip surface floating within the existing mesh

system. Since differencing across the discaaxtinuity either in spacQ or

time is strictly forbidden in a fitting approach, special one--side differ-

encing . formulas are used at grid points neighboring the discontinuity,

instead of the usual equally spaced difference approximations {MacCarmackTs

scheme uses forward differences in the predictor and backward differences

in the corrector). Application ot` the usual MacGormack^s scheme at the

grid point Q neighboring the slip surface in Figure 23 requires conservative

variab^.es at grid paints 5 and 6 lying on the other side of the slip

surface. 5ixice this is forbidden, the forward differencing in the

n--direction {En in Equation (A10)) is modified to the fallowing (Refer-

ence 37):

a'

.<.^	 __	 _.
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64	 ^??^'^^JC^l^3II.,IT^ (?1^' '^^^

nl	 an	
^ n^sE 	

(x19)

0

E	 - 
E 3^ sE - 4^^E O - (^ - 5E n)^ 1 + {l — ^n)EZ]	

(izo)
n^	 2an

SE

:;

,^
r	 -J

1 - s_	 ^

d l - 1 + e	 (121)

s2 = E^a^	 (122)
S
1

Equation (119) requires two backward grid points (1 and 2). Tf only one 	 '
i

backward grid point i.s available then Equation (l2fl) is modified to	 ]̂

^ 2cn - ^.	 3	 ^

En 	 0n ^1 + e ^E ^" 1 + e E 5E - 2E a 	(123)

sE ^	 n

Tf no backward grid point is available then Equation (119) is modified to

E	 = E SE - ED	
(124)

	

nl	 Enon
o

Similarly, the backward differencing in the ^-direction (F^ in Equa- 	 ^

tion {Al0)} at grid point 0 is modified to

F^^ _ -	 4^	
+ S 1 F^^	 (12.5}

I O 	 SX

where

_	 ^ 3F SX - 4e Fa - (4 - 5^ ) ^' + (1 - e ) F ]
__	 ^	 ^ 3	 ^ `^	 (126)

ELI	
r	 2^^	 i

SX
i
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i
^ - E^

a l	 ^ '}' E_

a 2 = E^s l 	(l2a}

Equatian (125) requires two forward grid paints (3 and 4). If only one

forward grid point is available then Equation (1.26) is modified to

1	
2c^ - 

1	 3
F^	 - - 0^ 1 + E ^ E3 + 1 + E ASK - 

2Fp	 (129}
^	 ^

SX

If no forward grid point is available then Equation (125) is modified to

^^ _ SSE o^^°	 (l3n}

^o	 ^

Similar special differencing formulas are used at grid points neighboring

the slip surface on the other' side.

All of these special. one-sided formulas require the evaluation of

the conservative variables at points where the slip surface intersects the

constant rl and constant ^ lines. In order to formulate the conservative

variables, the flow conditions along the slip surface must be evaluated at

each time Level. This is done using the method of characteristics.

The flow field is initially assumed on either side of the slip surface

at points where it intersects the constant rt and constant F lines. As

integration proceeds in the time (T} direction, the location of the initially

assumed slip surface keeps changing along with the flow variables on

either side until the correct self -similar solution is reached. The

actual propagation of the slip surface is carried out only along the

(l27)

y

1^
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.	 s

constant r^ lines, using the method of characteristics. The location and

the flow cond^.tians at points where the slip surface intersects the con-

stant ^ lines are then abtained by a linear interpolation of the values at

two neighboring slip surface points lying on constant ^i lines (see

pigure 2^). In Figure 24, points "a l " and "b^" represent two sides of

the slip surface at a constant t} line at the in^.tial time level "n." At

the new time level (T + L!T) n+3., they are given by "a" and "b." The probJ.em

here is to locate this new slip surface position and to compute the flow

conditions at "a" and "b." Out of the ten flow variables (p p u v ,a a a a

ea , pb , p b , u.b , vb and eb) only sax (pa' ua' va' pb' u
b , and vb) need to be

evaluated. The densities p a and pb and. the total energies ea and eb

can be obtained from

p 1/Y

pa 
= Sa	

(131)

a

p 1/Y

pb _ sb	
(l32)

b

u 2 + v 2

ea = Ypa 1 + Pa( 
a 
2 

a )
	 {133)

pb	
pb(^2 ^" vb2)

R,b =
Y-1 +	 2

(134}

where sa and sb are some measure of the entropy values an either side

of the slip surface. They are the same as the values at the triple paint

because the slip surface is a self-similar streamline alang which the

entropy ^.s canstant.
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Evaluation of the pressures (pa and pb) and the velocities

(ua, ub , a, and vb} require six simultaneous algebzaic equations. As

previously noted, the slip surface is advanced only along the constant

n Lines. Thus, the characteristic compatibility relations are derived

only in the (^ - T) plane. Figure 24 shows the slip surface location at

the old (n) and new (n+1) tie level at a constant r^ Line. From the new

time level location, the C+ and C characteristics are drawn which strike

the old time level at points 1 and 2, respectively. The compatibility

relation along the C+ characteristics is given by

pct 	 pct
(Pa - P 1 ) '^'	 ^	 (ua _.. u^} a'	 y	 (va ... vl}

^X2 + ^y2	 ^^2 + ^y2

i

	

pct	 ^^ P

- ^ipn + 
pc2nXUn 

+ pcz ^ yv^ +	 ^	 - ^ P ^ + uun

^X2 + ^y2

Pct	 ^ p	 _+	 y	 ^ ^ ^ + uv^ Oz.
^x2 ,.^ ^y2

Similarly, the compatibility relation along the C - characteristics is

given by

	

pct	 Pct

(Pb - P z ) -	 ^	 (ub - u2 ) -	 Y	
(vb - v2)

^^2 + ^y2	 ^X2 '^. ^y2

_	 R C^	 ^^! P
- up s + pc^^^un + pc2rtY n -	

2 

X 

2 R n -{- 
uun

^x + ^y

	

pct	 In F	 _
-	 Y	 [ -^ n + uv ^ ^'r

J ^x2 + ^y2 \\ p	 n

(l35)

(136)

a

^^	
^,
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The line joining the old slip surface location (point a^ in ^`igure 24)

and the new slip surface location (point a) is nothing but the streamline

characteristics in the (^ - z) plane. Compatibility relations are derived

along the streamline characteristics an either side of the slip surface.

On side "a" it takes the form

	

n P	 ^ P

^y (ua T ua 1 ) - ^x{va - vaI) ^ - ^y P ^ -^- uu^ -- ^x^-^-^ -f- u'v^^ ^z

(137)

The similar relation on side "b" is

	

n P	 n P	 _
^y (ub - ubi ) - ^x (vb - vbl ) = - ^y pp + uu^ - ^x ^--F uvn 	^'r

(138)

The jump conditions across a moving slip surface are

parpb
	

{139)

-}	 ^ _ -^	 } _

qa ^ ns1 - `fib ^ nsl - qsl	
(l40)

}	 ^
where qa and qb are the velocity vectors an either side of the slip

surface, nsl is the slip surface normal and qsl is the velocity of the

slip surface in its normal direction. The slip surface is defined by

Y -

Using equation (141), the seta

(u -
a

where 
^ysl^ 

is the slope of
x

ysl{x,t) = 0	 (141)

nd jump condition is rewritten in the form

^) lysl / _ vb _ va	(142)
x

the slip surface.

i
R

J
^..

t _ ^

	

+	 ^ ^	

. _	 _ _	 ^	 _.	 __.__.____._	 __	
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'Ihe unknowc^,flow variables pa, pb , ua, ub , va , and vb are now

obtained by solving Fquatzons (135)-(139} and (142) simultaneously. The

actual propagation. of the slip surface is carried out by

ysl l - ysl + ^yslln AT
	 (143)

T

where ^ysl) is the speed of the slip surface and is evaluated in a

manner similar to the shock speed.. When the flow field converges, the

slip surface speed 
^ysl} 

should converge to ysl/z.

Results

The computataonal grid for a typical single Mach reflection case

consisted of 6 points in the n-direction and 31 points xn the ^--direction.

,Hsi average of 400 iterations was required to obtain a converged solution

and required approximately 1S minutes of computer time an an IBM 360/67.

Numerical results in the farm of pressure contours are qualitatively

compared with the first-order shack-capturing results of Rusanov^s

solution in Figure 25. Rusanav r s solution was obtained using Godunav^s

method for an incident shock Mach nu;nber of l.$9 impinging on a 30° ramp.

Most of the contours which appear in Figure 25a lie r^rithin the captured

shock waves, and vexy few describe the flaw field bounded by the reflected

shock, the Mach stem, the wall and the ramp in comparison with the contours

of Figure 25b.

Law (5) performed a series of experiments an the shack diffraction

problem far various gases using a Mach-zehnder interferometer. He tested

two cases which resulted in single Mach reflection. The ramp angle for

a'
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bath the cases was 4^° and the incident shock Mach number for ane case was

1.89 and far the other 2,10. Numerical results were generated for these

two cases to demonstrate the flow field behavior in the single Mach reflec-

^tion regime. The numerical results are presented in Figures 26-35.

The density and pressure distributions along the wall and the ramp for

two cases are sham in Figures 2b and 27, The juncture of the wall and

the ramp is a stagnation point {point C) at which pressure and density

reach a local maximum. The point where the slip surface meets the ramp is

a vortical singularity (point D) at which the pressure is continuous and

reaches a local minimum. The vertical singularity is nothing but a slip

surface at a point at which the density takes a jump because of the

discontinuous behavior of the entropy. The numerical results clearly

exhibit this flow field behavior as gredicted by Rudloff and Friedman {ll).

The mesh in the physical plane is automatically generated by the

double normalizing transformation. As reflected shack and the Mach stem

change their shapes during the iteration process, the mesh in the physical

plane also keeps deforming until the self -similar .flow field is established.

Figures (28) and (29) show the converged mesh in the phy^aical plane far

^.ncident shack Mach numbers 1.89 and 2.1, respectively, for a ramp angle

of 40°. The slip surface is c.^early seen to float within the ph}°sical

mesh.

Pressure contour plots of the physical region are shown for two

cases in Figures 30 and 31. The centerpoint of isobars near the wall-ramp

juncture, and the saddle point of isobars near the vortical singularity can

be clearly observed. Sy doing a Local analysis of the gasdynamic equations

R

J

^
^

_.._...	 . ^^	 ...

Z
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at these singularities (stagnation point is a saddle singularity and the

vortical singularity is a nodal singularity) Zudloff and Friedman {11)
.;

came up with the same behavior for isobars as seen in the numerical

solutions. Figures 30 and 31 also exhibit the continuous behavior of

pressure across the slip surface. Tn order to show any discontinuous 	 4!^
e	 s

behavior of the flaw field as a sharp jump in the contour plat, the

contour program requires that such a discontinuity be treated as one of

the boundaries of the computational region because of the various inter--

polatians involved. Since the slip surface is floated within the

computational mesh the contour program cannot bring out the true sharp

jump in the density across the slip surface in a density contour plot.

The density contour plot might Zook as though the slip surface was captured

within a mesh interval.

The self-similar velocity directional plot for two eases are shown

in Figures 32 and 33. The self-similar streamline pattern can be visualized

from these plats. notice that all the streamlines tend to converge at

the vortical singularity (nodal. singularity). The streamlines also diverge

away from the stagnation point {saddle paint). Only the stagnation

streamline passes through the stagnation point.

The comparison of the interferogram obtainer' by Law (S) with the

numerically computed shack and slip surface shape is shown for two cases

in Figures 34 and 35, The triple paint trajectory angle (x) in the Humeri.--

cal solution is larger than that showry in the experimental interferagram.

-

	

	 The reason for the discrepancy is probably two fold: First, the viscous

effects (the majority of which can be observed near the wall--ramp
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intersection) might have the effect of decreasing the ramp angle as a

result of the boundary layer growth with distance from the Mach foot. The

reduced ramp angle in turn results in larger triple point trajectory angle.

Second, the computed solution assumes flow of an ideal gas (Y = 1.4).

r

Thus, high temperature effects on the internal energy such as molecular,

vibrational excitations are not taken into account. The slip surface in

the numerical solution comes out to be nearly straight as seen in the

experimental picture. In addition, a small self-similar supersonic region

lies between the slip surface anal. the reflected shock. The sonic i^.ne

bounding this supersonic region is shown in the numerical results in

Figures 34 and. 35.

_^

I

i

_3f
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CHAPTER Z'U'. CdNCLUAING REMARKS

The discontinuity-fitting procedure developed in this report far com-
	 :^

puting the shock diffraction problem far the regular and the single Mach

reflection is capable of accurately predicting the inviscid flo g field with
r

its reflected shock, the Mach stem, the slip surface and the vorti.^_al singu-

larity. The solution in the neighborhood of the self--similar stagnation

points exhibit gasdynamic equations with regards to the behavior of the

self-similar streamlines, isobars and isopycnics. The present numerical

results are a considerable improvement over the early first-order numerical

solutions and compare favorably with available experimental data. 	 ,

The present work treats only the regular reflection and the single

Mach reflection cases. In order to develop a discontinuity-fitting proce-

dure for the double Mach reflection case, a good a priori knowledge of the

flow structure is required. Thus, a development of a good shock-capturing

solution for the double Mach seem case is very desirable to understand

what exactly is going on.

Extension of the present planar shock diffraction problem tc, the

spherical shock diffraction problem is suggested.
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APPENDIX A. STRONG CONSERVATION--DAW Ft^RM Of' THE GOVERNING

EQUATIONS AND THE GEOMETRIC DERIVATIVES

'

	

	 Since the equations of motion in fluid mechanics are derived #rom can-

servatien principles (mass, momentum, and energy), it is often convenient

to cast the equations in divergence form ar conservation-law farm which

explicitly displays the conserved quantities such as mass, momentum, and

energy. I1.^ the Cartesian system (x,y,t) the gas-dynamic equations (cvntin--

uity, x--marientum, y-momentum, and energyl for inviscid, i ►anheat-conducting,

and adiabatic flow can be written in conservation-law form as:

Ut + Ex + Fy = 0	 (Al)

where

p	 pu	 pv

pu	 p + pu2 	 puv
U ^	 E =	 F =

pv	 puv	 p + pv^

e	 (p+e}u	 (p+e)v

u and v are the velocity components in x and y directions, and p, p, and

e are the pressure, density, and total energy per unit volume. The system

of equations is made campletr^ by specifying the total energy in the form:

e= Y 1 
1 p+ 2 {u^ + v^)	 (A2}

_

	

	 In mast fluid rnechanic5 problems zt is necessary to make a coordinate

transformation from the Cartesian coordinates (x, y, t) to svmc_ other system

(n, ^, T), in order to facilitate the easy ap^^Iication of surface bound^^ry

cvndxCions on arbitrary shaped badie^. 5 pmetimes coordinate transfnrm^itions

° i
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are needed to incorporate same of the special features of the flow field

(conical flows, self--s3m3.lar f^.aws, etc.) xn the numerical formulation of

the problem.

_..

	

	 iet the ne^a.coordi^eates ti, n, and ^ be related to the Cartesian sys-

tem t, x, and y by the transformation:

	

T = t	 ^

	

^1 = ^] (x^ Y^ t)	 (A3)

a

	To arrive at the transformed equations, the derivatives with respect. to x,	 r s

':.
y, and t in Equation (Al) are replaced in terms of the derivatives with

respect to r, n, and ^ in the following manner:

^ a n + a ^^x	 8n x	 ^.; x
0
i

	ay ^ a^ ny + 2^ ^y	 (A^) E

i

at — ^r 
+ ^^ n t + ^ ^t

Nlaki.ng use of Equation (A4) , Equation (Al) can be written as

u,^ + r^ tu,^ + ^ tu^ + nxE^ + ^xE^ + nyF,^ + ^yE^ = o	 (A5)

Equation (A5) can always be rewritten as 	 '

where

us = u

E' = t1 tU + r^xE + r^yF

F° - ^tI1 + ^xE + ^yE

gt
 ^ ^'^Unt + E^x .+ Fly + U^t + E^x + Eby

^	 n	 n	 ^	 ^	 ^

.j ^^a^

^.

(A7)	
^ .

^^
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All the terms in the untransformed Equation (AI} are derivatives of the

unknown four--component vectors (U, E, and ^') with respect to the independent

variables (t,x,y). This is said to be in strong conservation-la^;^form {3Q).

The transformed Equation (A6} is said to be in weak conservation-law form

because of the presence of an undifferentiated term H'. This term is

analogous to the fictitious body force term. The presence of the H' term

in the governing transformed equation is undesirable for two reasons. First,

it prevents the achievement of overall conservation of mass, momentum, and

energy. 5econd,.it involves several second derivatives ( r]t ^x , ny , ^t ,
n	 n	 ^	 ^

^x^, ^y^). 'phe analytical expressions required to evaluate these second

derivatives may be difficult to obtain. As a result these are evaluated

numerically thus increasing the computer time.

In the present work, the transformed Equation (A5) is rewritten i.

strong conservation-law form to avoid the undesirable features of the weak

conservation-law form. In order to bring Equation {A6) into a strong

conservation-law farm the H` term must somehow be removed by includ^.ng

appropriate terms into U', E r , and F' before the derivative is taken.

The technique of Viviand (31) is applied here.

The Jacobian of the transformation �s given by

n,^	 ny	nt

a(x,y,t}	 x	 y	 t	
x y— 

y x

ti^ ^y ^t

If the transformation is regular the Jacobian is neither zero nor infinite.

Assuming the Jacobian tv be finite, all the terms in Equation (A5) are

divided by the Jacobian J, It can then be rearranged as
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v	
vnt + ^nx

 + ^n^	
vet + ^^x + ^^^	

1	 nt	 ^t

3 +	 3	 +[	 3	 - v 1 + 3} + 3.!C^	 ^	 ^^ ^	 ^n	 ^	 T	 n	 ^

n	 ^	 n	 ^

It can be easily shown that all the terms inside the fourth bracket cancel

out. Thus, Equation (A4} is composed of only the first three bracketed

terms. The strong conservation-I.aw of the transformed equations can thus

be written in a sampler fashion as:

where

U = U/d

E _ (U^l t + ^nx + Fny) IJ
(A11}

F = {U^ t + E^x + Fly)/J

,^ = nx^y - ny^x

For an analytical txansformati.on the geometric derivatives n t , nx , ny , fit,

^x and ^y can be evaluated analytically. For a -numerical transformation

these geometric derivatives wi11 have to be evaluated numerically.

In the regular reflection problem (refer Figure 5} the independent

variable transformation T = t, n = n(x,y,t), and ^ _ ^(x,y,t} which

includes the self-similarity of the problem and a normalization of the dis-

tance between the ramp and the reflected shock is g^.ven by:

'^=t

x - ^ (Y)

	

n	 xs (YS t) - xb CY)	
(Al2)

^ = t .

i
^^

,^	
-^,.
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where x-^(y) = y cot 6r represents the equation of the ramp, and xs(y,t)

represents the equation. of the reflected shock. The geometric derivatives

required by Equation (Al0) are:

nx^	 1

nt=-xs-xb
	

^t = - =
r

nx = x 
l 

x	 ^x = 0	 {A13)
s	 b

xbY - ^ ^XS - xb ^	 Zn =-	 Y	 Y	 ^ --
Y	 xs-xb	 y-^

since ^x = 0, the Jacobian reduces to J = nX^y.

Tn the Mach reflection problem (refer Figure 19a}, the transformation

involves a double normalization procedure. The transformation functions

^, n, and ^ include the self-similarity of the problem, a nar_ma].ization of

the distance between the ramp and the reflected shack and a normalization

of the distance between the wall and the Mach stem. They are given by:

T = t

x - X6(^,T)

n r ^s (^^T) - ^b(^^T)	
(A14)

Y - Yb ('^ )

Since the wall is aligned with the x-axis, the equation of the wall is just

Yb {^r) = 0 or ^ = 0> Zn Equation (A14), Xb (^,T) = y cot 6r = ^Ys (O,T)cot Br

represents the equation of the ramp {n = 0}, Xs (^,z} represents the equat^.on

of the reflected shock, and Ys (n,T) represents the equation of the Mach

stem. The body and the. shock shapes are defined in terns of the computata.onal

r

f
',

,,	 _	 „	 ^.
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variables ^7, ^, and z and not in terms of the physical. variables ^, y,

and t. Such a representation is necessary 'because the constant ^ and

constant ^ lines are not parallel to the x and y axis, respect^.vely.

Corresponding to the transformation ga.ven by Equations {A14), the

geametxic derivatives are obtained as follows:

n^	 n^ n^

yn 	y^ 	 y,^

a{n,y,t)

8 C^, ^, ^} _ ` to	
t^	 tT 

_	 y^
n^ — aCx,Y,t)	

^n '^^ ^T	 ^ny^ x^yn^Cn,^,^)

y^ Y^ YT

^^	 t^ t^

a (n, ^, T)

^{x,Y^^}	 iAIS)

_ ^{na^aT)	 ^^yT — xTy^
nt	 8{x,y,t) — x^y^ — x^yn

a(n^^,T}

^X	
^{x,Y,t)	 x^Y^ — x^yn

a{n,^^ti)

a (X, ^, t)	 x

a{n^^rT)

8(x,Y^^)

^t	 a CX, Yy t)_ — X^y^ — x^Y^
a{n^^,^)

!r

3

_. _	 _	 _	 ,
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L

Evaluation of (A15) requires the following:

'C	 T

y

xn ^ xs (^,T) -- xbC^^^)

Y.^ = ^Ys (^^ ti)
T

y^ = Y S (^I ^'^)

Y^ _ ^^s (^^T)
^1

(A3.b )
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APPENDIX B. INTEGRATION PROCEDURE AND STEP SIZE CALCULATIONS

MacCorma .ck {32) has constructed a two step, preferential, predictor-

corrector sequence far use in solva.ng systems of differential equations

written in the conservation law form.	 The scheme is second or:^er in both

time and space.	 In application to nonlinear equations with several depen-
f

dent and independent variables, the method has law storage requirements and

simple programming logic. ^

As applied to Equation (A10} MacCormack^s method is as fellows:

"n+l	 n	 ^z	 n	 n	 ^^r	 n.	 n

^,k	 ^,k	 ^n	 ^+i,k	 ^,k///	 A^	 j,k+i.	 ^,k

n+l	 3.	 n	 =n+1	 ^z	 `n+i	 ^n+i	 AT	 `n+l	 ^n+lU.	 =	 U	 + U	 -	 E.	 - E	 F	 - E	 (B2)
^	 ^ ^^,lc^^ k	 2	 y a k	 J^k	 p t1	 J^ k	3-i,k}	 ^^	 j,lc-i} ^

The tilde that appears over certain of the variables denotes the predicted
i

value of that particular variable.	 The subscripts	 j and k	 refex to mesh

indices whereas the subscript 	 n	 refers to the time.
e

In this version forward differences are used in the predictar and back- ^

ward differences in the corrector.	 However, one could use backward dz„ffer-
3

ences in the predictar and forward differences in the corrector. 	 Another

possibility is to use a forward difference for the 	 ^1-derivative and a back-

ward difference for the 	 ^--derivative in the predictor and the opposite in j

tt^e corrector.	 Because of these various options MacCormack ' s scheme is

termed a preferential difference scheme.

In the case of a boundary mash point far trhich the forward grid is not a

availa3^le, the forward difference in the predictor in that direction is

modified to a backward difference in that direction. 	 Similarly,. if the i

backward grid is net availab^.e then the backward difference in the corrector	 -
r

i

r

,.	 ._	 .	 .
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r

is modified tv a forward difference in that direction. For example, for

all the grid points along the ramp no backward grid point is available in

the p-direction. At these grid points the team ^^
+1 - En+I	

in the^,k	 ^ -i,k

corrector is modified to ^n+l - En+I

	

,̂ +l,k	 ^,k

The integra^:ion step size er must be specified tv initiate the calcu-

lation. The maximum allowable step size ^zB in the n-direction and the

maximum allowable step size Or d in the ^-direction are obtained from the

one-dimensional, amplification matrix, stabi^.ity analysis (34) of MaeCormack

scheme. They are given by

	

Dr = CN	 ^n	 (B3)

	

B	 + amax, T1

	^z = CN	 ^^	 {B4)

	

^	 Icmax,^l

where CN is the Courant number, cs 	 is the maximum eigenvalue in the
max, r^

(r^-'r) plar_e, and 
cmax,^ 

^s the maximum eigenvalue in the (^-'e) plane.

For the calculation tv be stable, the minimum of the two step sizes 4^r^

and Dti^ is used:

	

^z = min(^Tn , ar k )	 (B5)

In order to compute these maximum eigenvalues first the equat.ons of

motion are written in nonconservatinn foam in terms of the transfox;ned

coordinates variables r^, ^, and. 'c. The caritinuity equation and the enex'gy

ar the entropy equation are coupled together to eliminate any derivatives of

density:. This is done in the following manner:.

Continuity:	 pt + q Op + p0 q = 0	 {Bb)

Energy:	 pt - c2p t + q	 (op - c 2 ^p) = 0	 {B7)

a

a

.`	 ^,..'
	

^,..



where

Z00

-^	 ,.	 ..
q =ui+vj

a^ aX i.+ay j

c^ _
P

Multiplying Equatxan (B6) by c2 and adding it to Equation (B7) results in

p t + upx + vpy -t- pct (ux + vy} = 0	 (B8)

Tn terms of the transformed coordz.nate variables rl, ^, and 'r Equation {B8)

becomes

pT + p^u + p^v + pc^(u^^ x + u^T^x + v^^y + v^ny) W 0	 (B9)

where

u = n^ + unx + vny (B10)

v = ^ t + u^X + v^y (Bl1)

The	 x-mamexxtum and the y--momentum equations are also written in-terms of

the transformed coordinates.

x-momentum: uT + pnnx/P + P^^x/P + u^u + u^v ^ 0 ($12)

y—momentum: vT + p^^y/p + p^^y/p + vnu + v^v = 0 (Bl3)

Equations (B9), {Bl2), and (B13) are written in matrix form as:

QT + A1Qn + A2Q^ = 0 CB1G)

cohere

P u ^a2^x	 Aa^ny '^	 Fe^^x ac2^y

Q =	 u	 Al = ;x/ p ^	 0	 Az = ^xlv	 v 0	 (B15)

^ ny/P 0	 u ^y/p	 0 v

:^

t

.	 ^

9^
9

9

i

^^

_^	 —,:^.
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the matrix AI has three eigenvalues the maximum of which is 6max ^! •.

Similarly the matrix A2 has three eigenvalues the maximum of which is

6	 The eigenva3.ues of A^ axe obtained by solving the matrix equation
max,'

^A3 -- ia^ = 0	 (B16)

Where I is the identity matrix. Solving Equation (Bl6) yields the follow-

ing three eigenvalues:

6Ai — u	 (Bi7)

A
023 - u i- C ^x2 + ^y2	 (B1$)

'the absolute maximum is given by

^ 6max r^^ _ ^ul + c ri
x2 + ny2 	(B19)

Similarly solving (A2 - I6^ = 0 yields the following three eigenvalues:

	

6^` - v	 (B20)

ff2^ 3 = v ± c ^x2 -+- ^y2	 (}321)
a

and

lomax ^!	
^v^ + c ^x2 + ^y2	 (B22}

the integration step size is now given by

^r = min CN	
ate	 CN	 ^^	 (B23}

	

ICI + ^ nx^ + ny2 	 ICI + ^ 
^xz 

+ ^y^

Equation (B23) is eva^.vated at each of th.e grid points in the computational

plane and the smallest va3.ue of dz over all the grid points is then

chosen as the .integration step size. the Courant number CN i.s usually

'	 chosen to be ane or slightly Less than one.

i

^•

t_
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AFPENDIK C. EXACT SOLiTTION FOR REGULAR REFLECTION

tdhen a planar shock strikes a wall 3t will reflect in ane of two forms,

regular reflection or Mach reflection. The form that occurs depends on the

shock strength and the shock incident angle. In the present problem (refer 	 »

Figure C1} the incident planar blast wave denoted by its strength Ms

strikes the ramp with an incident angle of (90-9r), where Br is the ramp

angle measured from the positive x-axis. For incident shock Mach numbers

greater than 1.5, regular reflection results as long as the incident angle

is less than 39° {39).

In the numerical formulation of the regular reflection problem, the

computational region is chosen such that the outer boundary (refer Figure 6a)

falls between the sonic circle and the point I where the incident shock

strikes the ramp. Along the outer boundary exact two-dimensional regular

reflection results are specified and kept fixed throughout the iterative

process. The exact regular reflection results are obtained by making use of

various shock relations in the fol^.owing manner.

As the incident shock moves with a Mach number rl s , the shock incident

point I (Figure Cl} moves up the Vamp with a Mach number M s/cos A r. The

shock relations such as the Rankine Hugoniot jump conditions are applicable

only when the shack is at rest. These shock relations can be applied to a

mova.ng shock by merely employing a moving coordinate system relative to

which the shock is at rest. By placing a moving coordinate (x',y') rigidly

attached to the moving point I, the stationary region ^l ^i.n the (x,y}

system becomes nonstationary in the {x',y') system. Ldith respect to the

ma'ving system (x',y') the nonstationary flaw in region[ 1 Iis para].1e1 to
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the ramp and has a Mach number Ms/cos 6r as shown in Figure C2. The

transformation from (x,y} to (x',y'} system alters only the velocities in

the r^:gions{ Z }, ^, ^. The pressure and density remaan unchanged, The

velocities ẁìth respect to the (x',y') system are denoted by a prime.

To obtain the flow variables in regions( 2 Jand^, first the pressure

and density in region are chosen to be unity (i.e., p l = p ; = 1}, Then

the following equations found in NACA 1135 (40) are used..

Ypl
al = ^ - _ ^! ^' speed of sound xn region ^	 (CZ)

1

q$ = Mss "' velocity of the incident shock	 (r,2):

qs 	 ^^,q'	 ^' velocity in region { Z 1c^rith respect	 {C3)Z=cash	 ^..//r	 to (X' , y' ) .:,ysteIR

qt

t	 ;MI = a^	 (C4)

p2 - p l 	 Y + Z	 ^' pressure in regions 2 ]	 (C5)

(Y + I)MsZ

p 2 = p l 	 ^' density in regian ^ 	 (Cb)
(Y -- 1)Ms2 + 2

^.

MP+TI = MI sin 8 1 = Ms	 (C8)

' _ ^' /// 1	 velocity in regian ^ with (C9)
q2.	 ^I

d	 {Y + Z) 2M^1M^^	 respect to {x T ,Y') system

2 co t 6 ^ (Mss -- ^.)
d = tan41	^' flow deflecti.^r. angle	 (C10)

	

2 + Mz 2 (Y + 1 -- 2 sing 8 i }	 from regicz ^ 1) to

''

..-



e,
^'^ M' ^ Ms /cos ^r

p s^, ^

Ua^^.
^Z	

...	 ^ r

INCIDENT slaocK 	 MS

q2 
q^ 0; STATIONARY

	

...:	 REGION
NONSTATIONARY Q

REGION	 T

::;:;
SONIC CIRCLE ©^.: 'q^-,

REFLECTED
SHOCK

.'^' RAMP
©^^^r

9^

x

Figure Cl. Regular reflection in a fixed	 Figure C2. Regular refJ.ectian in a moving xr,yr
x,y Cartesian system	 Cartesian system rigidly attached at the point I

i	
,^.	 '
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Yp2
a2 =	 Q ^' speed. of sound ire xegiorx ^^ 	 (Cll)

2	 ^.J

q^
r	 2

'	 M2 -- a2	 (C12}

In region	 the flow again becomes parallel to the ramp. Thus knowing

S and Mz t^he
J
 reflected shack angle 6^ is found by solving the following

polynomial

sin6 6 z + b sink 92 + c sing B^ + d = 0	 (Cl3)

where

i^2 ^ + 2
b = -

	

	 - Y sing S	 (C1G)
M'22

2M2 z + 1	 2c =	 ,^ (Y + i) ,^ Y _ 1	 sine S	 (C15)
M'`	 ^	 MT2

z	 z

d = -. 
cost S	

(Cl6)
Mr4

2

equation (C15) has three roots, the smallest of which corresponds to a

decrease in entropy and should therefore be disregarded. according to the

second law of thex'u^adynamics. The ^.argest root corresponds to the strong

shock. The middle root, which correspond:z to the weak shock, is the one of

interest .

MNZ = M^ sin 6 2	 (Cl7)

^ (MN2 i) {YMN2 + ^')	 n
q' = q'	 1 -	 "' velocity ire xegion ^Jwith	 {C18)
3	 2

'	 {Y + 1) 2MNZM^2	respect to (x'y') system

2YMN^ - {Y - 1)
p3 -- p2	 Y + 1	 "' pressure in region 1 3 1 	 (C3.9)

'^
a
3
s

. ^	 _	 -

	
-- ^y
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(Y -F ^-) lTN2
p^ = p 2 	"'-' density in region{ 3 ]	 (Cz7)

(Y - ^')MN2 ^" 2

Knowing the velocities q^, q2, and q^ in the (x`,Y`) system, the velocities

q^, q2, and q^ in the (x,y) system are obtained by employing the s^.mple

transformation:

q^ = q^ - qi = u 3i + v3j	 (C23)

where

q! = q`(-cas 8 i - sin 6 ^} 	 (C24}1	 i	 ^'	 x

q^ = q2(-cas[B r + Sji _ sin [ 8r + S]j)	 (C25)

q^ = q'^(-cas ^Q^.i - sin 6rj}	 (C26)

and (ill ,v^}, (u^,^crZ ), and (u^,v3 ) are the Cartes^.an. velocity components in

regzons O ,^, and ^, respectively.

5
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APPENDIX b. KENTZER'S SC^IEME FOR IMPERMEABLE BdUNDARIES

An impermeable boundary is one across which no mass can flow such as a

" solid surface or a plane of symmetry. At an irnperrueable boundary a surface

tangency condition must be satisfied. Proper implementation of the surface

boundary condition is a crucial step in computing the correct body pressure

distribution. 0ne method of applying the surface boundary condition is to

use Kentzer's (35) scheme at the body grid points.

Kentzez's scheme is based on the method of characteristics appzoach in

combination with one--sided finite differences. Here, the aam is to derive

an expression for p^, valid at the body points which can be integzated in

a predictaz-corrector fashion to obtain the body pressure. This is achieved

by combining the characteristic compatibility rr^lation and the surface

tangency condition in differential form. The procedure is outlined below

for both the ramp and the wall

The eigenvalues of the time dependent Eisler equations have alzeady been

derived in Appendix $ {see Equations (86) through Equation {B21)). The left

ei envectors	
A

g	 yZ^ corresponding to the eigenvalues of the A l Matrix are

obtained by solving

y^l (A1 - IffA Z ) = 0	 i = 1, 2, 3
	

(Dl)

Similarly solving

YA2 {A2 - IQ^2) = O	 i ^ 1, 2, 3	 {D2)

yields the left eigenvectors yi 2 corresponding to the A Z matra.x. The

final result is

J'



^	 ^

las

y^l r (a ^ ny^ - nx}

A	 p cnx	 p cDy
^	 ±	 i-1y2^3 =	 ^	

n 2 + n z ^ 	 D 2+ 
D 2	

f

x	 y	 x	 y	
(D3}

f

t

A2	 Pc^x	 Pc^y
±	 ±

.	
y^^3_ 

1 '	 ^2 +^z	 ^2.^.^z
x	 y	 x	 Y

The compatibility relations are obtazxzed from these eigenvectors and

eigenvalues.

Referring to Figure Dl, onYy the dawn running characteristics drawn in

the (^ - z) plane strikes the wall grzd point. The eigenvalue associated

with this characteristic is Q32 . ICentzer's scheme requires only the com-

patihili.ty relation along th^.s down running characteristic. The campatibil-

ity relation is derived by starting from Equation (B^.4).

Multiplying Equation (D4) throughout by y^2 and making use of Equation (D 2)

it results in the form

y32 (QT + 632Q^) = ya2A1 Q^ 	(D5}

Substituting for y32 from Equation (E3) and for Q from Equation (S15),

'^
Equation (D5) simplifies to

1
.Y

^.



1Q9

pct 	 p^^
{pT + cr32p^} --	

2 x
	 ^ (u.^ + o32u^) -	

2 
^	 2 {v^e + Q32v^)

^^ + ^Y	
^X ^" ^y

p c^	 n p
_ -» up s + ^c^r^xu^ -F pc^t^yv^ _	

x	
x nn ^- uun

^ ^ '^' ^ ^	 p
^	 y	 -

pct 	 n p	 ^

^ 2 .^' ^ 2
	 p	

^x	 y
s

Alang the wall the surface tangency condition xn differential form is given

by

yr = fl

	

(D7}	 ^
v^=Q

Zn addition along the wall (plane of syEnmetry) v is zero and ^^ is zero.

Ca^nbining Equation {D6) and Equation (D7} and then substituting far u,^

from Equation (B12) yields the following expression for p T valid only at

the wall grid points.

per, n
p^, _ -^ rsg2p^ - Pco32v^ + up s -E' p c^^lxu^ - - n̂	 {D$)

n

Equations (D$) and (A9) are integrated in a predictor-corrector fashion to

get the pressure and the u-velacity at the wall grid points at the new time

level.

P
^o k + (p^) j,k 

^T

predictor	 (DID)

__^....
s'	 -

n+l

pj,k

^n+^
u,
^,k



lea

p7^k - p^^k + 2 C(pT)a'k + (P )^+^ qT
^ ^ s

corrector	 (Dll)
n+],	 n	 3.	 n	 - n+i

Ja k	3^^	 ^	 ^ 3^k	 T yak

Izf evaluating p,^ and uz , forward differences are used for the n and ^

derivatives in the predictor. Tn the corrector backward differences are

used for the ^t derivat^,ves and forward differences for the ^ derivatives.

Knowing the pressure and the u-component of the velocity all the other

flow variables can be easily computed. Thos procedure ^.s outlined in

Chapter II under Boundary Conditions.

S^.milar to the analysis presented above, an expression for p T and vT

are now derived for the ramp grid points. Referring to Figure E2, only the

down running characteristics drawn in the (n - r} plane strikes the ramp

grid point. The eigenvalue associated with this characteristics is c3^.

The compatibilz.ty relation along this down running characteristics is

obtained by multiplying Equation (D4) by yAI
3 '

y3 i (Q ,^ + Ct3 Z Q n) _ -y^ lAZ Q^ 	 (D12)

Substituting far y3^ from .Equation (D3) and for Q from Equation (Bl5),

Equation. (Dl2) results in

A	 ^' cnx	 A	 p cny	 A
(P.^ + c^ lp ) -	 (vT + o 3 1 u^) -	 (vT + ct31v^)

n	 ^x2 + ^y2	 n`_2 
+ ^y2

	

pcDx 	 p
-	 vp^ + p c2 ^XU^ + p cz^y v^

	 2	 z ^^x ^ + ^u^^C	 +
y ^ X	 ny

p cn Y	 p^
n 

z+^ 2(^y ^ +j",^ /^x	 y

(D13)

^,
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Along the ramp the surface tangency condition in differential. form is given

by

v^ = u^ tan er

(Dl4}
vT = uT tan 6r

In addition, u is zero along the ramp. Combining Equation (D1G) and then

substituting far u,^ from Equation (Bl2} yields the fol.l.awing expression

for pT valid only at the ramp points.

P cal 	 P c^
Pr - a3^p -	

x	
a3iun --
	 ^'	 [r3^v + vp

^	 nx2 + ny2 	 nX2 + ny2	 n	 ^

Pc^ix 	P	 Pc^l	 P

	

+ 
Pc2^xu^ + Pc^^Yv^ -
	 ^ ^ + n 2 ^x 

P	 n ^ + ^ 2 ^y 
P	 (D15)

x	 y	 x	 y

_	 ^ ^	 ^'X

	uz - 
-P^ P '

 - P^ R - vu^	 (Dl6)

Equations (D1.5) and (D16) are integrated in a predictor_corrector fashion

described by Equations (F]10} and (D11). In evaluating pT and uT fo ward

differences are used for ^^ and ^ derivatives in the predictor. In the

corrector backward differences are used for the ^ derivatives and forward

differences for the r1 derivatives. Knowing the pressure and the

u-component of the velocity all the flow variables are easily obtained.

By combining the compatibility relation with the surface tangency con-

dition in differential form, the disadvantages of the true method of charac-

teristics, the iterations and the interpolations to get the data at specific

points on a characteristic, are eliminated in Kentzer ' s scheme.

.^ ,

^t
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APPENDIX E. FXACT TRIPLE POINT SOLUTZQN

^+^ten the incident angle (that is the angle between the incident planar

'	 shock and the ramp) is greater than 39°, Mach reflection occurs as long as

the incident shack Mach number is greater than 1.5 {3^). As mentioned in

the Introduction (Chapter I), the Mach reflection can take various forms

depending on the incident angle and the incident shack strength. T yre pres-

ent problem considers only the single Mach reflection case in which only one

triple point is present. Since the flow field is self--similar the triple

point moves along a straight lime denoted by the triple paint trajectory

angle x in Figure E1.

As was pointed out in Appendix C, all the shock jump conditions are

true only if the shock is at rest. In order to obtain a solution to the

moving triple point where the incident shock, the reflected shock, .the Mach

stem, and the slip surface meet, a moving Cartesian coordinate (x',y') is

rigidly placed at the moving triple point. With respect to the (x',y'}

system the tr^.ple point is at rest and the flaw comes into the triple point

aloz; z:^e triple point trajectory with a Mach number M S /cos (6 r + x), as

shown in figure E2. The transforriration from (x,y) to {x',y') system alters

only the velocities in regionst 1 ],^,^3 and. The pressure and

density remain unchanged. The velocities in the two system (x,y and xr^yr)

are related to each outer by mans of a simple transformation.

The triple point solution is first obtained in the x',y' system where

all the shock relations found in

,

^NACA 1135 {[^0) are applicable. Knowing flow

variables in region( 1 J, region (Z } is easily obtained using obl^.que shack

relations. To solve regions ^3^ and 	 uniquely, an _terative procedure is

r

r

^^
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necessary to satisfy the two jump conditions across the slip surface. l:n

the x',y t system the slip surface is at rest. The two jump conditions 	 ,

across a stationary slip surface are one, the pressure must be same an either

side of the slip surface and two, the velocity vector on either side must be 	 .

	

parallel. to the slip surface. Knowing region ^, the following procedure 	 y r

explains how to obtain the flaw variables in. regions{ Z ), O , ands 4 J. 	 F

p l = p l ^ 1 ^' pressure and density in region ^
	

(Ll)

YpI
a^ ^

	

	 = ^ ~ speed of sound in region ^, 	 (E2)
P ^,

qs = Mss "' velocity of the incident shock	 (E3}

qs 	 =+
q° =	 ^' velocity in region,	 with respect	 (E4)1	 cas(9 r + X)	

to (x',y^) system

3

qlM^	 a	 {E5)
1

ZYMS - (Y - 1}
p^ -- p^^	 ,^ + 1

	
^' Pressure in region( Z }	 {^6}^J

(Y+l)MS
p2 = p^^	 2	

^ "' density in region ^ 	 (E7}
(Y-1)Ms+2

n
B 1 W 2 -- 6r -- X	 {^$)

M^^ = rid sin BZ = rT^	 (^9)

T	 ^ ^.	 (Elo)42 = q1
(Y + 1) 2^'1N L I^T^ Z	^

6	
a

2 cat e l (M52 - 1.)
S = tarp 1	 (Ell)

2 + Mi 2 {Y + 1 - 2 sing AI)	
i

i
V .
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p2
a2 =	

P2	
(E12)

q'
.	 ri2 = a2	 (E13)

2

This completes region[ z }calculat^a.ons. The following iterative procedure

determines regionf 3 }and region( 4 }flow conditions.

1. for a given Mach number there is a maximum flora deflection angle.

Knowing MZ in region( z }, the max^ .mum flora deflection angle S maX across

the reflected shock ^ .s computed from

MT 2
cot Amax = ^Y 2 1	

2	
- l tan smax	 (E14)

Ms2 sink ^	 - 1	 I2	 max

S	 =siri i	
1	 Y+l M' 2 --1+ (y+1)+ Y2

 - 
^' MT2 + (Y + 1)? MT2

max	 , 2	 ^+	 2	 2	 2	 16	 2
i'YI4 2

(El5)

The flow deflection angle 8R across the reflected shock has to be less

than or equal tv Ste.

2. An initial value for the Mach stem angle ^M is chosen. The Mach

stem being a strong shock, the initial value for ^M is chosen to be $9.99°.

3. Corresponding to the assumed Mach stem angle ^M and the Mach

number M^, the flaw deflection angle S ii is obtained from

2 cot ^M (rii 2 sine ^M - I)
Ski ^ tan 1	 (E16)

z + rii 2 {Y + 1 - z sing .dpi)

4. The pressure in region ^ 4 1is computed from

p4 = p i 1 + Y ^^ l (ri^ 2 sing ^M - 1) ^	 (E17)1

a^

•	 ,.	 -
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5. The slip surface angle a is given by

6. Since the fJowt in regipn^ 3 Jhas to be para^ .^.e1 to the slip surface

the flow deflection angle S R across the reflected shock is given by
Y	 r

1.

T. If dR is greater than Smax given by equation (DJ4), the initial

guess fox ^Pi is reduced by 0.03.° and the calculation is repeated from

step 3 until SR becomes equal to or Jess than Smax'

8. I:nowing the flaw deflection angle dR and the Mach number Mz the

shock angle ^R i.s computed. Tl^ie^procedure is outlz.ned in Appendix C.

9. The pressure in reg^ .on^ 3 }zs then computed from

p3 - p2 
^l 

+ ^ + 1 (MZ
2 sing ^R - 1}'	 (E20)

JD. Across the slip surface the pressure must be same (i.e., p 3 - p^).

If the convergence criteria

zs not satisfied then the assumed: value of ^M is reduced by 0.005 and the

calculation is repeated from step 3. This repetition is continued until. the

convergence criteria ^^ satisfied.

11. The total velocities q3 in region 3 and q^ in j-egion^ 4 )are

given by

4(M22 sink ^R - 1)(YM2 2 si.nz ^^ + l}
r	 r	

1 _

	

q3 ^ ^z	 (^22)
(Y + l)^M^^ sine ^^

4CMI^ sine ^M -- 1) CYri1 2 s ink ^rf + ^.)

	

q^ = qi	 J --	 (g23}
^/	 (Y + i) ^Pi^ ^ sing Sri

r,	
^^-	 _-
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12. Knowing the velocit^.e

the velocities q^, q2 , q3 , and

ing the simple transformation:
^	

-}T
q ^	 ql

0	 '}t^^_^^^

r
4^ = q^

^'	 ^ T ,
q++-q^

4Z^ q2^ q^^ and q^ in xt ^Y^ system,

q^ in x,y system are obtained by employ--

- q^ _ ^ = u^i + vl j	 (E24}

- ^^ = uz i -}- Vi a	 {E25}	 r

where

qi = q^[-cos (6r + X}z. - sin{er + X) j ] (E28}

q2 = q2[-cos(6 r + X + S}i -- sin{6 r + X + 8}j] (E29)

q^ = q^[-sin ai -- cos a^] (E30)

q^ = q^[-sin ai - cos aj] {E3l)

and	 (u i ,v^),	 (u^,v2),^{n3,v3}, and {u^,v^)	 are the Cartesian velocity

componenCS in regi.ansl 1 ^^,0, and, respectively.

l3.	 The sXopes of the reflected shock and the Mach stem are given by

c^M = 6r +X +^M (E32)

^E = 9r +X+b+^R (E33}

a

r^

	 J
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INCIDENT SHOCK	
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