General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Title: Water Utilisation, Evapotranspiration and Soil Moisture Monitoring in the South East Region of South Australia.

Assigned Investigation No.: 28960
$7.7-10.096$
$C 7-149579$
Author's Name:
K.R. McCloy
K. John Shepherd
J.C. Killick

Reporting Date:
September 2, 1976 (FID + 11 months

TECHNIQUES

1. Material Received

70 mm Format: | Up to Frames $2522-23362,2522-23364$ and $2522-23371$ of |
| :--- |
| 27 June 76, which completes the acquisition of |
| |
| imagery for the study area. |.

9 track, 1600 BPI CCT: Frames 2342-23411 and 2359-23351

Status of Project
The classifier developed by MoCloy and described in a paper
contained in the previous report has been used for two distinct
situations. The brackets indicate response values in (band 4 ,
band 5 , band 6 , band 7).
(i) Boob Lagoon Boob Lagoon was classified into twenty classes ranging linearly in steps from $(10,5,5,2)$ to $(14,12,22,18)$ corresponding to a transition from water to dry bullrushes. The length of this line vector is 24.6 units so that each subclass covered a vector distance of 1.2 units. As the standard deviation in any one band, for a uniform surface is about 0.4 units, the above resolution is acceptable. The classification was compared with 1968, 1:11 000 colour aerial photography of the Lagoon, and all spectral patterns discernable on the photography were revealed as different subclasses in the classification. It is intended to analyse a classification of Boob Lagoon on the December imagery in comparison with $1: 30000$ colour and false colour imagery of the Lagoon, also taken in December.
(ii) Coastal Dunes The coastal dunes are accompanied by varying distances of native scrub on their hinterland side. This scrub also occurs, at varying densities on the dunes. The classifier, using a line vector from (13.7, 10.1, 18.3, 21.0) for scrub to $(47.0,56.0,55.0,49.0)$ for sand, classified all pixels according to the proportion of sand and scrub within the particular picture element. The classifier worked well, but imperfectly because the sand associated with the scrub was generally very white whereas the open sand expanses tended to be

$$
2896 D
$$

more orangish. Howevar McCloy independantly estimated the proportions of scrub and sand for each pixel within part of the classification and the results were:-

Estimated Proportion of Sand in Pixel

Symbol
used in Classification

	0\%	10\%	20\%	30\%	40\%	50\%	60\%	70\%	80\%	90\%	100\%
0	24	7	-	-	-	-	-	-	-	-	-
1	7	49	9	1	-	-	-	-	-	-	-
2	1	2	7	7	7	1	-	1	-	-	-
3	5	2	7	9	4	3	1	2	1	-	-
4	-	-	1	8	8	7	13	6	5	2	-
5	-	-	-	3	6	3	8	20	2	-	-
6	-	-	-	-	1	6	11	18	2	1	-
7	-	-	-	-	3	2	7	8	11	4	-
8	-	-	-	-	-	2	1	4	2	16	6
9	-	-	-	-	-	-	-	-	-	13	52
\$	-	-	-	-	-	-	-	-	-	1	6

Table of Correspondence between Classification and Estimation of Proportion of Sand. All pixels for which estimates were made are contained in the table.

The range of estimates for each symbol is expectedly larger at the centre because of the significance of errors in estimation. Errors in positioning will also be significant.

McCloy is currently developing a better algorithm for applying this classifier, and when this is done then more detailed results will be published.

ACCOMPL I SHMENTS
Nil this quarter

IV SIGNIFICANT RESULTS
Nil this quarter

PUBLICATIONS
McCloy has been investigating, as part of another project, the geometric accuracy of mapping from landsat imagery, and has come to the conclusion that identification of control stations in the imagery is a significant source of error. He has therefore proposed a method of establishing control in the imagery. The proposal is contained in a paper to be offered for publication in Australia in the near future. A copy of this draft is included with this report. If there are any flaws in the
understanding of the geometric characteristics of Landsat imagery, then it would be appreciated if these were pointod out so that
time and effort would not be wasted in constructing the control.
It is anticipated that some control of this type may be established
in South Australia as part of our Landsat-C program.

INTRODUCTION

Matching of field data, or other digital LANDSAT data, to a frame of LANDSAT imagery requires accurate determination of the position of that data within the frame. Work by the authors has shown that matching of co-ordinates for ground detail to corresponding position in a LANDSAT image can be achieved to better than 0.5 pixel units (40 metres).

In many areas there is little detail that can be identified reliably to the nearest picture element. This will significantly effect the accuracy of matching ground co-ordinates to LANDSAT scanner co-ordinates. A method of recording control in the imagery which will eliminate identification as a significant source of error is suggested in this paper.

Algorithm to Transform LANDSAT Scamner Coordinates to Cartesian Coordinates
There is considerable literature describing the geometric characteristics of LANDSAT imagery ($1-\neq 6$). The author has developed an algorithm in which the original scanner co-ordinates (P, S) are corrected for three systematic errors to give adjusted scanner co-ordinates (P^{1}, S^{1}). The adjusted scanner co-ordinates form a cartesian coordinate system which is assumed to have a fixed but unknown rotational and translational relationship with any other cartesian co-ordinate system. These rotational and translational parameters are determined by a least squares adjustment.

The systematic corrections applied to the scanner co-ordinntes-(P, S) are:
(i) Earth rotation during the satellite traverse time across a frame, whech introduces a westerly shift of approximately 13 km at the equator. The correction is $C_{E}=-34.0 \cos$ (latitude) metres, every sixth scan line.
(ii) Variable Mirror Velocity. Intraduces-a maximum error in position of 425 metres at the ${ }^{1} 6$ and $3 / 4$ positions along the scanline. The error is approximately sinusoidal, of the form

$$
C_{M}=-425.0 \sin \left(2 \pi * \mathrm{P} / \mathrm{PT}^{\prime}\right) \text { inctres }
$$

$\mathrm{l}=$ pixel co-ordinate value.
$\mathrm{P}_{\mathrm{T}}=$ number of pixels per scan line. linearlu
Shefts 40 pixel position in the along track darection $n^{\text {b }} J$,
(iii) Einite Scan Time.causes a 216 m shift in position, in the long tracicdirection, across a beall line.
to 216 motros acrers, a whele ecian line
$\mathrm{C}_{\mathrm{S}}=216 * \mathrm{P} / \mathrm{P} \mathrm{T}$ metres

for the frame

The latitude of the centre of the frame, and Pa are given in the image data, so that only (P, S) are required to completa these corrections. The adjusted scammer coordinates were inverted so that the ($\mathrm{P}^{\prime}, \mathrm{Sl}$) axes are approximately allgned with the map coordinate axes.

$$
\begin{aligned}
& \xrightarrow{3} \\
& \text {. . } \mathrm{P}^{1}=\mathrm{P}+\mathrm{P} 1-34.0 \cos \text { (1atitude) } * \operatorname{INT}(\mathrm{~S} / 6) \\
& \text { - } 425.0 \operatorname{SIN}\left(2 \pi * \mathrm{P}^{2} / \mathrm{P}_{\mathrm{T}}\right) \\
& \mathrm{S}^{1}=(2340-\mathrm{S}) * \mathrm{~S} 1-216 * \mathrm{P} / \mathrm{P}_{\mathrm{T}} \\
& \text { (} \mathrm{P}^{1}, \mathrm{~S}^{1} \text {) adjusted scanner coordinates in metres } \\
& \begin{aligned}
\mathrm{P} 1 & =\text { Pixel centre separation along scanline (metres) } \\
\text { S1 } & =\text { Scanline separation (metres) } \\
2340 & =\text { Number of scan lines in a frame: }
\end{aligned}
\end{aligned}
$$

Pl and Sl will vary with satellite orientation and elevation. Values of Pl and Sl were determined by comparing spheroidal distance to scanner coordinate separation for lines across the frame and along the contreline of the frame. The adopted values ef $\mathrm{Pl}=57.57$ metres and $\mathrm{S} 1=77.05 \mathrm{~m}$.

The Geometric Corrections 1 isted in Table G. $2-3$ of the LANDSAT Users Handbook ${ }^{1}$ t will introduce distortions that can be elomely modelled using the relationships

$$
\begin{aligned}
& p^{1}=a_{0}+a_{1} x+a_{2} y+a_{3} x y+a_{4} x^{2}+a_{5} y^{2} \\
& s^{1}=b_{0}+b_{1} x+b_{2} y+b_{3} x y+b_{4} x^{2}+b_{5} y^{2}
\end{aligned}
$$

Changes in scale will alko be allowed for by these relationships oo that values of Pl, Sl can be set and not redefined for each frame. However the-muthor will show that the proposed control relies on accurate values of $P l$ and Slare requir. because the proposed control dependo on these quantities.
These relationships are used to form observation equations for the least squares adjustment, using a minimum of six control points.

map NOT AVAILABLE YET

 overlay from $1 A N D S A T$ disital print out (bine Printer)Result:s Achieved
Two areas have been studied. An area of approximately $1 / 16$ of a frame, to the north of Adelaide (Map 2) and subsequently an area of approximately \% of a frame in the south east of South Australia (Map 3). $1 / 4$

MAP NOT AVAILABLE YET

MAP NOT AVAILABLE YET

Map 3 Frame 1129-23494 (Hastin;s)
(i) Area REPRODUCIBILITY OF TH
RHINAL, PAGE IS POON

Point	Scanner		Cords	Cartesian cords (Clarke)			Residuals	
	P		S		$\mathrm{E}(\mathrm{m})$	$\mathrm{N}(\mathrm{m})$	P	
1	2636	45	167940	825670	-0.12	0.61		
2	2986	83	188970	818430	0.13	-0.49		
3	3135	146	196970	811400	-0.01	-0.06		
4	2446	280	151530	807120	0.20	-1.14		
5	2819	316	174210	$80 n 250$	0.14	-0.35		
6	2982	310	184460	799130	-0.23	0.70		
7	2486	378	152260	798400	-0.13	0.52		
8	2519	490	152220	788490	-0.09	0.80		
9	2775	553	166920	780050	0.08	-0.80		
10	3052	461	185910	785540	0.03	0.21		

Standard Doviations of Remduats
Across track $=0.14(8.06 \mathrm{~m})$
A long track $=0.68(52.43 \mathrm{~m})$
(ii) Area 2

The general location of control points was initially done on $1: 250,000$ photographs of the LANDSAT imagery. The area selected was then printed from the digital data and discernable patterns on all four bands were combined onto one line printer image. These patterns and boundaries discerned on the imagery were then digitised and plotted at $1: 50,000$ or the most suitable map scale. An overlay was then prepared for the corresponding topographic map and a control point was selected within the area (as in Map 1).

In both areas, a systematic distribution of the control was saterificed to achieve bigher reliahility in ldentification.
Identification should be better in Area 2 than in Area 1 because of the greater contrasts between the pinus radiata plantations and adjacent detail, either culturat roads or grazing areas. OE the control points in Area 2 , more than half have residuals that are approximately 1 pixel in size, either along or at right angles to the scan line (see Map 4). Analysis using better control would be required to ascertain the significance of this observation.

The results of this test are better tholl those reported by other workers. WONG ${ }^{7}$ and DEROUCHE ${ }^{8}$ claim standard deviations of $40-45 \mathrm{~m}$ alons track and 42-55m across track, however both were fitting a whole laNDSAT frame to control compared to the part frame weas considered in this paper. TRTNDER ${ }^{9}$ claims standad deviations of $66 m$ and believes that control identification on the smaller scale maps used for this purpose significantly contributed to the larger error.

The work described here suggests that:
(i) Misidentification is probably a major cause of error.
(ii) In areas of relatively indistinguishable detail, as in the case with large areas of Mustralia, mis-identification will be a more serious error than occurred here.
(iii) Provision of control will allow detailed analysis of residual errors. This analysis may justify further refinement of the algorithms used.
(iv) Mapping to within 1:100,000 standards can be achieved for portions of a frame and may be possible for larger areas if mis-identification can be eliminated as a significant source of error.

MAP 4
CONTROL DTAGRAM FOR FRAME 1129-23494

KEY
Control Stations
Adjusted control position relative to obSERVED position.
NOTE Residuals \longrightarrow ploted at $X 100$ cnlargement of Control Diagram.

$$
\begin{aligned}
& 0 \quad 2 \\
& \text { Residual Scale }
\end{aligned}
$$

EVANS ${ }^{10}$ has shown that a 22 inch slightly convex mirror makes a readily identifiable record on LANDSAT Imagery. A single mirror is adequate for identifying the control to the nearest picture element. However, the results given earlier suggest that the identification of control needs to be to better than $1 / 10$ of a picture element for mis-identification to be eliminated as a serious source of error.

Two sets of mirrors, set up in a simflar manner to retrograde verniers ${ }^{1}$ would be located parallel, and perpendicular, to the scan lines (DIAGRAM 1)

idealised pixel matrix

DIAGRAM 1: Simplified diagran of Vernier Setup.
\triangle Corner Mirror (Control Point)

- Auxiiliary (Vernier) Mirrors

DHigh Value Pixels (Due to Mirror)

The corner mirror is the control point. The separation between the mirrors is greater than the pixel separation so that within the vernier all pixels, except one, will contain a mirror and consequently have much higher response values than the surrounding pixels. The position of the pixel within the vernier that does not contain a mirror is related to the position of the control mirror within its pixel.

Let R_{M} be the response by those pixels containing a mirror, and R_{S} be the surface response. As shown by EVANS, pixels do not change sharply from one response level to the other, due to the sensor sampling characteristics, and atmospherlc conditions. As a mirror moves from one pixel to the adjacent pixel, the response of the pixel can be expected to change as an ogive similar to that shown in Diagram 2.

Diagram 2: Response against Mirror position in pixel.

Therefore the response values for the pixels along the vernier will not exhibit a sharp drop at the particular pixel, but instead approximate a continuous curve, the shape of which depends upon the position of the mirrors within the pixels. This characteristic could be used to improve the resolution of a vernier for a given mirror count. This is illustrated in Diagram 3 in which the pixel separation is 100 m , least count $=10 \mathrm{~m}$ so that that the vernier interval is 110 m . In this diagram, three positions of the control mirror within the pixel are illustrated, $0.70,0.75$ and 0.80 . The author believes that the pixel response will be similar to that shown in which case a least count of 0.05 pixels should be achieved, or alternatively 5 mirrors should be given position to 0.10 pixels.
....- Incorading Pixel Count:

pixel
DIAGRAM 3: Changes in, response with changes in Vernier Location

In LANDSAT there is insignificant overlap along track, but about 30% overlap across track, requiring quite different approaches to establishing the verniers in either direction.

Along Track

$$
\begin{aligned}
\text { Scan Line separation } & =77.05 \mathrm{~m}=d_{S} \\
\text { Vernier Least Count } & =\frac{\mathrm{d}_{\mathrm{S}}}{10}=7.705 \mathrm{~m} \\
\text { Vernier Interval } & =\frac{11}{10} \mathrm{~d}_{\mathrm{S}}=84.76 \mathrm{~m}
\end{aligned}
$$

This vernier would work in the same way as previously described, with the control mirror at the southerly end of the vernier.

Across Track
The spacing of the pixels along a scan line is shown in DIAGRAM 4.

$$
\begin{aligned}
& \text { RTMTODUCHBLITY OF T156 } \\
& \text { Wh.INAL, DAGB IS !O2N. }
\end{aligned}
$$

DIAGKAM 4

Using 57.57 as the pixel separation would mean that the Vernier interval would be 63.32 m so that every pixel would contain a mirror. Instead use the alternate pixels by setting the separation at $115.2 \mathrm{~m}=\mathrm{d}_{\mathrm{p}}$.

$$
\begin{aligned}
\text { Vernier Least Count } & =\frac{d_{p}}{10}=11.52 \mathrm{~m} \\
\text { Vernier Interval } & =\frac{11}{10} d_{p}=126.72 \mathrm{~m}
\end{aligned}
$$

The responses from each set of pixels (even and odd sets) will be complimentary to the other as illustrated in Diagram 5 and switable modelling: using both sets would be required.

DIAGRAM 5.

CONCLUSION

As pointed out by EVANS, the repeatability of LANDSAT makes establishment and maintenance of mirror control stations a relatively simple astronomical problem. Provision of control will eliminate mis-identification as a significant source of error in matching field data to the imagery, in temporal analysis, and in plotting from the imagery. The accuracy in this matching should be within $1: 100,000$ mapping specifications, thereby significantly impressing the value ta of LANDSAT imagery to Australia.

1. NASA "Earth Resources Technology Satellite Data Users Handbook.
2. KONECNY, G. "Geometric Aspects of Remol? Sensing" Invited Paper. Comission IV, International Congress of Photogrammetry, O Hawa, 1972.

3 KRATKY, V. "Cartographic Accuracy of ERTS Images", Proc, ASP, 30th.
Annual Meeting, March 1973, Washington D.C.
4. FORREST, R.B."Mapping from Space Images", Bendix Technical Journal. Summer/Autumn 1970.
5. COLVOCORESSES, A.P. "ERTS-A Satellite Imagery", Photgrammetric Engineering, June 1970.
6. COLVOCORESSES, A.P. "Map Projection of the Bulk (System Corrested) ERTS mss Image", NASA Applications Notice to LANDSAT-C.
7. WONG, K.W. "Geometric and Cartographic Accuracy of ERTS-1 Imagery" Photogrammetric Engineering, 41, pp 621-635.
8. DEROUCHIE, W.F. and FORREST, R.B. "Potential POsitioning Accuracy of ERTS-2, mss Images." Paper presented ACSM-ASP Convention, St. Louis, Missouri.
9. TRINDER, J.C. and NASCA, S.U. "Tests on the Mappins, Application of Landsat Imagery" UNISURV G 24 (1976), 47-70, University of N.S.W., Sydney.
10. EVANS, W.E. "Marking ERTS Images with a small Mirror Reflector". Photogrammetric Engineering, pp 665-671
11. CLARKE, M.A. "Plane and Geodetic Surveying, Vo1.1" CONSTABLE.

Acknowledgements

This work was funded in part by the Australian Research Grants Council.
The author is indebted for the assistance of Mr . M. Heinrich and Mr. G. Ralph for indentification of control and least squares adjustment in the two areas studied, and to Messrs. P.ll. llartog and J. Pollard for their critical review of the vernier concept of control.

