General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
(NASA-CK-1ち1235) THE KCLE OE EIGENVALUES IN LINEAF FEATUKE SELECTICM THEOEY (HOUSton Univ.) $19 \mathrm{~F} \mathrm{ECA} \mathrm{A} 02 / \mathrm{HFAO1} \mathrm{CSCL}$ 12A

N77-19808

Uncles 20571

THE ROLE OF EIGENVALUES IN LINEAR FEATURE SELECTION THEORY BY DeR. GROWN AND M.J. DPMALLEY REPORT \#G1 DECEMBER 1976

PREPARES FOR
EARTH OBSERVATION DIVISION, JSC UNDER
CONTRACT NAS-9-15050

The Role of Eigenvalues in Linear Feature Selection Theory'

by

D. R. Brown and M. J. O'Malley

Department of Mathematics University of Houston

The Role of Eigenvalues in Linear Feature Selection Theory

D. R. Brown and M. J. D'Malley
Department of Mathematics, University of Houston Houston, Texas 77004

Introduction. Recent statistical work in feature selection for the multivariate normal pattern recognition problem has concentrated on linearly transforming pattern classes so that the transformed pattern classes are equivalently distinguishable. Since, in general, this is not possible, techniques have been developed to preserve the distinction of the transformed pattern classes using various measures of distinction. These measures of pattern class distinction are most often treated as eigenvalue problems ([1], [2], [5], [6], [7], [9], [13], [14], [15]). In this paper we consider a particular measure of pattern class distinction called the average interclass divergence, or more simply, divergence, ([1], [2], [4], [6], [7], [8], [9], [10], [11]), where divergence will be the pairwise average of the expected interclass divergence derived from Hajek's two-class divergence as defined, for example, in [9].

[^0]It has been shown in 141 that there always exicts a $k \times n$ real matrix B such that the transformation determined by B maximizes divergence in k-dimensional space, and, in fact, that B can be written in the form $\left(I_{k} \mid 2\right) \|$, where U is an orthogonal $n \times n$ matrix. We will investigate the role of the eigenvalues of U in such problems, and give an example demonstrating that the divergence measure of pattern class distinction does not depend on these eigenvalues (Theorem 7).

Our example is derived from the fanily of examples constructed in [3]. This special class of examples permits analytical calculation of divergence, a task ordinarily eschewed as unrealistic, and yields a precise expression for divergence. The reader is cautioned, however, not to confuse the numerical simplicity of this example with impracticality, since, mathematically, the failure of the eigenvalues of U to affect divergence in the restricted case erases any hope that they might be meaningful in an arbitrary case, however applied.

1. Special divergence formulas. Let $\Omega_{1}, \ldots, \Omega_{\mathrm{im}}$ and μ_{1}, \ldots, μ_{m} be the covariance matrices and means for m classes, where for each $i=1, \ldots, m$, Ω_{i} is an $n \times n$ positive definite matrix and μ_{i} is a column n vector. Let

$$
S_{i}=\varepsilon_{\substack{j=1 \\ j \neq i}}^{m}\left(\Omega_{j}+\delta_{i j} \delta_{i j}^{T}\right) \text {, where } \delta_{i j}=\mu_{i}-\mu_{j}
$$

Then, assuming equal a priori probabilitics, the average interclass divergence for these m classes is given by

$$
\begin{equation*}
D=:_{2} \operatorname{tr}\left(\sum_{i=1}^{m} \Omega_{i}^{-1} S_{j}\right)-\frac{4}{2} m(m-1) n \tag{1}
\end{equation*}
$$

while, if B is a $k \times n$ matrix, the B-average interclass divergence is

$$
\begin{equation*}
D_{B}=s_{i} \operatorname{tr}\left(\sum_{j} \sum_{j}^{m}\left(B \Omega_{i} B^{T}\right)^{-1}\left(B S_{i} B^{T}\right)\right)-s_{2} m(m-1) k \tag{2}
\end{equation*}
$$

where tr represents the trace function.
Moreover, as observed in [31, if

$$
\zeta=\left\{B-B_{1} ; B B^{\top}=I_{k} \quad \text { and } \quad\left\langle B^{\top} B\right) \Omega_{i}=\Omega_{i}\left(B^{\top} B\right), \quad i=1, \ldots, m\right\},
$$

Where I_{k} is the $k \times k$ identity matrix and $M_{k n}$ is the set of all $k \times n$ real matrices, then, for any $B \varepsilon_{i}^{C}$, (2) may be rewritten as

$$
\begin{equation*}
\left.D_{B}=\frac{1}{2} \operatorname{tr}\left(B\left(\sum_{i}^{m} \sum_{1}^{m} \Omega_{i}^{-1} S_{i}\right) B^{\top}\right)-1_{2} m(\pi)-1\right) k \tag{3}
\end{equation*}
$$

For the remainder of the paper we assume that each Ω_{i} is a diagonal matrix of the form: $\left(\begin{array}{ll}x_{i} & \\ & I_{n-1}\end{array}\right)$, where x_{i} is a positive real number, and $\mu_{i}=\mu_{j}$ for all i, j. Under these restrictions, $\sum_{i=1} \Omega_{i}^{-1} S_{i}$ is a diagonal matrix of the form $\left(\begin{array}{ll}x & \\ p I_{n-1}\end{array}\right)$, where $\left.x=\sum_{i=1}^{m} \underset{x_{i}}{\underset{\substack{j}}{\substack{j \\ j \neq i}}, ~} x_{j}\right)$ and $p=m(m-1)$. It follows from (1) that the average interclass divergence for the m classes is given by

$$
\begin{equation*}
D=3_{3}(x-p) \tag{4}
\end{equation*}
$$

As observed in the introduction, in seeking to maximize the B-average interclass divergence D_{B}, it suffices to consider those $k \times n$ matrices of
the form $\left(I_{k} \mid Z\right) U$, where U is an $n \times \|$ orthogonal matrix. In the sequel, when considering D_{B}, we shall always assume that B is of this form. For any such $k \times n$ matrix B, it is obvious that $B B^{\top}=I_{k}$, and hence $B \varepsilon \neq$ if and only if $\left(B^{\top} B\right) \Omega_{i}=\Omega_{i}\left(B^{\top} B\right)$ for $i=1, \ldots, m$. We will derive necessary and sufficient conditions in order that $B \in \underbrace{\infty}_{-}$(Theorem 2), but first we calculate D_{B} in the case that formula (3) is valid. Recall that all means are hereafter considered equal and all covariance matrices diagonal of the form stated above.

Theorem. Let $B=\left(I_{k} \mid Z\right) U$, where $U=\left(U_{i j}\right)$ is an $n \times n$ orthogonal matrix, and suppose D_{B} is given as in (3) above. Then

$$
\begin{equation*}
D_{B}=\left({ }_{i=1}^{k} u_{i 1}^{2}\right) D \tag{5}
\end{equation*}
$$

Proof: Since $\operatorname{tr}(X Y)=\operatorname{tr}(Y X)$ whenever both products are defined, we have in this case $D_{B}=\frac{1}{2} \operatorname{tr}\left(B^{\top} B\left(\sum_{i=1}^{m} \Omega_{i}^{-1} S_{i}\right)\right)-\frac{1}{2} p k$. If U is written in block form, $U=\left(\begin{array}{ll}A & C \\ E & F\end{array}\right)$, where A is $k \times k$, then $B^{\top} B=U^{\top}\left(I_{k} \mid Z\right)^{\top}\left(I_{k} \mid Z\right) U=\left(\begin{array}{ll}A^{\top} A & A^{\top} C \\ C^{\top} A & C^{\top} C\end{array}\right)$. Since $\quad \sum_{i=1}^{m} \Omega_{i}^{-1} S_{i}=\binom{x}{p I_{n-1}}$. $=$ $p \cdot\left(\begin{array}{ll}\frac{x}{p} & \\ & I_{n-1}\end{array}\right)=p\left(\begin{array}{cc}M & \\ & I_{n-k}\end{array}\right)$, where M is the $k \times k \operatorname{matrix}\left(\begin{array}{ll}\frac{x}{p} & \\ & I_{k-1}\end{array}\right)$, then $B^{\top} B\left(\sum_{i=1}^{\mathbb{E}} \Omega_{i}^{-1} S_{i}\right)=p \cdot\left(\begin{array}{ll}A^{\top} A M & A^{\top} C \\ C^{\top} A M & C^{\top} C\end{array}\right)$. Therefore, $\quad \operatorname{tr}\left(B^{\top} B\left({ }_{i} \sum_{i}^{m} \Omega_{i}^{-1} S_{i}\right)\right)=$ $p\left(\operatorname{tr}\left(A^{\top} A M\right)+\operatorname{tr}\left(C^{\top} C\right)\right)=p\left(\left(\sum_{j=1}^{k} u_{j 1}^{2} \frac{x}{p}+\sum_{q=2}^{k}\left(\sum_{j=1}^{k} u_{j q}^{2}\right)+\sum_{q=1}^{n}\left(\sum_{j=1}^{k} u_{j q}^{2}\right)\right)=\right.$ $\left(\sum_{j=1}^{k} u_{j 1}^{2}\right) x+p\left(\sum_{q}^{n} \sum_{2}\left(\sum_{j=1}^{k} u_{j q}^{2}\right)\right)$. Since U is orthogonal, $\sum_{\sum_{=2}^{n}\left(\sum_{j=1}^{k} u_{j q}^{2}\right)=}$
 $\left(\sum_{j=1}^{k} u_{j 1}^{2}\right)\left(\frac{x-p}{2}\right)=\left(\underset{j=1}{k} u_{j 1}^{2}\right) 0$.

Our next result gives necessary and sufficient conditions in order that $B=\left(I_{k} \mid Z\right) \cup E 6$. While the proof is rather tedious, these conditions are particularly easy to apply and hence useful in seeking examples.

Theorem 2. Let $B=\left(I_{k} \mid Z\right) U$, where $U=\left(U_{i j}\right)$ is an $n \times n$ orthogonal matrix. If, for each $i=1, \ldots, m, \Omega_{i}=\left(\begin{array}{cc}x_{i} & \\ & l_{n-1}\end{array}\right)$, then:
(1) if $x_{i}=1$ for all i, then $B E \dot{F}$;
(2) if $x_{i} \neq 1$ for at least one i, then $B \in Q^{c}$ if and only if

$$
\sum_{j=1}^{k} u_{j 1}^{2}=1 \text { or } \sum_{j=1}^{k} u_{j 1}^{2}=0
$$

Proof: If $x_{i}=1$, then $\Omega_{i}=I_{n}$ and $\left(B^{\top} B\right) \Omega_{i}=\Omega_{i}\left(B^{\top} B\right)$ for any $k \times n$ matrix B. Thus, if $x_{i}=1$ for all i, then $B \in C$ for any $k \times n$ matrix of the form $\left(I_{k} \mid Z\right) U$. We suppose that $x_{i} \neq 1$ for at least one i. As in the proof of Theorem 1, we decompose U into the block form $\left(\begin{array}{ll}A & C \\ E & F\end{array}\right)$, so that $B^{\top} B=\left(\begin{array}{ll}A^{\top} A & A^{\top} C \\ C^{\top} A & C^{\top} C\end{array}\right)$, where Λ is again $k \times k$. For a fixed i such that $x_{i} \neq 1$, write Ω_{i} in block form $\left(\begin{array}{ll}G_{i} & \\ & I_{n-k}\end{array}\right)$, where G_{i} is the $k \times k$ matrix $\left(\begin{array}{cc}x_{i} & \\ & I_{k-1}\end{array}\right)$. Then $\left(B^{T} B\right) \Omega_{i}=\left(\begin{array}{ll}A^{\top} A G_{i} & A^{\top} C \\ C^{\top} A G_{i} & C^{T} C\end{array}\right)$, while $\Omega_{i}\left(B^{T} B\right)=\left(\begin{array}{ll}G_{i} A^{\top} A & G_{i} \Lambda^{\top} C \\ C^{T} A & C^{T} C\end{array}\right)$. Thus, $B^{T_{B}}$ commutes with Ω_{i} if and only if
(1) $A^{\top} A G_{i}=G_{i} A^{\top} A$ and (2) $C^{\top} A G_{i}=C^{\top} A$. We write $A^{\top} A$ and $C^{\top} A$ in block form: $A^{\top} A=\left(\begin{array}{ll}L & M \\ N & W\end{array}\right), C^{\top} A=\left(\begin{array}{ll}P & Q \\ R & S\end{array}\right)$, where L and P are 1×1. Since $A^{\top} A$ is symmetric, $N=M^{\top}$. Therefore, $A^{\top} A G_{i}=\left(\begin{array}{ll}L x_{i} & M \\ M^{\top} x_{i} & W\end{array}\right)$, and $G_{i} A^{\top} A=\left(\begin{array}{ll}x_{i} L & x_{i} M \\ M^{\top} & W\end{array}\right)$. Thus $A^{\top} A G_{i}=G_{i} A^{\top} A$ if and only if $H=x_{i} M$ and similarly, $C^{\top} A G_{i}=C^{\top} \Lambda$ if and only if $P x_{i}=P$ and $R x_{i}=R$. Since
 follows that $M x_{i}=M, P x_{i}=P$, and $R x_{j}=R$ if and only if $x_{i}\left({ }_{j} \sum_{=1}^{k} u_{j 1} u_{j q}=\sum_{j=1}^{k} u_{j 1} u_{j q}\right.$ for $q=2, \ldots, n$. Thus, since $x_{i} \neq 1$, we have that $\left(B^{\top} B\right) \Omega_{i}=\Omega_{i}\left(B^{\top} B\right)$ if and only if ${ }_{j}^{k} \underset{=1}{k} u_{j 1} u_{j q}=0$ for $q=2, \ldots, n$. Since the above argument is valid for any Ω_{i} for which $x_{i} \neq 1$, and since $B^{\top} B$ commutes with Ω_{i} for any i for which $x_{i}=1$, it follows that $B \varepsilon \zeta$ if and only if $\sum_{j=1}^{k} u_{j 1} u_{j q}=0$ for $q=2, \ldots, n$. We next show that
 Since U is orthogonal, $\sum_{j=1}^{n} u_{j 1} u_{j q}={ }_{j=1}^{k} u_{j 1} u_{j q}+{ }_{j=1:+1}^{n} u_{j 1} u_{j q}=0$ for
 then $u_{j 1}=0$ for $j=k+1, \ldots, n$, and $\sum_{j=1}^{n} u_{j 1} u_{j q}=\sum_{j=1}^{k} u_{j 1} u_{j q}=0$ for $q=2, \ldots, n$. If $\sum_{j=1}^{k} u_{j 1}^{2}=0$, then $u_{j 1}=0$ for $j=1, \ldots, k$ and, obviously $\sum_{j=1}^{k} u_{j 1} u_{j q}=0$ for $q=2, \ldots, n$.
 $u_{11}=\ldots=u_{k 1}=0$, then $\sum_{j=1}^{k} u_{j 1}^{2}=0$ and the proof is complete. Otherwise, let $u_{r l}$ be the first nonzero element in the first column of U, where $r \leq k$. Then $0=\sum_{j=1}^{\sum_{i}} u_{j 1} u_{j q}=u_{r 1} u_{r q}+\underset{j=\{+1}{k} u_{j 1} u_{j q}$, so that
$u_{r q}=\frac{-1}{u_{r 1}}\left({ }_{j=r+1}^{k} u_{j 1} u_{j q}\right)$ for $q=2, \ldots, n$. Thus, if $u_{r+11}, \ldots, u_{k 1}=0$, then $u_{r q}=0$ for $q=2, \ldots, n$ and it follows that $1=u_{r l}^{2}={ }_{j=1}^{k} u_{j 1}^{2}$. Suppose $u_{w 1} \neq 0$ where $r<w \leq r$. Since $u_{r 1} u_{w 1}+\underset{q=2}{\eta=2} u_{w q} u_{r q}=0$, then substituting for $u_{r q}, a \geq 2$, we have
$u_{r 1} u_{w 1}+\sum_{q=2}^{n} u_{w q}\left(\frac{-1}{u_{r 1}} \underset{j=\{+1}{k} u_{j 1} u_{j q}\right)=u_{r 1} u_{w 1}+\left(\frac{-1}{u_{r 1}}\right) \underset{j=r_{i+1}}{k_{j 1}}\left(\sum_{q=2}^{n} u_{w q} u_{j q}\right)=0$
Since U is orthogonal, then for $j \neq w, q_{q^{\frac{2}{2}}}^{2} u_{w q}{ }_{j q}=-u_{w 1}{ }_{j 7}$ and for $j=w, \quad \sum_{q=2}^{n} u_{w q} u_{j q}=\sum_{q=2}^{n} u_{w q}^{2}=1-u_{w l}^{2}$. It follows that $\quad \sum_{j=\{1}^{k} u_{j 1}\left(q \sum_{q}^{n} u_{w q} u_{j q}\right)=$ $u_{w 1}\left(\int_{j=\{+1}^{k}\left(-u_{j 1}^{2}\right)\right)+u_{w 1}$, and, substituting in (6), we have $u_{w 1}\left(u_{r 1}+\left(\frac{-1}{u_{r 1}}\right)\left({ }_{j=} \sum_{K_{r+1}}^{k}\left(-u_{j 1}^{2}\right)\right)+\left(\frac{-1}{u_{r 1}}\right)\right)=0$. Multiplying by $u_{r 1}$, we have $u_{w 1}\left(u_{r 1}^{2}+\underset{j=\frac{k}{r}+1}{k} u_{j 1}^{2}-1\right)=u_{w 1}\left({\underset{j}{2}}_{\stackrel{k}{2}}^{=r} u_{j 1}^{2}-1\right)=0$. since $u_{w 1} \neq 0$, it now follows that $1=\sum_{j=r}^{k} u_{j 1}^{2}=\sum_{j=1}^{k} u_{j 1}^{2}$.

We note that, if there exists at least one Ω_{j} which is not the identity matrix I_{n}, then the proof of Theorem 2 shows that $B^{\top} B$ commutes with all Ω_{i} 's if and only if $B^{\top} B$ commutes with Ω_{j}. Moreover, in this case, the elements of $\bar{\zeta}$ are precisely those $B=\left(I_{k} \mid Z\right) U$ for which the first column of
U is of the form $\left.\left(\begin{array}{c}u_{11} \\ \vdots \\ u_{k 1} \\ 0 \\ \vdots \\ 0\end{array}\right) \quad \begin{array}{c}0 \\ \vdots \\ u_{k+11} \\ \vdots \\ u_{n 1}\end{array}\right)$
Hence, by Theorem), if $B \in\}_{0}$, then $D_{B}=D$ or $D_{B}=0$. (Note that if $\Omega_{i}=I_{n}$ for all i, then $D=0$.)

We close this section with a definition. If V denotes the set of all $n \times n$ orthogonal matrices, let $\mathcal{f}=\left\{U=\left\langle u_{i j}\right) \varepsilon V:{ }_{j} \sum_{j} u_{j 1}^{2}=1\right.$ or 0$\}$. Thus, if there exists $\Omega_{j} \neq I_{n}$, then $B=\left(I_{k} \mid Z\right) U_{F} \zeta_{i}$ if and only if $U \varepsilon \ddot{x}$.
2. Eigenvalues of U. Let $U=\left(u_{i j}\right)$ be an $n \times n$ orthogonal matrix. As is well known, [12], the eigenvalues of U lie on the unit circle in the complex plane and non-real eigenvalues occur in conjugate pairs. Thus, if U has a real eigenvalue λ, then $\lambda= \pm 1$, and, if $\mu=a+b i, b \neq 0$ is an eigenvalue of U, then $\bar{\mu}=a-b i$ is also an eigenvalue of U. Clearly, $\operatorname{det} U= \pm 1$. Moreover, if 1 has multiplicity p as an eigenvalue of $U,-1$ multiplicity a, and $\left\{a_{j}+b_{j} i, a_{j}-b_{j} i\right\}_{j=1}^{q}\left(b_{j} \neq 0\right)$ are the remaining eigenvalues of U, then U is similar to a block diagonal orthogonal matrix PUP ${ }^{-1}$ of the form:

where 1 appears on the diagonal p times, -1 appears $i n$. times, and each $A_{j}=\left(\begin{array}{rl}a_{j} & b_{j} \\ -b_{j} & a_{j}\end{array}\right)$ is a 2×2 onthogonal matrix with eigenvalues $a_{j}+b_{j}{ }^{i}$, $a_{j}-b_{j} i$. Furthemore, the order in which the A_{j} 's, l's, and -1's appear on the diagonal can be chanyed to any desired under by a similarity transformation. Thus. any two orthogonal $n \times n$ matrices with the same set of eigenvalues are similar. Finally, we observe that if U is a 2×2 orthogonal matrix, then $U=\left(\begin{array}{rr}c & d \\ d & -c\end{array}\right) \quad$ or $U=\left(\begin{array}{rr}c & d \\ -d & c\end{array}\right)$ where $c^{2}+d^{2}=1$.

Let $\left.B=\left(I_{k} \mid Z\right) \cup \varepsilon\right\}_{2}$. For the remainder of the paper we will be concerred with determining what role, if any, the eigenvalues of U play in determining D_{B}. If $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is a set of n not necessarily distinct complex numbers for which there exists an $n \times n$ orthogonal matrix U with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then we will say that $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is a (*) set . We note that if $T=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is a set of n not necessarily distinct complex numbers such that T is closed under conjugation and every element of T has modulus 1 , then T is a $(*)$ set. Throughout the following, we assume that $l \leq k<n$, where k and n are positive integere, and we assume that at least one covariance matrix $\Omega_{i} \neq I_{n}$.

Proposition 3. Let $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a (*) set. Then there exists an orthogonal matrix U with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ such that $B=\left(I_{k} \mid Z\right) \cup \varepsilon 母_{6}^{?}$ and $D_{B}=D$ if and only if one of the following conditions holds:
(i) λ_{i} is real for solne i.
(ii) $k \geq 2$ and no λ_{i} is real.

Proof: Observe that if at least one λ_{j} is real, say λ_{1}, then by (7) there exists a block diagonal orthogonal matrix U of the form $U=\left(\begin{array}{ll}\lambda_{1} & \\ & c\end{array}\right)$, where C is an $(n-1) \times(n-1)$ block diagonal orthogonal matrix with
 so that $\left.B=\left(I_{k} \mid Z\right) \cup \in\right\}$ and $D_{B}=D$ (Theorem 2). If no λ_{j} is real, then n is even, and by (7) there exists a block diagonal orthogonal matrix U with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ such that $U=\left(\begin{array}{lll}\lambda_{1} & \\ & & \\ & & \\ & A_{n}\end{array}\right)$, where each A_{j} is
a 2×2 matrix of the form $\left(\begin{array}{rr}a_{j} & b_{j} \\ -b_{j} & a_{j}\end{array}\right), b_{j} \neq 0$. Thus, the first column of U is $\left(\begin{array}{c}a_{1} \\ -b_{1} \\ 0 \\ \vdots \\ 0\end{array}\right)$, and hence, if $k \geq 2$, then $B=\left(I_{k} ; z\right) \cup \in \zeta$ and $D_{B}=D$.

Conversely, suppose that $k=1$. If there exists an orthogonal matrix U with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ such that $B=\left(I_{k} \mid Z\right) \cup \varepsilon$, then $U \varepsilon \&$. Thus, if $D_{B}=D$, then U is of the form $\left(\begin{array}{ccc}a & 0 & \cdots \\ 0 & 0 \\ 0 & c \\ \vdots & c\end{array}\right)$, where $a= \pm 1$ and C is an $(n-1) \times(n-1)$ orthogonal matrix. Therefore, a is an eigenvalue of U and $\lambda_{i}=a$ is real for some i.

REPRONUCIBILITY OF THE

 ORIGINAL PAGE IS POOFIt is natural to consider the analogous condition $D_{B}=0$. That is, given a (*) set $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, does there exist an orthogonal matrix U with these eigenvalues such that $B=\left(I_{k} \mid Z\right) \mid \omega \in{ }_{\varphi}^{k}$ and $D_{B}=0$? The answer, as in the preceding case, is no in general, but it is true in some important cases.

Proposition 4. Let $T=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ be a (*) set. If either
(i) 1 and $-T \in T$, or;
(ii) i and $-i \in T$,
then there exists an orthogonal matrix U with eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ such that $B=\left(I_{k} \mid z\right) \mid: \quad$ and $D_{B}=0$.

Proof. Let λ_{1} and λ_{2} denote the pair $1,-1$ or $i,-i$, let H be any $(n-2) \times(n-2)$ orthogonal matrix with eigenvalues $\lambda_{3}, \ldots, \lambda_{n}$, and let $u=\left(\begin{array}{lll}0 & z & b_{1} \\ z & H & Z \\ b_{2} & z & 0\end{array}\right)$, where Z denotes an $(n-2)$ row or column vector of zeros, and if $\left\{\lambda_{1}, \lambda_{2}\right\}=\{1,-1\}$, then $b_{1}=b_{2}=1$, and if $\left\{\lambda_{1}, \lambda_{2}\right\}=\{i,-i\}$, then $b_{1}=1, b_{2}=-1$.

Clearly, U is an orthogonal matrix. Moreover, the eigenvalues of U are $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, since $\operatorname{det}\left(x I_{n}-U\right)=\left(x^{2}-b_{1} b_{2}\right) \operatorname{det}\left(x I_{n-2}-H\right)$ and hence the roots of $\left.\operatorname{deti}^{2} \times I_{n}-U\right)=0$ are the roots of $\operatorname{det}\left(x I_{n-2}-H\right)=0$, together with the roots of $x^{2}-b_{1} b_{2}=0$. Since the roots of the former equation are the eigenvalues of H, its suffices to show that λ_{1} and λ_{2} are the roots of $x^{2}-b_{1} b_{2}=0$. This follows immediately from the relationship
defined between the values of λ_{1} and λ_{2} and the choices of b_{1} and h_{2}. Thus, since we assume $k<n$, then Theorem 2 implies that $U \varepsilon \mathcal{X}$, so that $B=\left(I_{k} \mid Z\right) \cup \in \zeta_{0}^{2}$, and, by Theorem $1, D_{B}=0$.

Our next result shows that, if $n=3$, then Proposition 4 does not characterize those (*) sets T for which there exists an orthogonal matrix U with set of eigenvalues T such that $B=\left(I_{k} \mid Z\right) \cup \varepsilon \mathcal{Y}^{2}$ and $D_{B}=0$. We will obtain a partial extension of this result to arbitrary n and we will make strong use of the extension in our main result, Theorem 7.

Lemma 5. Let $n=3, k=2$, and suppose that $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ is a (*) set, where $\lambda_{1}=a+b i, \lambda_{2}=a-b i$.
(1) If $\lambda_{3}=1$, then there exists a 3×3 orthogonal matrix U with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ such that $U \varepsilon \mathcal{L}$ and $D_{B}=0$, $B=\left(I_{k} \mid Z\right) U$, if and only if a, the real part of λ_{1} and λ_{2}, is less than or equal to zero;
(2) if $\lambda_{3}=-1$, then there exists a 3×3 orthogonal matrix U with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ such that $U \varepsilon \&$ and $D_{B}=0$, $B=\left(I_{k} \mid Z\right) U$, if and only if a, the real part of λ_{1} and λ_{2}, is greater than or equal to zero.

Proof. Observe that if $U \varepsilon \&$ is such that $D_{B}=0$, where $B=\left(I_{k} \mid Z\right) U$, then by Theorems 1 and $2, U$ is of the form $\left(\begin{array}{cc}0 & A \\ 0 & \cap \\ v & \cap\end{array}\right)$, where $v= \pm 1$ and A is a 2×2 orthogonal matrix. Moreover, if U has eigenvalues
$\lambda_{1}, \lambda_{2}, \lambda_{3}$, then $\operatorname{det}(U)=\lambda_{1} \lambda_{2} \lambda_{3}$. Thus, if $\lambda_{3}=1$, then $\operatorname{det}(U)=1$, and if $\lambda_{3}=-1$, then $\operatorname{det}(U)=-1$. We consider the case $\lambda_{3}=1$, the case $\lambda_{3}=-1$ being similar.

If $v=1$, then A is of the form $\left(\begin{array}{cc}c & d \\ -d & c\end{array}\right)$. Then $\operatorname{det}\left(x_{3}-U\right)=$ $x^{3}+1 x^{2}-d x-1$, so that the eigenvalues or u are $1,-(1+d) \pm \frac{i \sqrt{3-2 d-d^{2}}}{2}$. Thus, there exists U with eigenvalues $\lambda_{1}, \lambda_{2}, 1$ if and only if there exists a real number $d,|d| \leq 1$, such that

$$
\begin{equation*}
a=\frac{-(1+d)}{2} \quad, \quad b=\frac{\sqrt{3}-2 d \cdot d^{2}}{2} . \tag{8}
\end{equation*}
$$

Since $|d| \leq 1$, then $\frac{-(l+d)}{2} \leq 0$, and thus, if U exists, then $a \leq 0$. Conversely, if $a \leq 0$, then $d=-(1+2 a)$ satisfies both equations in (8) and $|d| \leq 1$. If $v=-1$, then $A=\left(\begin{array}{cc}c & d \\ d & -c\end{array}\right)$, and the eigenvalues of U are $1, \frac{(d-1) \pm i \sqrt{3+2 d-d^{2}}}{2}$. An argument similar to the preceding one shows that there exists u with eigenvalues $\lambda_{1}, \lambda_{2}, 1$ if and only if $a \leq 0$.

Corollary 6. Let n and k be positive integers, $1 \leq k<n$, and suppose that $T=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is a (*) set.
(1) If $1 \varepsilon T$ and if there exists $a+b i \varepsilon T$, with $a \leq 0$, then there exists an $n \times n$ orthogonal matrix U with eigenvalues T such that $U \in \&$ and $D_{B}=0$, where $B=\left(I_{k} \mid Z\right) U$.
(2) If $-1 \in T$ and if there exists $a+b i \varepsilon T$, with $a \geq 0$, then there exists an $r \times n$ orthogonal matrix U with eigenvalues T such that $\cup \in \mathcal{L}$ and $D_{B}=0$, where $B=\left(I_{k} \mid Z\right) \cup$.

Proof. By Lemma 5 and its proof, if a : 0 , then $A=\left(\begin{array}{rrr}0 & c & d \\ 0 & -d & c \\ 1 & 0 & 0\end{array}\right)$, where $d=-(1+2 a)$, is an orthogonal matrix with eigenvalues $1, a \pm b i$. Thus, if \bar{U} is the $n \times n$ block diagonal matrix $\left(\begin{array}{ll}A & Z \\ Z & H\end{array}\right)$, where H is an $\left(n-{ }^{-}\right) \times(n-3)$ orthogonal matrix with eigenvalues $T \backslash\{1, a \pm b i\}$, then \bar{U} is an orthogonal matrix with eigenvalues the elements of T. Therefore, if U is the $n \times n$ matrix obtained from \bar{U} by irterenanging the third and $n-$ th rows and columns of \bar{U}, then U is orthogonal, and, since U is similar to \bar{U}, the eigenvalues of U arc also the elements of T. Finally, since the first column of U is $\left(\begin{array}{c}0 \\ 1 \\ 0 \\ 1\end{array}\right)$, we have $U \in S$, and, by Theorems 1
and $2, D_{B}=0$, where $B=\left(I_{k} \mid Z\right) \cup$ and $k<n$. The proof of (2) is similar.

We make a few additional observations before stating our main result. Let U be an $n \times n$ orthogonal matrix with eigenvalues $\lambda_{1},\left\{a_{j}+b_{j} i\right\}_{j=2}^{n}$, where b_{j} may be zero. Since $\operatorname{tr}(U)$ is the sum of the eigenvalues of U, it follows that if $\lambda_{1}=1$ and $a_{j}>0$ for $j=2, \ldots, n$, then $\operatorname{tr}(U)=1+\sum_{j=2}^{n} a_{j}>+1$, while if $\lambda_{1}=-1$ and $a_{j}<0$ for $j=2, \ldots, n$ then $\operatorname{tr}(U)=\cdot 1+\sum_{j}^{n} \mathrm{Z}_{2} a_{j} \leqslant-1$. Niso, if Λ is orthogonal and $\operatorname{det}(A)=-1$, then -1 is an eigenvalue of Λ. This follows immediately from the fact that $\operatorname{det}(A)$ is the product of the eigenvalues of A, repeated to their respective multiplicities. Finally, if A is orthogonal, $n \times n$, and n is even, then $\operatorname{det}(\Lambda)=-1$ implies that both -1 and 1 are eigenvalues of A.

Theorem 7. Let n and k be positive integers, $1 \leq k \leq n$, let u be an $n \times n$ orthogonal matrix, and let $B=\left(I_{k} \mid Z\right) U$ be such that $D_{B}=D$. If $\bar{U}=\left(\begin{array}{ll}I_{n-1} & Z \\ Z & -1\end{array}\right) U \quad$ and if $\bar{B}=\left(I_{k} \mid Z\right) \bar{U}$, then $B=\bar{B}$, so that $D_{\bar{B}}=D_{B}=D$. Either U or \bar{U} is similar to an $n \times n$ orthogonal matrix $U_{1} \varepsilon f$ such that $D_{B_{1}}=0$, where $B_{1}=\left(I_{k} \mid Z\right) U_{1}$.

Proof. Note that the matrix \bar{U} differs from U only in that the last row of \bar{U} is the negative of the last row of U. Clearly, since $k<n$, we have $\bar{B}=B$.

How suppose that n is even. If $\operatorname{det}(U)=-1$, then 1 and -1 are eigenvalues of U and thus, by Proposition 4 , there exists an orthogonal matrix U_{1} similar to U such that $B_{1}=\left(I_{k} \mid Z\right) U_{1} \in \dot{\psi}$ and $D_{B_{1}}=0$. If $\operatorname{det}(U)=1$, then $\operatorname{det}(\bar{U})=-1$, and the above argument applied to \bar{U} yields the same conclusion.

Suppose that n is odd. Then U must have at least one real eigenvalue, λ. If $\lambda=1$ and if U has another eigenvalue $a+b i$, $a \leq 0$, then the conclusion follows from (1) of Corollary 6. Similarly, if $\lambda=-1$ and if U has another eigenvalue $a+b i, a \geq 0$, then the conclusion follows from (2) of Corollary 6. Suppose now that $\lambda=1$ is an eigenvalue of U and that $a>0$ for all other eigenvalues $a+b i$ of U. Then $\operatorname{det}(U)=1$ and $\operatorname{tr}(U)>1$. Since $\operatorname{det}(\bar{U})=-1$, it follows that -1 is an eigenvalue of \bar{U}, and, since $\operatorname{tr}(\bar{U})$ can differ from $\operatorname{tr}(U)$ by at most 2 , we have that $\operatorname{tr}(\bar{U})>-1$. Thus, \bar{U} must have an eigenvalue of the form $c+d i$, where $c>0$, and hence, by (2) of Corollary 6 , there exists an orthogonal matrix
U_{1}, simi'ar to \bar{U}, such that $B_{1}=\left(I_{k} \mid Z\right) U_{1} c \zeta_{\mathcal{C}}$ and $D_{B_{1}}=0$. The case in wich $\lambda=-1$ is an eigenvalue of U and that $a<0$ for all other eigenvalues $a+b i$ of U is handled in a similar manner, and we omit the proof.
3. Conclusion. This paper provides an example to show that, even under extremely strong conditions, the eigenvalues of U do not affe the value of divergence $D_{\left(I_{k} \mid Z\right) U}$ in the space of reḍced dinension.

REFERENCES

[1] C. C. Babu, "On the application of divergence to feature selection in pattern recognition," IEEE Trans. Syst., Man, and Cybern., Vol. SMC-2, pp. 668-670, Nov. 1972.
(2) C. C. Babu and S. Kalra, "On feature extraction in multiclass pattern recognition," Int. J. Contr., Vol. 15, No. 3, pp. 595-601, 1972.

13] D. R. Brown and M. נ. O'Malley, "A counterexample in linear feature selection theory," IEEE Trans. Syst., Man, and Cybern., Vol. SMC-6, No. 1, pp. 59-61, Jan. 1976.
[4] H. P. Decell and J. A. Quircin, "An iterative approach to the feature selection problem," in Proc. IEEE Conf. Machine Processing of Remotely Sensed Data, Purdue Univ., Oct. 1973, IEEE Cat. \#CMO834-2GE, pp. 3B1-3B12.
[5] K. Fukunaga and W. Koontz, "Application of the Karhunen-Loève expansion to feature selection and ordering," IEEE Trans. Comput., Vot. C-19, pp. 311-318, Apr. 1970.
[6] T. L. Henderson and D. G. Lainiotis, "Conments on linear feature extraction," IEEE Trans. Inform. Theory, Vol. IT-15, pp. 728-730, Nov. 1969.
[7] T. T. Kadota and I. A. Shepp, "On the best. finite set of linear observables for discriminating two Gaussian signals," IEEE Trans. Inform. Theory, Vol. IT-13, pp. 278-284, Apr. 1967.
[8] T. Kailath, "The divergence and Battacharyya distance measures in signal detection," IEEE Trans. Comiun. Technol., Vol. COM-15, pp. 52.60, Feb. 1967.
[9] S. Kullback, Information Theory and Statistics. New York: Wiley, 1969.
[10] T. Marill and D. M. Green, "On the effectiveness of receptors in recognition systems," IEEE Trans. Inform. Theory, Vol. IT-9, pp. 11-17, Jan. 1963.
[11] J. Tou and R. Heydorn, "Some approaches to optimum feature extraction," in Computer and Information Sciences, Vol. 2, J. Tou, Ed. New York: Academic, 1967.
[12] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups. Glenview, Illinois: Scott, Foresman and Co., 1y:
[13] S. Watanabe, Ed., Methodologies of Pattern Recognition. New York: Academic, 1969.
[14] S. Watanabe, et al, "Evaluation and selection of variables in pattern recognition," in Computer and Information Sciences, Vol. 11, J. Tou, Ed., New York: Academic, 1967.
[15] T. Young, "Reliability of linear feature extractions," IEEE Trans. Comput., Vo1. C-20, pp. 967-971, Sept. 1971.

[^0]: This work was supported in part: by NASA under Contract JSC-NAS-15000.

