MASSACHUSETTS INSTITUTE OF TECHNOLOGY

INTEGRATION OF VISUAL AID MOTION CUES FOR FLIGHT SIMULATOR REQUIREMENES AND RIDE/QUALITY INVESTIGATION NGR 22-009-701

June 1976 - December 1976

MAN-VEHICLE LABORATORY
DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
CENTER FOR SPACE RESEARCH MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

| (NASA-CR-149667) INTEGRATION OF VISUAL AND | N77-18740 |
| :--- | :--- | :--- |
| MOTION CUES FOR FLIGHT SIMULATOR | |
| REQUIREMENTS AND RIDE QUALITY INVESTIGATION | MF AOI |
| Semiannual Progress Report, Jun. - Dec. 1976 | Unclas |
| (Massachusetts Inst. of Tech.) 107 p HC AO6 G3/54 | 17182 |

HUMAN DYNAMIC ORIENTATION MODEL APPLIED TO MOTION SIMULATION

Work on this project has led to a Master's Thesis by
Joshua D. Borah. The thesis is abstracted below.

Human Dynamic Orientation Model Applied to Motion Simulatzon

Joshua D. Borah

ABSTRACT

The Ormsby model of dynamic orientation, in the form of a discrete time computer program, has been used to predict non-visually anduced sensations during an idealized coordinated aurcraft turn. It was found that attıtude and angular rate perceptions may be contradıctory and furthermore, in a three rotational degree of freedom simulator, it is impossible to duplicate both simultaneously. To predict simulation fidelity, a simple scheme was devised using the Ormsby model to assign penalties for incorrect attitude and angular rate perceptions. With this scheme, it was determined that a three rotational \because : degree of freedom sumulation should probably remain faithful to the attitude perception even at the expense of incorrect angular rate sensations. Implementing this strategy, a simulation profile for the idealized turn was designed for a Link GAT-1 trainer. Use of a simple optokinetic display was proposed as an attempt to improve the fidelity of roll rate sensations.

Two open loop subjective tasks were designed, to obtain attitude and roll rate perception indications. A serıes of experments were performed in our modified Link trainer to test the effectiveness of the tasks and to check model predictions and visual display effects.

INTEGRATION OF VISUAL AND MOTION REQUIREMENTS FOR FLIGHT SIMULATION AND RIDE QUALITY INVESTIGATION

June 1976 through December 1976

The following report briefly summarizes the work carried on during this period. Included are sections on visual cues in landing, comparison of linear and non-Innear washout filters using a model of the vestibular system, and visual vestibular interactions (yaw axis). One of the major accomplishments of this period was the completion of lir. Joshua Borah's master's thesis, a copy of which is being sent separately.

The subjective responses were self consistent, and both tasks are considered to be useful for obtaining low frequency information. An unexpected difference was found between subjective indications and model predictions for the turn simulation. It can probably be $\operatorname{explained}$ by the response lag inherent in the task (low bandwadth) plus consideration of dynamac detection threshold effects; but this must be clarıfied by further work. The optokinetic display was found to be insufficient to signaficantly improve roll rate perception fidelity an the turn simulation, probably due to the short duration of the movements involved.

Although not designed for the purpose, the predetermined simulation profiles were rated for realism by two palots. The results did not contradict model predictions, although support was weak. A dynamic simulator motion logac was proposed, incorporating the strategy derived from the model. Its use would enable pılots to "fly" the simulator, and may provide more convincing data for use in evaluating and revising the fidelity prediction scheme.

Work on this project has led to a Master's Thesis by Joshua D. Borah. The thesis is abstracted below.

Human Dynamic Orientation Model Applied to Motion Simulation
/
t
Joshua D. Borah

The Ormsby model of, dynamac orientation, in the form of a discrete tame computer program, has been used to predict non-visually induced sensations durıng an idealızed coordinated aircraft turn. It was found that attitude and angular rate pexceptions may be, contradictory and furthermore, in a three rotational degree off freedom simulator, $u t$ is impossible to duplicate both simultaneously. To predıct simulation fidelaty, a simple scheme was devised using the Ormsby model to assign penaltzes for incorrect attitude and angular rate perceptions. With this scheme, itjwas determined that a three rotational degree of freedom smmulation should probably remain fanthful to the attitude perception even at the expense of incorrect angular rate sensations. Implementing this strategy, a simulation profile for/the idealızed turn was designed for a Link GAT-1 tramner. Use of a simple poptokinetic display was proposed as an attempt to improve the fidelity of roll rate sensations.

Two open loop subjective tasks were designed, to obtain attitude and roll rate perception indications. A serzes of experıments were performed in our modified Link tranner to test the effectiveness of the tasks and to check model predictıons and visual display effects.

Introduction

The overall aim of the research is the development of practical tools which can extend the state of the art of moving base flight simulation for research and tranning. The immediate goal is the determination of the relatuve importance importance of varıous visual cues in flight smolation. The experiments to be conducted for this research are antended to obtain the perceptual response of humans to deviations from a nominal flight path during landing approaches. An existing fixed-based aircraft sumulator as being modafied to use a television projector wath whach the subjects wall be shown recorded television images of landing approaches. Verbal estimates of the ragnitude of flight path deviations will be made by the subjects, and thas data wall be used to construct a statustucal model of the subject responses.

Five subjects were run through the experiment to help refine the expermental protocol, evaluate the vadeo tape configuration and quality, and provide preliminary data. The results are glven later in this report.

Physical modifications of the simulator room were completed. These include the installation of the window shade and door shades, construction and mounting of the reflecting mirror for the projector, final positioning of the cockpit and minor rewiring of the electronics rack for a clearer field of view, and removal of the extra pane of glass from the cockpit window.

Sideways shaking of the image was an annoying problem in the preliminary tests. It was at first thought to be due to mechanical problems in the Redrfon at Langley, but was eventually discovered to be due to electronic incompatability between the Amphicon projector and the $1 / 2$ inch video tape format, (The Amphzcon has a 'slow' horizontal AFC Instead of the more modern 'fast' AFC.) The problem was traced to the feedback loop around the horizontal oscillator in the Amphzcon sweep chassis, and has been largely alleviated by modifying this circuit. The Amphacon wall be realigned before running any more experiments. Further modification can then be done, if this proves necessary.

Current configuration of the video tapes is as follows:

(1) Long orientation run (backwards)
(2) Long orlentation run. nominal approach
(3) Four scaling runs: minimum and maximum deviations at each distance
(4) Long orientation run
(5) Eight practice runs
(6) Long orientation run
(7) One hundred and twenty data runs

Separate scaling and practice runs are provaded for glide path and amm point tests. Criteria for the practace runs were that they have equal numbers of positive and negatıve devaations, large and small deviations, and short and long distances (but not all possible combinations) Also, deviations in the stimulus not beang overtly tested were kept to the minnmum level. All practice runs were presented in a random order. The original Langley tapes were edzted and copied to make a set of tapes in the current configuration.

The original tapes were recorded at Langley on a Panasonic NV-3020 video tape recorder. This type of reecorder must be started and stopped by hand and has no electronic swatchang to avoid recording start-up transients, so the control track is destroyed between runs. During playback, there is insufficrent time for the player to re-stabilıze atself after the loss of the control track, and the Amphicon projector cannot lock on to the slgnal before the start of the next run. The resulting degradation of picture quality, although lasting for only a second or so, is unacceptable for such short and carefully timed runs. Conventional video editing (such as is used for creating the scaling and practice runs) often makes the problem worse.

In pranciple, "insert" editang should be able to solve the problem by recording the old video signal, andependently of the control track, onto a tape with a brand-new control track. This method assumes that the edıtor's playing deck can provide a usable video signal despıte the damaged control track on the original tape. A relıably functionang vadeo editor capable of performing good inserts (which requare such refinements as flying erase heads) has not been available to date, so the insert method has not been properly tested. If this approach fails, new tapes will have to be made. New tapes of different landing approach conditions will eventually be needed anyofay,

7

and discussions of better methods of preparing them are in progress.

When the original tapes were made, the skyplate on the Redifon symulator was not properly calubrated. The skyplate covers the lens to show a blank 'sky', and is used to establish the visible ceiling by being partially opened. Lack of cali~ bration caused this ceiling to vary from run to run, but only one subject noticed this. It is not considered very mportant as long as the entare runway is visible, which is the case in all of the runs on the current tapes.

Instructions to Subjects

The purpose of this experament is to determine your abalaty to detect errors in gladepath and anm poant durang aircraft landing approaches The expermment has two sets of vadeo taped landing approach runs (To save tame, only a short segment of each run is shown.) During each set, you will be asked to estimate enther glade path or anm poant errors for each run. Both kinds of errors may occur simultaneously, but you should estimate only the one asked for. Sance altitude along the glide path and aim point

miss distance depend on inatial distance from the runway, you should base your estimates on the ANGLES of the glide path and aim point vector errors (see description below).

Each set of runs begins with two orlentation runs to show you the touchdown point and a correct approach. Four scaling runs follow to show you the largest errors in that set for either glide path or aim pount. You should call the maximum positive and negative errors " $+10^{\prime \prime}$ and " -10 " respectuvely, and estamate all other errors in terms of the -10 to +10 scale. For example, a positive error half as large as the maximum should be called +5 . Except for orientation runs, there are no normal approaches (with error equal to zero).

The "glide path" is the path through space that would take you to the runway touchdown point. The correct glide path is the "glideslope", which here makes a 3° angle to the horizontal.

For any given glide path error, the difference in altatude wall change wath the distance from the runway, so you should estamate the $A N G U L A R$ error of the glide path (the glide path error angle).

The "flight vector" is the direction you are moving in through space. The "aim point" is the place on the ground that you will reach if you continue along your present flight vector. The correct ain point is simply the runway touchdown point; to reach it, the flight vector must exactly align with the glide path.

In an actual aurcraft, only the instantaneous flight vector angle can be controlled directly, not the ultimate aim point, and this experıment is set up accordingly. For any given flaght vector angle error, the ultamate touchdown point depends on the inztial distance from the runway. Also the absolute size of the amm point error is not symmetrical for inatial symmetrical flight vector angle errors. So you should estamate the error of the flight vector ANGLE, rather than the ground distance of the resulting alm point.

Note that at is possible to reach the correct touchdown point, even if the glide path is incorrect, and that the aim point can be in error even if you start out on the proper glideslope. If the flight vector is not alagned with the glide path, you may notice a slight change in the glide path during the run. If so, simply estimate the average glıde path (or aim point), or that at the middle of the run.

A score of your performance during the test will be kept. You will not be scored on correctly estimating the exact size of the error, just the right direction (+ or $=$). Your score is simply the total number of estimates in the right direction. Your score does not represent your actual abilities as a palot in a real aurcraft and will be kept confidential.

The runs average about 8 seconds long each, with 3 seconds between runs, so you should make your estımates quickly. You wall have 8 practice runs, and you may repeat the scaling and orientatzon runs if you wish.

Method and Preliminary Results

The current experamental setup is as follows:

Glidepath: $\quad 3^{\circ}$ nominal
$\pm 0.5^{\circ}, \pm 1.0^{\circ}$ deviations
($\pm 1.5^{\circ}$ trainang)

Flightpath $\quad 3^{\circ}$ nomanal
$\pm 0.6^{\circ}, \pm 1.2^{\circ}$ devzatıons
(± 1.8 tranning)

Distance: $\quad 3000 \mathrm{ft}, 6000 \mathrm{ft}$

The glide path is the vector from the aircraft to the desired touchdown point on the runway. The flightpath is the velocity vector of the aircraft.

Subjects are asked to give verbal estimates of the magnitudes of deviations on a subjective scale of -10 to +10 , corresponding to the maximum deviations seen during the training runs. Each subject estimates either glade path or flight path, but not both, during any particular experiment.

A statistical model of the responses is constructed along the following lines:

$$
\begin{aligned}
\text { Response }= & \text { Mean }+(\text { Glide path })+\text { (Flight path }) \\
& + \text { (Distance })+[\ldots \text { Interactions... }] \\
& + \text { error }
\end{aligned}
$$

The model is not intended to establish any cause and effect relationships, but to establish instead the relative importance of the different visual stimuli.

For each experiment, we have the following stimuli:
4 glideslopes $\times 4$ flightpath $\times 2$ distances
x 3 replications $=96$ stimuli

Each subject sits through two experiments, one for glideslope and one for flightpath.
plots of some of the results from a preliminary set of experiments are shown in the following figures. The actual magnitude of the deviation stimulus is given by the horizontal scale; the subject's response to that stimulus (as derived by the statistical model) is given by the vertical scale. The sigma bars, where present, represent ± 1 standard deviation of the "error" in the response which could not be statistically $\operatorname{explained}$ by the model.

Keep an mind that the plots represent partial data from preliminary experiments. The subjects had different backgrounds of flight and simulator experience and variations in the expertmental protocol were tried out. The plots were used primarily to test the application of the model, and do not all correspond to the same statistical confidence level or include all signzficant interactions. Nevertheless, they should give some andcation of what the final data may look like.

Flightpath response

FLIGHTPATH RESPONSES
DISTANCE $=3000 \mathrm{ft}$

REPRODUCBBILTYY OF TEEB
driginal page is poon

flight path responses

$$
\text { DISTANCE }=6000 \mathrm{ft}
$$

DISTANCE $=3000 \mathrm{PT}$.

GLIDE SLOPE

- 25°
02°
$--5$

FLIGHT PATH RESPONSE

REPRODUCIBLITY OF TGE ORIGINAL PAGE IS POOR

The purpose of this portion of the research is to discover what information the model of the human vestibular system can give about the effects of washout filters on a pilot's perception of motion. A qualitative evalutation of In near versus non-linear washout filters as used in an aircraft simulator shows that the non-Inear filter provides a "better" representation of actual motion than the Anear filter. This subjective pilot response seems to be due promarıly to the fact that the non-lınear filter eliminates the false rotational rate cues presented by the In near filter. Hopefully, the model of the vestibular system wall allow more objective results to replace the rating of "better", thereby providing a more quantitative method for predicting simulator performance.

The model of the vestibular system, in its present form as developed n the Man-Vehzcle Laboratory, exists as a FORTRAN program with a very limited input/output format. The data, as

recorded during the subjective tests at Langley, does not conform to that format, so the following changes are being made to that program:
(1) The program must, for convenience, run on the Laboratory's PDP 11/34. Since it was previously run on the IBM 370, this requires only a few modifications to the code. These changes were made and the program as now operational on the PDP 11/34.
(2) The input format must be made more flexible, not only for the sake of this project, but for future projects as well. The program is inflexible mainly because the state transition matrices and Kalman gain matrices are precalculated for a state transition matrix update interval of 0.1 second and a Kalman filter update Interval of 1 second. If different update intervals are desired, these matrix values must be recalculated before the program is used.

This continued recalculation doesn't make much sense in light of the new uses of the program. Therefore, the program wall be changed to accept as input the two update intervals. Then the program would calculate the matrix values and
proceed as before. In order to accomplish this, It is necessary to determine how these matrix values were first calculated. Then a subroutine must be added to the program to calculate the values, given the update intervals. This has been completed.
(3) The output, in its present form, consists of pages and pages of data describing the various responses of the vestibular system. Since the PDP 11/34 15 equipped with a wade variety of graphics capabilities, it is desirable to display this data on graphs, rather than by hand plotting of the printed data. This part of the conversion is not yet complete.

Once the graphics changes are made to the program, it will be ready to interface with the data, and the analysis of the results can began.

VISUAL-VESTIBULAR INTERACTIONS (YAW AXIS)

Effort during this reporting period has concentrated on modelling rotational motion sensation dependence on visual and vestibular cues, with exclusive concentration on yaw rotation about an earth-vertucal axis. The primary results discussed below include. a) the proposal of a velocity draft model which helps explain low frequency drift observed during certain visual field presentations; b) a parallel. channel visual-vestibular model which extends the earlier results obtained from combined input experiments; c) a human operator model appropriate to the velocity mulling task used to measure sensations; and d) a remnant correction technique useful for obtaining a more accurate estimate of the human operator's linear characteristics.

This progress report is divided into 7 sections. Sections 1 and 2 discuss velocity drift results obtained in a velocity mulling experiment obtained under two different visual field presentations: a field faxed with respect to the observer, and one moving at constant velocity with respect to the observer. Section 3 then presents some very simple functional models consistent with this observed drift behavior. To extend the visual-vestibular model reported on an the May progress report, section 4 proposes and describes a dual-input parallel channel model, and develops the equations necessary to extract the model characteristics from the experimental data. Section 5 describes some of the results obtained from a dual-jnput velocity mulling experiment, and presents Bode plots defining the human operator's combined controller/

estimator describing functions, appropriate to a parallel channel structure. Section 6 then proposes how the control portion of the operator's transfer function can be divaded out of the dual-input results, and section 7 presents various estimates of the inferred estimator describing functions resulting from such an approach.

Review of previous data obtanned from the farst two series of closed-loop velocity nulling experaments and the results from a thard series of simalar experaments suggest that the velocity draft characterastics reported in the May progress report be amended. Specifacally, It should be noted that:
a. The latencies and dual ramp draft characteristucs illustrated in fagure 2 C of the May progress report should be discounted, sunce they may samply be an artafact of the druft measurement technique applied to the strip chart histories. It has been found that computed values are too sensitave to slıght variations in fitting the data in a plecewise lanear manner. A more conservative approach has sance been taken, in rhich only one straught line is used to approximate the drift rate resulting from each fixed faeld presentation Such an approach is considerably less sensitive to variailons in the fitting procedure, and has been reapplied to all of the presentations obtained an the second series of experiments.
b. The draft rate statastıcs given in figure 2C of the May progress report should also be discounted, since they were obtained by pooling the results of a relatively well-controlled experamental serıes (Serıes JI) with those of a pilot series (Serzes I), and the later did not ancorporate an adcquate balance for presentation order, fatigue, and learning the task.

The results presented here were obtained from two experimental series. * One has already been described in the Nay report (serfes II) and was the source of the describing function (DF) data presented there. It suffices

to note here that the subject used a spring-centered stack for subject control of velocity. The other series (series III) was a duplicate, except that a control wheel affording no centering cues was substituted for the stick. Thus, the effect of possible centering cues could be investigated by comparing the results of the two experimental series. Both experiments were properly balanced as to the order of stimulus presentation, and the draft measurements were obtained by using a single straight line to fit the data.

Both series used the same six subjects: four received 2 FIX presentations (that is, a presentation of a visual field fixed with respect to the subject, lasting 128 seconds), and two subjects received 3 FIX presentations. Thus, in each series, there were 14 opportunities to observe possible velocity drift in the subject responses.

In the first series using the control stick, there were 8 Instances of observed drift, and 6 no responses (NR) observed, within the accuracy afforded by the strip chert recording. Counting each NR as a $0.0^{\circ} / \mathrm{s}^{2}$ draft rate, the population statistics are given by.

$$
\begin{equation*}
\text { Stick control: } \mu_{1}=0.004^{\circ} / \mathrm{s}^{2} ; \quad \sigma_{1}=0.041^{\circ} / \mathrm{s}^{2} ; \quad N_{1}=14 \tag{la}
\end{equation*}
$$

A -test shows that the mean μ_{1} as not significantly different from zero ($p>0.5$), which is what would be hoped for, since a significant non-zero mean would suggest a directional baas in the experimental equipment, procedure, and/or subject population.

We can now ask the following question. Is the self-centering property of the stick affecting the measured population response by providing a cue as to where the null is? Or, stated differently, are the subjects using the stick centering cue to augment their perception of the low-frequency motion cues?

With the experimental series repeated using the non-centering wheel as a control element (series III), there were again 14 opportunities to observe velocity draft. Actually observed were 13 cases of drift and one no response (NR). Again, counting the NR as a $0.0^{\circ} / \mathrm{s}^{2}$ drift rate, the population, statistics are given by:

$$
\begin{equation*}
\text { wheel control: } \mu_{2}=0.015^{\circ} / \mathrm{s}^{2} ; \sigma_{2}=0.050^{\circ} / \mathrm{s}^{2} ; \quad N_{2}=14 \tag{lb}
\end{equation*}
$$

As with stack control, a t-test shows that the mean drift rate is not significantly different from zero, suggesting the absence of a directional bias. Of more interest, however, is the question concerning a different population response due to wheel versus stack control. Comparing the statistics of (la) with those of (Ib), we find that an F-test on the variances shows them not to be significantly different ($p>0.2$), so that we can pool them ($\sigma_{p}=0.046^{\circ} / \mathrm{s}^{2}$) and use a t-test on the means. We find that the means are also not significantly different ($p>0.5$), so that this statistical measure shows no difference between wheel and stack control Perhaps, however, this conclusion 3 s biased by the fact that the NR's of each semis were included to arrive at the means and variances of (1). By excluding them, and simply looking at the draft statistics of the responding population, we find the following:

$$
\begin{array}{lll}
\text { stick control: } & \mu_{1}=0.016 ; & \sigma_{1}=0.052 ; \mathbb{N}_{1}=8 \\
\text { wheel control. } & \mu_{2}=0.006 ; & \sigma_{2}=0.056 ; \mathbb{N}_{2}=13 \tag{2b}
\end{array}
$$

An f-test shows the variances to be not significantly different ($p>0.2$), so that we can pool them ($\sigma_{p}=0.054^{\circ} / \mathrm{s}^{2}$) and use a t-test on the means.

Again, we find thatthe means are also not significantly different (p > 0.5) so that even excluding the $N R$'s from the data, we find no significant difference between wheel and stack control, by these measures.

What should be obvious at thas point, however, is that the number of N^{1} 's observed with wheel control (1) is quite a bit smaller than the number observed with stack control (6). To test the significance of this observation, we use a contingency table and the X_{0}^{2}-test:

Stick Wheel
$\left.\begin{array}{c|c|c|}\begin{array}{c}\text { Draft } \\ \text { occurred }\end{array} & 8 & 13 \\ \hline \begin{array}{c}\text { No draft } \\ \text { occurred }\end{array} & 6 & 1 \\ \hline\end{array} \quad \begin{array}{c}x_{0}^{2}=4.76 \\ \nu=1\end{array}\right\} \Rightarrow \mathrm{p}<0.05$

Thus, there is a sagnificant difference between stick and wheel control, in terms of the number of times zero drift (NR) was observed. The suggestaon is that the stick provides centerang information which completely suppresses drift an some cases, although the average drift rate is independent of the type of control used.

Sance the statistacal tests done above on the means and variances of the draft rates showed no signafacant differences between stick and wheel control, it seems reasonable to pool the data. Of interest, then, is the manner in which the $N R ' s$ are handled. If we assume the one $N R$ observed with wheel control 2 s a legitinate case of zero draft, uncorrupted by a controller centering cue, then we are obliged to include it in the population resulis. Thas is not unreasonable since it seems safe to assume that no controller centering cues were possible wath the wheel control.

Turnang now to the NR's observed with stack control, one approach Is to samply exclude them all, on the basıs of possable response corruption due to centering cues. The corresponding contingency table test results in a χ_{0}^{2} value of 0.39 , a considerable reduction from the 4.76 value obtained above, and suggests that this is the proper durection in rhach to proceed. Including only one of the NR's observed during stack control results in a χ_{0}^{2} value of 0.11 , and including two $N R$'s results in a χ_{0}^{2} value of 0.88 . Including additional $N R^{1} s$ only increases the χ_{0}^{2} value, thus, the manimum X_{0}^{2} value is obtaned wheth one $N R$ included in the stack responses.

For the results of the two experimental serıes to be mosi congruent, in terms of $N R$ occurances, it is clear that a contingency table test should result in a minimum χ_{0}^{2} value. Thus, the decision may be made to eliminate 5 of the $6 \mathrm{NR}^{\mathrm{t}} \mathrm{s}$ obtaned under stick control. When the data is so eduted, keeping one $N R$ from each serses, the following statistics result:

Drift rate: $\mu=0.011^{\circ} / \mathrm{s}^{2} ; \sigma=0050^{\circ} / \mathrm{s}^{2}, \quad N=23$

A t-Lest shors the mean to be not signaficantly dafferent from zero ($p>0.5$), as expected.

To gan an appreciation for the magnitude of the draft rates observed under fixed-field presentations, we can look at the statastics of the absolute values of the pooled stack/vheel data.

Drift rate (magnitude) : $\mu=0.043^{\circ} / \mathrm{s}^{2} ; \quad \sigma=0.027^{\circ} / \mathrm{s}^{2} ; \quad \mathrm{N}=23$

These drift rate magnitudes are well below accepted threshold values for yaw axis earth-vertical rotation ($\simeq 0.10^{\circ} / \mathrm{s}^{2}$) and thus are consistent whth the

notion that the subject is completely unaware of his drift acceleration when deprived of visual motion cues.

A summary of the above results is presented in Figure 1.
A funal note concerning the statistical characteristics of the velocaty drift rates concerns the normality of the pooled daia. Shown in Fagure 2 is the cumulative frequency distribution (CFD) of the drift rates normalized with respect to themean and variance of (4); superimposed on this experimentally derived curve is the CFD for the unit normal distrabution, $N(0,1)$. Use of Kolmogorov-Smirnov test for normality strongly rejects non-normality, so that it is not unreasonable to conclude that velocity draft rates, caused by visual motion cue deprivation, are normally distributed. Thas will be contrasted to the results presented belov, concerning drift rate distrabution observed with subject performance during presencation of a constant velocity (CV) visual field.

A functional model of angular velocity perception ancorporating the above-discussed druft characteristics will be presented an a later section, after discussion of the CV results.

FIGUEE \| : VLLOCITY DRIFT UITH NO VISUAL CULS

(1) SIX SUBJECTS, 14 FIXED FIELD PRESLNTATIORS OVERALL, TWO CONTROL MLTHODS

CONTROL METHOD	DRIFT OCCURANCES	$\bar{x}\left(0 / \mathrm{s}^{2}\right)$	$\sigma\left(0 / \mathrm{s}^{2}\right)$
STICK	8	.016	.052
WHELL	13	.006	.056

- only significant dfference betwhen hethods is in wumber of drift occuraicen. stick providls a centcring cul

0 POOLLD DATA.

$$
\bar{x}=.011 \% / \mathrm{s}^{2} \quad \sigma=.050^{\circ} / \mathrm{s}^{2} \quad \mathrm{~N}=23
$$

NOT SIGNTFICANTLY DITCERLNT FROM ZERO. BALANCED.

- DRJET MAGNITUDES:

$$
\Pi=.043 \% \mathrm{~s}^{2} \quad \sigma=.027^{\circ} / \mathrm{s}^{2} \quad \mathrm{~N}=23
$$

WLLL BELON THRESHOLD

$$
31
$$

The effect of a constant velocity (CV) visual field presentation on subject performance in the closed-loop velocaty-nulling task has already been qualitatively described $1 n$ the May progress report. Briefly, It was found that relatively large velocity drifts were observed during such presentations, and that drift always was an the direction of visual field motion. Given below is a more quantitative description of these drift responses.

During the course of the prevaously-descrabed velocity-nulling task, a constant velocity ($4^{\circ} / \mathrm{s}$) right-moving peripheral visual field was gresented to the subject. Velocity draft measurements were made on the ensuing subject responses, using the single straight line fit noted an the previous section. As in the case of faxed visual field presentations, two series were rim: one using self-centering stack control (series II) and the other using wheel control (series III).

Both series used the same sax subjects. four received 2 CV presenttations (that is, a presentation of a visual field moving at a constant. velocity with respect to the subject), and two received 3 CV presentations. As with the FIX presentations, there were thus 14 opportunities per series to observe possible velocity draft in the subject responses.

Out of a total possible 28 occurences of draft, there were observed 27, with one case of severe disorientation and subsequent inconsistent and task-mmelated response. This case has been eliminated from the data base whose statistics are given below:

stick control: $\mu_{1}=0.261^{\circ} / \mathrm{s}^{2} ; \quad \sigma_{1}=0.1411^{\circ} / \mathrm{s}^{2} ; \quad N_{1}=14$
wheel control: $\mu_{2}=0.328^{\circ} / \mathrm{s}^{2} ; \quad \sigma_{2}=0.265^{\circ} / \mathrm{s}^{2} ; \quad \mathrm{N}_{2}=13$

As in the preceeding section, we can ask af stick control results in significantly different subject responses from those seen whth wheel. control. It should be clear that they are equivalent in terms of not suppressing drift responses, this in contrast to the large numbers of $N R^{\prime}$ s seen with stack control and a fixed visual field presentation as noted in the preceeding section. What remanns then is to compare the statistical measures above.

Comparing the statistics of (la) wath (1b), an F-test on the variances shous them to be significantly different ($p<0.05$). A Welch t-test, however, shows that the means are not significantly dıfferent ($p>0.5$), and one is thus motuvated to pool the data for the two control methods, in spite of the varaance differences. The pooled data for $C V$ presentation velocity drift rates are then characterazed by the following statistics.

$$
\begin{equation*}
\text { drift rate }(C V): \quad \mu=0.293^{\circ} / \mathrm{s}^{2} ; \quad \sigma=0.209^{\circ} / \mathrm{s}^{2} ; N=27 \tag{2}
\end{equation*}
$$

It should be recalled that since all of the observed drufts were in the same direction (followang the direction of the vasual field motion), these statustics also apply to drift rate magnitudes. It is also appropriate to recall that these statistics apply to the sangle stimulus magnatude of a $4^{\circ} / \mathrm{s}$ right moving visual field.

A simple t-test on the pooled statistics of (2) show the mean druft rate to be significantly different from zero ($\mathrm{p}<0.005$); thas is to be contrasted to the approximately zero drift rate seen across the population in response to a fixed-ficid presentation. Further contrast between the
responses to the two visual field environments is provided by comparing draft rate magnitudes. From (4) of the previous section, fixed-field draft was characterized by:

Draft rate magnitude (FIX) $\cdot \mu=0.043^{\circ} / \mathrm{s}^{2} ; \sigma=0.027^{\circ} / \mathrm{s}^{2}, \mathbb{N}=23$

An F-test on the variances of (2) and (3) above show a highly significant difference ($p<0.001$), as does a Welsh t-test on the means ($p<0.005$) Thus we are led to conclude that draft rate magnitudes resulting from a CV visual field presentation are significantly different from those seen during a FIX presentation.

Also of interest is the fact that the mean CV draft rate of approxmatey $0.3^{\circ} / \mathrm{s}^{2}$ is near three times the accepted yaw axis earth-vertacal rotational acceleration threshold, suggesting a strong modulation of "vestibular" thresholds by visual inputs. A qualitative discussion of how such a drift rate can arise and remain undetected by the subject is given in the May progress report; a slightly more quantitative functional model is presented in the next section.

A summary of the above findings as presented in Figure 1
A final note concerning the statistical characteristics of the velocity drift rates concerns the normalaty of the pooled data. Shown an Figure 2 is the cumulative frequency dastrabutaon (CFD) of the draft rates normalized with respect to the mean and variance of (2), presented in the same format used previously for the FIX drift rates. As before, use of the Kolmogorov-Smirnov test for normality requires us to reject non-normality ($p>0.2$). Comparing this figure with the one drawn for the FIX drift rates (Figure 2, last section), however, suggests that the CV drift data is "less normal", because of the late rise and slow tail off
(1) SIX SUBJECTS, 14 CV FILLD PRESEITATIONS OVERALL, THO COHPROL METHODS

CONTROL METHOD	DRITT OCCURANCES	$\bar{x}\left(0 / \mathrm{s}^{2}\right)$	$\sigma\left(0 / \mathrm{s}^{2}\right)$
STICK	13^{*}	.261	.141
WHEEL	14	.328	.265

*one severe disorıentation elmmated from talley
(1) SIGNIficant difference bluwed two methods in variance, NOT MEANS

G POOLED DATA.

$$
\bar{t}=0.2930 / \mathrm{s}^{2} \quad \sigma=0.209 \% / \mathrm{s}^{2} \quad N=27
$$

- MLAN SIGNIFICAN'SLY DIFFLRENT FROM ZLRO (P<.005), AND ABOVE THRESHOLD ($\sim 0.1 \% / \mathrm{s}^{2}$)

6 RESULTS SIGNITICANTLY DITFERENT FRON FIX PRLSENTATIOAS
(3) data best fit witil a log-norial distriburjon MAGNITUDL ESTIMATE IMPLICATIONS ???

of the CFD. We are thus motavated to look at the \log of the data, and the normalized CFD is plotted in Figure 3. Comparing this with that of Figure 2 shows that the CV draft rate is more accurately described as a log=normal random varıable, rather than a normal random variable. Hov this $2 s$ to be interpreted is, at present, unclear, although it may suggest that some Weber law estimation process is at work whthin each induvidual's response, and is somehow reflected across the population response.

3.0 VELOCITY DRITY MODELS

The previous two sections have discussed the statistical characteristics of velocity drift ancurred by subjects during the task of closed-loop velocity nulling, when presented whth two types of vasual motion cues. This section wil now present very simple functional models of the human operator which arc consistent with the observed drift behavior.

3.1 Fixed Visual Faeld

As discussed in the May progress report, past investigators have -attributed velocity draft arısang out of a velocity mullang experiment (with visual motion cue deprivatuon) to be a characterustic pramarily associated with the vestıbulax sensory chamels. Functionally, this is an appealing intcrpretation because a very simple model can be constructed which is consistent with the observed drift and with the generally accepted properties of the vestibular sensors. Shown in Figure I is such a model. a bllateral model of the two horizontal semacircular canals, whose outputs are dufferenced to provide an estanate of head angular velocity. Note that both canals are characterized as identical IInear bandpass falters on velocily, but daferang in DC gain and output bias.

Shortly it will be shown that a simple constant offset in the estimate $\hat{\omega}$ is sufficient to give rise to the draft behavior seen in the experiments. In particular, if a non-zero estimate $\hat{\omega}$ can be gencrated by the model of Figure 1 , in the face of an angular velocity w which is actually zero, then it is a faixly direct matter to predici velocity drift In the closed-loop velocity nulling task. Of interest now is to see how 42

FGURE 1 : Bikiteral leitivilan Aletel, with Output Biases

FIGURE2: Cgoberan Vatibulen (hobl, with Oreprot ges
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
an offset can arise from a model parameter imbalance: . From the figure, the angular velocity estimate is given by.

$$
\begin{equation*}
\hat{\omega}(s)=\left(b_{R}-b_{L}\right)+\frac{\left(K_{R}-K_{L}\right) s}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)} \omega(s) \tag{1}
\end{equation*}
$$

It should be clear that if the bias terms are equal ($b_{R}=b_{L}$), then a gain imbalance ($K_{R} \hat{z}^{2}-K_{L}$) is not sufficient to provide a nonzero $\hat{\omega}$ when ω is actually zero. Neither is it necessary, since a nonzero $\hat{\omega}$ can be simply obtained when ω as zero by having the biases unequal ($\mathrm{b}_{\mathrm{R}} \neq \mathrm{b}_{\mathrm{L}}$). Thus a gain imbalance is irrelevant to a discussion of a steady offset in the velocity estimate, and for sumiplicity tee can assume a gain balance:

$$
\begin{equation*}
K_{R}=-K_{L} \equiv K_{1} / 2 \tag{2}
\end{equation*}
$$

so that (1) simplifies to the standard "cyclopean" canal model, with bias:

$$
\begin{equation*}
\hat{\omega}(s)=\omega_{b}(s)+\frac{K_{1} s}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)} \omega(s) \tag{3}
\end{equation*}
$$

where the bias velocity is defined by

$$
\begin{equation*}
\omega_{b}=b_{R}-b_{L} \tag{4}
\end{equation*}
$$

The functional model corresponding to (3) and (4) is sketched in Figure 2, and wall be used in the sequel.

Now to short how such an angular velocity bias can give rise to the draft observed in the velocity mulling task, it is necessary to refer to the loop diagram previously presented in the May progress report and repeated in Figure 3. Since we are presently considering the purely vestibular situation, in which the subject is presented

FIgure 3: Velocity Nulling Task Loop Diagram.

Feedback path control:

43
with a stationary visual surround, the estimator block $\mathrm{E}(\mathrm{s})$ can be replaced by the vestibular model of Figure 2. Furthermore, as wall be discussed at greater length in section 6, the control strategy $C(s)$ can be approxymated by an integrator with gain, or:

$$
\begin{equation*}
c(s)=K_{c} / s \tag{5}
\end{equation*}
$$

Sumple block diagram arxthmetic then yields the following expression for the angular velocxty, w, resulting from the subject's remnant, n, has vestabular bas, ω_{b}, and the input disturbance, d :

$$
\begin{equation*}
\omega(s)=\frac{G}{1+K G C E}\left\{K_{n}-K C \omega_{b}+d\right\} \tag{6}
\end{equation*}
$$

where E ' is the Innear portion of the vestibular estamator:

$$
\begin{equation*}
E^{1}(s) \equiv K_{1} s /\left\{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)\right\} \tag{7}
\end{equation*}
$$

Since we are interested in low-frequency behavoor (specifically, draft), we note that

$$
\begin{equation*}
\lim _{s \rightarrow 0} E^{1}(s)=K_{1} s \tag{8a}
\end{equation*}
$$

Further, the trajner transfer function is unzily at $D C$, so that

$$
\begin{equation*}
\lim _{s \rightarrow 0} G(s)=1 \tag{8b}
\end{equation*}
$$

Since thedisturbance $d(t)$ is a sum of smusoids (as described in the May progress report),

$$
\begin{equation*}
\lim _{s \rightarrow 0} d(s)=0 \tag{8c}
\end{equation*}
$$

Finally, if we assume the remant to have no pover at zero frequency, then

$$
\begin{equation*}
\lim _{s \rightarrow 0} n(s)=0 \tag{8d}
\end{equation*}
$$

Substatuting (5) and (8) anto (6), we fund the low frequency portion of the angular velocity sagnal to be given by:

$$
\begin{equation*}
\lim _{s \rightarrow 0} \omega(s)=\lim _{s \rightarrow 0}\left(\frac{-K K_{c}}{1+K K_{c} K_{1}}\right)_{s^{2}}^{s^{2}} \tag{91}
\end{equation*}
$$

where we have used the fact that the bias w_{b} is a constant over tame, so that

$$
\begin{equation*}
\omega_{b}(s)=\omega_{b} / s \tag{8e}
\end{equation*}
$$

In the time domain, then, (9) muplies that, due to the velocity estimate bias ω_{b}, the subject will continue to accelerate at a constant rate, his angular velocity beang gaven by:

$$
\begin{equation*}
\omega(t)=-\frac{K_{c}}{1+K_{c} K_{1}} \omega_{b} t \quad \quad(F I X \quad \text { Draft }) \tag{10}
\end{equation*}
$$

assumang zero anitial conditions. The minus sign, of course, implies that a positive (rightward) bias wall give rise to a negative (leftward) draft. Thus, the simple cyclopean vestabular model, modified whth the addition of a bias on the output, appears to be an adequate descriptor of subject performance when one as deprived of vasual motaon cues on the velocity nulling task.

Presumably, the estimator bias ω_{b} for an individual could be inferred from (10) by measuring the drift acceleration and by estimating the andrvidual transfex function gaıns K, K_{c} and K_{l}. The same could be done for the enture population, but it is simpler to recognize from (3) of section 1 that the average drift rate $\bar{\omega}$ is zero over the population. Thus, from (10), the average velocity blas $\bar{\omega}_{b}$ over the population must also be zero, since K_{c} has always been found to be non-zero (see section 6). Estimation

of the variance of ω_{b} from draft rate measurements is, of course, complicated by the unknown statistacal properties of the gains in (10).

One final qualatatave aspect of this bias model is worth noting, and concerns the subject's perceaved velocity while engaged in the velocaty nulling task. His estamated velocity $\hat{\omega}$ is neather zero nor ω_{b}, but an intermediate value found by substituting the transform of (10) Into the cyclopean canal model of (3), to yield:

$$
\hat{\omega}_{L F}(s)=\lim _{s \rightarrow 0} \frac{\omega_{b}}{s}\left\{1+\frac{K_{1} s}{\left(\tau_{l} s+1\right)\left(\tau_{2} s+1\right)}\left\{\frac{-K K_{c}}{1+K K_{c} K_{1}}\right\} \frac{1}{s}\right\}
$$

where the subscript LF Indicates that we are interested in the low frequency portion of perceived velocity. The above expression simplufies to yield the folloring relation between bias velocaty and percelved velocaty:

$$
\begin{equation*}
\hat{\omega}_{L F}=\frac{1}{1+K K_{c} K_{1}} \omega_{b} \tag{III}
\end{equation*}
$$

Thus, the subject perceives that he is moving at a constant velocity, and hence is obligated to provade a compensatory control stick deflection to null $2 t$, thus leading to the eventual acceleration draft seen an the records. Note that his percejved velocity $\hat{\omega}_{\text {LF }}$ is simply the bias velocaty attentuated by the closed loop gain, so that individuals with higher loop gains mall tend to have loryer values of perceaved velocity, and vice versa, assumang other factors remain equal between subjects.

3.2 Constant Velocity Visual Field

To thas point, we have been concerned with the drift incurred wath a fixed visual field (FIX); a simildr argument can be made to belp understand the cause of draft under constant velocity visual ficld presentation (CV).

Shown in Figure 4 is perhaps the simplest possible parallel channel visual-vestibular model, in whach it is presumed that visual surround velocity contributes only to the low frequency portion of the angular velocity estmate, in a linear manner. Some justafication for thas model has already been glven in the May progress report; more wall be gaven in a later section descrabing an experiment whose goal is to determane the components of such a parallel channel model. For now, it suffuces to note that the velocity estumate from this model is gaven by:

$$
\begin{equation*}
\hat{\omega}(s)=\omega_{b}(s)+K_{2} \omega_{2}(s)+\frac{K_{1} s}{\left(\tau_{1} s+1\right)\left(\tau_{2} s+1\right)} \omega_{1}(s) \tag{12}
\end{equation*}
$$

where ω_{1} and ω_{2} refer to vestibular and vasual field velocalies rnespectively. Note that by defining

$$
\begin{equation*}
w_{b}^{\prime} \equiv w_{b}+k_{2} \omega_{2} \tag{13}
\end{equation*}
$$

the equation is Identical to (3), the biased estamator for the purely vesizbular situation. Thus, the same low-frequency derivation is Is applicable and (10) can be used to describe the C̄V-induced draft rates seen experimentally, wath ω_{b} an the equation replaced by ω_{b}^{\prime} above, or

$$
\begin{equation*}
\omega(t)=-\frac{K K_{c}}{1+K K_{c} K_{1}}\left(\omega_{b}+K_{2} \omega_{2}\right) L \quad(C V \operatorname{drIf} t) \tag{14}
\end{equation*}
$$

\qquad

\qquad

In the previous section it was noted that all CV－2nduced drifts were observed to be in the same direction as the stimulus visual field velocity．What this suggests is that the visual field effect is large with respect to the（bilateral）vestibular offset term．This is seen fairly directly by recasting（10）and（14）an terms of drift acceleration levels：

$$
\begin{align*}
& \dot{\omega}_{F I X}=\Lambda \omega_{\mathrm{b}} \tag{a}\\
& \dot{\omega}_{\mathrm{CV}}=\Lambda\left(\omega_{\mathrm{b}}+K_{2} \omega_{2}\right)=\dot{\omega}_{\mathrm{FIX}}+\Lambda K_{2} \omega_{2} \tag{b}
\end{align*}
$$

where Λ is defined by

$$
\begin{equation*}
\Lambda \equiv-\frac{\mathrm{KK}_{c}}{1+\mathrm{KK}_{c} \mathrm{~K}_{1}} \tag{16}
\end{equation*}
$$

But，from the previous two sections，the average drift accelerations were

$$
\begin{align*}
& \bar{\omega}_{\mathrm{FIX}} \simeq 0.04^{\circ} / \mathrm{s}^{2} \\
& \overline{\dot{\omega}}_{\mathrm{CV}} \simeq 0.29^{\circ} / \mathrm{s}^{2} \tag{17}
\end{align*}
$$

So that mspection of（15b）would lead one to conclude that，over the population，

$$
\begin{equation*}
\omega_{\mathrm{b}} \ll \mathrm{~K}_{2} \omega_{2} \tag{18}
\end{equation*}
$$

that 1 s ，the vestibular bias velocity is small with respect to the CV － induced velocity sensation．It should be recognized that this conclusion is applicable to the particular value of ω_{2} used in the experiment，a $4^{\circ} / \mathrm{s}$ right－moving visual field，and lower field velocities may not allow similar conclusions to be made．

4.0 PARALLEL CHANNEL VISUAL-VESTIBULAR MODEL

The previously described velocaty-nulling expcraments (series T, II, and III) looked at closed-loop velocity control in the face of a vestibular disturbance combaned wath one of three types of visual surround environments: a counterrotating vasual field (CON) whach exactly confarmed vestabular inputs, a field stationary with respect to the subject (FIX) whach provaded no visual motion cues, and a field movang at constant velocaty wath respect to the subject (CV) which induced circularvection sensatzons.

The results, analyzed in both the time and frequency domann, support the notion of a frequency separation of vasual and vestibular inputs, where the vasual cues provide the steady state or low frequency cues, while the vestabular cues provade complementary high frequency or transient information. The human operator descrjbing function vas calculated for each of the three visual field conditzons and was modelled as a lag-lead function whose parameters were dependent on the particular fireld condition (see May progress report).

The describing function itself relates actual trainer motion to the subject's control stich/wheel output, and thus can be viewed as a "vestabular" transfer function whose parameters depend on the particular vasual motion cues beang presented to the subject. This, of course, assumes that the subject's control strategy for nullang perceived motion as essentially unaly throughout the frequency range of interest; this subject wall be addressed later in section 6 .

In order to look more closely at what is essentially a dual-input problem, a parallel channel estamator model was proposed, and another experimental series (IV) vas initiated to see if such a model could explain In greater detail how visual and vestibular inputs are combined to arrive at a sensation of motion. The approach is to work with two describing functions: one relating trainer velocaty to wheel output, and the other relating visual fueld motion to wheel output.

In the previous three series, nolse was injected into the trainer loop so that the subject would be obliged to provide compensatory stick or wheel deflections to null his percelved angular velocity. In the present dual-input (DI) series, nozse is also injected into the visual freld loop, so that any visually-induced motion sensation must also be compensated for by the subjeci. By choosing the two disturbances to be independent of one another, at as ampossible for the subject to perform both nulling tasks at once. By examaning the results an the frequency domasn, it then becomes possable to see what components of the subject's response are due to vestabular inputs, and what are due to visual inputs. From this, one can infer a DI descrabing function model of perceaved motion. From experience with the previous series, inJecting noise Jnto the tramer loop (vestibular path) is farrly straight forward: samply sum it with the subject's wheel signal prior to , being sent to the tramer drave circuitry. The same approach can be taken for the projector loop (visual loop): sum a second noise signal wath the wheel signal and send thas combaned sagnal to the projector drive circustry.

A functional block diagram of the overall system, including a conjectural dual-input model of the human operator, is shown in Figure 1 . The two injected noise signals are denoted by d_{1} and d_{2}, and the wheel signal λ is show as an input to both the visual and vestibular loops For this series and others following, wheel control was used to avoid possible centering cues provided by the spring loaded stick. Two points should be noted First, the sign of the wheel signal is changed when at is sent to the projector drive, to make the resulting visual field motion consistent wi the trainer motion. Thus, a right wheel motion results in a right trainer motion and a left visual field motion; i.e. analogous to the counterrotating field situation of the previous three series. The second point to note is the addition of a prefilter, F_{2}, in the visual field path, necessary because the projector drive alone, G_{2}, has a relatively high bandpass compared to the bandpass of the faltered trainer transfer function, $F_{1} G_{1}$ By choosing F_{2} so that

$$
F_{1} G_{1}=F_{2} G_{2} \quad(\equiv P)
$$

then, in response to the subject's wheel deflections, the visual field motion wall mama the tazaner motion, exhibiting the same amplitude attenuation and phase lag over the frequency regime of interest Another way of saying this, is, that, an the absence of any noise injected into either loop, the visual field motion, in response to the subject's wheel deflections, should be indistinguishable from the counter rotating visual field motion used in the previous experimental series. Thus, the profilter F_{2} helps make the visual field a more compelling motion cue.

FIG 1: DVAL-INPUT EXPERIMENT: FUNCTIONAL MODEL
nose: $\quad F_{1} G_{1}=F_{2} G_{2} \equiv P$

A linear model of the subject, interfaced with the experimental apparatus, is diagramed in Figure 2. Here, $1 t$ is assumed that the visual and vestabular channels work in parallel, with their outputs summed to provide an overall estamate of self-motion. This is the same approach used in the velocity draft modelling of section 3 , but is to be contrasted with the single chamel "vestabular" model, augmented by visually-anduced parameter variations, derıved from the results of the previously described experamental series. As before, an internal model of zero percenved velocaty is assumed to be a set-point $\left(\hat{\omega}_{c}=0\right.$) upon which acts a linear control logic $C(s)$ to generate the appropriate hand motion which draves the control wheel. A remnant signal provides for a source of subject output response which as uncorrelated with exther of the disturbance inputs, d_{1} and d_{2}.

The remainder of this section wall now be concerned with the mamer in which the estimator transfer functions E_{1} and E_{2} may be solved for in terms of the three loop inputs, d_{1}, d_{2}, and n, and the three loop outputs, ω_{1}, ω_{2}, and λ.

Fron block diagram aigebra, it is a durect matter to show that the three outputs are determaned by the three anputs an the followng manner:

$$
\begin{align*}
& \lambda(s)=\frac{1}{\Delta}\left(\operatorname{Kn}(s)+\operatorname{KPCE}_{1} d_{1}(s)-\operatorname{KPCE}_{2} d_{2}(s)\right) \tag{a}\\
& \omega_{1}(s)=\frac{P}{\Delta}\left(\operatorname{Kn}(s)+\left(1+\operatorname{KPCE}_{2}\right) d_{1}(s)-\operatorname{KPCE}_{2} d_{2}(s)\right) \tag{b}\\
& \omega_{2}(s)=-\frac{P}{\Delta}\left(\operatorname{Kn}(s)-\operatorname{KPCE}_{1} d_{1}(s)+\left(1+\operatorname{KPCE}_{1}\right) d_{2}(s)\right) \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta \equiv 1+\operatorname{KPC}\left(\mathrm{E}_{1}+\mathrm{E}_{2}\right) \tag{2}
\end{equation*}
$$

FIGRE 2: $\angle I N E A R I Z E D$ SYSTEA PARAUEL CHMUISI AODEL

note: $P=F_{F} \epsilon_{i}=F_{2} G_{2}$
and where the transfer function dependence on the Laplace-transform variable s has been omitted for clarity. We can now make use of auto- and cross-power spectral density functions to solve for E_{1} and E_{2}. Correlating d_{1} with λ and ω_{1}, we have, from (la) and (lb),

$$
\begin{align*}
& \Phi_{\lambda d_{1}}=\frac{1}{\Delta}\left(\mathrm{~K}_{\mathrm{nd}}^{1}, ~-\operatorname{KPCE}_{1} \Phi_{\mathrm{d}_{1} \mathrm{~d}_{1}}-\mathrm{KPCE}_{2} \Phi_{\mathrm{d}_{2} \mathrm{~d}_{1}}\right) \tag{3}\\
& \Phi_{\omega_{1} d_{1}}=\frac{\mathrm{P}}{\Delta}\left(\mathrm{~K}_{\mathrm{nd}}^{1} 10\left(1+K P C E_{2}\right) \Phi_{\mathrm{d}_{1} \mathrm{~d}_{1}}-\mathrm{KPCE}_{2} \Phi_{\mathrm{d}_{2} \mathrm{~d}_{1}}\right)
\end{align*}
$$

Since the remnant is defined to be uncorrelated with the input disturbances, then

$$
\begin{equation*}
\Phi_{n d_{1}}=\Phi_{n d_{2}}=0 \tag{4}
\end{equation*}
$$

Further, af the experimental design is such that d_{1} and d_{2} are uncorrelated, then

$$
\begin{equation*}
\Phi_{d_{1} d_{2}}=\Phi_{d_{2} d_{2}}=0 \tag{5}
\end{equation*}
$$

Thus, dividing (3a) by (3b) and using (4) and (5) to simplify the result, we find that

$$
\begin{equation*}
\frac{\Phi_{\lambda d_{1}}}{\Phi_{\omega_{1} \mathrm{~d}_{1}}}=-\frac{\mathrm{KCE}_{1}}{1+\mathrm{KPCE}_{?}} \tag{ba}
\end{equation*}
$$

In a similar fashion, il may be shown that

$$
\begin{equation*}
\frac{\Phi_{\lambda d_{2}}}{{ }^{\Phi} \omega_{2} d_{2}}=\frac{\mathrm{KCE}_{2}}{3+K P C E_{1}} \tag{Gb}
\end{equation*}
$$

Since the Jeft-hand-sxdes of (6) are computable from the measured outputs of the experiment, we define

$$
\begin{equation*}
\alpha_{1} \equiv \Phi_{\lambda d_{1}} / \Phi_{\omega_{1} d_{1}} \quad ; \quad \alpha_{2} \equiv \Phi_{\lambda d_{2}} / \Phi \omega_{2} d_{2} \tag{7}
\end{equation*}
$$

so that substituting into (6) allows for a solution for CE_{1} and CE_{2} :

$$
\begin{align*}
& C E_{1}=-\frac{1}{\mathrm{~K}} \frac{\alpha_{1}\left(1+\mathrm{P} \alpha_{2}\right)}{1+\mathrm{P}^{2} \alpha_{1} \alpha_{2}} \tag{8}\\
& C E_{2}=\frac{1}{\overline{\mathrm{~K}}} \frac{\alpha_{2}\left(1-\mathrm{P} \alpha_{1}\right)}{1+\mathrm{P}^{2} \alpha_{1} \alpha_{2}}
\end{align*}
$$

Note that the control strategy C is embedded with the estimators E_{1} and E_{2}, as is to be expected, and cannot be separated from them in this type of experiment. Separation of control from estimation is the subject of section 7; the present discussion wall be concerned with estimating the composite functions CE_{1} and CE_{2}.

4.1 Disturbance Inputs

One major aspect of the experimental design concerns the choice of the two disturbance inputs d_{1} and d_{2}. Basically, they were chosen to meet the following requirements
a. Thar frequency content must span the frequency range of interest: $\simeq 0.01 \mathrm{~Hz}$ to $\simeq 1.00 \mathrm{~Hz}$.
b. The high frequency porer should gradually taper off, so as to avoid the "shelf" power spectrum used in earlier experiments.
c. The amplitude must be reasonably sized in terms of human operator threshold and maximum limitations on the equipment.
d. The two signals should be uncorrelated, to satisfy (5).

Chosen were two "pseudo-random" signals, each composed of a sum of sinusoids. Each sinusoidal term is an integral prime multiple of a base frequency of $1 / 128 \mathrm{~Hz}(0.00781 \mathrm{~Hz})$, so that the total period of each signal is 128 seconds, a period which is unrecognizable by the human operator in this task. Formally, the signals are defined by:

$$
d_{1}=\sum_{z=1}^{13} a_{2} \sin n_{2} \omega_{0} t \quad d_{2}=\sum_{z=1}^{13} b_{2} \sin m_{2} \omega_{0} t
$$

where $\omega_{0}=2 \pi / T, I=128$ seconds, and where the n_{I} and m_{1} are alternating prime numbers so as to avoid harmonic ambiguities and assure a zero correlation between the signals.

The amplitude spectra for the two signals are given in Figure 3 and arc given on amplitude ratio (AR) form, referenced to a base lowfrequency magnitude of 1.2%. As can be seen from the plot, the frequencies of the two signals are interleaved, and both follow the $A R$ curve associated with a double lag-lead transfer function, given by

$$
\frac{\omega_{2}^{2}}{\omega_{1}^{2}} \frac{s^{2}+2 \zeta_{1} \omega_{1} s+\omega_{2}^{2}}{s^{2}+2 \zeta_{2} \omega_{2} s+\omega_{2}^{2}}
$$

where

$$
\begin{aligned}
& \left(\omega_{1}, \omega_{2}\right)=(0.475,0150) \mathrm{Hz} \\
& \left(\zeta_{1}, \zeta_{2}\right)=(0.707,0.707)
\end{aligned}
$$

The lag and lead break frequencies were chosen to give a gradual transilion between the large low frequency amplitudes and the small high frequency amplitudes; the 20 dB ratio between the two extremes was chosen from past experience with disturbance inputs into the trainer.

To avoid rapid start-up transients when the two disturbances begin, the signs of the amplitudes are alternated so that.

$$
\operatorname{sign}\left(a_{i+1}\right)=-\operatorname{sign}\left(a_{1}\right) ; \quad \operatorname{sign}\left(b_{1+1}\right)=-\operatorname{sign}\left(b_{1}\right)
$$

where
$\operatorname{sign}\left(a_{1}\right)=1 ; \quad \operatorname{sign}\left(b_{1}\right)=1$
The appearance of the resulting signals in the time domain is as shown in Figure 4 .

4.2 Plant Dynamics

The other major aspect of the experimental design concerns the choice of the plant dynamics. For computational sumplaczty, it would be desirable to maintain unity gain and zero phase lag for the entire range of test frequencies, but, as noted in the May progress report, the trainer transfer function, $G_{1}(s)$, exhibits a strong resonance al about 1.5 Hz , due to the mechanacal properties of the load and drove system. To avoid this, a prefilter was added, $F_{I}(s)$, so as to ensure linear operation and reliable velocity feedback information over a lower frequency range. The combined plant, $F_{1} G_{1}$, looks like a unity gam second-order system, with a break at 0.90 Hz and a damp sung ratio of 0.70 .

It was noted earlier that this kind of response necessitates the use of a prefilter, F_{2}, in the projector drive circuit, to ensure that $F_{1} G_{1}=F_{2} G_{2}(\equiv P)$. The prefilter was implemented on the analog computer and is a second-order filter wi th a break at 0.92 Hz and a damping ratio of 0.70 .

FIG 4: Input Disturtances
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

FIGURE 5 : TRAWER/PROJECTOR I/O TEST (time histories)

63
REPRODUCIBILITY OF THO
ORIGINAL PAGE IS POOR

To ensure that the framer and projector transfer functions, with their associated prefilters, were close approximations of one another, input-output testing vas performed on each. The wheel signal was held at zero whale the disturbance d_{l} was sent into the trainer drive and the disturbance d_{2} was sent into the projector drive. The tame histories of the two, along with the resulting trainer and visual field motion, are shown in Figure 5. Note the high frequency attenuation in both channels and note that the visual field velocity is the negative of the input command d_{2}.

By taking the Fourier transforms of these signals, the transfer functions of the trainer and projector drive can be computed. Shown in Figure 6 are the computed amplitude ratios (AR) and phase lags (ϕ) for both the trainer and projector system; superimposed on the data are the $A R$ and ϕ curves associated with the second-order transfer function given In the figure. This data thus substantiates the experimental condition that.

$$
\begin{aligned}
F_{1} G_{1}=F_{2} G_{2} \equiv P=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta_{n} \omega_{n} s+\omega_{n}^{2}} & \omega_{n}=5.65 \mathrm{rad} / \mathrm{sec}(0.90 \mathrm{ll} z) \\
\zeta_{n} & =0.70
\end{aligned}
$$

and thus visual field motion wall mamie frazier motion, in response to both disturbance and control wheel inputs. Note that this knowledge of the plant dynamics is a prerequisite for solving for the estimator functions E_{1} and E_{2}, as reference to (8) will show.

8
「邭禺

4. 3 Computational Approach

At this point, it is appropriate to provide a brief description of the computational approach used in processing the experimental data to arrive at describing function estimates.

The analysis given above was based on the use of auto- and cross-pover spectral density functions, but, from a practical viewpoint, 11 is computationally simpler to work with the Fourier transforms of the measured signals. To see how this is accomplished, it is convenient to regard the wheel response signal as being composed of three component signals, as follows.

$$
\begin{equation*}
\lambda(t)=\sum_{i=1}^{13} \lambda_{12} \sin \left(n_{i} \omega_{0} t+\phi_{1 i}\right)+\sum_{i=1}^{13} \lambda_{2 i} \sin \left(\dot{m}_{i} \omega_{0} t+\phi_{2 I}\right)+\lambda_{r}(t) \tag{10}
\end{equation*}
$$

By reference to (9), the first component contains those frequencies associated with d_{1}, the second those associated with d_{2}, and the third, all other frequencies which are integral multiples of the base frequency*

$$
\begin{equation*}
\lambda_{r}(t) \equiv \sum_{i=1}^{\infty} \lambda_{r I} \sin \left(\ell_{I} \omega_{0} L+\theta_{I}\right) \tag{11}
\end{equation*}
$$

where the set of l_{1} is the set of all integers excluding the sets of $\left\{n_{1}\right\}$ and $\left\{m_{1}\right\}$. It should be recognized that with this definition, (10) is an approximation to the actual wheel signal, since non-integral multiples of the base frequency ω_{0} have been excluded, However, such an approximation is consistent with the discrete frequency resolution which results from the digital Fourier transforms used in processing the data.

Recognizing that λ is periodic, with a period $T=2 \pi / \omega_{0}=128$ seconds, then it is a direct matter to solve for the cross-correlation function between the wheel signal and the "vestibular" disturbance:

$$
\phi_{\lambda d_{1}}(\tau)=\overline{\lambda(t) d_{1}(t+\tau)}=\frac{1}{T_{-T / 2}} \int_{-T / 2}^{T} \lambda(t) d_{1}(t+\tau) d t
$$

Substitution of (9), (10), and (11) an the above relation, followed by an application of the well-known orthogonality properties of sinusoids, results in the following expression for $\phi_{\lambda d_{1}}$.

$$
\begin{equation*}
\phi_{\lambda d_{I}}(\tau)=\sum_{i=1}^{13} a_{i} \lambda_{I i} \cos \left(n_{i} \omega_{0}^{\tau}-\phi_{I I}\right) \tag{13a}
\end{equation*}
$$

so that only the frequencies of d_{1} appear in $\phi_{\lambda d_{1}}$. A similar expression may be found for $\phi_{\omega_{1}} d_{1}$. If we follow the same procedure as with the the signal, and separate the trainer signal into three components, we have.

$$
\omega_{1}(t)=\sum_{x=1}^{13} \omega_{11} \sin \left(n_{1} \omega_{0} t+\psi_{11}\right)+\sum_{i=1}^{13} \omega_{21} \sin \left(m_{1} \omega_{0} t+\psi_{21}\right)+\omega_{1 r}(t){ }_{1}(14)
$$

It follows that

$$
\begin{equation*}
\phi_{\omega_{1} d_{1}}(\tau)=\sum_{x=1}^{13} a_{x} \omega_{1 \lambda} \cos \left(n_{x} \omega_{0} \tau-\psi_{1 \lambda}\right) \tag{13b}
\end{equation*}
$$

bo, again, we have only the frequencies of d_{1} in $\phi_{\omega_{1}} d_{1}$. Now, from the definition of α_{J} given in (7), and the sinusoidal composition of the cross-correlation functions of (13), it follows that:

$$
\begin{align*}
& \left|\alpha_{1}\left(n_{i} \omega_{0}\right)\right|=\frac{a_{2} \lambda_{1 i}}{a_{i} \omega_{1 i}}=\lambda_{11} / \omega_{1 i}=\frac{\left|\lambda\left(n_{i} \omega_{0}\right)\right|}{\sqrt{\omega_{1}\left(n_{1} \omega_{0}\right)} \quad \quad(1=1,13), ~} \\
& \Varangle \alpha_{1}\left(n_{2} \omega_{0}\right)=\phi_{1 i}-\psi_{1 i}=\Varangle \lambda\left(n_{1} \omega_{0}\right)-\Varangle \omega_{1}\left(n_{1} \omega_{0}\right) \quad(1=1,13) \tag{15}
\end{align*}
$$

Or, more compactly,

$$
\begin{equation*}
\alpha_{1}\left(n_{i} \omega_{0}\right)=\lambda\left(n_{1} \omega_{0}\right) / \omega_{1}\left(n_{1} \omega_{0}\right) \quad(\lambda=1,13) \tag{16a}
\end{equation*}
$$

Naturally, the same results are applicable to the definition of α_{2} given in (9):

$$
\begin{equation*}
\alpha_{2}\left(m_{i} \omega_{0}\right)=\lambda\left(m_{i} \omega_{0}\right) / \omega_{2}\left(m_{z} \omega_{0}\right) \quad(i=1,13) \tag{16b}
\end{equation*}
$$

Thus instead of beang involved with the computation of cross-correlatzon functions and their transforms to pover spectral densities, the adentifycation problem becomes one of simply anput-output transfer function computation via (16), to define α_{1} and α_{2}. That 2.s, Fourier Lransforms may be made directly on the measured signals λ, ω_{1}, and ω_{2}, and the complex algebra of (16) can then be used to specify α_{1} and α_{2} at the discrete input frequencies of d_{1} and d_{2}.

If should be noted from (16) that sance α_{1} and α_{2} are not defined at the same frequencies, then the computations for CE_{1} and CE_{2} indıcated by (8) cannot be made. What is required as an assumption of continuziy, in the frequency doman, of the transfer functions antroduced by the linear model. Thas then allows for one to interpolate across frequency to obtain the needed α_{1} and α_{2} values. That is, one can interpolate between the α_{1} values

defined at the $n_{I} \omega_{0}$ frequencies to obtain values for α_{1} at the $m_{1} \omega_{0}$ frequencres, and conversely for α_{2}. With α_{1} and α_{2} both defined in this manner at all 26 input frequencies introduced by both d_{1} and d_{2}, (8) may then be used to define the descrabing functions CE_{1} and CE_{2}, for all 26 frequencaes. This was the approach used in the data processing which followed FFT processing of the recorded signals.

This then completes the discussion of the parallel channel vasualvestibular model and the dual-znput experimental and computational approach for estimating the model's separate visual and vestibular transfer functions.

As in the previous velocity-nulling experiments, the subject's task In this series was to maintain has sensation of self-velocity as close to zero as possible, by appropriate motions of the control wheel, and by inferring self-motion from the continued application of visual and vestibular cues. After a famliarızataon period with the procedure and equipment, the subject performed one continuous run of velocity mulling which lasted for approximately eight minutes. During this rum, the vestibular disturbance $\left(d_{1}\right.$ referred to in the last section) was continuously inputted to the trainer drive. The visual environment, however, alternated between two modes: a counterrotating"freld (CON mode) which provided accurate confirmation of vestibular cues, as in the previous series, and an independently moving field (DI mode), which was the result of a visual field velocity disturbance $\left(d_{2}\right.$ referred to an the last section) inputted to the projector drave. Each presentation mode lasted for 128 seconds, and alternated with the other, so that there were two presentations of each visual field condition to a subject

Series A CON, DI, CON, DI
Series B. DI, CON, DI, CON

Half the test population of 6 subjects received series A, whale the other half received series B, so as lo provide a balance for fatigue and learning effects then averages are taken across the popeRation.

Shown in figure 1 are time histories of a portion of a subject's run, showing the vestibular disturbance d_{1}, the trainer and visual field velocities ω_{1} and ω_{2} and the subject's compensatory response λ. The first portion (CON mōdè) illus̄trates gōod veloc̄aty nuulling pērforinance when the subject is presented with a counterrotating visual field, and specifically shows has abilaty to null out low frequency disturbances, presumably because of the corroborating visual motzon cue provided The second portion (DI mode) illustrates poorer performance, especially with regard to nulling out low-frequency draft in the trainer velocaty. Presumably, has lov frequency stick response is primarily dedicated to nullang out the visual field velocaty disturbance as evidenced by the contrasting lack of drift seen in the field velocity history.

5.1 Freguency Doman Results

More definituvc observations on subject response during DI presentation can be made in the frequency domain. Shown in fagure 2 are two wheel deflection amplitude spectra plots, superimposed on one another, obtaned from one induvadual by transforming the recorded wheel hastory via an FET program. The sample rate used was 8 Hz , and the sample length was 128 seconds, so that each FFT performed covered one entire DI presentation, resulting in the two spectral sets shorm

The carcles adentafy subject response at the frequencies contained in the "vestibular" disturbance signal d_{1}, the squares identafy response at the frequencies contained in the "vasual" signal d_{2}, and the dots identily the remnant; i.e, response at frequenczes contained in netther disturbance input. At the "vestibular" frequencies (circies), the

FIGURE 1: DUAL INPUT PERFORMANCE
Q Visual fiek keboity disturbance indepondent of vastibular clisturbaike - High-frequency lestidular cues pritad up

- Low-frequency vestitular cues corrupted by visual hast

71

response can be seen to follow the shape of the disturbance spectrum presented in the last section (figure 3), indicating an appropriate compensatory response to trainer velocity. This, of course, assumes that the phase is appropriate, a subject to be discussed later. In contrast, response at the "visual" frequencies (squares) shows a sharp drop off at low frequency, indicative of little attention being paid to the high frequency visual inputs in the task of mulling perceived self-velocaty.

A smooth curve has been drawn through the remnant response (dots) so as to provide a sample approximation to the remnant power, and wall serve as the basis, in section 8, for a discussion of remnant power correction to derived operator transfer functions. For nov, however, at suffices to note the general trend of remnant dominance of subject response as frequency increases, especially at frequencies greater than approximately 0.5 Hz . It is also appropriate to note the difference in signal-to-noise power (S / N) ratios between response at "vestibular" frequencies and at "visual" freequenches. To calculate the S / \mathbb{N} ratios, we square the amplitudes of figure 2 to obtain the power spectra. Then, by linearly interpolating between responses at the "vestibular" frequencies (circles), and integration over the frequency range show, the total "vestibular" power in the wheel response can be calculated. A similar calculation yields the total "visual" power, while integration under the smooth remnant curve yields a figure for remnant or noise power. Ratios of these fagures then result in S / N ratios for both sensory channels. Since figure 2 illustrates response for two DI presentations, re obtain the following two sets of S / \mathbb{N} ratios:

Obviously the major difference is the 10 to 12 dB difference between response at the two sets of frequencics, Indicative of the greater importance of vestabular cues in this nulling task, especially at the hagher frequencies. This aspect of the response will be discussed in greater detail when remnant corrections to the response are considered.

It should be clear that subject response durang the CON visual facld presentatrons of thas DI experament can be simalarly analyzed in the frequency doman. Since many of the results are similar to those already presented in the May progress report (for earlier expermental series), a discussion of the CON results wall be deferred to a later section. For now, we will continue to descrabe the results obtanned from DI presentations.

5.2 Population Averages for CE_{1} and CE_{2}

Plots simalar to that of fagure 2 could also be dravn to illustrate the amplatude spectra of trainer motion ω_{1} and visual field motion ω_{2}, and qualliative conclusions could be drawn regarding the appropriatness of the subject's compensation. It is more direct, however, to simply apply the computational techniques of the last section to this frequency

data, and arrive at estimates of the two describing functions, $C E_{1}$ and CE_{2}. This has been done for both DI presentations to each subject, for all six subjects, and the resulting population average Bode plots are given an figures 3 and 4.

The data points in the figures identify averages for the six subjects, while the smooth lines drawn through them simply indicate trends as the frequency changes. Several points are worth noting First, the gain for the "vestibular" describing function, $C E_{1}$, follows, in the madrange frequencies, what would be expected from a lag-lead function. It may be recalled from the May progress report that a lag-lead function formed the basis for the adjustable parameter vestibular model, and the results shown here support that approach. The earlier results also show a lead at high frequencies, again evident in figure 3. The major diffference, horevex, is an low frequency behavior. the earlier single channel model $\operatorname{nndicated~a~levelling~off~to~snme~fixed~} D C$ gain, whereas the gain for CE_{1}, is seen to be dropping off as the frequency approaches zero. The "washout" characteristic is entirely consistent with our notion of negligable canal response at very low frequencies, because of the canal's AC physical properties. The Bode plots defining the "visual" transfer function, CE_{2}, show quite contrasting behavior. At low frequencies, the gain as higher than in the vestibular channel, supporting the previous statements concerning the importance of low-\{requency visual cues in determining motion sensation. Up to approximately $0.1 \mathrm{~Hz}, \mathrm{CE}_{2}$ looks like a simple integrator (in gain and phase), which, as will be seen in the next section, is simply a reflection of of the control strategy used by the subjects. Above that frequency, the CE_{2} gam levels out, followed by a slight

lead at the highest frequencies; these latter two features are not particularly easy to interpret at this point, but will be discussed in the section concerning remnant corrections. What should be obvious, however, is that the visual gain is considerably smaller (-10 dB) than the vestibular gain, over most of the frequency range, excluding the very low-frequency crossover region.

5.3 Non-linear Least-squares Curve Fit Results

A non-lınear curve-fitting program was used to fit the above data with different types of specified transfer functions. Shown in figure 5 is the gain data for CE_{1}, with both the mean and standard deviation bar-plotted at each frequency. Superimposed on this data are three curves resulting from the fitting program and the choice of three transfer functions:

Lag-1ead $\quad K\left(\frac{\tau_{1} S+1}{\tau_{2} S+1}\right)$
plus washout

$$
\begin{equation*}
K\left(\frac{S}{\tau_{3} S+1}\right)\left(\frac{\tau_{1} S+1}{\tau_{2} S+2}\right)=K \omega_{1}^{2} \frac{S\left(\tau_{1} S+1\right)}{S^{2}+2 \zeta_{2} \omega_{1} S+\omega_{1}^{2}} \tag{Ib}
\end{equation*}
$$

Lag-1ead. $K\left(\frac{S}{\tau_{3} S+1}\right)\left(\frac{\tau_{1} S+1}{\tau_{2} S+2}\right)=K \omega_{1}^{2} \frac{S\left(\tau_{2} S+1\right)}{S^{2}+2 \zeta_{21} \omega_{1}+\omega_{1}^{2}}$
Lag-1ead $\quad K\left(\tau_{4} S+1\right)\left(\frac{S}{\tau_{3} S+1}\right)\left(\frac{\tau_{1} S+1}{\tau_{2} S+1}\right)=K S \frac{\omega_{1}^{2}}{\omega_{2}^{2}} \frac{S^{2}+2 \zeta_{2} \omega_{2} S}{S^{2}+2 \zeta_{1} \omega_{1} S}+\omega_{2}^{2}-\omega_{1}^{2}$ plus washout plus lead

The complex pole format indicated above was chosen so as to allow the fitting program the greatest flexibility in minimizing the fit error. As can be seen from the figure, the lag-lead function approximates very roughly the general trend of the means, while the addition of the washout allows for a very good fit at both the low- and mid-frequencies.

79

Finally, addition of the lead provides for a good fat at the hagh end of the spectrum. Because of the spread in the data (andicated by the standard deviation bars), the fit amprovement, as one progresses from one transfer function to another, is not especially dramatic when measured in terms of residual error: the residual is only reduced by approxmately 10% when the lag-lead is augmented by the washout and addational lead. A more dramatic improvement would be evident if only the means were used as the data lo be fitted, as should be clear by an inspection of the figure

The parameter values obtained from fitting the double second-order function of (1c) are given below:

Table 1: Parameter Values for CE_{1} Amplitude Fit

Parameter	K	ω_{1}	ζ_{1}	ω_{2}	ζ_{2}	
Parameter Value θ	10.8	0.29	0.83	3.66	0.85	
Parameter s.D. σ_{θ}	1.70	0.02	0.14	0.25	0.14	

Note that both the poles and zeroes are complex, so that the fal procedure does not allow for a simple justifacation of the functional form by appealing to the adea of cascading simpler furst-order transfer functions Thas aspect of the problem wall be dxscussed later.

Similar transfer function fits may be made to the "visual" channel transfer function data specifying CE_{2}; these are shown in figure 6. The functions used were:

Integrator plus lead : $\frac{\mathrm{K}}{\mathrm{S}}\left(\tau_{1} S+1\right)$

Integrator plus

$$
\begin{equation*}
: \frac{K}{\bar{S}}\left(\tau_{1}^{\prime} S+1\right)\left(\tau_{4} S+1\right)=\frac{K}{S} \frac{1}{\omega_{2}^{2}}\left(S^{2}+2 \zeta_{2} \omega_{2} S+\omega_{2}^{2}\right) \tag{Ie}
\end{equation*}
$$

where the parameter choice was made for consistency with the parameters used in the fits on CE_{1}. As can be seen from the figure, both functions fit the data means quite well, with the additional high-frequency lead allowing for a better fit at the high end of the spectrum. Again, because of the data spread Indicated by the standard deviation bars, the reduction in residual fit error is quite small with the additional. lead term, but it is clear that the mean trends are better fin with the additional lead.

The parameter values obtained from fitting the integrator plus double lead function of (le) ax c given below:

Table 2. Parameter Values for CE_{2} Amplitude Fit

Parameter	K	T_{1}	τ_{4}	ω_{2}	ζ_{2}	
Parameter Value θ	0.16	1.26	0.13	2.45	1.71	
Parameter S.D. σ_{θ}	0.02	0.04	0.01	030	0.30	

Because of the large frequency difference seen in the break frequencies of the data of figure 6 , the double zero consists of two real zeros. The complex parameter values $\left(\omega_{2}, \zeta_{2}\right)$ are included here for convenient reference later.

What sould be clear at this point is that, if the "vestibular" transfer

function CE_{1} Is given by (ic) and the "visual" transfer function CE_{2} by (le), and the parameter values are as specified in tables 1 and 2, then a problem arises because of the non-congruence of any poles or zeroes. That $1 s$, if the control strategy C is anything but a DC gain, then we should expect to see its poles and zeroes common to both CE_{1} and CE_{2}. But this is not the case, which suggests that either C is a pure gain so that we actually have measures of E_{1} and E_{2}, or that the curve fitting just described is a premature exercise, which should avfalt further processing of the data to account for control strategy dynamics. This question will be answered in the next section; for now however, some additional observations concerning the phase characteristics are appropriate.

Shown in figure 7 and 8 are the calculated phase angles associated with $C E 1$ and CE_{2}, respectively. As before, the data is summarized by bar-plots of the population mean and standard deviation at each frequency. The dashed curve in each figure is the phase predicted by the transfer functions just described used to fat the amplitude data. The large discrepancy between this predicted phase and the actual trends of the data as presumably due, in part, to operator latency, as we have seen in earle phase data fating exercises. Addition of a dead-time factor to the transfer functions results in the sold curve show in each figure. The two delay times were chosen by visual inspection, and provide an approximate fit to the phase data means.

Two brief comments are appropriate here. First, from figure 7, It should be clear that the curve fat to the phase data at low frequencies is znadequate in the case of the "vestzbular" channel. The model predrets a lead-where we actually observe a lag, and would suggest the incorporation of a low-frequency lag term in the model. How to accomplash this without affecting the $A R$ curve fit is at present unclear. The second pount concerns the relatively large delay tames necessaxy to account for the observed high frequency lags, approxımately 06 to 0.7 seconds. Presumably this delay tame can be apportioned between the operator's estmation and control functions; the balance betreen the two necessutates a closer look at the operator's control strategy, and is the subject of the next section.

6.0 VISUAL FIELD VELOCITY NULLING EXPERIMENT

As noted in the previous section, the subject's control strategy $C(s)$ is embedded in the describing functions obtained from both the dualinput experiment (series IV) and the earlier velocaty-nulling experiments (series I, II, III). Thus, the objective of determining the linear estimator functions E_{1} and E_{2} has yet to be met.

This motivated the design of another experimental series (VI) armed at determining the control strategy, so that its effect could be divided out of the results already obtained. The experiment was designed so as to minamze the estimation task of the subject, but maintain the same controller structure used earlier. Specifically, the task chosen was a standard human operator visual compensatory tracking task $3 n$ which the subject was instructed to null visual field velocity via appropriate motions of the control wheel. The disturbance noise injected into the projector drive loop was identical to that used in the dual-mput exparament (ie., the signal d_{2}) and the control wheel polarity was changed Lo be consistent with the field mulling task, i.e., a right wheel deflecLion resulted in right field motion. The same plant dynamics as before $(P(s))$ were inserted between wheel deflection and projector motion

The trainer remained stationary throughout the task, and the subject was informed of this prior to the experiment. In addition, to avoid any possibility of circularvection induced by the visual field motion, the side windows of the trainer sere made opaque and the moving stripe pattern used earlier was projected on the trainer's front window. No sensetions of seli-motion were induced by this arrangement, as indicated by post-test questioning of the subjects.

This experimental series can be directly compared to the earlier valocaty mulling tasks in which the visual field remained fixed. Both are single input experiments (visual field velocity an the present series, trainer velocity in the earlier ones) both requiring a single estimator cascaded with a control logic. Here, however, because of the known high-pass characteristics of the visual system it is reasonable to assume that the visual field velocity estimator necessary for this task has essentially unity gain over the frequency range of interest (nonlinear gain characteristics are another matter, however, and wall be the subject of another study). Thus, what is measured in this experiment is the subject's control logic $C(s)$.

Of course, li can be argued that the subject's control strategy in this experiment will differ from that used in the motion mulling experiments, simply on the basis that the tasks are different. However, this can be countered by noting that the same control wheel, plant dynamics, and Input disturbance (in the visual channel) are used in both experimental series. In addition, the tasks are similar in that a mulling of perceaved velocity as being asked of the subject, an one case self-velocaty and the other, visual field velocity. Since there as obviously no conclusive way to dusect the control strategy from the estimators proposed an the parallel chanel model, at seems reasonable to assume an identity between the control logic of the two tasks, especially in view of task simalarıties.

Shown in figure 1 is a block diagram of the mulling task, summarizing the basic features of the experiment and the conjectured functional structure of the human operator. From this diagram and the discussion

FGURE 1 : MSUAL FIELD VELOCITY NULLING TASK
concerning cross-correlation functions given earlier, it is a direct matter to show that the control strategy $C(s)$ xs defined at the input disturbance frequencies $m_{j} \omega_{0}$ by the following relation.

$$
\begin{equation*}
K C\left(m_{i} \omega_{0}\right)=-\frac{\Phi_{\lambda d_{2}}\left(m_{2} \omega_{0}\right)}{\Phi_{\omega_{2} d_{2}}\left(m_{1} \omega_{0}\right)}=-\frac{\lambda\left(m_{1} \omega_{0}\right)}{\omega_{2}\left(m_{i} \omega_{0}\right)} \tag{I}
\end{equation*}
$$

so that direct calculations from FFT results may be utilized

In this experimental series, 6 subjects attempted to null field velocity for two full periods of the disturbance signal ($T=128 \mathrm{sec}$.) , for a total individual run time of 256 seconds. The FFT^{\prime} s were performed on each 128-second segment, so that two estimates of $K C$ were obtained for each subject. It is appropriate to note that 4 of the subjects participating in this series also participated an the DI series (IV), so that at will be possible later to divide out control strategy, on an andivadual-byindividual basis

Shown in figure 2 are two sets of amplitude spectra obtained from one subject, Illustrating the relatively large compensatory response at the input frequencies (circles) and the small remnant (dots). As was done earlier, a smooth curve has been drawn through the remnant amplitudes, to provide a simple approximation for remnant corrections to be introduced later. A comparison with similar data obtained from the self-velocity nullung experiments (series I through IV) shows considerably higher response amplitudes for the present task, indicative of either a higher gain in the control block C, or of attenuation in the self-velocity estimator blocks $\left(E_{1}\right.$ and $\left.E_{2}\right)$. This is also reflected in the higher S / N

9
ratios seen in this task, In this instance the computed S / N power ratios arc 34.8 and 33.8 dB for the subject's two presentations, (to be compared with considerably lower \bar{S} / N ratios for the DI experıment, for example).

Shorn in figure 3 are amplitude ratio (AR) population averages for the six subjects, computed for this task from (1), wh th the bars indicating one-sigma spread. Superimposed on these data are correspondang $A R^{\prime}$'s which have been corrected for each indivadual's remnant power, so as to get a more accurate estimate of the linear transfer function $C(s)$. The remnant correction method will not be dascussed here, as at is the subject of a later section. What is important to note, hovever, is that the two data sets, corrected and uncorrected, are obviously insignificantly different, and thus the simple transfer function approach of (1) is quite adequate for obtaining an estimate of $C(s)$, especially in view of the data spread.

From the fagure, the gain trends are quite obvious integration at the lor frequencies, followed by a mid-frequency lead break, similar: to what was seen in the AR data defaning the "visual" estimator/controller function CE_{2}. Thas motzvates the fitting of the followng function to the AR data:

$$
\begin{equation*}
\frac{k}{s}(\tau s+1) \tag{2}
\end{equation*}
$$

The dashed line in the figure shows one such fit obtained by a vasual fit of asymptoles; the parameter values are given by:

$$
\begin{equation*}
K=1.8 \quad 9 \Rightarrow \quad \tau=0.45 \tag{3}
\end{equation*}
$$

It should be noted that these are not the result of a least-squares fitting algorithm (which will be done shortly), but simply rough estimates. It is also appropriate to note that the low frequency gain drop-off in the data $1 . s$ greater than the $20 \mathrm{~dB} /$ decade attrabutable to a simple integrator, and the mad-frequency break seen in the data is sharper than a break associated with a simple first-order lead term. These discrepancies between model and data may motivate the use of higher-order functional curve fits; for now, however, the basic integrator plus lead function appears adequate.

The corresponding phase data obtained from this experimental series are presented in figure 4, and although not fully corroborative of the gain data, do showy a constant phase lag of 120° at the low frequencies (where we would expect a 90° lag with a simple $\left.2 n t e g r a t o r\right)$. Also stetchad on the figure is the predicted phase curve for the transfer fundtimon defined by (2) and (3). The discrepancy between the curve and the data at hugh frequencies is presumably due to human operator latencies, which can be modelled by a dead-time term, $e^{-\tau} d^{s}$. The resulting phase shaft is seen in the second curve on the figure, a reasonable approxmation to the phase data is obtained by choosing a dead-tume of 0.32 seconds. Again, a better fat can be expected with the eventual application of a least-squares program to the data

As noted in the beginning of this section, the plots defining $C(s)$ can be used to infer the estimator functions (E_{1} and E_{2}) from the $D I$ experimental data. One approach, given in the next section, is to simply divide 6-subject means from the two experimental series; that is, at each frequency, divide the mean value for $\left|C E_{1}\right|$ by the mean

value for $|c|$, to obtain an estimate for $\left|E_{1}\right|$, and simalarly for $\left|E_{2}\right|$. Obviously, the same approach can be used for the phases.

An alternative approach, also presented in the next section, is to divade each indivadual's DI data by has manual control data, and then find average values for the resultant estimates of E_{1} and E_{2}. It was noted earlier that only four subjects partacipated in both experimental serzes, so that the population is a subset of what has been considered so far. To show that the population average Bode plots for the four-subject population are not significantly different from those obtained for the six-subject population, it is only necessary to look at figures 5 and 6, where the two data sets are supermposed on one another. A formal test of equivalence involves t-tests on curve fit parameters, but curve-fittang of each data set is yet to be done. It should be obvious horvever, that the two data sers are not signifucantly dufferent, and thus we might expect that the two approaches used in the next section io estmate the estamator functions will yield essentially the same results

7.0 ESTIMATOR FUNCTTONS FOR PARALLEL CHANNEL MODEL

In section 5, we obtained the gain and phase plots defaning the combined controller/estimator funchions for the parallel channel model, CE_{1} and CE_{2}, and in the previous section we obtained similar plots which define the control function C. It as the purpose of thas section to duvide out the control law Erom the earlier resulis to obtain estmates of the estimator functions E_{1} and E_{2}.

7.1 Population Division

The smplest approach to the problem is to samply davide the saxsubject means from the two serzes (IV and VI) to obtann an estimate of the population mean for cach E_{i}. Thus, al each frequency, divide the mean value for $\left|C S_{I}\right|$, obiained from Figure 5 of section 5 , by the mean value for $|C|$, from Figure 3 of section 6 , to obtain an estimate of the mean of $\left|E_{1}\right|$. The same can be done for E_{2}, and obviously a samilax approach is applicable to phase angle calculation for both functions.

The results of such calculations are shom in Figures 1 and 2 . In both fagures the closed carcles denote E_{I} values, whale the open carcles denote E_{2} values, the dashed lines only indacate trends with frequency and are not to be mistaken for fatted curves. Several points should be noted. First, the gain curve associated wlth E_{1} exhabits a raprd drop-off at low frequencies and a levelling out at the higher frequencles, behavzor which is entirely consistent with our notion of a "vestibular" transfer

function. Had the experimental equipment allowed for a higher range of test frequencies to be used, we presumably would have seen an eventual drop-off in the E_{1} gain, corroborating the previous findings of vestibular dynamics characterized by a bandpass falter centered around the frequency regime of normal physiological motions. The phase curve associated with E_{1} is shown in Figure 2 and illustrates the expected 90° lead at lon frequencies (characteristic of a "washout") with a gradual drop-off at mad-frequencies. With a simple washout we would expect zero lag at the highest frequencies; presumably the lag seen in the figure is due to operator latencies.

The behavior of the data characterizing the visual channel transfer function E_{2} shors a considerable contrast. As noted in an earlier section, the visual gain (Figure 1) as a good deal lover than the vestibular gan n over much of the frequency range, with approximate equality occuring only at the very low end. In this regime, the visual gain is approximately constant with frequency, in agreement with our knowledge of circularvection a non-zero gain at zero frequency. However, the gain increase seen in the mid-frequency regime is unsettling, since it suggests increased velocity sensitivity with higher frequencies, behavior which is an conflict with the complementary faltering model. In fact, what we would have expected is a drop in gain with increasing frequency, so that the only source of high frequency motion information would be by the vestibular pathray. The data shown here contradicts such a notion.

There are at least four points worth considering before arriving at any definite conclusions regarding the results just presented. The first is that the results were obtained by dividing the data from one six-subject

population by the data from a different six-subject population. Intersubject variation could be a subtle cause of the unexplained visual gain behavior. To resolve this point, transfer function divisions have been made on an indzvadual-by-indivadual basis for the 4 -person subset of subjects participating an both experimental series. The results are the subject of the next subsection.

The second point is that the results show here are based on data which was not corrected for operator remnant contributions. It may be recalled from section 6 that the corrected and uncorrected gains associated with the control strategy C did not significantly differ, and thus at might be surmised that such a correction would be of little value here However, it should also be recalled that the visual field velocity mulling task (Series VI, used to determine C) was characterized by resat lively high S/N ratios. This is to be contrasted to the data obtained from the dualinput experiment (series $I V$), in which considerably lower S / N ratios venue obtained for the visual channel (recall figure 2 of section 5). Thus, one might expect that the visual transfer function inferred from the DI experiment, CE_{2}, would show a more significant change when remnant corrections are incorporated. Presumably, such a change would be reflected In the calculated gain and phase for E E_{2} presented here, and thus "correct" the increasing gain tendencies seen in Figure 1 . The results of such an approach wall be discussed an section 8 .

The third point reflects on the validity of the proposed parallel chanel linear model: the model fails to incorporate a non-linear gain characteristic, a property often associated with human operator behavior. Specifically, we note that for the visual chamel, the gain moreases
at the higher frequencies. But from Figure 3 of section 4, we should recall that the amplitudes of the input disturbances decrease with increasing frequency. Thus, the possibility exists that what we are observing is not a gain dependence on frequency, but on amplitude: a gain increase with decreasing amplitudes. This type of non-linear gain function is sketched in figure 3, and is consistent with behavior seen in subjective estimation performance in psychophysical experiments Consideration of this problem is a current area of effort.

FIGURE 3 : NONLINEAR GAIN $\frac{d y}{d x}$ decreases as $|x| \rightarrow \infty$

A final point worth noting us that the parallel channel model, as ns, may be a quite valid representation of the human velocity estimator, and the data trends of figures 1 and 2 may be an accurate description of the two individual transfer functions of the model. What then remands to be resolved, however, are the conflicts between the predictions of this model and the results obtained an past carcularvection studies. For instance, ff the visual channel does indeed have a significant gan n at high frequencies, why then does the observed circularvection sensation build up so slowly, in response to a step input of visual field velocity? Or, more to the point, why do high frequency (say 1 Hz) oscillations of the peripheral visual field fail to elicit a circularvection sensation, whereas low frequency (say 0.01 Hz) oscillations do?

7.2 Indxyidual Division

Shown in figures 4 though 7 are gan n and phase plots showing average values for E_{1} and E_{2}, calculated by dividing an individual's response in one experimental session (IV) by has response in the other (VI), and then averaging over the 4 -subject test population. This approach corrects for intersubject gan variation, and further, allows for a calculation of gain and phase standard deviations at each frequency. One sigma bars are show on the figures.

A comparison of these results with those described above (figures 1 and 2) shore's that this method of transfer function estimation yields essentially the same results, as expected. It may be noted that the E_{1} gains are generally lower here than those of figure I, and that the low frequency phase leads for both functions are lower than those of figure 2, but otherwise, the results are basically unchanged. Specifically, the increase $u n$ the visual chanel gain with frequency is still present, and canon be accounted for on the basis of intersubject variations.

The figures also illustrate proposed transfer function curves, obtained from a simple visual inspection of the data: a washout for E_{1}, and a leadlag for E_{2}. The actual parameter values are only rough estimates, and not the results of a least squares curve fat program. It is evident that both functions do a fair job of filing the AR data means; the phase data, however, requires the addition of dead-time terms to follow the phase

REPRODUCBLITYY OF THE:
ORIGINAL PAGE IS POGE

lag trends at high frequencies. Although this type of latency can be justified by assuming some type of estimation computation time, it should be clear from figure 7 that the augmented transfer function fil to the visual channel phase is not particularly satisfying, especially in the mid-frequency range.

At lhas poant, it as approprate to jnvestigate the effect of remnant corrections on the data, to see if the vasual channel gain trends are affected, and if such corrections afford an mprovement in transfer Iunctzor curve fatting.

Part 3 of thas section of the report is in preparation.

