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NOMENCLATURE

Speed of sound

Coefficients of the imviscid equations in nonconservative
form

Total energy per unii volume

x—dependent conservaitive variable

n~-dependent conservative variables

y-dependent conservative variable

E~dependent conservative variables

Unit vectors in Cartesian system

Incident shock impingement point

Jacobian of the transformation

Incident shock Mach number

Pressure

Velocity vector

Primitive variable vector

Time

Velocity components in x, y directions
t—de?endent conservative variable

1-dependent conservative vavriables

Independent variables in stationary Cartesian frame
Independent variables in moving Cartesian frame
Ratio of specific heats

Tﬁrning angle



At Intepration step size

Br Ramp angle

& Shock angle

{t,n,E) Transformed independent variables

o] Eigenvalues of the gasdynamic equations
¥ Triple point trajectory angle

p Density

Subscripts:

b Body surface

J Grid point location in n-direction
k Grid point location in E£-direction
max Maximum

M Mach stem

R Reflected shock

s Shock

S8 Self-gimilar

1,2,3,4 Four regions of the triple point
Superscripts:

n . Time level

® Limiting value
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CHAPTER T. INTRODUCTION

For well over a quarter of a century experimentalists (1-8) and
theoreticians (9-25) have been studying the problem of shock wave
diffraction, that is, the deflection of a shock wave whose normal path
has been impeded by some obstacle. Current interest in this problem has
been generated by researchers (26) investigating the nuclear blast fields
around aerospace vehicles and around flush-mounted structures (Figure 1)
in an attempt to accumulate a data.base for survivability and vulnerability
studies. Such parametric information can be used to determine the nonuni-
form dynamic loading to be applied in structural analysis programs for the
deéign of present day or future generic aerospace sﬁstems.

The interaction pf a2 spherical blast wave with a planar surface, such
as the examples shown in Figure 1, results in the complete range of shock.
reflections; that is, from regular reflection at 0° incidence of the
bilast wave with the surface (Figure 2a) to Mach reflection at 90° incidence
(Figure 2b). The determination and the understanding of this interaction
is of importamnce not only to the structural designer interested in the
transient blast loading effects but alsg the aerodynamicist interested
in the mechanics of the flow field,

The simplest laboratory experiment designed to study the shock
diffraction problem consists of a two-dimEnsional wedge or ramp mounted
on the wall of a shock tube (see Figure 3). Depending on the angle of
.inclination of the ramp with respect to the shock tube wall Gr and the
strength of the planar.shock (with Mach number MS), either regular reflec-

tion or one of the several types of Mach reflection ocecurs as shown in
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Figure 3. Regardless of the type of reflection process, this shock
diffraction problem is self-similar with respect to time since there is
no charecteristic length associated with the problem.

When the ramp angle is sufficiently large (50° < Br < 90°) regular
reflection results. As the ramp angle is gradually decreased, the
shock incident angle (90°~8r) increases and the regular reflection first
transitions to a double Mach stem configuration with two triple points
(see Figure 3). The second triple point disappears as the ramp angle is
decreased further and the curvature of the reflected shock reverses. Thisg
curvature reversal disaprears with further decrease in the ramp angle
and a single Mach stem with a smooth reflected shock appears. T¥Tor very
small ramp angles the reflected shock is attached to the ramp edge as
shown in Figure 3.

The reason_for the formation of a douhle Mach stem configuration
during the transition stége from regular to single Mach reflection can be
explained by a careful examimation of the flow field shown in Figures 4a
and 4b.. Let Br* be the limiting angle for regular reflection. That is,

when 8 = 6*+
r by

regular reflection results and when Gr = e:‘ a tiny
Mach stem is forméd which strikes the ramp perpendicularly. The pressure
behind the tiny Mach stem (point 3 in Figure 4b) is considerably lower 7
than the pressure at point A in the limiting regular reflection case. For
example, at an incident shock Mach number of 4.71 the pressure at point A
for the limiting regular reflection case is 147, while the pressure

behind the tiny Mach stem (point B in Figure 4b) is 62.5. Thus, one Mach

stem is not sufficient to produce a pressure jump which matches the
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limiting reflection value. A second Mach stem is formed such that the
pressure increase across the second Mach stem matches with the limiting
regular reflection value. The formation of the second Mach stem is mot
well understood yet.
The goal of this study is to obtain numerical results for the cases
of regular reflection and single Mach reflection with a smooth reflected
shock. The double Mach stem case is not included in the present study.
All the discoatinuities thatc appear in the flow field are fitted using
special logic. The reflected shock and the Mach stem are fitted using
the "sharp shock" technique (27,28). A floating discontinuity fitting
scheme in conjunction with the method of characteristics is employed to
fit the slip surface. In the regular reflection as well as the single
Mach stem case there exists two self-similar stagnation points, that is,
points at which the self-similar velocity components u-xt and v~-y/t are
zero; the first is located at the juncture of the wall énd ﬁhe ramp
(saddle singularity), and the second, termed a vortical singelarity, is
located at some point along the ramp (nodal singularity). In the Mach
reflection case the slip surface terminates at the vortical singularity
on the ramp. All streamlines in the self-similar plane converge at the
nodal singularity, and therefore, the entropy is multivalued. At the
saddle singularity the streamlines turn away,.and the entropy is single-
valued. The level of entropy on the stagnation stream;ine and along

the ramp up to the vortical simgularity is equal to that behind the normal
part of the reflected shock. In the regular reflection case the levelvoi

entropy between the vortical singularity and the incident shock impingement



point is equal to that behind the straight part of the reflected shock.
In the case of' single Mach reflection the ievel of entropy behind the vorti-
cal singularity and the Mach foot is equal to that behind the Mach foot;

From an analysis of the equations governing the flow behavior in the
vicinity of conical, self-similar stagnation points (11,29), it can be
shown that the pressure is a local maximum at the saddle point of stream-
lines (juncture of the wall and the ramp), and this point corresponds
to a center point of isobars. Similarly it can be shown that the pPressure
is a local minimum at the nodal point of streamlines (vortiecal singularity)
which corre;ponds to a saddle point of isobars.

In the present study, the two-dimensional, time—dependent Euler
equations which govern these flows are solved with initial conditions that
result in either regular reflection or single Mach reflection of the
incident shoeck. The hyperbolic partial differential equations are first
transformed to include the self-similarity of the problem. Seéﬁndly, a
normalization procedure is incorporated to align the discontinuities as
computational boundaries to implement the-"sharp shock" technique. The
self-similar transformation reduces these equations from an unsteady to an
equivalent steady set of mixed elliptic-hyperﬁolic equations. The
equations are made totally hypefbolic by raintroducing a time-like or
residual term which should approach zero in the converged solution. The
final set of equations is written in strong conservation-law form (30,31)
and then solved using MacCormack's (32) second-order, finite-difference

algorithm.

-



Unlike previous solutions (12,13,15,22-24) the reflected shock, the
Mach stem and the slip surface are all treated as sharp discontinuities
thus resulting in a wmore accurate description of the inviscid flow field.
The resulting numerical solutions are compared with available experimental

data (5) and existing first—order, shock-capturing numerical solutions

(15,22).

C L m—



10

CHAPTER II. REGULAR REFLECTION

When a spherical blast wave strikes a planar surface, regular
ref;ection occurs first and then transitions to Mach reflection as the
shock incident angle increases (Figure 2). In this chapter regular
reflection of a planar shock is studied as a prelude to understanding
more about regular reflection of a spherical incident shock. The simplést
laboratofy experiment designed to study the shock diffraction problem
consists of a two~dimensional ramp mounted on the wall of a shock-tube
(Figure 3). The resulting flow field is self-similar because there is no
characteristic length associated with the problem. It comsisis of only
the reflected shock (Figure 5) which is straight up to the sonic circle
and then curves to become perpendicular to the shock-tube wall. Between
the sonic circle and the shock impinpement point I the flow field is
uniform. The flow field linearly grows with time in the physical plane.

In this problem, there exists two self-similar stagnation points,
that is, points at which the self-similar veloecity components u-x/t and
v—y/t are zeroj the first is located at the juncture of the wall and the
ramp (saddle singularity), and the second, termed a vortical singularity,
is located at some point along the ramp (mecdal singularity). AllL self-
similar streamlines converge at the nodal point or the vortical singularity,
and therefore, the entropy is multivalued. At the saddle point the
streamlines turn away, and the entropy is regular. The level of entropy
on the stagnation streamline and along the ramp up to the vortical

singularity is equal to that behind the normal part of the reflected shock,

S G
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while the level of entropy between the vortical singularity and the
shock impingement point is equal to that behind the straight part of the
reflected shock.

Two popular techpiques for solving supersonic flow problems are
currently being used. One is the "shock-capturing" method (28), and the
other is the "discontinuity~fitting" (27,33) method. The first method does
not require any special logic to treat the discontinuity and hence yields
inferior solutions. The discontinuity-fitting procedure requires special
treatment for all the discontinuities in the flow field (shocks, slip
surfaces, vortical singularities, etc.). This makes the scheme more
complicated and involved, but yields a much better solution compared to
"'shock-capturing” results.

In the present work the "discqntinuity—fitting" procedure is adopted
and the resulting numerical solutions are compared with available
experimental data (5) and existing first—order, shock-capturing numerical

solutions (15,22).

The Transformed Governing Equations
A Cartesian coordinate system is used in the problem formulation, the
origin of which is located at the juncture of the wall and the ramp. The
x—axis is aligned with the wall and the y-axis is normal to the wall and
in the direction of the ramp (Figure 6a). Under the assumptions of an
inviscid, nonheat-conducting, ideal gas, the fluid dynamic equatioms in
st:ong conservation-law form (30,31) for the independent variable

transformation T = t, n =n(x,y,t), and & = £(x,y,t) are
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where U,E, and F are the conservative variables in the Cartesian
coordinate system. J dis the Jacobian of the transformation. ZExpressions
for U,E,F, and J along with the derivation of Equation (1) are presepted
in Appendix A.

In a shock-fitting procedure the shock is treated as one of the
computational boundaries, so that jump conditions across the shock can be
easilﬁ applied. This is done through a normalizing transformation. For
the regular refiection problem, the following functions are used for T,

n and £ which include the self-similarity of the problem and a normali-~

zation of the distance between the ramp and the reflected shock:

T=1t N

x = x (y)
T XG0 - x5O 2
=2 »

where Xb(y) represents the equation of the ramp, and xs(y,t) represents

the equation of the reflected shock. The geometric derivatives Nes N

3

y
n_s Ex, Ey, and Et corresponding to the transformation above are used

t
in Equation (1). They are derived in Appendix A (seeﬂEquations_(AlB)).
The self-similar transformation te n and & reduces the unsteady

gasdynamic equations in the Cartesian system (Equation (A1)), which are

hyperbolic, to an equivalent steady set of mixed elliptic-hyperbolic
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equations, that is, in the region between the wall and the sonic circle

(see Figure 6a) they are elliptic, while above the sonic circle they are
hyperbolic. The equations are made totally hyperbolic by reintroducing

a time-like or residual.tey@ (U/J)T which should approach zero as the
solution converges. That is, the transformed Euler equations (Equation (1)),
which are hyperbolic with fespect to T, are solved uzing a time

asymptotic approach. Because of the self-gimilarity of the problem, the
term {U/J)T approaches zero as T gets large thus establishing a

convergence criterion.

Initial Conditions

The transformation given by Equation (2) results in the computational
plane shown in Figure 6b. It is bounded by thé reflected shock and outer
boundary, both of whiéh are permeable surfaces, and by the wall and the
ramp, The region between the wall and the outer boundary is divided into
(kmax - 1) equal intervals and the region between the ramp and the
reflected shock is divided into (jmax — 1) equal intervals. The inter-
sections of constant-n and constant-£ lines generate the discrete
computational grid used in the finite-difference formulation of the
problem. Imitial conditions (either in terms of flow variables or conser-
vative variables) are to be specified at all grid points in order to
initiate the intégration of the transformed Equation (1) using MacCormack's
(32) scheme (Appendix B).

To initialize the flow field at time T = 1 given the incident shock
Mach number MS and ramp angle er, the pressure and density in regionﬁ<:>

(see Figure 6a) are first set equal to unity. The flow conditions in
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region.(Z) which are used as the upstream conditions for the reflected

shock are calculated from the following equations for a moving shock:

2y % - (v - 1)
P2 7P y+1

B P
cof¥rELE ) (xEL 2
2 Ny-1p, y-1 P,

(v - U2 + 29/vp; \/2
M_|1 - S
2 s[ (y + U2 ](o )

u =
1
vz =0
2
e = P2 +—p2u2
2 ¥y -1 2

The subscript 2 in the above equations refers to region (:). The position
and the slope of the reflected shock along with the uniform flow conditions

in region (:) (above the sonic circle in Figure 6a) are then determined

from the equivalent steady, regular shock reflection equations. This

procedure is outlined in Appendix C. The conditions in region.(::)

dotermine the position of the sonie circle at time T = 1. At all points

along the sonic circle the self-similar veloeity is sonic. That is,

. where u_, Vg5 and a. are known in the uniform £low region (§> .

3 3

Solving Equation (8) gives the ordinate (xsc, Ysc) of any peint lying on

(3)

(4)

(3)

(6)

(7

the sonie circle. Now, the outer boundary is chosen such that it falls

above the sonie cirecle but below the shock impingement point I (see



17

Figure 6a). Since the outer boundary lies in the uniform flow region
(:) , the conditions at grid points along this boundary are exactly known
using the solution developed in Appendix C.

The intersection of the sonic circle with the reflected shock is
determined by simultaneously solving Equation (8) and the slope equation
for the reflected shock in region (:) « Between this intersection point
(IP in Figure 6a) and the wall a cubic is used to approximate the
reflected shock shape. Xnowing the shock shape and assuming a self-similar
flow, that is, xsT = xS/r (xs'r is the shock speed), the flow variables

behind the reflected shock are given by the following equations, which

include the Rankine-Hugoniot relations:

i-x 3
P
R —f ()
1+ xg
¥y
> " N
4, = u,i + v,1 ‘(lO)

.
Ry =
By
a, = /p,lo, (12)

X, =EK, FX_Y_ (13)
T t v

X =—qslcos 8 (14)
t
B = tam—.1 X (15)

y
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X =x_ & (16)
5  Sg 7
52 - q,
Mx - a, a7

2 _ -
P 2‘YMX (v - 1)

s

S —
> —— (18)
o (v + )M 2
S - P8 (19)
Py (v - l)sz +2
u (v - )M 2 + 2 /2
u_ -q Y - ‘ .
Mo=-5 5 [ = ] (20)
v a

2 _ _
?-YMX (v - 1)

a_ = /\rpslpS (21)

(u, - u,)
u = u, +—-§—"—2 (22)
5 1+ xg
y
(o - ﬁz)xs
v, = - Y (23)
1+ xg '
y
2 2
_ P ps(us s )
& "y-1t 2 (24)

- -
where n_ is the inward normal, q is the velocity of the shock in its
normal direction (see Figure 7), ﬁz is the veloeity of the flow in the

direction normal to the shock in I_'egicn@ » Xg 1s the shock speed in

T .

the computational plane, X is the shock speed in the physical plane,
t

and x is the shock slope. The quantity x in Equation (16) is

S

y s
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determined numerically using a second-order central difference formulia.
The subscript s refers to flow conditions behind the reflected shock.

To dnitialize the flow field between the ramp and the reflected shock,
the conditions at the stagnation point (point Q in Figure 6a) are first
computed based on the flow conditions behind the normal part of the

reflected shock (point A in Figure 6a).

v = (25)
v, = 0 (26)
Y

B y~1

o Y=l 02

N = (é -+ 3 MA‘) (27)
1

P -1

2 _ Y-1.,:2

o (l -+ > MA') (28)

b
_ ‘o
e, = Y = 1 (29)
P
= -2_
So =5, 3 3 (30)
o)
2 2
u + v
MA = __...fA___...____‘A*_. (31)
YPA{PA _

Along the ramp between the stagnation point and the sonic circle, a

‘parabolic approximation of the flow variables is assumed. The field points
< . . T R .

(1 < k< kmax’ 1 <j«< Jmax) are then initialized by a linear interpolation

of the flow variables at the ramp and the reflected shock. Based on the
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initial flow field, conservative variables U,E,F, and the geome=iric

derivatives n, ., nx, n

c 3 Et, Ex,'and gy that are needed in Equation (1),

y
are formulated and svored at each of the prid points.

Starting with this initialized flow field, Equation (1) is integrated
{(subject to certain boundary conditions discussed in the next section)
using the explicit, second-order, predictor-corrector MaeCormack's (32)
gcheme. Using a one-dimensional, amplification matrix, stability analysis
{34) of MacCormack's scheme, a governing integration step size is

obtained. The integration procedure and step size calculations are

presented in Appendix B.

Boundary Conditions
The computational region is bounded by the reflected shock and the
outer boundary, both of which are permeable surfaces, and by the wall and
the ramp, both of which are impermeable surfaces. The boundary condition

procedures applied at each of these surfaces are discussed below.

Reflected shock

The position and the shape of the reflected shock wave are determined
at each step of the time-—-asymptotic, integration procedure. The variables

, and x

s~ which appear in the comnservative variables of Equa-

X xsy .
tion (1) along with the flow variables at the shock can be determined by
employing an unsteady variation of the Thomas' "pressure épproac "
(27,28) for propagating shock waves. In this approach, it is unly
necessary to kmow the préssure behind the shock in ordér to alter its

position for the next time level. The required pressure is obtained by



using the normal field point predictor-

but with one-sided differences away from the shock or in the n-

the following equations,
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corrector algorithm at the shock
direction.

The shock speed (see Figure 7) and remaining flow variables are given by

(32)

(33)

(34)

(35}

(36)

(37)

(38)

(39

(40)

(41)

(42)
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o =u, + 43)

v = - (44)

(45)

The guantitry XSE in Equation (34) is determined numerically using a
second—order central difference formula. The subscript 2 refers to
flow conditions in the uniform region@ and the subscript s refers to
flow conditions behind the reflected shock (along k=k.max in Figure 6a).

The actual propagation of the sheck wave in the numerical procedure

is accomplished by using a second-order Euler predictor/modified Euler

corrector
~n+l .
x: =x ™ +-xz At 3 predictor (46)
T
1 n ~ ot
¥ =g B +-£' X +x 1 AT 3 corrector (&7)
s 5 2 \7s s
T T
where
x =x +x ¥ (48)
5. s, sy T

She integration step size At 1is obtained from a stability analysis

described in Appendix B.

T TP TP B | T
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The above equations are used in the following manner:
Initially at time step n all flow variables at the shock are known
including the shock speed and the shape. The pressure behind the shock
is predicted using the first step of MacCormack's scheme. The shock wave
is then moved using Equation (46). The predicted position permits the

shock derivatives x, to be computed from Equation (34). The shock

y
speed, and other flow variables are then calculated from Equations (32)-(45).

The same procedure is followed in the corrector step except that the second
step of MacCormack's scheme is used to get the pressure behind the shock

and Equation (47) is used to correct the shock position.

Tmpermeable boundaries

The impermeable boundaries in the shock diffraction problem consist of
the wall surface and the ramp surface. Each of these surfaces is aligned
with a constant coordinate line as a result of the self-similar, normalizing
transformation. Because of this alignment, and the fact that the flow
must be tangent to these boundaries, the only variable required at the body
to advance the field points using Equation (1) is the pressure. However,
determination of the remaining flow variables and the position of the vorti-
cal singularity on the ramp is essential in computing the correct surface
pressure. Discussed below are tw> different boundary condition procedures
that were tested for satisfying the tangency condition and determining the
flow variables along the wall and the ramp.

In the first, a simple Euler predictor/modified Euler corrector with
one~sided &~derivatives at the wall and n-derivatives at the ramp for

Equation (1) is used. The tangency condition itself, that is, v = 0 at



25

the wall and v = u tan er along the ramp, is imposed after the corrector
step. Having determined the velocity components from this procedure, the
self-similar velocities u-x/t and v-y/t are used to locate the vortical
singularity by noting at what point along the ramp they are identically
zero. Knowing this location, the appropriate entropy levels are assigned
to the surface grid points. As mentioned in the Introduction, the level
of entropy at grid points along the wall and on the ramp up to the
vortical singularity is equal to that behind the normal part of the
reflected shock, while the level of entropy at grid points between the
vortical singularity and the incident shock impingement point is equal that
behind the straight part of the reflected shock. The corresponding body
density is obtained from the following expression by using the pressure
computed by the one-sided finite-difference scheme:

o = (B)l/Y (49)

s

where s 1is an appropriate measure of entropy level. The total energy

e 1is then recomputed from

(50)

The secon& boundary condition procedure tested was that of Kentzer
(35). It is based on a method of characteristics approach in combination
with one-sided finite-differences. Here, the goal is to derive an
expression for P and u_ valid at the impermeable boundary grid points
which can be integrated to obtain the surface pressure and the u~component

of velocity. This procedure is well outlined in Appendix D. Having the

IO ¥ - SO U
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u-velocity component, the v-velocity component is computed from the
surface tangency condition. The self-similar velocities, position of the
vortical singularity, and the body density are computed in the same way as
described for the previous boundary condition procedure.

Using the self-similar property of the flow field in conjunction with
the surface tangency condition, it can be shown from the normal momentum
equation that 23p/da (where n dis the direction normal to each surface)
is zero at the wall and ramp surfaces. HNeither Kentzer's scheme nor
the Euler predictor/modified Euler corrector method satisfy this condition
exactly because of the approximate one-sided, finite-differences involved.
Therefore, after the converged solution is obtained using either of the
above boundary condition procedures, the pressure at the body is recomputed
after the corrector step to satisfy 3p/dn = 0. This is done in the fol-
lowing manner. First, the surface normal is drawn and its intersection
with the first grid line above is found (point R or W in Figure 8). The
pressure at the intersection point (pW or pR) is then obtained from a
simple linear interpolation of the data at two neighboring grid points.

A simple first-order extrapolaticon of the form

Py = Pp 1)

(51)
Py,1° Py |
satisfies dp/an = 0 to the zeroth order. At the stagnation point both
pn and Pg are zero. Making use of this condition, the pressure at the

stagnation point is obtained by taking an average of the two extrapolated

pressures, one along the wall and the other along the ramp.
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A comparison of the different boundary condition schemes is presented

in the Result section.

Quter boundary

The outer boundary (see Figure 6a) is positioned beyond the sonic
cirele (defined by Equation (8)) so that the flow conditions are supersonic
along it. This allows flow conditions along the outer boundary to be

specified initially and held fixed during the entire integration procedure,

Results

The computational grid for a typical regular reflection case
consisted of 11 points in the n-direction and 27 points in the E-directiom.
An average of 300 iteration was required to obtain a comverged solution
and these consumed approximately 15 minutes of computer time on an
IBM 360/67.

Numerical results in the form of pressure and density contour plots
are qualitatively compared with the first-order shock-capturing results
of Rusanov {15) and Schneyer (22) in Figures 9 and 10, respectively.
Rusanov's solution was obtained using Godunov's method for an incident
shock Mach number of 1.89 impinging on a 65° ramp. Most of the contours
which appear in Figure 9a lie within the captured shock wave, and very few
describe the flow field between the ramp and reflected shock in comparison

with the contours of Figure %9b.
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Figure 9. Comparison of numerically generated pressure contour plots.

Mg = 1.89, 8, = 65°
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Figure 10. Comparison of numerically generated pressure contour plots.
M, = 2, 8. = 63,41°
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In studying the Mach reflection phenomenon, Schneyer (22) used a
two-dimensional, Eulerian, hydrodynamic code to obtain the regular
reflection result shown in Figure 1l0a. The incident shock Mach number was

2.0 and the ramp angle was 63.41°. His result exhibits the same quali-

tative behavior as does Rusanov's. The present result for the same case
is shown in Figure 10b. The results of both Schneyer and Rusanov fail

to reveal the presence of the vortical singularity.

Law (5) performed a series of experiments on the shock diffraction
problem for various gases using a Mach-Zehnder interferogram. He tested
a Mach 4.71 incident shock striking a 60° ramp in oxygen; the result was
regular reflection. This case in addition to others at the same incident
shock Mach number but for different ramp angles was obtained numerically
to demonstrate the flow field behavior in the regular reflection regime.
The results are presented in Figures 11-16.

The density and pressure distributions along the wall and the ramp
are shown in Figure 1l. At the stagnatiorn point (point C of Figure 11),
the density and pressure reach a local minimum, while at the vortieal
singularity (point D of Figuxe 11), the pressure is continuous and at a
loecal minimum, and the density is discontinuous. A partial plot {see
Figure 12) of the self-similar velocity along the ramp reveals the two
self-similar stagnation points at A (juncture of the wall and the ramp)
and B (vortical singularity).

In Figure 13, results from the different body boundary condition
procedures are compared. Both the Euler predic;or/modified Euler

corrector and Kentzer's scheme yield very nearly the same results. The

e e L
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oscillations near the stagnation point are a result of the one-sided,
finite-differences used in these schemes. Imposing 28p/8n = 0 seems to
yield a much better solution without any oseillations in the flow variables
near the stagnation point.

Pressure and density contour plets of these computational region are
shown in Figure 14. The centerpoint of isobars near the wall-ramp inter-
section point, and the saddle point of isobars near the vortical
singularity (for which moving away from the vortical singularity the
pressure increases along the ramp and decreases perpendicular to the ramp)
can be clearly observed in the figuye. In the density contour plot, the
convergence of the various isopycnics at the vortical singularity can be
observed. The behavior of the flow near the stagnation points in this
unsteady two—dimensional self-similar problem exhibits the same behavior
as the steady, self-similar, three-dimensional flow about an external
axial corner (36).

The self-similar streamline pattern can be visualized by observing
the velocity vector directional plot of the computational plane shown in
Figure 15. MNotice that all the streamline converge at the vortical
singularity.

A comparison of the interferogpram obtained by Law (5) with the
numerically computed shock shape is shown in Figure 16. If an overlay of
the two results were made by matching shock impingement points, the
experimental shock location would fall inside the numerical solution.

The reason for the discrepancy is probably twofold: TFirst, the viscous

effects (the majority of which can be observed near the wall-ramp
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intersection point) might have the effect of decreasing the ramp angle as

a result of the boundary layer growth with distance from the shock

impingement point. The reduced ramp angle in turn results in a smaller

shock standoff distance. Second, the computed solution assumes flow of an

ideal gas

(v = 1.4). Thus, high temperature effects on the internal

energy such as molecular, vibratiomal excitation are noi taken into account.

The effect of varying the ramp angle for a given shock Mach number

of 4.71 on the shock standoff distance (rso)’ position of the vortieal

singularity (rvs), location of the sonic cirele (rsc), and shock impinge-

ment point (ri) are shown in Figure 17. The standoff distance exhibits

almost a linear variation with ramp angle between the limit for regular

reflection and the last computed case of Sr = 85°. The vortical singular-

ity moves
itself to
the sonic
identical
the senic

away from

towards the wall with increasing ramp angle and actually attaches
the wall for walues of ef greater than 77°. The location of
circle along the ramp, and the shock impingement point are

at the limit for regular reflection. As Br increases

circle moves toward the wall while the impingement point moves

the wall.

.........
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CHAPTER TII. SINGLE MACH REFLECTION

A typical single Mach reflection of an ineident shock is shown in
Figure 18. The self-similar flow field is somewhat complicated in this
case by the existence of a triple point at which the reflected shock, the
Mach stem and the incident shock meet. Emanating from the triple point
is a siip surface Which-intersects the ramp at the vortical singularity.
In Figure 18, MSS denotes the self-similar Mach nuwmber. A sonie line
exists in most of the single Mach reflection cases in the region between
the reflected shock and the slip surface. Below this sonic line (regionm I
in Figure 18) and in the region between the Mach stem and thé slip surface
(region ITI) the self-similar Mach number is subsonic (MSS < 1), while
above the sonic line (region II} it is supersonic (MSS > 1),

In this problem, there are two self-similar stagnation points, that
is, points at which the self-similar velocity components u-x/t and v-y/t
are zero; the first is located at the juncture of the wall and the ramp
(saddle point), and the second, termed a vortical singularity, is located
at the point where the slip surface meets the ramp (nodal singularity).
All the self-gimilar streamlines comverge at the vortical singularity and
the entropy is multivalued. ©*. vaiuc of entropy on the stagnation
streamline and along the ramp up to the vortical simgularity is equal to
that behind the normal part of the reflected shock, while the entropy
between the vortical singularity and the Mach foot is the same as that
behind the foot of the Mach stem.

In the present work, the reflected shock and the Mach stem (including

the triple point) are fitted using the "sharp shock" (27,33) technique.
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Figure 18. Single Mach reflection of the incident planar shock
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A floating discontinuity-fitting scheme in conjunction with the method of

charaecteristics is developed to fit the slip surface.

Double Normalization Procedure
A Cartesian coordinate system is used in the problem formulation with

the origin located at the juncture of the wall and the ramp. The x-axis is

aligned with the wall and the y-axis is normal to the wall (Figure 19a).
The gasdynamic equations in this Cartesian system are given by HEquation (A1)
for the assumptions stated in Appendix A.

In order to apply the "sharp shock" technique, the reflected shock and
the Mach stem are used as computational boundaries. This is done by means
of a double normalizing transformation. The following functions are used
for T, N, and £ which include the self-similarity of the problem, a normal-
ization of the distance between the ramp and the reflected shock and a

normalization of the distance between the wall and the Mach stem:

T =t \
x - Xb(gaT)
"T XD - KD : (53)
£ oo
YS(T]:T) J

where Xb(g,T) represents the equation of the ramp, xs(g,t) represents
the equation of the reflected shock and Ys(n,T) represents the equa@ion of
the Mach stem. Note that the ramp and the shock shapes are defined in
terms of the computational variables n, £, and T and not in terms of

X, y, and t. From Figure 19a it can be seen that such a representation
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is necessary because constant n and constant E lines are not parallel
o the Cartesian x and y axis, respectively.
The equations corresponding to the independent variables T, n, and
E are given by Equation (1) in strong comservation-law form. The geometric

derivatives Nes Mo Do Et, Ex, and EY appearing in this equation are

y
derived in Appendix A (see Equations (Al15) and (Al6)).

The self-similar transformation to n and £ reduces the unsteady
gagdynamic equations in x, y, and t éystem, which are hyperbolic, to an
equivalent steady set of mixed elliptic-hyperbolic equations; they are
elliptic in regions of subsonic self-similar velocity (MSS < 1) and
hyperbolic in regions of supersonic self-similar velocity (MSS > 1). The
equations are made totally hyperbolic by reintroducing a time-Ilike or

residual termA((U/J)T). Because of the self-similar nature of the flow

field this time-like term should approach zero in the converged solutiom.

Initial Conditions

The transformation given by Equation (53) results in the computational
plane shown in Figure 19b. It is bounded by the reflected shock and the
Mach stem, both of which are permeable boundaries, and by the wall and the
ramp. The coordinate n, is zero at the ramp and equal to onme at the
reflected shock. Similarly £ is zero at the wall and equal to one at
the Mach stem. The slip surface floats within the mesh generated by the
double normalization (Figure 1%a). The region between the ramp and the
reflected shock is divided into (jmax - 1) equal intervals and the
region between the wall and the Mach stem is divided inte (k -1

max

equal intervals. This determines the mesh spacings An and AL. The
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intersections of constant n and constant £ lines generate the discrete
computational grid used in the finite-difference formulation of the problem.
Initial conditions are specified at all g;id points in order to initiate
the integration of the transformed Equation (1) using MacCormack's (32)
scheme (see Appendix B).

To initialize the flow field at time <t = 1 given the incident shock
Mach number M.S and the ramp angle Br, the pressure and the density in
region.(:) (see Figure 20) are first set equal to unity. The flow condi-
tions in region (:) s which are used as the upstream conditions for the
reflected shock are calculated from Equations (3) to (7). Referring to
Figure 20, an initial value for the triple point trajectory angle (x)
is assumed. Corresponding to this assumed value of ¥, the triple point
solution is computed from an equivalent steady approach described in
Appendix E. This gives the flow conditions at points 3 and 4 lying on
either side of the slip surface at the triple point (see Figure 20). The
reflected shoeck slope (¢R), the Mach stem slope (¢M) and the slip surface
angle « are also obtained from the triple point solutiom.

Assuming some standoff distance for the reflected shock (distance
0-A) at time <t = 1, a cubic is used to approximate the reflected shock
shape between the triple point and the wall. This cubic satisfies the
conditions that the shock be normal to the wall at point A and the slope
at the triple point be equal to that determined by the triple point
solution (tan ¢R). Similarly, assuming some value for the distance between
the origin 0 and the Mach foot B, a cubic is used to approximate the Mach

stem between the triple point and the ramp. This cubic satisfies the
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conditions th~t the Mach stem be normal to the ramp at the foot and the
slope at the triple point be equal to that determined by the triple point
solution (tan ¢EP' The slip surface is initially approximated by a
straight line with a slope tan (90°-~a). This straight slip surface meets
the ramp at the point denoted by VS in Figure 20.

Even though the double normalization requires that both the reflected
shock and the Mach stem be represented in terms of the computational
variables n, £, and T the calculation of the flow variables behind them
and their actual propagation requires a representation in terms of the

physical variables x, y, and t. The reflected shock is represented by

1

x = X_(6,7) = x_[y{n=1,£),¢] (54)

where Es(y,t) is the representation in terms of the physical variables.

Similarly, the Mach stem is represented by

y = Ys(n,T) ?s[x(€=l,n),t]

where §S(x,t) is the representation in terms of the physical variables.
Knowing the initial reflected shock shape and assuming a self-similar

flow, that is,

X (&,1)
X (5,1) = 2 (55)
T
the flow variables behind the reflected shock are given by the following

equations, which inelude the Rankine-Hugoniot relations (see Figure 21):
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M§3 (66)

aye =/ YPag/Paq (67)

(u33 - uz)xsy
Ugg = U, + (68)
1 + %2
s
Y
(u3s - uz)xSy
v.o= - (69)
3s 1+%2
s
¥y
2 2
e - PSS " pSs(uSS vas) (70)
3s vy -1 2

> -+
where n_ is the inward reflected shock normal, G is the velocity of

the shock in its normal direction, u, is the wvelocity of the flow normal

to the sheock in region (:) ’ XS is the shock speed in the computational

T
plane, is is the shock speed in the physical plane, and is is the
= ¥
shock slope. The quantity XS (£,1) appearing in Equation (61) is
' &

computed numerically using a second-order central difference formula,
The subscript 3s refers to flow conditions behind the reflected shock
(along n =1 din Figure 1%9b).

The flow conditions behind the Mach stem are computed in a similar
fashion knowing the initial shape and assuming a self-similar flow

(see Figure 22).
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where gs is the outward Mach stem normal, Es is the velocity of the
Mach stem in its normal direction, Ys is the shock speed in the
computational plane, §St is the shoc; speed in the physical plane, and
§s is the Mach stem slope. The quantity appearing in FEquation (76) is
coiputed numerically using a central difference formula. The subscript 1
refers to flow conditions in region (:) , and the subscript 4s refers to
flow conditions behind the Mach stem (along £ = 1 in Figure 19h).

With the flow conditions behind the reflected shock and the Mach stem
known, all the field points (1 < k < kmax’ 1L <j< jmax) are now initialized.
The conditions at the stagnation point (point 0 in Figure 20) are computed
from Equations (25) to (31) based on the normal part of the reflected
shock (point A). The point where the slip surface meets the ramp is a

vortical singularity where the self-similar velocity components are zero.

Thus, initially the velocities at point VS (see Figure 20) are assumed to be
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X

Vs

un =——
Vs T

(87)

Tys

v = —
vs T

Along the ramp between point 0 and point VS and between point VS and
point B (Mach foot) the velocities are linearly interpolated and the
pressure is approximated by a parabola. Along the wall (A-0) a parabolic
approximation of the flow variables is used. The entropy along the wall
and the ramp up to the p~int VS is equal to that behind the normal part
of the reflected shock, and between VS and the Mach foot it is equal to
that behind the foot of the Mach stem. With pressure and entropy known

along the ramp and the wall, the density is computed from

o = (2)" 8)
where s is an appropriate measure of the entropy level. The total

energy e is then computed. The jressure at the field points (L <k < kmax’
1<j< jmax) are obtained by a linear interpolation of the pressure at

the reflected shock and the ramp. The pressure along the slip surface is
then obtained by a linear interpolation using the values at the neighboring
grid points. The side of the slip surface facing the reflected shock is
denoted by "a" (see Figure 20) and the side facing the Mach stem is

denoted by "b." The pressure on either side of the slip surface is the

same but the velocities are not. The velccity components along the slip

surface on side "a" are obtained by linear interpolation using the values

at point VS and point 3 at the triple point. Similarly the velocitly
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components along the slip surface on gide "b" are obtained by linear
interpolation using the values at point VS and point 4 at the triple
point., The u-velocity component along the slip surface on side Ma" is

recomputed to satisfy the jump condition

(ua - ub) tan(90°® - o) = v - W

a b (89)

The encropy along the slip surface on side "a" and side "b" is equal to

8, and 5, respectively (the slip surface is a self-similar streamline along
which the entropy is constant). ZKnowing the entropy and the pressure, the
density along the slip surface is computed. Based on the flow conditions
along the slip surface on side "a'" and the reflected shock, the field
points lying in region I (Figure 20) ave iInitialized. Similarly, based

on the flow conditions along the slip surface on side "b" and the Mach
stem, the field points lying in region II are initialized using linear
interpolation.

Starting with this initialized flow field, Equation (1) is integrated
(subject to certain boundary conditions discussed in the next section)
using the explicit, second-crder, MacCormack's (32) scheme. Since the slip
surface floats within the n,t mesh system a floating-fitting scheme in
conjunction with the method of characteristics is developed to propagate
the slip surface. Under this scheme differencing across the slip surface
is forbidden. Thus, special one-sided differencing formulas (37) are used
at grid points neighboring the slip surface. The floating-fitting scheme
along with the special differencing formulas are explained in a later

section.
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Boundary Conditions
The computational region is bounded by the reflected shock, the Mach
stem, the wall and the ramp. The boundary condition procedures used at

each of these surfaces are discussed below.

Reflected shock

The position, shape and the speed of the reflected shock wave are
determined at each step of the time-agymptotic integration procedure.
The variables XB(E,T), Xg {(¢,T), and Xs (£,7) which appear in Equation (1)
along with the flow variabies behind theTshock are determined by employing
the unsteady version of the Thomas' “pressure approach" (27,28) for
propagating shock waves. As mentioned in Chapter II, in this approach
it is necessary to know only the pressure behind the reflected shock
(pas) in order to alter iis position for the next time level. This required
pressure is obtained by using the normal field point predictor-corrector
algorithm at the reflected shock but with one-sided differences in the
n—direction. As mentioned in the previous section (Initial Conditions)
in order to compute the shock speed Xs (€,1), it io necessary to define an
equivalent reflected shock shape in ter;s of the physical variables
t, x, and y. Such a representation is given by Equation (54). Knowing

pressure the remaining flow variables are given by the following equations,

which include the Rankine-Hugoniot relations.

i/2
_J1 P3s
M, —{2‘1’ ["P—Z— (v +1) + (y - l)]} (90)
q =u, - aM (91)
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a, = /szlp2 (92)

2
(v + l)M%z

Pa. =P (93)

2 - 2
(v 1)Mi2 + 2

- 2 1/2
v - (v l)Mﬁx2 + 2 ] (o)
ayMZ, - (y - 1)

=
]

38 M&aaSS + qs (95)

aas n’Yp3s/pas (96)

The velocity components LI and Vas and the total energy e,  are then

computed from Equations (68) to (70). The actual propagation of the
reflected shock along with the Mach stem is presented under a separate

subheading.

Mach stem

The variables YS(n,T), YS (n,T), and Ys (n,T) along with the flow
variables behind the Mach stem gre determinedrfrom pressure (pus) using
the same Thomas' '"pressure approach' employed for the reflected shock.
The pressure behind the Mach stem (PqS) is obtained from the finite-
difference algorithm using one-sided differences in the E-direction. The
remaining flow variables are given by the following equations:

' 1 [ Pus Hz
Myl —{Z—Y-[—I,T (v +1) + (v - 1)]} on

(98)

)

=]
It

=
I

=

a, = /¥ (99)
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(y + 1)MZ,
Pug = Py " (100)
R + 2
Cy 1)1'1Yl
1/2
{y - l)M?1 + 2
e - A (101)
ZYMYI -(y = 1)
Ye - —qs + Mxhaks (102)

aks - v kas/pus (103)

The velocity components u“s and vus and the total energy eqs are

computed from Equations (84) to (86).

Impermeable boundaries

The boundary condition procedure used at the wall and the ramp is
exactly the same as that used for the regular reflection case except that
Kentzer's scheme (35) was not used because it gives the same results as

one-sided finite-differences.

Shock Speed Calculations
The actual propagation of the reflected shock and the Mach stem
in the numerical procedure is accomplished by using a second-order Euler

predictor/modified Euler corrector. TFor the reflected shock it is given by

£ = x M0 + 32 @08 | (104)
"s, _
nt+1 1 | 1i.n a 112 3}
X, &) =X (1) 5 [XS{(E,T)-'F X (E,T)] ot (105)
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For the Mach stem
~nek ¥
Yg Lin,1) = st(n,T) + Y: (n.T)AT (106)
‘L‘ .
+1 1 =
Yo (1) = ¥ N, ) *E[Yz (n,7) + X5 1(11,1:)] AT (107)
T T

Equations (104) and (106) are the predictor step and Equations (105) and
(107) are the corrector step. It is necessary to represent the shocks in
terms of the physical variables in order to evaluate the shock speeds

XS (E,T) and YS {n,T). They are evaluated in the following manner:
T T

X (E,7) = X (y,t) + X, yTI (108)
T t y =1
Yo (n,1) = F, (5,1) + 5, XTI (109)
T t X —
g=1
where
X (&,1)
- Sg
xS o — (110)
y Ye
st(n,'r)
Vo T Tm (L
x n
= EY (1, _ 112)
yT‘n"—'l £ ST( T) _ (112)
X = nXéT(lst) +'(1"n)XbT(I’T) : (113)
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Xb (L,t) = tan{90° - er)Ys (0,1) (114)
T T
xn = Xs(l,T) - Xb(l,T) (115)
E=1
¥ = YS (1,7) (116)
3
n=1

ES and ?S are evaluated from Equatioms (60) and (75), respectively.
t t
It can be seen from Equation (108) that evaluation of XS (E,T) requires
T
Y. which in turn requires YS (1,7). Similarly, evaluation of
n=1 T

Ys (n,T) requires XS (1,t) which is the reflected shock speed at the
T T
triple point. Since the triple point moves with a Mach number Ms’ XS (1,1)

T
is simply the speed of the incident shock wave.

X, (L) =M~ (117)

T
Substituting n = 1 in Equation (109) an expression for YS (1,7) is
T
obtained
Ys (1.1) = Vg + ¥ XS (1,1) (118)
T t X T

In Equaticn (118) ﬁs and ?s are evaluated at the triple point.
t X
This completes the calculation of shock speeds. Knowing Xy (£,1) and
: T

Ys (n,T) the reflected and the Mach stem are advanced using Equations (104)
T
to (107).

hid
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Floating-Fitting Procedure for the Slip Surface

Tn a usual discontinuity-fitting procedure, the discontinuity is
transformed into a computational boundary by means of a normalizing
transformation. According to Moretti (37) this is not necessary. His
floating-fitting procedure allows one to float the discontinuity within
the existing mesh and still fit it by using special one-sided differencing
at grid points neighboring the discontinuity. The idea is not to allow
differencing across the discontinuity. The actual propagation of the
discontinuity in Moretti's approach is dome using Kentzer's scheme. In
the present analysis, Moretti'’s floating-fitting idea is used to treat
the slip surface. Instead of using Kentzer's scheme, the method of
characteristics is used to compute the flow conditions along the slip
surface on either side {38).

Figure 19a shows the slip surface floating within tﬁe existing mesh
system. Since differencing across the discontinuity either in space or
time is strictly forbiddem in a fitting approach, special one-side differ-—
encing formulas are used at grid points neighboring the discontinuity,
instead of the usual equally spaced difference approximations (MacCoxrmack's
scheme uses forward differences in the predictor and backward differences
in the corrector). Application of the usual MacCormack's scheme at the
grid point O neighboring the slip surface in Figure 23 requires conservative
variables at grid points 5 and 6 lying on the other side of the slip
surface. Since this is forbidden, the forward differencing in the
n-direction (ﬁﬁ in BEquation (A10)) is modified to the following (Refer-

ence 37):



INCIDENT SHOCK

REFLECTED :
SHOCK - MACH STEM

SLIP SURFACE

Figure 23. Spatial differencing approximation for floating-fitting
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ke

[ESE - (1 - 52)E0 - 62E1]

Enl = Zn + 8, (119)
0 SE
where
[3E__. -4 E - (4 -5¢)E. + (1 - e )E ]
3 - SE n 0 n’ 1 n° "2 (120)
" 24n .
SE
1- En
Y TTFE (121)
n
62 = snﬁl (122)

Equation (119) requires two backward grid points (1 and 2). If only one

backward grid point is available then Equation (120) is modified to

= 1 2811 " Tls 3 = =
Enl = N\Tas E + 15 Egp - 2E (123)
SE n n

If no backward grid point is available then Equatioan (119) is modified to

E._ -
_"SE__ "0
n‘ = ————En v (124)

Similarly, the backward differencing in the £-direction (Fg in Equa-

tion (ALQ)) at grid point 0 is modified to

[f‘sx—(l-ﬁ)f‘ -5 F.]
= - _ 2°°0 23 =
Fgl = Ft + 61FE (125)
0 sX
where
. _ [BFSx - AEEFO-(é - 5€€)F3 + (l - Eg)Fq] (126)
£ 2AF,

SX
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1-¢

- &

§, = T+ e (127)
g

62 = Egﬁl (128)

Equation (125) requires two forward grid points (3 and 4). If only one

forward grid point is available then Equation (126) is modified to

_ 1 2Eg -1y 3 _ _
Fel = % l+EE)F3 +l+eg Fox = 25, (129)
sX

If no forward grid point is available then Equation (125) is modified to

F_~-F

_ 'sx 0
‘5] airyvan (130)
0 £

F

Similar special differencing formulas are used at grid points neighboring
the slip surface on the other side.

All of these special one-sided formulas require the evaluation of
the conservative variables at points where the slip surface intersects the
constant n and constant £ lines. In order to formulate the conservative
variables, the flow comnditions along the slip surface must be evaluated at
each time level. This is done using the method of characteristics.

The flow field is initially assumed on either side of the slip surface
at points where it intersects the constant n and constant £ lines. As
integration proceeds in the time (1) direction, the location of the initially
assumed slip surface keeps changing along with the flow variables on
either side until the correct self-similar solution is reached. The

actual propagation of the slip surface is carried out only along the
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constant n lines, using the method of characteristies. The location and
the flow conditions at points where the slip surface intersects the con-
stant £ lines are then obtained by a linear interpolation of the wvalues at

two neighboring slip surface points lying on constant n lines (see

mn "

a

Figure 24). 1In Figure 24, points 1

and "b1" represent two sides of
the slip surface at a constant n line at the initial time level "n." At
the new time level (T + At) n+l, they are given by "a" and "b." The problem
hete is to locate this new slip surface position and to compute the f£low
. 1n

conditions at "a" and "b." Out of the ten flow variables (Pa’ Py B Voo

e pb, pb, W, Yy and eb) only six (pa, Ws Vo Pus Ups and vb) need to be

a
evaluated. The densities Py and pb and the total energies e, and ey
can be obtained from
/Y
p =(E§) (131)
a s
a
P, /Y
Py = \a (132)
b
P p (u? + v 2)
_ a a‘a a
ea =37-1 + 5 {133)
2 2
P p, { + v, %)
e ——b_, b b (134)

{
ot

y-1 2

where s, and s, are some measure of the entropy values on either side
of the slip surface. They are the same as the values at the triple point

because the slip surface is a self-similar streamline along which the

entropy is constant.
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Figure 24. Method of characteristics for the unsteady slip surface propagation
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Evaluation of the pressures (Pa and pb) and the velocities
(ua, ub, va, and vb) require six simultaneous algebraic equations. As
previously noted, the slip surface is advanced only along the constant
n lines. Thus, the characteristic compatibility relations are derived
only in the (£ — 1) plane. Figure 24 shows the slip surface location at
the old (n) and new (n+l) time level at a constant n line. From the new
time Jevel location, the C+ and C é.haracteristics are drawn which strike
the old time level at points 1 and 2, respectively. The compatibility

+ s s . .
relation along the C characteristics is given by

pcﬁx pcg
(, - p) + e ( ~w) e (v, - V)

7 / 2 2 a 1
/ gx2+gy s +EY

, ) peE_ /np. _
= =lup + + +
up *pefnu +petngv ( 5 Touu
/E 2 4 £ 2
X y
peg n_p -
— (__3’_” + uvn) AT (135)
2 2
/Ex + Ey
Similarly, the compatibility relation along the C characteristics is
given by
chX pcg
- - - - F -
X v X y
pcE n_p
= -lap_ + pcln_u_ + pe2n v - = (xn-i-ﬁu)
n xn yn 2 2 n
JE -+ &
. X y
pcg n_p -
- Y ( yp 0. uvn) AT (136)

2 2
/gx +EY
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The line joining the old slip surface location (point a, in Figure 24)
and the new slip surface location (point a) is nothing but the streamline
characteristics in the (£ - 1) plane. Compatibility relations are derived
along the streamline characteristics on either side of the slip surface.

On side "a" it takes the form
np n_.p
- - - = - S - yn, -
Ey (ua ual) Ex (va val) [Ey( 5 + uu ) EX( o + uv, )] AT

The similar relation on side "b" is

n_p n_pP
- - - - - xXn . = - BN 2 W
Ey(ub ubl) .‘:;K(vb vbl) I:Ey( 5 + uun) ’c;x( 5 + uvn)] At

(138)
The jump conditions across a moving slip surface are
P, = Py (139)
-+ - > +
9 " Pg1 T 9 T P T e (140)

where za and E£ are the velocity vectors on either side of the slip
surface, Ksl is the slip surface normal and qs1 is the velocity of the

slip surface in its normal direction. The slip surface is defined by

y - ysl(x,t) =0 (141)

Using Equation (141), the second jump condition is rewritten in the form
(ua - ub)ekl)x_= vb - va (142)

where (ysl) is the slope of the slip suriace.
X
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The unknown flow variables Par Pps Wys Uy V_, and v, are now
obtained by solving Equations (135)-(139) and (142) simultaneously. The

actual propagation of the slip surface ig carried out by

o+l _ 0 n
Yo, = Vot (ysl)T At (143)

where (ysl) is the speed of the slip surface and is evaluated in a
T
manner similar to the shock speed, When the flow field converges, the

slip surface speed (y ) should converge to y _/T.
sl/. sl

Results

The computational grid for a typical single Mach reflection case
consisted of 6 points in the n-direction and 31 points in the £-direction.
Au average of 400 iterations wasbrequired to obtain a converged solution
and required approximately 15 minutes of computer time on an IBM 360/67.

Numerical results in the form of pressure contours are qualitatively
compared with the first~order shock-capturing results of Rusanov's
solution in Figure 25. Rusanov's solution was obtained using Godunov's
method for an incident shock Mach number of 1.89 impinging on a 30° raﬁp.
Most of the contours which appear in Figure 25a lie within the captured
shock waves, and very few describe the flow field bounded by the reflected
shock, the Mach stem, the wall and the ramp in comparison with the contours
of Figure 25b.

Law (5) performed a series of experiments on the shock diffraction
problem for various gases using a Mach-Zehnder interferometer. He tested

two cases which resulted in single Mach reflection. The ramp angle for
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both the cases was 40° and the incident shock Mach number for one case was
1,89 and for the other 2,10. Numerical results were generated for these
two cases to demonstrate the flow field behavior in the single Mach reflec-
tion regime. The numerical results are presented in Figures 26-35.

The density and pressure distributions along the wall and the ramp for
two cases are shown in Figures 26 and 27. The juncture of the wall and
the ramp is a stagnation point (point C) at which pressure and density
reach a local maximum. The point where the slip surface meets the ramp is
a vortical singularity (point D) at which the pressure is continuous and
reaches a local minimum. The vortical siﬁgularity is nothing but a slip
surface at a point at which the density takes a jump because of the
discontinuous behavior of the entropy. The numerical results clearly
exhibit this flow field behavior as predicted by Ludloff and Friedman (11).

The mesh in the physical plane is automatically generated by the
double normalizing transformation. As reflected shock and the Mach stem
change their shapes during the iteration process, the mesh in the physical
plane also keeps deforming until the self~similar flow field is estahlished.
Figures (28) and (29) show the converged mesh in the phvsical plane for
incident shock Mach numbers 1.89 and 2.1, respectively, for a ramp angle
of 40°, The slip surface is clearly seen to float within the physical
mesh.

Pressure contour plots of the physical region are shown for two
cases in Figures 30 and 31. The centerpoint of isobars near the wall-ramp
juneture, and the saddle point of isobars near the vortical singularity can

be clearly observed. By doing a local amalysis of the gasdynamic equations
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Figure 26. Surface pressure and density along the wall and the ramp.
Mg = 1.22, 8, = 40°
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|..WALL- L. RAMP N

Figure 27. Surface pressure and density along the wall and the ramp.
Mg = 2.1, 8, = 40°
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at these singularities (stagnation point is a saddle singularity and the
vortical singularity is a nodal singularity) Ludloff and Friedman (11)
came up with the same behavior for isobars as seen in the numerical
solutions. Figures 30 and 31 also exhibit the continuous behavior of
pressure across the slip surface. In order to show any discontinuous
behavior of the flow field as a sharp jump in the contour plot, the
contour program requires that such a discontinuity be treated as one of
the boundaries of the computational region because of the various inter-
polations involved. Since the slip surface is floated within the
computational mesh the contour program canmot bring out the true sharp
jump in the density across the slip surface in a density contour plot.
The density contour plot might look as though the slip surface was captured
within a mesh interval.

The self-similar velocity directional plot for two cases are shown
in Figures 32 and 33. The self-similar streamline pattern can be visualized
from these plots. WNotice that all the streamlines tend to converge at
the vortical singularity (modal singularity). The streamlines also diverge
away from the stagnation point (saddle point). Only the stagnation
streamline passes through the stagnation point.

The comparison of the interferogram obtained by Law (5) with the
numerically computed shock and slip surface shape is shown for two cases
in Figures 34 and 35. The triple point trajectory angle (¥x) in the numeri-
cal solution is larger than that shown in the experimental interferogram.
The reason for the discrepancy is probably two fold: First, the viscous

effects (the majority of which can be observed near the wall-ramp
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intersection) might have the effect of decreasing the ramp angle as a
result of the boundary layer growth with distance from the Mach foot. The
reduced ramp angle in turn results in larger triple point trajectory angle.
Second, the computed solution assumes flow of an ideal gas (v = 1l.4).

Thus, high temperature effects on the internal enerpgy such as molecular,
vibrational excitations are not taken into account. The slip surface in
the numerical solution comes out to be nearly straight as seen in the
experimental picture. In addition, a small self-similar supersonic region
lies between the slip surface and the reflected shock. The sonic Lline
bounding this supersonic region is shown in the numerical results in

Figures 34 and 35.
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CHAPTER IV. CONCLUDING REMARKS

The discontinuity-fitting procedure developed in this report for com-
puting the shock diffraction problem for the regular and the single Mach
reflection is capable of accurately predicting the inviscid flow field with
its reflected shock, the Mach stem, the slip surface and the vortical singu-
larity. The solution in the neighborhood of the self-similar stagnation
points exhibit gasdynamic equations with regards to the behavior of the
self-similar streamlines, isobars and isopycnics. The present numerical
results are a considerable improvement over the early first—order numerical
solutions and compare favorably with available experimental data.

The present work treats only the regular reflection and the single
Mach reflection cases. In order to develop a discentinuity-fitting proce-
dure for the double Mach reflection case, a good a priori knowledge of the
flow structure is required. Thus, a development of a good shock-capturing
solution for the double Mach stem case is very desirable to understand
what exactly is going on.

Extension of the present planar shock diffraction problem tc the

spherical shock diffraction problem is suggested.
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APPENDIX A. STRONG CONSERVATION-LAW FORM OF THE GOVERNING

EQUATIONS AND THE GEOMETRIC DERIVATIVES

Since the equations of motion in fluid mechanics are derived from con-
servation principles (mass, momentum, and energy), it is often convenient
to cast the equations in divergence form or conservation-law form which
explicitly displays the conserved quantities such as mass, momentum, and
energy. In the Cartesian system (x,y,t) the gas~dynamic equations (contin-
uity, x-momentum, y-momentum, and energy) for inviscid, nonheat-conducting,

and adiabatic flow can be written in comnservation-law form as:

Ut + EX + Fy =0 (ALl)
where
P pu PV
pu p+ pu2 puv
U= F = F o=
pv puv D + pv?
e (p + elu {p + e)v

t and v are the velocity components in x and y directions, and p, p, and
e are the pressure, density, and total energy per unit volume. The system
of equations is made complete by specifying the total energy in the form:

-1 e o2 2
e o p + > (u® + v=) (A2)

In most fluid mechanics problems it is necessary to make a coordinate
transformation from the Cartesian coordinates (x, y, t) to some other svstem
(n, E, 1), in order to facilitate the easy aspplication of surface boundary

conditions on arbitrary shaped bodies. Sometimes coordinate transformations
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are needed to incorporate some of the special features of the flow field

{conical flows, seli-similar flows, etc.) in the numeriecal formulation of

the problem.

Let the new coordipates T, n, and £ be related to the Cartesian sys-.

tem t, x, and v by the transformation:

T =t
n=nx, v t)
£ = E(x: ¥, t)

(A3)

To arrive at the transformed equations, the derivatives with respect to x,

v, and t in Equation (Al) are replaced in terms of the derivatives with

respect to T, N, and £ din the following manner:

3 9 5 )
% - on "= Ty &

g _ 9 a8

5y~ an v T &y s
9 _ .8 , 3 9

at - ar T an "t T B |

Making use of Equation (A%4), Equation (Al) can be written as
Up + ”tUn + gtug + ann + EXEg + nYFn + gYFE =0

Equation (A5) can always be rewritten as

T 1 o] r =
UT+En+r€+H )]

where
~
Ut =U
T = D
E —ntU-!-an-i-nyF _
' s
F —-F,‘tU+E;xE+EYF
u' =—»(Un + En, + Fn, + UE, + EE +F£.)
t
) tn X, yn £ xg yE y
Vi;
g4

(A4)

(A5)

(46)

(A7)

RS SN



93

All the terms in the untransformed Equation (Al) are derivatives of the
unknowvn four—component vectors (U, E, and F) with respect to the independent
variables (t,x,v). This is said to be in strong conservation-law form (30).
The transformed Equation (A6) is said to be in weak comservation-law form
because of the presence of an undifferentiated term H'. This term is
analogous to the fictitious body force term. The presence of the H' term
in the governing transformed equation is undesirable for two reasons. First,
it prevents the achievement of overall conservation of mass, momentum, and
energy. Second, it involves several second derivatives (ntn, nxn, nyn, Ex »

g

Exg, Eyg). The analytical expressions required to evaluate these second
derivatives may be difficult to obtain. As a result these are evaluated
numerically thus increasing the computer time,

In the present work, the transformed Equation (AS5) is rewritten i.
strong conservation-law form to aveid the undesirable features of the weak
conservation-law form. In order to bring Equation (A6) into a strong
conservation-law form the H' term must somehow be removed by including
appropriate terms into U', E', and F' before the derivative is taken.

The technique of Viviand (31) is applied here.

The Jacobian of the transformation is given by

I = 3(n,E,T) —

TGyt TNyt (48)

If the transformation is regular the Jacobian is neither zero nor infindite.
Assuming the Jacobian to be finite, all the terms in Equation (AS5) are

divided by the Jacobian J. It can then be rearranged as
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[t ] ) - (), ()
o), G A, e

It can be easily shown that all the terms inside the fourith bracket cancel

out. Thus, Equation (A9) is composed of only the first three bracketed
terms. The strong conservation-law of the transformed equations can thus

be written in a simpler fashion as:

UT+§n+}_5‘E=O (A10)
where
U=1/J T
E = (Un. + En + Fn)/J
- > (All)
F = (UEt + EEX + FEY)/J
I = ngEy — ngky

-~

For an analytical transformation the geometric derivatives ng, Ny ”y= Ees
Ex and EY can be evaluated analytically. For a numerical transformation
these geometric derivatives will have to be evaluated numerically.

In the regular reflection problem (refer Figure 5) the imdependent
variable transformation T = t, n = n(x,y,t), and & = E(x,y,t) which
includes the self-similarity of the problém and a.normalization'of the dis-
tance between the ramp and the reflected shock is given by:

T =+t

x - x ()

n= XS(Y: t) - Xb (Y) . (a12)

=X
E=%
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where xb(y) = y cot 8, represents the equation of the ramp, and x5 (y,t)
represents the equation of the reflected shock. The geometrie derivatives

required by Equation (Al0) are:

nx. 7
_ °t __E
Te T Tk - x eToT
1
n, = ———— E. =0 (Al3)
X xs—xb x ?
% - nix. - x
v Xg — Xy ¥y T w,

Since Ex = 0, the Jacobian reduces to J = n_&_.

In the Mach reflection problem (refer Figure 19a), the transformation
invelves a double normalization procedure. The transformation functions
T, N, and E include the self-similarity of the problem, a normalization of
the distance hetween the ramp and the reflected shock and a normalization

of the distance between the wall and the Mach stem. They are given by:

j
T=t
X = X-b(E:T)
"TERED - 5D b (a14)
~ y ~ Y, (1)
T - g

-
Since the wall is alignea with the =x-axis, the equation of the wall is just
YB(T) =0 or £ = 0. In Equation (Al4), Xb(g,r) =y cot . = EYS(O,T)cot 8,
represents the equation of the ramp (n = 0), XS(E,T) represents the equation
of the reflected shock, and Y (n,T) represents the equation of the Mach

stem. The body and the shock shapes are defined in terms of the computational
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and t.
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N, £, and T and not in terms of the physical variables

X3 V>

Such a representation is necessary because the constant n and

constant & lines are not parallel to the x and y axis, respectively.

Corresponding to the transformation given by Equations (A14), the

geometric derivatives are obtained as follows:

&t

Tl ﬂg n
¥ YE ¥

3(n,y,t)

a(mE,0) I Fg B

8(x,y,t) ¥ X, X
3(n.E,7) no% T

3(x,n,t) %

a(n.E.T)  _ 3

3(x,y,t) X ¥, - Xy
a(ﬂsE:T) ne &n

9(X32,n)

a(n,E,t)  _ et vk

a(x,y,t) o
3(n,E,1) e
3(E,y, t) y
a(n,&,1)  _ n

3 (x,y,t)
3(n,E,T)

a(X,E,t)
3(n,E, 1) _ n

3(X,2,t) X ¥, — XY
3(H,E,T) n"é &'n

3(x,v,8)

3(n,E,T) *Yn T %

3(x,y,t)

T x V. — X.¥
3(n,&,1) n"g &'n

(Al5)
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Evaluation of (Al5) requires the following:

X, = T]XST(E,T) + (1 - U)XbT(E:T)

]
I

=nX, (E,7) + (L - W% (&,1)
£ s bg

x, = X (E,1) - X (E,1)

¥, = EYST(ﬂsT) ( e
Y = Tg(n,1)

y_ = EY¥g (n,T)

n n
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APPENDIX B. INTEGRATION PROCEDURE AND STEP SIZE CALCULATIONS

MacCormack (32) has comstructed a two step, preferential, predictor-
corrector sequence for use in solving systems of differential equations
written in the comservation-law form. The scheme is second order in both
time and space. In application to nonlinear equations with several depen-
dent and independent variables, the method has low storage requirements and
simple programming logic.

As applied to Equation (A10) MacCormack's method is as follows:

=ntl _ =n At {=n _=n At fen -
Uj sk - Uj 4 An (Ej+1 .k EJ ,k) AE (Fj Skl FJ ,k) (_Bl)
U, =5 . + . - — | E, - E. - =1 F. - . B2

The tilde that appears over certain of the variables denotes the predicted
value of that particular variable. The subscripts j.and k refer to mesh
indices whereas the subscript =n refers to the time.

In this versioﬁ forward differences are used in the predictor and back-
ward differences in the corrector. However, one could use backward differ-
ences in the predictor and forward differences in the corrector. Another
possibility is to use a forward difference for the n-derivative and a back-
ward difference for the £-derivative im the predictor and the opposite in
the corrector. Because of these various options MacCormack's scheme is
termed a preferential difference scheme.

In the case of a boundary mesh point for which the forward grid is not
available, the forward difference in the predictor in that direction is
modified to a backward difference in that direction. Similarly, if the

backward grid is not available then the backward difference in the corrector
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is modified to a forward difference in that direction. For example, for

all the grid points along the ramp no backward grid point is available in

. . . =n+1 = .
the n—~direction. At these gcid points the term E§+k - E?fi  In the
3 3
correcior is modified to ﬁ?+1 - ﬁn+1

j¥+l,k d.k

The integration step size AT must be specified to initiate the calcu-
lation. The maximum silowable step size ATn in the n-direction and the
maximum allowable step size ATE in the E-~direction are obtained from the
one—~dimensional, amplification matrix, stability analysis (34) of MacCormack

scheme. They are given by

ar, = oy —40 (83)
| “mazx, n]
| max,gl
where CN is the Courant number, Umax n is the maximum eigenvalue in the
]

(n~t) plane, and o©

max, £ is the maximum eigenvalue in the (E-t) plane.

For the calculation to be stable, the minimum of the two step sizes ATn
and ATE is used:

AT = min(ATn, At

E) (BS5)

In order to compute these maximum eigenvalues first the equations of
motion are written in nonconservation form in terms of the transformed
coordinates variables n, £, and t. The continuity equation and the energy
or the entropy equation are coupled together to eliminate any derivatives of
density. This is done in the following manmer:

. - -+ ->
Continuity: Pe +q ° Vo +pV+q=0 (BG)

-
Energy: : Py — capt +q- (Vp - c29p) =0 (87)
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where

& 2
= ul + vj

o4
I

B R
V= 9% i+ 3y j

2]

p

Multiplying Equation (B6) by ¢? and adding it to Equation (B7) results in
2 =
P, + up, + P, + pe(u, + v?) 0 (B8)

In terms of the transformed coordinate variables n, &, and T Equation (B8)

becomes
P, + PR+ P+ pef(uly tun, b vE, + VN =0 (89)
where
u = n, +oung +-vny (B10)
v=E tuE + Vg (B11)

The x~momentum and the y-momentum equations are also written in terms of

the transformed coordinates.

¥—-momentum: u. + Pn“x/p + PEEx/p +-unﬁ + ug% =0 {B12)

- tum: + + v u -+ =0

y-momentum Vo pnny/p + pEEy/p Vet vy (B13)
Equations (B9), (Bl2), and (BLl3) are written in matrix form as:

Qp + 40, + 8,0, = 0 (B14)

wherg

P u  pc?ng  pefny ¥ opelg, el
Q=|ui, A ={ulp - T 0 f, Ay =|&le v . 0 §(BlS)

<l

\Z n,p 0 u Ey/p 0
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The matrix A; has three eigenvalues the maximum of which is O ax "
3
Similarly the matrix A, has three eigenvalues the maximum of which is

ag

max, £ The eigenvalues of A, are obtained by solving the matrix equation
, ’

|a; - To] =0 (B16)
Where I is the identity matrix. Solving Equation (B16) yields the follow-

ing three eigenvalues:

ol =1 (B17)

Ty,3 = T * c./nx2 + nyz (B18)

The absolute maximum is given by

lcmax,nl = |g| + e/ nxz +-nY2 (B19)

Similarly solving [A2 - IUI = 0 vyields the following three eigenvalues:

-~

G- =7 (B20)

N .
ooy =T te/Elre? (821)

and

ol + ¢ /2 + &2 (822)

The integration step size is now given by

)
| max,gl

At = min [CN An CN 3 {B23)

|a|+c/nx2—+nyT’ 9] + ¢ /82 + 87
Equation (B23) is.evaluated at each of the grid pouints in.fhe compuﬁational
plane and the smallest value of At over all the grid points is then
chosen as the integration step size. The Courant number CN is usﬁally

chosen to be one or slightly less than one.
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APPENDIX C. ZEXACT SOLUTION FOR REGULAR REFLECTION

When a planar shock strikes a wall it will reflect in one of two forms,
regular reflection or Mach reflection. The form that occurs depends on the
shock strength and the shock incident angle. In the present problem (refer
Figure Cl) the incident planar blast wave denoted by its strength Mg
strikes the ramp with an incident angle of (90-8.), where @&, is the ramp
angle measured from the positive =x-axis. TFor incident shock Mach numbers
greater than 1.5, regular reflection results as long as the incident angle
is less than 39° (39).

In the numerical formulation of the regular reflection problem, the
computational region is chosen such that the outer boundary (refer Figure 6a)
falls between the sonic circle and the point I where the incident shock
strikes the ramp. Along the outer boundary exact two—dimensional regular
reflection results are specified and kept fixed throughout the iterative
process. The exact regular reflection results are obtained by making use of
various shock relations in the following manner.

As the incident shock moves with a Mach number M_, the shock incident
point I (Figure Cl) moves up the ramp with a Mach number M_/cos 8,. The
shock relations such as the Rankine Hugoniot jump conditions are applicable
only when the shock is at rest:“ These shock relaticns can be applied to a
moving shock by merely employing a moving coordinate system relative to
which the shock is at rest. By placing a moving coordinate (x',y') rigidly
attached to the moving point I, the statiomnary region(:gj)in the (x,y)

systen becomes nonstationary in the (x',y') system. With respect to the

moving system (x',y') the nonstationary flow in region(:::Dis parallel to
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the ramp and has a Mach number M_/cos 6. as shown in Figure C2. The

transformation from (x,y) to (x',y') system alters only the velocities in

the regions@,@, @ The pressure and density remain unchanged. The

velocities with respect to the (x',y') system are denoted by a prime.
To obtain the flow wvariables in regions@and@, first the pressure
and density in region@ are chosen to be unity (i.e., P, =p; = 1). Then |

the following equations found in NACA 1135 (40) are used.

Ypl

a, = 91 = v~ ~ speed of sound in reglon@ (c1)
q. = M_YY ~ velocity of the incident shock (£23
s (=
9
qi = Py ~ velocity in region @with respect {c3)
r to (x',y') system R
L4
My = :d? (c&)
2y ~ (Y - 1)
P, =Dy ) ~ pressure in region @ (C5)
L
T &+ Du2 _ _
P2 = p1 ~ density in region@ (c6)
(Y - DM 2 + 2
w
63 =5 - 8, {C7)
Mg, = M sin 6, = Mg (c8)

/ 4%, - 1) (e, + 1)

q, = 4 ~ velocity in regicn @with {C9)
' 1'/ (v + l) 21~ M’Z respect to (x',y') sSystem
2 cot B8, (M* ~ 1)
§ = tan ! ' ' ~ flow deflect1 T angle (c10)
2+ Miz(‘{ + 1~ 2 sin? 8;) from reglc'l 1
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INCIDENT SHOCK [_Ms / M'=Mg/cosé,
NCIDEN %, |GF0: STATIONARY Z}
2 O A REGION ) i
NONSTATIONARY @
REGION
SONIC CIRCLE
REFLECTED
Figure Cl. Regular reflection in a fixed Figure C2. Regular reflection im a moving x',y'

X,y Cartesian system Cartesian system rigidly attached at the point I

0T
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a, = —— ~ speed of sound in region@ ' (ci1)

My = —= | (c12)

In region @the flow again becomes parallel to the ramp. Thus knowing

§ and Mé the reflected shock angle 6, 1is found by solving the following

polynomial:
sin® 6, + b sin® 8, +c sin? 8, +d =0 (€13
where
14_;12 + 2
b=———;—-—-—¥sin26 (cl4)
\ .
My
M2+ 1 2
2 -
e = — (Yzl) + X . sinZ § (c15)
s T
M M)
2
d=- -‘-‘ﬁq—a (C16)
]
¥,

Equation (C1l5) has three roots, the smallest of which corresponds to a
decrease in entropy and should therszfore be disregarded according to the
second law of thermodynamics. The largest root corresponds to the strong

shock. The middle root, which corresponds to the weak shock, is the one of

interest.
Myp = Mé sin 8, : . .((.317)
L(MG, - 1) (yMZ, + 1)
qé = q, 1- ~ yelocity in region with (c18)

(~{+J_)2I~11‘?-I?_1'Ié2 respect to (x'y') system

2YM%, - (Y - 1)
Py = Dy ~ pressure in region @ (€19)

¥y + 1
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2
(v + LMy, X
~ density in region (CZ7)
{y - :L)IMI%2 + 2

Knowing the velocities qi, qé, and qé in the (x',y') system, the velocities

92 Gyo and 9 in the (x,y) system are obtained by employing the simple

transformation:

where
q
qp
4

and (“1 ’vl) ) (uz"-rz) )

4= -q =0=uli+v]j (c21)
4, = ay - 4} =u,d+vg (c22)
;1}3 = Eé - ?1'{ = uaf. + vgfj (c23)
= qi (~cos Gri - sin Brﬁ) (c24)
= g} (~cos[0, + 8§11 - sin[6, + &13) (c25)
= qé (~cos 'er:’i - sin 0.3) (C26)

and (ua,vs) are the Cartesian velocity components in

regions @ . @ , and @, respectively,
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APPENDIX D. KENTZER'S SCHEME ¥OR IMPERMEABLE BOUNDARIES

An impermeable boundary is one across which no mass can flow such as a
solid surface or a plane of symmetry. At an impermeable boundary a surface
tangency condition must be satisfied. Proper implementation of the surface
boundary condition is a crucial step in computing the correct body pressure
distribution. One method of applying the surface boundary condition is to
use Kentzer's (35) scheme at the body grid points.

Kentzer's scheme is based on the method of characteristics approach in
combination with one~sided finite differences. Here, the aim is to derive
an expression for Py valid at the body points which can be integrated in
a predictor-corrector fashion to obtain the body pressure. This is achieved
by combining the characteristic compatibility relation and the surface
tangency condition in differential form. The procedure is outlined below
for both the ramp and the wall.

The eigenvalues of the time dependent Euler equations have already been
derived in Appendix B (see Equatioans (B6) through Equation (B21)). The left
eigenvectors y?l corresponding to the eigenvalues of the A, matrix are

obtained by solving

]
o
e

It
e

~
N
[¥4]

Ay _ Ay
Vs (4, Ioi ) (D1)
Similarly solving

Ap _ o2

]
[]
[

il
,—i

a2
%]

-
LW

(D2)

yields the left eipenvectors y?z corresponding to the A, matrix. The

final result is
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A 7
Yll = (05 TIY: - Hx)
pen pcn
Yﬁls =(1, £ = s £ 7
) n 2 4 n 2 n 2 4 n 2
S S
D3)
Ao
yl = (O: EY: Ex)
pcE pck
Yizs =11, % e s E A J

The compatibility relations are obtained from these eigenvectors and
eigenvalues,

Referring to Figure D1, only the down running characteristics drawn in
the (E - 7) plane strikes the wall grid point. The eigenvalue associated
with this characteristic is 0?2. Kentzer's scheme requires only the com-
patibility relation along this down running characteristic. The compatibil-
ity relation is derived by starting from Equation (Bl4).

Q + A;Q, + 4,0, = 0 (04)

Multiplying Equation (D4) throughout by yﬁz and making use of Equation (D2)

it results in the form
A A A
Yaz(QT + Uaan) = Y32A1Q.q (DS)

Substituting for y?z from Equation (E3) and for Q from Equation (B15),

Equation (D5) simplifies to
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(up + ngu ) - (v, + ngv

pek n_p
- 1= 2 2 " X XN, =

upn + ac m + pe nyvn > 2( 5 + uup,

g2+ &
¥y
§ pck n_p
- b yon, avy (D6)
/EZ.{_EZ p
X y

Along the wall the surface tangency condition in differential form is given

by
vy = 0
(D7)
vn =0

In addition along the wall (plame of symmetry) Vv is zero and &, is zero.
Combining Equation (D6) and Equation (D7) and then substituting for u,
from Equation (B12) yields the following expression for p; valid only at

the wall grid points.

A A — pcnypn

Py = - (Uang - pccrazvE +upn + Dcznxun - (D8)
n
b'e -

u, = —-pn "-p—' - uun (D9)

Equations (D8) and (D9) are integrated in a predictor-corrector fashion to

get the pressure and the u~-velocity at the wall grid points at the new time

level.
~n1 n n
. = p., + N A
Pi,k = P,k T (Pody,p 8T
predictor (D10)
' ~ 11 n n
: Yk T Ve T U AT

TR W SR, -, Vo GUeon CT o
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i
-l n 1L n ~ 1l
. = p. + 5 . + . AT
Pik = Pk 2[(pT)Jsk (Pf):,k] -L_
corrector (p11) ;
u_n+1 n

1 | n ~ o+l
= = ]
5.k uj,k + 3 (uT)j,k + (uT)j’é]AT :

In evaluating P and U, forward differences are used for the n and £

derivatives in the predictor. In the corrector backward differences are
used for the n derivatiwves and forward differences for the &£ derivatives.

Knowing the pressure and the u—component of the veloeity all the other
flow variables can be easily computed. This procedure is cutlined in
Chapter LI under Boundary Conditions.

Similar to the analysis presented above, an expression for p, and u,
are now derived for the ramp grid points. Referring to Figure E2, only the
down rumning characteristics drawn in the (n - 1) plane strikes thé ramp
grid point, The eigenvalue associated with this characteristics is Ugl.

The compatibility relation along this down running characteristics is

obtained by multiplying Equation (D4) by y?l.

Ay Ay S |
Y3 (Qp +037Q) = -y5TAQ (p12)
Substituting for ygl from Equation (D3) and for Q from Equation (B15),

Equation (D12) results in

poen pen
p's
(uT + Gglun) - Y (vT + U%lv )

/2 2 7 2 n
n '!-ny n, -I-nY

[ 2 2 i, PChy ( Pg )
==l ¥p, + pc?E u_ + pciE v, - —— (. —= + Tu
13 X°g yEg 2 2 \¥X p g
/nx-l‘ny

Ay
(pp +037p) -

DCﬂy Pg _
- ~—~—~—(gy - F Wg)] (D13)
JnZ+n? |
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Along the ramp the surface tangency condition in differential form is given

by

v

g

u

3

tan Br

(D14)

Vo u. tan Br

In addition, u is zero along the ramp. Combining Equation (D14) and then

substituting for u,. from Equation (B12) yields the following expression

for Pr valid only at the ramp points.

) pen
=By o ——E M
AN A ey I
nx T]Y

2 u

pen
L S Y
n 2 2 3 £
n 2+
X y

pen P pen P
X
+ [::(;Z\z;}{u‘E + pQZgYVE - —2—-——;— £, p_g - ___2_1__; Ey -E‘g-) (D15)
nx + ny nx - ﬂy
0. Ex  _
u. = —pn el pE 7;'— qu (D16)

Equations (D15) and (D16) are integrated in a predictor-corrector fashion
described by Equations (D10} and (D1l). In evaluating p, and u. forward
differences are used for n and £ derivatives in the predictor. In the
corrector backward differences are used for the &£ derivatives and forward
differences for the n derivatives. Knowing the pressure and the
u~component of the velocity all the flow variablés are easily obtained.

By combining the compatibility relation with the surface tangency con-
dition in differential form, the disadvantages of the true method of charac-~

teristics, the iterations and the interpolations to get the data at specific

points on a characteristic, are eliminated in Kentzer's scheme.
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Figure D1. Kentzer's scheme at the wall point (k = 1)
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Figure D2. Kentzer's scheme at the ramp point (j = 1)
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APPENDIX E. EXACT TRIPLE POINT SOLUTION

When the incident angle (that is the angle between the incident planar
shock and the ramp) is greater than 39°, Mach reflection occurs as long as
the ineident shock Mach number is greater than 1.5 (39). As mentioned in
the Introduction (Chapter I), the Mach reflection can take various forms
depending on the incident angle and the incident shock strength. The pres-—
ent problem considers only the single Mach reflection case in which only one
triple point is present. Since the flow field is self-similar the triple
point moves along a straight line denoted by the triple point trajectory
angle yx in Figure El,

As was pointed out in Appendix C, all the shock jump conditions are
true only if the shock is at rest. 1In order to obtain a solutiom to the
moving triple point where the incident shock, the reflected shock, the Mach
stem, and the slip surface meet, a moving Cartesian coordinate (x',y') is
rigidly placed at the moving triple point. With respect to the (x',y')
system the triple point is at rest and the flow comes into the triple point
along the triple point trajectory with a Mach number M;/cos(8,. + x)}, as
shown in Figure E2. The transformation from (x%,y) to (x',y') system alters
onlj the velocities in regions<:::L(:§>,<:::) and(::). The pressure and
density remain unchanged. The velecities in the two system (x,y and x',y")
are related to each other by means of a simple transformatiom.

The triple point solution is first obtained in the x',y' system where
all the shock relations found in NACA 1135 (40) are applicable. Knowing flow
variables in region(::), regﬁmn(::)is easily obtained using oblique shock

relations. To solve regions (ﬂand @uniquely, an iterative procedure is
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necessary to satisfy the two jump conditions across the slip surface, In
the x',y" system the slip surface is at rest. The two jump conditions
across a stationary slip surface aﬁe one, the pressure must be same on either
side of the slip surface and two, the velocity vector on either side must be

parallel to the slip suxface. Knowing region@, the following procedure

explains how to obtain the flow variables in reg:.ons@ @ and@

Py = p; = 1 ~ pressure and density in region (E1)
Ypq
a, = —-[31— = /¥ ~ speed of sound in region @ (E2)
q_ = Msv/‘? ~ wyelocity of the incident shock (E3)
] g (
9 = = o5~ velocity in region @with respect E4)
cos(8y + x) to (x",y') system
1
.
Ml = E._ (E5)
1
2YMZ - (Y - 1)
D, = By T ~ pressure in region@ (E6)
(v + 1)M2
P, =0y ~ density in region@ (E7)
(v - M2 + 2
B, =5 - 0p - X (E8)
My, = Mi sin 6, = Mg (E9)

4(M%, ~ 1)(YMZ, + 1
@=q /1- Oy - DO YD (E10)
(v + 1)2Z M12

2 cot BchSZ - 1)

8 = tan” (E11)

2+ M2(r + 1 - 2 sin® 0,)
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Po
a, = /== (E12)
2
dp
Mé = o (E13)
2

This completes region@calculations. The following iterative procedure
determines region @and region@flow conditions.

1. For a given Mach number there is a maximum flow deflection angle.
Knowing Mé in region@, the maximum flow deflection angle Gmax across
the reflected shock is computed from

12
M?.

Y+ 1 . .
cot Gmax—( 5 07 1 - 1) tan B .. {E14)
5 sin Bmax -1

cain-1 /1 | X+ o / ¥2 -1 o, Gr A 12,
Bmax sin - [ 3 M, 1L+ f(y+1)+ 5 My~ -+ 16 Mé
2

(E15)

The flow deflection angle 6p across the reflected shock has to be less
than or equal to §_... |

2. An initial value for the Mach stem angle £y 1is chosen. The Mach
stem being a strong shock, the initial value for &, is chosen to be 89.99°,

3. Corresponding to the assumed Macﬁ stem angle £y and the Mach
number M;, the flow deflection angle &y is obtained from

2 cot £y(M]? sin? gy - 1)

8y = tan™! (E16)
2+ M2(y + 1 -2 sin? g)

4, The pressure in reginn(:D is computed from

. 2 ) R :
Py = Pl[l + 3 :1 (M2 sin? gy - 1)] (E17)
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5. The slip surface angle o is given by

o = 90° - Sy = By — X _ (E18)

6. Since the flow in region(:::)has to be parallel to the slip suxrface

the flow deflection angle &8y across the reflected shock is given by

g =~ (90° - 0. - x — &) (E19)

7. If &y is greater than Oqax Eiven by Equation (D14), the initial
guess for Ey is reduced by 0.01° and the calculation is repeated from
step 3 until & becomes equal to or less than Gmak'
8. FKunowing the flow deflection angle GR and the Mach number Mé the

shock angle ER is computed. The procedure is outlined in Appendix C.
9. The pressure in region(::>is then computed from
. 2Y 12 ain?d
10. Across the slip surface the pressure must be same (i.e., Py = pu).
If the convergence criteria
Ipy ~ p,| < 107% (E21)
Pq Pyl =
is not satisfied then the assumed value of €y 1s reduced by 0.005 and the
calculation is repeated from step 3. This repetition is continued until the
convergence criteria i satisfied.
11. The total wvelocities qé in region and q& in region(\f})are

given by

o 4(y2 sin? gy - 1) (M2 sin? £y + 1) €29)
o =q /1- E22
3 2 v + 1)2}‘1‘,3‘1+ s:i__n2 Er

- : (E23)

o /L 4(}2 sin? gy - 1) (YM]2 sin? £y + 1)
Y, (v + 1)2M41% sin? £y
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12. ZX¥nowing the velocities qi, qé, qé, and qL in x',y' system,

the velocities g, Qps 43» and q,

ing the simple transformation:

- =.+l s |
9% 59 79
- < 2 1
4 =9 -9
e = -y - |
3 =43 = 4
<+ ==y - “*+t
4, =49, -9
where
g} = qll-cos(o, + )i
o
q; = gpl-cos(6,. + x +
-é-! — T . 2
d3 = qg[-sin ol ~ cos
ﬁ; = q&[—sin ai - cos

and (ul’vl)’ (uasvz): (ugsvs): and

in x,y system are cobtained by employ-

- sin(8, + x)]l
§)1 - sin(0, + x + 831
oj]

03l

(E24)
(E25)
(E26)

(E27)

(E28)
(E29)
(E30)

(E31)

(u“,v#) are the Cartesian velocity

components in regions(:::}<::>,<::>, and<::), respectively.

13. The slopes of the reflected shock and the Mach stem are given by

by = O T Xt By

g = O+ X + 8+ &

(E32)

(E33)
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Figure El. Mach reflection in a fixed Figure E2.
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